diff --git a/src/stabilizer/QuantumEconomicModelingSystem.py b/src/stabilizer/QuantumEconomicModelingSystem.py index d9a3e1c..5be26a1 100644 --- a/src/stabilizer/QuantumEconomicModelingSystem.py +++ b/src/stabilizer/QuantumEconomicModelingSystem.py @@ -1,12 +1,38 @@ +import numpy as np +import pandas as pd +from sklearn.linear_model import LinearRegression +import matplotlib.pyplot as plt +import seaborn as sns + class QuantumEconomicModelingSystem: def __init__(self): self.economic_simulation_parameters = { 'target_valuation': 314.159, - 'global_economic_integration_depth': 0.95 # 95% integration potential + 'global_economic_integration_depth': 0.95, # 95% integration potential + 'quantum_factor': 1.618, # Example quantum factor for simulations + 'market_trends_data': self._fetch_market_trends() } - + self.model = LinearRegression() + + def _fetch_market_trends(self): + # Simulate fetching market trends data + # In a real scenario, this would pull from a live database or API + return pd.DataFrame({ + 'year': np.arange(2000, 2024), + 'market_growth_rate': np.random.uniform(1, 10, 24) # Random growth rates + }) + + def _calculate_market_potential(self): + # Use machine learning to predict future market potential based on historical data + X = self.economic_simulation_parameters['market_trends_data']['year'].values.reshape(-1, 1) + y = self.economic_simulation_parameters['market_trends_data']['market_growth_rate'].values + self.model.fit(X, y) + future_years = np.array([[2025], [2026], [2027]]) + predicted_growth = self.model.predict(future_years) + return predicted_growth + def simulate_global_economic_scenarios(self): - return { + scenarios = { 'economic_integration_scenarios': [ 'conservative_adoption', 'moderate_expansion', @@ -14,3 +40,20 @@ def simulate_global_economic_scenarios(self): ], 'projected_global_market_penetration': self._calculate_market_potential() } + self._visualize_scenarios(scenarios) + return scenarios + + def _visualize_scenarios(self, scenarios): + plt.figure(figsize=(10, 6)) + sns.lineplot(x=np.arange(2025, 2028), y=scenarios['projected_global_market_penetration'], marker='o') + plt.title('Projected Global Market Penetration') + plt.xlabel('Year') + plt.ylabel('Market Growth Rate (%)') + plt.xticks(np.arange(2025, 2028)) + plt.grid() + plt.show() + +# Example usage +quantum_economic_model = QuantumEconomicModelingSystem() +results = quantum_economic_model.simulate_global_economic_scenarios() +print(results)