-
Notifications
You must be signed in to change notification settings - Fork 0
/
armGraphs.py
361 lines (302 loc) · 14.6 KB
/
armGraphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# armGraphs.py -- Python code for the following purposes:
# (modified from testArm.py)
# *Read joint angles, muscle exc, muscle activation and force from .pnt files
# *Plot for each muscle: exc, act, force, muscle lengths (3 fibres+avg)
# *Plot joint angles and trajectory over time
# Last update: 6/17/13 (salvadord)
import sys #for exit
import struct
import time
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.lines as lines
import matplotlib.text as text
import matplotlib.animation as animation
from mpl_toolkits.mplot3d import Axes3D
from pylab import figure, show
from numpy import *
import csv
#import os
###############################
# Global constant parameters
###############################
#secLength = 6.01 # length of simulation in seconds (first 10 ms used to set start pos)
#msecInterval = 10.0 # interval at which packets are sent in miliseconds
#n = int(secLength*1000/msecInterval) # calculate number of samples
#toSamples = 1/msecInterval*1000
numMuscles = 4 # number of muscles = shFlex (PECT), shExt (DELT), elFlex (BIC), elExt (TRIC)
#muscleNames = ["Shoulder ext (post Deltoid+Infraspinatus)", "Shoulder flex (Pectoralis+ant Deltoid)", "Elbow ext (Triceps)", "Elbow flex (Biceps+Brachialis)"]
muscleNames = ["Shoulder ext", "Shoulder flex", "Elbow ext", "Elbow flex"]
numMusBranches = 18 # number of muscle branches
numJoints = 2 # number of joints (DOFs)
armLen = [0.4634 - 0.173, 0.7169 - 0.4634] # elbow - shoulder from MSM;radioulnar - elbow from MSM; useJointPos = 0 # use joint positions vs joint angles for 2d arm animation
showBranches = 0 # include muscle branches in graphs
verbose = 0 # whether to show output on screen
###############################
# Function definition
###############################
# function to read the result .pnt file containing muscle excitation and force
def readPntFiles(msmFolder, pntFile, secLength, msecInterval):
n = int(secLength*1000/msecInterval) # calculate number of samples
###################################
# read joint position
# open pnt file and read data
fileName = msmFolder+"SUNY_arm_2DOFs_horizon_static_coordinate_status.pnt"
try:
#f = open(fileName, "r" )
jointData = []
with open(fileName, "r") as f:
#next(f)
for line in f:
print line
jointData.append([float(i) for i in line.split()])
jointData = array(jointData).transpose()
jointData = jointData[:, len(jointData[0])-n:] # make number of rows equal to n (packets received)
# create arrays to store read data (joints include shoulder, elbow and wrist * 3 coords (xyz))
jointPosSeq = zeros(((numJoints+1)*3, n))
# assign activation and force to output arrays
# file has format: time,ground_thorax_xyz,sternoclavicular_xyz,acromioclavicular_xyz,shoulder_xyz,elbow_xyz,radioulnar_xyz,radius_hand_xyz
#jointPosSeq[0:6,:] = jointData[10:16,:]
#jointPosSeq[6:9,:] = jointData[19:22,:]
jointPosSeq[0,:] = jointData[10,:]
jointPosSeq[1,:] = jointData[12,:]
jointPosSeq[2,:] = jointData[13,:]
jointPosSeq[3,:] = jointData[15,:]
jointPosSeq[4,:] = jointData[19,:]
jointPosSeq[5,:] = jointData[21,:]
except:
jointPosSeq=[]
if verbose:
print "coordinate pnt file not available"
########################################################
# Read muscle activation and force
# open pnt file and read data
#fileName = msmFolder+"SUNY_arm_2DOFs_horizon_static_muscle_status.pnt"
fileName = pntFile
#f = open(fileName, "r" )
muscleData = []
with open(fileName, "r") as f:
#next(f)
for line in f:
muscleData.append([float(i) for i in line.split()])
muscleData = array(muscleData).transpose() # transpose
muscleData = muscleData[:, len(muscleData[0])-n:] # make number of rows equal to n (packets received)
# create arrays to store read data
musExcSeq = zeros((numMusBranches, n))
musActSeq = zeros((numMusBranches, n))
musForcesSeq = zeros((numMusBranches, n))
# assign activation and force to output arrays
# file has format: time DELT1_excitation DELT1_activation DELT1_force DELT2_excitation DELT2_activation DELT2_force ...
musExcSeq = muscleData[1::3 , :]
musActSeq = muscleData[2::3 , :]
musForcesSeq = muscleData[3::3 , :]
return jointPosSeq, musExcSeq, musActSeq, musForcesSeq
# Plot for each muscle: exc, act, force, muscle lengths (3 fibres+avg), joint angles and trajectory over time
def plotGraphs(jointPosSeq, jointAnglesSeq, musLengthsSeq, musExcSeq, musActSeq, musForcesSeq, t1, t2, msecInterval, armAnimation, saveGraphs, saveName):
# graph parameters
toDegrees = 360/(2*pi)
toSamples = 1/msecInterval*1000
legFont = 11
linWidth = 3
color1 = "red"
color2 = "blue"
color3 = "green"
color4 = "purple"
line1 = "-"
line2 = ":"
gridOn = 1
# plot with 6 subplots for joint angles, trajectory and each of muscles
fig1 = figure()
# time variables
T = arange(t1, t2, msecInterval/1000.0);
t1Samples = t1*toSamples
t2Samples = t2*toSamples
if armAnimation:
speedFactor = 1 # speed of animation
#create figure and axes
figAnim = figure()
axAnim = figAnim.add_subplot(111)
axAnim.grid(gridOn);
# set axes size to fit arm
axAnim.set_xlim(-armLen[0]-armLen[1]-0.1, armLen[0]+armLen[1]+0.1)
axAnim.set_ylim(-armLen[0]-armLen[1]-0.1, armLen[0]+armLen[1]+0.1)
###########################
# 2D arm movement animation
armImages=[]
for t in arange(t1Samples,t2Samples):
# Update the arm position based on jointPosSeq
if useJointPos:
# use x = z (pnt file) ; y = x (pnt file)
shoulderPosx = jointPosSeq[1, t]
shoulderPosy = jointPosSeq[0, t]
elbowPosx = jointPosSeq[3, t]
elbowPosy = jointPosSeq[2, t]
wristPosx = jointPosSeq[5, t]
wristPosy = jointPosSeq[4, t]
# update jointAnglesSeq based on pos !!!
# Update the arm position based on jointAnglesSeq
else:
armAng = jointAnglesSeq[:,t]
shoulderPosx = 0
shoulderPosy = 0
elbowPosx = armLen[0] * cos(armAng[0]) # end of elbow
elbowPosy = armLen[0] * sin(armAng[0])
wristPosx = elbowPosx + armLen[1] * cos(+armAng[0]+armAng[1]) # wrist=arm position
wristPosy = elbowPosy + armLen[1] * sin(+armAng[0]+armAng[1])
# create
armLine1 = lines.Line2D([0, elbowPosx-shoulderPosx], [0, elbowPosy-shoulderPosy], color=color1, linestyle=line1, linewidth=linWidth)
armLine2 = lines.Line2D([elbowPosx-shoulderPosx, wristPosx-shoulderPosx], [elbowPosy-shoulderPosy, wristPosy-shoulderPosy], color=color2, linestyle=line1, linewidth=linWidth)
axAnim.add_line(armLine1)
axAnim.add_line(armLine2)
#label = plt.legend(armLine1, str(t/toSamples) )
label = text.Text(x=0, y=0.5, text="time = "+str(t/toSamples), weight='bold' )
axAnim.add_artist(label)
armImages.append([armLine1, armLine2, label])
# add blank frames
blankFrames = int(1*toSamples)
for t in range(blankFrames):
# Update the arm position
armLine1 = lines.Line2D([0, 0], [0, 0], color=color1, linestyle=line1, linewidth=linWidth)
armLine2 = lines.Line2D([0,0 ], [0,0], color=color2, linestyle=line1, linewidth=linWidth)
axAnim.add_line(armLine1)
axAnim.add_line(armLine2)
armImages.append([armLine1, armLine2])
# generate animation
armAnim = animation.ArtistAnimation(figAnim, armImages, interval=msecInterval/speedFactor, repeat_delay=500, blit=True)
###########################
# Plot joint angles vs time
ax = fig1.add_subplot(321)
#T = arange(0, secLength, msecInterval/1000.0);
T=T[:len(jointAnglesSeq[0,t1Samples:t2Samples])]
ax.plot(T,jointAnglesSeq[0,t1Samples:t2Samples]*toDegrees,color=color1,linestyle=line1, linewidth=linWidth, label="shoulder")
ax.plot(T,jointAnglesSeq[1,t1Samples:t2Samples]*toDegrees,color=color2,linestyle=line1, linewidth=linWidth, label="elbow")
ax.set_ylabel('angle (deg)', fontsize = legFont)
ax.set_xlabel('time (sec)', fontsize = legFont)
ax.set_title('Joint angles')
ax.legend(loc='upper center', bbox_to_anchor=(1.0, 1.0), borderaxespad=0., prop={'size':legFont})
#ax.set_xlim([t1, t2])
#ax.set_ylim(bmmYlims_sh)
ax.grid(gridOn)
############################
# Plot x-y pos vs time
ax = fig1.add_subplot(322)
# calculate x and y trajectories based on angles
if useJointPos:
xTraj = jointPosSeq[4, t1Samples:t2Samples]
yTraj = jointPosSeq[5, t1Samples:t2Samples]
else:
xTraj = armLen[0]*cos(jointAnglesSeq[0,t1Samples:t2Samples])+armLen[1]*cos(jointAnglesSeq[1,t1Samples:t2Samples])
yTraj = armLen[0]*sin(jointAnglesSeq[0,t1Samples:t2Samples])+armLen[0]*sin(jointAnglesSeq[1,t1Samples:t2Samples])
#ax.plot(xTraj, yTraj,color=color2,linestyle=line1, linewidth=linWidth)
ax.plot(T, xTraj,color=color1,linestyle=line1, linewidth=linWidth, label="x")
ax.plot(T, yTraj,color=color2,linestyle=line1, linewidth=linWidth, label="y")
ax.set_ylabel('position (m)', fontsize = legFont)
#ax.set_xlabel('x position (m)', fontsize = legFont)
ax.set_xlabel('time (sec)', fontsize = legFont)
ax.set_title('X-Y trajectory')
ax.legend(loc='upper center', bbox_to_anchor=(1.0, 1.0), borderaxespad=0., prop={'size':legFont})
#ax.set_xlim([t1, t2])
#ax.set_ylim(bmmYlims_sh)
ax.grid(gridOn)
############################
# Plot excitation, activation and force for each muscle
# calculate normalized force (activation and length already normalized)
#musActSeqNorm = musActSeq/musActSeq[:,t1Samples:t2Samples].max()
musForcesSeqNorm = musForcesSeq/musForcesSeq[:,t1Samples:t2Samples].max()
#musLengthsSeqNorm = musLengthsSeq/musLengthsSeq[:,t1Samples:t2Samples].max()
# Note arrangement of muscle branches in data arrays:
#DELT1(0) DELT2(1) DELT3(2) Infraspinatus(3) Latissimus_dorsi_1(4) Latissimus_dorsi_2(5) Latissimus_dorsi_3(6)
#Teres_minor(7) PECM1(8) PECM2(9) PECM3(10) Coracobrachialis(11) TRIlong(12) TRIlat(13) TRImed(14) BIClong(15) BICshort(16) BRA(17)
# is different from muscle groups:
# Sh ext = DELT3, Infraspinatus, Latissimus_dorsi_1-3, Teres_minor
# Sh flex = PECM1, PECM2, PECM3, DELT1, Coracobrachialis
# El ext = TRIlong, TRIlat, TRImed
# El flex = BIClong, BICshort, BRA
shext=[2,3,4,5,6,7]
shflex=[0,8,9,10,11]
elext=[12,13,14]
elflex=[15,16,17]
musList=[shext, shflex,elext,elflex]
for iMus in range(numMuscles):
ax = fig1.add_subplot(3,2,iMus+3)
# set number of muscle branches - assume each node has 3 branches (treat the Brachialis as a branch of Biceps=elbow flexor)
#iBranches = 3
### Excitation and Activation ####
# equivalent for all branches of same muscle group
offset = 2 # use offset 3 because only DELT3 is used (order of muscle branches doesn't correspond muscle groups!)
ax.plot(T, musExcSeq[musList[iMus][offset],t1Samples:t2Samples],color=color1,linestyle=line1, linewidth=linWidth, label="excitation")
ax.plot(T, musActSeq[musList[iMus][offset],t1Samples:t2Samples],color=color2,linestyle=line1, linewidth=linWidth, label="activation")
# for show branches plot individual branches and mean value for force and length
if showBranches:
### Force and Length ###
for iBranch in range(len(musList[iMus])):
ax.plot(T, musForcesSeqNorm[musList[iMus][iBranch],t1Samples:t2Samples],color=color3,linestyle=line2, linewidth=linWidth-1)
ax.plot(T, musLengthsSeq[musList[iMus][iBranch],t1Samples:t2Samples],color=color4,linestyle=line2, linewidth=linWidth-1)
ax.plot(T, musForcesSeqNorm[musList[iMus],t1Samples:t2Samples].mean(axis=0),color=color3,linestyle=line1, linewidth=linWidth, label="force (mean)")
ax.plot(T, musLengthsSeq[musList[iMus],t1Samples:t2Samples].mean(axis=0),color=color4,linestyle=line1, linewidth=linWidth, label="length (mean)")
# for NOT show branches show mean value for force and single value for length
else:
### Force ###
# For shoulder extensor group show only posterior Deltoid, branch 3 (DELT3) or Infraspinatus (INFSP)
# branch 2 (DELT2 = lateral deltoid) also available but currently not included in shoulder extensor group
if iMus == 0:
offset = 2 # DELT3
#offset = 12 # INFSP
ax.plot(T, musForcesSeqNorm[musList[iMus][offset],t1Samples:t2Samples],color=color3,linestyle=line1, linewidth=linWidth, label="force")
# For rest of muscles use mean value of all branches
else:
offset=0
ax.plot(T, musForcesSeqNorm[musList[iMus],t1Samples:t2Samples].mean(axis=0),color=color3,linestyle=line1, linewidth=linWidth, label="force")
### Length ####
# show length only of one muscle indicated by the index 'offset' - DELT3, PECM1, BIClong, TRIlong
maxLength = 0.20
ax.plot(T, musLengthsSeq[musList[iMus][offset],t1Samples:t2Samples]/maxLength,color=color4,linestyle=line1, linewidth=linWidth, label="length")
# show branche label
if (showBranches):
ax.plot(-1, -1,color=color3,linestyle=line2, linewidth=linWidth, label="force (branches)")
ax.plot(-1, -1,color=color4,linestyle=line2, linewidth=linWidth, label="length (branches)")
# axis properties
ax.set_ylabel('normalized value', fontsize = legFont)
ax.set_ylim([0,1])
ax.set_xlim([t1,t2])
ax.set_xlabel('time (sec)', fontsize = legFont)
ax.set_title(muscleNames[iMus])
if iMus==3:
ax.legend(loc='upper center', bbox_to_anchor=(-0.2, 1.8), borderaxespad=0., prop={'size':legFont})
ax.grid(gridOn)
# show graphs
fig1.tight_layout()
show()
# save graphs using startPos and pattern in filename
if saveGraphs:
saveFolder = 'gif/'
fig1.savefig(saveFolder+saveName, bbox_inches=0)
#if armAnimation:
#armAnim.save('test.mp4')
#armAnim.save(saveFolder+saveName+'.mp4',writer = writer)
# run single test (udp transfer, read files, plot graphs)
def readAndPlot(jointAnglesSeq, musLengthsSeq, msmFolder, armAnimation, saveGraphs, saveName, timeRange, msecInterval):
# Sim parameters
#armAnimation = 1 # show 2D arm animation
#saveGraphs = 1 # save graph and animation
# define time interval to display
#timeInterval = [0.1, 30]
# Send muscle excitations to MSM and receive joint angles and muscle lengths
#jointAnglesSeq, musLengthsSeq = sendAndReceiveMsmData(initJointAngles, musExcSeq, readSimFromFile)
# Read data from .pnt files
jointPosSeq,musExcSeq, musActSeq, musForcesSeq = readPntFiles(msmFolder, timeRange[1], msecInterval)
# Plot results (last 2 arguments = initial and end times in seconds)
plotGraphs(jointPosSeq, jointAnglesSeq, musLengthsSeq, musExcSeq, musActSeq, musForcesSeq, timeRange[0], timeRange[1], msecInterval, armAnimation, saveGraphs, saveName)
##############################
# Main script
##############################
'''
jointAnglesSeq = zeros((numJoints, n))
musLengthsSeq = zeros((numMusBranches, n))
armAnimation = 1 # show 2D arm animation
saveGraphs = 1 # save graph and animation
timeInterval = [0.1, 30]
saveName='temp'
msmFolder = "/home/salvadord/Documents/ISB/Models_linux/msarm/source/test/"
readAndPlot(jointAnglesSeq, musLengthsSeq, msmFolder, armAnimation, saveGraphs, saveName, timeInterval)
'''