forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
quasirandomGenerator_gold.cpp
325 lines (270 loc) · 10.4 KB
/
quasirandomGenerator_gold.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <math.h>
#include "quasirandomGenerator_common.h"
////////////////////////////////////////////////////////////////////////////////
// Table generation functions
////////////////////////////////////////////////////////////////////////////////
// Internal 64(63)-bit table
static INT64 cjn[63][QRNG_DIMENSIONS];
static int GeneratePolynomials(int buffer[QRNG_DIMENSIONS], bool primitive) {
int i, j, n, p1, p2, l;
int e_p1, e_p2, e_b;
// generate all polynomials to buffer
for (n = 1, buffer[0] = 0x2, p2 = 0, l = 0; n < QRNG_DIMENSIONS; ++n) {
// search for the next irreducible polynomial
for (p1 = buffer[n - 1] + 1;; ++p1) {
// find degree of polynomial p1
for (e_p1 = 30; (p1 & (1 << e_p1)) == 0; --e_p1) {
}
// try to divide p1 by all polynomials in buffer
for (i = 0; i < n; ++i) {
// find the degree of buffer[i]
for (e_b = e_p1; (buffer[i] & (1 << e_b)) == 0; --e_b) {
}
// divide p2 by buffer[i] until the end
for (p2 = (buffer[i] << ((e_p2 = e_p1) - e_b)) ^ p1; p2 >= buffer[i];
p2 = (buffer[i] << (e_p2 - e_b)) ^ p2) {
for (; (p2 & (1 << e_p2)) == 0; --e_p2) {
}
} // compute new degree of p2
// division without remainder!!! p1 is not irreducible
if (p2 == 0) {
break;
}
}
// all divisions were with remainder - p1 is irreducible
if (p2 != 0) {
e_p2 = 0;
if (primitive) {
// check that p1 has only one cycle (i.e. is monic, or primitive)
j = ~(0xffffffff << (e_p1 + 1));
e_b = (1 << e_p1) | 0x1;
for (p2 = e_b, e_p2 = (1 << e_p1) - 2; e_p2 > 0; --e_p2) {
p2 <<= 1;
i = p2 & p1;
i = (i & 0x55555555) + ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
i = (i & 0x07070707) + ((i >> 4) & 0x07070707);
p2 |= (i % 255) & 1;
if ((p2 & j) == e_b) break;
}
}
// it is monic - add it to the list of polynomials
if (e_p2 == 0) {
buffer[n] = p1;
l += e_p1;
break;
}
}
}
}
return l + 1;
}
////////////////////////////////////////////////////////////////////////////////
// @misc{Bratley92:LDS,
// author = "B. Fox and P. Bratley and H. Niederreiter",
// title = "Implementation and test of low discrepancy sequences",
// text = "B. L. Fox, P. Bratley, and H. Niederreiter. Implementation and
// test of
// low discrepancy sequences. ACM Trans. Model. Comput. Simul.,
// 2(3):195--213,
// July 1992.",
// year = "1992" }
////////////////////////////////////////////////////////////////////////////////
static void GenerateCJ() {
int buffer[QRNG_DIMENSIONS];
int *polynomials;
int n, p1, l, e_p1;
// Niederreiter (in contrast to Sobol) allows to use not primitive, but just
// irreducible polynomials
l = GeneratePolynomials(buffer, false);
// convert all polynomials from buffer to polynomials table
polynomials = new int[l + 2 * QRNG_DIMENSIONS + 1];
for (n = 0, l = 0; n < QRNG_DIMENSIONS; ++n) {
// find degree of polynomial p1
for (p1 = buffer[n], e_p1 = 30; (p1 & (1 << e_p1)) == 0; --e_p1) {
}
// fill polynomials table with values for this polynomial
polynomials[l++] = 1;
for (--e_p1; e_p1 >= 0; --e_p1) {
polynomials[l++] = (p1 >> e_p1) & 1;
}
polynomials[l++] = -1;
}
polynomials[l] = -1;
// irreducible polynomial p
int *p = polynomials, e, d;
// polynomial b
int b_arr[1024], *b, m;
// v array
int v_arr[1024], *v;
// temporary polynomial, required to do multiplication of p and b
int t_arr[1024], *t;
// subsidiary variables
int i, j, u, m1, ip, it;
// cycle over monic irreducible polynomials
for (d = 0; p[0] != -1; p += e + 2) {
// allocate memory for cj array for dimension (ip + 1)
for (i = 0; i < 63; ++i) {
cjn[i][d] = 0;
}
// determine the power of irreducible polynomial
for (e = 0; p[e + 1] != -1; ++e) {
}
// polynomial b in the beginning is just '1'
(b = b_arr + 1023)[m = 0] = 1;
// v array needs only (63 + e - 2) length
v = v_arr + 1023 - (63 + e - 2);
// cycle over all coefficients
for (j = 63 - 1, u = e; j >= 0; --j, ++u) {
if (u == e) {
u = 0;
// multiply b by p (polynomials multiplication)
for (i = 0, t = t_arr + 1023 - (m1 = m); i <= m; ++i) {
t[i] = b[i];
}
b = b_arr + 1023 - (m += e);
for (i = 0; i <= m; ++i) {
b[i] = 0;
for (ip = e - (m - i), it = m1; ip <= e && it >= 0; ++ip, --it) {
if (ip >= 0) {
b[i] ^= p[ip] & t[it];
}
}
}
// multiplication of polynomials finished
// calculate v
for (i = 0; i < m1; ++i) {
v[i] = 0;
}
for (; i < m; ++i) {
v[i] = 1;
}
for (; i <= 63 + e - 2; ++i) {
v[i] = 0;
for (it = 1; it <= m; ++it) {
v[i] ^= v[i - it] & b[it];
}
}
}
// copy calculated v to cj
for (i = 0; i < 63; i++) {
cjn[i][d] |= (INT64)v[i + u] << j;
}
}
++d;
}
delete[] polynomials;
}
// Generate 63-bit quasirandom number for given index and dimension and
// normalize
extern "C" double getQuasirandomValue63(INT64 i, int dim) {
const double INT63_SCALE = (1.0 / (double)0x8000000000000001ULL);
INT64 result = 0;
for (int bit = 0; bit < 63; bit++, i >>= 1)
if (i & 1) result ^= cjn[bit][dim];
return (double)(result + 1) * INT63_SCALE;
}
////////////////////////////////////////////////////////////////////////////////
// Initialization (table setup)
////////////////////////////////////////////////////////////////////////////////
extern "C" void initQuasirandomGenerator(
unsigned int table[QRNG_DIMENSIONS][QRNG_RESOLUTION]) {
GenerateCJ();
for (int dim = 0; dim < QRNG_DIMENSIONS; dim++)
for (int bit = 0; bit < QRNG_RESOLUTION; bit++)
table[dim][bit] = (int)((cjn[bit][dim] >> 32) & 0x7FFFFFFF);
}
////////////////////////////////////////////////////////////////////////////////
// Generate 31-bit quasirandom number for given index and dimension
////////////////////////////////////////////////////////////////////////////////
extern "C" float getQuasirandomValue(
unsigned int table[QRNG_DIMENSIONS][QRNG_RESOLUTION], int i, int dim) {
int result = 0;
for (int bit = 0; bit < QRNG_RESOLUTION; bit++, i >>= 1)
if (i & 1) result ^= table[dim][bit];
return (float)(result + 1) * INT_SCALE;
}
////////////////////////////////////////////////////////////////////////////////
// Moro's Inverse Cumulative Normal Distribution function approximation
////////////////////////////////////////////////////////////////////////////////
extern "C" double MoroInvCNDcpu(unsigned int x) {
const double a1 = 2.50662823884;
const double a2 = -18.61500062529;
const double a3 = 41.39119773534;
const double a4 = -25.44106049637;
const double b1 = -8.4735109309;
const double b2 = 23.08336743743;
const double b3 = -21.06224101826;
const double b4 = 3.13082909833;
const double c1 = 0.337475482272615;
const double c2 = 0.976169019091719;
const double c3 = 0.160797971491821;
const double c4 = 2.76438810333863E-02;
const double c5 = 3.8405729373609E-03;
const double c6 = 3.951896511919E-04;
const double c7 = 3.21767881768E-05;
const double c8 = 2.888167364E-07;
const double c9 = 3.960315187E-07;
double z;
bool negate = false;
// Ensure the conversion to floating point will give a value in the
// range (0,0.5] by restricting the input to the bottom half of the
// input domain. We will later reflect the result if the input was
// originally in the top half of the input domain
if (x >= 0x80000000UL) {
x = 0xffffffffUL - x;
negate = true;
}
// x is now in the range [0,0x80000000) (i.e. [0,0x7fffffff])
// Convert to floating point in (0,0.5]
const double x1 = 1.0 / static_cast<double>(0xffffffffUL);
const double x2 = x1 / 2.0;
double p1 = x * x1 + x2;
// Convert to floating point in (-0.5,0]
double p2 = p1 - 0.5;
// The input to the Moro inversion is p2 which is in the range
// (-0.5,0]. This means that our output will be the negative side
// of the bell curve (which we will reflect if "negate" is true).
// Main body of the bell curve for |p| < 0.42
if (p2 > -0.42) {
z = p2 * p2;
z = p2 * (((a4 * z + a3) * z + a2) * z + a1) /
((((b4 * z + b3) * z + b2) * z + b1) * z + 1.0);
}
// Special case (Chebychev) for tail
else {
z = log(-log(p1));
z = -(c1 + z * (c2 + z * (c3 + z * (c4 + z * (c5 + z * (c6 + z *
(c7 + z * (c8 + z * c9))))))));
}
// If the original input (x) was in the top half of the range, reflect
// to get the positive side of the bell curve
return negate ? -z : z;
}