This repository has been archived by the owner on Nov 21, 2020. It is now read-only.
forked from jainaman224/Algo_Ds_Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Segment_Tree_RMQ.java
189 lines (157 loc) · 6.22 KB
/
Segment_Tree_RMQ.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
class SegmentTreeRMQ
{
int st[]; //array to store segment tree
// A utility function to get minimum of two numbers
int minVal(int x, int y) {
return (x < y) ? x : y;
}
// A utility function to get the middle index from corner
// indexes.
int getMid(int s, int e) {
return s + (e - s) / 2;
}
/* A recursive function to get the minimum value in a given
range of array indexes. The following are parameters for
this function.
st --> Pointer to segment tree
index --> Index of current node in the segment tree. Initially
0 is passed as root is always at index 0
ss & se --> Starting and ending indexes of the segment
represented by current node, i.e., st[index]
qs & qe --> Starting and ending indexes of query range */
int getSumUtil(int ss, int se, int qs, int qe, int si)
{
// If segment of this node is a part of given range, then return
// the sum of the segment
if (qs <= ss && qe >= se)
return st[si];
// If segment of this node is outside the given range
if (se < qs || ss > qe)
return 0;
// If a part of this segment overlaps with the given range
int mid = getMid(ss, se);
return getSumUtil(ss, mid, qs, qe, 2 * si + 1) +
getSumUtil(mid + 1, se, qs, qe, 2 * si + 2);
}
/* A recursive function to update the nodes which have the given
index in their range. The following are parameters
st, si, ss and se are same as getSumUtil()
i --> index of the element to be updated. This index is in
input array.
diff --> Value to be added to all nodes which have i in range */
void updateValueUtil(int ss, int se, int i, int diff, int si)
{
// Base Case: If the input index lies outside the range of
// this segment
if (i < ss || i > se)
return;
// If the input index is in range of this node, then update the
// value of the node and its children
st[si] = st[si] + diff;
if (se != ss) {
int mid = getMid(ss, se);
updateValueUtil(ss, mid, i, diff, 2 * si + 1);
updateValueUtil(mid + 1, se, i, diff, 2 * si + 2);
}
}
// The function to update a value in input array and segment tree.
// It uses updateValueUtil() to update the value in segment tree
void updateValue(int arr[], int n, int i, int new_val)
{
// Check for erroneous input index
if (i < 0 || i > n - 1) {
System.out.println("Invalid Input");
return;
}
// Get the difference between new value and old value
int diff = new_val - arr[i];
// Update the value in array
arr[i] = new_val;
// Update the values of nodes in segment tree
updateValueUtil(0, n - 1, i, diff, 0);
}
// Return sum of elements in range from index qs (quey start) to
// qe (query end). It mainly uses getSumUtil()
int getSum(int n, int qs, int qe)
{
// Check for erroneous input values
if (qs < 0 || qe > n - 1 || qs > qe) {
System.out.println("Invalid Input");
return -1;
}
return getSumUtil(0, n - 1, qs, qe, 0);
}
int RMQUtil(int ss, int se, int qs, int qe, int index)
{
// If segment of this node is a part of given range, then
// return the min of the segment
if (qs <= ss && qe >= se)
return st[index];
// If segment of this node is outside the given range
if (se < qs || ss > qe)
return Integer.MAX_VALUE;
// If a part of this segment overlaps with the given range
int mid = getMid(ss, se);
return minVal(RMQUtil(ss, mid, qs, qe, 2 * index + 1),
RMQUtil(mid + 1, se, qs, qe, 2 * index + 2));
}
// Return minimum of elements in range from index qs (quey
// start) to qe (query end). It mainly uses RMQUtil()
int RMQ(int n, int qs, int qe)
{
// Check for erroneous input values
if (qs < 0 || qe > n - 1 || qs > qe) {
System.out.println("Invalid Input");
return -1;
}
return RMQUtil(0, n - 1, qs, qe, 0);
}
// A recursive function that constructs Segment Tree for
// array[ss..se]. si is index of current node in segment tree st
int constructSTUtil(int arr[], int ss, int se, int si)
{
// If there is one element in array, store it in current
// node of segment tree and return
if (ss == se) {
st[si] = arr[ss];
return arr[ss];
}
// If there are more than one elements, then recur for left and
// right subtrees and store the minimum of two values in this node
int mid = getMid(ss, se);
st[si] = minVal(constructSTUtil(arr, ss, mid, si * 2 + 1),
constructSTUtil(arr, mid + 1, se, si * 2 + 2));
return st[si];
}
/* Function to construct segment tree from given array. This function
allocates memory for segment tree and calls constructSTUtil() to
fill the allocated memory */
void constructST(int arr[], int n)
{
// Allocate memory for segment tree
//Height of segment tree
int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
//Maximum size of segment tree
int max_size = 2 * (int) Math.pow(2, x) - 1;
st = new int[max_size]; // allocate memory
// Fill the allocated memory st
constructSTUtil(arr, 0, n - 1, 0);
}
// Driver program to test above functions
public static void main(String args[])
{
int arr[] = {1, 3, 2, 7, 9, 11};
int n = arr.length;
SegmentTreeRMQ tree = new SegmentTreeRMQ();
// Build segment tree from given array
tree.constructST(arr, n);
int qs = 1; // Starting index of query range
int qe = 5; // Ending index of query range
// Print minimum value in arr[qs..qe]
System.out.println("Minimum of values in range [" + qs + ", "
+ qe + "] is = " + tree.RMQ(n, qs, qe));
}
}
/* OUTPUT
Minimum of values in range [1, 5] is = 2
*/