forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
build.py
574 lines (523 loc) · 23 KB
/
build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import configparser
import time
from pathlib import Path
import torch
import torch.multiprocessing as mp
from run import get_engine_name
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_trt
from tensorrt_llm.builder import Builder
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.network import net_guard
from t5.weight import parse_t5_config, load_from_hf_t5, load_from_binary_t5 # isort:skip
from bart.weight import parse_bart_config, load_from_binary_bart # isort:skip
from nmt.weight import parse_nmt_config, load_from_binary_nmt # isort:skip
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
with open(path, 'wb') as f:
f.write(engine)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
def parse_config(ini_file, component, args):
config = configparser.ConfigParser()
assert ini_file.exists(), f"Missing config file {ini_file}"
config.read(ini_file)
model_type = config.get('structure', 'model_type')
args.model_type = model_type
args = globals()[f'parse_{model_type}_config'](config, component, args)
return args
def parse_arguments(component):
parser = argparse.ArgumentParser()
parser.add_argument('--world_size',
type=int,
default=1,
help='MPI world size (must equal TP * PP)')
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument(
'--gpus_per_node',
type=int,
default=8,
help=
'Number of GPUs each node has in a multi-node setup. This is a cluster spec and can be greater/smaller than world size'
)
parser.add_argument('--parallel_build', default=False, action='store_true')
parser.add_argument('--weight_dir',
'-i',
type=str,
default=None,
help='Path to the converted weight file')
parser.add_argument(
'--output_dir',
'-o',
type=Path,
default='trt_engines',
help=
'The path to save the serialized engine files, timing cache file and model configs'
)
parser.add_argument(
'--weight_from_pytorch_ckpt',
default=False,
action='store_true',
help=
'Load weight from PyTorch checkpoint. model_dir must point to ckpt directory'
)
parser.add_argument('--engine_name',
'-n',
type=str,
default='enc_dec',
help='TensorRT engine name prefix')
parser.add_argument('--debug_mode', action='store_true')
parser.add_argument(
'--timing_cache',
type=str,
default='model.cache',
help=
'The path of to read timing cache from, will be ignored if the file does not exist'
)
parser.add_argument(
'--profiling_verbosity',
type=str,
default='layer_names_only',
choices=['layer_names_only', 'detailed', 'none'],
help=
'The profiling verbosity for the generated TRT engine. Set to detailed can inspect tactic choices and kernel parameters.'
)
parser.add_argument('--model_type',
type=str,
choices=['t5', 'bart', 'nmt'],
default='t5')
parser.add_argument(
'--dtype',
type=str,
default='float16',
choices=['float16', 'float32', 'bfloat16'],
help=
'Target inference dtype. Weights and Computation will be in this dtype, no matter what original dtype the weight checkpoint has.'
)
parser.add_argument('--logits_dtype',
type=str,
default='float32',
choices=['float16', 'float32'])
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--max_batch_size', type=int, default=8)
parser.add_argument('--max_encoder_input_len', type=int, default=1024)
parser.add_argument(
'--max_decoder_input_len',
type=int,
default=1,
help=
'If you want deocder_forced_input_ids feature, set to value greater than 1. Otherwise, encoder-decoder model start from decoder_start_token_id of length 1'
)
parser.add_argument('--max_output_len', type=int, default=200)
parser.add_argument('--max_beam_width', type=int, default=1)
parser.add_argument(
'--use_bert_attention_plugin',
nargs='?',
const=None,
type=str,
default=False,
choices=['float16', 'float32', 'bfloat16'],
help=
"Activates BERT attention plugin. You can specify the plugin dtype or leave blank to use the model dtype."
)
parser.add_argument(
'--use_gpt_attention_plugin',
nargs='?',
const=None,
type=str,
default=False,
choices=['float16', 'float32', 'bfloat16'],
help=
"Activates attention plugin. You can specify the plugin dtype or leave blank to use the model dtype."
)
parser.add_argument(
'--use_gemm_plugin',
nargs='?',
const=None,
type=str,
default=False,
choices=['float16', 'float32', 'bfloat16'],
help=
"Activates GEMM plugin. You can specify the plugin dtype or leave blank to use the model dtype."
)
parser.add_argument(
'--use_lookup_plugin',
nargs='?',
const=None,
default=False,
choices=['float16', 'float32', 'bfloat16'],
help="Activates the lookup plugin which enables embedding sharding.")
parser.add_argument('--enable_qk_half_accum',
default=False,
action='store_true')
parser.add_argument('--builder_opt', type=int, default=None)
parser.add_argument('--remove_input_padding',
default=False,
action='store_true')
parser.add_argument(
'--random_seed',
type=int,
default=None,
help=
'Seed to use when initializing the random number generator for torch.')
parser.add_argument(
'--max_prompt_embedding_table_size',
'--max_multimodal_len',
type=int,
default=0,
help=
'Setting to a value > 0 enables support for prompt tuning or multimodal input.'
)
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=0,
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
'To shard it along hidden dimension, set embedding_sharding_dim=1'
'Note: embedding sharding is only enabled when embedding_sharding_dim = 0'
)
parser.add_argument(
'--use_custom_all_reduce',
action='store_true',
help=
'Activates latency-optimized algorithm for all-reduce instead of NCCL.')
parser.add_argument(
'--strongly_typed',
default=False,
action="store_true",
help=
'This option is introduced with trt 9.1.0.1+ and will reduce the building time significantly for fp8.'
)
parser.add_argument(
'--gather_all_token_logits',
action='store_true',
default=False,
help='Enable both gather_context_logits and gather_generation_logits')
parser.add_argument('--gather_context_logits',
action='store_true',
default=False,
help='Gather context logits')
parser.add_argument('--gather_generation_logits',
action='store_true',
default=False,
help='Gather generation logits')
parser.add_argument(
'--skip_encoder',
'--nougat',
default=False,
action="store_true",
help=
'Skip building encoder for nougat model. Encoder is not an LLM in nougat'
)
# parse cmdline args
args = parser.parse_args()
logger.set_level(args.log_level)
if component == 'encoder' and args.skip_encoder:
# Skip further processing
return args
# parse model config and add to args
if args.weight_dir is not None:
logger.info(f"Setting model configuration from {args.weight_dir}.")
args = parse_config(
Path(args.weight_dir) / "config.ini", component, args)
assert args.pp_size * args.tp_size == args.world_size
plugins_args = [
'use_bert_attention_plugin', 'use_gpt_attention_plugin',
'use_gemm_plugin', 'use_lookup_plugin'
]
for plugin_arg in plugins_args:
if getattr(args, plugin_arg) is None:
logger.info(
f"{plugin_arg} set, without specifying a value. Using {args.dtype} automatically."
)
setattr(args, plugin_arg, args.dtype)
if args.dtype == 'bfloat16' and not args.model_type in ['bart']:
assert args.use_gemm_plugin, "Please use gemm plugin when dtype is bfloat16"
if args.gather_all_token_logits:
args.gather_context_logits = True
args.gather_generation_logits = True
return args
def build_rank_engine(builder: Builder,
builder_config: tensorrt_llm.builder.BuilderConfig,
engine_name, rank, args):
'''
@brief: Build the engine on the given rank.
@param rank: The rank to build the engine.
@param args: The cmd line arguments.
@return: The built engine.
'''
dtype = str_dtype_to_trt(args.dtype)
mapping = Mapping(world_size=args.world_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size)
assert args.n_layer % args.pp_size == 0, \
f"num_layers {args.n_layer} must be a multiple of pipeline parallelism size {args.pp_size}"
# Initialize Module
if args.component == 'encoder':
tllm_model = tensorrt_llm.models.EncoderModel(
num_layers=args.n_layer,
num_heads=args.n_head,
num_kv_heads=args.n_head,
head_size=args.head_size,
hidden_size=args.hidden_size,
ffn_hidden_size=args.ffn_hidden_size,
vocab_size=args.vocab_size,
max_position_embeddings=args.n_positions,
has_position_embedding=args.has_position_embedding,
relative_attention=args.relative_attention,
max_distance=args.max_distance,
num_buckets=args.num_buckets,
has_embedding_layernorm=args.has_embedding_layernorm,
has_embedding_scale=args.has_embedding_scale,
q_scaling=args.q_scaling,
has_attention_qkvo_bias=args.has_attention_qkvo_bias,
has_mlp_bias=args.has_mlp_bias,
has_model_final_layernorm=args.has_model_final_layernorm,
layernorm_eps=args.layernorm_eps,
layernorm_position=args.layernorm_position,
layernorm_type=args.layernorm_type,
hidden_act=args.hidden_act,
mlp_type=args.mlp_type,
dtype=dtype,
use_prompt_tuning=args.max_prompt_embedding_table_size > 0,
use_parallel_embedding=args.use_parallel_embedding,
embedding_sharding_dim=args.embedding_sharding_dim,
mapping=mapping)
elif args.component == 'decoder':
tllm_model = tensorrt_llm.models.DecoderModel(
num_layers=args.n_layer,
num_heads=args.n_head,
num_kv_heads=args.n_head,
head_size=args.head_size,
hidden_size=args.hidden_size,
ffn_hidden_size=args.ffn_hidden_size,
encoder_hidden_size=args.encoder_hidden_size,
encoder_num_heads=args.encoder_num_heads,
encoder_head_size=args.encoder_head_size,
vocab_size=args.vocab_size,
max_position_embeddings=args.n_positions,
has_position_embedding=args.has_position_embedding,
relative_attention=args.relative_attention,
max_distance=args.max_distance,
num_buckets=args.num_buckets,
has_embedding_layernorm=args.has_embedding_layernorm,
has_embedding_scale=args.has_embedding_scale,
q_scaling=args.q_scaling,
has_attention_qkvo_bias=args.has_attention_qkvo_bias,
has_mlp_bias=args.has_mlp_bias,
has_model_final_layernorm=args.has_model_final_layernorm,
layernorm_eps=args.layernorm_eps,
layernorm_position=args.layernorm_position,
layernorm_type=args.layernorm_type,
hidden_act=args.hidden_act,
mlp_type=args.mlp_type,
use_parallel_embedding=args.use_parallel_embedding,
embedding_sharding_dim=args.embedding_sharding_dim,
mapping=mapping,
rescale_before_lm_head=args.rescale_before_lm_head,
dtype=dtype,
logits_dtype=args.logits_dtype)
# No support for relative attention bias in plain TRT mode. Please use attention plugin
# (If to add such support, need to add into
# Attention and BertAttention at tensorrt_llm/layers/attention.py)
if args.relative_attention:
assert args.use_bert_attention_plugin, "Relative attention bias is only supported when using BertAttention Plugin"
assert args.use_gpt_attention_plugin, "Relative attention bias is only supported when using GPTAttention Plugin"
if args.weight_from_pytorch_ckpt:
assert args.tp_size == 1, "Loading from framework model via memory is for demonstration purpose. For multi-GPU inference, please use loading from binary for better performance."
globals()[f'load_from_hf_{args.model_type}'](tllm_model,
args.weight_dir,
args.component,
dtype=args.dtype)
else:
globals()[f'load_from_binary_{args.model_type}'](tllm_model,
args.weight_dir,
args,
mapping=mapping,
dtype=args.dtype)
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
network.plugin_config.to_legacy_setting()
if args.use_bert_attention_plugin:
network.plugin_config.set_bert_attention_plugin(
dtype=args.use_bert_attention_plugin)
if args.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(
dtype=args.use_gpt_attention_plugin)
if args.use_gemm_plugin:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
if args.enable_qk_half_accum:
network.plugin_config.enable_qk_half_accum()
if args.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
if args.use_lookup_plugin:
# Use the plugin for the embedding parallelism and sharding
network.plugin_config.set_lookup_plugin(dtype=args.dtype)
if args.world_size > 1:
network.plugin_config.set_nccl_plugin(args.dtype,
args.use_custom_all_reduce)
with net_guard(network):
# Prepare
network.set_named_parameters(tllm_model.named_parameters())
# Forward
if args.component == 'encoder':
inputs = tllm_model.prepare_inputs(
max_batch_size=args.max_batch_size,
max_input_len=args.max_encoder_input_len,
prompt_embedding_table_size=args.
max_prompt_embedding_table_size,
)
elif args.component == 'decoder':
inputs = tllm_model.prepare_inputs(
max_batch_size=args.max_batch_size,
max_beam_width=args.max_beam_width,
max_decoder_input_len=args.max_decoder_input_len,
max_new_tokens=args.max_output_len,
max_encoder_input_len=args.max_encoder_input_len,
gather_context_logits=args.gather_context_logits,
gather_generation_logits=args.gather_generation_logits)
tllm_model(*inputs)
# Adding debug outputs into the network --------------------------
if args.debug_mode:
for k, v in tllm_model.named_network_outputs():
network._mark_output(v, k,
tensorrt_llm.str_dtype_to_trt(args.dtype))
# ----------------------------------------------------------------
# Network -> Engine
engine = builder.build_engine(network, builder_config)
return engine
def build(rank, args):
torch.cuda.set_device(rank % args.gpus_per_node)
tensorrt_llm.logger.set_level(args.log_level)
component_dir = args.output_dir / args.dtype / f"tp{args.tp_size}" / args.component
component_dir.mkdir(parents=True, exist_ok=True)
builder = Builder()
apply_query_key_layer_scaling = False
cache = None
for cur_rank in range(args.world_size):
# skip other ranks if parallel_build is enabled
if args.parallel_build and cur_rank != rank:
continue
builder_config = builder.create_builder_config(
name=args.engine_name,
precision=args.dtype,
timing_cache=component_dir /
args.timing_cache if cache is None else cache,
profiling_verbosity=args.profiling_verbosity,
tensor_parallel=args.tp_size,
pipeline_parallel=args.pp_size,
gpus_per_node=args.gpus_per_node,
parallel_build=args.parallel_build,
num_layers=args.n_layer,
num_heads=args.n_head,
hidden_size=args.hidden_size,
head_size=args.head_size,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
apply_query_key_layer_scaling=apply_query_key_layer_scaling,
max_batch_size=args.max_batch_size,
max_beam_width=args.max_beam_width,
max_decoder_input_len=args.max_decoder_input_len,
max_output_len=args.max_output_len,
max_encoder_input_len=args.max_encoder_input_len,
opt_level=args.builder_opt,
cross_attention=(args.component == 'decoder'),
has_position_embedding=args.has_position_embedding,
has_token_type_embedding=args.has_token_type_embedding,
strongly_typed=args.strongly_typed,
gather_context_logits=args.gather_context_logits,
gather_generation_logits=args.gather_generation_logits,
max_prompt_embedding_table_size=(
args.max_prompt_embedding_table_size
if args.component == 'encoder' else 0))
engine_name = get_engine_name(args.engine_name, args.dtype,
args.tp_size, args.pp_size, cur_rank)
engine = build_rank_engine(builder, builder_config, engine_name,
cur_rank, args)
assert engine is not None, f'Failed to build engine for rank {cur_rank}'
if cur_rank == 0:
# save build config
config_path = component_dir / 'config.json'
builder.save_config(builder_config, config_path)
# Use in-memory timing cache for multiple builder passes.
if not args.parallel_build:
cache = builder_config.trt_builder_config.get_timing_cache()
serialize_engine(engine, component_dir / engine_name)
if rank == 0:
# save timing cache to speedup future use
ok = builder.save_timing_cache(builder_config,
component_dir / args.timing_cache)
assert ok, "Failed to save timing cache."
def run_build(component):
assert component == 'encoder' or component == 'decoder', 'Unsupported component!'
args = parse_arguments(component)
# special handling in prompt tuning / multimodal cases
if args.max_prompt_embedding_table_size > 0:
if component == 'decoder' and args.skip_encoder:
# for Nougat-like structure that only uses the decoder of enc-dec, encoder_output length equals to multimodal length, so max_encoder_input_len == max_encoder_output_len == max_multimodal_len == max_prompt_embedding_table_size MUST hold.
args.max_encoder_input_len = args.max_prompt_embedding_table_size
logger.warning(
"Forcing max_encoder_input_len equal to max_prompt_embedding_table_size"
)
# otherwise, e.g. for BLIP2-T5, the entire enc-dec is used, so multimodal length (visual output length) and encoder_output length (LLM input length) are two different things
if component == 'encoder' and args.skip_encoder:
logger.warning("Skipping build of encoder for Nougat model")
return
args.component = component
if args.random_seed is not None:
torch.manual_seed(args.random_seed)
logger.set_level(args.log_level)
tik = time.time()
if args.parallel_build and args.world_size > 1 and \
torch.cuda.device_count() >= args.world_size:
logger.warning(
f'Parallelly build TensorRT engines. Please make sure that all of the {args.world_size} GPUs are totally free.'
)
mp.spawn(build, nprocs=args.world_size, args=(args, ))
else:
args.parallel_build = False
logger.info('Serially build TensorRT engines.')
build(0, args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Total time of building all engines: {t}')
if __name__ == '__main__':
run_build(component='encoder')
run_build(component='decoder')