-
Notifications
You must be signed in to change notification settings - Fork 2
/
tau.py
1090 lines (966 loc) · 45.1 KB
/
tau.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
High-level interface to travel-time calculation routines.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
from future.builtins import * # NOQA
import copy
import warnings
import matplotlib as mpl
import matplotlib.cbook
from matplotlib.cm import get_cmap
import matplotlib.text
import numpy as np
from .helper_classes import Arrival
from .tau_model import TauModel
from .taup_path import TauPPath
from .taup_pierce import TauPPierce
from .taup_time import TauPTime
from .taup_geo import calc_dist, add_geo_to_arrivals
from .utils import parse_phase_list
import obspy.geodetics.base as geodetics
# Pretty paired colors. Reorder to have saturated colors first and remove
# some colors at the end.
cmap = get_cmap('Paired', lut=12)
COLORS = ['#%02x%02x%02x' % tuple(int(col * 255) for col in cmap(i)[:3])
for i in range(12)]
COLORS = COLORS[1:][::2][:-1] + COLORS[::2][:-1]
class _SmartPolarText(matplotlib.text.Text):
"""
Automatically align text on polar plots to be away from axes.
This class automatically sets the horizontal and vertical alignments
based on which sides of the spherical axes the text is located.
"""
def draw(self, renderer, *args, **kwargs):
fig = self.get_figure()
midx = fig.get_figwidth() * fig.dpi / 2
midy = fig.get_figheight() * fig.dpi / 2
extent = self.get_window_extent(renderer, dpi=fig.dpi)
points = extent.get_points()
is_left = points[0, 0] < midx
is_top = points[0, 1] > midy
updated = False
ha = 'right' if is_left else 'left'
if self.get_horizontalalignment() != ha:
self.set_horizontalalignment(ha)
updated = True
va = 'bottom' if is_top else 'top'
if self.get_verticalalignment() != va:
self.set_verticalalignment(va)
updated = True
if updated:
self.update_bbox_position_size(renderer)
matplotlib.text.Text.draw(self, renderer, *args, **kwargs)
class Arrivals(list):
"""
List like object of arrivals returned by :class:`TauPyModel` methods.
:param arrivals: Initial arrivals to store.
:type arrivals: :class:`list` of
:class:`~obspy.taup.helper_classes.Arrival`
:param model: The model used to calculate the arrivals.
:type model: :class:`~TauPyModel`
"""
__slots__ = ["model"]
def __init__(self, arrivals, model):
super(Arrivals, self).__init__()
self.model = model
self.extend(arrivals)
def __add__(self, other):
if isinstance(other, Arrival):
other = Arrivals([other], model=self.model)
if not isinstance(other, Arrivals):
raise TypeError
return self.__class__(super(Arrivals, self).__add__(other),
model=self.model)
def __iadd__(self, other):
if isinstance(other, Arrival):
other = Arrivals([other], model=self.model)
if not isinstance(other, Arrivals):
raise TypeError
self.extend(other)
return self
def __mul__(self, num):
if not isinstance(num, int):
raise TypeError("Integer expected")
arr = self.copy()
for _i in range(num - 1):
arr += self.copy()
return arr
def __imul__(self, num):
if not isinstance(num, int):
raise TypeError("Integer expected")
arr = self.copy()
for _i in range(num - 1):
self += arr
return self
def __setitem__(self, index, arrival):
if (isinstance(index, slice) and
all(isinstance(x, Arrival) for x in arrival)):
super(Arrivals, self).__setitem__(index, arrival)
elif isinstance(arrival, Arrival):
super(Arrivals, self).__setitem__(index, arrival)
else:
msg = 'Only Arrival objects can be assigned.'
raise TypeError(msg)
def __setslice__(self, i, j, seq):
if all(isinstance(x, Arrival) for x in seq):
super(Arrivals, self).__setslice__(i, j, seq)
else:
msg = 'Only Arrival objects can be assigned.'
raise TypeError(msg)
def __getitem__(self, index):
if isinstance(index, slice):
return self.__class__(super(Arrivals, self).__getitem__(index),
model=self.model)
else:
return super(Arrivals, self).__getitem__(index)
def __getslice__(self, i, j):
return self.__class__(super(Arrivals, self).__getslice__(i, j),
model=self.model)
def __str__(self):
return (
"{count} arrivals\n\t{arrivals}"
).format(
count=len(self),
arrivals="\n\t".join([str(_i) for _i in self]))
def __repr__(self):
return "[%s]" % (", ".join([repr(_i) for _i in self]))
def append(self, arrival):
if isinstance(arrival, Arrival):
super(Arrivals, self).append(arrival)
else:
msg = 'Append only supports a single Arrival object as argument.'
raise TypeError(msg)
def copy(self):
return self.__class__(super(Arrivals, self).copy(),
model=self.model)
def plot_times(self, phase_list=None, plot_all=True, legend=False,
show=True, fig=None, ax=None):
"""
Plot arrival times if any have been calculated.
:param phase_list: List of phases for which travel times are plotted,
if they exist. See `Phase naming in taup`_ for details on
phase naming and convenience keys like ``'ttbasic'``. Defaults to
``'ttall'``.
:type phase_list: list of str
:param plot_all: By default all rays, even those travelling in the
other direction and thus arriving at a distance of *360 - x*
degrees are shown. Set this to ``False`` to only show rays
arriving at exactly *x* degrees.
:type plot_all: bool
:param legend: If boolean, specify whether or not to show the legend
(at the default location.) If a str, specify the location of the
legend.
:type legend: bool or str
:param show: Show the plot.
:type show: bool
:param fig: Figure instance to plot in. If not given, a new figure
will be created.
:type fig: :class:`matplotlib.figure.Figure`
:param ax: Axes to plot in. If not given, a new figure with an axes
will be created.
:type ax: :class:`matplotlib.axes.Axes`
:returns: Matplotlib axes with the plot
:rtype: :class:`matplotlib.axes.Axes`
"""
import matplotlib.pyplot as plt
if not self:
raise ValueError("No travel times.")
if phase_list is None:
phase_list = ("ttall",)
phase_names = sorted(parse_phase_list(phase_list))
# create an axis/figure, if there is none yet:
if fig and ax:
pass
elif not fig and not ax:
fig, ax = plt.subplots()
elif not ax:
ax = fig.add_subplot(1, 1, 1)
elif not fig:
fig = ax.figure
# extract the time/distance for each phase, and for each distance:
for arrival in self:
if plot_all is False:
dist = arrival.purist_distance % 360.0
distance = arrival.distance
if distance < 0:
distance = (distance % 360)
if abs(dist - distance) / dist > 1E-5:
continue
if arrival.name in phase_names:
ax.plot(arrival.distance, arrival.time / 60, '.',
label=arrival.name,
color=COLORS[phase_names.index(arrival.name)
% len(COLORS)])
else:
ax.plot(arrival.distance, arrival.time / 60, '.',
label=arrival.name, color='k')
if legend:
if isinstance(legend, bool):
if 0 <= arrival.distance <= 180.0:
loc = "upper left"
else:
loc = "upper right"
else:
loc = legend
ax.legend(loc=loc, prop=dict(size="small"), numpoints=1)
ax.grid()
ax.set_xlabel('Distance (degrees)')
ax.set_ylabel('Time (minutes)')
if show:
plt.show()
return ax
def plot_rays(self, phase_list=None, plot_type="spherical",
plot_all=True, legend=False, label_arrivals=False,
show=True, fig=None, ax=None):
"""
Plot ray paths if any have been calculated.
:param phase_list: List of phases for which ray paths are plotted,
if they exist. See `Phase naming in taup`_ for details on
phase naming and convenience keys like ``'ttbasic'``. Defaults to
``'ttall'``.
:type phase_list: list of str
:param plot_type: Either ``"spherical"`` or ``"cartesian"``.
A spherical plot is always global whereas a Cartesian one can
also be local.
:type plot_type: str
:param plot_all: By default all rays, even those travelling in the
other direction and thus arriving at a distance of *360 - x*
degrees are shown. Set this to ``False`` to only show rays
arriving at exactly *x* degrees.
:type plot_all: bool
:param legend: If boolean, specify whether or not to show the legend
(at the default location.) If a str, specify the location of the
legend. If you are plotting a single phase, you may consider using
the ``label_arrivals`` argument.
:type legend: bool or str
:param label_arrivals: Label the arrivals with their respective phase
names. This setting is only useful if you are plotting a single
phase as otherwise the names could be large and possibly overlap
or clip. Consider using the ``legend`` parameter instead if you
are plotting multiple phases.
:type label_arrivals: bool
:param show: Show the plot.
:type show: bool
:param fig: Figure to plot in. If not given, a new figure will be
created.
:type fig: :class:`matplotlib.figure.Figure`
:param ax: Axes to plot in. If not given, a new figure with an axes
will be created. Must be a polar axes for the spherical plot and
a regular one for the Cartesian plot.
:type ax: :class:`matplotlib.axes.Axes`
:returns: Matplotlib axes with the plot
:rtype: :class:`matplotlib.axes.Axes`
"""
import matplotlib.pyplot as plt
# I don't get this, but without sorting, I get a different
# order each call:
if phase_list is None:
phase_list = ("ttall",)
requested_phase_names = parse_phase_list(phase_list)
requested_phase_name_map = {}
i = 0
for phase_name in requested_phase_names:
if phase_name in requested_phase_name_map:
continue
requested_phase_name_map[phase_name] = i
i += 1
phase_names = sorted(parse_phase_list(phase_list))
arrivals = []
for arrival in self:
if arrival.path is None:
continue
dist = arrival.purist_distance % 360.0
distance = arrival.distance
if distance < 0:
distance = (distance % 360)
if abs(dist - distance) / dist > 1E-5:
if plot_all is False:
continue
# Mirror on axis.
arrival = copy.deepcopy(arrival)
arrival.path["dist"] *= -1.0
arrivals.append(arrival)
if not arrivals:
raise ValueError("Can only plot arrivals with calculated ray "
"paths.")
# get the velocity discontinuities in your model, for plotting:
discons = self.model.s_mod.v_mod.get_discontinuity_depths()
if plot_type == "spherical":
if ax and not isinstance(ax, mpl.projections.polar.PolarAxes):
msg = ("Axes instance provided for plotting with "
"`plot_type='spherical'` but it seems the axes is not "
"a polar axes.")
warnings.warn(msg)
if fig and ax:
pass
elif not fig and not ax:
fig, ax = plt.subplots(subplot_kw=dict(projection='polar'))
elif not ax:
ax = fig.add_subplot(1, 1, 1, polar=True)
elif not fig:
fig = ax.figure
ax.set_theta_zero_location('N')
ax.set_theta_direction(-1)
ax.set_xticks([])
ax.set_yticks([])
intp = matplotlib.cbook.simple_linear_interpolation
radius = self.model.radius_of_planet
phase_names_encountered = {ray.name for ray in arrivals}
colors = {
name: COLORS[i % len(COLORS)]
for name, i in requested_phase_name_map.items()}
i = len(colors)
for name in sorted(phase_names_encountered):
if name in colors:
continue
colors[name] = COLORS[i % len(COLORS)]
i += 1
for ray in arrivals:
color = colors.get(ray.name, 'k')
# Requires interpolation,or diffracted phases look funny.
ax.plot(intp(ray.path["dist"], 100),
radius - intp(ray.path["depth"], 100),
color=color, label=ray.name, lw=2.0)
ax.set_yticks(radius - discons)
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.yaxis.set_major_formatter(plt.NullFormatter())
# Pretty earthquake marker.
ax.plot([0], [radius - arrivals[0].source_depth],
marker="*", color="#FEF215", markersize=20, zorder=10,
markeredgewidth=1.5, markeredgecolor="0.3",
clip_on=False)
# Pretty station marker.
arrowprops = dict(arrowstyle='-|>,head_length=0.8,'
'head_width=0.5',
color='#C95241', lw=1.5)
station_radius = radius - arrivals[0].receiver_depth
ax.annotate('',
xy=(np.deg2rad(distance), station_radius),
xycoords='data',
xytext=(np.deg2rad(distance),
station_radius + radius * 0.02),
textcoords='data',
arrowprops=arrowprops,
clip_on=False)
arrowprops = dict(arrowstyle='-|>,head_length=1.0,'
'head_width=0.6',
color='0.3', lw=1.5, fill=False)
ax.annotate('',
xy=(np.deg2rad(distance), station_radius),
xycoords='data',
xytext=(np.deg2rad(distance),
station_radius + radius * 0.01),
textcoords='data',
arrowprops=arrowprops,
clip_on=False)
if label_arrivals:
name = ','.join(sorted(set(ray.name for ray in arrivals)))
# We cannot just set the text of the annotations above because
# it changes the arrow path.
t = _SmartPolarText(np.deg2rad(distance),
station_radius + radius * 0.1,
name, clip_on=False)
ax.add_artist(t)
ax.set_rmax(radius)
ax.set_rmin(0.0)
if legend:
if isinstance(legend, bool):
if 0 <= distance <= 180.0:
loc = "upper left"
else:
loc = "upper right"
else:
loc = legend
ax.legend(loc=loc, prop=dict(size="small"))
elif plot_type == "cartesian":
if ax and isinstance(ax, mpl.projections.polar.PolarAxes):
msg = ("Axes instance provided for plotting with "
"`plot_type='cartesian'` but it seems the axes is "
"a polar axes.")
warnings.warn(msg)
if fig and ax:
pass
elif not fig and not ax:
fig, ax = plt.subplots()
ax.invert_yaxis()
elif not ax:
ax = fig.add_subplot(1, 1, 1)
ax.invert_yaxis()
elif not fig:
fig = ax.figure
# Plot the ray paths:
for ray in arrivals:
if ray.name in phase_names:
ax.plot(np.rad2deg(ray.path["dist"]), ray.path["depth"],
color=COLORS[phase_names.index(ray.name) %
len(COLORS)],
label=ray.name, lw=2.0)
else:
ax.plot(np.rad2deg(ray.path["dist"]), ray.path["depth"],
color='k', label=ray.name, lw=2.0)
# Pretty station marker:
ms = 14
station_marker_transform = matplotlib.transforms.offset_copy(
ax.transData,
fig=ax.get_figure(),
y=ms / 2.0,
units="points")
ax.plot([distance], [arrivals[0].receiver_depth],
marker="v", color="#C95241",
markersize=ms, zorder=10, markeredgewidth=1.5,
markeredgecolor="0.3", clip_on=False,
transform=station_marker_transform)
if label_arrivals:
name = ','.join(sorted(set(ray.name for ray in arrivals)))
ax.annotate(name,
xy=(distance, arrivals[0].receiver_depth),
xytext=(0, ms * 1.5),
textcoords='offset points',
ha='center', annotation_clip=False)
# Pretty earthquake marker.
ax.plot([0], [arrivals[0].source_depth], marker="*",
color="#FEF215", markersize=20, zorder=10,
markeredgewidth=1.5, markeredgecolor="0.3",
clip_on=False)
# lines of major discontinuities:
x = ax.get_xlim()
y = ax.get_ylim()
for depth in discons:
if not (y[1] <= depth <= y[0]):
continue
ax.hlines(depth, x[0], x[1], color="0.5", zorder=-1)
# Plot some more station markers if necessary.
possible_distances = [_i * (distance + 360.0)
for _i in range(1, 10)]
possible_distances += [-_i * (360.0 - distance) for _i in
range(1, 10)]
possible_distances = [_i for _i in possible_distances
if x[0] <= _i <= x[1]]
if possible_distances:
ax.plot(possible_distances,
[arrivals[0].receiver_depth] * len(possible_distances),
marker="v", color="#C95241",
markersize=ms, zorder=10, markeredgewidth=1.5,
markeredgecolor="0.3", clip_on=False, lw=0,
transform=station_marker_transform)
if legend:
if isinstance(legend, bool):
loc = "lower left"
else:
loc = legend
ax.legend(loc=loc, prop=dict(size="small"))
ax.set_xlabel("Distance [deg]")
ax.set_ylabel("Depth [km]")
else:
msg = "Plot type '{}' is not a valid option.".format(plot_type)
raise ValueError(msg)
if show:
plt.show()
return ax
def plot(self, plot_type="spherical", plot_all=True, legend=True,
label_arrivals=False, ax=None, show=True):
"""
Plot ray paths if any have been calculated.
:param plot_type: Either ``"spherical"`` or ``"cartesian"``.
A spherical plot is always global whereas a Cartesian one can
also be local.
:type plot_type: str
:param plot_all: By default all rays, even those travelling in the
other direction and thus arriving at a distance of *360 - x*
degrees are shown. Set this to ``False`` to only show rays
arriving at exactly *x* degrees.
:type plot_all: bool
:param legend: If boolean, specify whether or not to show the legend
(at the default location.) If a str, specify the location of the
legend. If you are plotting a single phase, you may consider using
the ``label_arrivals`` argument.
:type legend: bool or str
:param label_arrivals: Label the arrivals with their respective phase
names. This setting is only useful if you are plotting a single
phase as otherwise the names could be large and possibly overlap
or clip. Consider using the ``legend`` parameter instead if you
are plotting multiple phases.
:type label_arrivals: bool
:param show: Show the plot.
:type show: bool
:param fig: Figure to plot in. If not given, a new figure will be
created.
:type fig: :class:`matplotlib.figure.Figure`
:param ax: Axes to plot in. If not given, a new figure with an axes
will be created. Must be a polar axes for the spherical plot and
a regular one for the Cartesian plot.
:type ax: :class:`matplotlib.axes.Axes`
:returns: Matplotlib axes with the plot
:rtype: :class:`matplotlib.axes.Axes`
.. versionchanged:: 1.1.0
Deprecated.
With the introduction of plot_times(), plot() has been renamed to
plot_rays()
"""
# display warning
from obspy.core.util.deprecation_helpers import ObsPyDeprecationWarning
warnings.warn("The plot() function is deprecated. Please use "
"arrivals.plot_rays()",
ObsPyDeprecationWarning, stacklevel=2)
# call plot_rays, but with added fig and phase_list parameters:
return self.plot_rays(plot_type=plot_type,
plot_all=plot_all,
legend=legend,
label_arrivals=label_arrivals,
ax=ax,
fig=None,
show=show,
phase_list=("ttall",))
class TauPyModel(object):
"""
Representation of a seismic model and methods for ray paths through it.
"""
def __init__(self, model="iasp91", verbose=False, planet_flattening=0.0,
cache=None):
"""
Loads an already created TauPy model.
:param model: The model name. Either an internal TauPy model or a
filename in the case of custom models.
:param planet_flattening: Flattening parameter for the planet's
ellipsoid (i.e. (a-b)/a, where a is the semimajor equatorial radius
and b is the semiminor polar radius). A value of 0 (the default)
gives a spherical planet. Note that this is only used to convert
from geographical positions (source and receiver latitudes and
longitudes) to epicentral distances - the actual traveltime and
raypath calculations are performed on a spherical planet.
:type planet_flattening: float
:param cache: An object to use to cache models split at source depths.
Generating results requires splitting a model at the source depth,
which may be expensive. The cache allows faster calculation when
multiple results are requested for the same source depth. The
dictionary must be ordered, otherwise the LRU cache will not
behave correctly. If ``False`` is specified, then no cache will be
used.
:type cache: :class:`collections.OrderedDict` or bool
Usage:
>>> from obspy.taup import tau
>>> i91 = tau.TauPyModel()
>>> print(i91.get_travel_times(10, 20)[0].name)
P
>>> i91.get_travel_times(10, 20)[0].time # doctest: +ELLIPSIS
272.675...
>>> len(i91.get_travel_times(100, 50, phase_list = ["P", "S"]))
2
"""
self.verbose = verbose
self.model = TauModel.from_file(model, cache=cache)
self.planet_flattening = planet_flattening
def get_travel_times(self, source_depth_in_km, distance_in_degree=None,
phase_list=("ttall",), receiver_depth_in_km=0.0):
"""
Return travel times of every given phase.
:param source_depth_in_km: Source depth in km
:type source_depth_in_km: float
:param distance_in_degree: Epicentral distance in degrees.
:type distance_in_degree: float
:param phase_list: List of phases for which travel times should be
calculated. If this is empty, all phases in arrivals object
will be used.
:type phase_list: list of str
:param receiver_depth_in_km: Receiver depth in km
:type receiver_depth_in_km: float
:return: List of ``Arrival`` objects, each of which has the time,
corresponding phase name, ray parameter, takeoff angle, etc. as
attributes.
:rtype: :class:`Arrivals`
"""
# Accessing the arrivals not just by list indices but by phase name
# might be useful, but also difficult: several arrivals can have the
# same phase.
tt = TauPTime(self.model, phase_list, source_depth_in_km,
distance_in_degree, receiver_depth_in_km)
tt.run()
return Arrivals(sorted(tt.arrivals, key=lambda x: x.time),
model=self.model)
def get_pierce_points(self, source_depth_in_km, distance_in_degree,
phase_list=("ttall",), receiver_depth_in_km=0.0):
"""
Return pierce points of every given phase.
:param source_depth_in_km: Source depth in km
:type source_depth_in_km: float
:param distance_in_degree: Epicentral distance in degrees.
:type distance_in_degree: float
:param phase_list: List of phases for which travel times should be
calculated. If this is empty, all phases in arrivals object
will be used.
:type phase_list: list of str
:param receiver_depth_in_km: Receiver depth in km
:type receiver_depth_in_km: float
:return: List of ``Arrival`` objects, each of which has the time,
corresponding phase name, ray parameter, takeoff angle, etc. as
attributes.
:rtype: :class:`Arrivals`
"""
pp = TauPPierce(self.model, phase_list, source_depth_in_km,
distance_in_degree, receiver_depth_in_km)
pp.run()
return Arrivals(sorted(pp.arrivals, key=lambda x: x.time),
model=self.model)
def get_ray_paths(self, source_depth_in_km, distance_in_degree=None,
phase_list=("ttall",), receiver_depth_in_km=0.0):
"""
Return ray paths of every given phase.
:param source_depth_in_km: Source depth in km
:type source_depth_in_km: float
:param distance_in_degree: Epicentral distance in degrees.
:type distance_in_degree: float
:param phase_list: List of phases for which travel times should be
calculated. If this is empty, all phases in arrivals object
will be used.
:type phase_list: list of str
:param receiver_depth_in_km: Receiver depth in km
:type receiver_depth_in_km: float
:return: List of ``Arrival`` objects, each of which has the time,
corresponding phase name, ray parameter, takeoff angle, etc. as
attributes.
:rtype: :class:`Arrivals`
"""
rp = TauPPath(self.model, phase_list, source_depth_in_km,
distance_in_degree, receiver_depth_in_km)
rp.run()
return Arrivals(sorted(rp.arrivals, key=lambda x: x.time),
model=self.model)
def get_travel_times_geo(self, source_depth_in_km, source_latitude_in_deg,
source_longitude_in_deg, receiver_latitude_in_deg,
receiver_longitude_in_deg, phase_list=("ttall",)):
"""
Return travel times of every given phase given geographical data.
.. note::
Note that the conversion from source and receiver latitudes and
longitudes to epicentral distances respects the model's flattening
parameter, so this calculation can be performed for a ellipsoidal
or spherical planet. However, the actual traveltime and raypath
calculations are performed on a spherical planet. Ellipticity
corrections of e.g. [Dziewonski1976]_ are not made.
:param source_depth_in_km: Source depth in km
:type source_depth_in_km: float
:param source_latitude_in_deg: Source latitude in degrees
:type source_latitude_in_deg: float
:param source_longitude_in_deg: Source longitude in degrees
:type source_longitude_in_deg: float
:param receiver_latitude_in_deg: Receiver latitude in degrees
:type receiver_latitude_in_deg: float
:param receiver_longitude_in_deg: Receiver longitude in degrees
:type receiver_longitude_in_deg: float
:param phase_list: List of phases for which travel times should be
calculated. If this is empty, all phases in arrivals object
will be used.
:type phase_list: list of str
:return: List of ``Arrival`` objects, each of which has the time,
corresponding phase name, ray parameter, takeoff angle, etc. as
attributes.
:rtype: :class:`Arrivals`
"""
distance_in_deg = calc_dist(source_latitude_in_deg,
source_longitude_in_deg,
receiver_latitude_in_deg,
receiver_longitude_in_deg,
self.model.radius_of_planet,
self.planet_flattening)
arrivals = self.get_travel_times(source_depth_in_km, distance_in_deg,
phase_list)
return arrivals
def get_pierce_points_geo(self, source_depth_in_km, source_latitude_in_deg,
source_longitude_in_deg,
receiver_latitude_in_deg,
receiver_longitude_in_deg,
phase_list=("ttall",),
resample=False):
"""
Return pierce points of every given phase with geographical info.
.. note::
Note that the conversion from source and receiver latitudes and
longitudes to epicentral distances respects the model's flattening
parameter, so this calculation can be performed for a ellipsoidal
or spherical planet. However, the actual traveltime and raypath
calculations are performed on a spherical planet. Ellipticity
corrections of e.g. [Dziewonski1976]_ are not made.
:param source_depth_in_km: Source depth in km
:type source_depth_in_km: float
:param source_latitude_in_deg: Source latitude in degrees
:type source_latitude_in_deg: float
:param source_longitude_in_deg: Source longitue in degrees
:type source_longitude_in_deg: float
:param receiver_latitude_in_deg: Receiver latitude in degrees
:type receiver_latitude_in_deg: float
:param receiver_longitude_in_deg: Receiver longitude in degrees
:type receiver_longitude_in_deg: float
:param phase_list: List of phases for which travel times should be
calculated. If this is empty, all phases in arrivals object
will be used.
:type phase_list: list of str
:param resample: adds sample points to allow for easy cartesian
interpolation. This is especially useful for phases
like Pdiff.
:type resample: boolean
:return: List of ``Arrival`` objects, each of which has the time,
corresponding phase name, ray parameter, takeoff angle, etc. as
attributes.
:rtype: :class:`Arrivals`
"""
distance_in_deg = calc_dist(source_latitude_in_deg,
source_longitude_in_deg,
receiver_latitude_in_deg,
receiver_longitude_in_deg,
self.model.radius_of_planet,
self.planet_flattening)
arrivals = self.get_pierce_points(source_depth_in_km, distance_in_deg,
phase_list)
if geodetics.HAS_GEOGRAPHICLIB:
arrivals = add_geo_to_arrivals(arrivals, source_latitude_in_deg,
source_longitude_in_deg,
receiver_latitude_in_deg,
receiver_longitude_in_deg,
self.model.radius_of_planet,
self.planet_flattening,
resample=resample)
else:
msg = "Not able to evaluate positions of pierce points. " + \
"Arrivals object will not be modified. " + \
"Install the Python module 'geographiclib' to solve " + \
"this issue."
warnings.warn(msg)
return arrivals
def get_ray_paths_geo(self, source_depth_in_km, source_latitude_in_deg,
source_longitude_in_deg, receiver_latitude_in_deg,
receiver_longitude_in_deg, phase_list=("ttall",),
resample=False,sampleds=5.0):
"""
Return ray paths of every given phase with geographical info.
.. note::
Note that the conversion from source and receiver latitudes and
longitudes to epicentral distances respects the model's flattening
parameter, so this calculation can be performed for a ellipsoidal
or spherical planet. However, the actual traveltime and raypath
calculations are performed on a spherical planet. Ellipticity
corrections of e.g. [Dziewonski1976]_ are not made.
:param source_depth_in_km: Source depth in km
:type source_depth_in_km: float
:param source_latitude_in_deg: Source latitude in degrees
:type source_latitude_in_deg: float
:param source_longitude_in_deg: Source longitue in degrees
:type source_longitude_in_deg: float
:param receiver_latitude_in_deg: Receiver latitude in degrees
:type receiver_latitude_in_deg: float
:param receiver_longitude_in_deg: Receiver longitude in degrees
:type receiver_longitude_in_deg: float
:param phase_list: List of phases for which travel times should be
calculated. If this is empty, all phases in arrivals object
will be used.
:type phase_list: list of str
:return: List of ``Arrival`` objects, each of which has the time,
corresponding phase name, ray parameter, takeoff angle, etc. as
attributes.
:rtype: :class:`Arrivals`
"""
distance_in_deg = calc_dist(source_latitude_in_deg,
source_longitude_in_deg,
receiver_latitude_in_deg,
receiver_longitude_in_deg,
self.model.radius_of_planet,
self.planet_flattening)
arrivals = self.get_ray_paths(source_depth_in_km, distance_in_deg,
phase_list)
if geodetics.HAS_GEOGRAPHICLIB:
arrivals = add_geo_to_arrivals(arrivals, source_latitude_in_deg,
source_longitude_in_deg,
receiver_latitude_in_deg,
receiver_longitude_in_deg,
self.model.radius_of_planet,
self.planet_flattening,
resample=resample,sampleds=sampleds)
else:
msg = "Not able to evaluate positions of points on path. " + \
"Arrivals object will not be modified. " + \
"Install the Python module 'geographiclib' to solve " + \
"this issue."
warnings.warn(msg)
return arrivals
def plot_travel_times(source_depth, phase_list=("ttbasic",), min_degrees=0,
max_degrees=180, npoints=50, model='iasp91',
plot_all=True, legend=True, verbose=False, fig=None,
ax=None, show=True):
"""
Returns a travel time plot and any created axis instance of this
plot.
:param source_depth: Source depth in kilometers.
:type source_depth: float
:param min_degrees: minimum distance from the source (in degrees)
:type min_degrees: float
:param max_degrees: maximum distance from the source (in degrees)
:type max_degrees: float
:param npoints: Number of points to plot.
:type npoints: int
:param phase_list: List of phase names to plot.
:type phase_list: list of str, optional
:param model: string containing the model to use.
:type model: str
:param plot_all: By default all rays, even those travelling in the
other direction and thus arriving at a distance of *360 - x*
degrees are shown. Set this to ``False`` to only show rays
arriving at exactly *x* degrees.
:type plot_all: bool
:param legend: Whether or not to show the legend
:type legend: bool
:param verbose: Whether to print information about epicentral distances
that did not have an arrival.
:type verbose: bool
:param fig: Figure to plot into. If not given, a new figure instance
will be created.
:type fig: :class:`matplotlib.figure.Figure`
:param ax: Axes to plot in. If not given, a new figure with an axes
will be created.
:param show: Show the plot.
:type show: bool
:param ax: Axes to plot in. If not given, a new figure with an axes
will be created.
:type ax: :class:`matplotlib.axes.Axes`
:returns: Matplotlib axes with the plot
:rtype: :class:`matplotlib.axes.Axes`
.. rubric:: Example
>>> from obspy.taup import plot_travel_times
>>> ax = plot_travel_times(source_depth=10, phase_list=['P', 'S', 'PP'])
.. plot::
from obspy.taup import plot_travel_times
ax = plot_travel_times(source_depth=10, phase_list=['P','S','PP'])
"""
import matplotlib.pyplot as plt
# compute the requested arrivals:
if not isinstance(model, TauPyModel):
model = TauPyModel(model)
# a list of epicentral distances without a travel time, and a flag:
notimes = []
plotted = False
# calculate the arrival times and plot vs. epicentral distance:
degrees = np.linspace(min_degrees, max_degrees, npoints)
for degree in degrees:
try:
arrivals = model.get_ray_paths(source_depth, degree,
phase_list=phase_list)
ax = arrivals.plot_times(phase_list=phase_list, show=False,
ax=ax, plot_all=plot_all)
plotted = True
except ValueError:
notimes.append(degree)
if plotted:
if verbose:
if len(notimes) == 1:
tmpl = "There was {} epicentral distance without an arrival"
else:
tmpl = "There were {} epicentral distances without an arrival"
print(tmpl.format(len(notimes)))
else:
raise ValueError("No arrival times to plot.")
if legend:
# merge all arrival labels of a certain phase:
handles, labels = ax.get_legend_handles_labels()
labels, ids = np.unique(labels, return_index=True)
handles = [handles[i] for i in ids]
ax.legend(handles, labels, loc=2, numpoints=1)
if show:
plt.show()
return ax
def plot_ray_paths(source_depth, min_degrees=0, max_degrees=360, npoints=10,
plot_type='spherical', phase_list=['P', 'S', 'PP'],
model='iasp91', plot_all=True, legend=False,
label_arrivals=False, verbose=False, fig=None, show=True,
ax=None):
"""
Plot ray paths for seismic phases.
:param source_depth: Source depth in kilometers.
:type source_depth: float
:param min_degrees: minimum distance from the source (in degrees).
:type min_degrees: float
:param max_degrees: maximum distance from the source (in degrees).
:type max_degrees: float
:param npoints: Number of receivers to plot.
:type npoints: int
:param plot_type: type of plot to create. Options are 'spherical' (default)