forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
combiners_test.py
157 lines (131 loc) · 4.98 KB
/
combiners_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright 2021 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for combiners."""
import math
from absl.testing import absltest
from fusion_tcv import combiners
NAN = float("nan")
class CombinersTest(absltest.TestCase):
def assertNan(self, value):
self.assertLen(value, 1)
self.assertTrue(math.isnan(value[0]))
def test_errors(self):
c = combiners.Mean()
with self.assertRaises(ValueError):
c([0, 1], [1])
with self.assertRaises(ValueError):
c([0, 1], [1, 2, 3])
with self.assertRaises(ValueError):
c([0, 1], [-1, 2])
def test_mean(self):
c = combiners.Mean()
self.assertEqual(c([0, 2, 4]), [2])
self.assertEqual(c([0, 0.5, 1]), [0.5])
self.assertEqual(c([0, 0.5, 1], [0, 0, 1]), [1])
self.assertEqual(c([0, 1], [1, 3]), [0.75])
self.assertEqual(c([0, NAN], [1, 3]), [0])
self.assertNan(c([NAN, NAN], [1, 3]))
def test_geometric_mean(self):
c = combiners.GeometricMean()
self.assertEqual(c([0.5, 0]), [0])
self.assertEqual(c([0.3]), [0.3])
self.assertEqual(c([4, 4]), [4])
self.assertEqual(c([0.5, 0.5]), [0.5])
self.assertEqual(c([0.5, 0.5], [1, 3]), [0.5])
self.assertEqual(c([0.5, 1], [1, 2]), [0.5**(1/3)])
self.assertEqual(c([0.5, 1], [2, 1]), [0.5**(2/3)])
self.assertEqual(c([0.5, 0], [2, 0]), [0.5])
self.assertEqual(c([0.5, 0, 0], [2, 1, 0]), [0])
self.assertEqual(c([0.5, NAN, 0], [2, 1, 0]), [0.5])
self.assertNan(c([NAN, NAN], [1, 3]))
def test_multiply(self):
c = combiners.Multiply()
self.assertEqual(c([0.5, 0]), [0])
self.assertEqual(c([0.3]), [0.3])
self.assertEqual(c([0.5, 0.5]), [0.25])
self.assertEqual(c([0.5, 0.5], [1, 3]), [0.0625])
self.assertEqual(c([0.5, 1], [1, 2]), [0.5])
self.assertEqual(c([0.5, 1], [2, 1]), [0.25])
self.assertEqual(c([0.5, 0], [2, 0]), [0.25])
self.assertEqual(c([0.5, 0, 0], [2, 1, 0]), [0])
self.assertEqual(c([0.5, NAN], [1, 1]), [0.5])
self.assertNan(c([NAN, NAN], [1, 3]))
def test_min(self):
c = combiners.Min()
self.assertEqual(c([0, 1]), [0])
self.assertEqual(c([0.5, 1]), [0.5])
self.assertEqual(c([1, 0.75]), [0.75])
self.assertEqual(c([1, 3]), [1])
self.assertEqual(c([1, 1, 3], [0, 1, 1]), [1])
self.assertEqual(c([NAN, 3]), [3])
self.assertNan(c([NAN, NAN], [1, 3]))
def test_max(self):
c = combiners.Max()
self.assertEqual(c([0, 1]), [1])
self.assertEqual(c([0.5, 1]), [1])
self.assertEqual(c([1, 0.75]), [1])
self.assertEqual(c([1, 3]), [3])
self.assertEqual(c([1, 1, 3], [0, 1, 1]), [3])
self.assertEqual(c([NAN, 3]), [3])
self.assertNan(c([NAN, NAN], [1, 3]))
def test_lnorm(self):
c = combiners.LNorm(1)
self.assertEqual(c([0, 2, 4]), [2])
self.assertEqual(c([0, 0.5, 1]), [0.5])
self.assertEqual(c([3, 4]), [7 / 2])
self.assertEqual(c([0, 2, 4], [1, 1, 0]), [1])
self.assertEqual(c([0, 2, NAN]), [1])
self.assertNan(c([NAN, NAN], [1, 3]))
c = combiners.LNorm(1, normalized=False)
self.assertEqual(c([0, 2, 4]), [6])
self.assertEqual(c([0, 0.5, 1]), [1.5])
self.assertEqual(c([3, 4]), [7])
c = combiners.LNorm(2)
self.assertEqual(c([3, 4]), [5 / 2**0.5])
c = combiners.LNorm(2, normalized=False)
self.assertEqual(c([3, 4]), [5])
c = combiners.LNorm(math.inf)
self.assertAlmostEqual(c([3, 4])[0], 4)
c = combiners.LNorm(math.inf, normalized=False)
self.assertAlmostEqual(c([3, 4])[0], 4)
def test_smoothmax(self):
# Max
c = combiners.SmoothMax(math.inf)
self.assertEqual(c([0, 1]), [1])
self.assertEqual(c([0.5, 1]), [1])
self.assertEqual(c([1, 0.75]), [1])
self.assertEqual(c([1, 3]), [3])
# Smooth Max
c = combiners.SmoothMax(1)
self.assertAlmostEqual(c([0, 1])[0], 0.7310585786300049)
# Mean
c = combiners.SmoothMax(0)
self.assertEqual(c([0, 2, 4]), [2])
self.assertEqual(c([0, 0.5, 1]), [0.5])
self.assertEqual(c([0, 0.5, 1], [0, 0, 1]), [1])
self.assertEqual(c([0, 2, NAN]), [1])
self.assertEqual(c([0, 2, NAN], [0, 1, 1]), [2])
self.assertAlmostEqual(c([0, 1], [1, 3])[0], 0.75)
self.assertNan(c([NAN, NAN], [1, 3]))
# Smooth Min
c = combiners.SmoothMax(-1)
self.assertEqual(c([0, 1])[0], 0.2689414213699951)
# Min
c = combiners.SmoothMax(-math.inf)
self.assertEqual(c([0, 1]), [0])
self.assertEqual(c([0.5, 1]), [0.5])
self.assertEqual(c([1, 0.75]), [0.75])
self.assertEqual(c([1, 3]), [1])
if __name__ == "__main__":
absltest.main()