This repository has been archived by the owner on Sep 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 13
/
metrics.py
56 lines (50 loc) · 2.15 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# ## Define Metrics - Utility class to measure accuracy of the model and plot metrics
from config import torch
class Metrics:
"""class that holds logic for calculating accuracy and printing it"""
def __init__(self):
self.acc = {"train": [], "val": []}
self.loss = {"train": [], "val": []}
@staticmethod
@torch.no_grad()
def accuracy(yhat, labels, debug):
"""accuracy of a batch"""
yhat = torch.log_softmax(yhat, dim=1) # softmax of logit output
yhat = yhat.max(1)[1] # get index of max values
if debug:
print(f"outputs: {yhat} labels: {labels}")
print(f" output == label ?: {torch.equal(yhat, labels)}")
acc = yhat.eq(labels).sum() / len(yhat)
return acc
def __str__(self):
return (
f"loss:\n training set : {self.loss['train'][-1]:.4}\n validation set: {self.loss['val'][-1]:.4}\n"
f"accuracy:\n training set : {self.acc['train'][-1]:.4}\n validation set: {self.acc['val'][-1]:.4} "
)
def plot(self):
"""plot loss and acc curves"""
if plt.get_backend() == "agg":
print(
"Average training accuracy score: {sum(acc['train'])/len(acc['train'])}"
)
print(
"Average validation accuracy score: {sum(acc['val'])/len(acc['val'])}"
)
else:
train_acc = [x * 100 for x in self.acc["train"]]
val_acc = [x * 100 for x in self.acc["val"]]
_, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 2.5))
ax[0].plot(self.loss["train"], "-o")
ax[0].plot(self.loss["val"], "-o")
ax[0].set_ylabel("loss")
ax[0].set_title(f"Train vs validation loss")
ax[1].plot(train_acc, "-o")
ax[1].plot(val_acc, "-o")
ax[1].set_ylabel("accuracy (%)")
ax[1].set_title("Training vs validation acc")
for x in ax:
x.yaxis.grid(True)
x.xaxis.set_major_locator(plt.MaxNLocator(integer=True))
x.legend(["train", "validation"])
x.set_xlabel("epoch")
plt.show()