-
Notifications
You must be signed in to change notification settings - Fork 80
/
mongo_db_schema.json
109 lines (102 loc) · 2.24 KB
/
mongo_db_schema.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
experiments
{
'_id': 'e123_fridge',
'data': {
'description': 'Using loads of data!',
'pipeline': {
'sources': {
'0': {
'name': 'SyntheticAggregateSource',
'num_activations': {
'train': {
'fridge': {
'UK-DALE_building_1': 100
}
}
}
}
},
'input_processing': []
},
'activations': {}
},
'trainer': {
'loss_function': 'mean_squared_error',
'update_function': 'NAG',
'requested_learning_rates': {
'0': 0.001
},
'actual_learning_rates': {
'0': 0.001
},
'requested_train_iterations': 500
},
'software_versions': {
'theano': '0.7.0',
'python': '2.7.10',
'lasagne': '0.1.0',
'neuralnilm': '2015-01-01'
},
'net': {
'description': 'Attempt to do blah.',
'tags': ['AE', 'RNN', '1DConv', 'tied weights'],
'predecessor_experiment': 'e120',
'architecture': {
'0': {
'layers': [
{'type': 'Input', 'output_shape': (1, 2, 4), 'num_units': 100},
{'type': 'Dense', 'output_shape': (1, 2, 4), 'num_units': 50},
{'type': 'Concat', 'input_layers': [0, 1],
'concat_axis': 0, 'output_shape': (2, 2, 4)}
],
'num_trainable_parameters': 10000
}
}
}
}
experiments.net doesn't need 'train_iterations' because we can get that from 'train_scores'.
train_scores
{
'experiment_id': 0,
'iteration': 1000,
'loss': 0.1E-3,
'source_id': 0
}
validation_scores
{
'experiment_id': 0,
'iteration': 0,
'source_id': 0,
'fold': 'train', # or unseen_appliances or unseen_activations_of_seen_appliances
'scores': {
'regression': {
'mse': 0.1E-2,
'energy_correctly_assigned': 0.1E-4
},
'classification_2_state': {
'f1_score': 0.1E-3
},
'classification_3_state': {
'f1_score': 0.1E-2
}
}
}
disaggregation_scores
{
'experiment_id': 0,
'iteration': 0,
'source_id': 0,
'fold': 'train', # or unseen_appliances or unseen_activations_of_seen_appliances
'scores': {
'regression': {
'mse': 0.1E-2,
'energy_correctly_assigned': 0.1E-4
},
'classification_2_state': {
'f1_score': 0.1E-3
},
'classification_3_state': {
'f1_score': 0.1E-2
}
}
}