-
Notifications
You must be signed in to change notification settings - Fork 5
/
vasp_results.py
128 lines (107 loc) · 4.44 KB
/
vasp_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from ase.io.vasp import read_vasp_out
import yaml
def get_bandgap(location = "DOSCAR",tol = 1e-3):
doscar = open(location)
for _ in range(6):
l=doscar.readline()
efermi = float(l.split()[3])
step1 = doscar.readline().split()[0]
step2 = doscar.readline().split()[0]
step_size = float(step2)-float(step1)
not_found = True
while not_found:
l = doscar.readline().split()
e = float(l.pop(0))
dens = sum(float(l[i]) for i in range(len(l) // 2))
if e < efermi and dens > tol:
bot = e
elif e > efermi and dens > tol:
top = e
not_found = False
return (0, 0, 0) if top - bot < step_size*2 else (top - bot, bot, top)
def get_string_in_file(file_name, string_to_search):
"""Search for the given string in file and return lines containing that string,
along with line numbers"""
line_number = 0
list_of_results = []
# Open the file in read only mode
with open(file_name, 'r') as read_obj:
# Read all lines in the file one by one
for line in read_obj:
# For each line, check if line contains the string
line_number += 1
if string_to_search in line:
# If yes, then add the line number & line as a tuple in the list
list_of_results.append([line_number, line.rstrip()])
# Return list of tuples containing line numbers and lines where string is found
return list_of_results
def find_line(filename, lookup, pos_vas):
with open(filename) as myFile:
for num, line in enumerate(myFile, 1):
if lookup in line:
t_num = num
var_stg = line.split()[pos_vas]
#print('found at line:', var_1, t_num)
#print(var_stg)
return var_stg
def find_by_key(data, target):
for key, value in data.items():
if isinstance(value, dict):
yield from find_by_key(value, target)
elif key == target:
yield value
def call_find_by_key(data, target):
y = []
x = None
for x in find_by_key(data, target):
y.append(x)
return x
if __name__ == '__main__':
with open('rendered_wano.yml') as file:
wano_file = yaml.full_load(file)
properties_bool = wano_file["TABS"]["Properties"]["properties"]
import_inputs = wano_file["TABS"]["Properties"]["Import Inputs"]
results_dict= {}
if properties_bool:
a_dict = wano_file["TABS"]["Properties"]["Var-properties"]
var_prop = wano_file["TABS"]["Properties"]["Var-properties"]
a_key = list(a_dict[0].keys())[0]
values_of_key = [a_dict[a_key] for a_dict in a_dict]
file_outfile = "OUTCAR"
atoms = read_vasp_out("OUTCAR")
#find_line(file_outfile, "NKPTS =", 3)
results_dict["NKPTS"] = int(find_line(file_outfile, "NKPTS =", 3))
results_dict["ENCUT"] = wano_file["TABS"]["INCAR"]["ENCUT"]
for var in values_of_key:
print(var)
if var[0].isupper():
cmd_1 = call_find_by_key(wano_file, var) #wano_file["TABS"]["INCAR"][var]
results_dict[var] = cmd_1
elif var == "cell_lengths_and_angles":
cmd_1 = f"atoms.get_{var}()"
results_dict["a"] = float(eval(cmd_1)[0])
results_dict["c"] = float(eval(cmd_1)[2])
print(eval(cmd_1)[0],eval(cmd_1)[2])
elif var in ["label", "title"]:
with open('rendered_wano.yml') as file:
wano_file = yaml.full_load(file)
results_dict[var] = wano_file["TABS"]["Files-Run"]["Title"]
# temp_var = (get_string_in_file("OUTCAR", "POSCAR")[1][1]).split()[2]
# results_dict[var] = temp_var
elif var in ["gap", "Gap"]:
gap, vbm, cbm = get_bandgap()
results_dict["gap"] = gap
results_dict["vbm"] = vbm
results_dict["cbm"] = cbm
else:
cmd_1 = f"atoms.get_{var}()"
results_dict[var] = eval(cmd_1)
print(results_dict)
if import_inputs:
with open("Inputs.yml") as file:
input_file = yaml.full_load(file)
results_dict.update(input_file)
with open("vasp_results.yml",'w') as out:
yaml.dump(results_dict, out,default_flow_style=False)
with open("output_dict.yml",'w') as out:
yaml.dump(results_dict, out,default_flow_style=False)