-
Notifications
You must be signed in to change notification settings - Fork 3
/
face-detection.py
79 lines (75 loc) · 2.63 KB
/
face-detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Face Detection with MTCNN (Multi-Task Cascaded Convolutional Neural Network)
from os import listdir
from os.path import isdir
from PIL import Image
from matplotlib import pyplot
from numpy import savez_compressed
from numpy import asarray
from mtcnn.mtcnn import MTCNN
# extract a single face from a given photograph
def extract_face(filename, required_size=(160, 160)):
# load image from file
image = Image.open(filename)
# convert to RGB, if needed
image = image.convert('RGB')
# convert to array
pixels = asarray(image)
# create the detector, using default weights
detector = MTCNN()
# detect faces in the image
results = detector.detect_faces(pixels)
# check if face was detected
if results:
# extract the bounding box from the first face
x1, y1, width, height = results[0]['box']
# bug fix
x1, y1 = abs(x1), abs(y1)
x2, y2 = x1 + width, y1 + height
# extract the face
face = pixels[y1:y2, x1:x2]
# resize pixels to the model size
image = Image.fromarray(face)
image = image.resize(required_size)
face_array = asarray(image)
return face_array
else:
return None
# load images and extract faces for all images in a directory
def load_faces(directory):
faces = []
# enumerate files
for filename in listdir(directory):
# path
path = directory + filename
# get face
face = extract_face(path)
# check if face was detected
if face is not None:
# store
faces.append(face)
return faces
# load a dataset that contains one subdir for each class that in turn contains images
def load_dataset(directory):
X, y = [], []
# enumerate folders, on per class
for subdir in listdir(directory):
# path
path = directory + subdir + '/'
# skip any files that might be in the dir
if not isdir(path):
continue
# load all faces in the subdirectory
faces = load_faces(path)
# create labels
labels = [subdir for _ in range(len(faces))]
# summarize progress
print('>loaded %d examples for class: %s' % (len(faces), subdir))
# store
X.extend(faces)
y.extend(labels)
return asarray(X), asarray(y)
# load train dataset
trainX, trainy = load_dataset('/home/jawabreh/Desktop/Face-Recognition-Test/Datasets/Team-Dataset/data/train/')
print(trainX.shape, trainy.shape)
# save arrays to one file in compressed format
savez_compressed('/home/jawabreh/Desktop/Face-Recognition-Test/Datasets/Embedding_Datasets/full-dataset-compressed', trainX, trainy)