-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_smile_train02.py
53 lines (42 loc) · 1.42 KB
/
face_smile_train02.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 17 18:46:14 2018
@author: Rahul kumar
"""
import numpy as np
import cv2
#this cascadeClassifier for the frontal face
faceCascade = cv2.CascadeClassifier('C:\\Users\\Rahul kumar\\Music\\haarcascade_frontalface_default.xml')
#this cascade classifier forthe smile face
smileCascade = cv2.CascadeClassifier('C:\\Users\\Rahul kumar\\Music\\haarcascade_smile.xml')
cap = cv2.VideoCapture(0)
cap.set(3,640) # set Width
cap.set(4,480) # set Height
while True:
ret, img = cap.read()
# img = cv2.flip(img, -1)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.3,
minNeighbors=5,
minSize=(30, 30)
)
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
smile = smileCascade.detectMultiScale(
roi_gray,
scaleFactor= 1.5,
minNeighbors=15,
minSize=(25, 25),
)
for (xx, yy, ww, hh) in smile:
cv2.rectangle(roi_color, (xx, yy), (xx + ww, yy + hh), (0, 255, 0), 2)
cv2.imshow('video', img)
k = cv2.waitKey(30) & 0xff
if k == 27: # press 'ESC' to quit
break
cap.release()
cv2.destroyAllWindows()