forked from wenbin-lin/OcclusionFusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
98 lines (74 loc) · 3.98 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
import torch.nn.functional as F
from torch_geometric.nn import DeepGCNLayer, TransformerConv
from torch.nn import Linear, LayerNorm, ReLU, LSTM
class MotionCompleteNet(torch.nn.Module):
def __init__(self):
super(MotionCompleteNet, self).__init__()
feature_dim = 11
hidden_channels = 32
output_dim = 4
self.hidden_channels = hidden_channels
self.node_encoder = Linear(feature_dim, hidden_channels)
self.lstm_layer_num = 2
self.lstm_hidden_dim = 32
self.lstm_output_dim = 4
self.seq_encoder = LSTM(input_size=4, hidden_size=self.lstm_hidden_dim, num_layers=self.lstm_layer_num, batch_first=False)
self.seq_linear = Linear(self.lstm_hidden_dim, self.lstm_output_dim)
self.conv0 = TransformerConv(hidden_channels, hidden_channels)
self.layer11 = self.build_layer(hidden_channels)
self.layer12 = self.build_layer(hidden_channels)
self.layer21 = self.build_layer(hidden_channels)
self.layer22 = self.build_layer(hidden_channels)
self.layer31 = self.build_layer(hidden_channels)
self.layer32 = self.build_layer(hidden_channels)
self.layer41 = self.build_layer(hidden_channels)
self.layer42 = self.build_layer(hidden_channels)
self.layer51 = self.build_layer(hidden_channels * 2)
self.layer52 = self.build_layer(hidden_channels * 2)
self.layer61 = self.build_layer(hidden_channels * 3)
self.layer62 = self.build_layer(hidden_channels * 3)
self.layer71 = self.build_layer(hidden_channels * 4)
self.layer72 = self.build_layer(hidden_channels * 4)
self.norm_out = LayerNorm(hidden_channels * 4, elementwise_affine=True)
self.act_out = ReLU(inplace=True)
self.lin = Linear(hidden_channels * 4, output_dim)
def build_layer(self, ch):
conv = TransformerConv(ch, ch)
norm = LayerNorm(ch, elementwise_affine=True)
act = ReLU(inplace=True)
layer = DeepGCNLayer(conv, norm, act, block='res+', dropout=0.1, ckpt_grad=False)
return layer
def forward(self, curr_pos, curr_motion, prev_motion, edge_indexes, down_sample_maps, up_sample_maps):
node_num = curr_pos.shape[0]
seq_feature, _ = self.seq_encoder(prev_motion.view(-1, node_num, 4), None)
seq_pred = self.seq_linear(seq_feature[-1]).view(-1, self.lstm_output_dim)
# the input feature of nodes
x = self.node_encoder(torch.cat([curr_pos, seq_pred, curr_motion], dim=-1))
feature0 = self.conv0(x, edge_indexes[0])
feature1 = self.layer11(feature0, edge_indexes[0])
feature1 = self.layer12(feature1, edge_indexes[0])
feature2 = feature1[down_sample_maps[0]]
feature2 = self.layer21(feature2, edge_indexes[1])
feature2 = self.layer22(feature2, edge_indexes[1])
feature3 = feature2[down_sample_maps[1]]
feature3 = self.layer31(feature3, edge_indexes[2])
feature3 = self.layer32(feature3, edge_indexes[2])
feature4 = feature3[down_sample_maps[2]]
feature4 = self.layer41(feature4, edge_indexes[3])
feature4 = self.layer42(feature4, edge_indexes[3])
feature5 = feature4[up_sample_maps[2]]
feature5 = self.layer51(torch.cat([feature5, feature3], dim=-1), edge_indexes[2])
feature5 = self.layer52(feature5, edge_indexes[2])
feature6 = feature5[up_sample_maps[1]]
feature6 = self.layer61(torch.cat([feature6, feature2], dim=-1), edge_indexes[1])
feature6 = self.layer62(feature6, edge_indexes[1])
feature7 = feature6[up_sample_maps[0]]
feature7 = self.layer71(torch.cat([feature7, feature1], dim=-1), edge_indexes[0])
feature7 = self.layer72(feature7, edge_indexes[0])
out = self.act_out(self.norm_out(feature7))
out = F.dropout(out, p=0.1, training=self.training)
pred = self.lin(out)
# use softplus to make sigma positive
pred[:, -1] = F.softplus(pred[:, -1])
return pred