forked from QingyongHu/RandLA-Net
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_SemanticKITTI.py
264 lines (227 loc) · 11.8 KB
/
main_SemanticKITTI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from multiprocessing.spawn import prepare
from helper_tool import DataProcessing as DP
from helper_tool import ConfigSemanticKITTI as cfg
from helper_tool import Plot
from os.path import join
from RandLANet import Network
from tester_SemanticKITTI import ModelTester
import tensorflow as tf
import numpy as np
import os, argparse, pickle
from sklearn.neighbors import KDTree
class SemanticKITTI:
def __init__(self, test_id, dataset_path):
self.name = 'SemanticKITTI'
# self.dataset_path = '/data/semantic_kitti/dataset/sequences_0.06'
self.dataset_path = dataset_path
self.label_to_names = {0: 'unlabeled',
1: 'car',
2: 'bicycle',
3: 'motorcycle',
4: 'truck',
5: 'other-vehicle',
6: 'person',
7: 'bicyclist',
8: 'motorcyclist',
9: 'road',
10: 'parking',
11: 'sidewalk',
12: 'other-ground',
13: 'building',
14: 'fence',
15: 'vegetation',
16: 'trunk',
17: 'terrain',
18: 'pole',
19: 'traffic-sign'}
self.num_classes = len(self.label_to_names)
self.label_values = np.sort([k for k, v in self.label_to_names.items()])
self.label_to_idx = {l: i for i, l in enumerate(self.label_values)}
self.ignored_labels = np.sort([0])
self.val_split = '08'
self.seq_list = np.sort(os.listdir(self.dataset_path))
self.test_scan_number = str(test_id)
self.train_list, self.val_list, self.test_list = DP.get_file_list(self.dataset_path,
self.test_scan_number)
# self.train_list = DP.shuffle_list(self.train_list)
# self.val_list = DP.shuffle_list(self.val_list)
self.possibility = []
self.min_possibility = []
# Generate the input data flow
def get_batch_gen(self, split):
# if split == 'training':
# num_per_epoch = int(len(self.train_list) / cfg.batch_size) * cfg.batch_size
# path_list = self.train_list
# elif split == 'validation':
# num_per_epoch = int(len(self.val_list) / cfg.val_batch_size) * cfg.val_batch_size
# cfg.val_steps = int(len(self.val_list) / cfg.batch_size)
# path_list = self.val_list
# elif split == 'test':
num_per_epoch = int(len(self.test_list) / cfg.val_batch_size) * cfg.val_batch_size * 4
# if num_per_epoch == 0:
# num_per_epoch = 1
path_list = self.test_list
for test_file_name in path_list:
points = np.load(test_file_name)
self.possibility += [np.random.rand(points.shape[0]) * 1e-3]
self.min_possibility += [float(np.min(self.possibility[-1]))]
# print()
# print(cfg.val_batch_size)
# print(len(self.test_list))
# print(num_per_epoch)
# print(path_list)
# print(self.min_possibility)
# print(self.possibility)
# print()
# print()
def spatially_regular_gen():
# Generator loop
for i in range(num_per_epoch):
# if split != 'test':
# cloud_ind = i
# pc_path = path_list[cloud_ind]
# pc, tree, labels = self.get_data(pc_path)
# # crop a small point cloud
# pick_idx = np.random.choice(len(pc), 1)
# selected_pc, selected_labels, selected_idx = self.crop_pc(pc, labels, tree, pick_idx)
# else:
cloud_ind = int(np.argmin(self.min_possibility))
pick_idx = np.argmin(self.possibility[cloud_ind])
pc_path = path_list[cloud_ind]
pc, tree, labels = self.get_data(pc_path)
selected_pc, selected_labels, selected_idx = self.crop_pc(pc, labels, tree, pick_idx)
# update the possibility of the selected pc
dists = np.sum(np.square((selected_pc - pc[pick_idx]).astype(np.float32)), axis=1)
delta = np.square(1 - dists / np.max(dists))
self.possibility[cloud_ind][selected_idx] += delta
self.min_possibility[cloud_ind] = np.min(self.possibility[cloud_ind])
if True:
yield (selected_pc.astype(np.float32),
selected_labels.astype(np.int32),
selected_idx.astype(np.int32),
np.array([cloud_ind], dtype=np.int32))
gen_func = spatially_regular_gen
gen_types = (tf.float32, tf.int32, tf.int32, tf.int32)
gen_shapes = ([None, 3], [None], [None], [None])
return gen_func, gen_types, gen_shapes
def get_data(self, file_path):
seq_id = file_path.split('/')[-3]
frame_id = file_path.split('/')[-1][:-4]
kd_tree_path = join(self.dataset_path, seq_id, 'KDTree', frame_id + '.pkl')
# Read pkl with search tree
with open(kd_tree_path, 'rb') as f:
search_tree = pickle.load(f)
points = np.array(search_tree.data, copy=False)
# Load labels
# if int(seq_id) >= 11:
labels = np.zeros(np.shape(points)[0], dtype=np.uint8)
# else:
# label_path = join(self.dataset_path, seq_id, 'labels', frame_id + '.npy')
# labels = np.squeeze(np.load(label_path))
return points, search_tree, labels
@staticmethod
def crop_pc(points, labels, search_tree, pick_idx):
# crop a fixed size point cloud for training
center_point = points[pick_idx, :].reshape(1, -1)
select_idx = search_tree.query(center_point, k=cfg.num_points)[1][0]
select_idx = DP.shuffle_idx(select_idx)
select_points = points[select_idx]
select_labels = labels[select_idx]
return select_points, select_labels, select_idx
@staticmethod
def get_tf_mapping2():
def tf_map(batch_pc, batch_label, batch_pc_idx, batch_cloud_idx):
features = batch_pc
input_points = []
input_neighbors = []
input_pools = []
input_up_samples = []
for i in range(cfg.num_layers):
neighbour_idx = tf.py_func(DP.knn_search, [batch_pc, batch_pc, cfg.k_n], tf.int32)
sub_points = batch_pc[:, :tf.shape(batch_pc)[1] // cfg.sub_sampling_ratio[i], :]
pool_i = neighbour_idx[:, :tf.shape(batch_pc)[1] // cfg.sub_sampling_ratio[i], :]
up_i = tf.py_func(DP.knn_search, [sub_points, batch_pc, 1], tf.int32)
input_points.append(batch_pc)
input_neighbors.append(neighbour_idx)
input_pools.append(pool_i)
input_up_samples.append(up_i)
batch_pc = sub_points
input_list = input_points + input_neighbors + input_pools + input_up_samples
input_list += [features, batch_label, batch_pc_idx, batch_cloud_idx]
return input_list
return tf_map
def init_input_pipeline(self):
print('Initiating input pipelines')
cfg.ignored_label_inds = [self.label_to_idx[ign_label] for ign_label in self.ignored_labels]
# gen_function, gen_types, gen_shapes = self.get_batch_gen('training')
# gen_function_val, _, _ = self.get_batch_gen('validation')
gen_function_test, gen_types, gen_shapes = self.get_batch_gen('test')
# self.train_data = tf.data.Dataset.from_generator(gen_function, gen_types, gen_shapes)
# self.val_data = tf.data.Dataset.from_generator(gen_function_val, gen_types, gen_shapes)
self.test_data = tf.data.Dataset.from_generator(gen_function_test, gen_types, gen_shapes)
# self.batch_train_data = self.train_data.batch(cfg.batch_size)
# self.batch_val_data = self.val_data.batch(cfg.val_batch_size)
self.batch_test_data = self.test_data.batch(cfg.val_batch_size)
map_func = self.get_tf_mapping2()
# self.batch_train_data = self.batch_train_data.map(map_func=map_func)
# self.batch_val_data = self.batch_val_data.map(map_func=map_func)
self.batch_test_data = self.batch_test_data.map(map_func=map_func)
# self.batch_train_data = self.batch_train_data.prefetch(cfg.batch_size)
# self.batch_val_data = self.batch_val_data.prefetch(cfg.val_batch_size)
self.batch_test_data = self.batch_test_data.prefetch(cfg.val_batch_size)
# iter = tf.data.Iterator.from_structure(self.batch_train_data.output_types, self.batch_train_data.output_shapes)
iter = tf.data.Iterator.from_structure(self.batch_test_data.output_types, self.batch_test_data.output_shapes)
self.flat_inputs = iter.get_next()
# self.train_init_op = iter.make_initializer(self.batch_train_data)
# self.val_init_op = iter.make_initializer(self.batch_val_data)
self.test_init_op = iter.make_initializer(self.batch_test_data)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='the number of GPUs to use [default: 0]')
parser.add_argument('--mode', type=str, default='test', help='options: train, test, vis')
parser.add_argument('--test_area', type=str, default='14', help='options: 08, 11,12,13,14,15,16,17,18,19,20,21')
parser.add_argument('--model_path', type=str, default='None', help='pretrained model path')
parser.add_argument('--dataset', type=str, default='None', help='dataset path')
parser.add_argument('--saveAt', type=str, default='None', help='where to save the predictions')
FLAGS = parser.parse_args()
print("RUNNING MODEL")
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.gpu)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
Mode = FLAGS.mode
test_area = FLAGS.test_area
dataset = SemanticKITTI(test_area, dataset_path=FLAGS.dataset)
dataset.init_input_pipeline()
# if Mode == 'train':
# model = Network(dataset, cfg)
# model.train(dataset)
# elif Mode == 'test':
cfg.saving = False
model = Network(dataset, cfg)
if FLAGS.model_path is not 'None':
chosen_snap = FLAGS.model_path
else:
raise ValueError("Must provide model!")
# chosen_snapshot = -1
# logs = np.sort([os.path.join('results', f) for f in os.listdir('results') if f.startswith('Log')])
# chosen_folder = logs[-1]
# snap_path = join(chosen_folder, 'snapshots')
# snap_steps = [int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta']
# chosen_step = np.sort(snap_steps)[-1]
# chosen_snap = os.path.join(snap_path, 'snap-{:d}'.format(chosen_step))
tester = ModelTester(model, dataset, restore_snap=chosen_snap)
tester.test(model, dataset, FLAGS.saveAt)
# else:
# ##################
# # Visualize data #
# ##################
# with tf.Session() as sess:
# sess.run(tf.global_variables_initializer())
# sess.run(dataset.train_init_op)
# while True:
# flat_inputs = sess.run(dataset.flat_inputs)
# pc_xyz = flat_inputs[0]
# sub_pc_xyz = flat_inputs[1]
# labels = flat_inputs[17]
# Plot.draw_pc_sem_ins(pc_xyz[0, :, :], labels[0, :])
# Plot.draw_pc_sem_ins(sub_pc_xyz[0, :, :], labels[0, 0:np.shape(sub_pc_xyz)[1]])