forked from wenbin-lin/OcclusionFusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
179 lines (143 loc) · 8.26 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import torch
from glob import glob
import numpy as np
from tqdm import tqdm
from utils import rigid_icp
from model import MotionCompleteNet
class Demo:
def __init__(self, model, input_path, output_path):
self.model = model
self.input_path = input_path
self.input_path_node = os.path.join(self.input_path, 'node')
self.input_path_graph = os.path.join(self.input_path, 'graph')
self.output_path = output_path
self.output_path_node = os.path.join(self.output_path, 'node')
if not os.path.exists(self.output_path):
os.mkdir(self.output_path)
if not os.path.exists(self.output_path_node):
os.mkdir(self.output_path_node)
self.historical_motion = None
self.historical_max_len = 16
self.std_curr = None
self.std_prev = None
self.rigid_motion_curr = None
def preprocess(self, frame_id):
node_feature = np.load(os.path.join(self.input_path_node, '{:04d}.npy'.format(frame_id)))
node_pos = node_feature[:, :3]
node_motion = node_feature[:, 3:6]
visible = node_feature[:, -1] > 0.5
pyd = np.load(os.path.join(self.input_path_graph, '{:04d}.npz'.format(frame_id)))
down_sample_idx1 = pyd['down_sample_idx1']
down_sample_idx2 = pyd['down_sample_idx2']
down_sample_idx3 = pyd['down_sample_idx3']
up_sample_idx1 = pyd['up_sample_idx1']
up_sample_idx2 = pyd['up_sample_idx2']
up_sample_idx3 = pyd['up_sample_idx3']
nn_index_l0 = pyd['nn_index_l0']
nn_index_l1 = pyd['nn_index_l1']
nn_index_l2 = pyd['nn_index_l2']
nn_index_l3 = pyd['nn_index_l3']
node_num_l0 = node_pos.shape[0]
# extract rigid motion
rigid_R, rigid_t = rigid_icp(node_pos[visible, :], node_pos[visible, :] + node_motion[visible, :])
self.rigid_motion_curr = np.dot(node_pos, rigid_R.transpose()) + rigid_t - node_pos
nonrigid_motion = node_motion - self.rigid_motion_curr
curr_motion = np.zeros(shape=(node_num_l0, 4))
# motion in centimeter
curr_motion[visible, :3] = nonrigid_motion[visible, :] * 100.0
# normalize the motion
self.curr_std = np.mean(np.std(curr_motion[visible, :3], axis=0)) + 0.1
curr_motion[visible, :3] = curr_motion[visible, :3] / self.curr_std
curr_motion[:, -1] = visible
# init the mu of new nodes as 0.0, and the sigma of new nodes as a larger value (1.0)
prev_motion = np.zeros(shape=(node_num_l0, 4))
prev_motion[:, -1] = 1.0
# for the first frame, set historical motion
# using node position change between consequent frames as historical motion
if frame_id > 1:
node_feature_prev = np.load(os.path.join(self.input_path_node, '{:04d}.npy'.format(frame_id - 1)))
node_pos_prev = node_feature_prev[:, :3]
visible_prev = node_feature_prev[:, -1] > 0.5
prev_node_num = node_pos_prev.shape[0]
# node num of current frame could be larger than the previous frame, and new nodes will be add to the end of the node array
node_motion_prev = node_pos[:node_pos_prev.shape[0]] - node_pos_prev
rigid_R, rigid_t = rigid_icp(node_pos_prev[visible_prev, :], node_pos_prev[visible_prev, :] + node_motion_prev[visible_prev, :])
rigid_motion_prev = np.dot(node_pos_prev, rigid_R.transpose()) + rigid_t - node_pos_prev
prev_motion[:prev_node_num, :3] = (node_motion_prev - rigid_motion_prev) * 100.0
if self.historical_motion is None:
self.historical_motion = np.zeros(shape=(1, node_num_l0, 4))
else:
seq_len = self.historical_motion.shape[0]
prev_node_num = self.historical_motion.shape[1]
drop = (seq_len == self.historical_max_len) * 1
seq_len = min(seq_len + 1, self.historical_max_len)
temp = np.zeros(shape=(seq_len, node_num_l0, 4))
temp[:-1, :prev_node_num, :] = self.historical_motion[drop:, :, :] * self.std_prev / self.curr_std
temp[-1, :prev_node_num, :] = prev_motion[:prev_node_num, :] / self.curr_std
self.historical_motion = temp
self.std_prev = self.curr_std
node_pos = node_pos - np.mean(node_pos, axis=0)
node_pos_torch = torch.from_numpy(node_pos.astype(np.float32)).to(device)
curr_motion_torch = torch.from_numpy(curr_motion.astype(np.float32)).to(device)
historical_motion_torch = torch.from_numpy(self.historical_motion.astype(np.float32)).to(device)
node_num, nn_num = nn_index_l0.shape
edge_index_l0 = np.zeros(shape=(2, node_num * nn_num), dtype=np.int64)
edge_index_l0[0:] = np.repeat(np.arange(node_num), nn_num)
edge_index_l0[1:] = nn_index_l0.reshape(-1)
node_num, nn_num = nn_index_l1.shape
edge_index_l1 = np.zeros(shape=(2, node_num * nn_num), dtype=np.int64)
edge_index_l1[0:] = np.repeat(np.arange(node_num), nn_num)
edge_index_l1[1:] = nn_index_l1.reshape(-1)
node_num, nn_num = nn_index_l2.shape
edge_index_l2 = np.zeros(shape=(2, node_num * nn_num), dtype=np.int64)
edge_index_l2[0:] = np.repeat(np.arange(node_num), nn_num)
edge_index_l2[1:] = nn_index_l2.reshape(-1)
node_num, nn_num = nn_index_l3.shape
edge_index_l3 = np.zeros(shape=(2, node_num * nn_num), dtype=np.int64)
edge_index_l3[0:] = np.repeat(np.arange(node_num), nn_num)
edge_index_l3[1:] = nn_index_l3.reshape(-1)
edge_index_l0 = torch.from_numpy(edge_index_l0).to(device)
edge_index_l1 = torch.from_numpy(edge_index_l1).to(device)
edge_index_l2 = torch.from_numpy(edge_index_l2).to(device)
edge_index_l3 = torch.from_numpy(edge_index_l3).to(device)
down_sample_idx1 = torch.from_numpy(np.array(down_sample_idx1).astype(np.int64)).to(device)
down_sample_idx2 = torch.from_numpy(np.array(down_sample_idx2).astype(np.int64)).to(device)
down_sample_idx3 = torch.from_numpy(np.array(down_sample_idx3).astype(np.int64)).to(device)
up_sample_idx1 = torch.from_numpy(np.array(up_sample_idx1).astype(np.int64)).to(device)
up_sample_idx2 = torch.from_numpy(np.array(up_sample_idx2).astype(np.int64)).to(device)
up_sample_idx3 = torch.from_numpy(np.array(up_sample_idx3).astype(np.int64)).to(device)
return node_pos_torch, curr_motion_torch, historical_motion_torch, \
[edge_index_l0, edge_index_l1, edge_index_l2, edge_index_l3], \
[down_sample_idx1, down_sample_idx2, down_sample_idx3], \
[up_sample_idx1, up_sample_idx2, up_sample_idx3]
def run_single_frame(self, frame_id):
node_pos, curr_motion, historical_motion, edge_indices, down_sample_indices, up_sample_indices = self.preprocess(frame_id)
outputs = self.model(node_pos, curr_motion, historical_motion, edge_indices,down_sample_indices, up_sample_indices)
outputs = outputs.detach().cpu().numpy()
mu = outputs[:, :3]
sigma = outputs[:, -1]
# eq.7 in the paper
motion_scale = np.sqrt(np.sum(np.square(mu), axis=1))
confidence = np.exp(-4 * np.square(sigma / (motion_scale + 1.0)))
mu = mu * self.curr_std
sigma = sigma * self.curr_std
pred_motion = mu / 100.0
node_motion = pred_motion + self.rigid_motion_curr
return node_motion, confidence
def run_demo(self):
total_frame = len(glob(self.input_path_node + '/*.npy'))
for frame_id in tqdm(range(1, total_frame + 1)):
motion, confidence = self.run_single_frame(frame_id)
np.save(os.path.join(self.output_path_node, '{:04d}.npy'.format(frame_id)), np.hstack((motion, confidence.reshape((-1, 1)))))
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
input_path = './data/input/'
output_path = './data/output/'
checkpoint_path = './checkpoints/model_noise_all.tar'
model = MotionCompleteNet().to(device)
torch_checkpoint = torch.load(checkpoint_path, map_location=device)
model.load_state_dict(torch_checkpoint['model_state_dict'])
# load network input from files and save the predicted complete motion with confidence
demo = Demo(model, input_path, output_path)
demo.run_demo()