-
Notifications
You must be signed in to change notification settings - Fork 29
/
generate.py
51 lines (36 loc) · 1.57 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import argparse
import torch
from torchvision import utils
from models.stylegan2 import Generator
from tqdm import tqdm
def generate(args, g_ema, device, mean_latent):
with torch.no_grad():
g_ema.eval()
for i in tqdm(range(args.pics)):
sample_z = torch.randn(args.sample, args.latent, device=device)
sample, _ = g_ema([sample_z], truncation=args.truncation, truncation_latent=mean_latent)
utils.save_image(
sample, f"sample/{str(i).zfill(6)}.png", nrow=1, normalize=True, range=(-1, 1),
)
if __name__ == "__main__":
device = "cuda"
parser = argparse.ArgumentParser()
parser.add_argument("--size", type=int, default=1024)
parser.add_argument("--sample", type=int, default=1)
parser.add_argument("--pics", type=int, default=20)
parser.add_argument("--truncation", type=float, default=1)
parser.add_argument("--truncation_mean", type=int, default=4096)
parser.add_argument("--ckpt", type=str, default="stylegan2-ffhq-config-f.pt")
parser.add_argument("--channel_multiplier", type=int, default=2)
args = parser.parse_args()
args.latent = 512
args.n_mlp = 8
g_ema = Generator(args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier).to(device)
checkpoint = torch.load(args.ckpt)
g_ema.load_state_dict(checkpoint["g_ema"])
if args.truncation < 1:
with torch.no_grad():
mean_latent = g_ema.mean_latent(args.truncation_mean)
else:
mean_latent = None
generate(args, g_ema, device, mean_latent)