-
Notifications
You must be signed in to change notification settings - Fork 1
/
Accessory_Tools.Merge_Connected_Features_Tool.pyt.xml
211 lines (205 loc) · 19.4 KB
/
Accessory_Tools.Merge_Connected_Features_Tool.pyt.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
<?xml version="1.0"?>
<metadata xml:lang="en"><Esri><CreaDate>20210621</CreaDate><CreaTime>09322300</CreaTime><ArcGISFormat>1.0</ArcGISFormat><SyncOnce>TRUE</SyncOnce><ModDate>20240624</ModDate><ModTime>11201500</ModTime><scaleRange><minScale>150000000</minScale><maxScale>5000</maxScale></scaleRange><ArcGISProfile>ItemDescription</ArcGISProfile></Esri><tool name="Merge_Connected_Features_Tool" displayname="Merge Connected Features Tool" toolboxalias="AccessoryTools" xmlns=""><arcToolboxHelpPath>c:\program files\arcgis\pro\Resources\Help\gp</arcToolboxHelpPath><parameters><param name="inFeat" displayname="Input Polygon Features" type="Required" direction="Input" datatype="Feature Layer" expression="inFeat"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is a feature class delineates the bathymetric high </SPAN><SPAN STYLE="font-weight:bold;">or low </SPAN><SPAN STYLE="font-weight:bold;">features.</SPAN></P></DIV></DIV></DIV></dialogReference><pythonReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is a feature class delineates the bathymetric high </SPAN><SPAN STYLE="font-weight:bold;">or low </SPAN><SPAN STYLE="font-weight:bold;">features.</SPAN></P></DIV></DIV></DIV></pythonReference></param><param name="dissolveFeat2" displayname="Output Features After Merging Features Connected by Shared Points" type="Required" direction="Output" datatype="Feature Class" expression="dissolveFeat2"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is </SPAN><SPAN STYLE="font-weight:bold;">the output feature class after merging features connected by shared points.</SPAN></P></DIV></DIV></DIV></dialogReference><pythonReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN STYLE="font-weight:bold;">This is </SPAN><SPAN STYLE="font-weight:bold;">the output feature class after merging features connected by shared points.</SPAN></P></DIV></DIV></DIV></pythonReference></param></parameters><summary><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Two or multiple polygons that are connected through a shared point may be considered as a single feature. This tool is used to merge (or dissolve) these connected polygons into larger polygons. The tool identif</SPAN><SPAN>ies</SPAN><SPAN> those features that are connected through shared points</SPAN><SPAN> and then </SPAN><SPAN>generates a new featureclass after merging</SPAN><SPAN> these</SPAN><SPAN> connected features</SPAN><SPAN>.</SPAN></P><P><SPAN>The new featureclass can then be used as input to</SPAN><SPAN> the Connect Nearby Linear Features Tool and the Connect Nearby Linear HF Features Too for further connection of linear nearby (but not spatial connected) features. The new </SPAN><SPAN> </SPAN><SPAN>featureclass can also be directly used as input to </SPAN><SPAN>the AddAttributes toolset and the ClassificationFeatures toolset to generate attributes and assign feature types. Note that this tool can be used for both bathymetric high and bathymetric low features.</SPAN></P></DIV></DIV></DIV></summary><scriptExamples><scriptExample><title>Python script code sample</title><code>import arcpy
from arcpy import env
from arcpy.sa import *
arcpy.CheckOutExtension("Spatial")
# import the python toolbox
arcpy.ImportToolbox("C:/semi_automation_tools/User_Guide/Tools/Accessory_Tools.pyt")
env.workspace = 'C:/semi_automation_tools/testSampleCode/Gifford.gdb'
env.overwriteOutput = True
# specify input and output parameters of the tool
inFeat = 'po10_1_05std_300000m2_BL'
mergedFeatPoint = 'po10_1_05std_300000m2_BL_joinedPoint'
# execute the tool with user-defined parameters
arcpy.AccessoryTools.Merge_Connected_Features_Tool(inFeat,mergedFeatPoint)
</code></scriptExample></scriptExamples></tool><dataIdInfo><idCitation><resTitle>Merge Connected Features Tool</resTitle></idCitation><searchKeys><keyword>This tool merges polygon features that are connected through shared points.</keyword></searchKeys><idCredit>(c) Commonwealth of Australia (Geoscience Australia) 2024</idCredit><resConst><Consts><useLimit><DIV STYLE="text-align:Left;"><DIV><P><SPAN><SPAN>Creative Commons Attribution 4.0 International Licence</SPAN></SPAN></P></DIV></DIV></useLimit></Consts></resConst></dataIdInfo><distInfo><distributor><distorFormat><formatName>ArcToolbox Tool</formatName></distorFormat></distributor></distInfo><mdHrLv><ScopeCd value="005"/></mdHrLv><mdDateSt Sync="TRUE">20240624</mdDateSt><Binary><Thumbnail><Data EsriPropertyType="PictureX">/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsK
CwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQU
FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAESAQUDASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U686
+G/7Qvw/+Lvi3xZ4Y8Ja/wD2trnhS4+y6za/Y7iH7LJvdNu6SNVf5o3GULDj3Fei1+cX/BO+Z7f9
qX9ryWM7XTWnZTjoRd3pFAH6O0V+Uf7O/wAev21f2p/hr4guPBHinw3ZjQb6QTeIdWsraO6vH2Bl
s4Ykt2iGFwdzxjJkH7zsPXf2f/21PiB8XP2D/i3421Oe3sPiD4Ltb2GLVrW1jCSyJbCWKYwsDHvB
JBXbtO0HHJAAPv8Aor8r/hf8Wv26Pjp8B7b4meFvEnhu00XSopyIbiwthqHiDyXYyOE+ztGMENGA
phzs7n5j6dq/7dviz4hf8E39f+L/AIauYPDHxB0i7g0y9ktbeOeGK4FzArskcyuu14pVbDA7d5GT
gGgD9AqxfGHjTQfh74dvNe8TaxZ6Fo1ou+e+v5liiQfUnqewHJ7V8ufGL48eOvCv/BNqx+Kel659
l8eSeGtF1B9W+yQPmed7YTP5TIYvmEj8bMDPAGBXx1+394i+KPxM/Yp+BvjrXPEtlfeGNTt7STV7
NreOK5udWeKdkuAEhAVBGJFKq6jLD5D1AB+vdjfQ6lY293bP5tvcRrLFJgjcrAEHB9jU9eL/ALIu
g/E7w98FdLtvix4i0zxP4idvNtrvSo1SJLIxx+TEQIYvmX5snaev3jXtFABRRRQAUUUUAFFFIzbV
LegzQB5b8Z/2ovhX+z39mX4geNNP8P3Fwu+KzYSXF068jeIIVeTbkEbtuMjGaZ8GP2qPhR+0I1xH
8P8Axrp+v3VupeWy2yW10qggF/ImVJCuSBuC45HNfAf/AATz+Enhj9rz4vfGD4yfFLS7fxlqCauL
ex03V4xPaw7w5y8TZVwkYijRWyFCnjO0h3/BR/4ReGP2TfH/AMJfjP8AC3SbTwXq0OsfZrux0aBb
e2m2KHVhEmFXcgljcAAMrjPfIB+qFFfG3xD/AGhPHmjf8FIPhb8L9P137P4C1zQJL6+0j7Hbt5so
hvWDeaYzKvMMfCuB8vTk5g+OX7QvxA8Hf8FDvg78MtH1/wCyeB9f0xbjUtL+xW7+fIWuxnzWjMi8
RR8KwHy+5yAfV9x8QvDVr41tPCEmt2Q8UXVu93FpCyhrkwpjdIUHKr8w5OAc8Zroa/GvQ/Bv7Qtx
/wAFNPFumaT478P23xMjthcXmsywIbWTTPLt2WBV+yEbxCYVz5YOVPz/AMR9o8c/tGftOeLv24fi
V8GPhTrukfZLeFGs5NbsYBb6LCILd5LjzFiMjtvkCgOJR+9+4eCoB+llFfBv7MP7TXxo8H/tRXX7
P37QFxpet67eWL3+j+INMhjiFxhTJtHlpGrRlElwTGjBoiCDnI6z9iP4/ePfi98df2i/D3i3Xv7W
0fwnrqWWi232O3h+ywm4vEK7o41Z/lijGXLH5evJyAfY1c94X+IXhrxtfazaeH9bstZn0a4FpqAs
ZRKtvMVDeWzDjcARkZyM84r4d+EHxy+Ofxs+LX7VPgHRPG1na6l4aupLXwlJqFhbJBpzC8mQb2S3
ZpB5aBfnWT16815D/wAEc9A+KU2seIdU0/xJpcHwvt9Tmi1vRZI1N3dXxtx5UsbeQSEGUyBKnQ/K
e4B+sNFFFABRRRQAUUUUAFFFFABXwH+wr8NfF/hH9oz9qfUtd8K63ounazqzyaZeajp00EN8v2m8
bdA7qBIMMpypPDD1FfflFAHw9/wSZ+HPij4b/s/+L7DxZ4Y1fwtqdx4ouJ47bWdPls5pYjbW4Vws
iqSuQwB6ZB968H/Zl+G/i34b/wDBPr9qG18XeF9a8LXV1FfzwQ61p81m80f2MDeiyKpZcgjI44r9
Wa4r41fDf/hcHwj8X+CP7R/sj/hINMn037d5HneR5iFd/l7l3YznG4Z9RQB+XH7MP7Q/7Qfwv/ZB
0Pwp4R+CV5480fXIr+Pw74n0kSzpY77iVJVuoY435WUuwLtGCpHJANexeGP2FfHXhX/gmX4t+Gkd
vDL8RNfuF1+bSvPUqkqywMLUP93zPKt1HXbvJG7HzV9h/st/An/hmr4G+Hfh1/bn/CR/2Qbg/wBp
fZPsvm+bcSTf6ve+3HmbfvHOM8ZxXq9AH4/eLvF37SnxN/Yxj+Cdv+zz4h0Wz8P2FraalrVxb3Im
voLaRDGltatErO5ZI8lDKMBjhRyvq37RvwD+IPjr/gl58KPDei+E9Uu/E/h8ade3+g/ZXW/REgmj
dRARvLq0q5QDdjPHFfpXRQB4x+yV8TvFPxU+D9nqHi34dar8M9SsZP7OTSdYMnnyxxRxgT4khiZQ
xLDG3+Hqa9noooAKKKKACiiigAooooA/MWL4c/HT/gnn8dfG3iH4cfD66+LXwo8XXRun0nSy73du
2XZE2xo8kbRmR13iN0dMZw2NrdU+H/x1/wCCi3xm8Fan8Qvh1d/CL4S+Fbv7U+m6s0iXdy2UMigS
JHJI77Aoby0RFLcluG/TyigD87f25vAfxS+H/wC2B8Mvj14F+H998R9K0TThYXGlaTHJLOrhpwys
saM6qyXHyyBWAKncOgbgtNsPjp8aP+Cg3wf+Kfjb4Q614K0BIvIt4I4JrqPT7VEuMG7nCBY5Gkkb
hxGcFfl6Fv1PooA/NL4wab8VvgH/AMFItZ+LGgfCDXviToHiDSoLC2fRVlMUeYbeF2lljhlEZVoW
O1wMgg5xXnmoePPiL8N/+Conxo8TfDnwYPH19Y6YsmqeHUmMVxc2Pk2O/wAghWPmq/lEAKxIDAKS
a/XCvnT4f/shf8IL+2B46+On/CWfbv8AhKNP+wf2D/Zvl/ZuLb5/P807/wDj26eWv3+vHIB87fs1
/D34sftIftpf8ND/ABJ8B3fww0TQdObT9H0XUkkjupGMckQUrIiOwAmmdpGRASyBQRkjhvC6/Hb9
jD9q/wCMl9ofwP1b4n6T481F7uwv9LMq2yBp5JYmeZIpFTAmZXSTYcrkNjk/qbRQB+dP/BNn4a/F
Hwr+0J8etc+JnhHUfDup668dy9zNZyx2U9w9xNJItvMwKyqpfqrNxjk9Tk/8E1rH4rfs8fEjxP8A
CTxT8H9ftdK1XV7i/n8ZyLKmn2/lwYRUfyTHMHKKAwlH3+nBr9LKKACiiigAooooAKKKKACiiigA
ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi
iigAooooAKKKKACvnLxd+3v8KfC1w8EN5qOtTKSpFjZlQrDs3mFCOfY19G1+PP7VPhE+Cfj94x08
KqRPetdRKowFjlxIo/AMK8vM8ZUwOGdenFSd0tb2s766W6269T9G4C4cwXFWbvLsdUlCPI5Lltdt
NaaprZt7dD6wuf8AgpxoCTOsHgm+liH3Xe+VCfw2HH51o6b/AMFLvBtxt+2+GNWtDtyfLkSUA+nb
NfnNRXxi4kxad+SP3P8A+SP6Wl4M8NyjyqdVefNH9YNfgfpxb/8ABRv4VzNhrTxFDxnL2UWPpxLX
rPwp/aP8A/GRvJ8O62jagF3Np12vk3AHJ4U8N0OdpOK/G6rFhqFzpd5Fd2dxJa3MTB45omKspByC
CK66XE1TmXtqSt/dvf8AFv8ArqeBmHgjl7oy/s7FzVTp7TllH0fLGLXrrbsz91qK/Ivw3+2R8XvC
6BIPGF1eIMcagiXRwO2ZAa9S8Of8FJvHmnqkeraJo+rKAd0gR4ZGPb7rbR/3zXv088y+p/y85fVP
9Lr8T8hxnhRxXhL8lCNVL+Scfylyv8D9IqK+DbP/AIKeSKsf2vwIsrY+cQ35QH6EocV75+zT+1Nb
/tGT61FF4dl0F9NWNzvuxOJNxI/uLjGPfrXpUcZh8RLlo1FJ+TPi8y4VzzJ6LxOPwkqcE0rtaXe2
que7UUUV1nygUUUUAFFFFABWH418Z6R8PfC+oeIteuWtNJsEElxMkLylQWCj5UBY8sOg46njJrcr
mviV4UXx18PPEvh5gD/amnXFouezPGwU/UEg/hWdTmUG4b209TrwcaEsTTjiW1TclzW35b6231tt
oz5u8Tf8FJfh5pbtHo+ja5rbjpIY47eI/Qsxb81rl4/+Cn2kmRQ/gC9VM/My6mhIHfA8sZ/OvgGS
N4ZGjkUo6kqysMEEdQabX5lLPsfJ3Ukvkv1P7mo+E3ClOHLKhKb7ucr/APkrS/A/RvT/APgpl4Gk
I+3eFfENsMnP2fyJuMcdZFresP8Ago18KbxoxNbeIrEMcE3FjGdnudkrcfTNfmNRVR4gxy3afyOe
r4Q8L1PhhOPpN/rc/brwH8RvDXxO0JNY8L6xbazYMcGSBvmjbGdrocMjf7LAGukr8O/CvjTX/A+o
G+8Pa1f6JeEbWm0+5eFmHoSpGR7GvYPDv7cnxk8P7VPihdUhU58rUbKGTP1YKH/8er3KHElJxSrw
aflqj8szXwTx8KspZXiYyh0U7xl6XSafrp6I/WSivzo0f/gpl4zt4I11Pwpod9KpG6S3eaDcPoWf
B9+ntXQ2v/BUK5VW+0/DiKU9vK1opj84DXqRz3AS3nb5P/I+Gq+FPFlNtRwyl6Th+skfe1Fcx8Mv
G6fEn4f6D4ojtGsE1a0S6Fs0m8x7h93dgZ+uK6evdjJTipR2Z+U16NTDVZ0KqtKLaa7NOz/EKKKK
owCiiigAooooAK/Of/gpV4P/ALN+I3h7xFHEEh1OxMEj93libB/JGjr9GK+Vv+Civg/+3vgraaxH
CJLjR79XL/3IpAVc/wDfQjrz8wo+3wdWn5N/dqvyPueB8x/sviTA4luy51F+k/cd/Tmv8j8yqKKK
/HD/AEaCiiigAooooAK+2/8AgmPcY8T+NIN/Bs4X2/R8Z/WviSvsz/gmXNj4ieLIsfe0oNnPpMg/
rX0vDz/2+K8pfkfjvi1Hm4TxD7Sp/wDpcV+p+iVFFFfpx/BwUUUUAFFFFABRRRQB+Nv7S3g8eBfj
1430hY/KhXUpLiFB0WKbEyAewWQD8K8zr67/AOCk/hD+yfi1oXiCNNsWsaZ5btj70sDkMf8Avh4h
+FfIlfjmYUfYYupT7N/c9Uf6ScI5j/auQYPGN3coRT/xR92X4phRRRXnn14UUUUAFFFFAH7Cfsmz
ed+zj4Bbduxpqrn6Mwx+letV41+x1KZv2afAjEYxaSL+U8g/pXstfs+D1w1J/wB1fkf5ncRx5c7x
se1Wp/6WwooorsPnQooooAKKKKACuC+PXhNfHHwb8YaMYzK1xp0rxxr1aSMeYg/76Ra72kIDAgjI
PUU1o7scZSi1KLs0fhJJG0UjIwwykqR6EU2u1+NHhH/hBPit4q0EIyx2WoTRR7+rJuO1voRg/jXF
V+K4qj9Xrzo/ytr7mf6d5Rj45pl2Hx8dqsIy/wDAkn+AUUUVynrhRRRQAV9hf8Ez2P8AwtjxMuTj
+xGOP+28NfHtfX//AATPc/8AC3/Eqdv7Cc/+TENfR8P/APIxh6S/9JZ+SeK3/JIYt+dP/wBOwP0f
ooor9QP4HCiiigAooooAKKKKAPkv/gpF4Q/tj4N6TrsabptG1Nd7Y+7DMpRv/HxFX5q1+zH7RXg/
/hPPgb420UJ5k02mSywr6zRDzYx/32i1+M9fm/EVHkxSqL7S/Ff0j+1vBnMfrOQ1MHJ60Zv/AMBk
rr8eYKKKK+UP30KKKKACiiigD9bv2KCT+zB4Hzz+6uf/AErmr3CvCv2HpDN+y54JZuu28X8r2cD+
Ve61+y4H/dKX+GP5I/zU4qVuIMwX/T6r/wClyCiiiu4+XCiiigAooooAKKKKAPzs/wCCgfwJ12z8
cXPxFsLQ3eg3scUd28IybWVVCZcdlbA+b1PPUV8aV+699Y2+pWc9pdwR3VrOhjlhmQMjqRgqwPBB
Havzo/ay/YpuPALXni3wNbyXfhvJlutNXLy2I7le7Rj16gdemT8ZnWUSrSeKw+suq/Vf5fd2P6h8
M/EWhg6NPIc2ahFaU59NXfln21ektujtufH9FLSV+fn9YhRRRQMK+vf+CZ//ACWLxJ/2AX/9KIK+
Qq+vv+CZ6n/hcHiVu39hOP8AyYgr6Lh//kY0/SX/AKRI/JfFb/kj8Z60v/T1M/SCiiiv1E/gYKKK
KACiiigAooooARlDKVYAqRgg9DX5A/tIfs86/wDAbxhPDeW5m8PXkztpupQg+VImSRG392RR1U+m
Rkc1+v8AWH408E6J8RPDd5oPiHT4tT0u7XbJBKPyZT1Vh1DDkGvGzPLo5hSSvaS2f+Z+k8DcZVuD
8bKpyc9GpZTj1sr2cfNXej0d7abr8PaK95/ac/ZT1v4A6s17bebq3g65k22upbctCT0inwMBvRuj
Y4wcqPBq/La9Cph6jpVVZo/vTK80wec4SGNwNRTpy2a/Jro11T1QUUUVznrBRRRQB+s37DP/ACaz
4J/7fv8A0uuK94rwr9h6Mw/sueCVbrtvG/O9nI/nXutfsuA/3Sj/AIY/kj/NbizXiHMP+v1X/wBL
kFFFFdx8qFFFFABRRRQAUUUUAFNZVkUqwDKwwVIyCKdRQB8HftbfsQ7WvfGfw7s/kOZr/QoV+6ep
kgHp3Kdu3HC/CkiNG7I6lXU4KsMEH0r93K+O/wBrf9iuDxyt34w8CWqW3iEAyXulRgKl76vGO0nq
Ojf733vk82yVYm9fDq0+q7/8H8/Xf+jPD7xMnlfJlWdSvQ2jN6uHZS7w7PePnH4fzloqe9srjTbu
a1uoXt7mFikkUilWVh1BFQV+dSi4txkrNH9h06kKsFUpu8XqmtU09mmFfYf/AATORv8Aha3id8fK
NFYE+/nw/wCFfHlfZX/BMxG/4WV4rfHyjScE+/nR/wCFfQ8P/wDIwh6S/wDSWfk3iu7cI4pd3T/9
OQP0Uooor9QP4JCiiigAooooAKKKKACiiigCjrmh6f4l0i70vVbOHUNOu4zFPa3CB0kU9QQa/M39
q79jnUPg1c3HiTwxHNqXgmR8upy82mkn7sh6tHngP9A3OC36gVFdWsN9bS29xFHcW8yGOSKVQyOp
GCpB4II4wa8vH5fSx9PlnpJbPt/wD7zhLjDH8JYv22HfNSl8cHtJfpJdH991ofhNRX2R+1x+xPN4
J+2+M/ANq9x4e5mvtIjBaSx7l4+7RdyOqe6/d+N6/LMVhKuDqOlVWv5+h/eeQcQYDiTBRx2XzvF7
rrF9pLo/we6ugooorjPpD9cP2K4zF+zD4HDdfJuG/O6mI/nXt1eMfsbxtH+zP4FDDB+yyn8DPIR+
hr2ev2bA/wC60v8ACvyR/mlxO+bPce/+n1T/ANLkFFFFdp8yFFFFABRRRQAUUUUAFFFFABRRRQB8
y/tW/se6d8ZrKfxB4bjh03xpCpY9Ei1AD+B+wf0f8DxyPzL17QNR8L6vdaXq1nNYahauY5redCro
wOCCDX7nV4X+0x+yzofx80V7qERaX4tt0/0XUguBJgcRzY6r2z1Hv0r53NMohjl7SnpU/Pyf6P5P
Tb9u4B8Rq/DUo4DMG54Rv1dO/WPePePzjrdS/JWvtL/gmSjf8Jz4vfB2jTkBPbPmr/hXyX448Da3
8OfEl5oPiCwl07U7V9kkUg6+jKejKRggjggg19e/8Ex1P/CTeNGwdv2OEZxx9+vl8ipzpZlyVFZp
S0+R+8eKGMoYzgypicNNThN02mndNc62P0Dooor9KP4ZCiivhX4jfFT9qTT/AIheJ7Xw/oWpzaBB
ql1Fp8kegxyK1ssrCIhynzAoF579aAPuqivz0/4XB+13/wBC9q3/AITsf/xuj/hcH7Xf/Qvat/4T
sf8A8bp2A/Quivz0/wCFwftd/wDQvat/4Tsf/wAbr0f9jH4ifGLxN4+8W6d4y0+afRIpnkvbi/j+
ztYXhAPlRLjncCC0YwFzuyCcOAfYlFFFIAooooASvhj9rj9iAXX23xp8OLDbP802oeH7deH7mS3U
dD1JjHX+Hn5T90UVw4zB0sbT9nVXo+qPqeHeJMw4YxqxmAlb+aL+GS7Nfk910PwiZSjFWBVgcEHq
KSv0k/a2/Yrt/iMt34v8D28Vn4q5lu9OXCRaj3LL2WX36N3weT+cV9Y3OmXk9neW8trd28jRTQTI
UeN1OCrKeQQRgg1+WY7AVcBU5Km3R9Gf3rwrxZgOLMH9ZwjtNfHB/FF/qn0ez8ndL9eP2RUaP9m3
wGGGD9gJ/ORyK9fryb9lBSn7OfgEMMH+zEP5sxFes1+rYP8A3an/AIV+R/AXET5s5xr/AOntT/0t
hRRRXWfPBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHlXx+/Z38OfHzw21pqUS2mswIRY6rGv7yE9Q
p/vJn+E+pxjmvDP2HPhP4h+DfxE+IHh7xFaGC5ihgeKZcmK4jLMFkRu6nB+hBB5Br7Ir55/a28Se
IvCreDbvQtbvtHR5rqKb7HJtEjbEZN4IIbAV+CD941thMvhjMZC1lOzSfy2ffyPRr8SY3L8nrZfz
OWHk4ycezUlrHs+/RrdXs19DUV8g/DH9qLxJpOvWdr4xv4dW0OZ/Lmv3tkiuLXP3ZCYwqsgP3hsz
g5z8uD9cWd5b6jaQ3VpPHc20yCSKaFw6OpGQysOCCO4rrxuArYGSjV2ezWx87g8dRx0XKno1unuT
UUUV5x6IUUUUAFRW9rDaq4hhjhDu0jCNQu5icljjqSepqWigAooooAKKKKACiiigAr5g/bE/ZW0X
4oeGdU8Y6Wsel+LdMtJLmSVF+S/jjQsY5AP48DCv16A5GNv0/VTVtPTVtLvLGT/V3MLwtn0ZSD/O
uXFYeniqTpVFdM97I84xeRY+njsHUcZRetuq6prqn2/U+Of2a/22vhz4f+HvhXwbr8moaHfadax2
b3txbh7VmHAbchLKPdlAHc19nRSpNGkkbrJG4DK6nIYHoQfSvwnmhe3mkikXbJGxVlPYg4Ir7W/Y
j/a2v7HWtO+HfjLUFm0iZBbaPf3GA9tIPuQO/dGHyqTyDtHQ8fIZTnTco4fE7aJP/M/orxA8MYU6
NXOclu3eU6kG73T1bhpfTVtN6rbaz/QWiiivuT+VwooooAKKKKACiiigAooooAKKKKACiiigArwH
9s2zMvw90C6Uf8e2uRlm/wBl4J0x/wB9Mn5V79XkP7V1r9o+COsSgZa1ubKcfQXUSsf++WavTyuX
JjaT80vv0PMzOPNgqvkm/u1/Q+L69n/Z3+OFv8NpZdA1+Zo/DVzIZbe5wWFjMfvAgZIic85H3WJJ
4YlfGKK/T8Rh6eKpOlVWj/q6PzfD16mGqKrTeq/qzP0h0fWtO8RafFf6Vf22pWMwzHdWcyyxv9GU
kGrtfnr8P/iHrnwx1r+0NDuNkcjZutPlJ+z3Q/21HRvRx8w9xlT9v/Df4kaT8TvDqappblHU7Lmz
kI822kxyjD+R6EcivznMcqqYF86fNB9e3qfoGX5pDG+5Jcs+3f0Orooorwz2wooooAKKKKACiiig
AooooAKKKKAPxL+K+k/2D8UvGOm4x9j1m8t8f7s7r/SuWr1r9rTSv7G/aO8fW+Nu/UTc/wDf1Fl/
9nrySvxTER9nWnDs3+Z/p3k+I+tZbhsR/PTg/vimfT/wN/by8afDm5s9O8UyyeLvDUYERWfH22Ff
VJer49JM56ZWv0b+HvxE8P8AxS8L2viDw1qEeo6bccb14aNx1R1PKsM8g+3Yg1+ItepfAH9oTxF+
z/4qOo6Uftul3OFv9JmcrFcqOhzztcc4YDjocgkH6HLM6qYeSp4h80PxX/A8vuPx7jfwxwec0pYz
KIKliVrZWUZ+TWyl2lpd/F3X7GUVy3wv+ImnfFfwDo3ivSVkjstSh8xYpsb42DFXRsHGVZWH4V1N
fpEZRqRU4u6Z/FmIoVcLWnh60eWcG00+jTs18mFFFFUYBRRRQAUUUUAFFFFABRRRQAVwHx+sRqHw
T8boRu8vSbi4A9TGhkH6oK7+srxXpf8AbnhfWNNK7xeWc1vt9d6FcfrW+Hn7OtCfZp/ic+Ih7SjO
HdNfgfnMDuAI5FFVdJmFxpdnKDkPCjA+uVBq1X7K1Z2PyOL5kmFaHh/xZq/gXVo9c0K5kt7+3+Yo
jEJcIDkxSDoyt05HBORggGs+iolGMk4yV0yk3F3i7M/SHRdXtfEGj2GqWMnnWV9bx3MEn96N1DKf
xBFXa8d/ZQ14ax8G7G0aQyT6RdXGnyZ/hCv5kS/hFJEK9ir8gxVH6vXnR/lbR+sYWt9YoQq/zJMK
KKK5TqCiiigAooooAKKKKACiiigD8rv2/tK/s/8AaU1i424+32VpcfXEQi/9pV85V9ff8FLtJ+z/
ABe8N6iBgXWiLEfdo55Tn8pB+VfINfkGaR5MbVXm/wAdT/RjgXEfWeGcBPtTiv8AwH3f0CiiivLP
uz9E/wDgmj43k1TwB4o8LzSbjpN7HdwAnkRzqQVHsGiY/V6+y6/Lj/gn74+i8H/HqHTbqbyrXxBZ
yaeNxwvnAiSL8SUKj3ev1Hr9TyOt7bBRT3jdf5fgfwV4qZY8u4nrVErRrKM181aX/kyb+YUUUV9A
fkIUUUUAFFFFABRRRQAUUUUAFFFFAH5otp50e4u9OPBsrma0x6eXIyf+y0Vv/EWxOmfEzxnakY26
1dyj6SSmUf8AoysCv2iEvaRU+6v95+POPI3Dtp9wUUUVZJ7j+yT45Tw/401Dw1dSbbfXFWa1z0F1
Ep3L9XjA/wC/PvX17X5pR3l3ps8F/p7+VqFnKl1ayf3ZUYMh+mQM+2a/Rnwv4gt/FnhnSNctAwtd
Ts4b2EN12SIHXP4MK+B4gwvs6scRH7Wj9V/mvyPuMhxPPTlh5fZ1Xo/8n+ZqUUUV8kfVhRRRQAUU
UUAFFFFABRRRQB8If8FQNJ/5J7qar/z/AFs7f9+WUf8AodfCFfpB/wAFLtJ+0fCHw3qIGWtdbWI+
yyQSkn80X86/N+vyzPY8uPm+9vyP718KcR7bhTDx/kc1/wCTt/qFFFFfPn68WNPv7nSr62vbOeS2
u7aRZoZom2vG6kFWB7EEA/hX7NfAv4kp8XPhP4b8VDas99bAXKL0SdCUlGOw3q2PYivxdr9Mv+Cb
pmPwD1LzXZ0Gv3HlBuir5FvwPbduP4mvrOHK0o4mVLpJfkfz74z5bRr5JSx7+OlNJPyktV96T+Xm
fVlFFFfo5/FwUUUUAFFFFABRRRQAUUUUAFFFFAHwf+0FZmx+OfjBdu1JpLa4QezWsSk/99I361wN
etftWRrH8a5toxv0e0dvc+ZcL/JRXktfruBlzYWk/wC6vyPyjGR5cTVX96X5sKKKK7jjGTP5cMj/
AN1Sf0r9Afg7bmz+EXgeAjBi0OxTGMdLdBX58ao2zTbtumIXP/jpr9H/AAbZ/wBn+D9DtcY8ixgi
x6bY1H9K+R4jf7mmu7f4L/gn1XD6vWqPsl+L/wCAbFFFFfBH3IUUUUAFFFFABRRRQAUUUUAfOX7f
+mrf/s16vO3WyvbS4X6mUR/ykNfldX6t/t5y+X+zH4mXGfMns1+n+kxn+lflJX5rxHb64v8ACvzZ
/bXgxKT4cqJ9Ksrf+Aw/UKKKK+WP3kK/UT/gnja/Z/2dYZMY8/VbqT6/cX/2Wvy7r9X/ANhKx+x/
sw+FHxhriS8mP/gVKo/RRX1PDqvjG+0X+aPwfxmqcnDcI/zVYr/yWb/Q9/ooor9KP4kCiiigAooo
oAKKKKACiiigAooooA+KP2ppPM+Nl3znZpdon0+aY4/X9a8or0/9puQyfHDWQeiWVoo/74Y/1rzC
v1zAaYSl/hX5H5TjdcVV/wAT/MKKKK7ziKWuRtNo97En35IWjX6sMD9TX6cogjRUUYVRgCvz3+GX
hZfHHxK8NaFJ/wAe9xdia44/5YwqZXB/3tgTP+2K/QqviOJKicqVPqrv77L9GfZcO03arU6Oy+67
/VBRRRXxZ9iFFFFABRRRQAUUUUAFFFFAHzh/wUBlEf7NuqqWx5l9aKB6/vQcfp+lflhX6if8FDpD
H+zrMoxh9VtVP/j5/pX5d1+acRP/AGxf4V+p/b3g3G3DUn3qy/KIUUUV8ufuoV+xv7MHhm68H/AD
wPpd7EYLtNPWaSI9UMrNLg+438+9flr8AfhbefGL4raF4ctUUwyTCe8kf7sdshDSMfw+UDuWAr9m
q+54aw7vUxD9F+b/AEP5Y8bc2hyYTKYNN3dSXdacsfvvL7haKKK+6P5TCiiigAooooAKKKKACiii
gAooooA+Ff2jJBJ8dfFOP4FtFP8A4DIf6153X0X+1V8JJ4L6bx7piPPDIqJq0I5MW1QiTgf3QoCt
6YDdNxr50r9Yy2tCthKbg9kk/VKzPyzMKU6OKqKa3ba9G20FFFeg/BD4Wt8VvGD2tz5sWhWCCfUJ
ojtLZOEgVuoL4YkjkKp6Eqa7a1aFCnKrUdkjkpU51pqnBXbPVP2O/BEUkOs+MbqBjOZjptg7qQvl
KEaWRPXc52E9vJI7nP0zVbTdNtdH0+3sbG3jtLO3jWKGCFQqRqBgKAOgAqzX5RjcU8ZXlWfXbyR+
oYLCrB0I0lut/NhRRRXCdwUUUUAFFFFABRRRQAUUUUAfOX7fHhLVfFn7Pt3/AGTaPePpt9DqFxHH
yywIrh3A77d4J9gT2r8rq/d1lEilWAZWGCCMgivzA/bV/ZiPwf8AEx8T+HrUjwdq0x/dRr8un3B5
MXsjclPTlewz8PxDgJyaxcNUtH/mf1P4P8WYejF8PYn3ZSblB/zN7xfnpdd9Vva/zDT4YZLmaOGG
NpZZGCJGgJZmJwAAOpplfdH7Ff7Htw13ofxL8XgRQJi70nSGT53b/lnPLnoB95VHJ+ViR0PyWDwd
TG1VSpr1fZdz+guJOI8FwxgJY7GS8ox6ylbSK/V7Jas9Q/Yn/Zcu/gzplx4r8SAx+KtWthALIHiy
tyyuUb1kYqhP93aB619TUUV+t4bDU8JSVGktEf5555nWL4gx9TMcbK859tklsl5Jf5vUKKKK6jwg
ooooAKKKKACiiigAooooAKKKKAI5oY7qGSGaNZYpFKPG6gqykYIIPUEV8PfHT4QSfCjxGslkjv4Z
1Bz9hkOW+zvjJt2PsMlCeSoI5Kkn7lrl/id4Vbxt4B1vRYrWzu7m6t2S3S+kaOJZusbllVmXawDA
gZyBXsZXjpYKuv5ZaP8Az+R5GZ4KOMov+aOq/wAvmfE/wx+GOp/FbxF/ZlgWtrOHa1/qGOLaMntn
rI2DtHtk8A19z+EvB+jeBdFi0nQrCPT7GM7tiZLOxxl3Yks7HAyzEk4rnvgv8NR8KvAdposs8V5q
LO9zfXcUewTTOcn3IVdqAnnCDp0ruq2zbMZYyq4Qf7tbefn/AJdl8zHK8vjhKanNe+9/Ly/z7v5B
RRRXgnuhRRRQAUUUUAFFFFABRRRQAUUUUAFY/i/wlpXjvwzqOga3aJfaVqEJhnhfuD3B7MDggjkE
AjpWxRSlFSTi1ozSnUnRnGrTbUou6a0aa2aPgL4D/sU2dn+0D4mt/EUkWu+F/C0kbW3Ro72WQF40
lA4DRqAXj9Smflbn78VQqhVACgYAHQUtFcODwVLAwcKS3d/8vuPqeJOJsfxPiIYjHSvyRUUumiXM
7aK8n7z08tkgooorvPkgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK
KACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k=</Data></Thumbnail></Binary></metadata>