diff --git a/quantum_integration/quantum_machine_learning/quantum_svm.py b/quantum_integration/quantum_machine_learning/quantum_svm.py new file mode 100644 index 000000000..0bc244114 --- /dev/null +++ b/quantum_integration/quantum_machine_learning/quantum_svm.py @@ -0,0 +1,34 @@ +from qiskit import Aer +from qiskit_machine_learning.algorithms import QSVC +from qiskit_machine_learning.kernels import QuantumKernel +import numpy as np +from sklearn.datasets import make_classification +from sklearn.model_selection import train_test_split +from sklearn.metrics import accuracy_score + +def quantum_svm(training_data, training_labels): + # Create a quantum kernel + quantum_kernel = QuantumKernel(quantum_instance=Aer.get_backend('aer_simulator')) + + # Create a QSVC model + model = QSVC(quantum_kernel=quantum_kernel) + + # Fit the model + model.fit(training_data, training_labels) + + # Predict using the model + predictions = model.predict(training_data) + + return predictions + +if __name__ == "__main__": + # Generate synthetic data for classification + X, y = make_classification(n_samples=100, n_features=4, n_classes=2, random_state=42) + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) + + # Train the quantum SVM + predictions = quantum_svm(X_train, y_train) + + # Evaluate the model + accuracy = accuracy_score(y_train, predictions) + print("Training Accuracy:", accuracy)