-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_dataset.py
36 lines (30 loc) · 1.17 KB
/
face_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import subprocess
import cv2
import os
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
cam = cv2.VideoCapture(0)
cam.set(3, 640) # set video width
cam.set(4, 480) # set video height
face_id = input('\n enter user id end press <return> ==> ')
print("\n [INFO] Initializing face capture. Look the camera and wait ...")
count = 0
while(True):
ret, img = cam.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
count += 1
cv2.imwrite(f"dataset/User.{face_id}.{count}.jpg", gray[y:y+h, x:x+w])
cv2.imshow('image', img)
print(f"ID: {face_id}: {count} saved.", end="\r")
k = cv2.waitKey(100) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
elif count >= 30: # Take 30 face sample and stop video
break
print("\n [INFO] Exiting Program and cleanup stuff")
cam.release()
cv2.destroyAllWindows()
datasets_path = os.path.join(os.getcwd(), "dataset")
subprocess.Popen(rf'explorer.exe "{datasets_path}"')