-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
157 lines (125 loc) · 5.12 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
import torch.nn as nn
import torch.sparse
class AttrProxy(object):
"""
Translates index lookups into attribute lookups.
To implement some trick which able to use list of nn.Module in a nn.Module
see https://discuss.pytorch.org/t/list-of-nn-module-in-a-nn-module/219/2
"""
def __init__(self, module, prefix):
self.module = module
self.prefix = prefix
def __getitem__(self, i):
return getattr(self.module, self.prefix + str(i))
class Propagator(nn.Module):
"""
Gated Propogator for GGNN
Using LSTM gating mechanism
"""
def __init__(self, state_dim, n_edge_types, n_nodes):
super(Propagator, self).__init__()
self.n_edge_types = n_edge_types
self.n_nodes = n_nodes
self.reset_gate = nn.Sequential(
nn.Linear(state_dim*3, state_dim),
nn.Sigmoid()
)
self.update_gate = nn.Sequential(
nn.Linear(state_dim*3, state_dim),
nn.Sigmoid()
)
self.tansform = nn.Sequential(
nn.Linear(state_dim*3, state_dim),
nn.Tanh()
)
def forward(self, state_in, state_out, state_cur, A):
A_in = A[:, :, :self.n_nodes*self.n_edge_types]
A_out = A[:, :, self.n_nodes*self.n_edge_types:]
a_in = torch.bmm(A_in, state_in)
a_out = torch.bmm(A_out, state_out)
a = torch.cat((a_in, a_out, state_cur), 2)
r = self.reset_gate(a)
z = self.update_gate(a)
joined_input = torch.cat((a_in, a_out, r * state_cur), 2)
h_hat = self.tansform(joined_input)
output = (1 - z) * state_cur + z * h_hat
return output
class GraphState(nn.Module):
def __init__(self, opt):
super(GraphState, self).__init__()
# 状态维度、标签维度和图状态维度
self.state_dim = opt.state_dim
self.annotation_dim = opt.annotation_dim
self.graphstate_dim = opt.graphstate_dim
self.attention = nn.Sequential(
nn.Linear(self.state_dim + self.annotation_dim, self.state_dim),
nn.Tanh(),
nn.Linear(self.state_dim, 1),
)
self.projection = nn.Sequential(
nn.Linear(self.state_dim + self.annotation_dim, self.state_dim),
nn.Tanh()
)
def forward(self, join_state):
attention_factor = self.attention(join_state)
vertex_contributor = self.projection(join_state)
graph_state = torch.mul(attention_factor, vertex_contributor)
graph_state = torch.sum(graph_state, 2)
return graph_state
class GGNN(nn.Module):
"""
Gated Graph Sequence Neural Networks (GGNN)
Mode: SelectNode
Implementation based on https://arxiv.org/abs/1511.05493
"""
def __init__(self, opt):
super(GGNN, self).__init__()
assert (opt.state_dim >= opt.annotation_dim,
'state_dim must be no less than annotation_dim')
self.state_dim = opt.state_dim
self.annotation_dim = opt.annotation_dim
self.graphstate_dim = opt.graphstate_dim
self.num_classes = opt.num_classes
self.num_nodes = opt.num_nodes
self.hidden_dim = opt.hidden_dim
self.n_edge_types = opt.n_edge_types
self.n_steps = opt.n_steps
for i in range(self.n_edge_types):
# incoming and outgoing edge embedding
in_fc = nn.Linear(self.state_dim, self.state_dim)
out_fc = nn.Linear(self.state_dim, self.state_dim)
self.add_module("in_{}".format(i), in_fc)
self.add_module("out_{}".format(i), out_fc)
self.in_fcs = AttrProxy(self, "in_")
self.out_fcs = AttrProxy(self, "out_")
# Propagation Model
self.propagator = Propagator(self.state_dim, self.n_edge_types, self.num_nodes)
self.graphstate = GraphState(opt)
self.output = nn.Sequential(
nn.Linear(self.graphstate_dim, self.hidden_dim),
nn.Sigmoid(),
nn.Linear(self.hidden_dim, self.num_classes)
)
self._initialization()
def _initialization(self):
for m in self.modules():
if isinstance(m, nn.Linear):
m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)
def forward(self, prop_state, annotation, A):
for i_step in range(self.n_steps):
in_states = []
out_states = []
for i in range(self.n_edge_types):
in_states.append(self.in_fcs[i](prop_state))
out_states.append(self.out_fcs[i](prop_state))
in_states = torch.stack(in_states).transpose(0, 1).contiguous()
in_states = in_states.view(-1, self.n_node*self.n_edge_types, self.state_dim)
out_states = torch.stack(out_states).transpose(0, 1).contiguous()
out_states = out_states.view(-1, self.n_node*self.n_edge_types, self.state_dim)
prop_state = self.propagator(in_states, out_states, prop_state, A)
join_state = torch.cat((prop_state, annotation), 2)
graph_state = self.graphstate(join_state)
output = self.output(graph_state)
return output