-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
65 lines (43 loc) · 1.21 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""
Adaptive Divergence for rapid Adversarial Optimization
"""
from setuptools import setup, find_packages
from codecs import open
import os.path as osp
here = osp.abspath(osp.dirname(__file__))
with open(osp.join(here, 'README.md'), encoding='utf-8') as f:
long_description = f.read()
setup(
name='advopt',
version='1.0.0',
description="""Adversarial Optimization.""",
long_description=long_description,
url='https://github.com/HSE-LAMBDA/rapid-ao',
author='Maxim Borisyak',
author_email='mborisyak at hse dot ru',
maintainer = 'Maxim Borisyak',
maintainer_email = 'mborisyak at hse dot ru',
license='MIT',
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3',
],
keywords=['Adversarial Optimization', 'Bayesian Optimization'],
packages=find_packages('.'),
package_dir={'': '.'},
extras_require={
'dev': ['check-manifest'],
'test': ['nose>=1.3.0'],
},
install_requires=[
'numpy==1.17.4',
'scikit-optimize==0.5.2',
'scipy==1.4.1',
'tqdm==4.40.2',
'torch==1.3.1',
'scikit-learn==0.22',
'catboost==0.21'
],
)