diff --git a/features/neuromorphic_fraud_detection/neuromorphic_network.py b/features/neuromorphic_fraud_detection/neuromorphic_network.py new file mode 100644 index 000000000..13e76a2f3 --- /dev/null +++ b/features/neuromorphic_fraud_detection/neuromorphic_network.py @@ -0,0 +1,32 @@ +# neuromorphic_network.py +import nengo +from nengo.dists import Uniform + +def neuromorphic_fraud_detection(input_data): + # Define the neuromorphic network + model = nengo.Network() + with model: + input_node = nengo.Node(input_data) + fraud_detector = nengo.Ensemble(n_neurons=100, dimensions=10, neuron_type=nengo.LIF()) + nengo.Connection(input_node, fraud_detector) + output_node = nengo.Node(size_in=1) + nengo.Connection(fraud_detector, output_node, function=lambda x: 1 if x > 0.5 else 0) + + # Run the neuromorphic network + with nengo.Simulator(model) as sim: + sim.run(1.0) + + return sim.data[output_node] + +# fraud_detector.py +import numpy as np +from sklearn.ensemble import RandomForestClassifier + +def fraud_detector(input_data): + # Train a random forest classifier + clf = RandomForestClassifier(n_estimators=100) + clf.fit(input_data, np.zeros((input_data.shape[0],))) + + # Use the trained classifier to detect fraud + predictions = clf.predict(input_data) + return predictions