forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
409 lines (337 loc) · 15.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
from ..._common import default_net
from ...functional import (ACT2FN, bert_attention, concat, constant, expand,
expand_mask, matmul, select, shape, slice, softmax,
split, unsqueeze)
from ...layers import MLP, ColumnLinear, Embedding, LayerNorm, Linear, RowLinear
from ...mapping import Mapping
from ...module import Module, ModuleList
class BertEmbedding(Module):
def __init__(self,
vocab_size,
hidden_size,
max_position_embeddings,
type_vocab_size,
dtype=None):
super().__init__()
self.vocab_embedding = Embedding(vocab_size, hidden_size, dtype=dtype)
self.position_embedding = Embedding(max_position_embeddings,
hidden_size,
dtype=dtype)
self.token_embedding = Embedding(type_vocab_size,
hidden_size,
dtype=dtype)
self.max_position_embeddings = max_position_embeddings
self.embedding_ln = LayerNorm(normalized_shape=hidden_size, dtype=dtype)
def forward(self, input_ids, position_ids, token_type_ids):
x = self.vocab_embedding(input_ids)
x = x + self.position_embedding(position_ids)
x = x + self.token_embedding(token_type_ids)
x = self.embedding_ln(x)
return x
class BertAttention(Module):
def __init__(self,
hidden_size,
num_attention_heads,
max_position_embeddings,
dtype=None,
tp_group=None,
tp_size=1):
super().__init__()
self.attention_head_size = hidden_size // num_attention_heads
self.num_attention_heads = num_attention_heads // tp_size
self.hidden_size = hidden_size // tp_size
self.max_position_embeddings = max_position_embeddings
self.norm_factor = math.sqrt(self.attention_head_size)
self.qkv = ColumnLinear(hidden_size,
hidden_size * 3,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.dense = RowLinear(hidden_size,
hidden_size,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size)
def forward(self, hidden_states, attention_mask=None, input_lengths=None):
qkv = self.qkv(hidden_states)
# attention
if default_net().plugin_config.bert_attention_plugin:
assert input_lengths is not None
context = bert_attention(qkv, input_lengths,
self.num_attention_heads,
self.attention_head_size, 1.0)
else:
def transpose_for_scores(x):
new_x_shape = concat([
shape(x, 0),
shape(x, 1), self.num_attention_heads,
self.attention_head_size
])
return x.view(new_x_shape).permute([0, 2, 1, 3])
query, key, value = split(qkv, self.hidden_size, dim=2)
query = transpose_for_scores(query)
key = transpose_for_scores(key)
value = transpose_for_scores(value)
key = key.permute([0, 1, 3, 2])
attention_scores = matmul(query, key)
attention_scores = attention_scores / self.norm_factor
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = softmax(attention_scores, dim=-1)
context = matmul(attention_probs, value,
use_fp32_acc=False).permute([0, 2, 1, 3])
context = context.view(
concat([shape(context, 0),
shape(context, 1), self.hidden_size]))
context = self.dense(context)
return context
class BertEncoderLayer(Module):
def __init__(self,
hidden_size,
num_attention_heads,
max_position_embeddings,
hidden_act='relu',
tp_group=None,
tp_size=1,
dtype=None):
super().__init__()
self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
dtype=dtype)
self.attention = BertAttention(hidden_size,
num_attention_heads,
max_position_embeddings,
tp_group=tp_group,
tp_size=tp_size,
dtype=dtype)
self.mlp = MLP(hidden_size=hidden_size,
ffn_hidden_size=hidden_size * 4,
hidden_act=hidden_act,
tp_group=tp_group,
tp_size=tp_size,
dtype=dtype)
self.post_layernorm = LayerNorm(normalized_shape=hidden_size,
dtype=dtype)
def forward(self, hidden_states, attention_mask=None, input_lengths=None):
residual = hidden_states
attention_output = self.attention(hidden_states,
attention_mask=attention_mask,
input_lengths=input_lengths)
hidden_states = residual + attention_output
hidden_states = self.input_layernorm(hidden_states)
residual = hidden_states
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.post_layernorm(hidden_states)
return hidden_states
class BertModel(Module):
def __init__(self,
num_layers,
num_heads,
hidden_size,
vocab_size,
hidden_act,
max_position_embeddings,
type_vocab_size,
pad_token_id=None,
is_roberta=False,
mapping=Mapping(),
dtype=None):
super().__init__()
self.max_position_embeddings = max_position_embeddings
self.padding_idx = pad_token_id
self.is_roberta = is_roberta
self.embedding = BertEmbedding(
vocab_size=vocab_size,
hidden_size=hidden_size,
max_position_embeddings=max_position_embeddings,
type_vocab_size=type_vocab_size,
dtype=dtype)
self.layers = ModuleList([
BertEncoderLayer(hidden_size=hidden_size,
num_attention_heads=num_heads,
max_position_embeddings=max_position_embeddings,
hidden_act=hidden_act,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size,
dtype=dtype) for _ in range(num_layers)
])
def forward(self,
input_ids=None,
input_lengths=None,
position_ids=None,
token_type_ids=None,
hidden_states=None):
seq_len_2d = concat([1, shape(input_ids, 1)])
# create position ids
position_ids_buffer = constant(
np.expand_dims(
np.arange(self.max_position_embeddings).astype(np.int32), 0))
tmp_position_ids = slice(position_ids_buffer,
starts=[0, 0],
sizes=seq_len_2d)
tmp_position_ids = expand(tmp_position_ids, shape(input_ids)) #BxL
tmp_input_lengths = unsqueeze(input_lengths, 1) #Bx1
tmp_input_lengths = expand(tmp_input_lengths, shape(input_ids)) #BxL
mask = tmp_position_ids < tmp_input_lengths # BxL
mask = mask.cast('int32')
if position_ids is None:
if self.is_roberta:
# see create_position_ids_from_input_ids() in https://github.com/huggingface/transformers/blob/main/src/transformers/models/roberta/modeling_roberta.py
position_ids = (tmp_position_ids + 1) * mask
position_ids = position_ids + self.padding_idx
else:
position_ids = slice(position_ids_buffer,
starts=[0, 0],
sizes=seq_len_2d)
position_ids = expand(position_ids, shape(input_ids))
# creat extended_attention_mask as https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py
extended_attention_mask = expand_mask(mask, tgt_len=1) # BxL -> Bx1x1xL
# create token_type_ids
if token_type_ids is None:
token_type_ids_buffer = constant(
np.expand_dims(
np.zeros(self.max_position_embeddings).astype(np.int32), 0))
token_type_ids = slice(token_type_ids_buffer,
starts=[0, 0],
sizes=seq_len_2d)
token_type_ids = expand(token_type_ids, shape(input_ids))
hidden_states = self.embedding(input_ids, position_ids, token_type_ids)
for layer in self.layers:
hidden_states = layer(hidden_states=hidden_states,
input_lengths=input_lengths,
attention_mask=extended_attention_mask)
return hidden_states
class BertForQuestionAnswering(Module):
def __init__(self,
num_layers,
num_heads,
hidden_size,
vocab_size,
hidden_act,
max_position_embeddings,
type_vocab_size,
pad_token_id=None,
is_roberta=False,
num_labels=2,
mapping=Mapping(),
dtype=None):
super().__init__()
self.bert = BertModel(num_layers=num_layers,
num_heads=num_heads,
hidden_size=hidden_size,
vocab_size=vocab_size,
hidden_act=hidden_act,
max_position_embeddings=max_position_embeddings,
type_vocab_size=type_vocab_size,
pad_token_id=pad_token_id,
is_roberta=is_roberta,
mapping=mapping,
dtype=dtype)
self.num_labels = num_labels
self.qa_outputs = Linear(hidden_size, num_labels, dtype=dtype)
def forward(self,
input_ids=None,
input_lengths=None,
token_type_ids=None,
position_ids=None,
hidden_states=None):
hidden_states = self.bert.forward(input_ids=input_ids,
input_lengths=input_lengths,
token_type_ids=token_type_ids,
position_ids=position_ids,
hidden_states=hidden_states)
logits = self.qa_outputs(hidden_states)
return logits
class BertPooler(Module):
def __init__(self, hidden_size, dtype):
super().__init__()
self.dense = Linear(hidden_size, hidden_size, dtype=dtype)
self.activation = ACT2FN['tanh']
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = select(hidden_states, 1, 0)
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class RobertaClassificationHead(Module):
"""Head for sentence-level classification tasks."""
def __init__(self, hidden_size, dtype, num_labels):
super().__init__()
self.dense = Linear(hidden_size, hidden_size, dtype=dtype)
self.out_proj = Linear(hidden_size, num_labels)
def forward(self, features, **kwargs):
x = select(features, 1, 0)
x = self.dense(x)
x = ACT2FN['tanh'](x)
x = self.out_proj(x)
return x
class BertForSequenceClassification(Module):
def __init__(self,
num_layers,
num_heads,
hidden_size,
vocab_size,
hidden_act,
max_position_embeddings,
type_vocab_size,
pad_token_id=None,
is_roberta=False,
num_labels=2,
mapping=Mapping(),
dtype=None):
super().__init__()
self.is_roberta = is_roberta
self.bert = BertModel(num_layers=num_layers,
num_heads=num_heads,
hidden_size=hidden_size,
vocab_size=vocab_size,
hidden_act=hidden_act,
max_position_embeddings=max_position_embeddings,
type_vocab_size=type_vocab_size,
pad_token_id=pad_token_id,
is_roberta=is_roberta,
mapping=mapping,
dtype=dtype)
self.num_labels = num_labels
if not is_roberta:
self.pooler = BertPooler(hidden_size=hidden_size, dtype=dtype)
self.classifier = Linear(hidden_size, num_labels, dtype=dtype)
else:
self.classifier = RobertaClassificationHead(hidden_size=hidden_size,
num_labels=num_labels,
dtype=dtype)
def forward(self,
input_ids=None,
input_lengths=None,
token_type_ids=None,
position_ids=None,
hidden_states=None):
hidden_states = self.bert.forward(input_ids=input_ids,
input_lengths=input_lengths,
token_type_ids=token_type_ids,
position_ids=position_ids,
hidden_states=hidden_states)
if not self.is_roberta:
pooled_output = self.pooler(hidden_states)
logits = self.classifier(pooled_output)
else:
logits = self.classifier(hidden_states)
return logits