This repository has been archived by the owner on Nov 21, 2020. It is now read-only.
forked from jainaman224/Algo_Ds_Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Prims_Algorithm.cpp
116 lines (99 loc) · 3.28 KB
/
Prims_Algorithm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
// C++ implementation of Prim's Algorithm to find the Minimum Spanning tree for a weighted, connected and undirected graph.
#include <iostream>
#include <climits>
#define n 6
using namespace std;
// Printing the MST
void printMST(int a[n], int b[n], int weight[n])
{
int Minweight = 0; // Weight of Minimum spanning tree
for (int i = 0; i < n - 1; i++)
{
cout << "Edge: " << a[i] << "-" << b[i] << " "
<< "cost: " << weight[i] << endl;
Minweight += weight[i];
}
cout << "Minimum Weight is " << Minweight << endl; // Printing the weight of MINIMUM SPANNING TREE
}
void prim(int cost[n][n]) // Function performing prim's algorithm
{
int u, v, k = 0, counti = 0;
int visited[n] = { 0 }; // Array containing all the nodes, Initialize with zero as they are not included in MST
int a[n]; // Array containing the first nodes of all the edges present in MST
int b[n]; // Array containing the first nodes of all the edges present in MST
int weight[n]; // Array containing the weights of the edges present in MST
int minimum;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
if (cost[i][j] == 0) // If i and j nodes are not adjacent
cost[i][j] = INT_MAX; // Then, initialize them as INFINITE
visited[0] = 1; // Including the first vertex in MST
while(counti < n-1)
{
minimum = INT_MAX; // Initializing minimum as INFINITE
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
if (visited[i] != 0 && cost[i][j] < minimum) // If the first node is not in MST yet, traverse through all the edges connected through it
{
minimum = cost[i][j]; // To find the minimum cost edge
u = i; // First node of determined edge
v = j; // Second node of determined edge
}
}
}
if (visited[u] == 0 || visited[v] == 0) // If the node is not yet included in MST, then include it in MST
{
a[k] = u; // Store first node in array
b[k] = v; // Store second node in array
weight[k] = cost[u][v]; // Store the determined edge's weight in array
counti++;
k++;
visited[v] = 1; // Vertex included in MST
}
cost[u][v] = cost[v][u] = INT_MAX; // Edges getting included in MST will be given the weight of INFINITE
}
printMST(a, b, weight); // Printing the MST
}
// Driver program to test above function
int main()
{
/* Let us create the following graph
(1)____1___(2)
/ \ / \
3 4 4 6
/ \ / \
/ \ / \
(0)___5___(5)____5___(3)
\ | /
\ | /
\ | /
\ 2 /
6 | 8
\ | /
\ | /
\ | /
\ | /
(4)
*/
int cost[n][n] = {
{ 0, 3, 0, 0, 6, 5 },
{ 3, 0, 1, 0, 0, 4 },
{ 0, 1, 0, 6, 0, 4 },
{ 0, 0, 6, 0, 8, 5 },
{ 6, 0, 0, 8, 0, 2 },
{ 5, 4, 4, 5, 2, 0 }
};
prim(cost); // Calling prim function
return 0;
}
/*
Output :
Edge: 0-1 cost: 3
Edge: 1-2 cost: 1
Edge: 1-5 cost: 4
Edge: 5-4 cost: 2
Edge: 5-3 cost: 5
Minimum Weight is 15
*/