Follow the instructions below to setup the environment and dependencies.
$ conda env create -f environment.yml
$ conda activate POEM
$ pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113
$ pip install -r requirements.txt
$ pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu113_pyt1110/download.html
The above wheel only works for python 3.8, pytorch 1.11.0, and cuda 11.3.
If your environment is different, you can build the pytorch3d from source, e.g.
# pip install git+https://github.com/facebookresearch/[email protected]
$ pip install git+https://github.com/lixiny/[email protected]
$ pip install git+https://github.com/KailinLi/neural_renderer.git
$ pip install transformers
# clone the repo:
$ cd thirdparty
$ git clone --recursive https://github.com/NVlabs/dex-ycb-toolkit.git
# create a __init__.py in dex_ycb_toolkit
$ touch ./dex-ycb-toolkit/dex_ycb_toolkit/__init__.py
# install the repo (inside ./thirdparty):
$ pip install ./dex-ycb-toolkit
# verify the installation
$ python -c "from dex_ycb_toolkit.dex_ycb import DexYCBDataset, _YCB_CLASSES"
# clone the repo:
$ cd thirdparty
$ git clone https://github.com/oakink/OakInk.git
# install the repo
$ pip install ./OakInk
# verify the installation
$ python -c "from oikit.oi_image import OakInkImage"
We have used a pretrained HRNet backbone in POEM. The checkpoints can be downloaded by running the following script:
sh prepare/download_hrnet.sh