forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
build.py
365 lines (310 loc) · 12.7 KB
/
build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
import torch
from weight import load_decoder_weight, load_encoder_weight
import tensorrt_llm
from tensorrt_llm import str_dtype_to_torch, str_dtype_to_trt
from tensorrt_llm.builder import Builder
from tensorrt_llm.functional import LayerNormPositionType, LayerNormType
from tensorrt_llm.logger import logger
from tensorrt_llm.models import quantize_model
from tensorrt_llm.network import net_guard
from tensorrt_llm.quantization import QuantMode
MODEL_ENCODER_NAME = "whisper_encoder"
MODEL_DECODER_NAME = "whisper_decoder"
def get_engine_name(model, dtype, tp_size=1, rank=0):
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
with open(path, 'wb') as f:
f.write(engine)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size',
type=int,
default=1,
help='world size, only support tensor parallelism now')
parser.add_argument('--model_dir', type=str, default="assets")
parser.add_argument('--model_name',
type=str,
default="large-v3",
choices=[
"large-v3",
"large-v2",
])
parser.add_argument('--quantize_dir', type=str, default="quantize/1-gpu")
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float16'])
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--max_batch_size', type=int, default=8)
parser.add_argument('--max_input_len', type=int, default=14)
parser.add_argument('--max_output_len', type=int, default=100)
parser.add_argument('--max_beam_width', type=int, default=4)
parser.add_argument(
'--use_gpt_attention_plugin',
nargs='?',
const=None,
type=str,
default=False,
choices=['float16', 'float32', 'bfloat16'],
help=
"Activates attention plugin. You can specify the plugin dtype or leave blank to use the model dtype."
)
parser.add_argument(
'--use_bert_attention_plugin',
nargs='?',
const=None,
type=str,
default=False,
choices=['float16', 'float32', 'bfloat16'],
help=
"Activates BERT attention plugin. You can specify the plugin dtype or leave blank to use the model dtype."
)
parser.add_argument(
'--use_gemm_plugin',
nargs='?',
const=None,
type=str,
default=False,
choices=['float16', 'float32', 'bfloat16'],
help=
"Activates GEMM plugin. You can specify the plugin dtype or leave blank to use the model dtype."
)
parser.add_argument('--remove_input_padding',
default=False,
action='store_true')
parser.add_argument(
'--output_dir',
type=str,
default='whisper_outputs',
help=
'The path to save the serialized engine files, timing cache file and model configs'
)
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument('--debug_mode', action='store_true')
args = parser.parse_args()
logger.set_level(args.log_level)
plugins_args = [
'use_gemm_plugin', 'use_gpt_attention_plugin',
'use_bert_attention_plugin'
]
for plugin_arg in plugins_args:
if getattr(args, plugin_arg) is None:
logger.info(
f"plugin_arg is None, setting it as {args.dtype} automatically."
)
setattr(args, plugin_arg, args.dtype)
if args.use_weight_only:
args.quant_mode = QuantMode.from_description(
quantize_weights=True,
quantize_activations=False,
use_int4_weights="int4" in args.weight_only_precision)
else:
args.quant_mode = QuantMode(0)
if args.int8_kv_cache:
args.quant_mode = args.quant_mode.set_int8_kv_cache()
return args
def build_encoder(model, args):
model_metadata = model['dims']
model_params = model['model_state_dict']
# cast params according dtype
for k, v in model_params.items():
model_params[k] = v.to(str_dtype_to_torch(args.dtype))
builder = Builder()
max_batch_size = args.max_batch_size
hidden_states = model_metadata['n_audio_state']
num_heads = model_metadata['n_audio_head']
num_layers = model_metadata['n_audio_layer']
model_is_multilingual = (model_metadata['n_vocab'] >= 51865)
builder_config = builder.create_builder_config(
name=MODEL_ENCODER_NAME,
precision=args.dtype,
tensor_parallel=1,
num_layers=num_layers,
num_heads=num_heads,
hidden_size=hidden_states,
max_batch_size=max_batch_size,
int8=args.quant_mode.has_act_or_weight_quant(),
n_mels=model_metadata['n_mels'],
num_languages=model_metadata['n_vocab'] - 51765 -
int(model_is_multilingual),
)
tensorrt_llm_whisper_encoder = tensorrt_llm.models.WhisperEncoder(
model_metadata['n_mels'], model_metadata['n_audio_ctx'],
model_metadata['n_audio_state'], model_metadata['n_audio_head'],
model_metadata['n_audio_layer'], str_dtype_to_trt(args.dtype))
if args.use_weight_only:
tensorrt_llm_whisper_encoder = quantize_model(
tensorrt_llm_whisper_encoder, args.quant_mode)
load_encoder_weight(tensorrt_llm_whisper_encoder, model_metadata,
model_params, model_metadata['n_audio_layer'])
network = builder.create_network()
network.plugin_config.to_legacy_setting()
if args.use_gemm_plugin:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
if args.use_bert_attention_plugin:
network.plugin_config.set_bert_attention_plugin(
dtype=args.use_bert_attention_plugin)
if args.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
if args.use_weight_only:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype=args.dtype)
with net_guard(network):
inputs = tensorrt_llm_whisper_encoder.prepare_inputs(
args.max_batch_size)
tensorrt_llm_whisper_encoder(*inputs)
if args.debug_mode:
for k, v in tensorrt_llm_whisper_encoder.named_network_outputs():
network._mark_output(v, k, str_dtype_to_trt(args.dtype))
engine = None
engine_name = get_engine_name(MODEL_ENCODER_NAME, args.dtype, 1, 0)
engine = builder.build_engine(network, builder_config)
config_path = os.path.join(args.output_dir, 'encoder_config.json')
builder.save_config(builder_config, config_path)
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
def build_decoder(model, args):
model_metadata = model['dims']
model_params = model['model_state_dict']
# cast params according dtype
for k, v in model_params.items():
model_params[k] = v.to(str_dtype_to_torch(args.dtype))
builder = Builder()
timing_cache_file = os.path.join(args.output_dir, 'decoder_model.cache')
builder_config = builder.create_builder_config(
name=MODEL_DECODER_NAME,
precision=args.dtype,
timing_cache=timing_cache_file,
tensor_parallel=args.world_size,
num_layers=model_metadata['n_text_layer'],
num_heads=model_metadata['n_text_head'],
hidden_size=model_metadata['n_text_state'],
vocab_size=model_metadata['n_vocab'],
hidden_act="gelu",
max_position_embeddings=model_metadata['n_text_ctx'],
apply_query_key_layer_scaling=False,
max_batch_size=args.max_batch_size,
max_input_len=args.max_input_len,
max_output_len=args.max_output_len,
opt_level=None,
cross_attention=True,
has_position_embedding=True,
has_token_type_embedding=False,
int8=args.quant_mode.has_act_or_weight_quant(),
)
tensorrt_llm_whisper_decoder = tensorrt_llm.models.DecoderModel(
num_layers=model_metadata['n_text_layer'],
num_heads=model_metadata['n_text_head'],
hidden_size=model_metadata['n_text_state'],
ffn_hidden_size=4 * model_metadata['n_text_state'],
encoder_hidden_size=model_metadata['n_text_state'],
encoder_num_heads=model_metadata['n_text_head'],
vocab_size=model_metadata['n_vocab'],
head_size=model_metadata['n_text_state'] //
model_metadata['n_text_head'],
max_position_embeddings=model_metadata['n_text_ctx'],
has_position_embedding=True,
relative_attention=False,
max_distance=0,
num_buckets=0,
has_embedding_layernorm=False,
has_embedding_scale=False,
q_scaling=1.0,
has_attention_qkvo_bias=True,
has_mlp_bias=True,
has_model_final_layernorm=True,
layernorm_eps=1e-5,
layernorm_position=LayerNormPositionType.pre_layernorm,
layernorm_type=LayerNormType.LayerNorm,
hidden_act="gelu",
rescale_before_lm_head=False,
dtype=str_dtype_to_trt(args.dtype),
logits_dtype=str_dtype_to_trt(args.dtype))
if args.use_weight_only:
tensorrt_llm_whisper_decoder = quantize_model(
tensorrt_llm_whisper_decoder, args.quant_mode)
load_decoder_weight(
tensorrt_llm_whisper_decoder,
model_params,
)
network = builder.create_network()
network.plugin_config.to_legacy_setting()
if args.use_gemm_plugin:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
if args.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(
dtype=args.use_gpt_attention_plugin)
if args.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
with net_guard(network):
inputs = tensorrt_llm_whisper_decoder.prepare_inputs(
args.max_batch_size,
args.max_beam_width,
args.max_input_len,
args.max_output_len,
model_metadata['n_audio_ctx'],
)
tensorrt_llm_whisper_decoder(*inputs)
if args.debug_mode:
for k, v in tensorrt_llm_whisper_decoder.named_network_outputs():
network._mark_output(v, k, str_dtype_to_trt(args.dtype))
engine = None
engine_name = get_engine_name(MODEL_DECODER_NAME, args.dtype, 1, 0)
engine = builder.build_engine(network, builder_config)
config_path = os.path.join(args.output_dir, 'decoder_config.json')
builder.save_config(builder_config, config_path)
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
def run_build(args):
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
model_path = os.path.join(args.model_dir, args.model_name + '.pt')
model = torch.load(model_path)
build_encoder(model, args)
build_decoder(model, args)
if __name__ == '__main__':
args = parse_arguments()
run_build(args)