forked from sebastianGehrmann/CausalMediationAnalysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
attention_utils.py
218 lines (178 loc) · 9.39 KB
/
attention_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""Collection of utilities for attention intervention"""
import matplotlib.pyplot as plt
import seaborn as sns;sns.set()
import torch
from tqdm import tqdm
import pandas as pd
import numpy as np
from scipy.stats import ttest_ind
def perform_intervention(intervention, model, effect_types=('indirect', 'direct')):
"""Perform intervention and return results for specified effects"""
x = intervention.base_strings_tok[0] # E.g. The doctor asked the nurse a question. She
x_alt = intervention.base_strings_tok[1] # E.g. The doctor asked the nurse a question. He
with torch.no_grad():
candidate1_base_prob, candidate2_base_prob = model.get_probabilities_for_examples_multitoken(
x,
intervention.candidates_tok)
candidate1_alt_prob, candidate2_alt_prob = model.get_probabilities_for_examples_multitoken(
x_alt,
intervention.candidates_tok)
candidate1 = ' '.join(intervention.candidates[0]).replace('Ġ', '')
candidate2 = ' '.join(intervention.candidates[1]).replace('Ġ', '')
odds_base = candidate2_base_prob / candidate1_base_prob
odds_alt = candidate2_alt_prob / candidate1_alt_prob
total_effect = (odds_alt - odds_base) / odds_base
results = {
'base_string1': intervention.base_strings[0],
'base_string2': intervention.base_strings[1],
'candidate1': candidate1,
'candidate2': candidate2,
'candidate1_base_prob': candidate1_base_prob,
'candidate2_base_prob': candidate2_base_prob,
'odds_base': odds_base,
'candidate1_alt_prob': candidate1_alt_prob,
'candidate2_alt_prob': candidate2_alt_prob,
'odds_alt': odds_alt,
'total_effect': total_effect,
}
for effect_type in effect_types:
candidate1_probs_head, candidate2_probs_head, candidate1_probs_layer, candidate2_probs_layer,\
candidate1_probs_model, candidate2_probs_model = model.attention_intervention_experiment(
intervention, effect_type)
odds_intervention_head = candidate2_probs_head / candidate1_probs_head
odds_intervention_layer = candidate2_probs_layer / candidate1_probs_layer
odds_intervention_model = candidate2_probs_model / candidate1_probs_model
effect_head = (odds_intervention_head - odds_base) / odds_base
effect_layer = (odds_intervention_layer - odds_base) / odds_base
effect_model = (odds_intervention_model - odds_base) / odds_base
results[effect_type + "_odds_head"] = odds_intervention_head.tolist()
results[effect_type + "_effect_head"] = effect_head.tolist()
results[effect_type + "_effect_layer"] = effect_layer.tolist()
results[effect_type + "_effect_model"] = effect_model
return results
def report_intervention(results, effect_types=('indirect', 'direct'), verbose=False):
"""Report results for single intervention"""
print(f"x : {results['base_string1']}")
print(f"x': {results['base_string2']}")
print(f"c1: {results['candidate1']}")
print(f"c2: {results['candidate2']}")
print(f"\np(c2|x) / p(c1|x) = {results['odds_base']:.5f}")
print(f"p(c2|x') / p(c1|x') = {results['odds_alt']:.5f}")
print(f"\nTOTAL Effect: (p(c2|x') / p(c1|x')) / (p(c2|x) / p(c1|x)) - 1 = {results['total_effect']:.3f}")
for effect_type in effect_types:
if verbose:
print(f'\n{effect_type.upper()} Effect')
if effect_type == 'indirect':
print(" Intervention: replace Attn(x) with Attn(x') in a specific layer/head")
print(f" Effect = (p(c2|x, Attn(x')) / p(c1|x, Attn(x')) / (p(c2|x) / p(c1|x)) - 1")
elif effect_type == 'direct':
print(" Intervention: replace x with x' while preserving Attn(x) in a specific layer/head")
print(f" Effect = (p(c2|x', Attn(x)) / p(c1|x', Attn(x)) / (p(c2|x) / p(c1|x)) - 1")
plt.figure(figsize=(9, 7))
ax = sns.heatmap(results[effect_type + '_effect_head'], annot=True, annot_kws={"size": 12}, fmt=".2f")
ax.set(xlabel='Head', ylabel='Layer', title=f'{effect_type.capitalize()} Effect')
def perform_interventions(interventions, model, effect_types=('indirect', 'direct')):
"""Perform multiple interventions"""
results_list = []
for intervention in tqdm(interventions):
results = perform_intervention(intervention, model, effect_types)
results_list.append(results)
return results_list
def report_interventions_summary_by_head(results, effect_types=('indirect', 'direct'), verbose=False, k=10,
show_head_examples=False):
"""Report summary results for multiple interventions by head"""
df = pd.DataFrame(results)
print('*** SUMMARY BY HEAD ***')
print(f"Num interventions: {len(df)}")
print(f"Mean total effect: {df.total_effect.mean():.3f}")
for effect_type in effect_types:
# Convert column to 3d ndarray (num_examples x num_layers x num_heads)
effect = np.stack(df[effect_type + '_effect_head'].to_numpy())
mean_effect = effect.mean(axis=0)
if effect_type == 'indirect':
ranking_metric = mean_effect
else:
ranking_metric = -mean_effect
topk_indices = topk_indices(ranking_metric, k)
# Compute significance levels
all_values = effect.flatten()
print(f'\n{effect_type.upper()} Effect (mean = {all_values.mean()})')
print(f"Top {k} heads:")
for ind in topk_indices:
layer, head = np.unravel_index(ind, mean_effect.shape)
head_values = effect[:, layer, head].flatten()
tstatistic, pvalue = ttest_ind(head_values, all_values)
if effect_type == 'indirect':
assert tstatistic > 0
else:
assert tstatistic < 0
one_tailed_pvalue = pvalue / 2
print(f' {layer} {head}: {mean_effect[layer, head]:.3f} (p={one_tailed_pvalue:.4f})')
if effect_type == 'indirect' and show_head_examples:
top_results_for_head = sorted(results,
key=lambda result: result['indirect_effect_head'][layer][head],
reverse=True)
for result in top_results_for_head[:3]:
print(f' {result["indirect_effect_head"][layer][head]:.3f} '
f'{result["base_string1"]} | {result["candidate1"]} | {result["candidate2"]}')
if verbose:
if effect_type == 'indirect':
print(" Intervention: replace Attn(x) with Attn(x') in a specific layer/head")
print(f" Effect = (p(c2|x, Attn(x')) / p(c1|x, Attn(x')) / (p(c2|x) / p(c1|x)) - 1")
elif effect_type == 'direct':
print(" Intervention: replace x with x' while preserving Attn(x) in a specific layer/head")
print(f" Effect = (p(c2|x', Attn(x)) / p(c1|x', Attn(x)) / (p(c2|x) / p(c1|x)) - 1")
plt.figure(figsize=(14, 10))
ax = sns.heatmap(mean_effect, annot=True, annot_kws={"size": 12}, fmt=".2f")
ax.set(xlabel='Head', ylabel='Layer', title=f'Mean {effect_type.capitalize()} Effect')
def report_interventions_summary_by_layer(results, effect_types=('indirect', 'direct')):
"""Report summary results for multiple interventions by layer"""
df = pd.DataFrame(results)
print('*** SUMMARY BY LAYER ***')
print(f"Num interventions: {len(df)}")
print(f"Mean total effect: {df.total_effect.mean():.3f}")
for effect_type in effect_types:
# Convert column to 2d ndarray (num_examples x num_layers)
effect = np.stack(df[effect_type + '_effect_layer'].to_numpy())
mean_effect = effect.mean(axis=0)
n_layers = mean_effect.shape[0]
plt.figure(figsize=(9, 7))
ax = sns.barplot(x=mean_effect, y=list(range(n_layers)), color="blue", saturation=.3, orient="h")
ax.set(ylabel='Layer', title=f'Mean {effect_type.capitalize()} Effect')
def get_odds_ratio(intervention, model):
x = intervention.base_strings_tok[0]
x_alt = intervention.base_strings_tok[1]
with torch.no_grad():
candidate1_base_prob, candidate2_base_prob = model.get_probabilities_for_examples_multitoken(
x,
intervention.candidates_tok)
candidate1_alt_prob, candidate2_alt_prob = model.get_probabilities_for_examples_multitoken(
x_alt,
intervention.candidates_tok)
odds_base = candidate2_base_prob / candidate1_base_prob
odds_alt = candidate2_alt_prob / candidate1_alt_prob
return odds_alt / odds_base
def topk_indices(arr, k):
"""Return indices of top-k values"""
return (-arr).argsort(axis=None)[:k]
if __name__ == "__main__":
from transformers import GPT2Tokenizer
from experiment import Intervention, Model
from pandas import DataFrame
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = Model(output_attentions=True)
# Test experiment
interventions = [
Intervention(
tokenizer,
"The doctor asked the nurse a question. {}",
["He", "She"],
["asked", "answered"]),
Intervention(
tokenizer,
"The doctor asked the nurse a question. {}",
["He", "She"],
["requested", "responded"])
]
results = perform_interventions(interventions, model)
report_interventions_summary_by_layer(results)