-
Notifications
You must be signed in to change notification settings - Fork 0
/
cuda.py
177 lines (131 loc) · 6.1 KB
/
cuda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import math
import numpy as np
from numba import cuda
@cuda.jit
def _calc_elem_delta(curr_image, picture, answer):
sum = 0
x, y = cuda.grid(2)
picr, picg, picb = curr_image[x, y, :]
originr, origing, originb = picture[x, y, :]
if (originr + picr) / 2 < 128:
answer[x + curr_image.shape[0] * y] = (
2 * (originr - picr)**2 + 4 * (origing - picg)**2 + 3 * (originb - picb)**2
)
else:
answer[x + curr_image.shape[0] * y] = (
3 * (originr - picr) ** 2 + 4 * (origing - picg) ** 2 + 3 * (originb - picb) ** 2
)
def _calc_delta(device_pic, image):
# answer = np.zeros((image.shape[1], 3), dtype=np.int64)
answer = np.zeros((image.shape[1] * 3), dtype=np.int64)
d_image = cuda.to_device(image)
d_answer = cuda.to_device(answer)
# Set the number of threads in a block
TPB = 30
# threadsperblock = (TPB, TPB, 1)
threadsperblock = (TPB, 1)
# Calculate the number of thread blocks in the grid
# blockspergrid_x = int(math.ceil(image.shape[0] / threadsperblock[0]))
blockspergrid_y = int(math.ceil(image.shape[1] / threadsperblock[0]))
blockspergrid_z = 3
# blockspergrid = (blockspergrid_x, blockspergrid_y, blockspergrid_z)
blockspergrid = (blockspergrid_y, blockspergrid_z)
_calc_elem_delta[blockspergrid, threadsperblock](d_image, device_pic, d_answer)
# print("inner", end - start)
res = d_answer.copy_to_host()
return np.sum(res)
# return sum_reduce(d_answer)
# =================================
# =================================
# =================================
@cuda.jit
def _gen_elem_picture(curr_image, picture_rules):
x, y = cuda.grid(2)
for rule in picture_rules:
alpha = rule[9]
# -- Rectangle
if rule[0] == 0:
cx, cy = int((rule[1] + rule[3]) // 2), int((rule[2] + rule[4]) // 2)
# simple "big radius check"
r_big = (rule[1] - cx) ** 2 + (rule[2] - cy) ** 2
if (y - cx) ** 2 + (x - cy) ** 2 > r_big:
continue
# get rotated coordinates
x0 = int((rule[1] - cx) * math.cos(alpha) - (rule[2] - cy) * math.sin(alpha) + cx)
y0 = int((rule[1] - cx) * math.sin(alpha) + (rule[2] - cy) * math.cos(alpha) + cy)
x1 = int((rule[3] - cx) * math.cos(alpha) - (rule[4] - cy) * math.sin(alpha) + cx)
y1 = int((rule[3] - cx) * math.sin(alpha) + (rule[4] - cy) * math.cos(alpha) + cy)
x2 = int((rule[1] - cx) * math.cos(alpha) - (rule[4] - cy) * math.sin(alpha) + cx)
y2 = int((rule[1] - cx) * math.sin(alpha) + (rule[4] - cy) * math.cos(alpha) + cy)
x3 = int((rule[3] - cx) * math.cos(alpha) - (rule[2] - cy) * math.sin(alpha) + cx)
y3 = int((rule[3] - cx) * math.sin(alpha) + (rule[2] - cy) * math.cos(alpha) + cy)
# triangle_first:
side_1 = (y - x1) * (y0 - y1) - (x0 - x1) * (x - y1) > 0
side_2 = (y - x2) * (y1 - y2) - (x1 - x2) * (x - y2) > 0
side_3 = (y - x0) * (y2 - y0) - (x2 - x0) * (x - y0) > 0
if (side_1 == side_2 == side_3):
curr_image[x, y, :] = rule[5], rule[6], rule[7]
break
# # triangle_second:
side_1 = (y - x1) * (y3 - y1) - (x3 - x1) * (x - y1) > 0
side_2 = (y - x0) * (y1 - y0) - (x1 - x0) * (x - y0) >= 0
side_3 = (y - x3) * (y0 - y3) - (x0 - x3) * (x - y3) > 0
if (side_1 == side_2 == side_3):
curr_image[x, y, :] = rule[5], rule[6], rule[7]
break
# -- Triangle
if rule[0] == 1:
ax, ay = rule[1], rule[2]
bx, by = rule[3], rule[4]
cx, cy = rule[5], rule[6]
side_1 = (y - bx) * (ay - by) - (ax - bx) * (x - by) > 0
side_2 = (y - cx) * (by - cy) - (bx - cx) * (x - cy) > 0
side_3 = (y - ax) * (cy - ay) - (cx - ax) * (x - ay) > 0
if side_1 == side_2 == side_3:
curr_image[x, y, :] = rule[7], rule[8], rule[9]
break
# -- Ellipse
if rule[0] == 2:
cx, cy = rule[1], rule[2]
a, b = rule[3], rule[4]
mask = (
((y - cx) * math.cos(alpha) + (x - cy) * math.sin(alpha)) ** 2 / (a * a) +
((y - cx) * math.sin(alpha) - (x - cy) * math.cos(alpha)) ** 2 / (b * b)
< 1
)
if mask:
curr_image[x, y, :] = rule[5], rule[6], rule[7]
break
def _gen_picture(picture):
lparts = len(picture.parts)
decoded_parts = np.zeros((lparts, 10))
for i, part in enumerate(picture.parts):
decoded_parts[lparts - 1 - i] = part._get_repr()
d_image = cuda.to_device(picture.picture)
d_parts = cuda.to_device(decoded_parts)
# Set the number of threads in a block
TPB = 20
# threadsperblock = (TPB, TPB, 1)
threadsperblock = (TPB, TPB)
# Calculate the number of thread blocks in the grid
blockspergrid_x = int(math.ceil(picture.w / threadsperblock[0]))
blockspergrid_y = int(math.ceil(picture.h / threadsperblock[1]))
# blockspergrid = (blockspergrid_x, blockspergrid_y, blockspergrid_z)
blockspergrid = (blockspergrid_x, blockspergrid_y)
_gen_elem_picture[blockspergrid, threadsperblock](d_image, d_parts)
# print("inner", end - start)
new_image = d_image.copy_to_host()
picture.picture = new_image
# ============ instant score calculation
# =======================================
answer = np.zeros((picture.picture.shape[0] * picture.picture.shape[1]), dtype=np.int64)
d_answer = cuda.to_device(answer)
# Calculate the number of thread blocks in the grid
blockspergrid_x = int(math.ceil(picture.picture.shape[0] / threadsperblock[0]))
blockspergrid_y = int(math.ceil(picture.picture.shape[1] / threadsperblock[0]))
threadsperblock = (TPB, TPB)
blockspergrid = (blockspergrid_x, blockspergrid_y)
_calc_elem_delta[blockspergrid, threadsperblock](picture.d_picture, d_image, d_answer)
res = d_answer.copy_to_host()
picture._score = np.sum(res)
return picture