Skip to content

Latest commit

 

History

History
122 lines (96 loc) · 5.23 KB

README.md

File metadata and controls

122 lines (96 loc) · 5.23 KB

IRTX Synthetic parcels to JSprit connector

Introduction

This model is a connector between the upstream synthetic parcel generation model and the downstream JSprit route and fleet optimization model.

The main purpose of this connector is to take a list of parcels generated in the previous model and to transform it into an operator and demand description for the JSprit model. This description contains the locations of the generated parcels, as well as information on their distribution center and the vehicles that are available to the operator. The output is compatible with the standard use case scenario for the Lyon living lab, which is defined in the JSprit model.

Requirements

Software requirements

The converter is packaged in a Python script. All dependencies to run the model have been collected in a conda environment, which is available in the LEAD repository as environment.yml.

Input / Output

Input

To run the model, a synthetic parcel data set must be present in GeoPackage format, for instance at /irtx-parcels/output/parcels.gpkg. Furthermore, a perimeter needs to be defined in which parcels will be processed. For the Lyon living lab, a file describing the perimeter of the Confluence study area is provided in data/perimeter_lyon.gpkg.

Output

The output of the model is a JSON file describing the parcel operator. For the standard case for the living lab of Lyon, the operator will include information on the responsible post office for delivering the generated parcels. The format of the operator file is described in detail in the documentation of the downstream JSprit optimization model.

The location of the resulting JSON file can be configured (see below), for instance as /irtx-parcels-jsprit-connector/output/operator.json.

Running the model

To run the model, the conda environment needs to be prepared and entered. After, one can call convert_parcels.py as follows:

python3 convert_parcels.py \
  --parcels-path /irtx-parcels/output/parcels.gpkg \
  --perimeter-path /irtx-parcels-jsprit-connector/data/perimeter_lyon.gpkg \
  --output-path /irtx-parcels-jsprit-connector/output/operator.json \
  --operator-id my_operator \
  --center-latitude 45.7424 \
  --center-longitude 4.8291 \
  --vehicle-type van \
  --vehicle-type cargo_bike \
  --shipment-type delivery \
  --consolidation-type none

The mandatory parameters are detailed in the following table:

Parameter Values Description
--parcels-path String Path to the input file containing the synthetic parcels
--perimeter-path String GeoPackage file describing the perimeter of the study area
--output-path String Path to the output file that will contain the operator information
--operator-id String Identifier of the operator in the downstream JSprit model
--center-latitude Real Latitude of the distribution center
--center-longitude Real Longitude of the distribution center
--vehicle-type String Assigns a vehicle type to the operator. Must be called at least once, but can be called multiple times to add multiple available vehicle types
--driver-salary Real Salary considered per day per driver in EUR

The following optional parameters exist that can be configured. See the JSprit model for a detailed description of their meaning in the delivery process of the operator:

Parameter Values Description
--shipment-type delivery* or pickup or none Shipment from the distribution center
--consolidation-type none* or delivery or pickup Shipment type from the consolidation center (if used)

The (*) indicate the default values.

Standard scenarios

For the Lyon living lab, operator data can be generated for the 2022 and 2030 data sets as described in the upstream parcel model. Also, the respective post office is defined as the distribution center.

Baseline operator data 2022

python3 convert_parcels.py \
  --parcels-path /irtx-parcels/output/lead_2022_parcels.gpkg \
  --perimeter-path data/perimeter_lyon.gpkg \
  --output-path /irtx-parcels-jsprit-connector/output/laposte_2022.json \
  --operator-id laposte \
  --center-latitude 45.74263642703923 \
  --center-longitude 4.819784759902544 \
  --vehicle-type van \
  --shipment-type delivery \
  --consolidation-type none \
  --driver-salary 136.0

Baseline operator data 2030

python3 convert_parcels.py \
  --parcels-path /irtx-parcels/output/lead_2030_parcels.gpkg \
  --perimeter-path data/perimete_lyon.gpkg \
  --output-path /irtx-parcels-jsprit-connector/output/laposte_2030.json \
  --operator-id laposte \
  --center-latitude 45.74263642703923 \
  --center-longitude 4.819784759902544 \
  --vehicle-type van \
  --shipment-type delivery \
  --consolidation-type none \
  --driver-salary 136.0