-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBicycle_Model.py
204 lines (168 loc) · 6.41 KB
/
Bicycle_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# -----------------
# USER INSTRUCTIONS
#
# Write a function in the class robot called move()
#
# that takes self and a motion vector (this
# motion vector contains a steering* angle and a
# distance) as input and returns an instance of the class
# robot with the appropriate x, y, and orientation
# for the given motion.
#
# *steering is defined in the video
# which accompanies this problem.
#
# For now, please do NOT add noise to your move function.
#
# Please do not modify anything except where indicated
# below.
#
# There are test cases which you are free to use at the
# bottom. If you uncomment them for testing, make sure you
# re-comment them before you submit.
from math import *
import random
# --------
#
# the "world" has 4 landmarks.
# the robot's initial coordinates are somewhere in the square
# represented by the landmarks.
#
# NOTE: Landmark coordinates are given in (y, x) form and NOT
# in the traditional (x, y) format!
landmarks = [[0.0, 100.0], [0.0, 0.0], [100.0, 0.0], [100.0, 100.0]] # position of 4 landmarks
world_size = 100.0 # world is NOT cyclic. Robot is allowed to travel "out of bounds"
max_steering_angle = pi / 4 # You don't need to use this value, but it is good to keep in mind the limitations of a real car.
# ------------------------------------------------
#
# this is the robot class
#
class robot:
# --------
# init:
# creates robot and initializes location/orientation
#
def __init__(self, length=10.0):
self.x = random.random() * world_size # initial x position
self.y = random.random() * world_size # initial y position
self.orientation = random.random() * 2.0 * pi # initial orientation
self.length = length # length of robot
self.bearing_noise = 0.0 # initialize bearing noise to zero
self.steering_noise = 0.0 # initialize steering noise to zero
self.distance_noise = 0.0 # initialize distance noise to zero
def __repr__(self):
return '[x=%.6s y=%.6s orient=%.6s]' % (str(self.x), str(self.y), str(self.orientation))
# --------
# set:
# sets a robot coordinate
#
def set(self, new_x, new_y, new_orientation):
if new_orientation < 0 or new_orientation >= 2 * pi:
raise ValueError, 'Orientation must be in [0..2pi]'
self.x = float(new_x)
self.y = float(new_y)
self.orientation = float(new_orientation)
# --------
# set_noise:
# sets the noise parameters
#
def set_noise(self, new_b_noise, new_s_noise, new_d_noise):
# makes it possible to change the noise parameters
# this is often useful in particle filters
self.bearing_noise = float(new_b_noise)
self.steering_noise = float(new_s_noise)
self.distance_noise = float(new_d_noise)
############# ONLY ADD/MODIFY CODE BELOW HERE ###################
# --------
# move:
# move along a section of a circular path according to motion
#
def move(self, motion): # Do not change the name of this function
# ADD CODE HERE
alpha = motion[0]
d = motion[1]
beta = d*1.0/self.length*tan( alpha )
if abs(beta) < 0.001:
x = self.x + d*cos( self.orientation )
y = self.y + d*sin( self.orientation)
orientation = ( self.orientation + beta ) % (2*pi)
else:
R = d/beta
xc = self.x - R*sin( self.orientation )
yc = self.y + R*cos( self.orientation )
x = xc + R*sin( self.orientation + beta )
y = yc - R*cos( self.orientation + beta )
orientation = (self.orientation + beta) % (2*pi)
result = robot()
result.set(x, y, orientation)
result.set_noise(self.bearing_noise, self.steering_noise, self.distance_noise)
return result # make sure your move function returns an instance
# of the robot class with the correct coordinates.
############## ONLY ADD/MODIFY CODE ABOVE HERE ####################
## IMPORTANT: You may uncomment the test cases below to test your code.
## But when you submit this code, your test cases MUST be commented
## out. Our testing program provides its own code for testing your
## move function with randomized motion data.
## --------
## TEST CASE:
##
## 1) The following code should print:
## Robot: [x=0.0 y=0.0 orient=0.0]
## Robot: [x=10.0 y=0.0 orient=0.0]
## Robot: [x=19.861 y=1.4333 orient=0.2886]
## Robot: [x=39.034 y=7.1270 orient=0.2886]
##
##
# length = 20.
# bearing_noise = 0.0
# steering_noise = 0.0
# distance_noise = 0.0
#
# myrobot = robot(length)
# myrobot.set(0.0, 0.0, 0.0)
# myrobot.set_noise(bearing_noise, steering_noise, distance_noise)
#
# motions = [[0.0, 10.0], [pi / 6.0, 10], [0.0, 20.0]]
#
# T = len(motions)
#
# print 'Robot: ', myrobot
# for t in range(T):
# myrobot = myrobot.move(motions[t])
# print 'Robot: ', myrobot
##
## IMPORTANT: You may uncomment the test cases below to test your code.
## But when you submit this code, your test cases MUST be commented
## out. Our testing program provides its own code for testing your
## move function with randomized motion data.
## 2) The following code should print:
## Robot: [x=0.0 y=0.0 orient=0.0]
## Robot: [x=9.9828 y=0.5063 orient=0.1013]
## Robot: [x=19.863 y=2.0201 orient=0.2027]
## Robot: [x=29.539 y=4.5259 orient=0.3040]
## Robot: [x=38.913 y=7.9979 orient=0.4054]
## Robot: [x=47.887 y=12.400 orient=0.5067]
## Robot: [x=56.369 y=17.688 orient=0.6081]
## Robot: [x=64.273 y=23.807 orient=0.7094]
## Robot: [x=71.517 y=30.695 orient=0.8108]
## Robot: [x=78.027 y=38.280 orient=0.9121]
## Robot: [x=83.736 y=46.485 orient=1.0135]
##
##
length = 20.
bearing_noise = 0.0
steering_noise = 0.0
distance_noise = 0.0
myrobot = robot(length)
myrobot.set(0.0, 0.0, 0.0)
myrobot.set_noise(bearing_noise, steering_noise, distance_noise)
motions = [[0.2, 10.] for row in range(10)]
T = len(motions)
print 'Robot: ', myrobot
for t in range(T):
myrobot = myrobot.move(motions[t])
print 'Robot: ', myrobot
## IMPORTANT: You may uncomment the test cases below to test your code.
## But when you submit this code, your test cases MUST be commented
## out. Our testing program provides its own code for testing your
## move function with randomized motion data.