-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_and_eval.py
32 lines (30 loc) · 1.74 KB
/
train_and_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import sys
from utils.train_options import TrainOptions
from networks.kd_model import NetModel
import logging
import warnings
warnings.filterwarnings("ignore")
from torch.utils import data
from dataset.datasets import CSDataSet
import numpy as np
IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32)
args = TrainOptions().initialize()
h, w = map(int, args.input_size.split(','))
trainloader = data.DataLoader(CSDataSet(args.data_dir, './dataset/list/cityscapes/train.lst', max_iters=args.num_steps*args.batch_size, crop_size=(h, w),
scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN),
batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True)
valloader = data.DataLoader(CSDataSet(args.data_dir, './dataset/list/cityscapes/val.lst', crop_size=(1024, 2048), mean=IMG_MEAN, scale=False, mirror=False),
batch_size=1, shuffle=False, pin_memory=True)
save_steps = int(2975/args.batch_size)
model = NetModel(args)
for epoch in range(args.start_epoch, args.epoch_nums):
for step, data in enumerate(trainloader, args.last_step+1):
model.adjust_learning_rate(args.lr_g, model.G_solver, step)
model.adjust_learning_rate(args.lr_d, model.D_solver, step)
model.set_input(data)
model.optimize_parameters()
model.print_info(epoch, step)
if (step > 1) and ((step % save_steps == 0) and (step > args.num_steps - 1000)) or (step == args.num_steps - 1):
mean_IU, IU_array = model.evalute_model(model.student, valloader, '0', '512,512', 19, True)
model.save_ckpt(epoch, step, mean_IU, IU_array)
logging.info('[val 512,512] mean_IU:{:.6f} IU_array:{}'.format(mean_IU, IU_array))