-
Notifications
You must be signed in to change notification settings - Fork 0
/
Metric Spaces Notes.tex
1368 lines (1207 loc) · 76.6 KB
/
Metric Spaces Notes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[10pt]{article}
\usepackage[margin=0.6in]{geometry}
\usepackage{fancyhdr}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{tikz}
\usetikzlibrary{patterns}
\usetikzlibrary{calc}
\usetikzlibrary{shapes.geometric}
\usepackage{multicol}
\usepackage{enumitem}
\usepackage{mathrsfs}
\usepackage{graphicx}
\usepackage{hyperref}
\usepackage{multicol}
\usepackage{lipsum}
\pagestyle{fancy}
\title{Metric Spaces Notes}
\author{Henry Wise}
\date{October 2023}
\begin{document}
\maketitle
\tableofcontents
\begin{multicols}{3}
\begin{itemize}
\item Lecture 1: pages 2 - 5
\item Lecture 2: pages 6 - 8
\item Lecture 3: pages 9 - 11
\item Lecture 4: pages 12 - 14
\item Lecture 5: Pages 14 - 15
\item Lecture 6: Pages 15 - 18
\end{itemize}
\end{multicols}
\vspace*{\fill}
\section{suggested reading}
\begin{itemize}
\item \textbf{Metric Spaces (Springer Undergraduate Mathematics Series)}, Mícheál Ó Searcóid \cite{Book 1}
\item \textbf{Metric Sapces}, Satish \& Harkrishan \cite{Book 2}
\item \textbf{Guide to Analysis}, F. Mary Hart \cite{Book 3}
\item \textbf{How to think about Analysis}, Lara Alcock \cite{Book 4}
\item \textbf{Numbers Sequences \& Series}, Kieth E. Hirst \cite{Book 5}
\end{itemize}
\newpage
\section{Introduction to Metric Spaces}
\subsection{Whats a Metric?}
Start by using the model $\mathbb{R}^{2}$ wherein $(0,1)\subseteq\mathbb{R}$, we have that
\begin{align*}
\mathbb{R}^{2}=\{(x,y)|x,y\in\mathbb{R}\}
\end{align*}
Let's create a function called a ``Metric" with a symbol $d$. Where
\begin{align*}
d(\underline{x},\underline{y})=|\underline{x}-\underline{y}|,\,\,\,\,\underline{x},\underline{y}\in\mathbb{R}^{2}
\end{align*}
See that
\begin{center}
\begin{tikzpicture}[scale=4]
\draw[->](0,0)--(2,0);
\draw[->](0,0)--(0,1);
\draw[-](0.25,0.25)--(1.5,0.75);
\draw[fill, blue] (0.25,0.25) circle [radius=0.025];
\draw[fill, red] (1.5,0.75) circle [radius=0.025];
\node[above, scale=1.5] at (0.25,0.26) {$\underline{x}$};
\node[above, scale=1.5] at (1.5,0.76) {$\underline{y}$};
\node[above, scale=1.5] at (1,0.25) {$\sim d(\underline{x},\underline{y})$};
\end{tikzpicture}
\end{center}
where the essential properties of $d$ on $\mathbb{R}^{2}$ are as follows:
\begin{enumerate}
\item $d(\underline{x},\underline{y})\geq0$,
\item $d(\underline{x},\underline{y})=0\implies\underline{x}=\underline{y}$,
\item $d(\underline{x},\underline{y})=d(\underline{y},\underline{x})$,
\item The distance is the shortest distance between the 2 points. So $d(\underline{x},\underline{y})\leq d(\underline{x},\underline{z})+d(\underline{z},\underline{y})$.
\end{enumerate}
A metric $d$ is a distance function between two points in a space. There are lots of different types of metrics for all different kinds of spaces. The standard Metric or ``Euclidean Metric" for $\mathbb{R}$ is
\begin{align*}
d(x,y)=|x-y|.
\end{align*}
\subsection{Whats a Metric Space?}
The abstract definition of a metric space. Let $X$ be a non-empty set. A metric on $X$ is a function $d:X\times X\to[0,\infty)$ satisfying:
\begin{align*}
\textbf{M1)}&\,\,d(x,y)\geq0\\
\textbf{M2)}&\,\,d(x,y)=0\implies x=y\\
\textbf{M3)}&\,\,d(x,y)=d(y,x)\\
\textbf{M4)}&\,\,d(x,y)\leq d(x,z)+d(z,y)\text{ (triangle inequality)}\\
&\forall x,y,z\in X.
\end{align*}
The pair $(X,d)$ is the metric space of $X$ with a metric $d$. Note that $X$ is just a set, it needs an associated metric ``$d$" in order to become a metric space.
\subsubsection{Examples of Metric Spaces}
\begin{enumerate}
\item The trivial metric on a set. Take $X\neq\emptyset$, define the function $\delta:X\times X\to[0,\infty)$ by
\begin{equation*}
\delta(x,y)=
\begin{cases}
0 & \text{if $x=y$}\\
1 & \text{if $x\neq y$}
\end{cases}
\end{equation*}
To show it is a metric on $X$ we need only verify the axioms of a metric.
\begin{enumerate}
\item Take arbitrary $x,y,z\in X$, then $\delta(x,y)\in~\{0,1\}$ so \textbf{M1} holds.
\item Suppose $x=y$, then by definition $\delta(x,y)=0$. Furthermore if $x\neq y$ then $\delta(x,y)=1\neq0$ so \textbf{M2} holds.
\item Now take $x,y\in X$. If $x=y$ then $\delta(x,y)=0=\delta(y,x)$ and if $x\neq y$ then $\delta(x,y)=1=\delta(y,x)$ so $\delta(x,y)=\delta(y,x)$ so \textbf{M3} holds.
\end{enumerate}
All that's left now is to verify the triangle inequality (often the hardest part).
(d) Take $x,y,z\in X$. Then $\delta(x,y)\leq1$, $\delta(x,z)\leq1$ and $\delta(z,y)\leq1$. If $x=y$ then $\delta(x,y)=0\leq \delta(x,z)+\delta(z,y)$ as $\delta(x,z),\,\delta(z,y)\geq0$. If $x\neq y$ then $\delta(x,y)=1$. Now $z$ could equal $x$, but if it does then it cannot be equal to $y$ and $\delta(z,y)=1$. If $z=y$ then $z\neq x\implies\delta(x,z)=1$. In both, $\delta(x,y)=1\leq1=\delta(x,z)+\delta(z,y)$. All that is left is if $z\neq x,y$. So $\delta(x,z)+\delta(z,y)=2>1$. Therefore the triangle equality is conserved and \textbf{M4} holds.
Consider $\mathbb{R}$ equipped with the metric $\delta$. What real numbers lie in the set $\{x\in\mathbb{R}\,|\,\delta(x,0)<1\}$? In this event, 0 would be the only such element.
\begin{align*}
\{x\in\mathbb{R}\,|\,\delta(x,0)<1\}=\{0\}.
\end{align*}
What about the real numbers that lie in the set $\{x\in\mathbb{R}\,|\,\delta(x,0)\leq1\}$? Every single real number satisfies this set!
\begin{align*}
\{x\in\mathbb{R}\,|\,\delta(x,0)\leq1\}=\mathbb{R}
\end{align*}
\item The standard metric on $\mathbb{R}$. The metric $d:\mathbb{R}\times\mathbb{R}\to[0,\infty)$ where
\begin{align*}
d(x,y)=|x-y|.
\end{align*}
Which follows all the axioms of a metric
\begin{enumerate}
\item $d(x,y)\geq0$ by definition \textbf{(M1)}
\item If $x=y$ then $d(x,y)=|x-y|=0$. Furthermore if $d(x,y)=0$ then $|x-y|=0\implies x=y$. \textbf{(M2)}
\item $d(x,y)=|x-y|=|y-x|=d(y,x)$ \textbf{(M3)}
\item To show that $|x-y|=d(x,y)\leq d(x,z)+d(z,y)=|x-z|+|z-y|$. As we know that $d(x,y)\geq0$, $d(x,z)\geq0$ and $d(z,y)\geq0$. If $x=y$ then $d(x,y)=0\leq d(x,z)+d(z,y)$. If $x\neq y$ then we can have $z=x$, then $|x-y|=|x-x|+|x-y|=|x-y|$, or $z=y$ and $|x-y|=|x-y|+|y-y|$. If $z\neq x, y$ then we have $|x-z|+|z-y|\geq|x-z+z-y|=|x-y|$ by the \emph{triangle inequality}. So all cases are satisfied and the triangle inequality holds. \textbf{(M4)}
\end{enumerate}
\boxed{\text{Note: Unless otherwise stated, this is the metric used in a space. Hence it being ``standard".}}
\item Case study in $\mathbb{R}^{2}$. \emph{Used for the next few examples also!}
Three different metrics in $\mathbb{R}^{2}$:
\begin{enumerate}
\item $d_{1}:\mathbb{R}^{2}\times\mathbb{R}^{2}\to[0,\infty)$
\begin{align*}
d_{1}(x,y)=|x_{1}-y_{1}|+|x_{2}-y_{2}|
\end{align*}
\item $d_{2}:\mathbb{R}^{2}\times\mathbb{R}^{2}\to[0,\infty)$
\begin{align*}
d_{2}(x,y)=\sqrt{(x_{1}-y_{1})^{2}+(x_{2}-y_{2})^{2}}
\end{align*}
This is the standard metric in $\mathbb{R}^{2}$
\item $d_{\infty}:\mathbb{R}^{2}\times\mathbb{R}^{2}\to[0,\infty)$
\begin{align*}
d_{\infty}(x,y)=\max\{|x_{1}-y_{1}|,\,|x_{2}-y_{2}|\}
\end{align*}
\end{enumerate}
Throughout the above, we have that $x=(x_{1}, x_{2})$ and $y=(y_{1}, y_{2})$.
\begin{center}
\begin{tikzpicture}[scale=4]
\draw[->](0,0)--(2,0);
\draw[->](0,0)--(0,1);
\draw[-, violet](0.25,0.25)--(1.5,0.75);
\node[above, scale=1.5] at (0.25,0.26) {$x$};
\node[above, scale=1.5] at (1.5,0.76) {$y$};
\node[above, scale=1.3, violet] at (0.6,0.45) {$d_{2}(x,y)\sim$};
\draw[dotted](0.25,0)--(0.25,0.25);
\draw[dotted](0,0.25)--(0.25,0.25);
\draw[dotted](0,0.75)--(1.5,0.75);
\draw[dotted](1.5,0)--(1.5,0.75);
\node[below, scale=1.5] at (0.25,0) {$x_{1}$};
\node[left, scale=1.5] at (0,0.25) {$x_{2}$};
\node[below, scale=1.5] at (1.5,0) {$y_{1}$};
\node[left, scale=1.5] at (0,0.75) {$y_{2}$};
\draw[-, cyan, thick](0.25,0.25)--(1.5,0.25)--(1.5,0.75);
\node[above, scale=1.3, cyan] at (1.8,0.3) {$\sim d_{1}(x,y)$};
\draw[-, orange, thick](0.25,0.125)--(1.5,0.125);
\node[right, scale=1.3, orange] at (1.5,0.125) {$\sim d_{\infty}(x,y)$};
\draw[fill, blue] (0.25,0.25) circle [radius=0.025];
\draw[fill, red] (1.5,0.75) circle [radius=0.025];
\end{tikzpicture}
\end{center}
\end{enumerate}
\subsubsection{What is a Unit Circle?}
Consider what the ``Unit Circle" would look like in $(\mathbb{R}^{2}, d_{1})$, $(\mathbb{R}^{2}, d_{2})$ and $(\mathbb{R}^{2}, d_{\infty})$. That is $S_{i}^{1}$ where $i=1,2,\infty$ or $S_{i}^{1}=\{x\in\mathbb{R}\,|\,d_{i}(x,0)=1\}$:
\begin{itemize}
\item $S_{2}^{1}$:
\begin{multicols}{2}
\begin{tikzpicture}[scale=2]
\draw[->](-1.5,0)--(1.5,0);
\draw[->](0,-1.5)--(0,1.5);
\draw[-] (0,0) circle [radius=1];
\end{tikzpicture}
\begin{align*}
S_{2}^{1}=\{x\in\mathbb{R}\,|\,d_{2}(x,0)=1\}=\{x\in\mathbb{R}:\sqrt{x_{1}^{2}+x_{2}^{2}}=1\}
\end{align*}
The Unit circle in $S_{1}^{1}$ is exactly what you would expect a Unit circle to look like. Constant radius all around. This is because we're using the standard metric, which is one that we've been using for most of our academic career (Up till now of course). Note that this is called a circle, not a ball! This is important later.
\end{multicols}
\item $S_{\infty}^{1}$:
\begin{multicols}{2}
\begin{tikzpicture}[scale=2]
\draw[->](-1.5,0)--(1.5,0);
\draw[->](0,-1.5)--(0,1.5);
\draw[-](1,1)--(1,-1)--(-1,-1)--(-1,1)--(1,1);
\end{tikzpicture}
\begin{align*}
S_{\infty}^{1}=\{x\in\mathbb{R}\,|\,d_{\infty}(x,0)=1\}=\{x\in\mathbb{R}:\max\{|x_{1}|,|x_{2}|\}=1\}
\end{align*}
Suppose $x=(x_{1},1)$, then
\begin{align*}
d_{\infty}(x,0)&=\max\{|x_{1}-0|,\,|1-0|\}\\
&=\max\{|x_{1}|,1\}\\
&=1 \text{ if } -1\leq x_{1}\leq1
\end{align*}
This is also consistent for $x_{2}$ and is how we end up with the square shape.
\end{multicols}
\item $S_{1}^{1}$:
\begin{multicols}{2}
\begin{tikzpicture}[scale=2]
\draw[->](-1.5,0)--(1.5,0);
\draw[->](0,-1.5)--(0,1.5);
\draw[-](0,1)--(1,0)--(0,-1)--(-1,0)--(0,1);
\end{tikzpicture}
\begin{align*}
S_{1}^{1}=\{x\in\mathbb{R}\,|\,d_{1}(x,0)=1\}=\{x\in\mathbb{R}:|x_{1}|+|x_{2}|=1\}
\end{align*}
For $d_{1}(x,0)=1$ where $x=(x_{1}, x_{2})$ we need $1=x_{1}+y$ which implies that $y=1-x_{1}$ where $y$ is the absolute value.
A good way to think about how this shape occurs would be to see what values $x_{1}$ and $x_{2}$ need to take in order for the rules of the set $S_{1}^{1}$ to be satisfied.
For example:
\begin{align*}
d(x,0)&=1\\
\implies|x_{1}|+|x_{2}|&=1
\end{align*}
so if $x_{1}=1$ or $-1$, then $x_{2}=0$. And visa versa! This is where the term above arises. The equation $y=1-x_{1}$ is just another way of showing $|x_{2}|=1-|x_{1 }|$
\end{multicols}
\end{itemize}
\newpage
\subsubsection{Real n-dimensional Metric}
While still using the three example metrics from before, consider $(\mathbb{R}^{n}, d_{1})$, $(\mathbb{R}^{n}, d_{2})$ and $(\mathbb{R}^{n}, d_{\infty})$ where $n\in\mathbb{N}\setminus\{1\}$.
So
\begin{align*}
d_{1}(x,y)&=\sum^{n}_{i=1}|x_{i}-y_{i}|,\\
(\star)\,d_{2}(x,y)&=\sqrt{\sum^{n}_{i=1}(x_{i}-y_{i})^{2}}
\end{align*}
($\star$) Standard or Euclidean metric on $\mathbb{R}^{n}$
\subsubsection{Proof of a real n-dimensional metric space}
For this we prove $(\mathbb{R}^{n}, d_{2})$ is a metric space.
\begin{itemize}
\item[\textbf{M1)}] Take $x,y\in\mathbb{R}^{n}$ then $d(x,y)\geq0$ as $\sum^{n}_{i=1}(x_{i}-y_{i})^{2}\in[0,\infty)\therefore$ has a real square root.
So $\sqrt{\sum^{n}_{i=1}(x_{i}-y_{i})^{2}}\geq0$ as $\sqrt{\empty}$ is assumed to be positive.
\item[\textbf{M2)}] If $x=y$ then $x_{i}=y_{i}$ for $i=1,2,\dots,n$. So $x_{i}-y_{i}=0$ \& $(x_{i}-y_{i})^{2}=0$
It follows then that $\sum^{n}_{i=1}(x_{i}-y_{i})^{2}=0$ \& $\sqrt{0}=0$.
If $d_{2}(x,y=0)$ then $\sqrt{\sum^{n}_{i=1}(x_{i}-y_{i})^{2}}=0$ so $\sum^{n}_{i=1}(x_{i}-y_{i})^{2}=0$ \& $(x_{i}-y_{i})^{2}\geq0$ $\forall i\in\{1,2,\dots,n\}$
$\therefore (x_{i}-y_{i})^{2}=0$ $\therefore x_{i}=y_{i}\,\forall i\in\{1,2,\dots,n\}$ Hence $x=y$.
\item[\textbf{M3)}] Symmetry
Take $x,y\in\mathbb{R}^{2}$ then $d_{2}(x,y)=\sqrt{\sum^{n}_{i=1}(x_{i}-y_{i})^{2}}=\sqrt{\sum^{n}_{i=1}(-1)^{2}(y_{i}-x_{i})^{2}}=\sqrt{\sum^{n}_{i=1}(y_{i}-x_{i})^{2}}=d_{2}(y,x)$
\item[\textbf{M4)}] The triangle inequality
Take $x,y\in\mathbb{R}^{2}$. Consider $d_{2}(x,z)+d_{2}(z,y)=\sqrt{\sum^{n}_{i=1}(x_{i}-z_{i})^{2}}+\sqrt{\sum^{n}_{i=1}(z_{i}-y_{i})^{2}}$
let $r_{i}=|x_{i}-z_{i}|$ and $s_{i}=|y_{i}-z_{i}|$
So $d_{2}(x,z)+d_{2}(z,y)=\sqrt{\sum^{n}_{i=1}r_{i}^{2}}+\sqrt{\sum^{n}_{i=1}s_{i}^{2}}$
We now apply a result due to \emph{Hermann. Minkowski}, which allows us to deduce:
$d_{2}(x,z)+d_{2}(z,y)=\sqrt{\sum^{n}_{i=1}r_{i}^{2}}+\sqrt{\sum^{n}_{i=1}s_{i}^{2}}\geq\sqrt{\sum^{n}_{i=1}(r_{i}+s_{i})^{2}}$
But $r_{i}+s_{i}=|x_{i}-z_{i}|+|z_{i}-y_{i}|\geq|x_{i}-z_{i}+z_{i}-y_{i}|=|x_{i}-y_{i}|$
And so $d_{2}(x,z)+d_{2}(z,y)\geq\sqrt{\sum^{n}_{i=1}(x_{i}-y_{i})^{2}}=d_{2}(x,y)$.
So $d_{2}(x,y)\leq d_{2}(x,z)+d_{2}(z,y)$.
\end{itemize}
\newpage
\section{Functions and Analysis of Metric Spaces}
Remember real-analysis?
\subsection{The Real Analysis: Infima \& Suprema}
Consider $I=[0,1]$, $[0,1)$, $(0,1)$. Where $[0,1]=\{t:0\leq t\leq1\}$, $[0,1)=\{t:0\leq t<1\}$ and $(0,1)=\{t:0<t<1\}$.
Take $S\subseteq\mathbb{R}$. Then $S$ is bounded above $\iff\exists M\in\mathbb{R}$ such that $x\leq M\, \forall x\in S$
\begin{center}
\begin{tikzpicture}[scale=2.5]
\draw[-](0,0)--(4,0);
\draw[dashed](3,-0.5)--(3,0.5);
\node[right, scale=1.3] at (4,0){$\mathbb{R}$};
\node[below] at (3,-0.5){$M$};
\draw[fill] (0.1,-0.05) rectangle (0.7,0.05);
\draw[fill] (1,-0.05) rectangle (1.3,0.05);
\draw[fill] (1.4,-0.05) rectangle (1.6,0.05);
\draw[fill] (1.7,-0.05) rectangle (2,0.05);
\draw[fill] (2.4,-0.05) rectangle (2.6,0.05);
\end{tikzpicture}
\end{center}
If $S$ is bounded above by $M$, then any $M'>M$ is also an upper bound. The Supremum of $S$, $\sup{S}$, is the least (or smallest) upper bound for $S$. But what does ``least" imply? If we take $\varepsilon>0$ then $\sup{(S)}-\varepsilon$ is not an upper bound.\footnote{Note: $\varepsilon+\varepsilon=\varepsilon$. ``Small plus small is small" - Jason} This means $\exists x\in S$ such that $\sup{(S)}-\varepsilon<x$.
\begin{quote}
Take $S=(0,1)$ then $\sup{(S)}=1$ as there is an $x\in(0,1)$ between $\sup(S)-\varepsilon$ \& 1. For example, take $1-\frac{\varepsilon}{2}$.
\end{quote}
\begin{itemize}
\item[Fact:] There is no reason to assume $\sup(S)\in S$, if however $\sup(S)\in S$ then we say $S$ has a maximal element, denoted $\max(S)$. If $S$ has no upper bound $\exists x\in S$ for which $x>M$ for any choice of $M$ then we define $\sup(S)=\infty$.
\end{itemize}
The set $S$ is bounded below if $\exists m\in\mathbb{R}$ such that $m\leq x\,\forall x\in S$. The Infimum of $S$, $\inf{(S)}$ is the largest lower bound for $S$. Again, there is no reason for $\inf{(S)}\in S$, but if $\inf{(S)}\in S$ then $S$ has a minimum element denoted by $\min{(S)}$. If no lower bound exists then $\inf{(S)}=-\infty$.
\begin{quote}
Take the empty set $\emptyset$; $\sup(\emptyset)=-\infty$ (The smallest upper bound) \& $\inf(\emptyset)=\infty$ (The largest lower bound). The empty set is the only case wherein the supremum is less than the infimum.
\end{quote}
But why should sup or inf even exist? The reason is that $\mathbb{R}$ has a property called completeness. $\mathbb{R}$ is complete and it satisfies the so-called completeness axiom, which states that any bounded above set in $\mathbb{R}$ which is non-empty \underline{has} a supremum. This might be the case in other settings,
\begin{quote}
Take $x=\mathbb{Q}$ the rational numbers. We can construct a sequence of rationals $\frac{p_{n}}{q_{n}}$ such that $(\frac{p_{n}}{q_{n}})^{2}\to2$ as $n\to\infty$. Thus $\{\frac{p_{n}}{q_{n}}:n\in\mathbb{N}\}$ and 2 is an upper bound, but it has no supremum in $\mathbb{Q}$. This is because there is no rational number representation of $2^{1/2}$ or $\sqrt{2}$.
\end{quote}
If you're confident with these ideas then you will find some of the later proofs easier to understand. If not, I would recommend you try a book by Alcock L. \textbf{How to Think about Analysis}\cite{Book 4}
\subsection{Sets of sequences \& Function Spaces}
\subsubsection{Sets of sequences}
We already know that $\mathbb{R}^{n}$ is a finite-dimensional object, but what about $\mathbb{R}^{\mathbb{N}}$ (The set of all sequences of real numbers)? If $x\in\mathbb{R}^{\mathbb{N}}$ then $x=(x_{1}, x_{2}, x_{3}, \dots, x_{n}, \dots)$. We can't immediately use variants of $d_{1}$, $d_{2}$ or $d_{\infty}$. Why? As an example of exactly why, let's try to apply $d_{1}(x,0)$:
\begin{equation*}
d_{1}(x,0)=d\Big{(}(x_{1},x_{2},\dots),(0,0,\dots)\Big{)}=\sum^{\infty}_{i=1}|x_{i}-0|=\sum^{\infty}_{i=1}|x_{i}|=\infty?
\end{equation*}
There are many sequences where the evaluation of this metric is infinite, which doesn't work for us. We need the value to be a non-negative real number.
\begin{quote}
$l_{1}$ is the set of all sequences of real numbers that satisfy $\sum^{\infty}_{n=1}|x_{i}|<\infty\,(\star)$. Take $x=(1,\frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{2^{n}}, \dots)$, then $x\in l_{1}$, but if $y=(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots)$ then $\sum^{\infty}_{n=1}|x_{n}|=\sum^{\infty}_{n=1}\frac{1}{n}=+\infty$. So $l_{1}$ is the set of all sequences satisfying $(\star)$ \& $d_{1}(x,y)=\sum^{\infty}_{n=1}|x_{n}-y_{n}|$ is the metric.
\end{quote}
The first example of an infinite-dimensional vector space with a metric on it (A big space).
\begin{quote}
$l_{\infty}$ is the set of all bounded sequences of real numbers; $x\in l_{\infty}\iff\exists M=M(x)>0$ such that $|x_{n}|\leq M \forall n\in\mathbb{N}$, then $d_{\infty}(x,y)=\sup\{|x_{i}-y_{i}|:i\in\mathbb{N}\}$. Note that $x-y=(x_{1}-y_{1}, x_{2}-y_{2}, \dots)\in l_{\infty}$.
\end{quote}
\subsubsection{Function Spaces}
Ideally, we would be able to apply all our theory thus far to $F(X, Y)$, the set of all functions from the set $X$ to $Y$. Look at $C([0,1])$ \& $B([0,1])$ where $C([0,1])$ is the set of all continuous functions $f:[0,1]\to\mathbb{R}$ \& $B([0,1])$ is the set of all bounded\footnote{Bounded $\implies\exists M>0$ such that $|f(x)|<M \forall x\in[0,1]$} functions $f:[0,1]\to\mathbb{R}$. Let's try to draw a couple of functions:
\begin{multicols}{2}
\begin{tikzpicture}
\draw[-](0,0)--(8,0);
\draw[-](0,-1)--(0,3);
\draw[-](0,1.8) .. controls (0.2,2.5) and (0.6,2.5) .. (0.8,1.8)--(0.8,1.8) .. controls (1,1.2) and (1.45,1) .. (
1.5,1.8)--(
1.5,1.8) .. controls (1.6,3) and (2.8,3) .. (2.85,1.8)--(2.85,1.8) .. controls (2.9,-1) and (3.8,-1) .. (4.1,-0.9)--(4.1,-0.9) .. controls (4.6,-0.7) and (4.4,-0.1) .. (4.6,-0.1)--(4.6,-0.1) parabola (4.7,-0.2)--(4.7,-0.2) .. controls (4.8,-0.39) and (4.9,-0.2) .. (5,1)--(5,1) .. controls (5.2,3) and (6.8,3) .. (7,1)--(7,1) .. controls (7.1,-0.5) and (7.5,-1) .. (8,-0.5);
\draw[dotted](8,3)--(8,-1);
\node[below] at (0,-1) {$0$};
\node[below] at (8,-1) {$1$};
\end{tikzpicture}
\begin{tikzpicture}
\draw[-](0,0)--(8,0);
\draw[-](0,-1)--(0,3);
\draw[-](0,0) parabola (2,2)--(2,2) .. controls (2.789,3.5) and (3.8,2.5) .. (4,2)--(4,2) .. controls (4.8,0.6) and (6.8,1) .. (8,3);
\draw[dotted](8,3)--(8,-1);
\node[below] at (0,-1) {$0$};
\node[below] at (8,-1) {$1$};
\end{tikzpicture}
\end{multicols}
\begin{multicols}{2}
\begin{tikzpicture}
\draw[-](0,0)--(8,0);
\draw[-](0,-1)--(0,3);
\draw[dotted](8,3)--(8,-1);
\draw[-](0,0)--(4,3)--(8,0);
\node[below] at (0,-1) {$0$};
\node[below] at (8,-1) {$1$};
\end{tikzpicture}
\begin{tikzpicture}
\draw[-](0,0)--(8,0);
\draw[-](0,-1)--(0,3);
\draw[-](4,1) circle [radius=0.1];
\draw[fill](4,2) circle [radius=0.1];
\draw[-](0,1)--(3.9,1);
\draw[-](4,2)--(8,2);
\draw[dotted](8,3)--(8,-1);
\node[below] at (0,-1) {$0$};
\node[below] at (8,-1) {$1$};
\node[below] at (4,-0.5){$\notin C([0,1])$, but $\in B([0,1])$};
\end{tikzpicture}
\end{multicols}
\begin{equation*}
f[0,1]\to\mathbb{R},\,t\to
\begin{cases}
1 &\text{if $t\in\mathbb{Q}$}\\
0 &\text{if $t\notin\mathbb{Q}$}
\end{cases}
\end{equation*}
In this case, with this particular function seen in the bottom right $f\notin C([0,1])\text{ however }f\in B([0,1])$. We want to be able to put a metric on these functions. We'll start with bounded functions and we'll try the sup metric across $d_{\infty}: B([0,1])\times B([0,1])\to[0,\infty)$ where $d_{\infty}(f,g)=\sup\{|f(t)-g(t)|:t\in[0,1]\}$.
\begin{quote}
For example: Take $f:[0,1]\to\mathbb{R}$ such that $f(t)=1$ \& take $g:[0,1]\to\mathbb{R}$ such that $g(t)=t$,
\begin{align*}
d_{\infty}(f,g)&=\sup\{|f(t)-g(t)|\}\\
&=\sup\{|1-g(t)|\}\\
&=\sup\{1-g(t)\}\\
&=1
\end{align*}
The pair $\Big{(}B([0,1]),d_{\infty}\Big{)}$ is a metric space. This is a function space. And it can be verified using the axioms of a metric space.
\begin{enumerate}
\item[\textbf{M1)}] $f,g$ are bounded functions with domain $[0,1]$ and co-domain $\mathbb{R}$. So $f-g$ which is the function $f-g:[0,1]\to\mathbb{R};t\to f(t)-g(t)$ and is bounded. Here, $d_{\infty}(f,g)=\sup\{\underbrace{|f(t)-g(t)|}_{\geq0}\}\leq M$ so $d_{\infty}(f,g)\geq0$ $\forall f, g$.
\item[\textbf{M2)}] If $f=g$ then $f(t)=g(t)$ $\forall t\in[0,1]$, so $f(t)-g(t)=0$ $\forall t\in[0,1]$ thus $|f(t)-g(t)|=0$ $\forall t\in[0,1]$ and $\sup\{0\}=0.$ If $d_{\infty}(f,g)=0\implies\sup\{|f(t)-g(t)|\}=0$ so $|f(t)-g(t)|\leq0$ $\forall t\in[0,1]$ But $|f(t)-g(t)|\geq0$ so $|f(t)-g(t)|=0$. Thus $f=g$.
\item[\textbf{M3)}] Look at $d_{\infty}(f,g)=\sup\{|f(t)-g(t)|:t\in[0,1]\}=\sup\{|g(t)-f(t)|:t\in[0,1]\}=d_{\infty}(g,f)$
\item[\textbf{M4)}] Take $f,g,h\in B([0,1])$, then
\begin{align*}
d_{\infty}(f,g)&=\sup\{|f(t)-g(t)|:t\in[0,1]\}\\
&=\sup\{|f(t)-h(t)+h(t)-g(t)|:t\in[0,1]\}\\
\text{(triangle inequality) }&\leq\sup\{|f(t)-h(t)|+|h(t)-g(t)|:t\in[0,1]\}\\
\text{(A property of sup)}&\leq\sup\{|f(t)-h(t)|:t\in[0,1]\}+\sup\{|h(t)-g(t)|:t\in[0,1]\}\\
&=d_{\infty}(f,h)+d_{\infty}(h,g).
\end{align*}
\end{enumerate}
\end{quote}
\newpage
\section{Vector Spaces and the New Norm}
In all the examples we have considered thus far, the metric $d$ has involved a term of the form $|b-a|$ in some form. ie: Standard metric on $\mathbb{R}$:
\begin{align*}
d_{2}(x,y)=\sqrt{\sum^{n}_{i=1}\underbrace{(x_{i}-y_{i})^{2}}_{|x_{i}-y_{i}|^{2}}}
\end{align*}
In general, a metric space need not support any algebraic structure. The definition of $d$ on $X\neq\emptyset$ makes no mention of any such structure.
\subsection{Hamming Distance}
Take a finite set $A$, say $\{\omega_{1},\omega_{2},\dots,\omega_{n}\}$, called an alphabet \& $A(N)$ is the set of all strings of length $N$. ``string": $\omega^{(1)}, \omega^{(2)}, \omega^{(3)},\dots,\omega^{(n)}$. For example: $A=\{0,1\}$, $A(3)=\{000, 001, 010, 011, 100, 101, 110, 111\}$. The Hamming distance $H:A(3)\to[0,\infty)$ is defined to be the number of places where string $x$ differs from string $y$. $H(010,110)=1$.
\subsection{Vector Spaces}
Recall $\mathbb{R}^{2}$
\begin{multicols}{2}
So a vector space is basically a non-empty set $V$ of elements that we call vectors which satisfy: $\mu\underline{u}+\lambda\underline{v}\in V$ if $\underbrace{\underline{u}, \underline{v}}_{\text{Vectors}}\in V$ \& $\underbrace{\mu, \lambda}_{\text{Scalars}}\in\underbrace{\mathbb{R}\,(\text{ or } \mathbb{C})}_{\text{Scalar Field}}$.
Abstracts $a-b$:
\begin{align*}
\underline{u}-\underline{v}=\underline{u}+(-1)\underline{v}
\end{align*}
But we're missing the abstraction of the absolute value. The vector space version, $||\cdot||$ is called a norm.
\begin{tikzpicture}[scale=1.2]
\draw[->](0,0)--(3,0);
\draw[->](0,0)--(0,3);
\draw[->, blue, thick](0,0)--(1,2);
\draw[->, red, thick](0,0)--(2,1);
\draw[->, red, thick](1,2)--(3,3);
\draw[->, blue, thick](2,1)--(3,3);
\draw[->, violet, thick](0,0)--(3,3);
\end{tikzpicture}
\end{multicols}
\subsection{The Norm}
The definition of norm:
\begin{align*}
||\cdot||:V\to[0,\infty)
\end{align*}
\begin{enumerate}[label=\textbf{N\arabic*})]
\item $||\underline{v}||\geq0$ \& $||\underline{v}||=0\iff\underline{v}=0$
\item $||\Lambda\underline{v}||=|\lambda|\cdot||\underline{v}||$ where $\lambda\in\mathbb{R}$
\item $||\underline{u}+\underline{v}||\leq||\underline{u}||+||\underline{v}||$ where $\underline{u}, \underline{v}\in V$
\end{enumerate}
We call a vector space with a norm $||\cdot||$ a normed space. All normed spaces have a natural metric; called the metric induced by the norm \& $d:V\times V\to[0,\infty);(\underline{u}, underline{v})\mapsto||\underline{u}-\underline{v}||=||\underline{u}+(-1)\underline{v}||$.
\begin{quote}
For example: The vector $\rightarrow$ normed spaces $\rightarrow$ metric. Chain.
\end{quote}
Look at $C([0,1])$ the set of all continuous functions on the closed and bounded set $[0,1]$. $C([0,1])$ is a vector space. $f:[0,1]\to\mathbb{R}$ and $g:[0,1]\to\mathbb{R}$ are vectors because $f+g$ is continuous. $f+g:[0,1]\to\mathbb{R};t\mapsto f(t)+g(t)$. Take $\lambda\in\mathbb{R}$, a scalar, then $\lambda f:[0,1]\to\mathbb{R}$ where $t\mapsto \lambda\cdot f(t)$ is continuous. But can we put norms on $C([0,1])$? Yes, yes we can.
$\mathbb{R}^{2}\sim d_{1}$, $d_{2}$, $d_{\infty}$:
\begin{align*}
d_{1}(x,y)&=\sum^{n}_{i=1}|x_{i}-y_{i}|\\
d_{2}(x,y)&=\sqrt{\sum^{n}_{i=1}|x_{i}-y_{i}|^{2}}\\
d_{\infty}(x,y)&=\max\{|x_{i}-y_{i}|:i=1,2\}
\end{align*}
Construct 3 norms $||\cdot||_{1}$, $||\cdot||_{2}$ and $||\cdot||_{\infty}$ which will induce analogues of $d_{1}$, $d_{2}$ and $d_{\infty}$.
\begin{align*}
||f||_{1}&:=\int^{1}_{0}|f(t)|\,dt\\
||f||_{2}&:=\Big{(}\int^{1}_{0}|f(t)|^{2}\Big{)}^{1/2}\\
||f||_{\infty}&:=\sup\{|f(t)|:t\in[0,1]\}
\end{align*}
For example: Verify $||\cdot||_{1}$, $||\cdot||_{2}$ and $||\cdot||_{\infty}$ are norms.
Our corresponding induced metrics:
\begin{align*}
d_{1}(f,g)&=||f-g||_{1} & d_{2}&=||f-g||_{2}
\end{align*}
Example: Calculate the distance between $f(t)=t$ and $g(t)=t^{2}$ in $d_{2}$:
\begin{multicols}{2}
\begin{align*}
d_{2}^{2}(f,g)&=\int_{0}^{1}|t^{2}-t|^{2}\,dt\\
&=\int_{0}^{1}(t-t^{2})^{2}\,dt\\
&=\int^{1}_{0}(t^{2}-2t^{3}+t^{4})\,dt\\
&=\bigg{[}\frac{1}{3}t^{3}-\frac{1}{2}t^{4}+\frac{1}{5}t^{5}\bigg{]}_{0}^{1}\\
&=\frac{1}{3}-\frac{1}{2}+\frac{1}{5}\\
&=\frac{1}{30}
\end{align*}
\begin{tikzpicture}[scale=5]
\draw[->](-0.1,0)--(1.2,0);
\draw[->](0,-0.1)--(0,1);
\draw[-](0,0)--(1,1);
\draw[-](0,0) parabola (1,1);
\draw[dotted](1,-0.1)--(1,1);
\node[below] at (0,-0.1){$0$};
\node[below] at (1,-0.1){$1$};
\node[left] at (0.45,0.5){$f\,\to$};
\node[right] at (0.6, 0.3){$\leftarrow\,g$};
\end{tikzpicture}
\end{multicols}
so $d_{2}(f,g)=\frac{1}{\sqrt{30}}$.
\begin{quote}
Just to go over some of what we've done, we've defined metrics over $\mathbb{R}^{2}$, namely $d_{1}$, $d_{2}$ and $d_{\infty}$. We've defined metrics over $\mathbb{R}^{n}$. We've looked at the set of all sequences $\mathbb{R}^{\mathbb{N}}=\{(a_{1}, a_{2}, \dots, a_{n}, \dots)\,|\,n\in\mathbb{N}\}$ and how we could put on metrics (We'd need to impose extra restrictions!). We've got $C([0,1])$ along with our three metrics via our norm functions. If we wanted to, we could replace the closed interval $[0,1]$ with a closed interval $[a,b]$ as long as $-\infty<a<b<\infty$ and we can replace our $\mathbb{R}\in C([0,1])$ with $\mathbb{C}$, that is $f:[0,1]\to\mathbb{C}$ and abstract our definitions to cover complex functions!
\end{quote}
\newpage
\section{Sub-spaces \& Isometry}
\subsection{Sub-spaces}
let $A\neq\emptyset$ be a subset of a metric space $X$. We can consider $A$ to be a metric space by restricting $d$ to $A$. What does this mean?
\begin{center}
\begin{tikzpicture}[scale=1]
\draw plot[smooth cycle, tension=0.8, scale=1.1] coordinates {(2,2) (1.5,0) (2,-2) (0,-1.5) (-2,-2) (-1.5,0) (-2,2) (0,1.5)};
\draw plot[smooth, tension=0.5] coordinates {(0,1.3) (-0.2,1) (-0.9,-0.7) (0,-0.2) (0.9,-0.7) (0.2,1) (0,1.3)};
\draw (0,0.5) circle [radius=0.25];
\node[right] at (2.5,2){$d:X\times X\to[0,1]$};
\node[below] at (0,-1.7){$(A, d|_{A})$};
\node[below] at (3.9,1.7){Restrict $d$ to $A$, $d|_{A}$};
\end{tikzpicture}
\end{center}
$d|_{A}$ is way of evaluating $d$ only using points from $A$. It's what we refer to as a restriction.
Take $(\mathbb{R},d)$ and take the subset $[0,1]$. Consider $\Lambda=\{x\in\mathbb{R}:d(x,1)<\frac{1}{2}\}$, consider the set of points $x$ lying in the subspace $[0,1]$ which are within $(1/2)$ of $1$.
\begin{align*}
\bigg{\{}x\in A:d(x,1)<\frac{1}{2}\bigg{\}}=\bigg{(}\frac{1}{2},1\bigg{]}
\end{align*}
Now $(\mathbb{R}^{2}, d_{2})$ \& consider the subset $S^{1}=\{(x,y)\in\mathbb{R}:(x^{2}+y^{2})=1\}$:
\begin{multicols}{2}
\begin{tikzpicture}[scale=2]
\draw[-](0,-1.5)--(0,1.5);
\draw[-](-1.5,0)--(1.5,0);
\draw[-](0,0) circle [radius=1];
\draw[-,dotted](0,1) circle [radius=0.3];
\draw[pattern color=red, pattern=north east lines](0,1) circle [radius=0.3];
\node[right] at (1.1,1.1){$S^{1}$};
\end{tikzpicture}
\begin{tikzpicture}[scale=2]
\draw[-](0,-1.5)--(0,1.5);
\draw[-](-1.5,0)--(1.5,0);
\draw[-](0,0) circle [radius=1];
\draw[-,dotted](0,1) circle [radius=0.3];
\node[right] at (1.1,1.1){$S^{1}$};
\draw[line width=0.1cm, red](0.296605799,0.955) arc [start angle=72.74614688, delta angle=34.5070624, radius=1];
\end{tikzpicture}
\end{multicols}
If we restrict the area of the small circle to the big circle set or $d|_{\text{Big circle}}$, it becomes the arc shown in the second image.
%\draw[-](0,0)--(0,1);
%\draw[-](0,0)--(1,0);
\subsection{\& Isometry}
Question: When is $(X,d)$ the `same' as $(X,\hat{d})$? It depends on our definition of `same'. Perhaps when `same' is an Isometry, it is most rigid.
\begin{quote}
Let $(X,d)$ be a metric space \& let $A\subseteq Y$ where $Y$ is a metric space $(Y,\hat{d})$. We say $X$ is isometric to $A$ if $\exists\psi:X\to A$ which is surjective \& $(\star)\,\hat{d}(\psi(a), \psi(b))=d(a,b)\,\forall a,b\in X$ upshot $\psi(X)$ is a subspace of $(Y,\hat{d})$. We say that $X$ and $Y$ are isometric if $\psi(X)=Y$ and $(\star)$ holds.
\end{quote}
The map $\psi$ is an isometry. For example: $\psi:\mathbb{R}\to\mathbb{C};\,t\mapsto t+0i$. $\mathbb{C}$ is a metric space. The standard metric we can put on it is the Euclidean metric so $(\mathbb{C}, |\cdot|)$. $\psi^{*}:\mathbb{R}\to\mathbb{C}\,;t\mapsto t_{2}$ (maps onto the $y$-axis) is also an isometry. $\mathbb{R}^{2}$ is isometric to $\mathbb{C}$. Why? $\psi:\mathbb{R}\to\mathbb{C};\,(x,y)\mapsto x+iy$. Verify the distance $|(x+iy)-(x'-iy')|=|(x-x')+i(y-y')|=\sqrt{(x-x')^{2}+(y-y')^{2}}=|(x,y)-(x',y')|$. So as metric spaces, these two sets are the same as all the metric cares about is the distance.
\newpage
\section{The (Basic) Geometry of Metric Spaces}
\subsection{Interior, Exterior and Boundaries}
Note: We can write the sets $(0,1)=\{x\in\mathbb{R}:|x-\frac{1}{2}|<\frac{1}{2}\}$ and $(a,b)=\{x\in\mathbb{R}:|x-\frac{a+b}{2}|<\frac{1}{2}\}$. Consider the open \& closed interval in $\mathbb{R}$:
\begin{align*}
(0,1)&=\{x\in\mathbb{R}:0<x<1\} & [0,1]&=\{y\in\mathbb{R}:0\leq y\leq1\}
\end{align*}
Let $(X,d)$ be a metric space. Then for any $x\in X$ and $r\in(a,b)$ the open ball centered at $x$ of radius $r$ which is denoted by $B(x,r)$ is the set $B(x,r)=\{y\in X:d(y,x)\leq r\}$. Analogue of $(a,b)\subset\mathbb{R}$:
\begin{align*}
\text{Take }[a,b]&=\{t\in\mathbb{R}:a\leq t\leq b\},\\
\text{then }[a,b]&=\bigg{\{}t\in\mathbb{R}:d\Big{(}t,\frac{a+b}{2}\Big{)}\leq\frac{b-a}{2}\bigg{\}}.
\end{align*}
let $(X,d)$ be a metric space \& $x\in X$, $r\in(0,\infty)$. The closed ball centered $x$ of radius $r$, $B(x,r)$ is the set: \begin{equation*}\bar{B}(x,r)=\{y\in X:d(y,x)\leq r\}\end{equation*}
But why do we care about $B(x,r)$ \& $\bar{B}(y,s)$? Think about the role that $(a,b)$ plays in analysis; Consider the continuous function $f$ at $x_{0}$;
\begin{quote}
$f:\mathbb{R}\to\mathbb{R}$ is continuous at $x_{0}\in\mathbb{R}\iff\forall\varepsilon>0,\,\,\exists\delta>0$ such that $|f(x)-f(x_{0})|<\epsilon$ whenever $|x-x_{0}|<\delta$. $-\delta<x-x_{0}<\delta\iff x_{0}-\delta<x<x_{0}+\delta\iff x\in B(x_{0},\delta)$.
\end{quote}
What is the difference geometrically?
\begin{center}
\begin{tikzpicture}[scale=3]
\draw[-](-1,0.5)--(1,0.5);
\draw[-](-1,0)--(1.5,0);
\draw[fill, white] (-0.67,0.5) circle [radius=0.05];
\draw[fill, white] (0.67,0.5) circle [radius=0.05];
\draw[fill] (-0.67,0) circle [radius=0.05];
\draw[fill] (0.67,0) circle [radius=0.05];
\draw[-] (-0.67,0.5) circle [radius=0.05];
\draw[-] (0.67,0.5) circle [radius=0.05];
\node[left, scale=2] at (-0.55,0){[};
\node[right, scale=2] at (0.55,0){]};
\draw[fill](-0.62,0.475) rectangle (0.62,0.525);
\node[below] at (-0.67,-0.2){$0$};
\node[below] at (0.67,-0.2){$1$};
\node[right] at (0.7,0){)};
\node[right] at (0.5,0){(};
\draw[-, fill] (1.2,0) circle [radius=0.025];
\node[right] at (1.2,0){)};
\node[left] at (1.2,0){(};
\node[right, scale=2] at (-0.1,0.5){\textbf{)}};
\node[left, scale=2] at (-0.1,0.5){\textbf{(}};
\node[right] at (1.4,0.7){Interior Point};
\node[right] at (1.4,0.5){Boundary Point};
\node[right] at (1.4,0.3){Exterior Point};
\draw[|->](1.4,0.7)--(0,0.7)--(-0.1,0.6);
\draw[|->](1.4,0.5)--(1.2,0.5)--(0.8,0.1);
\draw[|->](1.4,0.3)--(1.3,0.3)--(1.2,0.1);
\node[left] at (-1,0.5){$(0,1)$};
\node[left] at (-1,0){$[0,1]$};
\end{tikzpicture}
\end{center}
\begin{quote}
After taking a small enough interval around $x$, where $x\in(0,1)$, it always stays inside the set. If we set $x=1$ then for any interval of any length, it hits outside of the set. This is important when defining these points.
\end{quote}
\begin{itemize}
\item\textbf{Interior Points}: let $A\subset X$. An interior point $y\in X$ of $A$ is an element which $B(y,\varepsilon)\subset A$ for some $\varepsilon>0$
\subitem We call the set of interior points of $A$, the interior of $A$ \& we denote the set by $A^{o}$.
\item\textbf{Boundary Points}: The element $y\in X$ is a boundary point of $A\iff$ for any $\varepsilon>0$, $B(y,\varepsilon)\cap A\neq\emptyset$ and $B(y,\varepsilon)\cap(A^{c})\neq\emptyset$. The boundary of $A$, denoted $\partial A$, is the set of all boundary points of $A$.
\item\textbf{Exterior Points}: An element $y$ of $X$ is an exterior point of $A\iff\exists\varepsilon>0$ for which $B(y,\varepsilon)\subset A^{c}$. The exterior of $A$ is the set of all exterior points of $A$, denoted $A^{e}$.
\end{itemize}
\begin{multicols}{2}
\begin{itemize}
\item[Example:] Calculate $A^{2}$, $\partial A$ and $A^{c}$
where $A=(0,1]\subset\mathbb{R}$:
\end{itemize}
\begin{align*}
A^{e}&=(-\infty,0)\cup(1,\infty)\\
A^{o}&=(0,1)\\
\partial A&=\{0,1\}
\end{align*}
Facts:
\begin{align*}
X=\underbrace{\partial A\sqcup A^{e}\sqcup A^{o}}_{\text{Disjoint Union}}
\begin{cases}
\partial A\cup A^{e}\cup A^{o}=X\\
\partial A\cap A^{o}=\emptyset\\
\partial A\cap A^{e}=\emptyset\\
A^{o}\cap A^{e}=\emptyset
\end{cases}
\end{align*}
\end{multicols}
$(\mathbb{R},d)$ where $d(x,y)=|x-y|$. Take $x\in(0,1)$ so $0<x<1$.
\begin{center}
\begin{tikzpicture}[scale=2, xscale=2]
\draw[-](-1,0)--(1,0);
\node[] at (-1,0){(};
\node[] at (1,0){)};
\node[below] at (-1,-0.1){0};
\node[below] at (1,-0.1){1};
\draw[-](-0.3,-0.1)--(-0.3,0.1);
\node[below] at (-0.3,-0.1){$x$};
\node[left] at (-0.4,0){(};
\node[right] at (-0.2,0){)};
\node[above] at (-0.3,0.1){$B$};
\draw[<->](-1,-0.4)--(-0.3,-0.4);
\draw[<->](-0.3,-0.4)--(1,-0.4);
\node[below] at (-0.6,-0.4){$\varepsilon$};
\node[below] at (0.4,-0.4){$\varepsilon'$};
\end{tikzpicture}
\end{center}
Let $\varepsilon=x-0$ and $\varepsilon'=1-x$, let $\varepsilon^{*}=\min\{\varepsilon,\varepsilon'\}$. Consider $B(x,\frac{\varepsilon^{*}}{2})$. Then $B(x,\frac{\varepsilon^{*}}{2})\subset A$. \textbf{Why?} If $y\in B(x,\frac{\varepsilon^{*}}{2})$ then $|y-x|<\frac{\varepsilon^{*}}{2}$. So $-\frac{\varepsilon^{*}}{2}<y-x<\frac{\varepsilon^{*}}{2}$ and $0<x-\varepsilon^{*}<x-\frac{\varepsilon^{*}}{2}<y<x+\frac{\varepsilon^{*}}{2}$. But \textbf{Why} is $0<x-\frac{\varepsilon^{*}}{2}$? Because $\varepsilon=x-0$ and $\varepsilon^{*}=\min\{\varepsilon,\varepsilon'\}$ so $\frac{\varepsilon^{*}}{2}<\varepsilon^{*}\leq\varepsilon$.
Thus far $(0,1)\subset(0,1]^{o}$. What about $x<0$? Not possible. \textbf{Why?} See the definition of the interior point. Similarly, $x>1$ cannot be an interior point. Any interior point is an element of the set. So $A^{o}\subseteq(0,1]$. What about $1\in A^{o}$? No. Take $\varepsilon>0$ and $B(1,\varepsilon)$ Then this contains a point $y>1$. Then this contains a point $y>1$ and $y\notin A$. Thus $A^{o}=(0,1)$.
$\partial A=\{0,1\}$. Claim $0$ and $1$ are boundary points. \textbf{Why?} Take any $\varepsilon>0$. Consider $B(0,\varepsilon)=B(-\varepsilon,\varepsilon)$ then $B(0,\varepsilon)\cap A\neq\emptyset$. \textbf{Why?} Take $\delta>0$ such that $\delta>\varepsilon$ and $\delta>1$. Further as $\exists y\in B(0,\varepsilon)$ for which $y<0$ the intersection of $B(0,\varepsilon)\cap A^{c}\neq\emptyset$. Similar Argument for 1.
\begin{itemize}
\item[Fact:] If $y\in\partial B$ then $y$ might be an element of $B$, but it might not.
\end{itemize}
Are there any other boundary points? As $A^{o}\cap\partial A=\emptyset$ then no point in $(0,1)$ can be a boundary point. What about $y<0$ or $y>1$? No, let $y>1$ then $\exists\varepsilon>0$ such that $y=1+\varepsilon$. Take the ball $B(y,\frac{\varepsilon}{10})$ then $B(y,\frac{\varepsilon}{10})\subset A^{c}$.
\begin{itemize}
\item[Fact:] $\partial\emptyset=\emptyset$ and $\partial X=\emptyset$.
\end{itemize}
\begin{align*}
(0,1)&:\text{Open} & [0,1]&:\text{Closed} & (0,1]&:\text{Half-Closed}
\end{align*}
So let $(X,d)$ be a metric space.
\begin{itemize}
\item A subset $A$ of $X$ is open $\iff A\cap\partial A=\emptyset$.
\item A subset $F$ of $X$ is closed $\iff\partial F\subseteq F$.
\end{itemize}
$X$ is Clopen. $\partial X=\emptyset$ so $\partial X\cap X=\emptyset\cap X=\emptyset$ (Open) and $\emptyset=\partial X\subseteq X$ (Closed).
\begin{quote}
Example: $(\mathbb{R},d)$. $A=(0,1)\cup(1,2)$. As $\partial A=\{0,1,2\}$ we see that $A\cap\partial A=\emptyset$ so $A$ is open. Further $\partial A\nsubseteq A$ so not closed. Now consider $A$ as a subspace $(A,d)$, $\partial A=\emptyset$, $A^{o}=A\implies A^{e}=\emptyset$. Now $(0,1)\subseteq(0,1)\cup(1,2)$ is clopen as $\partial(0,1)=\emptyset\implies\partial(0,1)\cap(0,1)=\emptyset$ (Open) and $\partial(0,1)=\emptyset\subseteq(0,1)$ thus, $(0,1)$ is closed.
\end{quote}
\subsection{Visualisation of Interior, Exterior and Boundary Points}
Visualisation of $A^{o}$, $A^{e}$, $\partial A$ in $\mathbb{R}^{2}$
\begin{center}
\begin{tikzpicture}[scale=1.7]
\draw plot[smooth cycle, tension=0.8] coordinates {(2,2) (1.5,0) (2,-2) (0,-1.5) (-2,-2) (-1.5,0) (-2,2) (0,1.5)};
\node[left] at (-2,2){$X$};
\draw[-, radius=1](0,0) circle;
\node[left] at (-0.8,0.8){$A$};
\draw[dotted, radius=0.4](-0.5,0) circle;
\draw[fill, radius=0.03](-0.5,0) circle;
\node[below] at (-0.45,0){$x$};
\draw[<->](-0.5,0)--(-0.2171572875, 0.2828427125);
\node[left] at (-0.3, 0.2){$\varepsilon$};
\draw[dotted, radius=0.56](1.1,-1.1) circle;
\draw[fill, radius=0.03](1.1,-1.1) circle;
\node[below] at (1.15,-1.1){$y$};
\draw[<->](1.1,-1.1)--(1.382842712,-0.8171572875);
\node[left] at (1.3,-0.9){$\varepsilon$};
\draw[-, radius=0.3, pattern=north east lines](0.7071067812, 0.7071067812) circle;
\draw[fill, radius=0.03](0.7071067812, 0.7071067812) circle;
\node[right] at (2,0){For any $\varepsilon>0$ and any $x\in X$,};
\node[right] at (2,-0.5){$B(x,\varepsilon)\supseteq B(x,\varepsilon')$ where $0<\varepsilon'<\varepsilon$};
\node[right] at (2,0.8){$A^{o}=\{x\in X:\underbrace{\text{$x$ is an interior point of $A$}}_{\boxed{\exists}\,\varepsilon>0\text{ such that }B(x,\varepsilon)\subseteq A}\}$};
\node[right] at (2,-1.3){$\partial A=\{y\in X:\underbrace{\text{$y$ is a boundary point}}_{\boxed{\forall}\,\varepsilon>0;B(y,\varepsilon)\cap A\neq\emptyset\text{ and }B(y,\varepsilon)\cap A^{c}\neq\emptyset}\}$};
\end{tikzpicture}
\end{center}
Open: $A\cap\partial A=\emptyset$, Closed: $\partial A\subseteq A$ and $\partial\emptyset=\emptyset$ and $\partial X=\emptyset$ \textbf{Fact:} If $A\subseteq X$ then $A^{o}\sqcup A^{e}\sqcup\partial A=X$. \textbf{Fact:} If $A\subseteq X$ is open $\iff A^{c}$ is closed. Proof:
\begin{quote}
Let's assume that $A\subseteq X$ is open. If $A=\emptyset$ then $A^{c}=X$ and $X$ is closed. So we can assume that $A\neq\emptyset$. By definition, $\partial A\cap A=\emptyset$ (open), so $\partial A\subseteq A^{c}$. But $\partial A=\partial A^{c}$. As $\partial(A^{c})=\{y\in X:\text{$y$ is a boundary point of $A^{c}$}\}$. $y$ is such that $\forall\varepsilon>0$, $B(y, \varepsilon)\cap A^{c}\neq\emptyset$ and $B(y,\varepsilon)\cap(A^{c})^{c}\neq\emptyset$. Thus $A^{c}$ is closed. Assume that $A$ is closed. By definition, $\partial A\subseteq A$ so $\partial A\cap A^{c}=\emptyset$ and hence $\partial A^{c}\cap A^{c}=\emptyset$ and hence $A^{c}$ is open. Thus; $A$ is open $\iff A^{c}$ is closed.
\end{quote}
\subsection{Topology of a Metric Space}
The topology of $(X,d)$: So, the topology of a metric space, $T_{d}$ is the collection of all open subsets of $(X,d)$. Note: $T_{d}\subseteq\mathcal{P}(X)=\text{ (The power set of $X$)}$ and $T_{d}\neq\emptyset$ as $\emptyset$, $X\in T_{d}$. (More on topology later).
Think about:
\begin{center}
\begin{tikzpicture}[scale=3]
\draw[-](-2,0)--(2,0);
\node[right, scale=3] at (-2,0){(};
\node[left, scale=3] at (2,0){)};
\node[below] at (-1.8,-0.2){$a$};
\node[below] at (1.8,-0.2){$b$};
\draw[-](0,-0.3)--(0,0.3);
\draw[-](1,-0.1)--(1,0.1);
\node[above] at (0,0.3){$\frac{a+b}{2}$};
\node[below] at (1,-0.1){$x$};
\draw[<->](0,0.1)--(1,0.1);
\draw[<->](1,0.1)--(1.8,0.1);
\node[above] at (0.5,0.1){$\varepsilon'$};
\node[above] at (1.4,0.1){$\varepsilon$};
\end{tikzpicture}
\end{center}
$\varepsilon+\varepsilon'=\frac{b-a}{2}$. One of $\varepsilon$ and $\varepsilon'$ are minimal, so without loss of generality assume $\varepsilon=\min\{\varepsilon,\varepsilon'\}$. The graph above is used to motivate $B(x,\varepsilon)$. So $B(x,\varepsilon^{*})\subseteq(a,b)$ where $\varepsilon^{*}=\varepsilon/2$.
\begin{itemize}
\item[Fact:] If $A\subseteq X$ is open, then every point of $A$ is an interior point of $A$. Equivalently, For any $x\in A$, $\exists\varepsilon$ such that $A$ (open) $\iff\varepsilon=\varepsilon(x)>0$ such that $B(x,\varepsilon)\subseteq A$. $A$ is open $\sim\partial A\cap A=\emptyset$ by definition.
\end{itemize}
\begin{enumerate}
\item $A=\emptyset$ as $\emptyset$ is open.
\item $A\neq\emptyset$. There must be at least one $\varepsilon>0$ such that $B(x,\varepsilon)\subseteq A$ or $B(x,\varepsilon)\subseteq A^{c}$ for any $x\in A$. But $x\in A$ and $x\in B(x,\varepsilon)$, so $B(x,\varepsilon)\subseteq A^{c}$ is impossible! Therefore $B(x,\varepsilon)\subseteq A$.
\end{enumerate}
Assume that $\forall x\in A$, $\exists \varepsilon>0$ such that $B(x,\varepsilon)\subseteq A$. Thus $x\notin\partial A$. For $x\in\partial A$ we would need $B(x,\varepsilon)\cap A^{c}\neq\emptyset$ and this isn't possible.
\begin{multicols}{3}
\begin{itemize}
\item $A_{\text{open}}\iff A^{c}_{\text{closed}}$
\item $A_{\text{open}}\iff\partial A\cap A=\emptyset$
\item $A_{\text{open}}\iff\forall x\in A,\,\exists\varepsilon=\varepsilon(x)>0$ such that $B(x\varepsilon)\subseteq A$.
\end{itemize}
\end{multicols}
$T_{d}$ is the collection of all open subsets of $(X,d)$; $\{\emptyset, X\}\subseteq T_{d}$.
\begin{itemize}
\item[Fact:] For any $x\in X$ and any $\varepsilon>0$, $B(x,\varepsilon)\in T_{d}$ (Open ball is open).
\end{itemize}
Proof:
\begin{multicols}{2}
\begin{center}
\begin{tikzpicture}[scale=2.5]
\draw[dotted, radius=1](0,0) circle;
\draw[fill, radius=0.04](0,0) circle;
\draw[<->](0,0)--(0.70710678118,0.70710678118);
\node[below] at (0,0){$x$};
\node[below] at (0.4,0.4){$\varepsilon$};
\draw[fill, radius=0.03](0,0.5) circle;
\node[left] at (0,0.5){$y$};
\draw[dotted, radius=0.2](0,0.5) circle;
\draw[-](0,0)--(0,1.3);
\node[left, scale=2.5] at (0.1,0.25){$\{$};
\node[left] at (-0.15,0.25){$\varepsilon'$};
\end{tikzpicture}
\end{center}
Take $y\in B(x,\varepsilon)$. If $y=x$ we are done. Consider $B(y,\varepsilon)=B(x,\varepsilon)\subseteq B(x,\varepsilon)$.
Assume $y\neq x$. Then $d(x,y)=\Delta>0$ and $0<\Delta<\varepsilon$. So we set $\varepsilon'=\min\{\Delta,\varepsilon-\Delta\}$ and $\varepsilon^{*}=\varepsilon'/2$. Claim: Ball $B(y,\varepsilon^{*})\subseteq B(x,\varepsilon)$. We want to show that $d(x,z)<\varepsilon$ for any $z\in B(y,\varepsilon^{*})$. It would follow that $z\in B(x,\varepsilon)$ and $B(y,\varepsilon^{*})\subseteq B(x,\varepsilon)$. So
\begin{align*}
d(x,z)&\leq d(x,y)+d(y,z)\\
&\leq\Delta+\varepsilon^{*}\\
&\leq\Delta+\min\{\Delta,\varepsilon-\Delta\}/2\\
&\leq\Delta+\frac{\varepsilon-\Delta}{2}\\
&\boxed{<}\Delta+\varepsilon-\Delta\\
&=\varepsilon.
\end{align*}
Thus $z\in B(x,\varepsilon)\forall z\in B(y,\varepsilon^{*})$ and therefore $B(y,\varepsilon^{*})\subseteq B(x,\varepsilon)$.
Fact: If $A\in T_{d}$ \& $A\neq\emptyset$ then $A$ is a union of open balls
\end{multicols}
We are given $A\neq\emptyset$ and $A_{\text{open}}$.
Take an $x\in A$, we know $\exists\varepsilon=\varepsilon(x)>0$ such that $B(x,\varepsilon(x))\subseteq A$ then $A=\bigcup_{x\in A}B(x,\varepsilon(x))$.
Why? $A\subseteq\cup B(x,\varepsilon(x))$ as $x\in B(x,\varepsilon(x))$. Further $\cup B(x,\varepsilon(x))\subseteq A$ as $B(x,\varepsilon(x))\subseteq A$.
\begin{quote}
\boxed{\text{$A=B$, can be proven showing $A\subseteq B$ and $B\subseteq A$}}
\end{quote}
Question: Can we now determine key properties of $T_{d}$? Yes!
Fact: Take any collection of open sets $\Lambda\in T_{d}$ then the union of the sets in $\Lambda$ is open. For any $\Lambda\in T_{d}$, $\bigcup_{\Omega\in\Lambda}\Omega\in T_{d}$.
Take $x\in\bigcup_{\Omega\in\Lambda}\Omega$, we know $\exists\Omega(x)\ni x$ \& $\Omega(x)$ is open $\implies\exists\varepsilon>0$ such that $B(x,\varepsilon)\subseteq\Omega(x)\implies B(x,\varepsilon)\subseteq\bigcup_{\Omega\in\Lambda}\Omega$.
Question: Unions work, but will intersections work? No! Finite intersections work, but infinite intersections do not.
\begin{quote}
Example: Take $(\mathbb{R}, d)$ and consider $I_{n}=(-\frac{1}{n},\frac{1}{n})$. then $\bigcap_{n=1}^{\infty}I_{n}=\{0\}$ and $\{0\}\notin T_{d}$.
\end{quote}
Visual Proof:
\begin{center}
\begin{tikzpicture}[scale=2, xscale=2]
\draw[<->](-1.5,0)--(1.5,0);%All the horizontal lines
\draw[<->](-1.5,-0.5)--(1.5,-0.5);
\draw[<->](-1.5,-1)--(1.5,-1);
\draw[<->](-1.5,-1.5)--(1.5,-1.5);
% - Brackets
\node[scale=2] at (1,0){)};
\node[scale=2] at (-1,0){(};
\node[scale=2] at (0.5,-0.5){)};
\node[scale=2] at (-0.5,-0.5){(};
\node[scale=2] at (0.3333333333333333,-1){)};
\node[scale=2] at (-0.3333333333333333,-1){(};
\node[scale=2] at (0.25,-1.5){)};
\node[scale=2] at (-0.25,-1.5){(};
% - Set Labels I_n
\node[left, scale=1] at (-1.5,0){$I_{1}:$};
\node[left, scale=1] at (-1.5,-0.5){$I_{2}:$};
\node[left, scale=1] at (-1.5,-1){$I_{3}:$};
\node[left, scale=1] at (-1.5,-1.5){$I_{4}:$};
% - Real line labels
\node[right, scale=1] at (1.5,0){$\mathbb{R}$};
\node[right, scale=1] at (1.5,-0.5){$\mathbb{R}$};
\node[right, scale=1] at (1.5,-1){$\mathbb{R}$};
\node[right, scale=1] at (1.5,-1.5){$\mathbb{R}$};
% - Dotted lines
\draw[dotted](-1,0)--(-1,-1.9);%dotted for 1
\draw[dotted](1,0)--(1,-1.9);
\draw[dotted](-0.5,-0.5)--(-0.5,-2);%dotted for 1/2
\draw[dotted](0.5,-0.5)--(0.5,-2);
\draw[dotted](-0.333333333,-1)--(-0.333333333,-2.2);%dotted for 1/3
\draw[dotted](0.333333333,-1)--(0.333333333,-2.2);
\draw[dotted](-0.25,-1.5)--(-0.25,-2.45);%dotted for 1/4
\draw[dotted](0.25,-1.5)--(0.25,-2.45);
\draw[dashed](0,0.4)--(0,-2);%dotted for 0
% - Number labels for dotted lines
\node[below] at (-1,-1.9){$-1$};
\node[below] at (1,-1.9){$1$};
\node[below] at (-0.55,-2){$-\frac{1}{2}$};
\node[below] at (0.5,-2){$\frac{1}{2}$};
\node[below] at (-0.4,-2.2){$-\frac{1}{3}$};
\node[below] at (0.333333333,-2.2){$\frac{1}{3}$};
\node[below] at (-0.3,-2.45){$-\frac{1}{4}$};
\node[below] at (0.25,-2.45){$\frac{1}{4}$};
\node[below] at (0,-2){$0$};
% - Extra bits!
\draw[->](-2,-0.4)--(-2,-1.2);
\node[above] at (-2,-0.4){$n$};
\node[below] at (-2,-1.2){$\infty$};
\draw[->](-0.8,0.5)--(-0.01,0.5);
\draw[->](0.8,0.5)--(0.01,0.5);
\node[left] at (-0.8,0.5){$-\frac{1}{n}$};
\node[right] at (0.8,0.5){$\frac{1}{n}$};
\end{tikzpicture}
\end{center}
Fact: Take any finite collection of open sets $\Omega_{1}$, $\dots$, $\Omega_{n}\in T_{d}$. Then $\bigcap_{i=1}^{N}\Omega_{i}$ is open. Why?
If $\bigcap_{i=1}^{N}\Omega_{i}=\emptyset$ then we're done as $\emptyset$ is open.
Assume $\bigcap_{i=1}^{N}\Omega_{i}\neq\emptyset$. Take any $x\in\bigcap_{i=1}^{N}\Omega_{i}$, then $\exists\varepsilon_{i}>0$ for which $B(x,\varepsilon_{i})\subseteq\Omega_{i}$ and take $\varepsilon=\min\{\varepsilon_{1}, \varepsilon_{2},\dots,\varepsilon_{n}\}$ then $B(x,\varepsilon)\subseteq B(x,\varepsilon_{1})\subseteq\Omega_{i}$ for $i=1,2,\dots,N$ and thus $B(x,\varepsilon)\subseteq\bigcap_{i=1}^{N}\Omega_{i}$.
\subsection{Rules of Topology}
Quick recap:
\begin{multicols}{2}
\begin{itemize}
\item We've defined open \& closed via open balls (Rather than via $\partial A\cap A=\emptyset$ (open) \& $\partial A=A$ (closed))
\item Derived the rules for working with the collection of all open sets, $T_{d}$: the set of all open subsets of $X$, the topology induced by the metric $d$.
\end{itemize}
\end{multicols}
$\Omega\subseteq X$, is an element of $T_{d}\iff\partial\Omega\cap\Omega=\emptyset\iff$ for any $x\in\Omega$, $\exists\varepsilon=\varepsilon(x)>0$ such that $B(x,\varepsilon)\subseteq\Omega$.
Any open set is either empty or is the union of open balls. Let $(X,d)$ be a metric space \& $T_{d}$ be the topology induced by $d$,
\begin{enumerate}[label=\textbf{T\arabic*)}]
\item $\emptyset$, $X\in T_{d}$
\item $T_{d}$ is closed under arbitrary unions
\item $T_{d}$ is closed under \underline{finite} unions.\footnote{Subtle point on \textbf{(T3)}: It's possible that an infinite collection of open sets \underline{might} have an open intersection. It just is not certain in general.}
\end{enumerate}
Alternative:
\begin{enumerate}[start=2, resume*]
\item For any collection of open sets $\Lambda\subseteq T_{d}$, $\bigcup_{\Omega\in\Lambda}\Omega\in T_{d}$
\item For any \boxed{\text{finite}} collection of open sets $(\Omega_{1}, \Omega_{2}, \dots, \Omega_{N})$, $\bigcap_{i=1}^{N}\Omega_{i}\in T_{d}$.
\end{enumerate}
Note: $\{a\}\subseteq X$ then $\{a\}$ is closed (closed: $\partial A\subseteq A$ or $A^{c}\in T_{d}$) if $X=\{a\}$ then $\{a\}$ is closed and open. So if $X=\{a\}$ then $X$ has at least 2 elements inside. Well, $\partial\{a\}=\{a\}$ so $\partial A\subseteq A$. Why? Take any $\varepsilon>0$, consider $B(a,\varepsilon)$ then $B(a,\varepsilon)\cap\{a\}\neq\emptyset$.
If $X=\{a,b\}$, $d:X\to[0,\infty)$ and $d(a,b)=\gamma>0$. Then
\begin{align*}
B\bigg{(}a,\frac{\gamma}{2}\bigg{)}
&=\bigg{\{}x\in X\,\bigg{|}\,d(a,x)<\frac{\gamma}{2}\bigg{\}}=\{a\}
& B\bigg{(}a,\frac{\gamma}{N}\bigg{)}
&=\bigg{\{}x\in X\,\bigg{|}\,d(a,x)<\frac{\gamma}{N}\bigg{\}}=\{a\}
\end{align*}
$\mathbb{Q}$-$p$-adic Metric where $p$ is a prime number (this is the future):
\begin{align*}
d(q,q')\in\{p^{-n}\,|\,n\in\mathbb{Z}\}
\end{align*}
\newpage
\begin{itemize}
\item[Question:] What happens to T2) \& T3) if we replace open with closed?
\end{itemize}
\textbf{T2)}? Take a collection of closed sets. Let $\mathcal{F}$ be an arbitrary collection of closed sets.
\begin{align*}
\forall F\in\mathcal{F},\, F^{c}\in T_{d}&\implies\bigcup(F^{c})\in T_{d}\,\textbf{(T2)}\\
&\implies\bigcap(F)\text{ is closed}.
\end{align*}
De Morgan's Laws:
\begin{align*}
\bigg{(}\bigcap F\bigg{)}^{c}=\bigcup F^{c}\in T_{d}\implies\bigcap F\text{ is closed.}
\end{align*}
Similarly:
\begin{align*}
\bigg{(}\underbrace{\bigcap^{N}_{i=1} F_{i}}_{\text{closed}}\bigg{)}^{c}=\bigcap^{N}_{i=1}\underbrace{F^{c}}_{\text{open}}\in T_{d}
\end{align*}
Thus:
\begin{itemize}
\item[\textbf{F2)}] The union of any finite collection of closed sets is closed.
\item[\textbf{F3)}] The intersection of any collection of closed sets is closed.
\end{itemize}
Back to $\mathbb{R}^{2}$:
\begin{multicols}{3}
\begin{itemize}
\item[$d_{1}$:]
\begin{center}
\begin{tikzpicture}
\draw[->](-1.5,0)--(1.5,0);
\draw[->](0,-1.5)--(0,1.5);
\draw[color=white, fill, rotate=45, pattern=north east lines](-0.8,-0.8) rectangle (0.8,0.8);
\draw[dotted, rotate=45](-0.8,-0.8) rectangle (0.8,0.8);
\node[right] at (0.5,0.75){$\Omega$};
\end{tikzpicture}
\end{center}
\item[$d_{2}$:]
\begin{center}
\begin{tikzpicture}
\draw[->](-1.5,0)--(1.5,0);
\draw[->](0,-1.5)--(0,1.5);
\draw[color=white, fill, radius=1, pattern=north east lines](0,0) circle;
\draw[dotted, radius=1](0,0) circle;
\node[right] at (0.6,1){$\Lambda$};
\end{tikzpicture}
\end{center}