-
Notifications
You must be signed in to change notification settings - Fork 6
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
NaN results from Jacobi expansion #67
Comments
The problem is fixed at present. However, if the Jacobi expansion is executed twice without julia> GC.gc()
julia> @time Jacobi(-0.5,-0.5)\JacobiWeight(0,0.5)
0.479950 seconds (423 allocations: 45.424 GiB, 1.04% gc time)
vcat(77775-element Vector{Float64}, ℵ₀-element FillArrays.Zeros{Float64, 1, Tuple{InfiniteArrays.OneToInf{Int64}}} with indices OneToInf()) with indices OneToInf():
0.9003163161571902
1.200421754875805
-0.3201124679665222
⋮
julia> @time Jacobi(-0.5,-0.5)\JacobiWeight(0,0.5)
ERROR: OutOfMemoryError()
Stacktrace:
[1] GenericMemory
@ .\boot.jl:516 [inlined]
[2] new_as_memoryref
@ .\boot.jl:535 [inlined]
[3] Array
@ .\boot.jl:582 [inlined]
[4] hankel_partialchol(v::Vector{Float64})
@ FastTransforms C:\Users\pty\.julia\packages\FastTransforms\0RK3x\src\toeplitzhankel.jl:66
[5] _jac2jacTH_TLC(::Type{Float64}, mn::Tuple{Int64}, α::Float64, β::Float64, γ::Float64, δ::Float64, d::Int64)
@ FastTransforms C:\Users\pty\.julia\packages\FastTransforms\0RK3x\src\toeplitzhankel.jl:457
[6] _good_plan_th_jac2jac!(::Type{Float64}, mn::Tuple{Int64}, α::Float64, β::Float64, γ::Float64, δ::Float64, dims::Int64)
@ FastTransforms C:\Users\pty\.julia\packages\FastTransforms\0RK3x\src\toeplitzhankel.jl:475
[7] plan_th_jac2jac!(::Type{Float64}, mn::Tuple{Int64}, α::Float64, β::Float64, γ::Float64, δ::Float64, dims::Int64)
@ FastTransforms C:\Users\pty\.julia\packages\FastTransforms\0RK3x\src\toeplitzhankel.jl:494
[8] plan_th_cheb2jac!
@ C:\Users\pty\.julia\packages\FastTransforms\0RK3x\src\toeplitzhankel.jl:728 [inlined]
[9] th_cheb2jac
@ C:\Users\pty\.julia\packages\FastTransforms\0RK3x\src\toeplitzhankel.jl:730 [inlined]
[10] transform_ldiv
@ C:\Users\pty\.julia\dev\ClassicalOrthogonalPolynomials\src\classical\jacobi.jl:300 [inlined]
[11] copy
@ C:\Users\pty\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:119 [inlined]
[12] materialize
@ C:\Users\pty\.julia\packages\ArrayLayouts\48qDX\src\ldiv.jl:22 [inlined]
[13] ldiv
@ C:\Users\pty\.julia\packages\ArrayLayouts\48qDX\src\ldiv.jl:98 [inlined]
[14] \
@ C:\Users\pty\.julia\packages\QuasiArrays\UD7Ge\src\matmul.jl:34 [inlined]
[15] macro expansion
@ .\timing.jl:581 [inlined]
[16] top-level scope
@ .\REPL[9]:1 |
The Toeplitz Hankel transforms are not very memory friendly due to a foolish decision on my part to transform a tensor all at once If we rewrite them to reuse memory it should be fine |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
The text was updated successfully, but these errors were encountered: