You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In general, GPU is faster than CPU when the workload is computation heavy. According to our experience, this application becomes computation heavy when D is more than 100 at least.
Could you please try with larger D (e.g. 100, 200, or 300)?
nvidia GeForce GT 720 AND nvidia Quadro K2200
nvidia GeForce GT 720:
GPU: 915 ms
CPU: 129 ms
nvidia Quadro K2200:
GPU: 1604 ms
CPU: 233 ms
nvidia GeForce GT 720:
[root@xxl GPUEnabler-master]# bin/run-example SparkGPULR
Executing : mvn -q scala:run -DmainClass=com.ibm.gpuenabler.SparkGPULR -DaddArgs="local[*]"
WARN: This is a naive implementation of Logistic Regression and is given as an example!
Please use either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
for more conventional use.
Data generation done
numSlices=2, N=10000, D=10, ITERATIONS=5
GPU iteration 1
GPU iteration 2
GPU iteration 3
GPU iteration 4
GPU iteration 5
Elapsed GPU time: 915 ms
2032.3421896242655, 2466.7709148517497, 3177.329166002957, 3332.3071606036865, 2112.989604686327, .... 1438.4704410276909, 3008.249715655393, 3295.4068182006863, 2684.441334404038, 1807.6596785250006,
===================================
CPU iteration 1
CPU iteration 2
CPU iteration 3
CPU iteration 4
CPU iteration 5
Elapsed CPU time: 129 ms
2032.3421896242687, 2466.7709148517433, 3177.3291660029563, 3332.307160603694, 2112.989604686332, .... 1438.4704410276915, 3008.24971565539, 3295.406818200689, 2684.441334404038, 1807.6596785249974,
nvidia Quadro K2200:
[root@localhost GPUEnabler-master]# bin/run-example SparkGPULR
Executing : mvn -q scala:run -DmainClass=com.ibm.gpuenabler.SparkGPULR -DaddArgs="local[*]"
WARN: This is a naive implementation of Logistic Regression and is given as an example!
Please use either org.apache.spark.mllib.classification.LogisticRegressionWithSGD or
org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
for more conventional use.
Data generation done
numSlices=2, N=10000, D=10, ITERATIONS=5
GPU iteration 1
GPU iteration 2
GPU iteration 3
GPU iteration 4
GPU iteration 5
Elapsed GPU time: 1604 ms
2032.3421896242655, 2466.770914851749, 3177.3291660029586, 3332.307160603685, 2112.9896046863255, .... 1438.470441027691, 3008.2497156553923, 3295.406818200685, 2684.441334404037, 1807.6596785250001,
===================================
CPU iteration 1
CPU iteration 2
CPU iteration 3
CPU iteration 4
CPU iteration 5
Elapsed CPU time: 233 ms
2032.3421896242687, 2466.7709148517433, 3177.3291660029563, 3332.307160603694, 2112.989604686332, .... 1438.4704410276915, 3008.24971565539, 3295.406818200689, 2684.441334404038, 1807.6596785249974,
The text was updated successfully, but these errors were encountered: