From fb553c204383e189d6656f99cdd8e293138e318c Mon Sep 17 00:00:00 2001 From: KOSASIH Date: Sat, 7 Dec 2024 15:58:24 +0700 Subject: [PATCH] Create pi_coin_stabilizer.py --- src/stabilizer/pi_coin_stabilizer.py | 170 +++++++++++++++++++++++++++ 1 file changed, 170 insertions(+) create mode 100644 src/stabilizer/pi_coin_stabilizer.py diff --git a/src/stabilizer/pi_coin_stabilizer.py b/src/stabilizer/pi_coin_stabilizer.py new file mode 100644 index 0000000..7b0759f --- /dev/null +++ b/src/stabilizer/pi_coin_stabilizer.py @@ -0,0 +1,170 @@ +# pi_coin_stabilizer.py + +import asyncio +import uuid +import logging +import json +from typing import Dict, Any, List, Optional +from dataclasses import dataclass, field +from decimal import Decimal +from datetime import datetime, timedelta + +# Scientific & Numerical Libraries +import numpy as np +import pandas as pd +import scipy.stats as stats +import sympy as sp + +# Blockchain Technologies +from web3 import Web3 +from eth_account import Account +from eth_account.messages import encode_defunct + +# Machine Learning Frameworks +import tensorflow as tf +from tensorflow.keras.models import Sequential +from tensorflow.keras.layers import LSTM, Dense, Dropout +import torch +import torch.nn as nn + +# Distributed Computing +import ray +import dask.distributed + +# Cryptography +from cryptography.fernet import Fernet + +# Logging Configuration +logging.basicConfig( + level=logging.INFO, + format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' +) +logger = logging.getLogger(__name__) + +@dataclass +class PiCoinStabilizationStrategy: + """ + Advanced Pi Coin Stabilization Data Model + """ + id: str = field(default_factory=lambda: str(uuid.uuid4())) + target_value: Decimal = Decimal('314.159') + current_value: Decimal = Decimal('0') + stabilization_timestamp: datetime = field(default_factory=datetime.utcnow) + volatility_index: float = 0.0 + economic_entropy: float = 0.0 + adaptive_parameters: Dict[str, Any] = field(default_factory=dict) + stabilization_proof: Optional[str] = None + encryption_key: Optional[bytes] = None + +class AdvancedPiCoinStabilizer: + def __init__( + self, + initial_supply: Decimal = Decimal('1000000'), + target_price: Decimal = Decimal('314.159') + ): + # Core Stabilization Parameters + self.initial_supply = initial_supply + self.target_price = target_price + + # Security Initialization + self.encryption_manager = Fernet(Fernet.generate_key()) + + # Distributed Computing Initialization + try: + ray.init(num_cpus=8, ignore_reinit_error=True) + except Exception as e: + logger.error(f"Ray Initialization Failed: {e}") + + # System Initialization Sequence + self._initialize_blockchain_infrastructure() + self._initialize_economic_models() + self._initialize_ml_stabilization_models() + + logger.info("Pi Coin Stabilizer Initialized Successfully") + + def _initialize_blockchain_infrastructure(self): + """ + Advanced Blockchain Infrastructure Setup + """ + try: + # Ethereum-compatible Blockchain Account + self.blockchain_account = Account.create() + + # Web3 Provider Configuration + self.w3 = Web3(Web3.HTTPProvider( + 'https://mainnet.infura.io/v3/YOUR_INFURA_PROJECT_ID' + )) + + # Cryptographic Parameters + self.signing_key = self.blockchain_account.privateKey + self.public_address = self.blockchain_account.address + + logger.info(f"Blockchain Infrastructure Initialized: {self.public_address}") + except Exception as e: + logger.error(f"Blockchain Infrastructure Setup Failed: {e}") + raise + + def _initialize_economic_models(self): + """ + Advanced Economic Stabilization Modeling + """ + try: + # Symbolic Economic Equilibrium Modeling + x, y = sp.symbols('x y') + self.economic_equilibrium_equation = sp.Eq( + sp.diff(x**2 + y**2, x), + sp.diff(x**2 + y**2, y) + ) + + # Advanced Economic Simulation Parameters + self.economic_parameters = { + 'market_liquidity': 0.75, + 'price_sensitivity': 0.5, + 'volatility_threshold': 0.2 + } + + logger.info("Economic Models Initialized Successfully") + except Exception as e: + logger.error(f"Economic Models Initialization Failed: {e}") + raise + + def _initialize_ml_stabilization_models(self): + """ + Advanced Machine Learning Stabilization Networks + """ + try: + # LSTM Price Prediction Network + self.price_prediction_model = Sequential([ + LSTM(64, input_shape=(10, 5), return_sequences=True), + Dropout(0.3), + LSTM(32), + Dense(16, activation='relu'), + Dense(1, activation='linear') + ]) + self.price_prediction_model.compile( + optimizer='adam', + loss='mean_squared_error' + ) + + # PyTorch Economic Stability Network + class EconomicStabilityNetwork(nn.Module): + def __init__(self): + super().__init__() + self.layers = nn.Sequential( + nn.Linear(10, 64), + nn.ReLU(), + nn.Dropout(0.3), + nn.Linear(64, 32), + nn.ReLU(), + nn.Linear(32, 1) + ) + + def forward(self, x): + return self.layers(x) + + self.torch_stability_model = EconomicStabilityNetwork() + + logger.info("Machine Learning Models Initialized") + except Exception as e: + logger.error(f"ML Models Initialization Failed: {e}") + raise