Skip to content

Latest commit

 

History

History
399 lines (318 loc) · 39.2 KB

Dada2_report.md

File metadata and controls

399 lines (318 loc) · 39.2 KB
output
pdf_document html_document
default
default

Overview

Here we present the use of Divisive Amplicon Denoising Algorithm 2 (DADA2) pipeline for 16s rRNA data analysis. This pipeline flow allows for the inference of true biological sequences from reads. The datasets used were 16S rRNA amplicon sequencing data from (input sample names).

Set up

To work on DADA2, the data needs to be demultiplexed and Non-biological nucleotides removed: primers, adapters, linkers. If not, preprocessing and filtering steps are required. For paired-end sequence data, the forward and reverse fastq files contain reads in matched order.

For this exercise, we received a total of 124 paired-end reads samples with an average read length of 238bp.

For the DADA2 pipeline, the following packages were installed in the HPC and used for the analysis.

No Tool Version
1. DADA2 1.18.0
2. phyloseq 1.34.0
3. dplyr 1.0.3
4. vegan 2.5.7
5. phangorn 2.5.5
6. ggplot2 3.3.3
7. scales 1.1.1
8. grid 4.0.2
9. reshape2 1.4.4
10. profvis 0.3.7
11. DECIPHER 2.18.1
12. Rcolorbrewer 1.1.2

Next, we created a working directory to contain all the output from each process.

Preprocessing

Regarding the number and lengths of the reads, reads ranged from 144 bp to 251. After using FastQC and MultiQC, we further used Dada2 built-in tools for quality check and trimming.

The reads' quality was analyzed by plotting quality profiles of random samples using an in-built feature provided by DADA2. The majority of the reads were of poor sequence quality, with the first 40 bases of most reads exhibiting a low Phred score which could have been attributed to the high percentage N-count at the start of the reads. Primer metadata also indicated the barcode sequences and reverse primers that were still present in the reads and could have contributed to the low quality reported. Moreover, high adapter content characterized the end of the reads.

Figure 1. Raw Quality Profiles for forward reads

QualityProfileForward

Figure 2. Raw Quality Profiles for reverse reads

RawQualityProfileReverse

These details informed the trimming procedure performed on DADA2. We set the trimming parameters to retain ~ 230 bp forward reads and 200bp reverse reads. This is because forward reads maintain better quality throughout, with the quality dropping at the end around position 230, the reverse reads quality drops significantly at about position 200. Using the barcode and reverse primer metadata, we trimmed the first 25 and last 25 nucleotides to remain with the true reads. We set the maximum expect error at 3 for both forward and reverse reads.

  Parameters
  maxEE=c(3,3),
  rm.phix=TRUE,
  truncLen=c(230,200),
  trimLeft = c(25,25),
  multithread = TRUE

Approximately 11.6% of the reads were lost after trimming. Quality profiles of random samples were plotted, which confirmed a significant quality improvement; hence the reads proceeded to further downstream processing.

Figure 3. Quality Profiles for filtered forward reads

FilteredForwardPlot

Figure 4. Quality Profiles for filtered reverse reads

ReverseFilteredPlot

Learning Error Rates

DADA2 allows for error modeling using a machine-learning-based algorithm, which we utilized to establish sequencing error rates, including substitutions such as Single Nucleotide Polymorphisms. To verify that the error rates have been reasonably well-estimated, we inspected the fit between the observed error rates (black points) and the fitted error rates (black lines).

These figures show the frequencies of each type of transition as a function of the quality. Error rate plots revealed a decrease in error rates with an increase in sequence quality which was a satisfactory observation that validated the estimated error rates; that is, the estimated error rate was similar to the observed error rate.

Figure 5. Error rate plot for forward reads

forward_error_plot

Figure 6. Error rate plot for reverse reads

reverse_error_plot

Dereplication

Dereplication involves retrieving unique sequences from all the identical sequence reads, which reduces redundancy and computation time needed for analysis. New quality scores were assigned to the unique sequences, which is a functionality of the dereplication process.

Sample Inference

Sample inference was performed to obtain sequence variants from the dereplicated sequences using the core sample inference algorithm supported by DADA2. DADA2 provides two modes, "pool=TRUE "and "pool=FALSE ". "pool=TRUE "improves the detection of rare variants observed just once or twice in an individual sample but often across all samples. However, it is a very computationally taxing step and can become intractable for datasets of tens of millions of reads. If a study does not need detection of rare variants then the Independent inference "pool=FALSE "is recommended. It has the advantage that computation time is linear in the number of samples, and memory requirements are flat with the number of samples. This allows scaling out to datasets of almost unlimited size. Therefore, we set the multithreading parameter to true since the process is computationally heavy.

Merging

Merging of the forward and reverse paired reads was carried out using the default minOverlap of 20 and setting the trimOverhang parameter to true since we did not trim overhangs earlier in the pipeline. We chose the parameters to facilitate optimal merging without a decrease in quality. From there, we observed that most of the reads merged, with only 1.83% of the reads not merged.

Constructing sequence table

The sequence table is a sample by sequence feature table, which is valued by the number of times each sequence was observed in each sample. From the sequence table, we observed 3879 ASVs. The majority of the merged sequences had similar lengths, although there was a significant change in some samples.

Removing chimeras

Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a right-segment from two more abundant "parent" sequences. We used the removeBimeraDenovo function, where sequence variants identified as bimeric are removed and return a bimera free collection of unique sequences. We set multithreading true to minimize on time taken and optimize the compute resources.

After removing the chimeras, 95.8% of the reads were retained. Chimera detection identified 7928 bimeras out of 11807 input sequences, therefore retaining 3879 ASVs.

Tracking reads through the pipeline

A mean of 79.68% of the reads was retained across all the processing steps of the pipeline.

Table 1. Summary table for reads tracking

Input Filtered dada_forward dada_reverse Merged Non chimera final_perc_reads_retained
S1 108494 87977 84153 82263 80386 79551 73.3
S10 229302 212582 209823 207974 203574 197078 85.9
S100 126661 101181 99153 98396 91306 87519 69.1
S101 150614 132925 131426 131246 129713 126862 84.2
S102 146772 133672 132374 132079 130082 124447 84.8
S103 366244 340616 338735 338147 334604 312962 85.5
S104 339681 308417 305406 305055 298815 283637 83.5
S105 176537 150667 147410 145776 143371 140069 79.3
S106 409963 381879 380950 379950 373275 328478 80.1
S107 162844 123467 118933 116446 114732 114449 70.3
S110 461750 401964 392765 388100 381198 372196 80.6
S112 49460 43272 42736 42495 42024 40839 82.6
S113 342595 312178 307734 306039 301222 292414 85.4
S114 331129 304547 302856 302420 297833 280947 84.8
S115 109200 96798 95981 95738 94561 91153 83.5
S117 254884 235364 234703 234264 230560 206942 81.2
S119 350937 307307 306048 304755 300706 292361 83.3
S122 353419 323560 319317 318550 315258 313813 88.8
S123 225713 203143 200784 200230 197486 189080 83.8
S124 140088 125925 125216 125087 123542 118573 84.6
S125 105919 84419 83345 83220 81814 80575 76.1
S126 380866 341856 338601 336647 331971 318407 83.6
S127 536496 487825 485620 485347 479980 460847 85.9
S128 210601 191488 189766 189357 187537 181359 86.1
S129 90546 76435 74881 74325 72968 71634 79.1
S13 246427 230047 229335 229078 226521 214413 87
S130 387131 353136 351304 350105 343847 323098 83.5
S131 217614 193390 190225 188520 186153 183682 84.4
S132 133395 109974 108459 108261 106615 104278 78.2
S133 244488 219885 218874 217946 215083 199598 81.6
S134 141947 112473 110765 110255 108974 107780 75.9
S135 303167 279799 278117 277540 274165 258633 85.3
S136 129873 119730 117891 117516 115797 114458 88.1
S138 110492 97111 96271 96017 94765 88886 80.4
S139 361408 334807 333354 333017 329740 298380 82.6
S14 215017 195747 193561 190793 188288 180629 84
S140 33079 24939 23391 22976 22446 21905 66.2
S141 161665 145047 143941 143502 141759 136722 84.6
S142 45924 40471 39167 38875 38213 37739 82.2
S144 372434 340876 339322 338790 334300 317234 85.2
S145 106428 93940 91888 91582 89546 87550 82.3
S15 207191 186555 184435 182166 178427 169667 81.9
S16 51951 45907 45120 44887 43985 42953 82.7
S17 226827 210349 209141 208010 204829 192657 84.9
S18 70709 54401 51122 49599 47850 46216 65.4
S19 190605 175335 174396 174215 172294 162886 85.5
S2 258746 233259 231586 229612 224111 208690 80.7
S20 78533 68818 67211 65813 64454 61709 78.6
S21 14155 12624 12256 12167 11831 11714 82.8
S22 83671 61199 57786 54533 52377 51471 61.5
S23 165500 138095 135665 133949 132263 130274 78.7
S24 104447 88550 86464 85584 84507 82958 79.4
S25 154810 139356 138037 137353 135267 130278 84.2
S27 69708 58645 55895 54213 52854 50849 72.9
S29 92226 83184 81792 81397 79792 78497 85.1
S3 29696 25983 25625 25472 25212 24905 83.9
S31 98386 92007 91707 91634 90792 86067 87.5
S32 160676 140773 137571 132308 129687 123581 76.9
S33 30434 26654 25490 25180 24654 24298 79.8
S34 231852 216706 216187 215856 213233 201141 86.8
S36 130881 122889 122612 122478 121265 115042 87.9
S38 155810 123597 119565 115482 112909 107959 69.3
S39 114609 99138 97085 94708 92819 86848 75.8
S40 102954 88259 86095 85418 83391 81917 79.6
S41 80777 69026 66708 65674 64355 61590 76.2
S42 161516 151018 150758 150606 149465 140224 86.8
S43 26710 24707 24314 24031 23753 23297 87.2
S44 89349 74266 72337 71051 69551 66138 74
S46 96397 78264 74135 72574 70555 68345 70.9
S47 188461 175068 173888 173232 171127 164719 87.4
S48 31718 26722 25485 25089 24668 24621 77.6
S49 121644 107021 104233 101289 98840 93308 76.7
S5 98930 88018 87412 87159 86028 81316 82.2
S51 103734 90436 87618 85805 83688 78840 76
S52 17009 14712 14497 14346 14175 13701 80.6
S54 193042 182405 181816 181584 179740 169673 87.9
S55 183286 161893 157615 154337 151230 144831 79
S56 133249 111665 108594 107411 106055 103369 77.6
S57 229468 197421 195521 194530 192139 189676 82.7
S58 107133 98625 97946 97695 96564 92318 86.2
S59 203605 191888 191243 190994 188681 177743 87.3
S6 211514 199936 199409 199216 196872 188397 89.1
S60 138892 127837 127007 126674 125153 120442 86.7
S61 172758 159699 158677 158305 156435 149695 86.7
S62 228758 210207 207312 206306 203149 195533 85.5
S63 131697 103216 102022 101739 100883 97638 74.1
S64 151183 129644 128995 128924 127695 124539 82.4
S65 228293 202697 200846 200518 198387 191977 84.1
S66 106851 74125 73152 72554 70826 66795 62.5
S67 247723 222604 218792 216798 214402 211504 85.4
S68 70210 64757 64370 64144 63427 61282 87.3
S69 197006 179837 178471 177704 175155 159872 81.2
S7 117051 102597 100988 99314 96158 94705 80.9
S70 248320 217931 213805 212790 208912 204465 82.3
S71 167183 148736 147634 147123 144847 140248 83.9
S72 160242 131726 125085 123445 119058 114677 71.6
S73 90548 80779 79982 79823 78936 76815 84.8
S74 156178 119274 117189 116495 114730 112282 71.9
S75 207264 181524 178274 177179 174315 168514 81.3
S76 30263 17206 16351 16195 15779 15650 51.7
S77 117901 99016 97272 96178 94219 90881 77.1
S78 231741 207803 204514 203448 198465 192950 83.3
S79 140625 118789 118190 118131 116887 113580 80.8
S8 118954 91396 88504 87103 85653 84526 71.1
S80 96400 39171 38549 38066 37523 37050 38.4
S81 46643 26045 22335 21233 19962 19843 42.5
S82 312725 278569 277548 277101 273461 264009 84.4
S83 217518 201386 199600 198788 196526 187857 86.4
S84 270208 247874 243758 242763 240048 238061 88.1
S85 342197 301317 296809 295302 286931 268323 78.4
S86 80376 59108 57086 56517 54978 53291 66.3
S87 244014 222004 217205 215329 211941 207377 85
S89 176154 156779 154622 154171 152066 147645 83.8
S9 79870 74727 74153 73963 73483 72441 90.7
S90 66713 49895 47491 46753 45625 45403 68.1
S91 218723 191772 190949 190284 188505 183670 84
S92 74331 56050 53897 53405 52459 52151 70.2
S93 268130 233773 231517 231059 228755 219959 82
S94 93202 50389 49881 49763 49318 48734 52.3
S95 31443 16995 16301 16144 15762 15672 49.8
S96 227880 206676 205726 205373 203753 195309 85.7
S97 317252 290181 287580 286673 283081 270532 85.3
S98 396734 358134 355994 355400 350853 328345 82.8
S99 193089 175185 174442 174214 172224 165513 85.7
Mean 174890.048387097 154545.483870968 152611.516129032 151697.798387097 149368.903225806 143109.798387097 79.6822580645161
Input Filtered dada_forward dada_reverse Merged Non chimera final_perc_reads_retained

Assigning Taxonomy

In this step, the input sequences to be classified are from the sequence table without chimeras, while the training set of reference sequences with known taxonomy used was from the silva database, and taxonomy was assigned up to the species level. An alternative training set from the RDP database was used but was found to have more NAs than silva; hence silva was chosen for downstream analysis. Taxonomy was assigned utilizing a minBootstrap confidence of 50, which is the default parameter for the DADA2 algorithm.

Table 2. Taxonomic assignments of the top 50 ASVs

Kingdom Phylum Class Order Family Genus Species
ASV1 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus iners
ASV2 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus NA
ASV3 Bacteria Firmicutes Negativicutes Veillonellales-Selenomonadales Veillonellaceae Megasphaera NA
ASV4 Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Shuttleworthia NA
ASV5 Bacteria Actinobacteriota Actinobacteria Bifidobacteriales Bifidobacteriaceae Gardnerella vaginalis
ASV6 Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella amnii
ASV7 Bacteria Fusobacteriota Fusobacteriia Fusobacteriales Leptotrichiaceae Sneathia NA
ASV8 Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella NA
ASV9 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus crispatus
ASV10 Bacteria Fusobacteriota Fusobacteriia Fusobacteriales Leptotrichiaceae Sneathia sanguinegens
ASV11 Bacteria Actinobacteriota Actinobacteria Bifidobacteriales Bifidobacteriaceae Gardnerella vaginalis
ASV12 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus NA
ASV13 Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella timonensis
ASV14 Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella amnii
ASV15 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus NA
ASV16 Bacteria Firmicutes Negativicutes Veillonellales-Selenomonadales Veillonellaceae Dialister NA
ASV17 Bacteria Actinobacteriota Coriobacteriia Coriobacteriales Atopobiaceae Atopobium vaginae
ASV18 Bacteria Firmicutes Clostridia Oscillospirales Hungateiclostridiaceae Fastidiosipila NA
ASV19 Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella_7 melaninogenica
ASV20 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus NA
ASV21 Bacteria Firmicutes Clostridia Peptostreptococcales-Tissierellales Family XI Finegoldia magna
ASV22 Bacteria Firmicutes Negativicutes Veillonellales-Selenomonadales Veillonellaceae Megasphaera NA
ASV23 Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella NA
ASV24 Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella disiens
ASV25 Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella NA
ASV26 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus crispatus
ASV27 Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella_7 NA
ASV28 Bacteria Actinobacteriota Actinobacteria Bifidobacteriales Bifidobacteriaceae Gardnerella vaginalis
ASV29 Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella bivia
ASV30 Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella NA
ASV31 Bacteria Fusobacteriota Fusobacteriia Fusobacteriales Leptotrichiaceae Sneathia NA
ASV32 Bacteria Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia-Shigella NA
ASV33 Bacteria Actinobacteriota Actinobacteria Bifidobacteriales Bifidobacteriaceae Gardnerella vaginalis
ASV34 Bacteria Fusobacteriota Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium nucleatum
ASV35 Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus NA
ASV36 Bacteria Patescibacteria Saccharimonadia Saccharimonadales NA NA NA
ASV37 Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Shuttleworthia NA
ASV38 Bacteria Firmicutes Negativicutes Veillonellales-Selenomonadales Veillonellaceae Veillonella montpellierensis
ASV39 Bacteria Firmicutes Clostridia Peptostreptococcales-Tissierellales Family XI Parvimonas NA
ASV40 Bacteria Firmicutes Clostridia Peptostreptococcales-Tissierellales Family XI Fenollaria NA
ASV41 Bacteria Firmicutes Negativicutes Veillonellales-Selenomonadales Veillonellaceae Dialister NA
ASV42 Bacteria Actinobacteriota Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium glucuronolyticum
ASV43 Bacteria Actinobacteriota Coriobacteriia Coriobacteriales Eggerthellaceae DNF00809 NA
ASV44 Bacteria Firmicutes Bacilli Lactobacillales Aerococcaceae Aerococcus christensenii
ASV45 Bacteria Actinobacteriota Actinobacteria Bifidobacteriales Bifidobacteriaceae Gardnerella NA
ASV46 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus NA
ASV47 Bacteria Bacteroidota Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas uenonis
ASV48 Bacteria Firmicutes Clostridia Peptostreptococcales-Tissierellales Family XI Peptoniphilus NA
ASV49 Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella corporis
ASV50 Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Shuttleworthia NA

Taxonomy rank statistics

Rank Total assigned % of ASVs assigned No. of unique without NA
Kingdom 3724 96.0 3
Phylum 2829 72.93 18
Class 2629 67.78 29
Order 2572 66.31 63
Family 2397 61.8 116
Genus 1579 40.71 305
Species 320 8.25 205

From the table, we observe that 40.71% and 8.25 ASVs were assigned to genus and species level, respectively. 51% could only be assigned to rank higher than genus.

Phylogeny

Phylogenetic relatedness is commonly used to inform downstream analyses, especially calculating phylogeny-aware distances between microbial communities. The DADA2 sequence inference method is reference-free, so we constructed the phylogenetic tree relating the inferred sequence variants de novo.

Using the DECIPHER R package, we carried out Phylogenetic analysis by firstly performing multiple sequence alignment, after which a distance matrix was assigned for phylogenetic tree construction. We used the phangorn R package with the Neighbor-Joining algorithm as our clustering method for phylogenetic inference. The Generalized Time Reversible Model (GTR) was used as the substitution model, and stochastic rearrangement was set, which allowed for random permutation in the phylogenetic tree.

Here are the parameters:

Parameters used
maxEE=c(3,3),
m.phix=TRUE,
truncLen=c(230,200),
trimLeft = c(25,25),
multithread = TRUE

Alpha diversity

Alpha diversity is the average species diversity in our samples generated from summary metrics that describe individual samples.

Richness and diversity estimates

Plotting was done using Chao1 richness estimates and Shannon diversity values. Chao1 is a richness estimator, "richness" being the total number of distinct ASVs in the samples, while Shannon's diversity index is a metric of diversity. The term diversity includes "richness" (the total number of your distinct units) and "evenness" (the relative proportions of all of your distinct units). We used the phyloseq package, and specifically, the "plot_richness() "function.

Figure 7. Richness Barplot for top 30 ASVS by abundance by age using inflammation as fill as BV as facet wrap

barplot

Figure 8 Richness Barplot by abundance by BV using inflammation as fill and status i.e. categories of BMI as facet wrap

bv_bmi

Figure 9 Richness Barplot by abundance by BV using BMI as fill and inflammation as facet wrap

bmi_inflammation

Figure 10. Richness Boxplot

alpha-diversity

The plots' median values and interquartile ranges show a significant difference between Positive and negative BV samples (p-value <0.05). Negative BV samples showed greater CHAO/ACE values; this leads to an expected higher species richness of the microbiota. The Simpson index and the Shannon index showed a higher diversity of the microbiota in BV positive samples.

Beta diversity

Principal Coordinates Analysis (PCoA) was plotted to offer multidimensional scaling that operates on dissimilarities or distances. We used the created phyloseq object to generate the PCoA plot since it is very convenient for displaying beta diversity among samples.

Figure 11. PCoA plot for beta diversity visualization

There was clustering observed. This is due to a positive correlation between high inflammation and positive BV.

PCoa plot

Rarefaction analysis

Rarefaction analysis revealed that the majority of rarefaction curves flattened. However, there are about six troublesome samples with very low sequencing depth.

Figure 12. Rarefaction curves

Rarefaction curve

Taxanomic diversity

Figure 13. Phylum abundance in relation to BV status across the samples

Phylum nice

The dominant phylum across the different samples regardless of the BV status is Fusobacteriota, while Bacteroidota is the second most dominant in BV positive samples.

Figure 14. Genus abundance in relation to BV status across the samples

Genus

There are different dominant genus according to the BV status, as shown above. Notably, lactobacillus is significantly reduced in the BV negative samples, in agreement with the literature.