diff --git a/blockchain_integration/pi_network/pi_network_university/ai_course_recommendations/ai_course_recommendations.py b/blockchain_integration/pi_network/pi_network_university/ai_course_recommendations/ai_course_recommendations.py new file mode 100644 index 000000000..ed55a7460 --- /dev/null +++ b/blockchain_integration/pi_network/pi_network_university/ai_course_recommendations/ai_course_recommendations.py @@ -0,0 +1,47 @@ +import pandas as pd +from sklearn.ensemble import RandomForestClassifier +from sklearn.model_selection import train_test_split +from sklearn.metrics import accuracy_score +from tensorflow.keras.models import Sequential +from tensorflow.keras.layers import Dense + +# Load course data +course_data = pd.read_csv('data/course_data.csv') + +# Split data into training and testing sets +X_train, X_test, y_train, y_test = train_test_split(course_data.drop('course_id', axis=1), course_data['course_id'], test_size=0.2, random_state=42) + +# Train random forest classifier +rfc = RandomForestClassifier(n_estimators=100, random_state=42) +rfc.fit(X_train, y_train) + +# Train neural network +nn = Sequential() +nn.add(Dense(64, activation='relu', input_shape=(X_train.shape[1],))) +nn.add(Dense(32, activation='relu')) +nn.add(Dense(1, activation='sigmoid')) +nn.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) +nn.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test)) + +# Make predictions on test set +y_pred_rfc = rfc.predict(X_test) +y_pred_nn = nn.predict(X_test) + +# Evaluate model performance +accuracy_rfc = accuracy_score(y_test, y_pred_rfc) +accuracy_nn = accuracy_score(y_test, y_pred_nn) + +print(f'Random Forest Classifier accuracy: {accuracy_rfc:.3f}') +print(f'Neural Network accuracy: {accuracy_nn:.3f}') + +# Use models to make course recommendations +def recommend_courses(user_data): + # Preprocess user data + user_data = pd.DataFrame(user_data).drop('user_id', axis=1) + + # Make predictions on user data + predictions_rfc = rfc.predict(user_data) + predictions_nn = nn.predict(user_data) + + # Return recommended courses + return course_data[course_data['course_id'].isin(predictions_rfc) | course_data['course_id'].isin(predictions_nn)]