diff --git a/projects/piguardian/ai_ml/machine_learning/tensorflow_model.py b/projects/piguardian/ai_ml/machine_learning/tensorflow_model.py new file mode 100644 index 000000000..759e060e0 --- /dev/null +++ b/projects/piguardian/ai_ml/machine_learning/tensorflow_model.py @@ -0,0 +1,47 @@ +import tensorflow as tf +from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten +from tensorflow.keras.models import Sequential +from tensorflow.keras.optimizers import Adam +from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint +from sklearn.metrics import accuracy_score, classification_report, confusion_matrix + +class TensorFlowModel: + def __init__(self, input_shape, num_classes, learning_rate=0.001): + self.input_shape = input_shape + self.num_classes = num_classes + self.learning_rate = learning_rate + self.model = self.build_model() + + def build_model(self): + model = Sequential() + model.add(Conv2D(32, (3, 3), activation='relu', input_shape=self.input_shape)) + model.add(MaxPooling2D((2, 2))) + model.add(Conv2D(64, (3, 3), activation='relu')) + model.add(MaxPooling2D((2, 2))) + model.add(Conv2D(128, (3, 3), activation='relu')) + model.add(MaxPooling2D((2, 2))) + model.add(Flatten()) + model.add(Dense(128, activation='relu')) + model.add(Dense(self.num_classes, activation='softmax')) + model.compile(optimizer=Adam(lr=self.learning_rate), loss='categorical_crossentropy', metrics=['accuracy']) + return model + + def train(self, X_train, y_train, X_val, y_val, epochs=10, batch_size=32): + early_stopping = EarlyStopping(monitor='val_loss', patience=5, min_delta=0.001) + model_checkpoint = ModelCheckpoint('best_model.h5', monitor='val_loss', save_best_only=True, mode='min') + self.model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_val, y_val), callbacks=[early_stopping, model_checkpoint]) + + def evaluate(self, X_test, y_test): + y_pred = self.model.predict(X_test) + y_pred_class = np.argmax(y_pred, axis=1) + y_test_class = np.argmax(y_test, axis=1) + accuracy = accuracy_score(y_test_class, y_pred_class) + report = classification_report(y_test_class, y_pred_class) + matrix = confusion_matrix(y_test_class, y_pred_class) + return accuracy, report, matrix + + def save_model(self, filename): + self.model.save(filename) + + def load_model(self, filename): + self.model = tf.keras.models.load_model(filename)