forked from NeuroTechSC/Data-Preprocessing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cos_sim.py
216 lines (173 loc) · 7.36 KB
/
cos_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# This Python file uses the following encoding: utf-8
import csv
import pickle
import numpy as np
import mne
import requests
from bs4 import BeautifulSoup
import asyncio
stored_data = 0
return_data = 0
def processing(sample):
# TODO: perform MNE processing here
sample = np.transpose(sample)
ch_names = ['EXG Channel 0', 'EXG Channel 1', 'EXG Channel 2', 'EXG Channel 3', 'EXG Channel 4', 'EXG Channel 5',
'EXG Channel 6']
#Butterworth filter
info = mne.create_info(ch_names, sfreq=250, ch_types='emg')
raw = mne.io.RawArray(sample, info)
sfreq = 500
f_p = 40
# Applying butterworth filter
iirs_params = dict(order=4, ftype='butter', output='sos')
iir_params = mne.filter.construct_iir_filter(iirs_params, f_p, None, sfreq, 'lowpass', return_copy=False,
verbose=True)
filtered_raw = mne.filter.filter_data(sample, sfreq=sfreq, l_freq=None, h_freq=f_p, picks=None, method='iir',
iir_params=iir_params, copy=False, verbose=True)
filtered_data = mne.io.RawArray(filtered_raw, info)
# Setting up data for fitting
ica_info = mne.create_info(7, sfreq, ch_types='eeg')
ica_data = mne.io.RawArray(filtered_data[:][0], ica_info)
# Fitting and applying ICA
ica = mne.preprocessing.ICA(verbose=True)
ica.fit(inst=ica_data)
ica.apply(ica_data)
filtered_raw_numpy = ica_data[:][0]
return_data = filtered_raw_numpy
def splice(filename, channels=8, hz=250, chunkSecs=2):
# prints out True every second
# while(True):
# time.sleep(1)
# print(True)
count = 0
chunks, curr, labels = [], [], [] # all chunks, current reading sample
i = 0
with open(filename, 'r') as file:
f = csv.reader(file)
for i in range(5): # skip first five lines
next(f)
for l in f:
if len(curr) == chunkSecs * hz: # if done with one sample
# if i%2 == 0:
# labels.append(1)
# i+=1
# else:
# labels.append(0)
# i+=1
labels.append(0)
chunks.append((processing(curr))) # add to list of all chunks
# count+=1
curr = [] # prepare for next sample
curr.append([float(x) for x in l[1:channels]]) # add channel recording to current sample
data = np.asarray(chunks) # convert chunks to np array
with open('%s_labels.csv' % filename.split('.')[0], 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(labels)
pickle.dump(data, open('%s.pkl' % filename.split('.')[0], 'wb'))
print('Extracted %d chunks from %s' % (data.shape[0], filename))
print(data.shape)
print(len(labels))
#def recordData(board_id=-1, samples=450000):
#params = BrainFlowInputParams()
#params.serial_port = serial_port
#board = BoardShim(board_id, params)
#board.prepare_session()
#board.start_stream(samples + 1)
#time.sleep(2.5)
#
#data = board.get_board_data()
# for i in range(0, 5):
# print('try')
# print(data)
# data = board.get_board_data()
# print(data)
# board.stop_stream()
# board.release_session()
#
# data = data[:7].T
# return data
def web_parser():
word_list = ['Seattle', 'San Francisco', 'Los Angeles', 'Berkeley', 'Houston', 'Chicago',
'Davis', 'Oakland', 'Santa Cruz', 'San Jose', 'Austin', 'Denver',
'Boston', 'Phoenix', 'Indianapolis', 'Portland', 'Las Vegas', 'Detroit']
word_diction = {}
for i in word_list:
page = requests.get('https://en.wiktionary.org/wiki/' + i)
soup = BeautifulSoup(page.text, 'html.parser')
IPA_list = soup.findAll(class_='IPA')
#print(i)
for j in IPA_list:
if str(j).count('/') == 3:
for y in j:
word_diction[i] = y
compare('/ˌsæn ɚɹænˈsɪskoʊ/', word_diction)
print(word_diction)
def compare(input_IPA, word_diction):
articulation = {'ŋ':0,'k':0,'ɡ':0,'x':0,'w':0,'h':0,'tʃ':1,'dʒ':1,'tʃ':1,'dʒ':1,'ʃ':1,'ʒ':1,'ɹ':1,'j':1,'n':2,'t':2,'d':2,'s':2,'z':2,'l':2,'θ':3,'ð':3,'m':4,'p':4,'b':4,'f':4,'v':4, 'ç': 1, 'ɾ': 1}
manor = {'ŋ':2,'k':0,'ɡ':0,'x':0,'w':-1,'h':0,'tʃ':1,'dʒ':1,'tʃ':1,'dʒ':0,'ʃ':1,'ʒ':0,'ɹ':-1,'j':-1,'n':2,'t':1,'d':0,'s':1,'z':0,'l':-1,'θ':1,'ð':0,'m':2,'p':1,'b':0,'f':1,'v':0, 'ç':3 , 'ɾ': 4}
occlusion = {'ŋ': -1, 'k': 0, 'ɡ': 0, 'x': 1, 'w': 2, 'h': 1, 'tʃ': 0, 'dʒ': 0,
'ʃ': 1, 'ʒ': 1, 'ɹ': 2, 'j': 2, 'n': -1, 't': 0, 'd': 0, 's': 1, 'z': 1, 'l': 2, 'θ': 1,'ð':1,'m':-1,'p':0,'b':0,'f':1,'v':1, 'ç': -1, 'ɾ':-1}
IPA_vowels = ['ɪ', 'e', 'æ', 'ʌ', 'ʊ', 'ɒ', 'ə', 'o', 'i', 'ɐ', 'ɝ','u', 'a', 'ɛ', 'ɚ', 'ô', 'ɔ']
IPA_symbols = ['ˈ', ':', '.', '̃.', 'ː', '̩', 'ˌ', ' ', '̃', '/', '\\']
#back = 1, central = 2, front = 3
placement = {'ɪ':2.8, 'e': 3, 'æ': 3, 'ʌ': 1, 'ʊ': 1.25, 'ɒ': 1, 'ə': 2, 'ɚ': 2, 'o': 1, 'i': 3, 'ɐ': 2, 'ɝ': 2 ,'u': 1, 'a': 3 , 'ɛ': 3, 'ô': 1, 'ɔ':1}
rank = {'ɪ':2, 'e': 3, 'æ': 6, 'ʌ': 5, 'ʊ': 2, 'ɒ': 7, 'ə': 4, 'ɚ':4, 'o': 3, 'i': 1, 'ɐ': 6.5, 'ɝ': 6, 'u': 1, 'a': 7, 'ɛ': 5, 'ô': 3 , 'ɔ':5}
subranks = {'ɪ':1.5, 'e': 2, 'æ': 4.25, 'ʌ': 15, 'ʊ': 2, 'ɒ': 16, 'ə': 8, 'o': 13, 'i': 1, 'ɐ': 10, 'ɝ': 9, 'u': 12, 'a': 5, 'ɛ':4, 'ɚ': 8, 'ô': 13,'ɔ': 15}
diction_vectors = {}
for key in word_diction.values():
word_vectors = np.zeros((len(key), 3))
for letters_index in range(len(key)):
if key[letters_index] not in IPA_vowels and key[letters_index] not in IPA_symbols:
word_vectors[letters_index][0] = articulation[key[letters_index]]
word_vectors[letters_index][1] = manor[key[letters_index]]
word_vectors[letters_index][2] = occlusion[key[letters_index]]
elif key[letters_index] not in IPA_symbols:
word_vectors[letters_index][0] = placement[key[letters_index]]
word_vectors[letters_index][1] = rank[key[letters_index]]
word_vectors[letters_index][2] = subranks[key[letters_index]]
else :
word_vectors[letters_index][0] = -10
word_vectors[letters_index][1] = -10
word_vectors[letters_index][2] = -10
diction_vectors[key] = word_vectors
# print("!")
# print(word_vectors)
#Vectorizes inputIPA
word_vectors_input = np.zeros((len(input_IPA), 3))
for letters_index in range(len(input_IPA)):
if input_IPA[letters_index] not in IPA_vowels and input_IPA[letters_index] not in IPA_symbols:
word_vectors_input[letters_index][0] = articulation[input_IPA[letters_index]]
word_vectors_input[letters_index][1] = manor[input_IPA[letters_index]]
word_vectors_input[letters_index][2] = occlusion[input_IPA[letters_index]]
elif input_IPA[letters_index] not in IPA_symbols:
word_vectors_input[letters_index][0] = placement[input_IPA[letters_index]]
word_vectors_input[letters_index][1] = rank[input_IPA[letters_index]]
word_vectors_input[letters_index][2] = subranks[input_IPA[letters_index]]
else :
word_vectors_input[letters_index][0] = -10
word_vectors_input[letters_index][1] = -10
word_vectors_input[letters_index][2] = -10
word_vectors_input = np.true_divide(word_vectors_input, 1.05) #make the matrix look similar to predictive matrices coming from ML model.
print("Matrix of the input_IPA is :", word_vectors_input)
min_val = 9999
min_key = 0
sim = 9999
for key in diction_vectors.keys():
a, b = diction_vectors[key], word_vectors_input
if len(a) == len(b):
sim = np.linalg.norm(a-b)
print(sim)
if sim < min_val:
min_key = key
min_val = sim
print(min_key)
#
# print("!!")
# a, b = diction_vectors['/siˈætl̩/'], word_vectors
# sim = np.linalg.norm(a-b)
# print(sim)
# sim_sparse = 1 - sp.distance.cdist(diction_vectors(['/siˈætl̩/']), word_vectors, 'cosine')
# print(sim_sparse)
#splice("OpenBCI-RAW-2020-11-16_01-42-35.txt")
web_parser()
#recordData()