forked from karpathy/llm.c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run350M.sh
47 lines (40 loc) · 1.46 KB
/
run350M.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# GPT-2 (350M) repro on FineWeb
# 350M parameter model on ~30B tokens
# => 6 * 350e6 * 31.5e9 = 6.615e19 ~= 7e19 capability model (10X 124M)
# 60K steps on 524,288 tokens/step
# on 8X A100 80GB SXM ($14/hr) steps in ~820ms/iter
# => training time 60,000 steps * 820ms = 13.7 hours ~= $200 (10X 124M)
# if you are running out of memory on your GPU,
# - try -r 1 (recompute GeLU, trading off speed and memory)
# - start dividing -b 64 by 2 (i.e. 32, 16, ...) until it works
make train_gpt2cu USE_CUDNN=1
done_file="log350M/DONE_00060000"
# in case the training stalls or crashes, loop to resume (-y 1)
while true; do
# exit condition is that optimization has finished
if [ -f "$done_file" ]; then
echo "File $done_file exists. Exiting the loop."
break
fi
# run python dev/data/fineweb.py --version 100B to prepro data
# run python dev/data/hellaswag.py to prepro hellaswag eval
mpirun -np 8 ./train_gpt2cu \
-i "dev/data/fineweb100B/fineweb_train_*.bin" \
-j "dev/data/fineweb100B/fineweb_val_*.bin" \
-o log350M \
-v 250 -s 100000 -g 144 \
-h 1 \
-b 64 -t 1024 \
-d 524288 \
-r 0 \
-z 1 \
-c 0.1 \
-l 0.0003 \
-q 0.0 \
-u 700 \
-n 2000 \
-x 60000 \
-y 1 \
-e "d24"
sleep 1
done