forked from MCG-NJU/AdaMixer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sampling_3d_operator.py
108 lines (81 loc) · 3.3 KB
/
sampling_3d_operator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
from torch._C import dtype
import torch.nn as nn
import torch.nn.functional as F
def sampling_each_level(sample_points: torch.Tensor,
value: torch.Tensor,
weight=None,
n_points=1):
B1, n_queries, _t, n_groups_points, _ = sample_points.shape
assert _t == 1
B2, C_feat, H_feat, W_feat = value.shape
assert B1 == B2
B = B1
n_groups = n_groups_points//n_points
n_channels = C_feat//n_groups
sample_points = sample_points \
.view(B, n_queries, n_groups, n_points, 2) \
.permute(0, 2, 1, 3, 4).flatten(0, 1)
sample_points = sample_points*2.0-1.0
# `sampling_points` now has the shape [B*n_groups, n_queries, n_points, 2]
value = value.view(B*n_groups, n_channels, H_feat, W_feat)
out = F.grid_sample(
value, sample_points,
mode='bilinear', padding_mode='zeros', align_corners=False,
)
# `out`` now has the shape [B*n_groups, C, n_queries, n_points]
if weight is not None:
weight = weight.view(B, n_queries, n_groups, n_points) \
.permute(0, 2, 1, 3).flatten(0, 1).unsqueeze(1)
# `weight`` has the shape [B*n_groups, 1, n_queries, n_points]
out *= weight
return out \
.view(B, n_groups, n_channels, n_queries, n_points) \
.permute(0, 3, 1, 4, 2)
# `out`` has shape [B, n_queries, n_groups, n_points, n_channels]
def translate_to_linear_weight(ref: torch.Tensor, num_total,
tau=2.0, featmap_strides=None):
if featmap_strides is None:
grid = torch.arange(num_total, device=ref.device, dtype=ref.dtype).view(
*[len(ref.shape)*[1, ]+[-1, ]])
else:
grid = torch.as_tensor(
featmap_strides, device=ref.device, dtype=ref.dtype)
grid = grid.log2().view(*[len(ref.shape)*[1, ]+[-1, ]])
ref = ref.unsqueeze(-1).clone()
l2 = (ref-grid).pow(2.0).div(tau).abs().neg()
weight = torch.softmax(l2, dim=-1)
return weight
def sampling_3d(
sample_points: torch.Tensor,
multi_lvl_values,
featmap_strides,
n_points: int = 1,
num_levels: int = None,
tau=2.0,
):
B, n_queries, _t, n_groups_points, _ = sample_points.shape
assert _t == 1
B, C_feat, _, _ = multi_lvl_values[0].shape
n_groups = n_groups_points//n_points
n_channels = C_feat//n_groups
if num_levels is None:
num_levels = len(featmap_strides)
sample_points_xy = sample_points[..., 0:2]
sample_points_z = sample_points[..., 2].clone()
sample_points_lvl_weight = translate_to_linear_weight(
sample_points_z, num_levels,
tau=tau, featmap_strides=featmap_strides)
sample_points_lvl_weight_list = sample_points_lvl_weight.unbind(-1)
out = sample_points.new_zeros(
B, n_queries, n_groups, n_points, n_channels)
for i in range(num_levels):
value = multi_lvl_values[i]
lvl_weights = sample_points_lvl_weight_list[i]
stride = featmap_strides[i]
mapping_size = value.new_tensor(
[value.size(3), value.size(2)]).view(1, 1, 1, 1, -1) * stride
normalized_xy = sample_points_xy/mapping_size
out += sampling_each_level(normalized_xy, value,
weight=lvl_weights, n_points=n_points)
return out, None