From 65468ef73d079a1565a4c9c1e7506532627a5b6c Mon Sep 17 00:00:00 2001 From: KOSASIH Date: Sun, 1 Dec 2024 17:54:15 +0700 Subject: [PATCH] Create computer_vision.py --- src/ai/computer_vision.py | 66 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 66 insertions(+) create mode 100644 src/ai/computer_vision.py diff --git a/src/ai/computer_vision.py b/src/ai/computer_vision.py new file mode 100644 index 000000000..5f4b5b422 --- /dev/null +++ b/src/ai/computer_vision.py @@ -0,0 +1,66 @@ +import cv2 +import numpy as np +from tensorflow.keras.models import load_model + +class ComputerVision: + def __init__(self, model_path): + self.model = load_model(model_path) + + def preprocess_image(self, image_path): + """Load and preprocess the image.""" + image = cv2.imread(image_path) + image = cv2.resize(image, (224, 224)) # Resize to match model input + image = image.astype('float32') / 255.0 # Normalize + return np.expand_dims(image, axis=0) + + def predict(self, image_path): + """Predict the class of the image.""" + processed_image = self.preprocess_image(image_path) + predictions = self.model.predict(processed_image) + return predictions + + def detect_objects(self, image_path): + """Detect objects in the image using a pre-trained model.""" + image = cv2.imread(image_path) + # Assuming a YOLO model for object detection + # Load YOLO model and perform detection (pseudo-code) + # net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg") + # blob = cv2.dnn.blobFromImage(image, 0.00392, (416, 416), (0, 0, 0), 0, crop=False) + # net.setInput(blob) + # outs = net.forward(output_layers) + # Process the outputs to extract bounding boxes and class labels + # return detected_objects + +### federated_learning.py + +This file implements a simple federated learning setup using TensorFlow Federated. + +```python +import tensorflow as tf +import tensorflow_federated as tff + +class FederatedLearning: + def __init__(self, model_fn): + self.model_fn = model_fn + + def create_federated_data(self, client_data): + """Create federated data from client datasets.""" + return [tff.simulation.ClientData.from_clients_and_fn( + client_ids=[str(i)], + create_client_data_fn=lambda: client_data[i] + ) for i in range(len(client_data))] + + def train(self, federated_data): + """Train the model using federated learning.""" + federated_averaging = tff.learning.build_federated_averaging_process(self.model_fn) + state = federated_averaging.initialize() + + for round_num in range(1, 11): # Train for 10 rounds + state, metrics = federated_averaging.next(state, federated_data) + print(f'Round {round_num}, Metrics: {metrics}') + + def evaluate(self, federated_data): + """Evaluate the model on federated data.""" + evaluation = tff.learning.build_federated_evaluation(self.model_fn) + metrics = evaluation(state.model, federated_data) + print(f'Evaluation Metrics: {metrics}')