This repository has been archived by the owner on Sep 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 13
/
trainer.py
142 lines (133 loc) · 5.44 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
import intel_extension_for_pytorch as ipex
import os
from tqdm import tqdm
import time
#import wandb
from config import device
class Trainer:
"""Trainer class that takes care of training and validation passes."""
def __init__(
self,
model,
optimizer,
lr,
epochs=10,
precision="fp32",
device=device,
#use_wandb=False,
use_ipex=False,
):
self.use_ipex = use_ipex
#self.use_wandb = use_wandb
self.device = device
self.model = model.to(self.device)
self.loss_fn = torch.nn.CrossEntropyLoss()
self.epochs = epochs
self.lr = lr
self.precision = precision
self.optimizer = optimizer(self.model.parameters(), lr=self.lr)
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer, "min", verbose=True
)
def forward_pass(self, inputs, labels):
"""Perform forward pass of models with `inputs`,
calculate loss and accuracy and return it.
"""
outputs = self.model(inputs)
loss = self.loss_fn(outputs, labels)
preds = outputs.argmax(dim=1, keepdim=True)
correct = preds.eq(labels.view_as(preds)).sum().item()
total = labels.numel()
return loss, correct, total
#*************************** Exercise 2 ***************************************
def _to_ipex(self, dtype=torch.float32):
"""convert model memory format to channels_last to IPEX format."""
self.model.train()
self.model = self.model.to(memory_format=torch.channels_last)
self.model, self.optimizer = ipex.optimize(
self.model, optimizer=self.optimizer, dtype=torch.float32
)
#******************************************************************************
def train(self, train_dataloader):
"""Training loop, return epoch loss and accuracy."""
self.model.train()
total_loss, total_correct, total_samples = 0.0, 0, 0
for inputs, labels in tqdm(train_dataloader):
inputs, labels = inputs.to(self.device), labels.to(self.device)
self.optimizer.zero_grad()
if self.precision == "bf16":
with getattr(torch, f"{self.device.type}.amp.autocast")():
loss, correct, batch_size = self.forward_pass(inputs, labels)
else:
loss, correct, batch_size = self.forward_pass(inputs, labels)
loss.backward()
self.optimizer.step()
total_loss += loss.item()
total_correct += correct
total_samples += batch_size
acc = total_correct / total_samples
# if self.use_wandb:
# wandb.log(
# {
# "Training Loss": total_loss / len(train_dataloader),
# "Training Acc": acc,
# }
# )
return total_loss / len(train_dataloader), acc
@torch.no_grad()
def validate(self, valid_dataloader):
"""Validation loop, return validation epoch loss and accuracy."""
self.model.eval()
total_loss, total_correct, total_samples = 0.0, 0, 0
for inputs, labels in tqdm(valid_dataloader):
inputs, labels = inputs.to(self.device), labels.to(self.device)
loss, correct, batch_size = self.forward_pass(inputs, labels)
total_loss += loss.item()
total_correct += correct
total_samples += batch_size
acc = total_correct / total_samples
# if self.use_wandb:
# wandb.log(
# {
# "Validation Loss": total_loss / len(valid_dataloader),
# "Validation Acc": acc,
# }
# )
self.scheduler.step(total_loss / len(valid_dataloader))
return total_loss / len(valid_dataloader), acc
def fine_tune(self, train_dataloader, valid_dataloader):
if self.use_ipex:
self._to_ipex()
# if self.use_wandb:
# import os
# print(os.environ["WANDB_DIR"])
# wandb.init(project="fire-finder", name="fire-finder", dir="./wandb_logs")
for epoch in range(self.epochs):
t_epoch_start = time.time()
t_epoch_loss, t_epoch_acc = self.train(train_dataloader)
v_epoch_loss, v_epoch_acc = self.validate(valid_dataloader)
t_epoch_end = time.time()
print(
f"\n📅 Epoch {epoch+1}/{self.epochs}:\n"
f"\t🏋️♂️ Training step:\n"
f"\t - 🎯 Loss: {t_epoch_loss:.4f}"
f", 📈 Accuracy: {t_epoch_acc:.4f}\n"
f"\t🧪 Validation step:\n"
f"\t - 🎯 Loss: {v_epoch_loss:.4f}"
f", 📈 Accuracy: {v_epoch_acc:.4f}\n"
f"⏱️ Time: {t_epoch_end - t_epoch_start:.4f} sec\n"
)
# if self.use_wandb:
# wandb.log(
# {
# "Train Loss": t_epoch_loss,
# "Train Acc": t_epoch_acc,
# "Valid Loss": v_epoch_loss,
# "Valid Acc": v_epoch_acc,
# "Time": t_epoch_end - t_epoch_start,
# }
# )
# if self.use_wandb:
# wandb.finish()
return int(v_epoch_acc * 100)