forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_experiment.py
477 lines (402 loc) · 16.8 KB
/
eval_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
# Copyright 2020 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Linear evaluation or fine-tuning pipeline.
Use this experiment to evaluate a checkpoint from byol_experiment.
"""
import functools
from typing import Any, Generator, Mapping, NamedTuple, Optional, Text, Tuple, Union
from absl import logging
from acme.jax import utils as acme_utils
import haiku as hk
import jax
import jax.numpy as jnp
import numpy as np
import optax
from byol.utils import checkpointing
from byol.utils import dataset
from byol.utils import helpers
from byol.utils import networks
from byol.utils import schedules
# Type declarations.
OptState = Tuple[optax.TraceState, optax.ScaleByScheduleState, optax.ScaleState]
LogsDict = Mapping[Text, jnp.ndarray]
class _EvalExperimentState(NamedTuple):
backbone_params: hk.Params
classif_params: hk.Params
backbone_state: hk.State
backbone_opt_state: Union[None, OptState]
classif_opt_state: OptState
class EvalExperiment:
"""Linear evaluation experiment."""
def __init__(
self,
random_seed: int,
num_classes: int,
batch_size: int,
max_steps: int,
enable_double_transpose: bool,
checkpoint_to_evaluate: Optional[Text],
allow_train_from_scratch: bool,
freeze_backbone: bool,
network_config: Mapping[Text, Any],
optimizer_config: Mapping[Text, Any],
lr_schedule_config: Mapping[Text, Any],
evaluation_config: Mapping[Text, Any],
checkpointing_config: Mapping[Text, Any]):
"""Constructs the experiment.
Args:
random_seed: the random seed to use when initializing network weights.
num_classes: the number of classes; used for the online evaluation.
batch_size: the total batch size; should be a multiple of the number of
available accelerators.
max_steps: the number of training steps; used for the lr/target network
ema schedules.
enable_double_transpose: see dataset.py; only has effect on TPU.
checkpoint_to_evaluate: the path to the checkpoint to evaluate.
allow_train_from_scratch: whether to allow training without specifying a
checkpoint to evaluate (training from scratch).
freeze_backbone: whether the backbone resnet should remain frozen (linear
evaluation) or be trainable (fine-tuning).
network_config: the configuration for the network.
optimizer_config: the configuration for the optimizer.
lr_schedule_config: the configuration for the learning rate schedule.
evaluation_config: the evaluation configuration.
checkpointing_config: the configuration for checkpointing.
"""
self._random_seed = random_seed
self._enable_double_transpose = enable_double_transpose
self._num_classes = num_classes
self._lr_schedule_config = lr_schedule_config
self._batch_size = batch_size
self._max_steps = max_steps
self._checkpoint_to_evaluate = checkpoint_to_evaluate
self._allow_train_from_scratch = allow_train_from_scratch
self._freeze_backbone = freeze_backbone
self._optimizer_config = optimizer_config
self._evaluation_config = evaluation_config
# Checkpointed experiment state.
self._experiment_state = None
# Input pipelines.
self._train_input = None
self._eval_input = None
backbone_fn = functools.partial(self._backbone_fn, **network_config)
self.forward_backbone = hk.without_apply_rng(
hk.transform_with_state(backbone_fn))
self.forward_classif = hk.without_apply_rng(hk.transform(self._classif_fn))
self.update_pmap = jax.pmap(self._update_func, axis_name='i')
self.eval_batch_jit = jax.jit(self._eval_batch)
self._is_backbone_training = not self._freeze_backbone
self._checkpointer = checkpointing.Checkpointer(**checkpointing_config)
def _should_transpose_images(self):
"""Should we transpose images (saves host-to-device time on TPUs)."""
return (self._enable_double_transpose and
jax.local_devices()[0].platform == 'tpu')
def _backbone_fn(
self,
inputs: dataset.Batch,
encoder_class: Text,
encoder_config: Mapping[Text, Any],
bn_decay_rate: float,
is_training: bool,
) -> jnp.ndarray:
"""Forward of the encoder (backbone)."""
bn_config = {'decay_rate': bn_decay_rate}
encoder = getattr(networks, encoder_class)
model = encoder(
None,
bn_config=bn_config,
**encoder_config)
if self._should_transpose_images():
inputs = dataset.transpose_images(inputs)
images = dataset.normalize_images(inputs['images'])
return model(images, is_training=is_training)
def _classif_fn(
self,
embeddings: jnp.ndarray,
) -> jnp.ndarray:
classifier = hk.Linear(output_size=self._num_classes)
return classifier(embeddings)
# _ _
# | |_ _ __ __ _(_)_ __
# | __| '__/ _` | | '_ \
# | |_| | | (_| | | | | |
# \__|_| \__,_|_|_| |_|
#
def step(self, *,
global_step: jnp.ndarray,
rng: jnp.ndarray) -> Mapping[Text, np.ndarray]:
"""Performs a single training step."""
if self._train_input is None:
self._initialize_train(rng)
inputs = next(self._train_input)
self._experiment_state, scalars = self.update_pmap(
self._experiment_state, global_step, inputs)
scalars = helpers.get_first(scalars)
return scalars
def save_checkpoint(self, step: int, rng: jnp.ndarray):
self._checkpointer.maybe_save_checkpoint(
self._experiment_state, step=step, rng=rng,
is_final=step >= self._max_steps)
def load_checkpoint(self) -> Union[Tuple[int, jnp.ndarray], None]:
checkpoint_data = self._checkpointer.maybe_load_checkpoint()
if checkpoint_data is None:
return None
self._experiment_state, step, rng = checkpoint_data
return step, rng
def _initialize_train(self, rng):
"""BYOL's _ExperimentState initialization.
Args:
rng: random number generator used to initialize parameters. If working in
a multi device setup, this need to be a ShardedArray.
dummy_input: a dummy image, used to compute intermediate outputs shapes.
Returns:
Initial EvalExperiment state.
Raises:
RuntimeError: invalid or empty checkpoint.
"""
self._train_input = acme_utils.prefetch(self._build_train_input())
# Check we haven't already restored params
if self._experiment_state is None:
inputs = next(self._train_input)
if self._checkpoint_to_evaluate is not None:
# Load params from checkpoint
checkpoint_data = checkpointing.load_checkpoint(
self._checkpoint_to_evaluate)
if checkpoint_data is None:
raise RuntimeError('Invalid checkpoint.')
backbone_params = checkpoint_data['experiment_state'].online_params
backbone_state = checkpoint_data['experiment_state'].online_state
backbone_params = helpers.bcast_local_devices(backbone_params)
backbone_state = helpers.bcast_local_devices(backbone_state)
else:
if not self._allow_train_from_scratch:
raise ValueError(
'No checkpoint specified, but `allow_train_from_scratch` '
'set to False')
# Initialize with random parameters
logging.info(
'No checkpoint specified, initializing the networks from scratch '
'(dry run mode)')
backbone_params, backbone_state = jax.pmap(
functools.partial(self.forward_backbone.init, is_training=True),
axis_name='i')(rng=rng, inputs=inputs)
init_experiment = jax.pmap(self._make_initial_state, axis_name='i')
# Init uses the same RNG key on all hosts+devices to ensure everyone
# computes the same initial state and parameters.
init_rng = jax.random.PRNGKey(self._random_seed)
init_rng = helpers.bcast_local_devices(init_rng)
self._experiment_state = init_experiment(
rng=init_rng,
dummy_input=inputs,
backbone_params=backbone_params,
backbone_state=backbone_state)
# Clear the backbone optimizer's state when the backbone is frozen.
if self._freeze_backbone:
self._experiment_state = _EvalExperimentState(
backbone_params=self._experiment_state.backbone_params,
classif_params=self._experiment_state.classif_params,
backbone_state=self._experiment_state.backbone_state,
backbone_opt_state=None,
classif_opt_state=self._experiment_state.classif_opt_state,
)
def _make_initial_state(
self,
rng: jnp.ndarray,
dummy_input: dataset.Batch,
backbone_params: hk.Params,
backbone_state: hk.Params,
) -> _EvalExperimentState:
"""_EvalExperimentState initialization."""
# Initialize the backbone params
# Always create the batchnorm weights (is_training=True), they will be
# overwritten when loading the checkpoint.
embeddings, _ = self.forward_backbone.apply(
backbone_params, backbone_state, dummy_input, is_training=True)
backbone_opt_state = self._optimizer(0.).init(backbone_params)
# Initialize the classifier params and optimizer_state
classif_params = self.forward_classif.init(rng, embeddings)
classif_opt_state = self._optimizer(0.).init(classif_params)
return _EvalExperimentState(
backbone_params=backbone_params,
classif_params=classif_params,
backbone_state=backbone_state,
backbone_opt_state=backbone_opt_state,
classif_opt_state=classif_opt_state,
)
def _build_train_input(self) -> Generator[dataset.Batch, None, None]:
"""See base class."""
num_devices = jax.device_count()
global_batch_size = self._batch_size
per_device_batch_size, ragged = divmod(global_batch_size, num_devices)
if ragged:
raise ValueError(
f'Global batch size {global_batch_size} must be divisible by '
f'num devices {num_devices}')
return dataset.load(
dataset.Split.TRAIN_AND_VALID,
preprocess_mode=dataset.PreprocessMode.LINEAR_TRAIN,
transpose=self._should_transpose_images(),
batch_dims=[jax.local_device_count(), per_device_batch_size])
def _optimizer(self, learning_rate: float):
"""Build optimizer from config."""
return optax.sgd(learning_rate, **self._optimizer_config)
def _loss_fn(
self,
backbone_params: hk.Params,
classif_params: hk.Params,
backbone_state: hk.State,
inputs: dataset.Batch,
) -> Tuple[jnp.ndarray, Tuple[jnp.ndarray, hk.State]]:
"""Compute the classification loss function.
Args:
backbone_params: parameters of the encoder network.
classif_params: parameters of the linear classifier.
backbone_state: internal state of encoder network.
inputs: inputs, containing `images` and `labels`.
Returns:
The classification loss and various logs.
"""
embeddings, backbone_state = self.forward_backbone.apply(
backbone_params,
backbone_state,
inputs,
is_training=not self._freeze_backbone)
logits = self.forward_classif.apply(classif_params, embeddings)
labels = hk.one_hot(inputs['labels'], self._num_classes)
loss = helpers.softmax_cross_entropy(logits, labels, reduction='mean')
scaled_loss = loss / jax.device_count()
return scaled_loss, (loss, backbone_state)
def _update_func(
self,
experiment_state: _EvalExperimentState,
global_step: jnp.ndarray,
inputs: dataset.Batch,
) -> Tuple[_EvalExperimentState, LogsDict]:
"""Applies an update to parameters and returns new state."""
# This function computes the gradient of the first output of loss_fn and
# passes through the other arguments unchanged.
# Gradient of the first output of _loss_fn wrt the backbone (arg 0) and the
# classifier parameters (arg 1). The auxiliary outputs are returned as-is.
grad_loss_fn = jax.grad(self._loss_fn, has_aux=True, argnums=(0, 1))
grads, aux_outputs = grad_loss_fn(
experiment_state.backbone_params,
experiment_state.classif_params,
experiment_state.backbone_state,
inputs,
)
backbone_grads, classifier_grads = grads
train_loss, new_backbone_state = aux_outputs
classifier_grads = jax.lax.psum(classifier_grads, axis_name='i')
# Compute the decayed learning rate
learning_rate = schedules.learning_schedule(
global_step,
batch_size=self._batch_size,
total_steps=self._max_steps,
**self._lr_schedule_config)
# Compute and apply updates via our optimizer.
classif_updates, new_classif_opt_state = \
self._optimizer(learning_rate).update(
classifier_grads,
experiment_state.classif_opt_state)
new_classif_params = optax.apply_updates(experiment_state.classif_params,
classif_updates)
if self._freeze_backbone:
del backbone_grads, new_backbone_state # Unused
# The backbone is not updated.
new_backbone_params = experiment_state.backbone_params
new_backbone_opt_state = None
new_backbone_state = experiment_state.backbone_state
else:
backbone_grads = jax.lax.psum(backbone_grads, axis_name='i')
# Compute and apply updates via our optimizer.
backbone_updates, new_backbone_opt_state = \
self._optimizer(learning_rate).update(
backbone_grads,
experiment_state.backbone_opt_state)
new_backbone_params = optax.apply_updates(
experiment_state.backbone_params, backbone_updates)
experiment_state = _EvalExperimentState(
new_backbone_params,
new_classif_params,
new_backbone_state,
new_backbone_opt_state,
new_classif_opt_state,
)
# Scalars to log (note: we log the mean across all hosts/devices).
scalars = {'train_loss': train_loss}
scalars = jax.lax.pmean(scalars, axis_name='i')
return experiment_state, scalars
# _
# _____ ____ _| |
# / _ \ \ / / _` | |
# | __/\ V / (_| | |
# \___| \_/ \__,_|_|
#
def evaluate(self, global_step, **unused_args):
"""See base class."""
global_step = np.array(helpers.get_first(global_step))
scalars = jax.device_get(self._eval_epoch(**self._evaluation_config))
logging.info('[Step %d] Eval scalars: %s', global_step, scalars)
return scalars
def _eval_batch(
self,
backbone_params: hk.Params,
classif_params: hk.Params,
backbone_state: hk.State,
inputs: dataset.Batch,
) -> LogsDict:
"""Evaluates a batch."""
embeddings, backbone_state = self.forward_backbone.apply(
backbone_params, backbone_state, inputs, is_training=False)
logits = self.forward_classif.apply(classif_params, embeddings)
labels = hk.one_hot(inputs['labels'], self._num_classes)
loss = helpers.softmax_cross_entropy(logits, labels, reduction=None)
top1_correct = helpers.topk_accuracy(logits, inputs['labels'], topk=1)
top5_correct = helpers.topk_accuracy(logits, inputs['labels'], topk=5)
# NOTE: Returned values will be summed and finally divided by num_samples.
return {
'eval_loss': loss,
'top1_accuracy': top1_correct,
'top5_accuracy': top5_correct
}
def _eval_epoch(self, subset: Text, batch_size: int):
"""Evaluates an epoch."""
num_samples = 0.
summed_scalars = None
backbone_params = helpers.get_first(self._experiment_state.backbone_params)
classif_params = helpers.get_first(self._experiment_state.classif_params)
backbone_state = helpers.get_first(self._experiment_state.backbone_state)
split = dataset.Split.from_string(subset)
dataset_iterator = dataset.load(
split,
preprocess_mode=dataset.PreprocessMode.EVAL,
transpose=self._should_transpose_images(),
batch_dims=[batch_size])
for inputs in dataset_iterator:
num_samples += inputs['labels'].shape[0]
scalars = self.eval_batch_jit(
backbone_params,
classif_params,
backbone_state,
inputs,
)
# Accumulate the sum of scalars for each step.
scalars = jax.tree_map(lambda x: jnp.sum(x, axis=0), scalars)
if summed_scalars is None:
summed_scalars = scalars
else:
summed_scalars = jax.tree_map(jnp.add, summed_scalars, scalars)
mean_scalars = jax.tree_map(lambda x: x / num_samples, summed_scalars)
return mean_scalars