-
Notifications
You must be signed in to change notification settings - Fork 912
/
config-hptune.yaml
71 lines (70 loc) · 1.73 KB
/
config-hptune.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
trainingInput:
scaleTier: BASIC_GPU
hyperparameters:
goal: MINIMIZE
hyperparameterMetricTag: loss
maxTrials: 53
maxParallelTrials: 7
params:
- parameterName: hp-conv1
type: INTEGER
minValue: 6
maxValue: 18
scaleType: UNIT_LINEAR_SCALE
- parameterName: hp-conv2
type: INTEGER
minValue: 12
maxValue: 40
scaleType: UNIT_LINEAR_SCALE
- parameterName: hp-conv3
type: INTEGER
minValue: 30
maxValue: 64
scaleType: UNIT_LINEAR_SCALE
- parameterName: hp-lr2
type: INTEGER
minValue: 500
maxValue: 5000
scaleType: UNIT_LINEAR_SCALE
# best (job153):
#"trialId": "44",
# "hyperparameters": {
# "hp-conv3": "64",
# "hp-conv2": "38",
# "hp-lr2": "601",
# "hp-conv1": "15"
# },
# "finalMetric": {
# "trainingStep": "10000",
# "objectiveValue": 1.48850083351
# }
#},
# => final accuracy 0.9954
# => at 2000 iterations acc=0.9950 loss=1.663
# => at 3000 iterations acc=0.9953 loss=1.526
#{
# "trialId": "43",
# "hyperparameters": {
# "hp-conv2": "39",
# "hp-lr2": "541",
# "hp-conv1": "17",
# "hp-conv3": "63"
# },
# "finalMetric": {
# "trainingStep": "10000",
# "objectiveValue": 1.5163513422
# }
# => final accuracy 0.9944
# => at 2000 iterations acc=0.9942 loss=1.567
# => at 3000 iterations acc=0.9942 loss=1.496
#
# Other params:
# learning rate lr1=0.02-0.0001-???
# conv layers: with patch sizes 6x6 5x5 4x4 with batch norm
# dense layer: 200 batch norm
# dropout 0.3
# bnexp 0.993
# activation: relu
#
# results: These two trials actually hit 0.9950 accuracy in 2000 iterations only
# finally making true on the promise of batch normalisation to speed up training.