-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathUKF.m
130 lines (120 loc) · 3.56 KB
/
UKF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
% Implementation of UKF
clear all;clc;close all;warning off;format bank;
rho_0 = 3.4e-3;
g = 32.2;
k_rho = 22000;
P_0 = diag([500 2*10^4 2.5*10^5]);
u_0 = [10^5;-6000;2000];
R_t = [0 0 0;0 2 0;0 0 0];
Q_t = 100;
H_t = [1 0 0];
tf=20;
dt=0.1;
t = 0.1:dt:tf;
n=size(u_0,1);
% find lambda parameter
alpha = 10^-2;kappa = 0;beta=2;
l=alpha^2*(n+kappa)-n;
% weights of the UKF points
w_m = [l/(l+n),0.5/(l+n)+zeros(1,2*n)];
w_c = [l/(l+n)+(1-alpha^2+beta),0.5/(l+n)+zeros(1,2*n)];
j=1;
x_t=[normrnd(10^5,sqrt(500));normrnd(-6000,sqrt(2*10^4));normrnd(2000,sqrt(2.5*10^5))];
tic
for time=t
% find the sigma points
if time == 0.1
X = [u_0,u_0*ones(1,n)+sqrt(n+l)*chol(P_0)',u_0*ones(1,n)-sqrt(n+l)*chol(P_0)'];
else
X = [s_u(:,j-1),s_u(:,j-1)*ones(1,n)+sqrt(n+l)*chol(P_t(:,:,j-1),'lower'),s_u(:,j-1)*ones(1,n)-sqrt(n+l)*chol(P_t(:,:,j-1),'lower')];
end
% propagate the points into the dynamics and find mean and covariance
[Xp(:,:,j),u_b(:,j),P_b(:,:,j)] = propxsi(1,X,n,dt,w_m,w_c);
% measurements
Xpp=[u_b(:,j),u_b(:,j)*ones(1,n)+sqrt(n+l)*chol(P_b(:,:,j),'lower'),u_b(:,j)*ones(1,n)-sqrt(n+l)*chol(P_b(:,:,j),'lower')]; %resample
% propagate the measurement equation and find mean and covariance
[Zpp,z_u(j),P_z(j)] = propxsi(2,Xpp,n,dt,w_m,w_c);
P_xy=zeros(3,1);
for i=1:2*n+1
P_xy = P_xy+w_c(i)*(Xpp(:,i)-u_b(:,j))*(Zpp(i)-z_u(j))';
end
% find the kalman gain
K = P_xy*P_z(j)^-1;
%dynamics truth simulation
x_t(:,j+1)= truthfunc(x_t(:,j),dt);
% measurement value
zm(j) = x_t(1,j+1)+normrnd(0,sqrt(100));
% do the kalman update
s_u(:,j) = u_b(:,j)+K*(zm(j)-z_u(j));
P_t(:,:,j) = P_b(:,:,j)-K*P_xy';
j=j+1;
end
toc
% plot(t,s_u(2,:),'-r',t,x_t(2,2:end),'-b')
% legend('filtered','truth','measured')
plot(t,zm,'-b',t,s_u(1,:),'-r',t,u_b(1,:),'-g')
% plot(t,u_b(1,:))
legend('measured state','filtered state','Dynamics')
xlabel('Time (sec)');
ylabel('x1 (feet)');
function [Xp,s_u,P_t] = propxsi(val,X,n,dt,w_m,w_c)
R_t = [0 0 0;0 2 0;0 0 0];
Q_t = 100;
if val==1
% function to propogate the points through dynamics
% and find the predicted mean and covariance.
Xp=[];s_u=zeros(n,1);P_t=zeros(n,n);
% propogate the points
for i=1:2*n+1
Xp = [Xp,gmeanfunc(X(:,i),dt)];
end
% find the mean of the propogated points
for i=1:2*n+1
s_u = s_u + w_m(i)*Xp(:,i);
end
% find covariance of the propogated points
for i=1:2*n+1
P_t = P_t+w_c(i)*(Xp(:,i)-s_u)*(Xp(:,i)-s_u)';
end
% add the noise term
P_t = P_t+R_t.*dt^2;
end
if val==2
% function to propogate the points through dynamics
% and find the predicted mean and covariance.
Xp=[]; s_u=0; P_t=0;
% propogate the points
for i=1:2*n+1
Xp = [Xp,hmeanfunc(X(:,i))];
end
% find the mean of the propogated points
for i=1:2*n+1
s_u = s_u + w_m(i)*Xp(:,i);
end
% find covariance of the propogated points
for i=1:2*n+1
P_t = P_t+w_c(i)*(Xp(:,i)-s_u)*(Xp(:,i)-s_u)';
end
P_t = P_t + dt^2.*Q_t;
end
end
function snext = gmeanfunc(s,dt)
% function to propagate the dynamics
rho_0 = 3.4e-3;g = 32.2;
k_rho = 22000;
snext=zeros(3,1);
snext(1,1) = s(1) + s(2)*dt;
snext(2,1) = s(2) + dt*(-g+rho_0*exp(-s(1)/k_rho)*s(2)^2/(2*s(3)));
snext(3,1) = s(3);
end
function y = hmeanfunc(s)
y=s(1);
end
function snextt = truthfunc(s,dt)
rho_0 = 3.4e-3;g = 32.2;
k_rho = 22000;
snextt=zeros(3,1);
snextt(1,1)=s(1) + s(2)*dt;
snextt(2,1)=s(2) + dt*(-g+rho_0*exp(-s(1)/k_rho)*s(2)^2/(2*s(3)) + normrnd(0,sqrt(2)));
snextt(3,1)=s(3);
end