diff --git a/ai/optimization/network.py b/ai/optimization/network.py new file mode 100644 index 000000000..361a9860b --- /dev/null +++ b/ai/optimization/network.py @@ -0,0 +1,54 @@ +import torch +import torch.nn as nn +import torch.optim as optim + +class NeuralNetworkOptimizer: + def __init__(self, model: nn.Module, criterion: nn.Module, optimizer: optim.Optimizer): + self.model = model + self.criterion = criterion + self.optimizer = optimizer + + def train(self, inputs: torch.Tensor, targets: torch.Tensor): + self.optimizer.zero_grad() + outputs = self.model(inputs) + loss = self.criterion(outputs, targets) + loss.backward() + self.optimizer.step() + + def prune(self, amount: float): + # Prune the model by removing the smallest weights + for module in self.model.modules(): + if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear): + weights = module.weight.data + threshold = torch.abs(weights).mean() * amount + mask = torch.abs(weights) > threshold + module.weight.data *= mask + + def quantize(self, bits: int): + # Quantize the model's weights and activations + for module in self.model.modules(): + if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear): + weights = module.weight.data + min_val = weights.min() + max_val = weights.max() + scale = (max_val - min_val) / (2 ** bits - 1) + module.weight.data = torch.round((weights - min_val) / scale) * scale + min_val + + def knowledge_distillation(self, teacher_model: nn.Module): + # Perform knowledge distillation from the teacher model + for module in self.model.modules(): + if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear): + teacher_weights = teacher_model.state_dict()[module.weight.name] + module.weight.data = teacher_weights + +class NeuralNetworkPruningScheduler: + def __init__(self, optimizer: NeuralNetworkOptimizer, prune_amount: float, prune_frequency: int): + self.optimizer = optimizer + self.prune_amount = prune_amount + self.prune_frequency = prune_frequency + self.epoch = 0 + + def step(self): + if self.epoch % self.prune_frequency == 0: + self.optimizer.prune(self.prune_amount) + self.epoch += 1