"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5)\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, we'll load another file that has the geologic descriptions for each unit as well as the HAZUS liquefaction susceptibility category for each unit. (The file also has the geotechnical parameters that are used for [landslide analysis](./landslide_site_prep.ipynb) but are not used here.)\n",
+ "\n",
+ "The liquefaction susceptibility category has been estimated based on the geologic description for that unit, as well as the location of the unit with respect to water bodies (rivers and creeks) from inspection of the geologic map. The guidelines for this assignment can be found in the [HAZUS Manual][hzm], Section 4-21. If you are uncertain of how to proceed, please contact your local geologist or geotechnical engineer.\n",
+ "\n",
+ "[hzm]: https://www.hsdl.org/?view&did=1276\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
unit
\n",
+ "
friction_mid
\n",
+ "
friction_unc
\n",
+ "
cohesion_mid
\n",
+ "
cohesion_unc
\n",
+ "
saturation
\n",
+ "
dry_density
\n",
+ "
uscs
\n",
+ "
type
\n",
+ "
description
\n",
+ "
susc_cat
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
Q1
\n",
+ "
33.5
\n",
+ "
1.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.20
\n",
+ "
2091
\n",
+ "
SM
\n",
+ "
silty sands
\n",
+ "
old wetlands
\n",
+ "
m
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
Q2
\n",
+ "
27.0
\n",
+ "
5.0
\n",
+ "
50000
\n",
+ "
0
\n",
+ "
0.40
\n",
+ "
1734
\n",
+ "
OL
\n",
+ "
organic silts
\n",
+ "
swamp deposits
\n",
+ "
h
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
Q3
\n",
+ "
33.5
\n",
+ "
1.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.30
\n",
+ "
2091
\n",
+ "
SM
\n",
+ "
silty sands
\n",
+ "
river channel deposits
\n",
+ "
vh
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
Q4
\n",
+ "
33.5
\n",
+ "
1.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.20
\n",
+ "
2091
\n",
+ "
SM
\n",
+ "
silty sands
\n",
+ "
levee deposits
\n",
+ "
h
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
Q5
\n",
+ "
27.0
\n",
+ "
5.0
\n",
+ "
50000
\n",
+ "
0
\n",
+ "
0.25
\n",
+ "
1734
\n",
+ "
OL
\n",
+ "
organic silts
\n",
+ "
floodplain deposits
\n",
+ "
h
\n",
+ "
\n",
+ "
\n",
+ "
5
\n",
+ "
Q6
\n",
+ "
38.0
\n",
+ "
6.0
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.30
\n",
+ "
2091
\n",
+ "
GP
\n",
+ "
poorly graded gravel w/ sand, no fines
\n",
+ "
active alluvial fill
\n",
+ "
vh
\n",
+ "
\n",
+ "
\n",
+ "
6
\n",
+ "
Q7
\n",
+ "
32.5
\n",
+ "
1.5
\n",
+ "
62500
\n",
+ "
1250
\n",
+ "
0.25
\n",
+ "
1887
\n",
+ "
SM
\n",
+ "
loamy sand
\n",
+ "
point bar deposits
\n",
+ "
vh
\n",
+ "
\n",
+ "
\n",
+ "
7
\n",
+ "
Cono
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.15
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
alluvial fan
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
8
\n",
+ "
Qt
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
terrace deposits
\n",
+ "
m
\n",
+ "
\n",
+ "
\n",
+ "
9
\n",
+ "
Qc
\n",
+ "
31.5
\n",
+ "
3.5
\n",
+ "
20000
\n",
+ "
0
\n",
+ "
0.15
\n",
+ "
1887
\n",
+ "
CG
\n",
+ "
clayey sandy gravels
\n",
+ "
colluvium
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
10
\n",
+ "
Qd
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
old alluvium, terraces
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
11
\n",
+ "
QvT
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
T-derived Quaternary (terrace/coll./fan)
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
12
\n",
+ "
QvK
\n",
+ "
31.5
\n",
+ "
3.5
\n",
+ "
20000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
1887
\n",
+ "
CG
\n",
+ "
clayey sandy gravels
\n",
+ "
K (diabase) derived Quaternary
\n",
+ "
m
\n",
+ "
\n",
+ "
\n",
+ "
13
\n",
+ "
Q/Kv
\n",
+ "
25.0
\n",
+ "
7.0
\n",
+ "
85000
\n",
+ "
15000
\n",
+ "
0.25
\n",
+ "
2091
\n",
+ "
CH
\n",
+ "
silty clay loam
\n",
+ "
K-derived saprolite
\n",
+ "
vl
\n",
+ "
\n",
+ "
\n",
+ "
14
\n",
+ "
TQplp
\n",
+ "
36.5
\n",
+ "
5.0
\n",
+ "
100000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2244
\n",
+ "
NaN
\n",
+ "
volcanic-sedimentary rocks
\n",
+ "
Popayán Fm.
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
15
\n",
+ "
Kv
\n",
+ "
33.5
\n",
+ "
5.0
\n",
+ "
1000000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
3000
\n",
+ "
NaN
\n",
+ "
diabase
\n",
+ "
Cretaceous diabase
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
16
\n",
+ "
T
\n",
+ "
33.5
\n",
+ "
5.0
\n",
+ "
100000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2600
\n",
+ "
NaN
\n",
+ "
sedimentary rocks
\n",
+ "
coal-bearing sedimentary rocks
\n",
+ "
n
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " unit friction_mid friction_unc cohesion_mid cohesion_unc saturation \\\n",
+ "0 Q1 33.5 1.5 0 0 0.20 \n",
+ "1 Q2 27.0 5.0 50000 0 0.40 \n",
+ "2 Q3 33.5 1.5 0 0 0.30 \n",
+ "3 Q4 33.5 1.5 0 0 0.20 \n",
+ "4 Q5 27.0 5.0 50000 0 0.25 \n",
+ "5 Q6 38.0 6.0 0 0 0.30 \n",
+ "6 Q7 32.5 1.5 62500 1250 0.25 \n",
+ "7 Cono 36.5 3.5 0 0 0.15 \n",
+ "8 Qt 36.5 3.5 0 0 0.10 \n",
+ "9 Qc 31.5 3.5 20000 0 0.15 \n",
+ "10 Qd 36.5 3.5 0 0 0.10 \n",
+ "11 QvT 36.5 3.5 0 0 0.10 \n",
+ "12 QvK 31.5 3.5 20000 0 0.10 \n",
+ "13 Q/Kv 25.0 7.0 85000 15000 0.25 \n",
+ "14 TQplp 36.5 5.0 100000 0 0.10 \n",
+ "15 Kv 33.5 5.0 1000000 0 0.10 \n",
+ "16 T 33.5 5.0 100000 0 0.10 \n",
+ "\n",
+ " dry_density uscs type \\\n",
+ "0 2091 SM silty sands \n",
+ "1 1734 OL organic silts \n",
+ "2 2091 SM silty sands \n",
+ "3 2091 SM silty sands \n",
+ "4 1734 OL organic silts \n",
+ "5 2091 GP poorly graded gravel w/ sand, no fines \n",
+ "6 1887 SM loamy sand \n",
+ "7 2142 GW well graded gravel w/ sand, no fines \n",
+ "8 2142 GW well graded gravel w/ sand, no fines \n",
+ "9 1887 CG clayey sandy gravels \n",
+ "10 2142 GW well graded gravel w/ sand, no fines \n",
+ "11 2142 GW well graded gravel w/ sand, no fines \n",
+ "12 1887 CG clayey sandy gravels \n",
+ "13 2091 CH silty clay loam \n",
+ "14 2244 NaN volcanic-sedimentary rocks \n",
+ "15 3000 NaN diabase \n",
+ "16 2600 NaN sedimentary rocks \n",
+ "\n",
+ " description susc_cat \n",
+ "0 old wetlands m \n",
+ "1 swamp deposits h \n",
+ "2 river channel deposits vh \n",
+ "3 levee deposits h \n",
+ "4 floodplain deposits h \n",
+ "5 active alluvial fill vh \n",
+ "6 point bar deposits vh \n",
+ "7 alluvial fan l \n",
+ "8 terrace deposits m \n",
+ "9 colluvium l \n",
+ "10 old alluvium, terraces l \n",
+ "11 T-derived Quaternary (terrace/coll./fan) l \n",
+ "12 K (diabase) derived Quaternary m \n",
+ "13 K-derived saprolite vl \n",
+ "14 Popayán Fm. n \n",
+ "15 Cretaceous diabase n \n",
+ "16 coal-bearing sedimentary rocks n "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "unit_table = pd.read_csv('./tutorial_data/cali_units.csv')\n",
+ "\n",
+ "unit_table"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's make a new table with just the information that we need, which is the liquefaction susceptibility category (called `susc_cat` in this table)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "liq_susc_cat = unit_table[['unit', 'susc_cat']]\n",
+ "\n",
+ "# set the index to be the unit, for the join below.\n",
+ "liq_susc_cat = liq_susc_cat.set_index('unit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We'll do a database join on the two tables using Pandas, which will let us take the attributes for each geologic unit and append them to each site based on the geologic unit for that site."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
lon
\n",
+ "
lat
\n",
+ "
unit
\n",
+ "
susc_cat
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
-76.540896
\n",
+ "
3.350158
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
-76.544763
\n",
+ "
3.350644
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
-76.528079
\n",
+ "
3.346550
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
-76.529860
\n",
+ "
3.356627
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
-76.527918
\n",
+ "
3.351601
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " lon lat unit susc_cat\n",
+ "0 -76.540896 3.350158 TQplp n\n",
+ "1 -76.544763 3.350644 TQplp n\n",
+ "2 -76.528079 3.346550 TQplp n\n",
+ "3 -76.529860 3.356627 TQplp n\n",
+ "4 -76.527918 3.351601 TQplp n"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "sites = sites.join(liq_susc_cat, on='unit')\n",
+ "\n",
+ "sites.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We also need groundwater depths at each point. A high-quality analysis would use measured data or at least values interpolated from a map of the water table depth, but we don't have that information available. Instead, we'll just estimate values based on the geologic unit. These units are somewhat spatially arranged so that the groundwater depth probably correlates with the unit, but in the absence of any real data, it's impossible to know how good of an approximation this is.\n",
+ "\n",
+ "We'll use a simply Python dictionary with the unit as the key and estimates for groundwater depth in meters as the value."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "gwd_map = {'Q1': 0.65,\n",
+ " 'Q2': 0.3,\n",
+ " 'Q3': 0.2,\n",
+ " 'Q4': 0.3,\n",
+ " 'Q5': 0.2,\n",
+ " 'Q6': 0.1,\n",
+ " 'Q7': 0.15,\n",
+ " 'Cono': 1.75,\n",
+ " 'Qt': 1.,\n",
+ " 'Qc': 2.,\n",
+ " 'Qd': 1.25,\n",
+ " 'QvT': 1.2,\n",
+ " 'QvK': 1.2,\n",
+ " 'Q/Kv': 2.5,\n",
+ " 'T': 3.,\n",
+ " 'TQplp': 3.,\n",
+ " 'Kv': 4.\n",
+ " }\n",
+ "\n",
+ "sites['gwd'] = sites.apply(lambda x: gwd_map[x.unit], axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5, c=sites.gwd)\n",
+ "\n",
+ "plt.colorbar(label='groundwater depth (m)')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Zhu site parameters\n",
+ "\n",
+ "The Zhu model was developed to use parameters that can be derived from a digital elevation model. \n",
+ "\n",
+ "One of these, the Vs30 value, can be calculated from a DEM quite easily, as long as the DEM has a resolution around 1 km. First, the slope should be calculated (which is very easy to do in a GIS program), and then the Vs30 can be calculated from the slope using Wald and Allen's methods [(2007)][wa_2007].\n",
+ "\n",
+ "The `openquake.sep.utils` module has some functions to calculate Vs30 from slope, and to get the values of a raster at any point. We'll use these functions to get the Vs30 values from a slope raster for each of our sites.\n",
+ "\n",
+ "[wa_2007]: https://pubs.geoscienceworld.org/ssa/bssa/article/97/5/1379/146527"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "slo = sample_raster_at_points('./tutorial_data/cali_slope_srtm_1km.tif', sites.lon, sites.lat)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAI/CAYAAACbG7YfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3hN9x/A8fe5M0NkSCIRIvbeau9Rs1RVUUrVaosqqmqUorRVq+2vqtRoS1uq9ihq1Kq9xQoJkhCJ7OTmrvP9/XHjkiZWKSrf1/Pkee4994zvOR43n3zH56MIIZAkSZIkScqNNE+6AZIkSZIkSU+KDIQkSZIkScq1ZCAkSZIkSVKuJQMhSZIkSZJyLRkISZIkSZKUa8lASJIkSZKkXEv3pBvwIHx9fUVISMiTboYkSZIkPRaHDh2KE0L4Pa7rtWjsLm7E2x/LtQ4dN28UQrR8LBe7i/9UIBQSEsLBgwefdDMkSZIk6bFQFOXS47zejXg7+zcGP5ZraQPP+z6WC92DHBqTJEmSJCnX+k/1CEmSJEmS9O8RgIr6pJvxWMkeIUmSJEmSci3ZIyRJkiRJUiaBXcgeIUmSJEmSpFxB9ghJkiRJkgTcnCMknnQzHivZIyRJkiRJUq4le4QkSZIkSXKSq8YkSZIkSZJyCdkjJEmSJEkSAAKBXcg5QpIkSZIkSbmC7BGSJEmSJMlJrhqTJEmSJEnKJWQgJEmSJElSriWHxiRJkiRJAhwJFe1yaEySJEmSJCl3kD1CkiRJkiQ5ycnSkiRJkiRJuYTsEZIkSZIkCcicIyQTKkqSJEmSJOUOskdIkiRJkiSn3FVyVfYISZIkSZKUi8keIUmSJEmSgMyiq3LVmCRJkiRJUu4ge4QkSZIkSXIQYM9dHUKyR0iSJEmSpNxL9ghJkiRJkgQ48gjJVWOSJEnSv8aUmsH5w+HYrLYn3RRJkriPQEhRFBdFUfYrinJMUZRTiqKMz2Gf1xVFiVUU5WjmT5/bPuupKMr5zJ+et22vpijKCUVRwhRF+VJRFOXR3ZYkSdLTx5SWQe/yQxnaeBwjWnz8pJsjSTlQsD+mn6fF/QyNmYEmQohURVH0wC5FUTYIIfb+bb8lQoiBt29QFMUHGAdUx9HjdkhRlNVCiATgG6AvsA9YD7QENjzc7UiSJD2dVFVlwivTiYuKB+DErjOoqopGIzvmJelJuuf/QOGQmvlWn/lzv3PKWwCbhRDxmcHPZqCloiiBQF4hxF4hhAB+AF588OZLkiT9NyyZsopDm44733cY1EoGQZL0FLiv/4WKomgVRTkKXMcR2OzLYbeOiqIcVxRlmaIohTK3BQFXbtsnMnNbUObrv2+XJEl65ggh+HXaGud7/8K+9JrY5Qm2SJJyJgBVPJ6fp8V9BUJCCLsQojJQEKihKEr5v+2yBggRQlTE0evz/aNqoKIo/RRFOagoysHY2NhHdVpJkqTHZtuSPaQlm5zvr1+Oo51nT5ZOXU38tURuRMc/wdZJUu72QP2yQohEYBuO+Ty3b78hhDBnvv0OqJb5OgoodNuuBTO3RWW+/vv2nK45RwhRXQhR3c/P70GaK0mS9MRdCr3Cpz2+QmT+Cax30TknF/z86Up6lBhEj1KD2bP6wBNspSTdktsmS9/PqjE/RVG8Ml+7As2BM3/bJ/C2t+2A05mvNwLPK4rirSiKN/A8sFEIcRVIVhSlVuZqsR7Aqoe+G0mSpKfMX2sOZZlV2aZvM+dr7/yeWDKsWDOs7PwtpxkHkiT92+6nRygQ2KYoynHgAI45QmsVRZmgKEq7zH3eyVxafwx4B3gdQAgRD0zMPO4AMCFzG8DbOHqPwoALyBVjkiQ9g5p2r4/e6FigW6p6Md6e/jpf7v6Ydm+35PrlOBSNgtHVQNv+zZ9wSyXJEbPnth4hxbFo67+hevXq4uDBg0+6GZIkSQ9ECIHZZMHFzQhAamIaHf17c/Prd+SiQTTuXPcJtlB6WimKckgIUf1xXa9cRYP4ZZ3/Y7lWxeCox3pvdyLXbkqSJP0Lju04TY/SQxjZ9jPM6WZnEGQxWxnR4mNu/xu0cNlCdziLJD1+qlAey8/TQtYakyRJ+hd8PeR7Yi7FkXg9mcWfrMBmsdGsWwPSktO5cjbasZMCfT7pRtEKwc7jFk9ezu4V++k2piN12z/3hFovSbmHDIQkSZL+BSUqhxBzKQ671c7Sz1cjVMH677aw8MwXGFwNCCGo0qQ8ASF+vODZk4AQP96d1YefP12JxWRhcrcvWZvyAzerD6mqiqIoyGpE0r/p5hyh3EQOjUmSJP0Lhszuw4j5b+Ll6+ZcOm9Ot5DXJw8LT89k+rbxjFv2HgvHLsGcbuZa+HVO7w9DUUBv1JHH05WwIxEAbF+6h7Z5XqN7sYHcuJrwBO9Kkp49MhCSJEm6gyvnrrJo8gpO7wt7oOOO7TjNoHrj+P37P7l++YZze/5gX3qXH8bxHaGUqFqEQ5uO4embF4OrHkWjUP35Ssz8cwI1WlUhLSWDoY3GsWvFfhZPWo7NaicpNpm/VjsWjJhNFv5YtJOzBx6sbZJ0NwIFO5rH8vO0kENjkiRlYbXaiYlOJDDIG63u6fmyetxUVWVIo/GkJqWzdOpafjgzHVUIEq4nU7R8obsOUU3p9Q1x0QlcPHYJFAWEwOhmICEmiYx0M9P6fovR1chHL09DqILgMkFMWvMBvkE+ACiKgsVkQaNROPXXWYpVDiH6wjU0Wg2lnivGuu+2smH+ViJOXAIB0/8cT8lqRR/Xo5GkZ4oMhCRJcrLZ7LzdfQ7RUQmUKB3AjLm9cu2cFKEKMtLNCFWgqoKLJyMZ3/ULhCp4oV9T+k66c62w/IX9SIxLwWa2cnN5WM3W1di9cj8GVwP5g32Z2m8ONosNgOQbKYxs+xkh5Qry/vy36D6mI+cPX8TgYuD0/oucPXQRjaJj7K9DWfXNH/y5bC8WsxXVYsXFzcDVCzEUrRjMhWOXKFSqAG4ero/lGUnPpqdpRdfjkHv/3JOkXMhksnAjNuWOn8fGJBMdGY/VYuP0iShM6ZbH2Lqni1anZdySd6nUsAz9P+3K8q82YMmwYjZZ2Lv+yF2PnbhiGK+NeQmjmxGtXod3oA+71xwGRYPNpnLpXAw3riWCoqBoNVgsKpfPRLN/wzH2rD5E0YqF+THsfzTqWo/T+8JQbSo2m524qHiuR97AkmFFp9fhHeBFzdZVqd2+Ou83m8CwRuN4o8xgTKmmu7ZPkqRbZI+QJOUS16ITeav7HCxmK937NKBrr/rZ9skf6EX5ysEcORBOg6ZlcHM3PoGWPjnpKSbGd/2SmEtxDJ/bj+daVOK5FpVY/Okqjv55GtWuomgUuo960XlMRpoZU2oGyfGpnD10kVqtq3Dx+GW0ei3/2zOB0L1hfDFwPqpdzTxCwWax4erugtHNiJefB5dCHaUWLWYrKQmpRIRGElK2IKu/2ey8jkajUKNVFRKvJ5MSn0rhMkG8O6s3Lm5GVFXl5K4zOBLkCqIvxFCsUsjje3DSMyM3rhqTgZAk5RLHDkVgs9mwWu1sXHM0x0BIo1H47OvXsJhtGIzP5teDEIJfZ64nIjSKHqM7EBByq5jztqV7Cd17HkuGlVnv/cjXuyYAoGgUUBT0Bh2t32hE4061AYgKu8bABh9hNplRFA1anYafpqziRnQidpudbb/upfuIduiNOszpFtw9XVFVgSklg4w0M3qjzhkEAbjkMfLVOwtRFIUPFr6FX0EfUhPTEULQf0o3Zg35gf2/HwXgrandnUkaNRoN7Qa0YM2sjZSvW5qQcoVQVRWNRnb6S9K9PJvfdJIkZVO9VjFcXY3YrCodutS8677PahAEsHf9ERZ/sgqzycKVc9F89edHzs+CSxdAURRc3IwUrxzi3P7y4FbYbXasZhtdh7/g3H5oy0msZht2q4qiCGwWG1cvxjo/vxEdz6xhPyJUQYkqIQyZ3QedXsvAumOxZFizzb/KSDUDjmDtm/d+JPG2Ycx5Y5dSqEQAZpMFo5uBmEtxkBnLhh0JZ+OCbWj1Omq0qUqfCkOJOneVnhM7021Ux0f49CTp2fPsfttJkpRFPj8Pfl43BIvFhqubwbldCMHyn/dx5mQk3fs0pHBRv7uc5b9Pp9ciECgaBZ0+61dghbqlmLpxFHFR8dRsVdm53WDU89qoDtnOVblRWefrcrVLcDUilhvRt/L8BBXLT+ie8wgh8AnwoljFwgCMXjSI43+G0rhrHT5+9SuuhcdS/6UaHN5ygrQkk6MQq7sL3BYIWU0WBn/9Bl8OWkjBEoE0fPlWMHtw41GsZit2m8qabzYReS4aBHw/dgmdhrXDYNQ//IOTcgkFu8hdPYm5624lKZfT6jRZgiCA44cvsXD2Nv78I5SP3l/yhFr2+FRvXpG3pnSj/ZvNGPPjgCyfXTl3FYNRT+GyBdmxfD9pSel3Pdfu1YcQQkWj1RBY1J8v/xyHRnvra/XcoXB0Bh1GVwPPtajo3F6rdRX6fdaNEpWLsPDUNNYlL+DqxRjSkkzoXXQMnNmTCcuGYLzt38qvUD4CCvszY9tY3praHYPLrc+ea1UFo5sRRVG4Fh7jmOiBY+XbpdDIh3lckvTMkz1CkpTLGQw6EAKNRkGvf/a/EhRFodXrjbJt37v+CJN6fA04cghpdVo8fT1w93ClcqOy9P/01WxDWUZXPRqNBgWB0cWAb6A33+ydyKD6H2HJsKLRaRm54E38g32dvUE5tUen1+FXMB+Xz0SjKArpKSa2Ld3LxJXv8f34ZSTHpXAtPJbuJQZjcNGTkWam83sv0GNsRxJjkxje9CPM6RZ0Rh3WDGuW8y8Y8zOT1416NA9PeuYJQM1lfSTP/reeJEl3VaZCQYZ+2I5zodH3nDv0LDuyPRSL2QrCMWncZrE7s0JfDY+l/ovPUa52ySzHtH+zOaoqyEjL4OV3WgMQUqYgE38bxqJPVlCzZWVqt612X9f/YOFbbFq0E42i8O0HP2M1W9n6yx5+PDuDEa0+4crZq6CA3a5it9rZsGA7PcZ2ZN+6w6TEpwFgt9lxcTdiNlmcZT08vPM8qkckSc8kGQhJkkTj58sTHOLLzq2nqd+kDP4Bnk+6SY/d1fDrIBzDhzVbVibs2CWEECTFpTjn+NzObldZM3cLqYnpdHq3NS63pRqo3LAMlRuWeaDrm01Wlk5bR+yVG2i0GoQqMKVmANBxcCtO7jmH0cVRiiM1KZ2S1R2ZpP0L+95MXo3OoOOTDaNx83Tjm6EL8fByZ8ic/g/5ZKTcRi6flyQp10mIT+PdPguw21V+/XEPP68fkqsyStusNvZtcCxL1+q0vPj286QlpVO0fCEObT1FyWpFCCziDzgCphO7z5KSkMb3E37DZrWx7rstPPd8RaIuXKdszeL0ndzlgZeuv9f8Y2KvOHqghFCp0bIyXUe0A6BGy8qsipuLotHwZvWRpCWlc2TrSU7uPkvlRuXpMLgNB34/Qu/J3ShfzxGAfb553KN6PJL0TJOBkCQ9ZU4mRjLp5BqK5fFnXMX26DX//n/T9NQMhCqwWe0kJ5kQwlEiK7fQ6XVUb16BY3+exi/IhwmvfonNaidfoBfzjnzmDArTktJ5u85Y7HY7Or0OVVWx21SS49PYsuQvEBARGkm1ZhWo3qzCA7Uh5lKc87VQIeF6EsUr35pXdHOFmxDOudCZ/04Kb01/nbemv/5Qz0CSAISQq8YkSXrCxh1bwemkaP64dorNV089lmsGBeejZ/9GlCgdyOjJL6HRPJtRUFpSOgf/OEFKQlq2z975oifBZYIwuBowmyxkpJmJvnAdu83u3Cc5PhWrxYY53UJ6ign3vK5otBo0Og0KCjqDFqEKvP3zPnDbBs7siXd+T+ezv3I2mrMHL2bbb/yyITz/Wn36f/oqFeqVAsBut5MUl5yZWVqSpAche4Qk6SlT0M2HyPR4hIBAV697H/CIdHqtDp1eq/PIzzt//G9sWrSL1r0aUr99db4b+yvFKgbz+ocdHmvmY7td5a06H5Icl4JbXlcWnpyaJb/OL5+vJfzEZQAKlixAUlwyrwxpjU6vIyPNzOn9YRSrVJiXB7di+6978fB259yRcDQahfJ1SlOqWggHN5+kZc8GWVaI2aw2zh64SFDx/OTxdker0+Y47Ph8jwY836MBE7p8wYFNx3FxNxJSrlC2/YKKBzDs237O95YMC29VG0HU+Wgad63HiO8HPcrHJuVCqpwjJEnS47Iu6hgTjq+koJsPC+r0Ia/elU+rdmJD1HEKueejik9hrpoSyaNzwUPv8qSb+8ASriex/OtN2Kx2lsxYz44VB4gMi+HU3vOUea4YtVtXzvG4xZ+tYd3CP2nVoz6vjWz/SNpiSjERGxmPalexWmykxKeSL9Db+Xlw6QLoXfSAQts+jWn/ZnPAkXBycOPxXLsUh4u7ke9PTOX1sR355fM1XD4TjUBQs2Ulvp/wG5YMK3NH/YLRxUCLng3QaDSM7/wFx3c46pTZrHZ8Ajz5ateEbJOvbxrz0yAun47CP9j3vqrIh5+8QsylWOw2lS2Ld8pASJIekAyEJOkJmnV2C2bVRpQpgR0xZ2lbsDKuWgMvBVcHYMGFnXxzbgs6Rcu4Ci+CAk0CyjyWeUOPgrunG3m83MlIN+Pm4YJnPg+uRsQhBHh4uzv3E0Jw8eQV8gV6o9Eo/DR1LXabnV+mr6ddvyZ45vN46Lbk8XLnpYEtWL9gO0271MkSBAG8+PbzBBbNj6JAjRaVnNttVjsRN4uiZliIjYqnUMlAOr/XlpByBVE0CrtWHcRqsTn3nzV8EXa7nXrtn+P4jtNkpJlRFAUhBCnxaez//Sgtc8hlBI66YTn1BN0uNTGNdxtNIPpCDP2ndMWvYD6uhsfQ4OXaD/GEJOlm0dXcNWvmv/FtKknPqPr+JVkZeRgFhQpeBbN8lmBJY8GFnVhUO0KB0ceWoddo2RFzlklVXn5CLX4wBqOe2bs/4uTe81So48jBs+H7nRQuHUj52iWc+301bBFbfvkLrU7Dl1tHk8fLjZSENDQaJcscnYfVd1IX+k7qkuNniqJQq1X2Hiq9QYfBVY/FZAUUwo5dQm/QERDiR63WVVg3bxvbl+0FITC6GbBkWFFVwfnD4cx5/yesFhs6vRbv/J4kxqag0WmoUP/+ltZbLTam9vmWQ1tOUKJKEUb+MIC8PnnYt+EokeeiEQJmD/+J5THfYkox4Z3/8Q2lStKzIneFfZL0lBlRrg3za/dmTaN3KZzHN8tnH59YTYrV5HyvQcFkt3I+NeZxN/OhePnlpd4L1fDM54FnPg+6DG1N7dZVsuyzf+NxzCYLql3l4olIajSvgBDCsZz/i41PqOW3BBULQG/Uo9FqmNZ/Ln2rj2Tv+iMAuOd1RUFBo9Vgs9hw83ClXvvq6Aw65z3Z7SoJ15N5Y+IrLDo3k6Bi+e/run8u28uO5ftJiU/j8JaT/PTpSgCKlC+EuG3pWFJsMj4B3rkq5YH0b3GsGnscP0+Lp6clkpQLKYpCWc8gfF2yD/1oFAVN5qRFu7CjIgh282F0+Rey7ftf123EC+j0WvIH+1KtSTnyB/uiN+jQ6bV4+T/8sNjD+mztCPpO6kzF+qWxWmxYMqzs33gMgIYv12TQFz1x93TDblOxWWyUr1OSHb/tdx4vVEdl+r/WHiKPl3uO1xBCsPWXPXTI34+3ao4mOT4V3wLezjQGGo2Cl58j0WXRCsG0eL0hWr2W+i/VIH/hZ7tQriT9m+TQmCQ9pcaUb8fZpKtcTo9HBQyKlnEVO1DJO/hJN+2Ra9WjAa16NAAcZSJK1yjGq++1xdPXg+e713vCrYPwU5Esnb4Oj3x5cPNwQavT0qZPE8ARzDZ/tR5nDlzgj8W7EQhUu4opzew8Xqt3rBRr27dpjucXQjCi1Scc+/M04Fg6v2vlAVq/0Zg3p77GhvnbqN2mCp2GtnEeM/SbPgz9ps+/eNdSbiRrjUmS9NQwavVcSY93vi/m4Z9tHtHTxmyyEBEaSeEyQbi4Ge99QA4+6T2Hg1tOAjBr5zi02nt/KdvtKpHnrhIQ4ofR1XDP/R/Utx8sJi46geT4VN6a0o3WbzTOts+Aaa/R5JXa+Ab5oNVp+H7iclShEljYl0krh+PhnQd3T7ccz58Qk8SJXWdvbVCgVLWipKeYmDf6F6wWG9cvx/HqyBeJiYxnZNvPMKVmMH7ZEEpWK/rI71eScpPcFfZJ0n+IUaOjRr6i6BUtxT38WVinLwbt0/u3i92uMqDhBN5vN5WBDSfc1yTng3+cpG/ND5n5zvfY7SoAofvCyMjsTbm5WuteRr4whYH1x9HvuVGYTZZ/fhN3UKZGcVzcjSiKQtEKOffIaTQaytUuSf5gX3wL+PC/nR+BTRB59hq9yg/H8req8Lfz8s+Lb1DmKjYFytUuyfkj4STHp2Kz2rFb7ZhSMxjSaAIjWk0m+mIM8dcSWTR5BeDoUQrde47wk5eznPfHCb/S2rUrH7T8+JFOOpekZ8nT+60qSbmcoih8U7Mn10zJpNky6Lzza4waPTOf60Z+lwfPXPxvSElIJfridYpXKkxKYjpXw69jt6lcjYgjOT4Vb/+7F2+d+vY8EmNTiI2Mp8FLz1G1UVn6fvwKs97/icAi/nj63nt+kN1m59gOx5BSfEwiVy9eJ6Tco+05GzC9B7XbVsWvgM99n9uUmuEMPlS7So/SQ6jZujIjfxiYpZfrz9/28dMnKwkI8Sf+WhKqXeX4jjOc3htGzdaVGTD9NVb8byOXz0Zz7nA44CgMq3PRU7lROQCWTV/Dgg9/QdhVPlg8mIaZy+gXf/wbdpudk7vOcP7wRUrXKIEk3Ytd5K5J97JHSJKeYhpFQwE3L+ac387F1FjOJl/l5/C//vXrCiE4sDWUg9tC71i2ITEuhV5VRzGi3VQmvDYLz3x5aNSxJhqthoYvPYeX372DtQJF/DG6GhBC4F/QB4DGL9dk5Lx+RIRGMqrDdJZ/vemu7dTqtLTKzMlTqloxCpUKfPAbvgetVsNzzSs+UIBVpHwhila81XtkybCye9UhzmcGM+Bo/5Q3ZhNxKpIzB8Jo0LEmZWuVQKfXYjZZuBoeS+veTWjRs6FzRZiiUXjpnVZM2TCSlwa1BGDP6oNYM6zYrHa+Hfa98/zl65bCxd2Ii7uRgiULPOxjkKRnkuwRkqT/gLKeQeyKPYcASns++l/0f7dm4Q7mT14DQJlqIVw+H8OLvRvS6e1mzn0unYnCZrWTkW7h2I4zRIZdY9D07gyf3fue57948grfT1xOpfqlaNGjPsUrBlOweIDz89B9YVgtNoQqOLTtFC8NeD7bOXauPMCnb8zG29+TL7Z9yMAZrzkLkz4qN64lEheVQMmqIQ+8NP3c4XDQaSlVszjn9l9ACIEQgoCQWyu8FEUhX6AXCTFJaDQa+n3SFXdPV6b1/47oC9d492vHs2zcuQ7r520lLjqRlwa1oMfYjlnKk9R/qSYnd50G4SjpcdMnG8dw/tBFCpUOuuNqNUm6nUCRCRUlSXr6vF6sHqU9A3HR6qniU/jeB+Qg5soNRnf7BrPJwrgFfSle/s7Ziy+eisKcYQEBx/ecR1UFCz9bwwu9GuCSORm5zHPFKF4xmDOHwgkI8WVAvY/I4+XGnH2TyOOV86TgmyZ2/5qr4dc5tuM0435+h2J/m3fT/NV6bFmyl7QUE92G55wu4KfPVmGz2EiKTWb36kO0698sx/0exOJPV7NuwTZa9mhA0y51GFD/I4QQ1GpVmSJlC1K1STlKVi1yX+eaOWghEaFRGFz1FCpdgMTrSbw97bVsPWUzt49jz5pDlK9TEu/8jqHEkd+/nWWffIFezD8x1fn+2I7TnN4fRtOudfEL8qH9wJZcCr3C6b3neXtmL+d+eoOesrVL/dPHIUm5ggyEJOk/QFEUavsVf6hzrP1hF9ERsQhV8NOM3xk7r++dr6d1VFNHAb1Rj6JAHk83DMZbXxkGo56p60cA0M6/PxazlfSUDCJCIymfmUX6Ttw8XNBoNQjheP13+YPz8cmKoUx7ex5LZ6znvdl9sgVXddtVJ/L8NRSNQvm62a+3fdleFn+yijovVOX1cS/fs0cnJT6Vnz5fg91mZ+mM9fgEeiGEwJxuYcfyA+xceZCfp63lx1NTyeuT567nAkdx1KvhsQC8O6s35WrlPD/HJ8Drjsvql325gV2rDtJxYEtqtalCxKkrHNx8gsVTVmG3qWz8cScLjk1Bq9Uy5Ns3sxwbG3mDSa9+iaoKxvz0Dv7BvjleQ5L+Tn2Kkh0+DjIQkqRcomz1IqxZoANFoWLtu0+ajY2Mz5x/o6F974YUKxdEpbol71gtvt2bzfjtyw0UKOpPiSohdz232WShevPyePl50KpnQ0rdYfn33DFLOLnnPBqdhtVz/qBtnyYoiuKsUdZ95Is06FADD293PP082LRoJ2aThZY9G6LTa/m83xxsFjsxl+No3Kn2Pef3uHq4kNcnD6a0DFzcDNR9oRpr524jKuwaNpsd1a6i2gUZaeb7CoTen9OXHSsOEFjE745B0N1cOXfVWcj1433/w8XdgGp3DK/ZrHaEKkhNSMtyzPkj4Sybvo7qLSpxZn8YZ/ZfAASLJi1n6G0V6yXpv0JRlCFAHxwpjk4AvYQQGY/yGjIQkqRnxNrIY4w/tobC7vlYULdXtmr1tVtUZPrqoZhNFspUu/vwTt+xHYh7eyHpKSZUu53aLSqiN9z566LPhE70HNMBXWbiwLuZP24Z6xduR1EUqjevcMf98hf2w+CiByA1KZ1XSwxGURQm/jaMyg0dtbqCSzsmAK+avZl5Hy5FCEHM5Tj6TOyMX1A+blxLQNEoWVaf/TBpOX8u20fnYW15vnt953adXsc3e8ZzfNdZKtQtibdfXnwCPLl2KRYBFC5TAL8gH07+dY7GBWvd8z6Nrgaav1r3rvvcjVteV8c1FECAJcOGRqNgs9pxcTdSqmoRXhvdIcsxo9p8SlJcCrtW7KfT0LboM59f4bJPd/4p6enxNBVdVRQlCHgHKCuEMCmKshToAix8lNeRgZAkPSO+Or2VDLuVy2k32BFzjjYFK2K3q3z+zo+c3BvGG2Pa06RD9SzHnDt2mc1L92J00VqIP1wAACAASURBVHNk51lCShegbc/6lKlWhDLVQvjj1/2smr+DvD4edHor5+Gbm/QGHSf3nGPsKzMxuhmZuuGDHGtqpaWko9pVFI2G9OQ7/2HXe/zLFC1fEDcPV/78bR9Ws2MS8Ce9ZtF95Iu80LcpURdimP7md9yIScBqtYGAhGtJAMzc8iF71h2mXK0Szrk3URdi+HXGeiwZVmYOnE/TLnXQ6rQAJFxP4uAfJ6lQp6Rz2f/5IxFkpJlxcTdiMOo5uPkER7aH4uJmpE7bqs62Rl2I4eKJKzzXvAIu7v8skeTf5Qvw4vPfR7J0xjr2rjuCVq+lZsvKXDoTRf9PulKtafYg0mJ25CqyWmzoXfSM+ekdVFWlVpuq2faVpP8IHeCqKIoVcAOi/40LSJL0DKjjV4x1UcdRUCjvFQTAqf0X2Lf5BBnpFmaNWpolELLb7Izo9CUZ6bcSEF4MjWbHmiN89ftwAFRVIGx2zh6O4Pie8wSG+OJXwPuObVgyfR3pKRmYUs1sXryb18e+lG2fvh93Rtgdldo7DmwBwJalf/HVkB/x9vXgk9XvEVDYD61OS7Oujh4VNw9Xdq8+iNVsI/F6Mt9+8BM1W1Zm9vuLOfnXOee5tXotJaqGAI4kha17Ncpy7bw+edDqtBhdHUNsmsx8PqqqMrDBeEfFe62Ghcen4OXrQb9PujB39BJKVy9KWrIJm9WOzWpn/kfLqN68AgajnutXbjCg3kcAFK1QiOmbRt3PP9d9KVWtKB8uGkTi9WTiouM5sj2UbiPa33GYr1qzCuxacQCAmMuxdBvVIcf9JOlOBMpTk0dICBGlKMpU4DJgAjYJIe6cT+MfkoGQJD0jPqzUlpcKVyW/a178MxMuBhZ2TJB1cTNQuHTWZfdC4MzmfDub1c5v326jz+j2bPplL0LAnt+Pc3B7KIpGw6xNI5zn/btarStzbOcZhBAY3Q3YbXZnj8tNnvk8GD4n60TtOaOWkJGawdXUDIY0m8TP52dm+bxywzL8evlrupceiinFhEarwcXdSGARR8B0M3Gh3WpnzshfaP9m8xyHrjy83fnfzvGc2H2Gmq0qO/exWe3ExyQhVEfOpNEdpvH1zo9o3rUuzTODsavh1+ldbRSqXSU2Kp7QvWFUbliGa5fiAMhIN3Pp9P1lwn5Q7l5uvF5xOKbUDOaNXcq3+yZRuExQtv16f9yF8JNXUFDoPMyx2u7Hj39j6dS1VH++AgYXA/t/P0qX99vT+b1nr3iv9J/jqyjKwdvezxFCzLn5RlEUb6A9UARIBH5VFKW7EGLRo2yEDIQk6RmhUTRU8M7aU+BXwJuvN44g/HQ01RqVzvKZTq/Fw9ud+MyhpOCSAVw+dw2A5Bsp5PFywzWPC+mpGQhVYDZZcXEzEHEm+o6BUJs3GpPXx4PP+81lybR1RJ2/xnuz710YNCA4H0mxyYAjUWNOXN1d+HL7OHatOki1puXJ65OHfp90xTvAi5+nrMacbkFn0OFX0CdLECSE4NcZ6zh94AI9x3QkpFxBCpYIyHJug1HPq8NfYPGU1SDgwvHL2Kw2VFVw7lA4hUsXILCIP9WbV+D4jjNo9Rrn/KRytUtQu20VTuw6S++Jne55r3eSlpRO2LFLlKxaBNc8Wed32Sw2Z9kRoQqWfbWBmi0qEVw6iOBStxIlBpUIZMGp6c73qqqy6OPlCFWwf8NRBGAz25g3+mdeGdb2gXMjSbnDYyy6GieEqH6Xz5sB4UKIWABFUZYDdQAZCEmSdGenEqN57+BSPPWu/K9mNwoU8cPFzcDQ9jNISUxnzNzelKrsyEWUdFvQUbFOCQwGHWmpGfQc8QJarYbpq4awY81hhAor522naNkgqjQofadLA46eEUWjkJFm5uyh8Bz3SY5PZfYHP2EwGug3uTOvDGvDpNdmodrVu2akDiqWn85D2/DdmCWM6zSDju+0pOt7L/DKkDZEnovm3OEIarSolOWYY3+eZtGnqzCnW4gIjWLBsSk5nrvbB+04dySCg3+c4IW+TdDpdQxpPonwU5EYXQ3MP/wJ4xYP5MzBi2h1Wr794GdCyhWky7A2jJj7cCuyLGYr/WqMJjUxDd8C3sw99EmWFXrmdAvBpQs4e5w2/bCTTT/sRKvX0mlQS1Z8tYFydUoxceV7WZJKajQaSlQJ4fKZaAxGPWkpJgAUFI7vOE2lhmUfqt2S9C+7DNRSFMUNx9BYU+Dg3Q95cDIQkqRnzIzQzUSmJ3BVSWLllcP0KdGAjUv2cuncNVS7yg9T1jLppwEAlKlahFMHLqDRaihduTBe+TwILJyPImUcvQymVDNhJyKp1rA0v53OHkDYbXbmjF7CpTNRvPnpq4SUCaJeu2ps/mkXUWExvPXZq1n3t6ucPxLOqtlb2LFiP4pGwSfAk+4j29O+f1POHYmg36Qud72/a5diWfnNJqxmG3NHL6FN7yYYXQ0ULlOQwmVu9YjFXI7j/JEI3D1dQYBGq9xxIrPdZufMwYsM+V8vvP3zoigKQgjOHrroXLJ+NSKW4pUKU65WCQY1HE/Yscvs+/0oIWWCqN2mygP9G/1dYmwyibHJ2Cw2oi9ex5Rqxj2vq/Pzya/P4sq5q9mOU212ls1Yh9Vs5dSes5zeF0aFelkD1enbxnF6XxhFyhfivWYTiTgVid6oI+Zy3EO1WXo2CQH2pySPkBBin6Ioy4DDgA04Asy5+1EPTgZCkvSMqeRdkOMJVxBAqbyOeUElKhRCp9eiMerwLeDN280/xWa1EXkxFqOrgWYv1+CP3/Zz4q8L6PRaDC56XFwNTBn0AymJ6RzZeYbjf4VhdNVTploRChb1p1LdkuxadYjff9iBOd3C5/3m8vXOj3DN48KUtSNybNvn/efy17oj2Mw2hCLQarS45XVFo9HQ/5OuWfa9eOIyBldDltIb4JhjZHQ1oNVq8fBxR2/M/jWWeD2Z/jVGoaqCoGL5GT63H2FHI3ihX84r3yb3ms2hP06i0SqMXPAWIKjWtDxdhr3AL9PWYjDqSYpNQVVVNBoNBlcDikZBgHOJf04y0s3ojfosRVZz4hfkQ5NXavPnb/to/UajLEEQgNlkRqjZ53MFFs2PX4AnZ/aHodVpCSqefZWewcXg7PkZNrc/QxtPwJJh5edPVtK8e305PCY91YQQ44Bx/+Y1lDsVVHwaVa9eXRw8+Mh7xSTpmSKE4K/Yi3gaXCnndWv+yMXQKCIvxPDZwB9Q/zZJWm/QodEqmDOsGF30+Bf0ITYqgQyTo8wGOCqeq3aBolHQ67V8OK8PGiH4qMuX2G12KjUow6TlQ8lIM2N0M+T4C7ZzscHO4TiNVkOzrnUY/EXPbBOq1363lTljloCAsYsHUr1Z1qXisVHxnNpzjiqNy+VYof7c4XAGNxqPqgpQYF38vLvWIesUMoiUhDQMLnpUVUWn09HitfqUrFaELwd/j9nkWFlXtUk5Jq8YRnxMEitmbcInwMu5tH/0wrcocFu6gJXfbGbO6CV4+eXl653jnEvy/4mr4ddZ8NGvXD4TTfipSEpWLcLgr17HwzsPnr4eTOw8k4ObjxNStiBf7ZmIwcVwx/P0LPWu8/1nv4+kSpM753KSnjxFUQ7dYx7NIxVS3kOMWV75sVyrb6ldj/Xe7uTp6P+SJOmRURSFOv7FsgRBAEXLBnH6UESWIEijcQQrVosNq9lG7ecr8MLrDYi7mkhGugXFec6bRwhUu4o5w8qcj5ZTqUFpPpjXn9fHdmTk/DeZPmA+HYLe5t1mk7IU/7yp55gOzgBJIAgs4p8tCAI4sPkEFpMVS4aVLwZ/T3xMUpbP/YJ8aNSpVo5BEEBwmQKOIAjQarXOUhe3s9tVTu8PIzE2mV7jOmJ00QMCm8VORrqZ0/vD8PbPy+1/LB7ZdgqzyYJPfk96j+9EXFQC5w5HcOHEZX6YvDLL+VfM2oRqV0lLTufQ1lM5tvN+BRbxZ9T3A5i9bxLTNo1m4IwezB/7K29Uep/BjSZwcPNxhCqIvnidiFORjvuz2bl8JsqZWyj+WiKevlkzYl+Tw2OSJAMhScpN1i/a7Xxdqkph5v81liYvPYeXbx76j+/I2Hl96T26Pf3GdsDDy42Awr4YXPToDTra9WpIy1frOI+PjojjemQCtdtU4eV3WuKW14VNi3YhhCDiVCSXz2af09Ls1boY3Ry9FQoKzbrUzrZPSkIanYe2RpeZyfrG1QSWzlz/QPfp4mqkVusqaHVaQsoVJLCIX7Z9Jvf8mg/afsYblUdQs2UlSlYrgiXjVvBWtWl5qjYux8gFb+JfKB+KAnXaVsXoequ3JaRsEHqjDhdXA0X+ltunaZc66I06dHodbnlc6F56CAPqjSXhb0Hd3YQdu8TyrzdyPfIGAGvm/MGoFz/nvZaTObTlJDarnYjQSEpWK4rOoCNfoBfBZYIQQjCs6QTerjGKt6qPZMmUVXQv/g7dir6DRn/ra9/b3+u+2yJJzyo5R0iScpEyVUI49td5wFFhXq/T8eb4l3DL65plHkvLV+vQ8tU6CCE4d+wyXr4e5C/ogxCCi6eiCD8TjX+QN76Bt36RajQaqjevwLEdp/EJ9Moxq7TNYsNmcQQbGq0Go1vWycv/G/oj6xf+SWARP7oMa8OvX2wAyDZP6H58tGQwideT8fTzyLFG2tHtoWSkW3BxV7h48gou7i7OSdI6g5barR3DA7VbV6FWq8qkJqZnK/za/NW65AvwwmqxZlut1mN0B1r1bEgeLzfGvTKD2Mh44mOS2LR4F52Htrln++NjEhna/GPsNjvLvtjAT+dmcmrveczpFhSNgrunK2mJ6QghyOPpxsLTM/AJ8ESn12FKzeD0vjCEKrgWEcu677Zis9jQaBXKPFeC84cv4urhQpkaxR74uUrPNsHTM1n6cZGBkCTlAgmxyZw+FEHL1+o6AyEUmDNhBTvXHqVgMX++XPdelt4OcAyz3Vxqf/P91BXvEnXxOoEhvuj0WYe1JiwdzLWIOHyDvDEYs08idvNwZdg3vVk9ZwutXm+YrXjppkW7UO0qN6ITqVivFCFlC6LTa6nZ8laQkZqYxsj2nxMTEcfw7/rxXPOKOd6zoijO0ho56THmJeaOXkKR8oWoWK80pasVZdn/fic9OYMWr9WneKWs932z2OvfVW1S7o7X8CvoA0DZWiU5e/AiQkDx257n3aQmpiNUx1BdclwKQgi6Dm/Hmf2OVX6vDG3DV4PmAwp1X6yOf6F8zmNd87jQ+JU6bP1lNxXqlaJu++rMGvojLm5GPvhhAHarHe8AT1zdXe7cAEnKJeRkaUl6xmWYLPSsOQ6L2YrN4igRodEqtH+jIavm70C1qxhdDXy2dBClqtzfL2mAdT/s4vef/6J974Y0e7nGI2nrtLfmse3XveQL9OKbPRNw83DNts+GhduZNXwxFpOFwmWCmHNg8iO59v0SQhC6Lwz3vK6E3GcxUyEEx/48jYePO8UqZn3GJ3ad4cbVROq9WD3bhO5fpq1l96qDdH2/nbO22YqvN/LdmCW45nHhoyWDyeudh+AcskwDpKdmgBC4ebiSnmJyrLbLYU6W9PR63JOlC5f3ECN+ezyXG1B6+1MxWVr2CEnSMy7pRiqmVDNWiw0UMLrqQUDVhqU5ufcCF0OjyBfgmaUEx/G/zrNm4U4atq9KvdbZV5AkxCYz+6PfsFnsfDH8Z+q2qoTrIyg2OnTWG/T88CU8fT3uWO2+eOUQFMDF3UiFeqUe+poP6pdp6/hl2lqEEIxbPIhqTcvf8xhFUajcKHvywkNbTzK+8xegwOo5WyhcpgDl65aiYPEASlUrSpdhbekyrG2WY9Z8txWb1Y45w8Lls1fxL+jDd6N+pln3ejToWMu539WLMQyoPQZTagbvfPUGibHJHNh4lJ7jOslEipJ0GxkISdIzzj/Im9av1WX7ykO0e6MBJSoEY7PZGNfzW1S7QKfXMm5eX1wyh8XsNjsfdp+NxWxl3x8nKVO1CPkCsg4xubgZ0et1IMBg0DKsxWRSEtIY88PblKpWNFsb1i/YTui+MDoPbUOhkoHZPr9JURR8/1bUVQiB2WTBJXM+UYnKIXzz10TiohOeSCB0fOcZzOkWNFoNZw+H31cgdCfRYTEIIbCYrITuO8+pv86xYcGfGFz0jFz4FrVzqBrftncT5n24BIPRQMX6pelfZQRWs5VDfxynQr0yzuHAfRuOYk63YLfaWTptDXFR8ZjTLYx/ZQbLY+YCjozWa2ZvxuhmpNUbje+Z70h69gkU1Kek6OrjIgMhSXrGKYrCm+M78ub4js5t8yevRrU7hsVVu0pSfOrtB6DVacDsWNml0Wb/UnR1NzJz7TAObT/NruX7OLXHUQF+av/vmHsw61BV6L4wvh35C2aThdB9Ycw/8mm28yVcT2LGwAVoNBqGfN0Lz3yOZfFmk4XBjScQcSqS9m81560p3QAIKh5A0D+YQP1PWcxWfpy0kpSENDq+04JLZ6LI4+XO893qPdR5m3atw/6Nx7h8Npob1xKwZtgQQmC12Ag7GpFjIPTSwBY061oXF3cDGq0GnV6L1WxF0WjQ3jZnq3rziiwcuxTVrpKakIYlw4pGq8kyL2vBmCWsnr0ZRaNgNVvpMLDlQ92PJP0XyUBIknKhqg1Ls2LuNmw2O5XqlaR8zVurh7RaDVOWvcOmJXup3bIi3neo/RVcIoDgEgFsXrjduc3NM+uqqv2bjvPdh0uw2ewoioLmDj0OP0xaycE/TqIo8PPna3nzU0eW6bMHLxJ90dFrsva7rbz52av3lQnZarGh02sfWdbkdfO2sWr2H9jtdkxpGfx0dsYjOa+bhysTfxvqvL9DW04SdjSCvPny0Lp3kzselzffrWBm2paxbF2ymzovVMPoaiA5PpW8PnkoWDKQny9/zfBmEzl3KBxFgSpNyjN0zq26aPt/P4rVbAUFkuKSH8k9Sf999lyWWUcGQpKUC1WuW5L5u8ditdgoEJI9x07xCoUoXqHQfZ3rnS968FHXr3BxM/LhogFZPpvUYxZmkwWtXku9F6vTa2zHHM/hF+TjnBPkF+QYGrsafp2Pusx0Lhe3WWz0rT6SL7ePyzaJWghB8o1UPHzc+e2r35n/4VLyFfDmfzvH37WI6/3SG/SgOHrXcirp8bAUReGFvk15oW/OJUDuxGa1UaRCIfpV6UbU+at0CX4bc7qZATNfp03fpri6uzgTaAoBlgwrfgXzZb4XXDkXDThSH1SoV4YzB8LwDfLht5nr8fb3pOOQNnK4THrmyUBIknIpvwLexF9L4v3207DbVT74tjd+QT73dWx4aBSjXv4CgMm/vsMv52cSduwSP3++ltqtKztLYnj6ehB/LRGtTku/SZ3veP7Ow9rgG+SNRquh0cs1sFps7N94DEuGIyuyyMwSHRsZz8k957Lk7BFCMPblGRz84wQhZYMIP3kFISAhJonDW0/SpHOdHK/5IFq93oAMk5nUhDQ6vdv6vo65eOIKdlWlRKX7X4n3II5uP8WYdlPQ6rRM3fIhJ3efxWKyYLPaWfHVBoxuRmq2ruyYJJ/JfltWcUVReK5FZY5tP4WnX16+fnchcZHxKBoFi9mKTqfFwycPrd5o/K+0X3o6CUCVeYQkScotfpm5gVP7whACpg5YyIUTVyhUMoDJvw7GNc+dc8ys/HYLibGOoZQVs7fw7hev8X6bz0hPyWDz4l3MP/IpvgW8mbZxJDtWHKB87ZJ3DbK0Wg3Pd6tHzOU4upUaRmpSOr3Hv4zOoMNqvvWLXGfQUrJKkSzHmlIzOJBZYiIiNMpRD0QI7HaVcrVLPuQTymyfTsvLg+5//syOFQeYNmABAG9NeZWW3R9uLlFOVs3alBkoWtn84w7av92CH8YvQxWOUhtfDPiOfIHeBJUI4PKZaDQahXK1S9A1ZAD5g32ZuGo4E1e+R+S5q7i4G+lZ6l3sNhUUR7JLgWPivCQ963JX2CdJUhaFSuRHb9RjMOq5cPIKackmIkKj2L/55F2Pq9akLAYXPQYXPVUblwHIMgRzswfHL8iHjgNbUKpa9uBl/6bjJFzPWm5iz9rDpCWbsFvt/PrF7wQWy+9M2qgz6Phy2zi8/LMOdbnmcaFyw7Lo9FoKlQp0JHJUoPeETuQP9v3nD+chHN99DnOGBbPJwrEdpx/4+P8N/YF2vn2YOXC+c1tcdDxRYdec75t0rev4t3PRU7f9cwQVD2DJlVl8umEkWp0Gc7qF6AsxHN9xmqpNyzNsTn8Obj7OjegEQveep3uxd4i9coPg0kH4F/Klwcu1UDQKdds9R8vXG/HKsLa07NXoUTwO6T9Fwf6Yfp4WskdIknKxtm80wi/IB7td5a/1x9i99jAAxSrcPVFgg/bVCcmsaVW4lKO466QVw1j97R/Ua1/dmVH5ToY0m8S1y3HoDToWHvsM98xJ1lUaOQIahCD5RgoJMUnojTrqtqpM41dqZVspdvTP0yyZvhYPb3f8CuajYPFAoi/EoNFqCDt2GQBVVZk76hdC94fRb3JXytUq8U8eVRapSemc2htG6epFnCvcbvfim005sPk4dpvKK4NbPdC5k2+ksH7eVuw2lc2LdtJjzEtEXYhhVLspALw5pRttejehfocalD1XAq1O65wHZXAxULF+GVr0bMS2X3aTmpyOOd2CKTWDZt3rc3znacJPXAHAlJbBrpUH6Di4NZHnotm79rCjLpqHC+/O6vOQT0iS/jtkICRJuZiiKNTKLF9Rq2UlWnSrS/7gfPjfI5ABCP5bPqBytUpkCzJiLsUSc+UGJSqHOIfa7HaVS2eiEUKgqirblu2jUMlAKtUvTUjZgvx4aiqR568you3n2G0qNoudlwe3pmzN4sRFx3Ng03EqNShDYBF/xnWaQUa6+db1Lseh1WlQuNVDdWTbKdbP305GupnhLSfz+e+jHioYSryRQu+qo0hLMaHVallwZDL+BfNl2adg8QC+P/bZPzq/u5c7/oV8SbieRN58ecibLw/r5m3FarEhVMHOFQdok7miLF+gd7bjFUVh4Bev0/WD9gxv/jE3ohOIOBVJr3JD6fdpNzb94MgmjoAqjR05kN5vORlTagYAu1cfZPg/arn0LMiNc4Ry191KknRHWq2GCnVK3DEI2r3uCGM6f8nudUfu63y/fb2RnpVG8H6bKbxR9QPCT11BVVW0Wg29xnUkj5cbhUoGMnf0EsZ2msm2ZXsB8PB2p0yN4tRtXw1wTIZe9uXv2O0qA+qOY9bwRQyoN85RMsI9a200g4ueDgOep2DxQI5sD2XJ9LV4+XtiszrmGdltKl/cNtz0T4x6aQZpySYQjjk0a77b/lDn+zutVsOsvyYyYdlQZu+bjE6vo0nnOnh4uaNoFNKS00mKS8nx2POHw5nebw5bf9mD0dVAhXqlcM1jJD3ZxNXw64QdjSCgiB86vZbaL1SlaMVghBDEX010nqN59/qP9H4k6WknAyFJku4pLdnEZ/3mcWhrKJ/1m+cIBO5h84+7HH9eAgkxyQxqNJHRHaYD8MqQ1iy79D8KFPHHbLJgtdgIPxmZ5fhmXeo45yHVblMFq9lKSnwqFpMVi8lCekoG783umyU3kUaj0LJHQ65GXCclPpUFHy0juFQBAov6O/cJKvFwiRjjIuOdrxWNQvna2XuXrpy/Rt+aH/Jm3XHMHrGY9Qu28SB1Hd08XKnUoAzueR1pAoKKB1CtWQUQcP5wBLPe+9G578KxS3klqD8z3v6OQXXG8PvC7UzpNYupfWazedFOEq4no9Fp0Gg0LP9qA8Glgxj36xCKVSrMhaMRKIrCu7N64x+cj7b9m/H2jJ4P8XSkZ4GcIyRJkvQ3Wq0GrU6D1eJYUXR74c6LJ6+wadEuarasRJXb6mm9NKgF0wfMB4EzD9CR7aHYrDZncdEeYzpw5fw1XFwNtH+zWZZrVmtanjn7J2G32Qkqlp9Vszejqo7hLrtNZc+aQ7Tt25QSVUI4e/AiikbBv5Av3vk9MboZ0Go1eAd4AYIrZ68CoNNr6fZB+4d6FsNn92buh0sJCPGjy9A2lK1RLNs+i6es5so5xzUjTl3BoNfg6u5C41dq/+Pr+gfncwZTO1fsZ/BXvbhyJpqfPl0JwIbvtnLzd4tqVxHCkR9I0Wto0rUOu5bvJy0xnaPbTnHojxNYzVZ+nb6OxRe/omWvxrTsJZfJS7mTDIQkSXKKj0kir08e50qtm1zcjUxZPYzda49Qt20VXNwcQ1KqqvJeq09JTzaxfsF2Fhz91Dlv5flu9WjQ4Tk0GoUP2k/l9L4wmnWtm6XCeqESgczeM+GO7QkofGvV1/oF27nZqSKEYNEnK/HJ78W0TaM5e+j/7J13eBRVF4ff2ZYeEkIKvYbee+9FESkiXRAFBEFQijQRBKnSRIqAVGkiRXrvPUAogRBISEIIgRBSSM+2ud8fGxbWJBQ/C+i8z5MHdvbO3DsTyJ6ce87vF0bo1QgadayFo4sDSy9M5eaFMCo1KI1Wp6Vplzoc/fUcvlWKULTcywlFPkEIgWyWrcFfjRYVqNGigvX92wF32fnTEWq0rEC9NlWRJImSVYpyds8VDBlGhFEgBDa1TC9L4NlgzCaZCvVL0XlYGzZ/vxezyYxKpUIICL8R+bvFWv6o3qoio1YPYvdPh0BA+8/eIuZuLEF+t4HMtngB+jQDvXy/YNH5qeQr7s294AcE+4eh1qip1766zfdK4b+BENJ/rkZIelG6VpIke+AEYIclcNoshJiQw9iOwGaghhDioiRJPcCm7q4iUFUIcUWSpGNAXuBJjr2lECLmeWupXr26uHjx4ovvSkFB4ZWZP2IdB9afwd07Fz8e/9q6LZMdj2OT8dsfQOnqxRjc6BsM6UZ09lqWXZyKV0GPLOOFEBgyjNg56LK52suxd+Uxfvh8FXJmaz4S2DvYUevtSoxdPej5J2Np2bd3snsl242MND3DWk0jPPAe3b98l55jsmaTOhYaTGry063Cdz5uChtLWgAAIABJREFUxGezPmDnT0dY991OzAYjTd6vRf8Z3V8psDi0/hQ/DFkFEvSd3IW2/Vtwbu9lNs7aRcueDXi7d2NSHqfSq9TnpCSk2Zy7NeYnom5HU6RcQeszN2QY8D90jSJlC7Bhxnb2rTwGWLJ1n87uhZObI7P7LUE2WbJulRqVZebBcS+9XoW/BkmS/IUQ1f+u+fKXcxMDf/3zda+yY1z53X/rveXEy/yv1ANNhRApkiRpgVOSJO0VQpx7dpAkSS7A54Dfk2NCiHXAusz3KwDbhBBXnjmthxBCiWwUFP5BIkOi2bXiGAd/OYvJaCY5IZWQqxFUblA6x3OGvj2D+IeJqFQqRi8fwKENp2nQvnq2QRBYOpn+aBCkTzewb/VxcuVxZX3oD/z45VoCzwSTGJdMRpqesGuRL74IPFcgMieCLoQRFRqDELB10YFsA6GMDNtMz+4Vxzm6yQ+vgh4kxqWg1WnI55v3lbMrty6GYdAbEUJw80IYbfvD+unbuXPjHj9+GUHlRmXJW9SLyo3Lc+q389bzSlYvypD643l0Lx7vQnlYcnkGarUKnb2OOm0sBejl6pbk4JqTlsyQBFeP3+D09gvWjBLA9dO3Xmm9CgpvKi/8nyksKaMn1tTazK/s0kjfAjMgx87LbsAvf2CNCgoKfyGj35tLfHQiKrXFFNUtjwslqxSxGRMeeA9HF3u8C+VBCMGjewmYTWZ09lryF/dmwLRuJCekIoT404xOn7Bg6M8c23QOSS0xbFFfxq4aiD7dwJSeC4kMvs+Qeb3/1Pme5V7IA/TpBgDKZFMLBNCwQ02ObzmPbJaRVBJCFqQlZ5CRZsDe0Q4hBEXLPV+XKTs6fv42V08GYTbJdBvZlkdR8dy+EoHZZMbOUceje/HkLerFkAUfE+QXQtz9BPLkd+fxwyRiIuMy13+faT3nExZwl0Hf97YUXAMtejZEn27gyPrT3L5yhzPbL9r8VJckiZLVi2a3LIX/AOb/2NbYS/2KIkmSGvAHSgALhRB+v3u/KlBQCLFbkqScAqEuwO9/nVopSZIZ2AJMFq/SVqGgoPCnYDJabBQ0Wg1TNg2hTI3iNkabWxYeZM2MHQgBUzZ9TvnaJRj6Qy82zNpN3Xcqk56awZDGljqfzl+0psfotn/KutZ/t5Mt8/ehs9di0BuRVBKH1p+iUcea2DnomLR56J8yz/M4tcMfsAQGZWuWyHbM8AW9qdKoDFqdhqT4FJZ+tRHZLPCtXJhWH9THzdOVEhULvfLcPoU9WXphmvX11A8XWi0vCpbMR/l6FvuQxNgk4u4nABAblWBzjYoNynJ+7xUyUvXM7reE9eELAEsRddsBLQkLuMvNC6EIBEjg6OzA+I1fkJ6aQcWGZV55zQoKbyIvFfYJIcxCiMpAAaCmJEnln7wnSZIKmAMMz+l8SZJqAWlCiGd1+3sIISoADTK/euZw7ieSJF2UJOnio0ePXma5CgoKr8DkjYNp0K4ag77rRmRwNB/XGMfS8ZutHUp+BwLQpxsxGc1cPxsCQLNOtVjmN4mPx79HkN9tzGYZfboBv/1XnjeVDc/7vcdkNLFm6jZSk9JJjLN4mglZcOX4DS4eupZlfFJ8ClN6LeTbD+bnqLHzR2jbrykqtQqtvYb6batlO0aj1dCyez2avF/LOl4Igd++q1w7GcS33eYx5t0Z/DhyLUlxr742IQTf9VnM6e0XUWlU2DnqaNOvKSqV5cf3tVPZb2F5F87DwLkfImSBnaOOApkCmGaTma/encG7uXrj5uWKSiWBsHTUzTw4DhcPZ2b0XkTXggM5vzerZlRqUtorSQEovFkIQEb6W75eF14p/yWEeAwcBZ51H3QBygPHJEm6A9QGdkiS9GwBVFdgw++uFZX5ZzKwHqiZw5xLhRDVhRDVPT09X2W5CgoKORAfncj1c7cxm8z4VirM2GX9aN6lNgtGbiAmMp7dK48TGRKNEAJnN4v9hYOTHU3et/w3vekfzpdtZ7N80lYatK9Onnzu2DvZ0XNs+xfO/Tg2iY8qj6JNnk849MuZHMcVKpUXjU6N2fDU+NNkMOP4TK1PUlwKfvuusPKbTZze4c+ZnZdY/e2WP/pYsnDjfChqjQoE3MjsuHoRLu5OlnOAX+fsJvrOIy4dCWTH4kPMG7zSZmzI5TusnbaNO4H3srsUAHdvRnHitwuYjGZkk8yQeb1568NG1vdrtKyIzl5rfe3o4kDhsvmZsW8sRcoVYM6xCXy+oA8Tt1h+Vw32D+PayZvo0w38OmsXzm5OgCVLpNGq2bn4IBmpeowGEzsXH7RZy7dd5tAhd28+rz9OMWRV+Nfwwq0xSZI8AaMQ4rEkSQ5ACyy1QAAIIRKBPM+MPwaMeFIEnZkx6owl6/NkjAZwE0LEZhZgtwEO/Sl3pKCg8Fxi7sXzaYNJyLJM9ebl+Wr5J4Bl+8e7YG7iY5IsGjyerpzc4c+5vQEApCWn457paTWt70/E3Isn+PIdPHxysfLK9JeuDTq/P4D46ETMJjPrv9tB8651re+ZjCa+fGcGQX6huLg7YTLYfthWbVbO6iifnJDKh+WGk5ZpDfH0+lf/0HO5ExTF3MGryJPPnZ6j2/F153kkxFjWqdaoiX+Y+MJrSJLEnP1jOLH1AuVql2BSt3mkPE7NvA+LpciTDjqD3sjwFpPRpxtYM3kr49YPpkG7GjbXS0/J4Ov352DUG1FrVBTwzUuzbvVsnrV3YU9+jVrMtgX7SIpPocuItrh757K+71ulKL5Vntb75PfNi9beYkxbsloxBs39kG2L9lOpUVnGvzeLuAePkVQSGq2alr0bW88zZBg4seksALcvh/Mg7CEFSub7Q89a4XVGUmqEsiEvsDqzTkgF/CqE2CVJ0iTgohBixwvObwhECiHCnjlmB+zPDILUWIKgn159+QoKCq9K+I17yEKQkWbg2ulg63FJkvh+/2guHg6kTI1i3At9yMyBK63bICJTGBHAzdOV2PsJGDKM/DR+C/EPE/n46/deav6ytUqgUknYOWip26aq7dqu37N2gSUlpCAhgUqFWgU9xrSn+8in9UdRodFkpGfV5nl0L95GtPFlWThiHbf8wwm/fo+MVAOxDxIQssA1tzOVGpSiw+8EH3PCp1AeOn/xNkIIJm4ayu3Ld4gKfYghw0ClhmVp7/0JGal6VGoJ2fx0i2nN5K02gZBBb2TuoOU8jIgFLCKSJqOJgJM3KVK2AKEBEexYcohmXevSoENNuoxsx/KvNjCzz2L6f9eDwmULYDSYMKQbrKa2AK65nVlxfRY7Fh/k1oVQ4qIfM/THfty+fIeEmCRMBosdyaqbc/HM/7QLUGunpWrzilw7cYN8xX3wLqJk6BX+HbxM11gAUCWb4+NzGN/4d6+PYdkue/ZYKpD9hruCgsJfSuUGpSlWvgC3AyLxzJ+bn6ftoMfINqjVKlxzO9O0Uy0Abl26k2lfYcnK5C/uZRVanLThM7qXGwlYxAbP7Q146UCoQAkfVgbM4PGjZAqXts0o5C3mhVarQY/BEgQBzm6OvNWzARtn7eL8vqvM2DUKeyc7fCsXoVDp/NluK3UpMpgfjk/I4lb/PPIW8yL48h0AytcpwbUzt0CCHqPepd0nzV76Ok9Y+OU69q89haOLA0vOTMTN05W2efpau9CeDYI0OjW13rb9Mfvbwv2c3Gbb0h51+yEj356GSi0hSSrMJjMXDwZQrk5Jrp26ybb5+zAZzcRGxTF5+0g+rTmWtOR0BszsSbuBLa3XMZtkfpmxHaPexOUjgfwWu4wi5QugtdNgSDegUkv47b5Mm0+eBn+SJNFlVHtqv1uN1n2bcf92NEF+t6nbrjquuV1e+fkovJ5YTFdfn/qdv4P/Vv5LQUEBOwcds3d9SbFy+Qm9dpetiw9xeuelLOPqvlOZOm9XoqCvD/0mvs8Ph8YiSRKJcSksm7AZO8enukBdhr790vM/CI9h09y93A99aN3iSY5P4cDak4zrOIeURFtxQLPJzOZ5e9GnGwi+FM5nDSYQERTFgbUneRAWg0r99Ie2vZMdAOlpes7sznpPz2Pw7A9o06cxLrmdiAp9yMIT45m6ZSi5PFyIjnhEyJU7nN516aVrY45vvYBRb0KfbuCWfzhAjlpKPb/qwMcTO9kcU6kkVE+2wH73uSSbBbLZsg6zydK2H3gm2NoBmBSXwoUDV9Gn6zEbzWxftN/mfI1WjZRZbK3RqlGpJDRaDdVbVEStUaHVabF3tLM5x2/PJca3m87yMeuZ238pn9Uaw4LByxjWKNvfiRUU3hgU/XQFhf8oDk52loyPIMuHHoDOTsvoJX2zHF82YTNHt5xHUknUbFGBD0a1wbdSYcCyLbVp3l6KVSzIWz0bZjvv2A5ziL7ziF3LjzD30DjyF/fmk1rjSIpPwZypavws6c8YvMpmmcjgB/zw+SpyebhYsyuSSkKr09D6o8bsWHoYjVZNjeYVX+l5aHUajm05T9yDx5zacQmnXI5sX3IYsPirPQkYGravwbCFHwGwe+UxTvx2kc5fvE21puVsrte+f3PWfbcDdy9XCvh6E3o1grFrP2Pt5K1UaFCKLfP2YcgwggQanZbYBwmMfmcGMXdjGbG0H+0HtkKfbuTG2WAuHwu0ySCpNCpUSJhMZjQaNQ/CY/AunAe1Vo1slilbx5eqzSqgs9MimwXv9GtG9J1HJMYmkZaczsROc3FydaB5j/q8+0lz6zbiF4v6UrBUPnL7uNG0ez2b+4kKeYBsFhj1BiJuRCIyLTqiw5Vu3n8b5v9YjkQJhBQU/qOMWtKX7T8dIX8xL2q0KJ/juMexyYRciaBc7RI4Ottj72RnMfNUSVRpVNoaBJlNZvrX/pq05HTUGhXeBfPYmLA+wZBhzKw7kjDqjYx4axoJMUk5L1SSkCQy28UFZrPMvZBoOg1tTcDpW+jstUzc+AX5S3jj6OJAp6GtsXOwe65FSE7kL+5NyuM0hJDZu/qE9bhslpHVEoYMM7cD7gJwPzyGJWM3YsgwcuN8KNvvL7S2tINlS+39Ia2IvR/PoLrjkWUZSZIs4/1u89n3vdi28ADehfJg56CjZ6mhiEz7kJ+/3Ur99jWp3LA0NVtVxL/BU+WRBacnkq+YD6NaT7OYyUrgXSgPJSoXISH6Mef2XObigQDcvd3YELGI9JQMTmw+x8cVhqNSSbjmdiEtKZ20pHT0aQaKVy5ivbZTLkd6jX8/22fT6qMm+B+4StyDBEYsH8i+FUe4sO8KH03u+srPWUHhdUIJhBQU/iPcD4vB3smO3JkdRbk8nOmVg/jho6h4DBlGPHzcGFB/IvrMv/909hv6TOhIbu9cODjZ8W6fxtZzbl+NID2zg8tskrPN7gBM3DiEDbN2UalBaTzyulsDi9/jUyQPFeuXxmw206JbPfKX8GFEq6lE33nE40dJTOj0PbXersTEX4fadFHl9nb7I4/HsrYNgzm1058iZQvw/ZBVhAZYCrftnewoXb0o0RGxDJrZHXi6zaVSSTg623qYmYwmZnyyjFv+YdRvUwVZFujTDDZzrZm8lV/CLAKHn1QfYw2CAFxyOzOo7teEX7fMr9aoMZvMaHUavAvmwcnVge/2jmHT97s5tOYkCz9fxeg1n9FpeBu2zLMYs+5ZfoQPvnqPCweusnjEGuu2WUbq0y67K8cCX/rZOLk6MmX3WOvrQfM+fulzFd4cBNJ/rkZICYQUFP4DbP/pKCsmbkVSSczYNpRSVZ+2U5/Zc4XlE7dSsV5JBs/qTsDpYCZ0XwhA92GtSUvJwKg3cT8sBqPBhL2jjm7DWmeZI18xb5xcHUhPzcCrgAfVmpXLMgagRKXCfL3GYpKqTzfgnMuR1KR0NFq1RSvHbAmgDHojwxZaPmwP/3KaIxvP4lu5CLH3E6ydTef3BXDx0DVqtHi1bbCccHC2p0W3epzdc4XI4GjUGhU+hT3xKuhB4LlgHF0ccfeySAh4+LgxfdtwLp8IovF7NW0CocvHgrhw8BoZqXoObjyHT+E8RN2OpkGHmhzbdA4hBBrdU+2fZt3qsXrSZmvwmPgoifthz3pQCwqU8GHID71x9bAUJju6OHB0/Wke3nlEYkwSZ3f4U79DDfLkz01irCXDNqnzXPKW8EaWM4NSCdp80pwtP+xBklRUb/nnPDcFhTcZJRBSUHhDEUIQ8iAWd2cHPF2dnzv2xPaLGPRGVGoVV0/esgmE5g75mZTENOKjH9P0/VpcOhaEQW8EAYHnQ2n0Xg2O/OqHVqfBb38ADXJQWHZxd2LFlencvXmfUtWLPVdXSAjBzYth5PJwZvG5bwk8E0zFhqU5vz+A5eM3YTbL9JnQiaObznH5WCAH1pxEyII8+d0ZOPMD5n+xCiEstTtOro45zvNH8T8SaKnfAe6HPSQq7CEIMBmSObLJjw9GWTJpZWuVoGytrNYb+Yp5WYO1lMdpzNw1kiJl8gNQ8+1K+B+6jtlo5seRa/loQie6DG9D5cZl+abz9zx+lGSxFJEskgVgybA9jIxlZOvp1GlTlQm/fI4kSRQpV4C4B48RQpCvhDdqjZrF/tP4ZcYOtv6wl8CzwTy6H0+RcoUIv3YXIQR7Vx7jp8sziYmMpUIDxUZDISuyUiOkoKDwJjB/zxnWnriEJMGaId0omS9PjmO7fP4Wkz9agpOLAw3a2QYy+Yp5EnHzAUKAZ353WnStw4F1p9GnG+k0uBUpiamc2u5PRpqBxWN/zTEQAotGTfm6JV+49tVTtrF10QFks+CTyZ1p268pAC171Kdlj/rIskyvcl8S9yABWRaQuW0kSRLv9GlCtWbl2bX8CGVr+WYbiDwh8FwIfnsv07hTbYqVf3m/rzZ9GnN6pz8pSWkIs0AIS/Cm1amp/DsPrvthMXzVfhYGvZGJv35BiUqFyV/cG5/Cebh3+yFqjYqrJ2/i7uXK5J4LSX2cRpGy+S2t8YCdvY6PJ3WmVLViLDr7LQPrjrd6hukcdBQs6cP9sEfoM7e0zu+7QmJsMrnyuDBq1UDO7b5MgZJ5raKJTq6OVG1egY0zLRJvsZFxDP2xLxM6zsaQbkSlkshX3Jt8xb1f+nkoKPybUQIhBYU3lKOBoWQYTdhp1Fy5E/XcQKhmiwpsu/sDkiRZMzUP78Uz6eOlGPVmeoxsQ41m5fApbLnGhqCZgCXwCLkSgd4kQKcld373P2Xtl44GYki3ZFyWfrUR19zONO741GXHZDRnZjqenqNSS3jkdSf2fjw+RTzp+22X586RFJ/C6HdnYEg3smPJYbbcW4Rao36p9RUpk58Nt+Zg0BvZsfQwkkqiWtNyOLk64pk/t83YXcuOEB0RixCCX2btZNyazwDoMbotM/svR8iC25fvkByXzI1zIZhNMmnJaVi+DRJau6c/hgNO3iQ9VQ8qFZKwBGDO7s4I8QgBaHQaipYrgD5dT/eS40mOT+HLn/rZKEcDVGxYBo1OjclgRqPT4FnAg5ErB3LxwFU6DHoLBYWcEALM/7Eaof9W/ktB4V/EwFZ10GnUeOVyplmFrFmRi6H36LNoEyuPWDIPKpXKZrtqy+LDhAfdJzL0IREh0datG8AmYIoMjbFYMgDJien8v5hNZpp1qWP145JlwZ0btqKIOjst3Ua2wSIsLeHq4QxIBPuH8/O3v73UPCajyVqAbDKYuHEuhE9qjmVSj/nWtvuEmEQG1h1Pj1JDueF3G6PBxNzPVjK81VTCrkeis9Py/uC36DioFUXKFMgSBAFUqFcSnb0WOwcdlRs97ZJr0rEWXvncMOuNnPztAvoMIxqtBntHHfXb1eDt3o1p+F5NOn3xtN6qfL1S2NlrLc9GpcJkNBNw8hb6dAOSRk3BUvkYvfJTzu6+YrHuMJr5dc6eLGvaOm+P1Z7E2d2RQqXzc+tCKIfXneLnb7c8rRlSUFBQMkIKCm8qLSr50qKSb47vD125k8S0DK5FRFOrZCHKFrDdCilRoSA6O0uA41sx522jkpUKZVpi6Kie2Q6vTzcgywIHp6z6Qy/i6y4/cONcCA7O9nj4uOHk6kC7/lmVm3uN7UCbPk2IuRtH0IVQVn6zCQCfoi9n7ZDb243hi/tyeMMZ2n3agoXD1xBxI4ro8Eec+O08LbrX5+C6U0Tcuo/ZaGbVxM206tWQY5vPoU8zMOfT5Sw4+c0L56nzTlW+PzIOo95EyWdqr45v9SMlMQ211uJGX79tNao1LUdqUjrehTwY1mIqkkpCFjB6eX/AUoC9JmgOB9efZP4Xa2wnEhARFMV3/X5i6MKPUGvUSJJEo45Z/arvBd+3/j0xNgWjwcim2bsAuLD/CvduPaDQM4GvgsJ/GSUQUlD4l+LiYEdKhh4BONtlDVhadqmNTyEPzCaZyvVzruspUMKbZSfHE/sggZKVCxMScJeRHedhNpn5amlfaj1Hgyg7rp26Zek+Az6f9yFlaxbPdtz98BiunAjiwr6rBJ0PoVm3epSr7UvTLnVeOEdacjoqlYomnerQpJNl/IE1J7kfHgMC8hX1AiyGpGqNCq1WTbk6JblwIABDuhG1Vk2ezG3AG363UakkStd4uk6jwcScQSu4ExjJ4Lm9KFvLNiCNf5jIrP7LMOpNqNQqvl43iFLVilnf/7L1dGsx9qXD123ORYLrZ0Kwd9KRkWrJXD1R8TbqTejstRQtV5DV12eSmphOvmJeWe7/w286c2zTOdKTM0AIOuUdQMHS+XgUGYejqwOehTyynKOg8ASlfV5BQeFfwYqBndjpH0TlInkp5JlVWyctJYM8ed04s/cqyQmpNHi3So6dXh4+ufDwsegPndx1mYxMTZzdP5985UCo67B3WD97FyWrFqVklcJZ3j9/IIBtiw9x/WwwslnGmK4HAXuWH+XoxrMUq1DwuYXPFw4GMLHrPFQqFdN2jqRcbUuQ8uXSfvy28IDVdR2gSuOyzDvyNckJqUiSxNcd9yOEQKfTMGpZf/asPMaS0RsAGPx9L+q3q47WTsvZXZc4s9PfkjkauILJW4fjnMsRZzdLB5smM1sDYOegtdkyAwi79lQ7KTkhhYSYRNy9LM/31LaLnNl1yUZ3qFCpfOTK48LVEzcplOnPlsvDhVwe2Xt85fZxY2vMMmZ8uJBjv54lLTmd+jVrMGxxP4qUK4iDk/1zvkMKCv8tlEBIQeFfipuTA/Epaey8GIRv3jy4OT1VWg4LvMfw9nPRp2daPGhUnNkXQJ+v2uH5goLoum9VYseKE8hmmVbdXpyd+T09Rr1Lj1HvWl8bDSa+7bmQW/7hfDzxfRYMW4sxs/VcCAECq1N7ekoGR38999xAaN/qExj1lvOPbTpLudq+xD98zGcNJhB3/zGSBKe2X6Deu9Wp3boKRcsVBCAy2NI5p9Vp8CniiYOzPTf8blvqcySJ3SuOMWfgCtw8XRm64CMQmaKKkkS/6mPQaNX8cGwCBUvmxdXDmWk7vuTs7ss06VTbamEBEHMvnjz5cpOaGJV5j7B53l76TbEoNHsWyI0wC5Asa/Es4EGfiZ346r3ZmE0yB9acpNdXHXDzdH3uc1arVTR6vzZndlwEoH6HmpSrW+pVv10K/zEsgor/rfJhJRBSUPgXYDSZ2XHxBrkc7WlWoQSSJLHu5CU2nQnALAvMssyU7k+7hS4cuYFBb7IGGkaDmRM7/AkLvMfS4+OeO1fpqkVYf2UKZqMZF3en/3vtV0/cJOB0MBmpepaP34xaq8ZoMKHWqPAq4EGrnvV4HJPEzqWHUKlU1H678nOv91avBvjtvYxKpaLx+7UBOL3Dn4Roi8igEBDsf4eQyxFsmLmTTRELuOUfjlqjYur2EQT7h9Oks+W8LsPe4ca5ECSVipi7cchmmdSkNBLjUpi6fQRRt6PZNG8PRr0JSZK4eiKIgiXzAlCuti/lavsihODh3VhyebggyzJ9q462bos94dR2fzzyuuPq4UKzrnUoUNKHsGuRgMR7g1riW7UoGq0GWTbi5OaIUy5H7gbf58iGMzTsWDPHwLBuu+p8vtDieF/zBc9NQeG/ihIIKSj8C/hu+3G2nQ9EAr7p0oLWVUtjr9VaPLokcHhGxRigzlsV2bjgAOkpeusxISA16eW6whyd/7ytlQIlfQCLjUXJqkXo/fV7nNh6njrvVKHMM3U5nb5ojVaryewgy5kaLSsx79gEfvh8FRtm7qSArw8XDgZYemSfaZYSsiAjVc+GWTvZuuAACPhsbk/qt6uGY6ZPWcGSeVlxZQYAP0/5jU3f70Gj1VCxfim8CnpQrrYvkkrF95+twNHVgVq/CzbSktNZO3U7O5cdxt7RjvHrB1uFFp9Fo1OzcuJmVCoVoQERhAc+6aITuOZ25sTW88iyjJAF3gU9ELLg09pfYzbJbJyzh19C55ErT9ZtssPrT/PD4OVISMQ9iOfDCZ2yjFFQ+D1mlBohBQWFN4wHCUkYjCY0ahUxiSkAdKlXiaTEVCLCYuhbv6rN+EK+PpQoX5Br524DoNZY3NWRIPxGFEXL/rGOouSEFBxdHVGrbVPrl49bLCda9qhn06YP4FMoD4tPf8PdWw+o3KgMOjstJbLpYvPweXkPsfXTt3PrQhgqtcSlI9cxm2QcnO0ZMKM7x7f6cemwxWNLrVET7B9u3f76ZeYu5gxcgb2jHSuvfYfbMzU4vb7qwNsfNsTZzQmHZwLBFt3r0fj9Wqg1KhvT1Q0zd7Jm6jaEEAhZoNaoiX+YSP32NTi57YKNt1iuPC48CIsBLTbv+RT2pH776lw6HIhKpUJnryVfcR8MGQarHYcQgvDAyCx1SGDpHjMZTJjNMneDorK8/zDiEXEPEihTy/e5SuAKCv9m/lsbgQoK/1JGd2hM9RIFaFK+BJ3qWPyjTAYTR8fs5NaC03zZZg5m89N0SEaa3hoEAXjmc8egNxH/MIk1s7Pq0rwM84evoYvvMD6p9TUZqU8zTY+i4pnQ9Qe2LjzAiNYzMp3nbfEp7EnNlhWt7fz/L/mKeaPS/YdHAAAgAElEQVRz0FpazFUSWjstefK789aHjbh9OcI6rlDpfHwyvZt1iy8q9CFCttQibf1hX5brehbwsAmCnqDVaWyCIIAdSw4hm2XUGhWSSsI1txNVGpVl7KpPGZfptfaE4Yv7UrVpebR2WmLvJ1iPP7wby7k9VyhVvRilqhclfwlv3hvUEmc3JyrWt9T7eBXyoFyd7Lv+2n/2FuXrl6ZUtWJ8/DuX+LCAu/St9CUjW05lSP2vObvL/3mPVOE/gsDSNfZ3fL0uKBkhBYV/AQU83Fg+0HbbIzYmkfQUPSajGYPeiFFvRO1oaaO3c9BRrFx+wgKjQIJaLcqzb/0ZQKJs9aLZzJA9hgwj5/ZdpaCvDwfXnUE2y8RFP+b21Qir1YbZZLaOf1LE/FfT+5v3KVq+gEWrKK8bNy+E0bCDRW/HJbcTSfGWrFnNVpXIW9iLlIS0LAHas4rPf4RmXeuyffEhHFzsmbV3DMGXw7l3O5qyHiWoULcU7l6uJMQk0bRLHbwKeFCoVF4uHr5m+STKxJBh5Ma5EOZ+toLk+FQAhrWYwpZ7i/huz2j06QZ09tocszlunq7MPJC15ishJpGg8yEgwJBh4NaFMKb2mM/so+MpWbWYzdjQK3eICLpH3XY1sHd8dd0oBYXXHSUQUlD4F2A0mTlzK4IiXu4U9nTn7qPHdF3yKxpfFzwfGOj6aXObDzFJkliwfxSBF8LI5e5EQV8fmrxXA326gQq1c/bu+j2TP1xEwKlbCAHVm5Xn/MEAcnk4U6zC060tn8KeDJnbi9M7/XlvYMu/ZQtGrVbRtEtd6+tnP9wHz/2QcR3nAODu7YrWTkP+Et7E3k9Aa6chPTkDk9HM5nn7aP9pyz9cEN53chfafdoCQ7qBH0eu59qZWyBg+s6RzBuyksexyag1KsrUKkGHvANQa9RoNGrMJhk7B61VouDU9ovWIAgs9iNGvQk7B52la+0libufgEtuJ34cvoZ9q47h4eNG3mJeRNyIsgSBkkTa72rE7gRG8kXD8SBJHPj5BNP3jv1Dz0LhTULpGlNQUHgDGb56F34hkQgEvw77gNM376A3mkipkBvvVp50GtQiyzmSJFH+GTHDUpWzavq8iPDAKDLSDNg72tGsWx0Gze5BLg9nm3ZxgOZd69C866u32v8VOLo6WAuWl4zeQIW6pZh1YCzfdPqe2AfxpD5OAyzq2bev3qFK43J/eK6IoCgmdZ+PQW+0tNs76ngQHkPEzfsIWWCWBetnbMdkNCME1GhVkUoNSrNh5i5rIKR1sN0udPVwsuoVvSxLR61j24J9CDIzdMLixfblik9xcnVk1YRfKVe3JJV+V2f0IDwGSSWRkarnbtC97C+uoPCG898K+xQU/qUERj4k3WBEQiI8Jp76ZYpgp9WgVavoUq8iZrPMj+M2M6LD94QE3H3xBV+Sz7/vhXehPFRrWo6aLSvi4eOWJQh6EVdP3qRLiS8YUHcCCTGJf9ransWgN/Lz5K0sGb2e8/uvWo8LWfD94JWc+u0iNy+GERv12OJ2n8kNv9D/a16/vVcsrfICtHZaqjUvT/121Sldw5KhklRQsYHFIFWjU9NzTHs6DGxJs6510Og0ODjb4ej8VP8JCXqOfY9RbWbwjkdfBjeeSEaqHn26wbrdlx0H157EZDRjNlqCICRw88qFb9WilKhShMk7RtJtdPss2boarSpRp0018pXwYdjS/v/Xs1B4c5CR/pav1wUlEFJQeEM5HxLJvsu3MJllxrzXhDwujlQrlp96pQtT2NOdI9/058g3/Xm/TkX8Dl7jwMazBJ4P5bvBP/9pa6jevDyrr07n6zUD0epeLgAKPBfC2unbiQp9CMDKSVtJjEshKvQhRzf7/Wlre5Ztiw7w69w97FhyiMjgBzg4P90mTE5IRat7xpU+0+gVLF1V/w9v925krTUSQlC0bEHCrt3lw687UuutSggZjm/2o2TVYqy9MZvimd1yn0ztytLzU1h3ay49x7RHa6fBJbcTi05NxMXdiYCTtzAbzdy+fIftiw/SpeCndC34KXuWH8l2He/2b46kkkACnYOOPlO6sjJwNg7O9uxbdYx1034jNSkty3karYYxa4ewKuh7qres9H89CwWF1xVla0xB4Q3keGAYX/68Gwm4HB7FmPea0ryird+VvU6DfWZw4p7HFSEEWp0GD+9cWa4XHnSfaQNW4OTqwISVn+CWjSbNH+HRvXjWfreDwqXz0eHTFsRHJzK6/WyMehMbv9/LmuvfUblRGcJv3EPIglJVX75Q+1WRJEsyxNHZni1RP7Js3EaCL4XTb0pXfKsU5eimc9y8EErHwW+xYfYukAWHfzlLv8ldcMn9fO2inChWoRBt+jZl59LDCCG4cT6EzfP2goSNhcaNcyFW7SLLWiWrh1j1FhXY/nAJkiQhSRKGDCOSSkKYBZIkkRD9GEOGEZPRzK6lh2jdp6nNGs7u8ic5PoW5xyYQExlHUmwyVZtVQK1Rc2TDaRZ+sQqz0UxE4D3Grh2MECJLZig9JYOzOy9SrGJhimQqcSv8OxECzK9RR9ffgRIIKSi8YUTFJ7LiyAUMJjOyEIRGxz13vNlkpmSVwny9vB93g6Np0blWljErp24n8vZDVGoVQ96ZCQJGzOtJxTo5u9u/DFP7LOHmhVA0Og0u7k6Uq+1r1b8x6k0sHvMLo5b2o0bz8uTK40KBEj6vdP2MND2zBywjJjKOoQs/pkjZAtmOaz+wJRmpetJTMvhgbAfUajXFKxbm0pFArp26RenqxZm+c6RlXQYTe1efIC05HWc3R5sA5feYjCY0Wg2piWmsn7kTRxcHugxrbd0ePLntAg7O9tRtUxW1Vo3OTsuVjCBLUGqnsXbRlalZHLVGneM8z7bml65RnBm7R3Jq20WadK6Ns6sj+1YeBSFoO8C2Fiwq5AFTeszHkG5g19LDqDSWAEqlVjFq9SDSUjIQQiCbZRJiEulZ8nPiouIZsXwATbvWs17nqzbTCLl8B4All2aQr/irfZ8UFF5nlEBIQeENY/Cy7YQ+jENCoqBHLka2b5JlzJ2YBAIiHuCVCtP6LEOtVjFj8xA69Ms6FsC3YiGunbuNQW/i0T2Ljs2SCVv4ZlV/DvxylmLlCpCUkIpnPneqNiz90mtVqSSEsAQ9C0esZ9XV6TRoX40Tv11EpVJhZ69DkiSrMeqrcnDdKc7tuYwhw8j8L1Yz+8BX2Y7T2WnpNe49kuJS2LH4IFGhDzm47hQAq7/dQsP3auJdKA9g0QRafPZbgs7fpmxt3ywBij7dwPQ+S7h0+Dr6dAPtBjQnPSWDIxvPolKrcHSxp8PAllw8dI1ZA5ZhMpqp0qgsk7cO40F4DDf8bmM2mRn50yf47b9KoTL5adIxa3D6PCrULUWFZ3zDfr33I4YMI85uth1ulqBTZP7djPmJeoHRzIX9Vxj8w8dE3ooiLiqBktWL8fOkLZiMZtZN+c0mELp78z76ND32TnZE33lkDYSS4pIxZBjJkz/3K61f4fVG6RpTUFB4rTHJsqX4VquiSYXi5Ha2zVjEJafSdc46ZCHI4/cIkelrtX/DWXyzUWwG+GBEa7wLefDDlxusx3wrFuKr7guJCosBAWqtGpVK4utl/ajWuMxLrfWzWR8wqNFEZLNACJm7N+8zcnFfSlYpSmpiGu8Pfstm/P61p9i1/BjvfNyIt3o2yPaad27cY/IHC3B0caDtp82RJAk7Bx15i3q9cD3ffjDf4mpveiouqdaocXSxt9kScvVwzmKX8YSjm85x8WCANZuz86fDT1v1BciZwpXJCZaWd7PRbC1kzlvUi58uTrVeq/QzFiL/Dzp7HTr7p630cfcT+G3BPopXKsznC/twbONZrh6/YVmiEDg4O9Du01ZodRo+ndULgLtBUaydvBWdg476HWpYx66dvAUXdyc0WjVVm1cgJTGNnydt4sa5EC4dDEClVjFsaX9a9mr0p9yLgsLfjRIIKSi8AZjMMppM24p5H7dl4d4zHL0Wyi+nrnLgSgj7v+5j/RB/lJSKWZbRm8zEFnTAMzwRYZZxdMl5i0eSJKo3KYtaq8ZslrF31PHZ9C58WHMCcmYtilFvQmev5eG9+Jda882LYYxqOytzAtCnG5nedylLzk6k46CWWcanJKYxf9gaTEYzC4ZHUq9NFVzcs9bmrJq4mcjgB6jUKqKCoxm/YQhx9xNo0uXF7fnJCanWIEitVaHWqOk/vTsflB6OnYOO2QfGWk1TcyLk8h0bYchqzSrQf1o3HF3sccrlSNv+zQFo2KEGIZfvcPfWffpP7/bCtf0ZmIwmxraZwZWjgUiSpVOtSLmC+BT1ZOH5KaTEp1Kmtm8WFWyAQmXys/rW94T4hzFv0Ar2LDtC32nd2DhzO4Z0Izp7La37NGNM66kYDSZk2fIcZbPMobUnlEBI4Y1FCYQUFF5zZm4/xprjl6lY2IeVgzpT1Cs3n7aqw5FroRhNZh4lpSALgTozECqVzxMfdxfuPnqM7GGxgxACfvvpCJ0+bZajQGBuL1embBiE/7EgmnSojkajZvzyvqyZtYcCxb0J8g/Du6AHzTrWeKl1+x8JxJBh4FnB5sS4FIIuhFGzZcUs43V22syshkUt+dkMx7OUrFqUS0cDQViKkas3r5DjGgLPBnP7SgRNOtfB1cOZ0SsGsGzcRrwKeVC8YmGqNSvPgqFr0Kcb0KcbOLjuFB9PzNmYVJZl9qw8Zn3t4GxP/0yLjoEzP7AZq9ao+WRqV/5OQq9GEORnsU4RwiK+GHwpjLCACIpVKET3MR2sY/XpBlZ/s4n01Aw+/rYLLu7OuHvl4sqxG8RGxSOEYHa/pSCe1nRdOnINSSUhm2UkSUJkbrt1/OKdv/U+Ff46BK+X/cXfgRIIKSi85qw/eQWAkAex3Lr/iPKFfDh8LQSBQAKalC+OhIQsC1QqS2eRnUaDAFQaFWqtGiELNBo1WjsNK6ZuZ8eKE9RuWYFRCz+06RAqX7O4rchilSJMXjfwD627YfvqbJi9C5PhqcWGRqumTM3st4N09lrmHf6K8wcCqNmiQo6qyd1GtsW3alEcne2z9dgyZBiIDH6AEDCm7UxkWebg+lMsODmRImULMHnrcOvY5PgUIm4+NSPdu+o4733WCjdP12znVqlUFCqVj7u3LIKI+nQ9Z3b603no6xEIFPDNi4OTHUKWcXBxwDO/O3duRKHWqLLU8Wydt4ftiw4gZBmz0cywJZ8AUKlRWbYt3G8VnZRUEkIIdPZailcszPtD2xByKZx3B7QgNSmdqs3KkytP9s9LQeFNQAmEFBReU57UrNQrXQS/kEhcHOwp4unO5Ut3uBX2EJBQqyQkoM7YBagkFVPbtyC/uytfd2rONxsPUMQrN5980J59a05Rv3VlkCQ2LToEAo5v96fxe9Wo/ZyMyv9DwZJ5yV/cm4ig+wDkLeLJjB0jcHFzwmgwYTZZtuBszvH1oaDv044kWZaJiYzDM39ua9GyJEnUaGGbUdr/8wlWf7uFvEW9uBcSTVpKBu5elg9no95E3IMEm/FXjt1gxTebAMGjZ7b6jAYTV08E0eg5xctzD33FsnEbObDuFGqN+v9Snv6zccrlyMobc4gMvk9sVDzTey0EIXird2Na9GxoM1aj0yBJgCTZaEDVal2FWQfH8VW77zDpTVRqXJZceVwoXCY/ddvVoF77mn/zXSn83bxOYod/B0ogpKDwmpGSksGQIWuIvBvH4MEt6VutCjXcvOjwVhUO7b/OT0uPYlJB2fp58cmbC5NZJt1gQpdoZuq439BqVHzSvwm/jfoQgDnD13Ny1xWO77zC9zuHodNpLZYPQHjg/b8sEAJwcLJHUkno7LQMmNYVr4IeRNy8z7A2szDojYxe/DH13qlic86P435lz88nqfNWJRIiH3HD7zYFfX1YcGpijqrV84euzgx4HluPxUbF83bvxgSdv02TrnUx6I1Wd/spHy4kKS4Ftda2I0xnr6V8vVI8D0cXB4bM603nYW2wd9Lh9g9kQ45tPsfaqb9Rt001PprYySar55TLkdI1SjBv1XKLqjUWO43fawN1GPwWZpOZtKR0StUoTkxkHF4FPQAoW6cka2//QExELIXLFci2pkhB4d+CEggpKLxmXLp0h+gHFquHefP2o1ar0GhU3Al8iIO9Fr3eiCRJ1LTPw+cftuLg1WBO37yDfZoJIcvo9TIbN/rx46LDNG5SlltnQ8hIM2DnoCP8RhRfzO7OrM/X4OhsT6N2Vf/QGg0ZRnavOYWDsz0tu9TK8YPyq5UD2DB7N4VL56VmK0sW5/SeK6Sn6RGyYPuyYzaBUEaqnp3LjyOE4Ny+AAyPkxGyzL3b0cRExpGvmLfN9YUQ3LwQirObI0lxKVaNIoAGHWrSY3Q7+lQdzdopv3F+zxVm7hsDQG7vXKQnZyCpJKo2LcuDsBj6fNuZ6s0roLO39fbKCZ/CeV7pmf1ZCCGY2W8pJoOJbXcP0LRLXYqUy6qf1HZAC079dh7ZLNPx89aApS4oPvoxPkU80Wg1dB3ZjtGtp7Ft4X4kSWJZwEw8C1iCISdXR4pWyL7LUOHfiwClRkhBQeGfpVSpvDZ+V2azjNksE3UvngnfdCA4OBqVSqJJkzKsW3uaAgU92DGqN7GPkpkxaTvpGUYexSQhBBw7eoMvPm/F8knbKFDci1otyuPobE+DNlVQqaUX/qZ//Xwokz9ZgYubI9M2DMLDJxd+hwLZvvI418+FolKrkGVB6x51sz3fs0BuhsztaXOsZvPybJy3H5PRRMW6tvpBdo46ipTJx4M7j3Bxc6JYnWKc23uFklWL4V3Y02Zs1O1oPm8yieSEVCSVhKOzPTVaVcRkMDPgu+545vfg2ulbyGaZjFQ9wZfCrefO2DWaI5vOUqpaMauGUVToQ3pXGEFGqp6Jm4ZS4QWZoX8KSZLwzJ+b+OjHSCqJXDmogBetUIhN95dYXyfFJdO30khSE9No/kF9vljUl3O7LhF4JtiqEXQv+IE1EFJQ+K+gBEIKCq8Z3t65mDz5fb76ahOmZzIcw0e0Jn/+3Cxb3peUlAw6d5qPPrONu2atYkyZ0pl16wdiNsv07bOMmJgkXFQSDyNi+X7nMLzyuZMQm8zAFjNISUpn/LK+VKxT4rlrWTNrD4lxKSQ/TuPQ5vN45nNn/phfMRqMyGaBRpJIfpz6SveXt4gnAoEsCzYvOkSnz1pi56DDZDSTEJPInF0jCL1+j6Jl8+PobE9qUjqOLvZZtnaObfYjJdMpXsgCg97E6BWf2owrW6sElRuV4drpYD6a8L71uJuXK+8NamVzvYPrThEfnYgQgl9m7XxtA6Ezu/yRZUGJKkUYMq837tlYpjwh8tZ9Dvx8nOCLYWjsLArYRr2RE5v9KFenFPOHrMBkNKOz11KxYRnK1395sUyFfy+KoKKCwj/Apet3Cb0bS6uGZXF1tv+nl/OPU71GMZb+1IfFPx4mNDSGj/s0olSpp/o2dyNirUEQwHm/MNatPU3PXvVRq1X8uPgj/M/d5rt+y/k14C5blhzBZDCTr0geHt1PQJYF67/fR8U6n2U7vyzLzPpiHTcvR6DWWPR2SlctwvXzYZiMZoQsyO3tSo0mZWn3UcNsr5ETsll+InaMbJYRsuD49ot8N3AVQpbROegwGUwM/q4brbrXw8nVgbTkdLYu2I9rbmfa9GuKSqWiSpNy/DJzJwa9EWc3R4Yu+tgaBEWFPmT6xz/i4GTP2NUDc+wCe5ZKDUqzZf5eJCRqt67ywvH/FHMGLCM5IZXER0kkPEzkp9HruX7qJr0ndabDZ08FKg+vP8Xs/ksw6Z927SFZMkrtBrbkQdhDTJlF6yWrFWPCpmFZjHNTE9MY//4cHkbEMmrFACoogZLCvxAlEFL4x7kZGs2IqVuRheDo2Vss+vbvEZ973SlcOA/TpnfJ9r01a05bTESF7bGIiFhGjmqDvb2WwoU8QGTqyWS2sEdHxqHWqtFKEjWa5dztdHLnZY7v8LeIKaokFu0ZQSFfH4qXzc+ty3dIS85gxPcfkPcP1Mm4uDsxZmkfDv5yjta96mPvZMfC0b9YFZmfmJGun7OXVt0tNg+LvlzL0V/PoVar0NppeLt3Y8rWKkGBkj6EXYsk5XEa03ovZs5BD0pUKsy8ISsJ9g9HrVHx26IDNtmgnCheqTDzj30DEjl6lv1TmE1mjm/2wyzLGDPb2jPS9DwIf8i1k0FkpOpZMe4Xm0Do3O5LtkEQlmLwgbN70bpvMxJjk9g0Zxdmk0zQuRCGN53ED6cmEXAyiMcPE6nXvgbHNp0j+GIYhgwjP45Yy6Jzk//W+1b4BxCKjpCCwt9O/ONUi3KxwURMXMo/vZzXHrNZJiIiDiGeeHkJi2O0WebMmRCOHr1Bq1YVKVDMiwETO3Bqz1Wi78YRfS8eYZYRQtB/Ukfe7p59XY/RYGL2sPXIZkuUVaiEN4UyW9pd3J349ucBr7zmC4cDWTNjJ2VrFqdG83LcD39ELg9nCpfKS+j1yCzdYGqNCu9CHpjNMmq1ivSUDGSzjEolkZH61LXdKZcjSIAAk8HE0V/Psm76dq6fCbaOiY9+zM0Loc+1szi+xY+Z/Zai1qiZdWDsK9/fX0nU7WhWTdrC2d3+GDOeZgE1dmqObTyLIcOi+lympu02Z8cvWuO3+zIZaXq0dhpK1yhOqRolaNW7MQDO7s7WoArg1sVQ/PZcYnL3HwCJq8dvUKFBGQSW74chw0ByQmqOgpwKCm8qSiD0FyKEYMyxgxyPCOfL2vV5r/TrozfyOlGrclHaNC1PUGg0Q3pnbwr6Z3Ar4RFOWh0FnHOuqXgT8DsXyuPMuhxnZ3tq1izGmTMhGI2WDzUfHzfr2Ld71KNgCR+++uDHzCDIkh0KvBCWYyAky8LmA3LAtx1faX1CCH76Zgsx9+L5dEpnPHzcmNZ/GekpekIC7rJ79QnLlhhw+9pdIkOi0acbrefn8nAmNSmdW5fusHPFMdr3a8pns3uhs9PimtuFd/o+/Tcy7ufPmD90NWd2+aPWqLl2Opiwa3et2SWzWebQulMc3+zHnEPjKFGpcLZr3rPyGEaDCaPRxNndl/CtXOSV7vmv4uaFUIa3nILJaLJuJz5Bo1ET5BeCbJaRVRIRQVFcPX4DtUbFriWHadS5NoXK5if4YhhCFtRpW533n1GAVqtVDJzTi6Wj1mM2mek2uj33QqKRzTJGvYmDa0+yb/VxHF0dSE3M4H5YDMu/3sgXCz7+m5+Cwt+JQNERUvgT2R92m19uXAPgyyP7lUAoB9RqFUP7NPtL55h28Sgrb15EJUn83LwLNb0L/qXz/ZXk9rD8Rq7Vqila1JMxY9ui1xs5eiQIn7y5qFTJtuX59N6rVj0ZSSWh0app/r6tKN6Ni+Gkp2RQtVFpdHYanFzsSU3OQKNV450vN/ExSeT2ejm9nEVjN7Jr5QkAwoOiWH5mIu6erhgy4jCbZExGy3aNKtOqwfiM8rSkkqhYtyRn9lxBRiblcTp3btxjTNvvSHiYhFqjouZbFanWzKJ95OblytfrBpMUl8L8YT9z6rfzFiFKleUHuZAFcubrmLuxOQZCbfo25fqZYLRaNfXaVn+p+/w7OLPL36rwjASOzvakJWegUqvoMLAVW+buRq1RYzbJJDxMZOmoddwNikKfbuDUtvN0+bItd65HIqlU2Qo/thvYinYDnxaNpyamcfHAVWLuxvE/9s47OopyjcPPzJZseiCkQUILndBD7713pImACoiiIgoqioqi0gQVFUGUjtKl994JCSG0QIAkhARIQnrbMuX+sSEhJkC8FxS9+5yTczY73zfzzeyenXfe9ou7cRdFUki3yOjs9ID60G7fNmz8k7EZQk+Rm+n5zd1E4f/Lwn6WOH47mp8un0bFGkUJir/1jzOEcnLMhIbepHJlL6pVK82X0wcSHZVI6zbV2bo1FHd3J7p0LazfBdC2byC7fjuJxSyh02upUL001erlGwTHd4Yxe/wKQOC5V9vz/IQufLPtHQ5sPIN/gB8T+nxNVnoO/V9px8j3ejx2rbeu3c17HR+TTOq9DGZvfpuDG4I4vDmEmKt3qVynLGWr+jB4fBdGN/8UU4413NXrpdYMHt8VBDA42NHv1fb8OHElyXfTAKt21pKpG/IMofu4uDtRtooPOjsdCPDyZ89xamcY4aev4+BiT73WNWjUpc5D19yyT0MatA9Ao9U8Uzf7aoEPhPNUWHZ5LmvnbsPdpwS9X+1IndY1CNoZypYf96DICnci45Hl/ErDHmM60H5oCxxc7IuVMO7o6sD07ZNRVZWP+swmaOc5GnauQ0pCOrHX7uD7QNdvG/9ebDlCNp4YfatUZ1FoMEk52XzSoi1GyUJ8VhZlXVwLlQLbeHrMPnc4L6qgFUV6V6zxt67nv2HChFXciklCoxFZsXIsdeuWo27dcsycsY1Dh8IRRYEPPuxF8+aFtbeq1CnLmvPTGVr/Q7LSjdy4FEfQ/su06mmtjIoKj8NillFkhWvnYwAoXb4UWelGFny8gexMI5JFZu/a08UyhMbNGMxrbb9AssjIsszct1bQrGsd+oyxCr7On7yWa+djqNOiKh6lS/DCpO788vkmvMuWYtikHji5OvDBT6Py9lenVTUOrD2Rl/AddTGGM3vPc2jdKVr2aZhX4TX0/d6U9vdEp9fRsm9Deo8trHD/KByc7f/U+L8C3yoFDY+dSw7Sun9jKterwI7FB/lp8m9UrOXH+B9e5ttxi8lMzcbgYEfLfo1o1LUeJbxcH1le/zAEQeDTjRORzBaiLsbybpcvMWWb+em9X+k5psOTOj0bNp4JbIbQU8TT0YkzL45FVlWyLGZar/yFFKORbv6V+abjsyHS+P/AzYx8z9ybtZuTYszhXk42dUr5PFOeugfDW4cOhbNn9wU6dgpgwoSuREUmIEkKdnY64uPTcHV1YPu2UA4duozZLKPXa7uRcSwAACAASURBVElMzHjoviPO3SQnywSAxWShYo3Sedu6DWvBmYPhZKXn4Ovvye8/H6Ji9TLsWXMKY7YZQbCGL3uMaPHYc7gaGs03b6/Eu2wpEm8nI1lkQg+Hc/7YVbLSs0lPzkIySyiKQmyu56j/ax3pNaotWp2myAeEDkNb4FvFhwntpqEo1v5Dnw2Zh9lo4cjGIJacn0Wp0iXRaETaD7ZWmd29mci73WaQnWHk0zXjixRn/Sfwx07ayz//nVXTN/P1gY9Z9MFqcjKNXDoZgVYjoigKensdbp4uHN1wmkNrT7Jm1mbSkzIZOrkPvV4tvmG4e9lhvh67iFJlSjBt87uIoojB0c7mEfo/wNZZ2sYTRxAEtIJA+L1EMsxmzLLMrsjrf/ey/m9IMebQq0INll0JAeDXiFDmnDuKAHQpW4Uf2/T7exf4ADNmbOP0qeuoqookKSiKys4d5xk5shWvvtaB5cuO0rBRRSpV8kaWFb75ZjeKoiII0KBBebp0KTo0BtaqH61Og1mR8ClfCl///BtsSU8Xvt36Dsu/2s6GBQcAa5L1fcVxP39PZq59A0eXx3tM5k36lejw24gakbb9GxIXGU9E6E0AUhIyGPBaR66G3sSUY2LEB73z5v2xf80fKV/dF/V+r4DcXjj3Kcp42rPiKIm3klAUlVUzt/DlpomPXfuziFanpfWARhxeHwSCtTJO62jH3egEnNwcyErPBkXl3MFLiBoRr7Kl8K1ahrvRiQBEX4oFYP7by+k5tmOxPdG/zdyEIiuk3csgIvgGC4K/5NrZaBp0CHhq52rDxt+FzRD6i6jj6Y2vswvXkpN4IaDu372c/wsSsjPpsGURJllCIwjIqsqdbGt5vgocuR39t67vPgcPhnPieASRN+IxmST0eg3OzgZMJgk3NwdcXOxp374Gu3ed50xQJGdDomgQWAH3Us6kp+Wg0Qi8P7knhkdoZFVvUIHxs4Zw5Ww0/UYXrMzbt+EMa3/Yi4OTIU/aQ6MV+WrjW1w7H0OLrnWKZQSB1XME1kaJwQcu5Za6C9RrVY1B47vg7ObAjPXj//Q10tvr8CrnQWpiOgYHOz5cOY69K47Rok8g7j4lCo0PaF4VrZ0OAQjs+PREZf8KJv70Cie3h2LOsYAADdoH0LhrXW6ci2LlF78XaE4Ze+0ut67eKTBf1IqU8ff6U+H41gOasOGbHYgakYBmVfEu54H3HyRObNj4t2AzhP4i7HU6dg8egUmWMGiLJ+po43/jckoCkqJgkmUEwEGrw1GrI9FolWV4o3bR5eN/JbdvpzBr5jbMZgmDQUulSl74+ZXk9Tc6ERoajZubA6IocOjQFaKj72E2SyxYeICfG47ixx9HEhR0g1q1/HAqRjfudn0Dade3YEWULMl8886vyLKCTq+hcYeaOLrYM3R8Zxxd7KkU8OcaC3Z9oQVRl9egKiqmbDOmHDN6g45WfQKxd7Tj1O7zePmVpGzV0mSlZeNS0qlY+xVFkfnHP+PCiQiqBVbEzcOF2s0f3uW4ftuaLDg5jZws00Mrxf4xqCpqbv6zTq9l/HcvkZNpwqOsB75VfLgXl0y9tgGc3BaCqqiFpiuSgptnwTyhSyeuEnY4nLaDmuKTG347vukMwfvO02tsJ178bBAdh7XCpZRzsT8jG/8ebKExG08NQRAKGEE/hgSx6lIY/arW4O3Gzf/n/auqSpbFgpP+2al6KYqjZ66zeO1xvDxcGdS9AfVqPp0KrsZeflR2LcWllHgm1G5BE59y1Hb3RlIUDBptsZ6Qk4zZ6EQRF/3Tkf3QPCB6qtVqWbDwRQRBIDIyga9m7wCgW/c6tM/tAm0w6PLK40uUcKRz54eHw4qDqBFxKmFVbreYZcpV8WbYO93+62T+zkObIUsyKYkZePmV5Ju3V2E2WfjxwzWs+WYniXdSkSUFWbLKdHQY1IRxXw7C4Gj32H07ujrQpGvxvallKv078ln0Bj3TNrzNtl8O0HFoC1xLOfNSnUncu52KqBFYdG427j5uDK3wOunJmSiSgr2TAY1OJDPFavRfOHqFm+GxlKvuS2JsEu93nY7FbGHLj3tYHTOf2Ig7TB/+PWajheObzrA2dgGeZd35qM9XXDp9nYadajPl1zfzPH42bPybsBlCfxMrL55j5qmjAHwXfIr+1WpSztXtMbPySczO4ssjh3C2s+ODlq3RCCID16/mfHw8zfz8GFUvkFblyj9z1WmqqvLx3K2YLTIRUYmcDo3i+08HU7OKz+Mn/0nstTo2dx9R6H2dqCnW/M2Rl5h0YgcaQWB15+epU+rJr9HL25VPpvbl+LEIbtyIp1fPubz6ansQrB2jTSaJQwfDOXY0ArNZwte3BK+80u6/Pp4xx4yqqNjnGh6CIFC6XCnS7llDhmvn76dO86qPFWN9GKIo0mNkawB2rTyW56HITjeSnW4sNH7fmlMc3BDE+DnD6DioCYqicPlMJO5erpTwcCmWgfT/QL22NanX1moMR12+xe3IhLxrO7L6BCrWKkuzXoFYTBZC9l4gJSENre6B73lu922AnEwjqqqiyCpZ6dnW14oCub8V95tRfjroG84dDgfg1PZQrgRd/8cmndsoPio2iQ0bfxGbrobnvVaxGjZ/xhD6/MhBdlyLQBQEPB0dcdLbEX4vERWV47diCIqL5e0mzXklsNHjd1YMpv+0h13HLtO1ZQ3eH/3nypIfRBAE3FwcSEjKyPs/ISmdmjx5I+N/Zd2NC5gVa1htf+y1p2IIATRpUglRFDhw4DJGo4VFiw6ybPlYNm44w+3bKaRnGPOaECYkZHD3bhply7oX2k94eByzZm7HIsnIksKAAQ3p/0DjxPCz0Uwe9D2KovLxz6MIbFsdAL9KXlw5G23VLVOtGlbFJeTgZU7sDKPrsOZUqp3fyHH5zK2s/mZXgbEarYjBwQ6dXkPqvXwpFVlS+OnjdbTu04CfPl7P3rWnMBstCILAsIndGfp2t2Kv59/O2rnbWP7572g0IqJexJRlQlYUrp2N4trZKDQ6TZ6QrSiKvDhtIPtXHafd0OaUy9VPK1utDC9/OYStC/diZ29H8J7zNOxchwkLRnFmVxj937Je77DDV6zNKXMNJJ8Knn/beduw8TSx+Tn/JkbXzc/VcNTpqFLyz4lXxqVnIKsqFkVh5YUwvjpxDIuc36HXoigsPhfyRNaanJrF9iOXMFtkth2+REp69v+0v4VfDqVb25poRAGTWeK3LcFIDzSBe1YYUa0BOlGDg1ZPt3JPV3W7fHkPRFHAYNAREOCHi4s9P/8yinnfDUcj5j+deXo6c+rkdW7FJBXax7xv9xATk8Sd26kkJKQzf/5+OnWcwTvv/IokyRzeHILJaMFiltj564m8eeO+GEjNRv6IGhFJlvn8lcXMfH0Zr3aYwfFdYQ9dc9LdVD57cSE7lh/l3X5fW70KuexYfjT3JgouJR3pMqw5L7zbk98uzmRF6HT0f0jszskycfj3YM4du2pNClatXaE3/3zwoce/FXGHK2du5FeT/YtJvpvKoXWnWPvNDiwmC5JFpmqDCpB7ze87fmWLNeToW8WHARO6M+S9Pvx8fjZD3++DqqpsW7Sf2S//iEajIT76HjfORTN1wBxkSab9kBa8v2wcletVYNMPu5FMZlBVRI3IrF2TKeld/Ac1G/9sFIS/5O9ZweYR+pvo7F+ZsJdf41z8XQI8vXCx+3MhgAcjXveys1FUFXutlqEBtfnl3FkA0k3Ff7K/j6qqnAqLRlFUqpT3YNG6E1gkmVIlHEnPMOLu5oiz45/Pl1FVlY27zhEXn8qwPo1ITMpEznXtX42M52ZsEv7PWFVKR7/KnB/8FhpBRK8pXjituFxPTeLlA+swKzIL2/SjtqcPS5aOIS4uhZo1y+SNq1TJi7ff6ca5czdp1aoan0/bxC+LD7FixTHWrX+zQKWYp6cLERHW3jxarYgkKciyypXw21y/Fk/NhhXZsfI4INB5cBPA6v25ePoG4SFReSERi0ni6LZzyLLC7DdX0Dyi6I7MiqLmGSH3BVrv02lIUzYuPICLmyPzD36IWynnAtsnfD2MJV9sRlFVUhPT0Wg0lCpTgpc/6stXry/DlGNG1Ii06dcQgLVfb2f9tztp2bchr88dzvmjV/io/1wQYMikXgyZ1PN/+DSebSxmidEN3seYZcrzDCLA3egEwFoV5lbKheS7+f2y7kQlsG3RfoZ/MiDPoxOy9zwLJq7AnGNm36pj1tuQYM1BEsSCN6Uzu8NQZAVBFGjYuTantofiVc4DT7/CnkgbNv7p2AyhvxFXgz2ty1X4r+a+2bgpL23eiKzmaikBbctXpHX5CiwJC0VRVfxLlMQoWYpdpRaflM7EWb8TFZuERhSRZCVv3x2aVaVfx7pUKe+JViNiMkuIooBOazUQ0jONbD10gfKl3Wlev2KhfR8+fY35Kw9jschERMVjkfK9Bzqtho27zyFLMjWrlqFbm5p5SZlZOWZ+XHkYQRAY+3wrHP9i+QP7p1DhZ5Qs9N6xjCzJKisxK/QwKzsOplQpZ0r9wWAA6NChJh061CQz04jJZEGSFFAlTCZLAUOobDl3OGZ97etXEmcne65du4udnZZ7MfeY8/aviBqRwLbVadS+JqYcM2PaTSc9yRqm0tvpMJusmmSyoqCz01LK5+FeAI/SJXhv/otsXXyYxNspLJiyjrGfP4coirw0pS99X2mPo4s9ervC17BN34a06dsQY7aZAxuC8PIrSb2WVq/bhutzMWabSUvKQJYVUhLTWfzJOlRFZc+Ko/Qb15krZ24gWSRkSeHsgYv/akMo5kocmakFvbCCIND5hdasnrUZjVaT97mBVa9NtshkpWWjKCoaTX7uj5rrQVIVFXtXB/qM68TNS3EM8H6FAW93Z+j7fQAY9mFfrp65gVanIfTAJYJ2hXH2wEV+PP3FX3TWNv42VFvVmI1nHKNkIdVopGXZ8igPhAQ0osicTl1ZdSEMjSCgqCpXku7x3LrVbBr0fIHqpIcxZ8kBrsfcA0BW8sNsCODsaKBuNWuOQdD5aCZ9tQmNKDL/40H4ebvx/tzNXIi4jUYj0r9jXaLikkhNzybHZCGgcmkCa/hhtsgoikropVhro0mNSBlvN27GJbNpjzUEs+PwZZJTMxnRvykAi9ccZ+t+q3CtKAq8MbwNWu2T9c48KTItJuIy06nsVuqRHasTcrIwyfnq7nWLmXvk5GTgrbe6sHlzCD171cfV1aHA9kaN/Fm//gyoKh071qJ69dLcu53CdxNWMXPsElSs+Tin9lzkauhNHJwNpN3LwGyyruXdecNZMn0Ld28lo9VqaNGtDmM+7vvINTXvXo8fJq8hJSGd5PiTNO1aJ8+gKVEMbSuDg55uLxTuWG1w0LN+/knWfrcHrU6Dh6876UkZ6PRaSni50n5IM/asOkZ6UibDpzw7TTGfBjo7HaJGzPPYgdXD2mpAE7q82AZ7JwPbfz7Akimr8Sxbim6j2nFyawgDJ/YsUOXVsEtdRkx9jo3f7iAzNRuf8h6U9HJj/dztmI0Wln2yjoHv9ECr01K9cWXW31nIuUOX+KT/16iKijlXD86GjX8bNkPoH0RCViZdVy0n02xiSM2CZdNTW7XDTquld9Xq/HYxjBspKSiqyqXEBFov/Zkdzw/Hxe7RIS03Z3t0GhFJUXB3cyIjy4gkyXRoVhXPkk7M+mUfL/Vrwsxf9mK2yIDM18sPcOnaHRTV+uMsyQq/bg8usN/ouGSOBF3LddFbjTdVVZEVuJuYXmCsIivE38uXitDrtYiCgKyobNgZyt6jV1gy+wW8ShVPCf2vIsWYQ/vNi8iWzLTz9Wd+64cbEH5OrvSuUIPtN6/Q0a8S79RtVezjdO1Wh67dig5V1arlx8qVrxIdlcjHH28AoIKPG5Ycs9UzoLPeFGVJYd7kNczbPpHazSoTcugKPYa3oFXPelwOjmTr0qNIFpmwE9fycnniohIIPhhOw7Y1KF2hYAjT07ckWek5KIqK+3+ha/UwDm0MxmKSEAWBAe/1xMFex/Ylh3iv+0ze/fkV2gxozO7lRzi66QwBzao8cxWST4qyVUvz2pxh7F1xlKshUdY3VXAvXYKEm/dYPWsLjbrUZUvqEnR2OgRBYPC7vQvtRxAEBr7Tk55jO9LPczQ3wm6ycNJKDE4GRI2Ih587mj88ZNRpXYNhU/pyNTiSYR8+2ii28e/AJrFh45nl6u1Edl6JwCRZsCgKO65H4KTXY5JkDDotA2paW98npmTyvG9tjjjd5NCtaABSTUaCb9+mXYXCIav73EpPo0YrP0r7uOHp5kTlch6s3HaG+tV8cXI08PmCXZgtMjduJXI7Id94uRmXkpfr8yjSs4zYa7WoiprnyVJVFZNZKjCuTg1fRg3K76k0ckBT7PRa1m4PIS3DiNFk4XRoNL06Prx/zqJLQcw8ewhBgGmNOzG4cl3Sc4xEJ6VS3ccD3RPO9wEIT03AKFswyhKH4iIfOVYQBOa06MGcFo8XMP2zJCSk8dFH6zHlenliw+PyukVXr1+ea2G3QBAoW9kbjUZk2vKxBSqDkhPS88ZnZxiJvBxH5Vp+vNl9DhaThRVzdvDr2S/Q22lRVZWlX25GFAV6jWpDi271KPsE2yAMfKMT3078FUdXB1r2asDmBXuJCIlElhUmdf2SlHjr93DnkkN0G9mG8jX/XPPHfxJ+lX1o1KVuniEkCAIGRz2TOk4jIyWL3csO83PYbLzL5xupZpOFayGRlK/ph+MD3sNLJyKQc3ONZFlh3vHPiIu4Q0CLaoWMSUEQeG6CTRfRxr8bmyH0D+DM9VheW/Q7AHoXEZOLwMi69elRpSrHYm7SulwF9BoNKZk5DP9uDRZZwdnejhHt6vLrxfM46vTU8374DSopJ5uu65ahqCp+Lq7sbjWSXq8tJDElk8NB1xk1ILcDswoqKir5bUlaNvVn296L1s2CmterRPhDRYCoEXnnjU7MmbfHml+kFUisCUY3KHlBxT4ZVAGqBHhT0s0xb56dXsvIAU3R67Qs/O0oOp2GwAfKtO+TZTLz/u+7SczMIsQuBklVQIGpQfvo7ledLt8tJcdsobavD8tGDvivP4uHUb9UaSq6uHMp+S5jajR+4vsvLuvWBuUZQVqtSO0AP0LvpqGqUKF6GV58vxfxt5Jo3i2/MWFmWg4ZKVmUruDB8R35VWKu7k7YGfScP3UdU44ZWVJQVTAbzejttJw7dpUtvxzCmG3m7s17HFh9EllW+GLtePxr/e9NMjsNaUa7AY3RaEUEQaBsVR+0ei0aVSX1AYFZQRD+K4X1fwqXTkbwUZ/ZKLKCd9mSOJVw4pVZz/Pr9E1kpecAuZIme8LoNqodYm4Y/J22U7l5ORYHZ3uWXPkG+9wih+Q7KejstFhMEj7+npTx96aM/6ObT2amZrFg0goEQWDk1IEE7TpHaX8v6rSu8XRP3sbfgs0jZOOZ40pcArKiYpFl6jh5s+CV/nndo4fWyk9mzTKZkRVreCojx8SHLdsyNrAx24LC6TptMU0q+TFnZI9C+UJ3sjKQVYUcSeJGajLd1i0j3ZifnNm4Vjk0osCtu6kM6dGA/u8uRpRUVI1Aty61uC6lcOnibcylRJQUGckeypd1IyUxm7suJkokaXilbWPeDNmJm5OKXRpk+woYS6ggQFolsMuNpi2KDuX57EaUciiY/zK0d0O6tqmBvUGPITf5VlVVJu7fxc7IazQo6UNYxB3Msoy+vBaLYAYVfFQXopNSyDFbyLFIhNyMy9tnpsnM0WtR1PDxopz7/1YabNDq2NZjJIqqPjI/KCvbxNlLt6jm743HU5AuaNasMidPWkV9p07tS0CNMvz02e8oisrwid1wcnWgRmB+gn5sZAJvdvsKWZIZOK4DHZ5rxL51Qbh7u+Hi5siE3nPR6rQEtqlO4u1Ueo5siVOud8G1pBOKoqLVaZAtEmm5Ic313+/mvYWjntAZqXw+7HsizkYybs5wXp87nO8nLENQrRVrPhW9+Gz9BFyLSDL/t3AvNhkBAYtJ4s6NBHT6ZHYvPcyR9afyKrtUWeanSSu4G5XAqOlDkWWFq8E38toQxEcn4le1NJdORhDQoirNezck9todJiwYXaw1LP9sPQd+PQ7A+SPhJN1JRQCm73ifgEdIndiw8U/AZgj9A+gZWJ0doVdJTMvknV6tHiqh4evuylvdm7Pj7FVebt8QrUbEy8mJH3aewCIrnIi4yeVbCdQqV/Dpr6a7J30qV+dgTBQlDfZcTkpEHyDQ0OjBi20bUbm8J5XL5zdTe39SZ34+HES/RgFMPLKLGDUVSw0FvUaDxRMMWi3xOhPJHiZUINsPDqTdQgaSaoFdCpT0ckCUrWX/sgMk1QFFDzpnkWspSYUMIYASro4F/o9JT2Pb9auYZJlj8TG4ijoMopayRlfC0xIRzQLly7lTzduDun6lORMdy5iWDfPmj1i6jsjEZARBYOcbI/Fy+XOGSWaWifW7QvHxcKFTy+oIgvBII0hVVUZ/8CsJSRloNSLrfxiN0xPunNyhYwDVqpdGoxHx8XHjwqnrnDlwGTcPZy4HR7F9+TGcSzjQtm9DGrSuxoVT11FkBbNJ4tDmsyw69CEvvt+T4Y2nkng7BQBZMpOTZeKH3e8WOFbFmr58uvI1rp+PwdnVgR/e+xUBqN/2yXkJgvddIHjveYxZJj4d9A1+1cpYw6uKil8VH34OnVnkvKy0bBJuJVGuRpk8D8k/leZ9AgneG8aB345jMUlYzBIRwTeQpfwKMEVQMWabiDwfDVjFbwdO7MXGb3dQv0MtylYvw5fPzyNoZyiCILDg7EwuHAnn6IZTePi64/aIxHaLWeLMnvNIFhmtTkNOhhFzjhk7Bz1rvtrK0Y1BjJj6HA7OxRPmtfFsY+ssbeOZxM3Rnt/eGlKssS+0bsALrRsUeK+GnxfXbt9DqxHxK+VKeo6Re+lZVPAsiSAICILA9NadAZgbdJyotFRwURnUqxEdKhV+2usXEEC/AGtO0jfnT2HJVYQ054qb/tZrIAM2rb4fJUMFXgiow+m4WBAFTO5g56Dl2ybdORV3i/re3hy4GcW+yBvU8fahgXfpYp2rp4MjLnYGsixmSjs5M6VDa5Kyc/AvVZIXl21AQub5RnXQaTQsGdG/0PzIxBRyLBL2Oi2309KLbQipqkpiciZfLdrH6XPRaDUiBjsdrRtXfuQ8RVGJuZ2MqlpbBtxNTKOS45Pv1uvrWzLv9ZIZW0lJzCAjLZsvxi7BbLSWWR/Zdo6PF42iUbsarPhqBxaL1SME4FzCEZ1ei8Us5TVEHPFu0flMdVtUpW6LqgBUC6yAIitUqPHoXJ3dq46x5PNN1G1ZlUk/vlykfpXFLHH59HWc3ZysUhKC9frdjUxAo9Wg0Sr0GVd0h/PUxHRG138fU46Zpt3rMXnZuMdftGcYrU7LOz+9QuiBiyTkNtLUaDW0G9yUvSuOoqoKziWcKeHlyugZw/LmjfpyKKO+HJr3//kjlzFmmTA42rF76SE2fLMDyWzhavANZu6a8tDjh+6/wL1Y63G1dlqmbnibH95ahizJhOy9QAgXkCWZ17998SldARs2ni42Q+j/gF9eHcDZqDgq+5TCaJHoN2sFZlmmT8MaTBnQvsDYtxo2I8DDC0edjua+j1ft/q5jD2afPoqiqtzJyuTVug2p61maaS06MC/kBDXcPZnSrA0V3EqSkJnFZ8cPIQDjGzWjZ+WqVHBzY8DG1aBCozK+rOhV/Pwde52OvUNGcCkxgXrepXHQ5ferOfneWCRZxsnwcI/L5M6t+PbgCVpWKk+dMsVL8lVVlfdmbuJUaBSCICArChqNSGYxZCk0GpGXn2vGL+tOoCgK3yw9xPdTBxbruMXBbJZYNGsnKUmZjJ7UlSthMTiVdMLOXo+qqhgc9HmGECok3E7h9L6LZKRm41LCgcYdAvLW+dXG8RzcFEyj9jUJaORf5HVYNms7l85E8tIHvahevzzlqhbPgJ3//mpMOWZO7Qrj6tkoajTM3/8vn21gy88HsXc0YMwyodGKfLF5Eos++I3oy7GgwuxdkylTyfuhHogb52MwmyyYcswE7T5Pwq17fD9hOS7uzrz+9XAMDsX3wl0Pu8mJrSG06teI8rkG3tFNZwjaFUavsR2oXLd8sff1v9LlxbasnGatBqwaWJEXpw0m/mYi2ek5fLDyTcpUfvR3eNT0ofzw1lL8a5fHt7IPAtZGmKasR393reK1AgZHO2o2rUqNJlX44dQXrPryd36dsQkUFeEf7nWzURDV5hGy8W8jKSOb1cfC8CnhTO1yPkiKgskisf/C9UKGkCgIdKqQL7ipqCoWRcZOU/CrYpIlUo1G2patSNuyBavRjsXeRBQEDg4ZhUGbP69nlWrMPHUUkywz5fA+elWuRlxGOiIC2bKFm2mp/FncDPY09ytssBl0WtA9/OudaTQx7+BJ0nKMnI+LL7DNIsusC7mITiPSr17NAjlV2w9e4niItSpMI0LNyj4EVClN55bVi7XeRnXLs3JzEEaTxIWrcY+f8CfYte4MuzcGI1lkIq/e4W5sMoqkoNXrmbZgBJ5l3Fg6cxuXz0RRtV452vUL5IXpW5AsMsYcC1dCowlo5M/i6VtQFXjpg144OhfdciH0WASbFx/GmG1m+qtLWH7602Kvs0KNMkSH30YQweuBTsWmHDPrv9tjrSbMtvasMTjYIYgic/ZO4czuMEpX9CpQHaaqKpEXbuFc0hFPX+u+ajatTJlK3kReiOG5t7vzwzsrOLM7DI1OQ4WavrTs2xA7e7tCeUWRF2O4eDyC5r0Dcfd2Iystm/FtP0MyS6yauZllF79CkRVmjVqI2WjhxLYQNsT++NDzVBSF1TM3E3cjnpFTn8PD1x1ZVhAE/qtw3ZD3++Dk5kBWWg79xnfF3tHA7L0fF3t+p+FtaNG3MUfWn6JMFR8GvN2DpkGnMwAAIABJREFUW1fjeOmLoY+cV6ayD/NPf8HN8Dgadclv3fDcOz2QZRmL0cLQybbSehv/XGyG0P8Bn6zZy+nrMei1WnzdXfF0deLWvVRGdXi0IOvdzAx6bFhBqtHIl607MrBaLcDaM6fz2qWkGHN4vkYdprbIN6aOxd5k9K7fUVXr6+86WkMqqcYcolJT8sbJirX6rH15f7pXqsKFxHimtSpolD1NopJSSMnOQVZVIu8lsyb4PEMaWX/kvz94kqUnzyIgkGk082Lz/FBj5K17eRVzep2WuR/2x/FPeBiqVvSidrUynLscy4h+TYock5Vp5NCO85Tz9ySgQfm898+evM7iubup06gioyZ2KVTq7OBksOYpaUQki2yVvRAEJBVCz0QTuzSGU3svotNpiAq/jZ1BR4/hLVj7wz7c3J2oGViRX7/dze7fTgGgN+h45ZOCN7jsTCMTen9NTMRdRFFAoxVxdc83KFRVJT4miZLerkV2lAaYsfFtQg+HUyHAF/cH9Kv0Bh1lq/oQfysJQRCwmCXsneywdzag02tp1rMB8h806X6dsZk1c7YBMHv3B1RtUBGDgx3zT0wj8mIM73WdQVZGDgjWZOMN3+1iydR1iBqR2bus4wGS41OZ0O5zFFlh1YzN1GlVjcZd6yHdb++gQvCe89RvH/Cwj7YQW37cy7Kp61BVuHXlNqO+HMKHPWei0WmYs/9j/Os83uP6IBqNSJ9xXR47TpZkTm4Lwd27BNWbFAzXftxnFlfP3ABg3okvqBBQuLpPVVWunrmBo6sDfrlePr+qpfGrWppT28+ydcFeOr/Yhlb9GjP8oydfgWnDxl+NzRD6P8DFwQ6tKCIAHi5ObJs80hrSecxT6f6YSDLMJiRV4adzZ/IMoXPxd8i0mLEoCr9HXKahjy+Hb0XxYq0GxGWkowJGWSIm3erhiUpNocfaFUiKQttyFdAIIsNr10Obe/zZ7R//4/6kqebtgau9geTsHERBIM1ozNuWlJWDpCgICCRnFZQ2GNIzkIsRtzGZLEyb0PNPGUEAWo3I11MeffOY9uYqLp+LQRAEvlo+msq52mMzJq0hPSWbW1GJNG1XvYCRBNCuZx0kSSY1KZMmbavx+nPzrTdyVeXOzQRCDl+xdgg2SSTEJqPICiPe7cHAcR2xs9chiiLRV27n6VkVpUJ//uR14iITAWvOTuP2NRjyZue87TNGL+LEznO4ebiw8OhUHIrwKBkc7Wj6QPn+fQRB4KOlY9m2+BCl/b345dMNpCSk88VLC/nl9DQ+HfwtJ7edpc2AJkxe9hoAp3aEYsoxo9VruXQiIs+wAdi15DDpyZkFjpF0JwVUq0cmZN+FvPHpSZkoqorZZMGcaOHwhiBObDtL4651Ob3rHHqDnsCOtfEu78G7P7+SFxp7GIlxyexedpj7zd8Tbt3j9+92YsoxQw5sXbiXwE51CGhe9ZGJyv8NP769jD3LD6MqKp/+Pon67Wvlbbt9Ix5TjhmDox2Jt+4VaQitmb2FVV9sABU+2/wu9dpajb+cLCPTBn2DxSxx7tAl6raugYv7v7da7/+ZZ0kQ9a/AZgj9H/DZoE78VuYcnq5OdKpjfUIsjuRG09J+aEUNKtC3Sn4lUH3v0pQ02GOSJLr7V+WdAzsxyhIHbkZy7PkxHIu9SUx6Kh81a8vFe/FciL+LrKqYZJmrSfc4OOzlp3WqBcg2W5h3wKqy/ma7Zjjo8z0UOo2Gza+9wOc7DuJssGN4k/p52ya0b056jhGdVsPoB6rMADxKOvHTY0IJ/yvxt1MxmyQM9jruxaflGUKlPF3IybK2BbCz1xVohAjWm3uX/oF5/3/w1WA+H7UIVVFJjU0GVUUQBbRakVEf9cnrImz/QOVaSoK1BF4QBXzKlyq0tiq1/QqovQftv0zQ7jCadqnDBwtf5viOUCSzTEZyJtHhcdRo5I+iKJw7coWS3m6Ur/bwPCJFUZjY8yuy0rMRRQFVtcqq2Bl03Ludwpnd1h5HR34PYtzXw3Ep6cTwKf34/IXvKeHpQusBBfs3BXaszZaF+/LWq9Vp8pLADY4GWvXL94iWr+HLoAndObb5DLci7iBZZARB4N1FYzAZLTg622PIvU4t+zSkZZ+C34sHyUrL5pVGH2LMtPb40Wg19BzbkTL+XgTtCkMQ4OjG0xz47Tj2TgZW3vgOnf7J/RRfD4vGmGVCZ6fj5uXYAobQpCWv8eOEpVRtWIkGnfLDXJHnbzK1/xzsHPQ4uTlgyjYjagTO7DqXZwhpNCIanQaLWULMfW3Dxr8B4cEftSIHCIIBOALYYTWc1quq+slDxvYH1gMNVVUNFgShPBAOXM0dckpV1bG5YxsASwF7YAcwXn3MYgIDA9Xg4OBHDbHxhEk3mUg3G/F1LtiwTlYUsiwWErIz6bF+BUZZwt1gT8hIa4VOhtlE+9WLyTCbqOXhTWxqOnczM3DS2+Hj5MTCrr0p71biqa79qz1HWXbqLAAjmtSnftnSfL3/OK0qlWdip5bPrCTD5dCbzP9yG5VrlOb1j3rlGSxpKVkc3B7Gnt/PEhVxlyZtq/HJvGGF5oeeusGcDzfg6mxH7KVbmI0WtDoNb899nq8n/ooqq4z/aggd+he+me/feIa5b6+yJoLLCr1GtuLVzwpW3A0MeJ+MNOtNXjWbQZYRRIFxM4YQc+0OW385RLmqpfl2z2Ts7PX88N6v7P3tJKqqMOP3d6geWLjDeU6mkYzUbF4M/ABZsgq+jp46gPhbSfQe0w53bzfGNv6Quzfv4VfFh++PfVqsPJvFH69l4/e7EQQY/eUQWvdvjKOrPaJGfOj8y6evs/+349RoUpnw09eo1aIarfsX3STTmG3ip8m/kZmWzdiZQynp5catiDu81uwja2K6qjLgjc7sXHKISnXK8eYPLyNLMmMbTEaWrOXoq6K+p4Tnk2sIGRF8gxkjf6BU6RJ8su6dAl2lH8Znz83l2KYgRFGgzaBmnNgagjHLiM5Ox/Ttk6ndyvogdD00msPrT9GsdyDVG1V6zF5tPAkEQQhRVTXw8SOfDE5VvNW684f/Jcc63nH2X3puD6M4jyEmoJ2qqpmCIOiAY4Ig7FRV9dSDgwRBcAbGA6f/MP+GqqqF/eDwIzA6d/wOoAuw88+egI2ni4udHS52hcM/GlHM2za7bRcOxEQSm55G/aU/8FGzNlQq4U6G2USOJBF8N47roydQc9F3pJtNpCeb6LVuFWGjxj1VY0QUhLwO16IoMHHDTrLNFmJT0ugSUIVaZR7dTbc4REQlsPPQJVo09KdBQOGO18UhIzUbe0c7tLlP2DXqleP7dYVLvl1LONKkTTV+/moXqqJycn84GWnZOP/hRjf/i63cu5tGUjyQG+Zq3bsBC6duxJLbdXr78qNFGkLt+zXEr5IXk/rPQ5YUtiw5wpiP+xTQoHJwticjLQeNToOqiMiyjEYjIkkyr00fwktT+mHnoM/7bC8H3cCYbUJv0BF54VYhQ+jWtTu82XE6FrNE634Nibxwi7b9G9NrdLsC4344MY24a3fxreJT7GTjlz4bSOsBTXB0tce7nMfjJwA1GleiRuNKjAiYyN2biexZeYwylbypVEROz5aF+9iz4qg1d0lV+WDZOHwqelKzaWWuhUbz/OQ+rJmxicyULK6cucGtK7dp2rMBgyb1ZMfPB+jyUpvHGkEZKZl8OuBr7t1JZvLy16kaWLiK70GqBPqz+OLcYp3rfWq2qMaZPWGgqrTo25jUhHTO7r+AbJYIO3QpzxCqVK88leqV/1P7tmHjWeexhlCul+Z+oF2X+1eU52YaMBOY9Lh9CoLgA7jcN6YEQVgO9MFmCP2jMMkSM08d4V5ONh3K+fP+4T1kSxY+PX6QM8NfpY6nD6dv32JMnUBi0tMwSvm6YllmU55Ux+OQFQWLohSoQHuQhUeC+Pl4MO2qVmRG3855N+DX2jRBI1pfv9KqMfvCbxCXmoYKuDs+/in5seuSFcZ9sobsHDOb9oaxYf5oTpyN4np0AkN6BRZLGHbZvL2s/eUIbiUd+fH3N3Fxe/S6PLxdMdjryLTICAJs/e0UoihSrbYfdZtYb5BVA3xJvJOGMccMDvbo7XUc230eU0Z+HlS7vg9/CCtb2RvXkk6kp2RSKcCvkBDne9+P4L2B80AQqN68Gj5lXHEp4UT3ka0B8kJI9xkzbSCzxv6Cp19JWvcrbHyFHLyMZJaQzBLRl+NYcHRqkevS2+mKzGl5HP5FSLKA9fMrqodR3nZJzvulU/6QpL1v9XH2rTrO1eBILGbJahQikJ2Rw/pvd3L59HVQrQngNZpWIWTveYC8ireRnw5k5KfFa52wb+VRwoOuYTFJ/PjOCr45PLXQmLhrdzDlmKlY++EJ2BazVCAEl3QnhUsnruJS0pmuL7WlSoMK2Bn0VAn0x7mkI+Gnr+HgYk/751sWa502/j3YyueLQBAEDRACVAJ+UFX19B+21wf8VFXdLgjCHw2hCoIghALpwBRVVY8CZYDYB8bE5r5n4x/E6vDzrLochkVRSDZaQyUOWh21PbzRaTSs7jUoL48ly2zG1c5AhtmEIAh817HbI7sw3+dWehq91q0kw2xmTvsu9K5SsExdVhS+OXAcVYXdl64xukVDKnlay6gNOi3j2+cLuK586Tn2XL5GHV8fSru5kGkyM2bF71y+m0CTCn58M7CHtew+l8SMLObuO4aHsyNvtG1KRoaRrQcuUqWCJ03rVUAFJCn/Bhl66RZfL96P2SJz4eptfplZOGz1R3asO4MsKaSlZvNyt7nUCizP5K8GPzRnRKPVUK9pJY7useq7/b78BFmZJnQ6Dd+vH4dfBQ8mTOtLy84BHN1zkf1bQnH3cCY5MitvHwFN/Okx4uE3N4O9np8OTiYuKpFyRYiomk0WNFoNxmwz1y7cYubaNx55jnVaVGXVxVkP3d64U21WztqKJMlo9VqS7qYWqCb7X1FVlbvRiZTwcsXgYIdkkXi/+0wuHL9K77EdeW3OC4XGzxu/DGO2GXtnAxazhQ96z8bNw4XBk3oS0KwK34xbgsVkyZujt9NyfMsZzu6/QN3WNbAYLQiiQPzNRHyr+HBiSzAupZyZMXI+479/mYoPMc7AmisVGRaDZ1l3XNydKVfDF1EUMTjaUaV+hULjg/eEMXXAHARgzKxh9BzbqdD+pvSaSfDuMFo/14QPf32L7IwcRteZSFZaNqqq4unrzvzgGRhzewrVaV2TzSlL//uLbsPGP4hiGUKqqspAXUEQ3IDfBUEIUFX1IoAgCCIwFxhZxNQ7QFlVVZNyc4I2CYJQ888sUBCEMcAYgLJl/7vQg42ng4PWGv7QCAIe9o7sHjiS66lJNCuT/znd98446vXsGTKSc/F3aFLGr8hwW1HsibpOptmMpCgsOhdcyBDSiCKVPdyJTU1Hr9Hg/Yju0CUdHRjcMD9BdNfFCM7F3kFRVQ5FRLEm+DwjmuYnTX+ydR+HI6LQaTSUcXNh97owrkcnotVqmP/ZYKr5ezHnw36s3RZChxbVcHI0AAKqqmL5gwfhPlduxHMs+DptmlShUjkPOvWtz+/LjiNbFDLMOZw9cYOzJ6/TuPXD9ZsatarKiX2XkWWFrEyjtUxepyE71+Oj0Wpo3KYajdtU442Pe6PRiswYt4zQo1fp/VJLsjPMzHl7FaM+7I1bbi+duzFJXAm9yeHNIbQf0JAW3eri/xA19xqBFajeoAKXQ6Jo378hmWnZOLk6kJWezcqZW3FwsWfwhG7FTgD2Ke/B85N6svDDNUScjeatztNZEVa0dEZxWfTBb2xesJcm3erh6OLA/tUncHS156cz07kXl0zEWauK+5aFe3n1q2EFQrSXT11j9/IjVo9QLhmmLDJSsvh63C98e/ATHrTh9QYdxmwzqqKSmZpN9SaVyUjNQm+n47nx3RnoOxZVUUlLSCctIZ25ryzk+5NfFLluWZKZ0nsWF45eQafX8s6isWz/5QAdXmhJ/fYBNOtV2KMWdugSFqMFVVU5uS2Es/svkJqQzsSfx1Kmsg/3YpM5d/ASAEc3BpGZmkVqQhqmbJO1azeQnJDGsIpvYDGZ6ftmN8Y8wojf8uMetv98gD7jOtP1pbbF/1Bs/EOwSWw8ElVVUwVBOIg1n+di7tvOQABwKPfHxBvYIghCL1VVg7HmGKGqaoggCDeAKkAc8OCvrG/ue0Ud8yfgJ7AmS/+Z9dp4uvSvWhOzLHEvJ5uXawfipNfj5/LwfAdPR0c6VfxzCZYtfcsxR6NBEAT6Vy3ahv5t1GBCYuKo6eP1yE7Sf6Syl3teaE4UBJz/MFev1VpvkALotRrSM43IiopOgIwsq9Hh6mQgNDyWMxdimPNhP0YPakZEdAIvDWha6HhZOWbGfbIGk8nCmm0hbPvlNV5+uwv9hrdg9uR1XA69iYqKbxHVWg9SytvVmk8kQPlKXji52FOvqT9VahU2XOwM1kq5KQtfAmDDTwdYv+AgsqQgmWXe/2EEC6ZuZOuSIyi5N8WQw1cIaOSfZyT9kaD9l/Cr7EXMtbvsW3eG03svsvjYxyycspb9606jEUUcnA30f61oCYyiSE/OV5O/d/vPN9Z8ELPRzIZ5u1BVldM7z6HRarCYLGSnwaIPVjN8Sl9c3J1IS8qkRuNKeUaQoih88cIPHNv88IIMURRxL+3GG9+MIPJCDPXa1sTdpwQT2k/L69p96fhVpq1/m3u3U7BYJAKaVyX89HUsJgt6gw5Pv6I/X1mSeb7iGyTftZ6/Iqt8+cI8JLPVINv+035Kersxffv7VKhVFlVVuXDsCrVb1eDA6uMYs0yUqeTDjkX7sFgkfnhrKa/OHUEJb1fK+HtxJyqBCrXK4ujqgKOrA51HtmH3ssNIJgmP0iW5E5UAwLaFex9qCKUmprNg4goki8y81xfTqn/jYiVj27DxLPNYQ0gQBA/AkmsE2QMdseYCAaCqahpQ6oHxh4CJuVVjHkCyqqqyIAgVgcpApKqqyYIgpAuC0ARrsvRw4LsneWI2nj6iIPB8zaLy4J8cVdxLcXLEGLItFnycir4xO9rpaVW5cMjgcdTx9WHVy4NYG3yeumVL07duQbHQz3q2p1xJV0yZFuLOJ/LK4JZsP3SBgCplCKxl9XptPXCBzNxwwsQvNiLJMgO61sfXp2BF3MWrt1m5KQiLRUIFzJKc1xywRCknpn4/jDNHIyjr70mZco82hOo18eedL/tzKzKRDr3r4eBowNm1oNxE/O0Utq8OonrdsjRtl+9FM9hbvXiiKGBw0JORksWWxfn9bsBaOv/HvKD7RIXHMevNFflSHVhzTzJSraG3op4jVVUlaO8F7Ax66rYq7Om6dyeFkAOXETUiiqLQ+hH5SzmZRma89CPRl2LxLu/BgPHdaNipdoExd6IScSrhSE5mDs4lHOnwfAvWztmO2Wxh/5rj3IlOYPhH/diyYB8dX2hZYN7pXWF5/4saAQdnezRaDZmpWZTwdOW9xWOZ0ncOMVdu41fFh9FfDkGjERk7cyg/vLMSWZIJ2hPGZ8/P4/yRK1Ydvy2T0GhF7sUmk5KQRodhRYclb4TdJDk+3wiULFKhMcl3U5ncfTqrY35k6cdr+H3eTlRV5Yvtk6ndsjpH1p9i15ID2Gn03I6M59XA93BwceDHkJlkpWRRprJ3nuH35vejePP7UQAsfHcFG77eDoDHA92+/4jB0S4vX0qWZNKTMmyG0L8QW45QYXyAZbl5QiKwVlXVbYIgfAYEq6q65RFzWwGfCYJgARRgrKqqybnbXiO/fH4ntkRpGw/B1c6Aq13RUg//K3X9fKjrV7RGk4u9gZcaN6Dv2J8wmSUcDHp2Lh2H9oEE22b1K7J573lkWSEnN2dk9bZgurcNoELuDUVVVd76fD05RguCANX9vWhYpxz7jl+hc6sa2Om16O10NO9Q/Khxq861uBF+m1d6fYskKUz8sj9tuuWH/T4cs5TbN5PQ6bV8+dNIjmwOQavTMHRCFySLTGZaDv3GtEUyS2i0IpLFenNr1z+QrkObkZyQTujRqzTqUBODvT5vv2aTlBcWMjjoEUSBDv0bUcLDhVc+H4ijsz0OLvb0GpVf8bX22138Nnc7qgpvznmepl3rsXLWFrR6Lc9P7MH67/Zw/fxNVEWlRY/6vLdw1EPPe99vxwnZdxGLycLd6EQunYzgi02TmD5yPnb2emZse48P+35FRnImOjstHyx/nYBmVfCvU445YxZhyjGTlpjOt28sRTJLfP3qLzTuXBfnEo54lCmBm4cz6UmZ6A06Oo9oxciPBzDE/01kSSEzLZvku2lEXbyFLClEX44jNTGNkl5udH+5HTFXbrP9l4MgCMSE38ZstCBqRC4cv8rgiT2hIVw8foVh/m/i6GLP7L1T8Hqgkq20vxf2jgZyMo0PPX8gz3MXdvgyxmwTWr2WiOAb1G5ZnZb9G6Mz6MhIyuC7NxfnrsFETHhsXj+gPyJLMkE7rKr0eoOOj9e+/dBjGxzs0NnrMGWZ0dvrSY5Pw6ei1yPXa8PGs05xqsbOA/WKeL9IkRtVVds88HoDsOEh44KxhtRs2HhmkSQFJdddIsmyNafiAWdJozrlWfPdy4Rfv8sHX1mfCUTB2rTwQe4bD6oKKek5rN12FhU4Fx7Lx290e+jxszKMSJKMawnHvPfWLznKttWn8fEricloQVVh57ozBQwhY44l74b587RNXAmJyj2+ypiPH5DNcLRj6pJXOLgpmM6DmlCrSSViIxMY2346iqzgV8mL8tVKYzZaeGPGIKrWLceoKX0IO3GNwW90LJBH5OjiwCtfDCL1XgayRSYzNRutTkPkxVsYc8yIokDU5Tiu/oe9846Oqm7b9bX3lHTSIJSEFkoIHULvCIj0DoJSpAgICqiA0qUoAlJEUKmCIL0XaVJCL6FDQkIgCamk9ym7nD8mTIgJ6HuO33deda61XJKZvX+7DcyTp9z3rUiObjqHIAjo9FqKl3FDq9MiiALVGvhaMxZmk8SpHZdxdnWkRbf6CIJAGd+SBfpzFFlh94qjpCakI4gCRzeesfa9iKJoFYts2bMhYTcjeHIviqGz+jCl01dIJglVVTEZTYATens9a65/SWRwDJVql0NvbwkAazb34+bp+xhzTXw36SeKebqQmpBOpTrl+LDlHDKSs5i2eRzvzemHnaMdOr2WSnXL8+WQ1Tg42VHtJbmAjTN3kpmSRWZqFid+DmTwjHyNJmc3J7aEf0tUcAwPLoey7vNt1vcq1PQm4n4MWp2GuXs/AWDElwOZP3AF7l6u1skuQRBo2tViCRP7JIFtX+2jdMUS+DcuaLXxMkkxKcQ+SbB4vBlMFC/j8cptAT758X3WT99OvTdq4t/YpiX0T0MFW4+QDRs28vF0d2LmuE4cC3xAv8710RWhpuvl6YKXpwuLP+vFkTP36dSmBmVfKo3FPc+gXVM/jp59gKyoZGUbkRQFSVKIjEkptN4LHt2LZsqwdSiKwicLLBmfzPRcNi4/gSwpJMalo7fXIUsKXd4uKPg357t32fr9aSpWLcWhH3+zvh4d/rzQcQJaVyMgrznbbJI4eyAIOW8aLiosgZinSaiqwsaFh/hk6Tu06FwHrU6DtghT2183n2fVZ78giiKKrCBqRHqPbY+LmyMeJd3oNaY9u1Yet+o7hd2J5NbZYBBg+Ize9HhJO2jd7N0c23IeEDAZzMQ/iefCgRt0HNKKoxvOIksWP7WAdrW4cy4YFZWazfxoN6A5u1YcpW5rf6uflyiKjJw/wLr225924+cv94GqsmbqL3y+yaLb5OjiUEgocOaW8Sx+fy1ndl4mMzXfciU+IpGcTAOSSWLb4oM061ofB2d7tn61nxrNqjJv90Rm9lzCjO6LGLPkXbq+34G0xAzLziqoRfTTu7g7U6OZH67Fi+Hi7sz+VcfwKlucz38ej95eV0AIslYLf3Y8+6HwInkM+2IA787og0area1elyHbYA0eS1Xw+sNSV5v+zWjTv9lrt7Fh4++ELRCy8a8iISOLEw/DaFDeG//SXn9qn3bN/WjX3O8Pt2sW4EuzgIJigRmZuQybvBlJlnGw11OxrCc9O9RmwerjADx+8pyJQ9eQmZTNx/N6U6N+vg7MlTPBGPN6cQ5tu8ovP5wlKyMXewc9kllGb69lw9GPETUiTs4FS4eV/cvQf0QrPhu+ATMa0IggK0iSjCzJRfYAZaXnMKb9QlIT8xuXnYrZI5lkVEQ8vCy6SB/3XE5yQjqiKLDhwkzcX/LK+vXn80gmGUGQLX1HZpntyyxV78y0HFKfZzBsWk90dlp0Oi03zjzIs2wQiAlPwGyU0Oc1eD+PTsZksIzqPwoK5+DqE6iKytN7UTgWcyQ3y4CTqwNvDGiKb61yuBZ3QRAFPu+2CFmS6T0u3wPt97h4OFtEIM0SudmFPdVeRqPV0KBDLc7svGx9TavTUMzDmdxMA3p7ndVyY+vCA5hNEiHXwzmz/RJmoxlVUTm/9zpd3++ARyk3osPi0Om1eFcuuqR0++wDZvZYDAK8M70Xb0/u8drz+z2hQU/YsfgAd88+pHL9iszZ8yl2L5U3f0/YrQh0dlqMOaZ/mcOUjSJR4Q8MJ/5x2AIhG/8qBq7fQVJmNqIocGLCe3i5vHrc/q8gJT0HSVYwmmTMksLquW/zODIRjSiiKDKkGggJTgFFZeXcA/yw/yPrvi071mL/lktIJpkSpYoRfCcKRVapGVCBjr0DqNukUiFV6ajw56gqlK/sxf0bEUiSjKKoaJwcUDKyCb7xlKBzIZQq54mXj0eB/p/QO1FkpeeiyApanYZx8/vStGMtrv32EJPRTMe3LZNwiXGpSCYZvZ2W7ct+5VloHEM+7061AF9c8kp4gigiCqDVW75gAVDh/uUwKtcux4hZlpJQxRo+LHx/LYqicnzrRe5ffsyE5YPZ890JqjeqRG62ERc3J3xrlLVmLQCqNazEzd/uk5tfMwg0AAAgAElEQVRpYFDlCaiqyuR1o7l/8RFJeVm2XcuP8NnGD4p8Lh2HtCI6LI6rv95GkhTCbj3l15/O5TVgdyqkXN1+YHPCbkcQuOcaDdrXxNHVkaPrzyBqRGq18KP/pC4A1GpelYdXHqO309Hgzdqc3nUF2SQzYHI3ACZvGMvGmTso7etFmwFFZ1WCr4RhNkkoskLQyft/OhBSVZWvBq/k7I5L1tfuXwjh6pGbtOrb5JX7Ne0awN7lR4h5HM97C97+U8eyYeOfhC0QsvGvIikrG5MsYydoScsxWAOhg3eCWXPhOl1r+jGmddG+Uv83lPf24K3W1fn17AM83Jx4FpdK1Ype9O1Ul+2HgxDstQiA3kFHhSoFMwS+fqXYcWE6iqRw/2Ykl0+HgB4atKhCh571Cx0r8Ng9lkzbDcCk+b1p07k2h7ZfJSMthzIlnIh9bNGa2fX9KR7djkIUBVw9nfH0cuWDBf3wq1cBUWPJCaiKSnamAY1WQ4f+lvshmWWunw2mWcdahN19RrW65Tj2cyDGXDO3AoOZv+Mjbp55CIAgQuueDbGz12M2mflt11VcPV1o0b3gebfsHkDFGt6MaTkXk8FMREgMs97+loyUbK4ev8OgyV25fCiIZWMvImpEVEXBo4wHrsVd0Oo1KIqKbJZQVTi05jd6fvAmx38+jwDUf6MWvycnM5dZfZYS+/Q5TbvWJzEmlbinzwm5/picvOxOCW8P2va3BH2KonDlyC30DnrGLBzE2K/fAeC37Rf5VRQw5piIe5Jfbpy352NCb0bgU6UU45rPwmyS0em1HPz+JA7O9vg3rsLUn4oOzl7Q/t2WnNgcSGZqFkNm9Sn0/q3T95k3cAVuJYqx+OQMPPPKsLHhCVzcf73AtioqT+5FcePkHd6e0oMylQrbyji5OrL6+sLXnpONfxf/Nvf5PzRd/W/CZrpq4/+VU8GPWX3uCu2qVWZcG8tvyZKsUHf+SiRFwU6r4dC4IZTz+GuUjSVZYdK8Xdx6EI0KNKtfkcWf9wYsjdJhEc/x9XAlKyWbZu2qv1aE8GloPDlZRqrXK1dkz8eymXs5vjcIgDqNfRk3vRvlKlnKf4YcI1dO3Kd8tdKM67ioQHYFwKeSF2vPTufLsRu5+OsdhDxhSJ2dloU7xlOmQgnGtPvKWjZzK+7Cl1vHML7dAuQ8P7MqdctjNpqJi0iyZjREjUjnoS0Z9/WgV/apqKrKlyPWcOnILdoNaML5g0HkZhktDuda0SIWaJZAyRM4VMG9pCtNu9bHkG3g4kFLT9MnP4zkjQHNiAyOQZZk7J3syE7PoXLdCtZjH990jlWf/Iwx14RnGXcyU7MLSAFo9Rra9mvKR98OQ2+nY9uig2xfchgVlfFLh/Bm3ui7MdfE+w2nER+RiEYjMmvbRzTpXHCm5B2/iSTFpIKqokoWe4tJP4yiwZt1cCvxevsVRVFIik7Bs4x7oTLmRy1nEXL1MVq9luHzB9B3YhfSkzKQzTIfNPqczLRsNBqRHuM7Us7Ph2/Hr8OUa6acvzdr7yx57XFt/Pfxv2266lSltFrt2+H/K8e62fnL/wrT1T/nXGjDxj+E9v6V2TvmXWsQBKARBdwdHbDTaixmsvZ/3aj+r2cfcO9RLCoW49fyPp5cuxbOrl3XyE3Lxc4E1Wr60LpT7T9UYk6NT+fq8bvEPE0s8v2eg5vhXtwZnV5D8O0oPuy/mojHCYBl7LlNzwAqVitDt6EvJoyw/v+FeOKYL/pQp0kV9HZaFEXFmGvmyon7PLz+hJyXxrqzM3Op4O/N8Jm9EDUidvY6qjeqxIoT0xg4qbN1bUVW0NvpCgRBsqxw8VAQ9y4+yju+wPQNozmS8AMeJV2txrDFPJwwmyx/FnUa3IoXs3p/pT3P4NTWC1w8eJM+H3Vi+5OVvJFXairv7012Ri5jGk3nkw4L2LHksPXYFfK8yuyd7AhoV5OBU7qjeakBXlFUzu25yvoZOwCIeBiNMdeE2SgR9SjWul1GShYJUUnW6wnce43M1Gxun3mAIU9sc/6eT/BvVAlVtniWmY0S347bwLgm0/n9L6CyJLNi3Ho+ajGLRzfCmdlzCcOqf8yYgM+s9+AFDTrUxs5Rj0Yj4t+4Cmd3XWJQhQ8YWm0CUzaOY/7BqeyI+ZER8wdRskIJrOpORcSht07fY1yTaaz9bEuhc7Jh49+CrTRm42+Nqqp8c/s8x6NCmVCnOV0r+P/xTlgMYy/HR1HZ1RMfZ1d2jx7E6ZBwGlX0wc3xrwuEtFrLlI8oqvj5lqRVnYp8NnWHZSxfUdHpNJy/8IjFiwe+dp34qGS+GLkOk9HMiR1XGLegH2ajROse9a3GoRWrlmLbuc8Z0mExz2PTsHfQEf0kkQqVS6KqKjmZBhxd7Bk7tw/Dp3Vjx8qTxEYkUqFaabq82wIAZ1cHgi+HWgxbAY1eS/NOdShZ1gPnYo6YjRl4lHRl5IweqKpKnw/epH6b6jyPTqZmkyrYOeip09KPn+ZJgIqrlytDp/UscC3rZ+3i6IYzqCp8tmE0TV/KpORmGpBNEkgy6XGpoILOXsfMLeOo0aQKYxpOIyk2FWc3JzKSLdmpo+vPMGhqwT6ah5dDkcwSsqRwZtdl+n3cBY1GxC/Al28D55D4LJn67S2ls9CbTwk6dQ+/Br4EXwtHMsskRCVy9ddbDPikK7FPnqN30NO8awBBp+5Rt40lc6fVaaxBW4chLRlZ+1PSkzPR6bWsu7uEqOBojJk58FL2zZBjxGQ0YzZJ6O101tcPr/2NE5sDMRvNLBy6ipiweADinj4nLjyBcv75VoyDZ/ahced6uLg7U6ZSST7vvNt6HncCH/De3LeRZYWbv93Dq6wnY5cOJfRGOAMmd+fYT2f4/uNNVKpTga+OTmPBO9+SkZTJs5AYmnZtQM0Wr7Z2sfHvQMUmqGjDxt+KsPQk1j28jkGWmHThMF3KV3vtqPALRp3ew/Xn0QiCwMnuI/EuVoyBjer84X6vw2SSMJkknF+a4OrYsjrpmQaSU7IY3KsRd+88QxAEZFlBECz7JMSn//HaRrNF0VeF9JRsFk/YAgI8e5LA0E+7FNh2/MzurJi9j7IVihPQ3DIK/uXItVw8fAu/+hVYcuhT1s/Zy8ltl1BV6D92irXJWVXUPNf1PC0eVBaOXEOF6t58f3Iqiqqyeuo2Fr+/jh1+pfn6wMeoisrXI9ZgyjUxec0ostNzQLHMhmenZBWaWHr64BmGHBManYZnj+IKBEJ3zj207vsiQaERBXLSc3FycWDTw294HpWMRisyxP9jFEUlN8vAwyth1GmVHwS/MbA5h9b+RmJ0CtFh8QwoPw6TwUT1plX5YuckKlT3sd7XHu+346PlQ3Fwtue7SZtJT87kzpkH3Dp1D8/S7qy+uoCEqCQ+bD7TqtMz8fuRTFgxjMhHcTTrUg9UlYzkTFRFxWQws2zMGm6dfkDe1wogUKlueTKSs+j3cZcCQdCzR7H8mGdbIYgCXmU98a5Uihsn7lChZlm8qxTs6xEEAb8Glaw/d/+gI3fPPUSr19Kqj6W3afmYNZzbdRlVVVkeOI/OIyyyBB+1mElupoHHt55y9WgQxhzLxJxkknDzen25zoaN/x/keZyuw6I7qALDVVW9/Pq9/jNspTEbf2tcdfaogJ2ooaSjy58Kgp5mpHA+LoJcWUJWFMIzkv+fzyMyMok+vVfQp/cK9uy5RlDQU3bvusbYMRvx0OsZN6Q1xVwcaNiwIpUrl6RkyWL4V/emWDEHevcpaKSpqirrFhzkoy7fcOtCKPFRyWSl51LupWZqs0nCbJQ4ueNaoXNp1MqPWjVKc/9cMB91XUpmeg4XDt5EVVSe3IsmLiKR2+dDMOSYAJWw25HWfe0c9MzcNIZiHk5odRoks0zs00Sun7rP6d3XcHFzJHB/ELKsEBUax0D/yUzs8CW5WQYks8y+1SfRvxT4/L4XCeD9BW9T3t+bmk2q0GloqwLvPX+WjKqoCIKlX0ej06DVa6nRtAqZqdlsnL2Ly0du4lnGnfrtamLvZIdWr6WcX5kC65Tw9mDY7H7YOeqRTBKZqdkYc83cDQzh8uGb1u1m9FjEnH5LGVlnMoZsI5PXvs97c/oiSzKGbCMxj+MZ0/Bzwu9EIggChmwjDy+H8n79qaz8cAM3jt1kWteFTO44H09vixChqM3X+lFVi2VJs671+frXaWwNX0nPcW8V/Ow8jEajEVBlGUcnO8pX8+bmb3exc9QxfeuHHFx9nB8+2ZyvQfQ7mnYNYE/ienbFr7XqJt2/+MjqJP/kbv7zrd3SHztHPYqssHrSZmsmydndGZ+qZQovbuNfiMV09X/jvz/JCuCYqqrVgDpA8F99xbaMkI2/NXNvnAZAQGBNm15/sLWFQxH5f48ctDqalCz3/3wely8/xmiUkGWFH74/jU6vxWS0qD4vWXyUVq2qYW+vY++e64SGxqMoComJmSiKyo8/nKZjx1o45AUQD6494fDmCxhzTXw5ZgNmswwINGjrz7PHzwv0jKQW8eWoqiqBh26jqiqJsanERyZTr40/9y6FUrpicRxdHOg2og0bvthLqfLFada1oF9cw/Y12Ri0gLN7rnH1+D3uXLD08pQq70lM+HMEUcjLHFkyN5IsW8s/yXGptO3bmNPbL/Eo6Cmj5vcvdH4Va/jw45V5Rd7HyT+OYsMXu6nftgZjFg4kISoZV09nHJztmf/uSi4fvomoETm05hRl/cow/efxVKlbAfeSBc1+o0JiMOYa8a1VlvC7zzAZTHn9RSplXwqaHl0Lx5BjxN7JjuiwONxLuuJTtTQepdys02DPnyXj36gyVepXJCo4hr6fdGHN1F8wG8w8vfcMrV6LZJJxcXdiwnfDEUSRao0q8V6NT8hIyqTHuI588M2QV352GnSsjWcZd5KiUxizdAibZu/EbDCj0YjsWXqEYz+dRTKZeRYay4JDnxW5hr1jQcPgsUuHsGTE93hXLk3znvmB9vhv32Nk7QdkpmSREpcKgM5OS/12hSfsbNj4/40gCK5YrLqGAaiqagJMf/VxbIGQjb81F+IiMMoSjlodCblZVOePfY9alK7A6ntXUFH5tF4r9Jr8ZtnE3Gw0goCH/X9mJOnnZylfCAJoNKJVCFGn06DTafj++1N07lwXg8Eywl6wMbVg1sSthAuoKjq9FnsnO0ypOZgMJmLCn7P7/pf0rfk55jxHcp1d4b/CgiDQtmcA5w7epKSPB+WrlmLWpjE8fRCNZJZ5r8EMTAYzWr2G1OcZ2OVZSaiqStDph2i0InVbVaPz0FZ0GNiMs3uv41HSlYC21bkVGGKtWamKYsnACYKlEVeFpJhUBFHgy/2f/kf3DyyGqkmxqYz+ciAN2lvcd0q9ZEBrNJiRJQVZkol5nEDck0REUaTm2vcLrJMUm8KHLeegqiqlfb3o8+Fb7FhyCEVVEUWRhKhEosPiCGhXk+EL3uan2Tup3qQqhmwjqQnpXD9+m5S4PPNTAdr2b0qpil4sOTkTsEx0XTt6m+vH71DO35vosDhEjUjfSV1o2DE/qNwV/QOqqmLINpKRnEkxz6JNgy/svU5STApms0Tg7iv0/bgrP376My4ezpSr7gOoqKpFvuDP0uiteuyMWVPo9dCgJ0gvBdJ6ex0fLBtKx/feKLStjX8v/0V98xWBRGCjIAh1gCBggqqq2X/lQWyBkI2/Haqq8jjzHAY5nQm1m/D1zfP4uRX/05md+iW8Cew9GoMkUc4lf0z+eGQoH54/iCAIbGzXl2alyhfY7+HDaL768hDePh7Mnt3LmsEB2L7tCoqioNWKlC3rQXx8OnZ2WlQVMjJyOXzoNocP3earhf3onFkHk0miabMqXLwQSoc3axVYy8fXi3mbR7NsynaS49JwcXfCkGPivc+7obfXM2XlEBZ+sAlRK+JXt7z1niz9ZBuXjt2l54jWfLr8Hd6f3RNnV0dyMnIZ03IumanZ+FQpZR0Xl0wyWRk5ZKZl41nKjX0//MbmhRa/tLFfDqDjO83R6bV0yBNSBAi/G2UJfFQVBAHVbEZnr8OluCvGHBP9JnVGEAT2rjrBgythvDO1O755k1p/xNcj13DzzAMEQWDuzgkFen7AMkX2IhsFloDk0qEgZvVdypLj063bJceloWIZcY8KiSXiQbT1Pcks8+XgVWi0GkqU9aRNn0bIZpmQ64+ZNzAYnV7LB8uHggA6vZZGneoyef3YAuchiiLzD0zh9rkHzOr1DYqk4FnGnXYDWxS6poj7z/ioxUwkk8TEH96n49DWr7h6AcHSpUrvjzrTdXQHdHotsY/jEUVLCeGtYW3+1H18HTWa+VHM0wVDjpFGb9Vl0LTer/Uhs2Hjf5jigiC8rImzRlXVlyN4LVAf+FBV1auCIKwAPgNm/pUnYQuEbPztCMs8w+m4xaio+Ll34NG7/3n2wcuhsKL0gYiHmPK0avaFPygQCCmKyqefbMNolIiLS+PEifv06JEvDqjTafKmw0QGDmzKuXMhXLgQWugYn3+2iypVSrLi28HodFqaNbN8CW1afITLx+/xzsSOtOxaD5NJIvV5BiajhCHHxO77X1nXaNGpDquOTSbiURyN8xzrYyOSCDx0E5NRYtu3JxgwvgOuHpZrDL0dSU6WAbNJIu7pc+wc9Va1Zzt7PU4uDgA8uf8MU64JVYXvJv9CWmImAyYW7GfxqVLKWvYTBIGOQ1tTs2llWvRoQHZ6DrfOBXPxYBCb5u/FmGMi/E4kP91d9KeeSWJMCiaDGTsHPcnxaYXeT4hMtmoTqXK+UdeDvAmxF95nVetXpOOQllw6fIvk2IJebnYOOhRZxZBjJOZxHFsW7EVVVIx5U3ICAt6+pZi8fizPo5LoNLztK8+3mIclc6fRaV6pC3T16E3MBhOypHB07akiA6G2A5uTFJPC86gkBucJKL5opj676zLGXBOKrHJk7Snavt38dbewELIko6qq9d44uznx06MVGLINOBX7z7KeNv49/C9OjSX9gY5QNBCtqurVvJ93YwmE/lJszdI2/nbkSCmoKMiqmWypaE2d35NtNvHuye202PMDF2MjitzmXb96VqmVo5GPuBQXyYmoMCRFISvLgDGvsVRVwbWYQ4F9J0/pQt++DRn1flvatK1ORd98H7Pf928/e5bC9m1X6PTWIgYM+I7b18LZt/YskaHxLJpo0XOpULU0okbE3lFPzUYF/csAyvuVpnX3+tbeEM+SxXB0tsfeUU+p8p4kxqZwavc1JnRbSkxkEu5exRAEKFOxhHXcHsBklAi9HYnZJDHo0654VyqJIAhIZplNXx1AUQo6gzbpWJtyfqURBAG9vY6GHWvTfmBzNFoNH7SYw8pJm1k2fiOqqiKKQoHG6T/ik9XDqd6oEq37NrJ6d73MuG8GU6lOOUpVKIFWX1D7JzMlP1MuCALjvhmCi5tDIW0cRVFp2acRriVc6PnBm1RrWAl7JzvsnexwcLGnXrua5GTksnHmDh5eCUP30nTXCww5RuYPWsHCod8xZGYfhs3px4KDUzEZzawYt453K3/InH5LyUzNpmn3Btg5Whq6e7zC+0yjEXl7ag8+WjUC95L5Gcqn96NIT8xAq9Wit9fRoldhxfOD359gWLUJrJv2i/VaVVXlp9k7GBMwhS7O79LVZQi3zz0scDxbEGTj74CqqvHAM0EQXpg9tgMevmaX/ytsGSEbfztquHXhuSGMXCmF1iUnvHK7R6mJ7Hx8l9bevsRnZ3I1IRqzIvPuqR0c7fYe/u4FTVeblSqPRhCRVAVJlRn22y60okjtu85k3EnH1c2B9LRcatTwpnUbi97KhfOP2LnzKu071KRX74bY2WkRRYEhQ1qQnW3g+LF7lC3rSUxsCpkZFqE9jUZk166rSJJCRnouwaEJCKKA3k6H3l7LoIBZtO/bkHVnpxPz5Dn+ARUKXVtsRBIhtyJo2LY6Lm6O2Dva8ePpzzmx8yo/LznK2A5fI8sqiqzw5GEMP1+bQ+C+G6z/Ym8BJWVFVpjWdzk6vZaS5YqT+jwDeyc9kqTg5umMKdeMvVPBRlyHvOBLQLCqShtzTGSl5SBLMrJOw0crhvDsUTzdRhXde2LINqKz1xUIynxrlWPpyelFbg9QsWZZ3hrahlUfby7wum+NsoWapVVVJTI41qJDZKcFAcwGSyDb6M3aXNh3naPrz9Jz3JuMWDCQ8tV9KJaXQRvqP4n4p89JjkvlyuEgWvYuGIAcXnOK83st03rrZmxn86PlrJ+5naATd0lJSLP2Sv3y1T5GL3qXXfFrkUwSji4Fg+fUhDTMJgmvssX5PRkpWXzUbAayJOPg4sDSs3Mo7+9TYJu4p8/5bsIGUGHn4oM07lyPWi38ObX1PNsW7n9pYk9l/edbWXlpwSvvrQ0bL1DV/zodoQ+BrYIg6IEnwHt/9QFsgZCNvx060YE3y3z+2m1UVWXA8V9IMxn4KSQIVQUlrylZBbaH3mF2w3akmQy42zlYx+6nBrTm2zuXKO/iRlhaEsYME4nXk0EFo1HCt5IX3660TABJksy8efuRJIWQkDhWfXcSrVbDsuXvEBmRhE6nZf2GkQx+93vMZktmRRAgN9eEkvclJWpEmjSvQrMDk7hxNpiNXx1CUVT2rz9HrxGtqdm4UqFrS0vOYnynxaiKSvHSbqw9Ow2AYu5OZGfmYjJJkDe2rdFpLE3XjnaU8HZHEAS0ei2OLvZkJGdZtIkAWTLxLCweRVZw9ypGVloO6clZfDVqHV/8Mg5ZkhE1IglRyUSFxSEALXsEWL3DnN0cGTarN4fXnabTsNa8+U7LVz6bncuP8tPcvXiUcmXV+TkcXnuGncuPUq9tdWZuGV8gOHpBakI634xZy53z+RN/jsUcmLzmfRr/ztrCcp8F3v9qIL98fYBGHevSeURbjv10ljot/blw4AZmkxlFVgm+Fs57c/oRdvMpDy+H0vCtupT39yY5LhXJJFGirGehtaND4/I/Z4rK8g/WE3TybsHjiwKueeUyvZ2ugG5Q8NUwlo1ew9N7USDAx2tG02l4wYAxOz0HWVYwGyXMxkymvjmfufunUDUgPzsom6UXPep5x7Fk3/av/LWQbEGV+hULXYcNG38HVFW9DfyP2nDYAiEb/1he9PvIRYxAbA29zaGIYNJNBuoVL8POt95BFARGVW/EqOqNyDIbGX1mH8/s0nByziE706LJkvTSuLooijg46MnJMaIolkkwWVZYvOgIkZHJyLLC/n038jRl8kUCX5QwBAEcHXRMHvsTYnw6WanZ2DlY7CjsHfQ4uzpiyDWxdu5+UhIzqOBXmnotquLi5oQiKxgNZuKikpDMEtfPBFOitBvtejVg16rfkGUFjUbgrYFN6TqkBfYOepq8VYdPVg4lKS4VURTZOH8/iqwgy7IlUMwLikr4eJCTZcCYYyI+KoldK4+zcd5+ylYtRcvu9clMzUFRVG4HhrBh7j7endwVeyc7+k3oRL8JnbhzPoRVn26h/cDm+AUU/gLe//0pFFkhIzmLW2cfsuXrA6iKyq0zD3l4JYwn95/hW7MstZr7oaoqKfHpbJq3m+snCgYbfSd2plm3gFc+/17jOtLrpXJU1foVGVT5ozz9JAHPMm4M/6IfdwODmdFjESoqpSp40bJ3Y4JO3UPUiOxcfIhZOycVWLdiLYvX24vnGB2WHxghgEdJVxq8WYd+kwoKXb5gbr+lJMXk9S6psOubQ4UCodIVvRj2RX92fXOItMQMkmNT2TJ/D3P3TebK4SBObD5H1/fbM3rJYA79cIoOg1vh19ASNDsWcyxwfj5VS/PBsmGvvE82bPye/0Dj5x+BLRCy8Y9EEAQ2t+/P2gfXCHoeQ45sJkfKLwlJqkKKMReAO8lxxGVn4u1s+Q0+zZjLoafBfFyvJQElvMnomMviRUeIjk5h7AftrGuIosCq1UMJPPcIBFi39iyqCk+e5PctGY0S/fs34tChW+Tm5h8fLEFRanIWuqeJlokhwJhrZvr3w6jRqBJ6ex07V5/i5K5rmE0SV07eZ9/asyzdPwG/+uWJDInnvc+7snLabgIPWQQTv/zlA0qX9yT6SSIarZbG7WtQvuqL0X6Blj0C8o6t4l2pJLIsU7Vueab2Wsaz0Hi0Og1tezUg/EEMkcExjFs8iJkDVqKqKs+jU3Bwsken1yCZICU+jQNrz1iybxPe4trxO5StWpqZfZdhMpg5sfUCuyO/K+ShVqVeBa7+ehuTwUzM43iqNfDl6YNo7Bz0rJu5kyf3nyGKAt8cn8bG2Tu5dfahtaH7BfaOdnQZ3pb4yEQe347As7Q7nmXc8fIpnMF5QW6Wgez0XGRJRqPT8P3l+WSmZrHqi10WzSdFJSo4hh2LDyKIAiaDmeBrjwuNvnd6rw27lh4m8ZlFiDMhIv956/RaUuLTObvzMu9O703J8iUKnMOe5UfITMkq8Nrvy3ov6P9pd8r6eTN/4HIEAeq2rUFGciZz+y/DbDRz5fBN9iVvoPdH+QHXxQPXCb4SipAXe6tAdkYOmanZuHsVfRwbNv7t2AIhG/9YGnj50MDLhxyziYepzxn5227SzMZC23nYOVLKMX+KbOipXYSkPUdA4FCXoVRxK868+X2t72dlGVi79gw6nZaRI9swcFBTUlKy2bD+LC/3FouigFYr0qp1Nbr3CGDY0DVIUkEtmN83UtduWoUWXfK1aBxd7BHyxqctTg0CW5cdJ+RmJIJgUYJ+fM9iWaG31xEZGs/0H4ezadFhqtQuR0Dror2jFEUl4I3q1pLg25M6sfTDTRTzcKJZt/r0HNPeum3TTnU4u/c6Or2Wtn0b0bp3A35ZcoRT269Yt5nYbj7J8WkICNYGa1VRC5RosjNyyc0yUKZiCesEfmRwLF8fnkJo0FPKVyvDuFZfWNWOf1l8iKBT91BVyEzLQmenRVVUfKqU5otdk1BkhTGNpmMympHNMjq9lqkbxtKyV+FGa6wg4nMAACAASURBVIBiHs6890VfDq89TZcRbXEt7sKYBp9Z+3qszwTwC/Dl4eVQMlOzea/GJyw7O5ty1Sx+X3p7PZ9vHs/sPt9gzDViygtwRa2IRpvvP/Z7lfPosDg2TN9WoEcLIPhKGNGhsUUqOzftFsDKS/Mx5prwb1yFrLRs62dG1IiFPj9P7kZa19fqNMiSQnpiJlvm7ubD70YUeV9s2Pg9/0U6Qv8r2AIhG/94HHV6Gnj5sKvTu8y4coIHKfFoRQ0ZJgM6UcPomo3RiPl9KXE5GRhlGUetjue5WVRxK9jMum7dWY79ehdBEHB2tmfYsJZ4eDjRf0ATDuwPwsXFnvHj38SlmAMeHk74+FisF2bO6sGpk/fx8HDi6NG7mM0yDnZ6JJ0GzDJN2tdkxprhBY7VaVAzREEg/EEMEaFx1G9VjUe3IjAbzWh0WpLj0xk7tw/fTNpCqXLFad29Ho7O9sxeP+qV9+PUziss/XATdvY6Og5uwdDPuvNG38Y0frM2U3p+w7B60xn8WTcGftwZgInLB9NrbHtcizvjXtySNRs9vz/F3J0xmyWCTtwhNk+F2c5Bz8i5/bl/OYyuI9qit7f0xjwLjeOjtvOQTBJ9J3airF8ZJJPEoKnd0dvpqNmsKgCDp/fimzHrALh06CZoRJAU6z/MPcZ2YMS8AWi0GkKuh6MoqrVh22ySWPjeauwcJ2DMMRHQvlahBuV+E7vQb2J+BsWYa8zvp9JqUGSFwbP60G5gC4b6T8JsNGM2mvmwxUy2hK20erLVaFqV3bE/8uReFFPfWkBGShbelUvx8Q+jOPnzeZp0rY9XuYKfG0cXBwRRKKCFBJaAxsn11VNcvrXzZRyc3Zz46tdpBO6+Qrt3WqK3LziV12nEG/w8dzdg0UzS6rWgquRkGV65/p9FVVWuHb2FIdtIy76NrTYiNmz83bEFQjb+caSbDCwKOodeo2FK/dY4aC1fxlXcirPjrUG02beGyMxUNKLIiBqNGOpXv8D+K1p2Z8GN0zQs6UPT34kqAuj1WgRBsIyQvzTGPWpUW0aNerXuTNWqpflmya9kZxupU7ccer0Wd1khMDwBwU5HrSaVCjUKazQind8tqB0TF5nECsMOXD2d6fxOMxyc7Nh4cRaSWebO5TB8KpagZBFNvi/YuugwqqJiyDFxYM1pJJPE+EWDCL0VQeyTRFRVZdfKE9ZAKCs9hznvrCIxOoVhM3rS78OO2DnoGTajJ2G3Iji85pR17c7vtabHmPb0HNuhwDFvnnmAZJYsJb4jt1hzdX6R5/aykjSA+iLDpoKcpyGk0VruedWAirTs0YArx26RlZoDgKARmDtwJRqtiHflUqy+VLSVxwvm7ZvMjsWHqN++Ji7uzvjWLkfFmhZhzp4fdGT38iMAKJJCRkqmNRB6gW+tcrQb1ILDa06REJFI0Kl7CKLA9q8P8PV7qyld0YuvjnxOMQ9nPEq58c3p2Zzccp5f1/4GokCNplUZufCdAmPzL5ObbWBev6U8C43j03VjqNOmBrVbVad2q+pFbu9Z2h2NTmMNDnV6LcZcI+f3XqH9uy0JaF/7tffjdZz8OZBvx61HACIePmPonML2KTb+GfyXTY39j2MLhGz841h88xw7Ht9FFASK6e2ZVLeg4q9ZkVEBrSDS3rsSRyMfEZeTwaCqdXHW2dG0VDkOdx32yvWHD2+Nk5Mder2Wvn0bFXgvPj6N6OhU6tYthzbvCzsnx8jcL/YTHp5AVpYBRVF5FpXM9h3jMRnMVKxYAr29js7vNPtT11e6fHFGzezBpkVH2b/hHG+P74AgCCwYu5HbeSKOq49PoXT5wmPZAFXrlSc+Msnyg4q1lFOxhg96Ox2KotAwT6gR4M75R6QnZaEoKnu/P0W/D/MbkMv6lcajpCtJMak06lib0V8NLHCsxJgUZLNMk0512brwIIqcQ+/xHQncew1Drol2A5paAxuA6o0r06RzXe4EhtB1ZFv2fXcMs0FBEAXK+3vT/+Ou1m1FUWT0oncYPm8AD66EsnLCT7gWL0ZCZCKGbCORwTGoqvpaI94azfyYu88PQ44RY44J1+IuXDt2m6SYFIbO6Uv56t7sWHyINv2b4l2pVJFrmPP6ixAh5GoYdwJDMBst5amo4Bgu7LvGm0NaMbffUoth6+LB9J3UhfTEDKo2qFTo/AL3XGHVhJ/wa+BL0+4NuHs+GGOOiW/Hr2f9/aWvvBawlOM+XTuGJaO+RzYr5OZlggQE0l9h2gp5Rr+fb+XigRu8M703Hd5tVWib6NA4JJOEIis8C4kFID0pg6CT96jZwq9IGQAbNv4O2AIhG/849Bot4ouMzUs+Yi9Y/0ZfVt27TOOSZUky5DDl0lEkVeF0dDjudg50KFuF3pVqvnJ9e3sdQ4cWHg+PjUll1Kj1ADRs6MucL3oDcPLkfe7cibKMtech501o6e119BldtNaOZJZJjk+jhLe7tQwRGRqPo4s980dvJD4qmbtXHlOtXgXqtahKyM0IDDkm7B31RIUlvDIQmrR8CJEhcUSFxlG9YSVGftGHwAM3WDd7D3VaVGXAxE5UrOFt3b56w0potJbjpydnceO3BzRoZwmU7B3tWHNtASnxaXj9Lgt16+xDZg9YAcBHK4byS9gyZLPM6Z2X+e6Tn0G1lMxGfNHPuo9GIzJn20fWn/V6DTuXHUEURKasHW3V+gE4+OMpvp+8BUVWEAT48Nth/DBlq7VHRlVVDq35je6j8/udiiLmcTzjm83AlGui47A2nNp6HlWFB5ceMXROf56FxuHjV5qDP5wkKy2LzsPfwC2v8VhVVaJD45HMMqUretG8Z0PuXXhkKYEJlhJY8TLu3A0M5tbp+xiyjXw/aRP7kjdQqoJXoXNJfZ7O/LeXoyoqV4/eonqTqqCCvZMdletWeO11qKrKxf3XWfvZVmRzfrOaIEDr/k1p1bfJK/eNfBjNwdUnMOaaWDrqR9q/07JQgNZnYmceXX9MbpaBEV8ORFEUxjb4jMzkLBRFYcjsfvT9uGuBwPY/5dGNcHYvPUyVAF/6TOxSpJSCDRt/NbZAyMY/jsn1WlFMZ4edRsuI6oUbZ6u5l2Blq+4A7Ay7iwpIisK159EoqsqZmCfUK1GG0o4uDDyxjQcpz5kW0JZh/vmj2llZBg4fvo13GXdatrKInj7Nmx4yGMw8yPO3SkhIJywsAVVV0es1SJKMKIr4+hb+EnwZk1Fi3FuLiH+WTN3mVZm3aTR71pxh85KjCGAt0ZgMJuS8BuxRs3rxw6w9VK7lQ70WVYtc99qJe9y5+Iih07pz92Iorp4uODrbs/LTX8hKyyEzNYfOw1pZAy9VVdn89UGMBosFhaqobFt61BoIAVYxxt9z/eRda1Dyw9RfWDJ6HaUrlqBB+1pIJhlFlkmISnrtfRg8vTctezWylpZe5vDa36wj/6oK2xcdQpbyAwBZknkU9OS16wPcOHEHs1FCMstcPWKZvjMZzMRHJDKr12IiHkaDqlr7lM5sv8Ta24sBSI5N5f7FEADi8zJRDTvWQRUg6MQdzCaZLwd/x8Kjn1lkEZzsqBLgS3JcKic3n6Nqg0oFnN+jHkZbAigsYpiNOtejwVt1iX/6nCZd80u4siQTFRxDKV8vHJzsATj4wwnWTt2KKTffnNvBxZ6xS4fx1rA2PLkbSVZ6DlXqV2Tft0exd7Knxwcd0Wg1uHm5ImpE7Bz1eJRyQxAEstNzeHz7KVUbVMLByR7X4sX4+vgM69omg4nk2FTrM9g0Zyd2jnp6ju9E5MNoFg1bhUdpN3qO70Ts43jeGNTitb1Qqqoypf08cjJzObvjEteP3WLa1gm2abf/ZVQEW2nMho2/Ow5aHRPrFjbALIqevjW4lxxPdHY6NxNjSTcZLGUzUcPlhCgepSVhUmSW3blAuVh7nkYk0qtXQxZ9fZhbtyLQaEQcnfqi02kJD0/A28ediKdJVKhYAllWmDRxK0lJmYiiwJgx7fDyKkZsbCod33p1r0bM00SmDviO5Ph0AG6cCUaWZC4dtwQWL7IzAIIoEvEojgZt/HmjZwBv9Hy1rk5UaBwLRqzBZDCzd7Wlr0dvr8PZ1YHy1cpYDFVRC2SS4iKSOL3rKpIpf9ot7E4kD69ZGpX96lcoNB7/gjffbcmJLRcw5prITrdIFcQ9TST8bhTFvd1JiEzi8e1IDDlGq1VIUVSo7lPk611HtWP1Jz9b9XKadK7HuT1XyUrLxrOMO/aOdgya0v2V676gYce6bJ67G0VR6D2xM5cO3sCYY2LCqhHM6r2kkDhhVEgscU8T2L38KA8uPaJEWU8So1Mo5uHMxlk7LQ3ckpxvDqvTkJtlZO3dJUQ8iKbeGzUY33g6USExaHUavrv6JRVqWIxp/ZtWpXrTKty/+AhBEDix6RxjvhlSIBt0+8x95g1YTnZGDh6l3Fj/YCkOTvbEhScgmfOzjsV9PFhxfh4lfDwJOnWXOb2XIIgC5fx9eHovEkEUEEWBziPbEbjrMoNn98PF3YkmXepjMpgYVedTstKyKeHjydq7Swo1R+vt9YxePJgNM7blebUJeRpN8N2EjYQGPUGr03Lj+B1Ejcjp7RdZdu6L1z6Lly1Rbp9+QP/S71OjuR9Lz86xNWfb+B/DFgjZ+Fej12iY1+RNAELTEtkedodWZXwp6+zK5bgIDJKEVhCplebOl2sPoqpw5XI4Gq2IJClotRqiIpNZu/YMkiQjCAKyrPDgfgxnzwaTmZmLLCtotVpq1iqLRiNSvkJxnJ3tX3lO2787YQ2CAJyKOaDRahj00ZvMHbUBFzdHGr5RnePbr1hKL6X+3G/MplxzIe8tVVWRzDLzto3nxm8PqFjTh5LlirNn1UmObblAp6EtcXRxwKi1ZJ7MRgnJJPFZr2VotCKV65Rj8cF809u9q47z09y9VGvoy4K9n/DzwyUMqTGZTGO+F5gh20hKnqlqSkI6j+9EUrNp0RksgPiIRESNUKgHpfvo9rTp25hLh4NwdHGkSZd61G5ZDa/yJTi55Txndl7m1C8XGZpnZPoqylQqybbI1ZgNZqZ3/5qn958hCAJOro7M3jmJn+fuITMtm7uBFlVrvb2O45sCObXlPIZsI24limFnryMjJRPZrOSXxQQVVKjd0p/wu5FM77qQKvUrUrdtDdKTM5Aly8j/y7pCejsdn6wdw+h6UywB64ojDP9yoFWZWpYVpnddaM20pSdmEBMWT+W6FRgwpQcRD54hmWSmbhpHiZc0lUKDniCZJWRJIfFZMpJZRhQFcjIMfDV4JRf3Xwdg+Py3rX1W6UkZmI0SMWFxGHNMOBTxme09oTPt3mnBj5O34OTqSK8POwEWEcfgK2HIsowgiJgMZu5fDKG761AmbxhLyz6Fy3SCIPD18enM7Lm4QD/Tw0uh3DsfQp3WRTeI2/jr+ZdNz9sCIRs2XlDVrQSzGlr6SWRFYfrVEyioaASRclnOxOX96xAbm8rq74exevUpypXzpFx5T0wmCVUFUbQ40YOKu7sTX8ztw+ZNF2jarDIhIbGs+u4kqgrz5vWhQcPCZqoAslTwn6HqDSzqzAGt/TkQainJ7FlzxqLFg8qZ/UG0yRNKzEzLIS0pE59KXoV6PCrXKceIWb3ZsvgwWWk5+FQuSQlvD36cuYvDG86x/MRnOLs6kvo8g43z9yFLCmtn7kZvr6N4aTe6jWzL2lm7UWQFs0nCbILg608IOv2A5LhUWvZowLoZlozI3fOPuPHbfSpW9yE3u+DoduSjGOq08Od2YDAOznb41iz7ymdydvcVvhm9FoBZ2ybQ8M2CmbTbgQ/Zvvgw9dvVJHDfNa4fu4OiKMiSgizJbF9yiP4fdynyS/xlXthgPL33zJKhcrIj/ulzajTzsypLH11/mu8m/EQZ35I07lyXvSuOorfX4VrchYSoJCSTjEYr0rxHQ94a3paQq49p2i0A31rl6OU5HLPRzJN7kdwNfMisnR+zceZ2qjaoxMaZ2zHmmpj+ywTKVCpFibLFKebpQmpCGqIoMqHlTKJDYmnRqxH13qiFVqe1BkKV6lagYt79c/dyZeGvRXu1vTmkNWd3XCIzJYtaLapxbrdFA0rvqOfR9XDrdkfW/sbDK2EM/Kwnbfo3I3DPFbqO7vDa++davBhTNn4AwI7FB/hlwT7qvlHDYiLr5crB709w5XAQqBZRy/kDV3DM2DjPmLdglse/SVV2x68lNjye9/wtWlGiVizUf2bDxl+JLRCyYaMIXkycpRsNaAWBds39uXE8DFVVadPGn/Lli/P1128DsGHDOchzfarmX4bWrapRxtud+vUrAFj/P2P6LquD/fnzj6gfUBFRLFyL7/JuMy4cuY2qqtRpVoVPlg5izdz9BJ0LpqK/N50GNcW9uAtanQZFFElPzuLx/WicXOwZ32kJkiTTbUgLRs7oUXjt91qjtdPyLCyec3uvExOeACokJ6Rz58Ijmneph4OzvdULDcBkMJMcn4aDkx0tutUncP8N63uKrDC91zdodBqObw4skHHSaERKlvOk/dvNObY50Pq6IAg8uBIGQG6m0Trq/YL05ExCbz6lRpMqXDxww/qlf+3YbQQBfl6wj8ad6jJoag+WjllPbpaBU79cpJiHE4YcI3aOeuwc9aiygmuJYpY/qyonfj5PZEgM9g56ajTzw9XTmR3fHKZe2xp0Hm6RPfhg2RA2zNxJ3dbVqda4SoHz6jziDTqPyG9sX/jrNDbO3EF2Rg4+VUsT+TCGIbP7WifbAl7q/an7Rg1uHL+DRqPBt3Z5PEu7s+S32ayfvo0Hl0NRZZUN07czY/tE7Bz0DJrWi2/HrUdG4XHQUwBObTlP4O6rKIqCZxl3uo19k3em9S70jIvCs7Q7PwR9zc3f7rF3xdEXT4K0hDT6T+7G9x9vBlUlOS6VhMhEgq+EsituLZM3fFBorXvng0mKSaFln8ZodQW/QjbO2I4sKVw5HMTj25FMXD2STsPbcu3YTZS8AF+RFTbM2M6ORQco61eGby/NR5YU5vReQlpiOtO2fETlehXZEfMj53Zewr9JFUpVfH1PnY2/kP8+09X/cWyBkA0bRSAIAvs7DeZo5COaly5PTc9SlF3lRlpaDg0aFMzklPXxyNMWgnr1ytO3X6Mi1xw4sCl37kZhyDVz7NhdEp5nsHDhANKSs5DNMp55Ja4aDX354dRUMlKz8atbniM/X+TAxkAUWSEqLIELR2/zzqSOTFj0NssnbyPs7jM+7fMto2b2QJYVTAYz54/cpmW3eoTcjKB1t3poNCLh959x/eR9Dm04ax2Zf4EoClTL8wWzd9RTvaEvIUFPURUVUSNgzDWzfNLPdB7SEo1WRJYUi16NyRKkyGaZB1ce07Z/E87vu071JpWp1bwqgiAwceUwqjX0ZevXB0lPykRRlLyeEosIYnamAZe8aTBDjpHRjWdgyDHhWcqNj1e/x+UjNzGbJEKuh3Ny63lys4w8vf+Mxm/VpYyvF9GP4xGAEfPf5qc5uyjv782Hy4fy5P4zKtUuR1JsKiHXwln1yWaMOSYQLBkgeyc7MpKzuPrrbXyqlGL1pE3EhCcwYdUI2g/64x6zjJRMQq4/xmQwU7JCCQ6n//TKbWdsn0TojXBK+5bELc+MFaBctTKWYEKnUrZavrL0xpk7ilzHlNe0nhybypZ5e+j/aXeeRyURuPsy9dvVtvqNFcX2r/ezbeF+i8WIRkSSZHz8yvDWsLYEtK9DQmQic/p+gyAI2L2iZ+vmqbvM6rkYWZLZvewIywK/KGAoWyXAl/DbEZiNEs8jE5nW5Svq/R/23jo6ioP9375mLR5CAgkEAiQ4BHd3p1gLRYoUlyItULRo0QJFW6TFXYoVirt7cAjESIh7sr4z7x+zLIQEaZ/+nvfpt3udw2GzO7Yze3buveXzaRxIl7Ht2LngIFgk1I5qDv9yAkmUiAmLo3eJkYgWEW26DovJwqoxm/jh5BRePo9h1bebMelNOLs7sejsdPwD/ey9Qnb+duyBkJ1/JBbjDUwZy1A4NETj8uX/k334uXkwKLCG7e8SJfLnuFzTZoG4uzuh15uoV1+2tLh26gHXTz6kVY/aBJSRR9HLBhZk2bLeDBm8DqPRzPVrIQRdCmZKn9Xy+PE3reg8VC7N+RbJi2+RvCTGpKDXZrUFsZhFgi49IzYiGaPebH3OQumq/uTO60ZcZBKtetRmXJdliBaJgxvOkxmbgl5nRKEQsgVBKrWS+QdG4/XGVNb0rV9xbOsl8vvnZdnozSTFpoEEp3ZfpXzdEjy8+hxJApWLI7qUdBAlkCTCH7yg49BmPLsbQUffodT5pDKTNw2j+Rd1uXjgBteP3UVCsApSQs1WFbOIKCbFpJKZpsNkMPMyNI7iFf3x9PEgNiKBiMcvcXRxwGSVIXDN7cL8PyZw5fAdSlQuQqFSBWjUuaZ1OylIkkTvUt9gMVuo1CzQ2sAsgihhsE6GgVxefHT1GdEhsRh1RjZO2/VRgVDQmYe2bTi7OmI2mTm2/gxqRzVNetTLcsNWKhWUfivDBNCoax3WT9lJUnQyN44F0WtqZ1n2wfF1cFHrk6po07QEnX2YZV0HJw0IMLLud2SkZLJ1zl42PVueJdB6k1fj+yCrWUuixO5Fv1O9ZSV0GXqqNCvPlJ1fc+/cI1r2bcTJrRdIS8ogKToZfaaB3tM6E/4oytZrFHwzhI3Td9F/dnfbPhacnMqWWXvYNmef7blHV4PpO6sbtdpWZd13O6jZtgoRDyM5ueU8ZpPldT+QAEq1Eic3uQx3aPUJTNbzq03TMaTyOBxdHJh1aALl6uZsHWPnb+Jf1iRkD4Ts/CPRJ/UDKQWL4QpKTXWU6rIfXun/EYIgUKNmMUBWfd6z+jRHt13GbLJwet9Ndt2fY+vXKVgwNwEBeXn6NIaGjUpz48wj28103ez9KBGpWL808wb9IjdiP4kGQaBR11qEP4klNjIJpUpBt+HNmNDtZ+v+oduI5gSU8mXt+cmIokTw3Qi2LzuOyWgiKSYFS6Y+m8eVV34PylQPoFL90tk0h1zcnShU3IdtCw5mKZN5erlw58Q93D1dmbVvNIVLFWDKZ4u4eeIeAKH3XxD+MBKLKIGg4PLhO2QkZ3J+33VunbyPZBFRqJX4BvhQvl4phszrnmW/+f3z0qRrbc7vu0GHwU3ROKopXb0oqYnpSJLEpE3DeHorjMDaJWwj+027Z1XeDrkbwcj6UzDpTbZjv3kkKOuXu9kCahXOuZxp+nkt0hJSQRBwcNZQtUWFj7ru4Q8jrR8AqNayIhum7mDvksMggDZdR/uhLT+4jcSXySTFpGA2WXh6I4SQexGE3Alj4pYRbJi6k2e3Q7l/8TEdR7TKEggVKl2AYUu+RCEIaNN1iBZRVgvP1MM7AiFZWkD+HIoiICgoXjmAPmW+QbRYqNwkkB4TO9FvdneObTzLshHrMBvNtl6e26fuE/4oymZEJSgEdOlZ+78cnDR0G9+R4xvPkRCVhEKpwNHZgYIl8jO0+kRiwuN5fO05P56dSkD5Qvw8esPrlSU5oL958i6XD96g/qc1ObnlvE0SQZIkdBl6JrSaxb6kddnKcnbs/FXsnyQ7/0gEhQuSRf4lKQjv1ib5bzOh6wriopJsmjNGvYmwxy+5cDiI6k3KUrJiYZav6E16mg6NRkV0WAL7157FZDAjGoxcOnyHy4eDCH/0MqsnlcHEssOvp7MkSaJYuYJEBMeQO487nw1uAshBmVIpULJiYTr0rc/Ns4/pNbY1J7dd4urRuzTtWovTe65h0BrpM7kDDy48Zunwtaz4egPLzk3l8qHb6NL1VGxUhmndlmLSm1A5qPD08SAjKYP4F4mIFhG91kByTCpFyxWy7VdQCiDJhq4u7k6YTCJFyhTAxcMZbboOQQCFUiCwZnHm/zHBFhw+uvaM22ce0vCzGvgG+DBqaR9GLe1je6/f/jqYO2ceks/fmwJFfShfr/R7r8H9i4+RRClLAJfTL1zRbMaSqWXf0t9RqpTU7ViDLmPbU7yy/0dd6x6TOhF8OxRnd2fa9G/C2omymKNCKZD0Mtm2nF5rICMlkzy+ntm2oXZUU7RCYZ5cf06ttlUYVfc7TEYzjk4a9DqjrX/q4eWn+PjntTndRzyOYs34Lfx8fS5Tdn7NzgUHafR57RxFGm0ohGwuvwnRySBKGHUmrhy6ze2TDxi3YRhJsamIZhGLRZSvkwAvnkRbH8vbyF/Umz4zsttsOLk6sjlkOcmxKcRHJuFX0hdXDxdZRFQCo8HExLbzKFHFH9EivYrNbJ8H0SSyaOAqfIvmY8X1OegzDZzZfol9y48Achn21PYLnNt1lfbDWlCtRcVsx2DnP+Pf1iMkvD1O+79M1apVpRs3bnx4QTv/5xHNEZi0u1A5VEfpkF3l+f8vPq8wkbSk16PiSpUCtUaFXmfEwVHN5uszSE/RMrLtQrQZekb90I2yVf0Z03Y+mSk6pmweyuU/7nB8y0UsFhEJuawy57dvKFP9df/H+QM3WTB0LZ75c/PD/tHk8c2d4/GkJKSx4pvNKNVKvlrYE1cPZ0xGeQTeydWRtnkGYLaWmgICC/LiaQwmoxmlSoGgEBAtEkqlAoVSgUFnRBBAqVKSK48bKy/PxM3TlZiweJaN2oAoitw+/QCFQqBN/8a0G9wMX39vlColBp2RNRO3kZ6cyeB5PcjtI/dDJUan8GW5MZiMZtw9Xdkeuuy9lhgfQ2J0MqPqTyUxOlk+h5acv+Mk0WJNjcjUbFuFmQfG/+X9jqwzicdXnyEhkaeAJ+5eboxaOYgJrWejzzTQfWJHen73mW355LhU+pb+GrPJTNnaJWk/rAVTOvxge/3NQNjN04UVV+fw8nks0zotwKA3ElC+MCtvzvvo41s+aj0HfjqW7fm8BT2Jj0qymc9+9nUbekzsyNKv1pKWlI6njweCQiA5JpWbJ+5isYhoHNSMXTuEBu9Rq36beoho+QAAIABJREFU0PsvWDZ8LY+uPcNisuDm6QKSHGwVLlOQR5eDUTuoZNsX62eySKAfq2/L52TLrN84/9sVWvVtzOpxmzEZzKgdVOxNWJvNfPb/EoIg3JQkqep/a3+ORQtIfnOH/Ff29azLd//V9/Yu7F1ndv6RKFSFcHAf/bcHQZIksebKdfrv3Mu96Jg/vf60dQOp3rgMDk5qVGolao1K/lKXQLTImj1XT9xHrzViMYvs++UM+YvkZcv9H9gXuZzKDcsweNbnjF7Rl9l7vmZv+FJ+C1uaJQgSRZH5g37BoDUSExLLdWtZKic2zNzLpd9vcn7fdbYv/B2QlaBfjUO7uL8ei3ZydUK0BgYWs4hCoaBG6wp45vOwWYIAFCiWj3V359sanPMVycusfWMoUqagrKNkFnkeFI5f8fw2uwUHJw1f/dibCeuH2oIgkLMlkiSrKGem6bLpHP0VvPLnpu/3XZFEbEGQSq1E7aCWA7xXcZb1gUKpwKdwHoav6J9tW5IksWbcZgaU+4YLe6++d78xoXGIolyiin+RSMjdMJZ99Qu6DD1mo9w/9CYRDyMxm8zoMw08vPwUlUaFUi2fLxcPZ1w9Xhu8pidncvjXU1RuWo7+c7vTondDpu4e/afOiy5dZ3usUL4ONhOik0EClYMKtYOK3YsOMbTGRHpM7EihkgU4seUCR9efxWQyseT8DCo1DiSgQmFKVMlZ/uFd+Af6MWxxH9ukZGaqlsA6pdmXsI4l52Zy1LiNQxmb8S6c17aOSf9aJbvHpE6svDmfRt3qIlj7r1RqFQq7DcffjiT9d/79r2D/BNn5V2MRRWafOEPvbbt5Gp/AraiXLLt4hbMhYQz57eCf3l7pykWYvmEQK09MoO/Ediw+OJrJq/pSsW4JRi3ohkceNyrXL2UNkpQ0+zz7L2qlSknJKkWY0281Hf2Gc+VIUJbX4yKTbA3PkgRRIXHvPB6PPG4oVUqUKgW58rhme11h9WITFAKNutSk9ZcNyVvQEwcnNd3GfsK1I3eJjUjAYrag0qiQJPmm/OakEMDhtafZu/yI7PulEOgztXO2feVEgaI+1O9UHc98Hgxb2PNPTQQlxaSwevwWjm08my2A2jJ7LxazBYVSNmtt3qcBCoUcpLnnccfBRYNSqaTdVy2ZunsMG4KXZxFsPLjyKH1KjmDpsDXsXniAsAcvmNllEQad4e3DsPH16sFZ/lYolYTceyGXtwToOKJ1ltfL1C5J0QpFrNYbjvgUzkPH4a0oWa0oQxf2Rpv2OnBRO6gpV7cUgiDQflhLRv8ymPx/cqS8VLVitsfdxnWwZd5eBYtmg9kmupn4Mpmvak1m74ojNguN26cesHDgKoLOPuTJteesHL3xT+0foGiFwvSe1hmVRoVokYh6Fmt7TRAEgm+F0ntGFyo3LUfpmsWZuvt1OfjxtWdsmf0bN47eYfah8Xw+th2Lzky39wrZ+Y+xf4Ls/Kt4GBvH+EPHyO/uyqJ2rTkXEsb2oHvoTGa+OfAH05o3RhQlFIKAq0ZDyMMoTuy6Rs3mgZSvlX3qB2Qj1Mw0HaWrFLHdXPIV8qJj/4YAFC6Rj5rNX2vKFCqej803ZqDPNODpk7Mq9IUDt0hLzsBssrB90WHqvOEzldc3Ny65nMlM1QLkqEX0ih7j2+Ho4sCF/TeICo7NYmchiiJpienygpJEyaoBtO3fmGELewJyL8fupUcw6o2oNCpa9W7A4+vP6Tsje5Bz8eDNLL/wfN5h+Po2wbdDOb/3Oga9kR2LfqfVlw0/aj2AmV2X8OiqXE7xzOdB1eavm5xLVAkg4lEUonVce8Ds7tw+cZ/o0DiMeiOrbs7D28/LdhONCYtDoVTg7ZcHvdbA8hFrEc2iNcvzWv9meM2JDF/eD5Anu0q+EVzUbFuFQmUKEv1cvrk36Vmf09suYjZCyapF6TQyayCk1qgoWa0oj64EkxybwtBqEylZNYBnt8P4cchqvArkJiU2Fe9CeZi2ZwyF32E18rE8vRVqexwTHk/V5uW5c+ZBtilCQJYZeBsJQu+9AOTskXcO/nIfQ8fhrXgeFE74w0hGruhne/5NG5D2w1rSb1Y3Hl97xtBq43HzcuPe+UeYjWYUSgXNezXgm9WD/tL+7bwfiX9fj5A9ELLzr2L6sdM8iosnJDGJvfceUjyPF5IEaoUCSZLotW03SoWCzysGMrB6NUbUmoUu08DeX88wZU0/arXIqmx8+/wTpvddA4LA5181pduIFh91HM6ujji/R633+ol7Nn+v5Pg0EmNSbOPtSpWSn85+x7yBv+CW24XPvnr3PlVqFaH3X/D8bgRhDyLJH5CXz62Cf4Ig4ObpSnpSJiq1EoPWyJcVx5GakEbXMZ/QZVRrlp2dyvVjd6naNJACxfK9cz/dv23HndMPMJssVKhf2qYEnJ6cyZXDtylZNYBCJX2zrWcruUnYMg8fi1FvRBIlBASMehPadB2LBq/h1vG7eObzQO2gxmQwYTGLuORyxjW3C4SCyWDm8sGbfGoNTM7tvsy8XssAmLJ7DFVbVCCXlxvaNB0KlRJ9hs4W5IXei2Bs0xnWpnQFY9cNo0GX2oA8Jh71LBqL9bodXXuKio0DAQVfLc1Z4qFYZX+UGiWiXsSgNdhsPAAKFM/H7EMTKFAs39+S9ShRxZ/jG8+iUClpO6AJ+QN8mPTJPIwGE0jw4slL8gd4Y7GIxIW/3ww3l5cbj64+o5VLT/L7ezNz31jSEtMpXtmf+BeJuHm6ZintvYlao2LCxq+yPf88KByL2YLZZOGRVXBz0aBVhN1/Yc0gyedVtIiE3n/xH54NO3ZeYw+E7PwjkMQ0dIndkCyhaHLNQ+30yV/aTrE8njyKi0OSoHBuD2oU9mNx+9aEJiVz9EkwJlHEIknkd3Mnv5srxle/liVYPX1ftkDoyZ1wTCYLokUk6GIwxcsVYsXkXZSoUIixS3qisvZ8vI/HN0LY8sPvVGpQik5Dm5ORquX2mdc3xISoZHoGfsvkDUOo3aYSAD6F8rDoyIcbe5/fiyAlMQOFUoGgFHBxfz1hJwgCi09M5vy+61SoX5qV47cSbS2zrZ++h2bd6+Ab4E37wU0/uJ+ytUqwJXgJTm6OOLzRuDqmxSyiQ+MQBIFfbs/l1on76LUGWvVthMZBTamqRRmysCf3Lzy2KTK/iSiKxIbFk/eN7M0rJm0ZwfppO/EP9KPWJ1X4efRGzu2+ApI8vl6xUVk0jhr6z+oGQOPudQh7EIlSpaBSo0DSkzMQBIELe6/ZpAWuHLxBjdaV+enmfK7/cZtCZQoyuuHULOrXrx6LCoFHV4NtgdDFvVdtQRCAJEo4OGmYuf/d16nZF/U5teUCN44FZXst6PRD3HK7/C1BkCRJrBm/FVGUUArgkdedE5vPy7pARjOVmwVSs00lDDojfqUKsGrMJhDk9Sym7AFq4stkEq2TcXEvEhhSfSKSWcQ5lxOpCekIAkzeOpI6Hap99DE279WA83uukBKXRv85sqyCb9F8RD+PRZIkilYIIOzBCzy8czH8HYGlnb8BCbBnhOzY+d/DYjiJZHkOkg5T+l8PhKY1b0yNQn74uLpQo7Ds0dSkuNyInMfFmQcxcaiVShoXC0CpUjJkRid+mrwbhUpBkVLZBRWbda7B6b03SU/R0vvbNswavI7EmFRSEtK5ceYRNZsFEvsikfCnMVSsUyKLUN4rpn+xguS4NO5eeELZmsXJ75/3lWOHDVGU2LH4CGqNihKVi5DLy+2D7zX0YSTftJwLCOQL8KHTkKa06FU/yzL5iuSl8yg5M5K/SF4eXnkGgEqjwsnl/f5cAJd+v8n2Hw7i6uFM0NlHuLg78/PVWXjll7NX0SFxGHRGHJw17P/5OAdWnkCSJGLCExg0V77ZterdgFa9GwByVkBQCARYx/Intp3HvfOPyFfEm5U352Zxuvct6sPETcMB0GXquX/hie2cCYKCzt98QpWmr0uSn45oTZ121XB2d+LJ9ecMr/MdggAD5nXnysEbKJQK2gxsBkAeX09a9WuCQWfA2c0Jk8GEg7MD7l5uGHVGRFHE2c2JDlaTUYD6nWuxb/kfGHVGEARUKiWdRrbJds4sZguntl3Exd2JWu2q8vDK0xzPrWgRuf7HHVp82eiD1+FjcHDSoNcaEBQK1A5qfArnRalSoFRpMGiN7PvpGJJFpHG3OjTtWY8ja898cJtyJVhANFsw6k0Y3mhunvXFUvYlrs3WT/YuPPK6s+zSrCzPjd/4FWd2XMK3WL4PyibYsfNXsQdCdv4RKNTWG5rghFLzYdXfd6FWKmlXNmdV2g6BZWhYNACNUomzRv7ybtOzLsUC/YgKjaNOq+xCe175crHq1ATb34WL55Onn0QJ3yJ5iH+ZzJBm85AkiZIVCzN3R/aSgJOrIykJsmCgo7MD7rldGbm4F3t/Oo5/2QJcOnwHSZSIDY9nVt9VODppWH9njq3X511Eh8YjCAJ6rRGj3kTrD/TfjFz6JX4lfImPSuLTr1rg6PL+7YuiyKyeK2zj9wAGvZGgcw+p1aYy9y8+YdDc7uxafJiqzcujcVRjsYiIFpGUN9zFX3Fi6wWWDJdF/HyL+jBtxyhuWSfiYsPjiQ6JpVCpAjkey/Z5+wl7GIkggG+xfHyzeiDl6sjXOfh2KM/uhFG/Uw3yFZEnkk5sPo/JIGeBwu69YH+q3PgrCAKx4fHM6LwQQSEwZddoVgct4O7Zh1RoVJb9y48Qei+CKs0rsOX73Szo+xPf/z4BR2cHSlQpyp74tYgWEQdnByRRsk3Nvcmvk7Zx4KejSBKM/Kk/n37dhk3Td+f4voT39H/9GQRBYOGpKRzfdI7KTcrhXSgP3oXy4OQq24xcO3qbBxefIigEFEqBs7uuvLHuuyd8xq4dQoUGZZjR5Uee3AjJ8prZaGH3ot/pPqHjXz5uR2cHWv5NgaAdO+/CHgjZ+UcgKPKAkAfEKARV+Q+v8BdJ1euJy8igasECCIKAJElcOnqXRzdD8fXPS8mKhdm/9izBd1/QfVQLCrw1ufPdr/25cuw+hUv4UKh4Pu5cfIokSei1Rp7dj8xxn3P2fsORTecpW70Yha1+U6161qNVT1kaID05k7SkDPrX+A5JlLCYLaTEp5HvjTHjnKjWrBzVmpfnWVA4wxd8AUDYoyj2/XSMyo3KkqeAJ8/vhlO/U3VyebmhcVTTdUz28tQ7z1ViOg5OGlnrRpBLQY7ODlRsUIZRjWcQExaPxkHN+gcLcXF3QpuuIzYsAV2mngGzumbb3u3TD2wlqsjgGGb1Wk6jrrU5s+MyxSoWybFH6fmdMHSZetQaNYJCQKVRUeuTKrYgKPJpNN80nI7FIrL5+99YfWseLrmcadm3ERf3X0cQBJp+US+LdtHm73cTfCsEAYFtc/Yy8qcBNO5ejwt7r7J3yWH0WgM3jt7BbLKgTQ/mtx9/p9vETrJHl9MbweM7BuBePo+xNSOv/nYz2yJ+plbbKoxuPB1duh6FUtZvAljYfyV1O9XA2c3po6/LuyhUqgD9rGVCkMteHj658Cvpy6LBa2zPVW9diZS4dK4cugVAvU9r8PJ5LOEPIjGZzK8zlYJcIpvSaQEmg5n6n9Ug6Owj3DydiXwag0Kh4NCaU+Tz96Zx16zq32EPIhnfajaSKDH70HiKVij80e/DbDKTFJ1CXj8vBEEgOjSO4FshVG1e4W85T3b+t0bb/xvYAyE7/wgshjMgJgAi5szlaFy7f2iVP82DmFi6bt6JIEDn8oF816wRdy4+5cC6c+i1RmYPWU+PUS1YPWMfkijx7N4LVp2amGUbjk4aGrZ/PeEVWL0oleqW5OGNUPp/l90NHsDHz4veEzuwe9lR5g5cQ7Vm5Rj7c18UCgUvQ+L4Y+M5ytcpSdu+DTi6+SK1WlXk8uE77Fh8hHrtqzB0XrccRQjVGhWT1madrJnUYQGJ0Smc3H4JSQKz0cyKMZuZtGEo9f5EP4fZZGZY7amYLSIaJzWzD3yLX/H8OLo4oFAqCH8YJesDiRIJUUm4uBfA2c2JBp/V5Ont0By/aDuPasOVP2RLDpCDNrPRQoOudRi9sl+27MqVQ7eY1X0pCALdJ7Snx4QOWMwiXca8LpvGRyUhihJmo5n4F4nM7b2CmfvGUqlRWXbHrLYGL1nF+ALKFcbBUYME+FtLdAC6DD2iKKJUKXHxcEGXrsOoM7Jl9m/otQb6zvq4z2TfWd25uPc6ANo0LS+fx1C8cgB7E9byPCichf1+JuReBCDHHC+evKRk1Xebqb6Lc79d5Y9fT9N2YBPqtJevbdiDSI5vPkf1lhVZN3UnDy89RalSoFKrMFt3uObbLXSf2JEbx+9iNpp5dCWYgiXy06JPA3Ln8+DgyuOkxqejcVJzcPUJW2O1WqNiV9RKMtO0rB63hSPrThMfmciCfiup0aoSLrle96ftW3GEpJgUAHYvPsS4ddld7u9feMy6KTsoW7sEJqMc/Fzcf00OEiWJai0rMvKnAQyu8i2SKOFXwpcV1+b86fNkx449ELLzj0ChrgyCAiRHlI4fN5n1Z7kXE4tFFDGJIpfC5BuRe24XJFFCpVbi4eXKwQ0XbGq/kaHxRIfHkxyfgV8xH9w8slt9qNRKpvyaXajvTSwWkcw0Lb9O34MkSlz6/TZhI14SULYg4zosJCEqmf2rT6FQyhmqm6cfcNZ6Iz207gzt+jfC7x2GsG9js+yQsj7e9sPv1OtQjRdPo5nQ7gfMJgsz93xN8YpFctxOUkwqqYnpWMwiKrUSX39v3HK/nhLqM+0zdi46RM3Wlfj1ux3cOH6X+p1qcOngTQx6I1vn7qNh51qMWT3Aph1UpGxBPhvZivXTd8sRgAgvnkYT+yKBUzvK0KpPwyzH8Pj6c4wGE5Io8fByMDP3jc12nBUalKZs7RIEnXmIJEkkx6XaXot8Es39S0+o17E6Xm8oc3cY3ooCxfMjCFDVat9w/egdFg9ejSjKN+BRqwax5fs9/PHrSYw6IzeOBX10IFSopC8NOtfi/G9XCShfmILF5WunVCnZOuc3wh9G2lSlS1QJIKD8x2VLzCYzd04/oECxfLjmdmFerxWYjGZunbyHb4APn49rx+qxm8lI0bLLKq4Jsnimxfy6t0eXaSCgfGGUSgVKZw2JL5OJj0ziwaWnLLkwg2Zf1EefaeBlSAzTPl30xv7lRnEXd2cGL+jJkXVnAFlENOjcI2p/UgVtuo4Le6+Rz98bjZMGAajaLOcM74wui0iJT+PBpScIyJpfb/bNXT54k67j2iNaJAxaA6EPXmCxiCjtAov/OfaMkB07/3soVIVw9r6IZIlHUOWs5/Of4u7giNmqrOxkndQpWrYgU9cO4PmDSJp+Vp0tPx7hubXEJZpF+tWfBZI8HbT5xkxc3D7cYPwm2nQ9wxrMIPZFIm65XTDojJiNZhYM+ZVvVw/AoDXaxAJNBgsWs8VmQgmyWnXud2gR5cT3e0fz27IjVGxUhuvH7nFuzzWUaiX1Osgq9wdWnSDBOg20e+kRJqwdnG0bv3y3k9+WHcE5lzMqtZKWverbHM8fXAnm57GbKVHZn10vfiIqOJphdaZgMYuc3nlZzr5I8s33wv7rdBjajBKVXysUb/r+N5Bkted8RfKSEJWEgJCjT1frfo25uO862nQdvaa+tq54ZRGiUMj/5hwaz8oxm4h8Gs2Qhb0QRZGfR2/kwM/HUSoV7FlymE1Pl9jWFwSB6q0qZdlX0On7mPSy2CCCrF7dc2pn7p59QGJ08kcHQQBBZx4QExbHJ0OaM/TH3giCgCjKSt6Ozg6IkoQkSQTWKcnCM9M+WmRydo9l3Dh+FyRYdGaqrb9IEiWinsWwePAaVJqcG5eVKoXtczXm18EUr+TP0osziQmLY+GAVaQnZWDUmxhWY6LsXJ+D3MGgH76wPXZycXwdaAPTPl3IzpcrmdVtCY+vPQdg0qbh3DxxlwX9fmbRwJV8f3A8lRoF2tZx93IjPTkTSZKQsOplCQKi9Tj9yxWiZLVilKtXihtHgzAbzczvs5wJm0Z81PmyY+cV9kDIzj8GQZEbQZGzp9bfgVkUcVSr0JnMCMLrm0+leiWpVK8kAIOmdeLayQfERcnBwqsve73WSPDdCCrWKfGn9vn0dijJ8WmIFhGD1kjDT6tzfOtFQu5HMrzhTKZsGcahtWeo2rgsZrPI0c0XaN27HjuXHiUpOoXqLcrjmuvjTWcDAv0Ys2oAAE271mHIvO6kp2TiZ81KVGxYhqObziOJEpHB0Vw8eJM6n1TJso1Dv562lZsmrh9C5UZlba/N77eSmLB4Xjx5SfUWFajYsAzuXm5kJGdSuEwBarSqyO7FhzGbLSiVSrwLZhXlK1E5gNAHL1BrVPxwZCJXDt/Gu6AX1Zpnzxp4+3mx5s78LM8d3XCWxUPWkCuPOyuuzMLLNzdKlZJhi/vYlrly6BZ//HoaSZQwixaSopO5e+4hhUoXwCNvzkFly35NOLHlPEatgW7jO5IQlYhea+SX+z9+9LkHiI9MYHzLWZhNFsIevKBYJX9Wjd6IyWhi9qEJdPm2Pae3X5JLr7fDeHojhFLVi31wu4kvk7l38Qn6TAOOLg5EPI6S7TqsGkEALrlcmLxtBD/0XUlKfCqSKOHl60mf6Z3x8M7FsQ1nad67gS1D4x/oh3+gHwtPTWFgpXEgSYgWyabn8woHZwc6jmiZLbNTtXk5bhx7bf/ydcNpJEWnYNAZcXRxwGQycXDVMWvfG/wyYQtLL86yZXTmHZ3E8c3n8SuZnxvH7pIrjxv+Zf2Y9+VPmI1mwu6/wGyyZJGoOL/nKhM2/alLYicbgl1Q0Y6dfyutS5fgfkwsoUlJTGzSMMdlVGolq09PZMm4HTy794KXYbL9hFKpoHiFQjmu8z6KVyyMW24XzEYzjbvUoErjQI5uvgDIU1mZKVqmbXk9adZhkOwy37JXfVLi0shT4D8LDD3yutuyOQB1PqnCjycmM7LRDJ4HRTC370o2PVqIRx53nt4KJeLxS+q0q8LZ3VdxcXfKVjrLW9CLpJgULGYLPw77Fc98Hsw7NJ6M1EyKli+MWqOi01ctuX36AcUqFsbD2z3L+vP/GM/Dq88oUqYgHnndadu/8Z96PzsXHMRiFslIzeTK4Vu06d8k2zKuHs4ICgFBIeDgqMGnkCeT2sxGrVGx/uky3HOQJihYPD/bX6wC4P6FR/QpMQJJkhi8qDefDP64Um1kcDQDy4+xlZAMWiOXD14nI0XuidowbRdPrj9DFGWbEovFgleB7Jmwt3l6K4TRjWdgMYs4OGsoXaMYJSr7y9N8r+QElALthzanUqNANgUv4cqhW3gXyoOnjwfz+/5MWlIGTq6ONrXyN5FEspZK3pB28Mzvwfbwn3I8rq9XDWRYjUmkxMkTglFPZe8+lUZF3Y7VqdmmMi7uzrb3/+x2GF3yD8TT1wO1Rs3UXd/Q9Vu5r65O++qA3Kfl4u6EQWciT4HcqDUqvN7IFv7LKjp2/ibsgZAdO1ZUCgUTmzT44HIOThq+XSrbULwMS+D6qQdEhsYzd+h6+oxrS9GyBRFFkb1rzpAQncLnw5vj4ZXd5wvkfoq1N2aRlpRhU45u0KkaF/bfxMnVkcB32HqoNSryFvzwTfKvUKiULyqNCrPJgiRKLB6+ntptK7Fk+HpEi0ih0gX49fZcPPK6Z9NFmr5zFKd2XOLoxnME3w4jPSmD8/uu0W1sO9syTq6O1H4rywSyvs7pnVdQqZWUqOwvB5g5jJ+/TXxkIi+fxxJYpySNu9dh6+x9KFVKKtQvk+PygXVKMWHjV4Q9jKR1v8Z0LzTYNkof+fQlZWqVfO/+bp+6b+tNOrf7Cp8MbkFcRDzP7oRRqUm5d+ovnd9zxeaq/orHV5+hVCsRkG1JHl8Nlvu3JFkx+9L+67QfmnOgZTaZ2TRzD3sW/4HJKB9PQLkA5h2ZBMCno1pzdP1ZQO6/6jRC1jxSqpTUaF2JWyfusW3OPoLOPrSVuR5fDWbPksN45c/NmF8G4eLuTK48bnLPknWSTaFUIJpFVColSy/OzPHYQu+/YGS9KYgWEXdPV9KSMmyvWUxmTAYTGkcNa4J+4I+1p/ht8WEyUrVkpGZahS5h+/z9jFzRH5PRzKKBssL0iBX9WB20gOCbIQRavde+nPk55/ZcISMpk3J1SjK68XR6TOpE5Sblcjw2Ox/BvyyitAdCduz8B/gWyUPBoj6sn/c7eq2Rl6EJ/Hp+Mmf23WTTwsOYjRaiwxOYtm7gO7eh1qjwyudBRqqWy4fv0H1MW/pP/wy33C7ZtIIe3whh7fQ9lKlRjN6TOvAsKIJJny1GqVIwZ+83FCmds87Oh4gJi+fQujOUrVmcmq0qMv/QOH7/5TSndlziyqHbXDsSZLtZhj+M4nlQOLXe8D97hUsuZz4Z2JTUhHRePIlGlCSKVyxCYnQK2384QIHi+Wg/uFmOU25b5+1n14+HrQGYiIuHCysuzsDnPZ5WMWHxDKo8DkmSqNqsPFN2fk3jrnVwy+2SzeIhKSaF0U1mkBKbyqRtI+k+vgMAfWZ+zsZpuyhWyZ8Tm8+TlphBzbbZA7VXNO5elwM/HUGXrqfLt+3ZtfAA677bjkIhUKSsH8uvzs1xvSrNKrB28vYsNxmj3oRKpUQCilXy5+mNECKfRiOJIhISugxdjts6uv40iwatlvtlFAoEQUDtoKLHpNeaPV/O+BxndydunbhPrymfZTkf8/r8xOWDN+XSkkqJ0XptRVHi8bVnqNQqDv9yihZ9GjKw0re23ii1RmXzJjObLYQEheNd0CvLsWnTddy/+BjRImLUm/DKn5vMdJ1NkVuSIOjsQwC8fD2JePySzHT5fb4qNUsS+FktWS7uu8a53ZcxGcxMbDOHmm0r8/nY9rZReXdPN3ZGrebJjWeMa/Y9Bp2RSW3m4ODiQNdxHWxZJTt23oU9ELJj5z/ExV1uDFUqFbhAvpauAAAgAElEQVTmkr+cXxl1SoBOayQlIR2PPO9Xgx7XbgGRz2IRBFhzZWaOgomzvlxJfFQyT2+HUbF+KY5sumD7tX1gzSlGLOr5l97DxA4LiA6L58DKEyw+NZkSlf3pOdGdM7uvgMmSbfm7F57kGAi9oseEDpSrWwrXXM4UrVCYb1vN4d7FJyjVSiIeRdFjQge88mct68VHJmEymm0BV2ZKJoOrT6TvjC58MjBnm4+wBy9knaZMAzeO3+XR1WBK18g5i3Zm52ViwxMwG81smLrT1tPSZUx7+Z/vAO5feMzR9adZHbSAAsVynsQrUCw/O6N/AWD3ooOsm7zdllEKtY69v40oivzx6ylyebmRlpSBs5sT1VtVIjNNy/Ujd1AoBJKiU/jl3kJS4tNYOXoDLrmc6Ti8dY7b2/HDAVvTsFIhkMs7FxufLs6iY/TkxnO2zNqLQWsk9H4Eu6JW2V67+scdm2ZTnc41CShXGL1Wz4sn0Vw9dAsE8PbLQ/jDSHQZeluA8rbA49xey9mXuNb295bZe9k0czcOzrKMgkqtJDUxHY2DGqMkZ/0AAsoXZmKbuQxe0BNduh5BEFA5KDEbzUiSnLVq0kPW0fLwyWULvjJTtZzccoF75x+z+fly236VSgV58nsiWY/RIopo03Ss+247n49tl2PgbecdSHbTVTt27PxJSlUqwvif+hDyMIpW3WsB0KhjVeJfphB06SkProfQu9Z0Zm4cTPla7258jQ6Lt9lRxL9MxsvXg4XD1nH9+H18A7xJiU8jI1WLQqnAZLSgVCvxzPe6uffVSP2w+d0/qqT0Jgad0XazeyX2l7egF1O2DOfKH3eoUL8ki4dvIDNVi0suZ9r2f7/aryAIVKhfGlEUZSNNs+zHJlpEjm48x+XDt9kavMQmWilaRPpM/Yzk2FTiXiTwIjgGi8mCNl3PT2M203ZAkxxvZuXrl8bRxQF9pgG91sA3jWYwYkVfWn3ZiLSkDK4fuUPpGsXxLepD6ZrFbSPhVVtkVwl/UyHbnEPw9/b7A0iNT5N7egQBlYOKoYtz9sC6d/4xJzafQ59pwDW3C7tjf0GpVBATFsfcnstwcHbgM6vXmkded8ZvHP7e/TfuVpcN03aCJN/4Ryz7MksQlJGSyY75BzAZzAgKAbfcWUuzjk4a9Bl6BAG0aTpehsRSorI/IXcjaNC5JiH3Igh7EEHNTyrj7uVKgnU4wKgzZdlOrjxyj5ckSawet4W9S/9AFCV06XqALGWxwmUKYDGLVGxUlhObzqPXGpjbZwUz945h9bgteOb3oFjFIhxec5LWA5vabGQCa5fEwVlj+1wiyFNubxNyLxyfwnnInc+DkDvhmM1m/Er42oMgOx/EHgjZsfM3ULNZIDWbvR79VSoVdBvRnCe3w6wu8hZ2rzyJm4cz/qVfu7DHRCRw+8wjytUujl/x/Dy/F0HVxmUpVdWf4DvhXDh4C4PW+LrHwvqdrlAo2Dz3INWbl0OpVmIxWchM1XFk0wXyFvCk2+jsHlfvY9r2kWyZd4CytYrz/F4EGalaqjYtR9Vm8r/TOy9jNppRaVSYjCYWDvmVmXu+wcX93Uq+EU9e8nXjGRh0RgpadXkkSQ4yUuJS+bbVHPL6eXHr5H3SEjMYs3oAM38bDUD4w0hGNp6BJEr4FMrzzpvZ/QuP0WXIN12sGYdlw9fy8lkMJ7detBmAbny6hNLVi7Em6AebS/rbzPljEjt/2E/1NpUpXLogkiSxePAqTm29QKt+TRi0oBe/TNjCi8dRDF7Ym4IlfOk6viPxkYmYjGZGrOj/zqmzvAU9kawyC75FfWyTUfmKeLP4fM59Nu+j7aBm7F9xlJT4VJQqJY5v9SVtmLaLq4dvIwhQukZxJm7OGlgNW9KHRYNW4+Lhwu1T9zGbLRxZd9qmEo4kq3KXrV2S+Ucn83XDaei1Bow6k03Oof3Q5nxu7f2KeBTFwVUnbJlQkMfdXXO7oNcZAYkuY9rR7It63Dp5j+ObzqHSKPHI646XrycTNr0+vibd62U5VpVaxYorc7iw7xqCIDeHXz5wk+bqrnz2TVsGzpPH9r/vuhij3kRseAJfzvicAyuPUbZ2Sbnfyh4M/TnsPUJ27Nj5u2jfrwG3zj/BYrIQdPEpX7dfxIqj31LA3xuDzsjg2lMx6E02M1GzyUJUSBwKhQIfPy/5hvmmAav1f9EiEvE4irEr+3Lz5AMeXH2GQWdEtIhs/eF3uoxs+aeyQsUrFWHa9hF833MF144GIQgC03aMpFJDueE4IToFi0W0ZU2e343gwv7rtOhZ/53bPLPrCpmpOiRJIvT+C0D+JZ+3oBeiKHL3/GNUGiWSNYDZseB3Gn8uO7kXLlOQ1ddn8+RmKJUbB+a4/YSopCy2HK8QzSK7Fx/O4hi/ZvwWxq0fRr4ieW1+Y29Tsloxvts52vZ3YnQyxzacxWw0s3/FEYoEFuLgz8cwaA2kxKex/MocXD1cmLB55HvPbVJMCg+vBDNgfk9Es4Xa7aq+d/mPYWyTGWSkZKJQKPjs6zZUblrONn3l6uGCSy5nFEpZGygyOJpNM/fQY2JHfKy2LGEPXmA2mklPSJezSghI1g+XQhAQlLKg49ldV5AE6DzmE3RpWjJTdRzdcJaGn9eyaSAB5PbJhVKlwMHZAWc3Ryo2LItLLie6je+AUWfEYpab7AEqNynH6NWDiAmLo+07Sp5vU6h0AbqX7khCVFKW5u69S/+wBUIeed1JiklBNFvY9P1utKk6jqw7Td1ONeyGrXbeiz0QsvOvJjIllVPPQqjrX5gAr79/CqtS3ZLsfTyfHlWnkJqYgaOzhpiIJAr4e/MyJA69Nd1v1JtQOShxcNLYVKI98rqz8uI0Lhy8xd0Lj7l29F6WX9zJ8elM7PQjqy5NJyokjkG1ZOHCnMoGOWHUm7h44Ab5/b0pVU22cIgNT8CoN6FxUBN8O5RKDctwZOM5Dq09hW+ANxkpWjKsI9YBgYVIS0xnXr+V6DMNjP1lUBb/s6rNyrF78WFEUaRE5QAeXgmmWMUiLDoxmeldl5AcmyqXxpAzaA0618xyfN5+efD2e90orcvQs2b8FrQZekx6M+f3XrUFhgqlAoVSgXchLzJTtHImyKrODLIv2p8lVx43cvvkIj05E08fD7zyewCyyri7Z85TgG+TlphOn1Ij5VKRIAcZa8ZtYequb6jR5t09Vh8iISoRs9GMg7MD1VtX4uaJe0zttBBBgJn7v6XHpE4olAq2zN5Lanw6R9ad4fxv19gauhwnV0dObL6AySCvX7tDFbz98lCmZnHunntEzTaVeXDlKSF3wzm6QZ46EwQBpUpB3Y7V2Z+0lpNbL9Desy9unq7UaV+VyOAYRq8eRMSjSLbPP8DF/dcpU6sEufK6c3zTOXLlccevlFymOr75HIsGrcHF3YmGXWpna2p/Fxum7WTL7N+yZCssZgujm0zn658HsODUVAZUGIvFbEGXrkelUWHUm3l05ak9EPrT/LsyaPZAyM6/FrMo0nH9VrQmE4vOXeLCsAG4Omg+vOKfRKlSMuqHbqyevpfSVf2pWFcWXczt7S6PIltEVBoV3Ua1Ii4ykUFzXhuSehf0otOQZnQa0ozORUeRbvXhesWL4Bi59FTUh2lbvuLCwVu06lUvx2yQJElkpGhlHR1BYP7A1Vw/JisRzz34LVcO3yb4Tph1dN7Mptn78Cvpy9KR620moL2ndKJk5QDyFvTEr0R+1k3bxe3TDxBFibVTdjJxwzDb/srUKM7GR4sw6o14++VBrzXg4KRBEATGrxvK0Y1n8S3qQ5kaxclIycQ3wOe953Hnwt85su5Mjv07AeUL4ezmyOTto4gLT2DhwFUkRCYhiSL5AnwYsqAXAClW8UpPq1TB+1CpVbTq14SbJ+4yaP4XlK5ZkrFrhxH1PIZPBjf/4PoA0aFx6DMN1gsAoiQhGkwcXX/mPwqEJm4ZydrJ26jSrDylaxRn/pc/2xq2T++4SKVGZen8TVv2LD5sKx0a9UbSrXpBnUa2YtXYzbjkcqJa8/LoMw1UahJI6RrFQBC4feoeUcExtv298o3TZegx6Iz80G8lokVEn2lg3/KjAASdecj4DUNRKBXoMw3ERSTw06gNHN98DkGAr1cOpEn3uuxZfBiz0Yw2XcexjWfROKg5teMSotnClB1f2zJHr/b7Kut0cNXxHEs29849YlT9qWx6vgyzyYzFZEGhVODg7EhmmpbN3++lYqPAv+TXZuffgT0QsvN/gjPnH3P3fiSd2lWmYAFPnoXE8c347UiSxMLZn1OieHbncqPZQobRaLPV0JqMfykQMupNqB1U7+1DeLuHCOSMz5y933D58G3cPZzZvuAgSODs4sCgudktG1r1qse+lScRFOBXPD8RT6Np27ehbbqsWrNyVGuWXTvFYpEblie3/4F75x9TsVFZZh/8lojHLzFo5ebslyGx7Fl2BJBLS6IoIRrN3D3/GCcXRzLT5PHmoxvP023MJ8SGJ7BgwGr0WgNKtRKVIOToDv+mWOObU3Au7k606tOQn0dv5NTWCwxZ0JPfV58gISqJT0e1yeJb9gonV4cs98E3b5Lh9yMQLRLLv1rL5O2jKFDUh5CgMBQKBd4FPUlPyuDWyXt8124eoigxYkU/WvV9v1hj0JkH7PxhP/pMA3N7LWfD02U06FLbtm+zyYxKnfUrNCEqkfN7rlK+QRmKVihCsUr+aBzVGDINIMgijiq1ilZ/UigSIPR+BOd2X6ZmmypUa1mRai0r2l5r0acB53+7CoJAc2u50snVkaUXZ7B+6i6eXH9Oiz4N8LZKEXT8qiWt+jbi5vG7zO21DEmU2DB1J5lpWpzdnNGma1Eolag0KixmC6WqFyUtMYN2Q5pjNplzPD5JEqnRpjJNutfl2e1Qhv7Ym00z92DUGUCCJUPXULV5eRp3r8PzO2GYdEa2zdkr23VYM3frp+5kys6vkSSJ2T2WcW7PVRp3q8O49UOp27E6h9ecBKBk9WKEPYjAkClnVPWZehycNIxY0Y+lw9YiCALadJ0cOP27kht/D/YeITt2/llcvR7C93MPYhFFLl4Opka1AG7eDifNevPevf8GE8e0zbaes0bN9y2bsu76LT4rXxZvV1ceP4nm+q1QGtUvRcGPUPXdMHs/23/8AzdPFyavHUT5P2mxUaFuSSrULcnW+QewmGQfsVirm/fb9J36KS171sM1tzM3jt9DpVJSr6PsKh7+KIoJ7eZjMYvM2jeGYhVko87I4GhG1p+OLlOPaBGRRImgsw9JTUhn1LI+LP5qHX4l8nP5wA1MWgOCUoGzhxNIAhonNa37NqRex2qMazMfJInGXWoS8eQlw+tMQZ9pQOOkpuNXLfEP9KP+pzXe+14TopK4sO8a5eqWomiFIuxZcoiT2y4iiiKJL5MJvhWK2Wwh4nEUU3Z8nW39TiNaYdQZ2TZvvzxObfXkUqoU1skzi61PplDpAjg6OWA0mLh2+DY3jgZRtUUFWz/R4sFrKFW9GP6BOauBWywWNs3YhT7TgCBkDeIMOgMj60wmJCicrhM60vf7boAcHA2vNYnU+FQUSiWbni8nOiQWyWIBJFw9nNn4fAUqlRIn1z/nSWc2mRlVdzLadB27Fhxge+TqLCWlig3LsjtmNYIgyH5uwO3T9/mu3Tw0jmoWnp6Of6Bflm06OGlIjk1FkuRg3mi143glaKjSqBnzy2DKNyjNF/5fYdSbmNllEb8l/MqkrSPYMf8AZWqV4NyeK4gWkXHrh6JxUDNyRT/bPoYt7kO/snexmC0Y9SY+LzCIAsXzo3FUY7T66gnK19nLYpWKAHJf1cX915EkidM7LjFkYU9G/TSA+p/WRJIkKjcphyAIHP7lJGd3XabL2HYoFAoafV6HJUPXYjHL1hu1O1Wjaovy9myQnfdiD4Ts/KOxWERmzjuA2do8mZam4/DRe1isfkiCACEh8cTFp+Gd1z3b+p+WL8un5WWvrJRULSPGbsVkMrNt11V+3z1KNnp8D/tWnwIgPSmTcR0W8cW4tvTIIej6EC171WffT8fISNHiUzgvnQoMQeOoZsyqAegy9FRrVh5HFwd8A7zZOn8/2xfI7uFJcal0GNyM/atOkBidAsDuJX8w3mqWen6vbEoqWkScXB0xGU2UqByAu5crHnndWX19NhkpmXQuMASQJ30WHZtEoVJZhRm3BS8mLTEd36I+TGg7z1busZhFytYqQY1WcnYiM03L5HbziXuRyPgNwyhXt5RtG6MaTCUlPg2FUsH6hz/i4uEi9/YIAhoHWaFaskikJ2dyYd91ytcvnaUXR6VW0XZQU3bM349CAQgCSrUKl1zOeOX34HlQOEq1ElEU6TW1M/6Bhfh10jain8eiUAiygat1XB8klo9cx6QtI3Msk4XejeDJ9WfyMUkw8+B422uPrz4j6lkMkiTx2+LfbYEQQEpcKmajGbWDwJoJW/Av64dgNU31yOuO20f2w7zNq0ACq9npqzLYm6g1KpvOT0ZKJlM6zJcDHL2J45vOMnDeFyTFpPD05nO06XoW9l+JR143ytcvLTcZW0RePI4in78PL59FI1osBJQvhCTK5wBkEUVJgnodq1Ovo2x7MXRRr3ced4Fi+eg6vj3bZu+1Na9HPIrCw9sdSRRxze1KSvzr/q2oZ7G2c5UvwJv4F4nkK+KNqzVD+LZadOv+TSheJYCJbeaiUitZcHIKQxb2Ys+SwzT7oh49v/v0L51vO/8uPq6r0o6d/1HMFhHtK30RoHRJXxTC6y9uSYLnoXGsWHXqg9vKzDRgtAq6abVGWnVcRL8ha0l/NZ6dA7VaZtWj2TL/92xTTG9isYi2Hpfz+2+ybdFh0pIyeHwjBIPOiMVs4eCak2SmakmOS2XKZ4tYMHANE9r/QEpcGpIkEROagElvxmQ0ExsWD0ClhmXQOGnQOKqp0vR1Ca5q03KoHVSoHVQMmNONdfcXsvDk5CyO5i65nClWqQgaRzUFiuXLscTl6uGMb1G5hyd/gDcqtRKFUkGLXvWp/sY52DZ3Hw+vBJMQlcT8L197UEmSREp8GiaDfH4zUjKp274aX07vTJ8ZXZiycxQdvmpBvU+r8/j6M2b1WMqASt8iWsuWmWla+pcfTRffQRgNJiwmizzefn4Gv9xbyLM7YUiixJ1T94kKjkGhUNCgcy0mbBqOg7MGUZQIvRdBqwGNQQDRInH3zENGN56e43XK5++Ng5MDjq6OlK5RPEvTdkCFwji5OKJxVFOz7esJMEEQmLh1FMUqFUFQ8P+x99bhUZxt+/9nZi1CCCTBQoK7u7u7F2ihhZYCheJOoWiBoi2UQpHiLe5SigZ3T4BAAsTdZX3v3x+zbAiElud539/3ePo+OY+Dg+zsPffOzs7ufc11ndd5cnqLH1tm7abflG60+qQJcw9Nfe918XfQOeuYtXciNVtXpceYTvzx6zkSo5Mcz9/84x7d3AfxUZFhhD+L5NHlpw5eF0C9jjWJj0jky2oTWThgFcuH/oLZaCYxOpn75/yJDIqmWrOK/P5qDXnyuTjKVdeP38WjcD6m7xhNk571WHB0mqPD8UMxeG4/Njxclq1EtezcbIpXLoY+3ZjtZuPcriuEBUaiUqtYe3MRK87P5ufr32W7Xt/GLxO3kxKfRkJUMiu+2kD3ke3YFvhjbhD0P4H4f/TvPwS5GaFc/KMQmBLDjwHnqe7hw/DyjdFp1Xz2SSO2/nZFke73D2PY583ZvOMSZrMNq9WGRqPC8z1eX2/CyzPPGxkDMBothEcmcfV6EO3b5NzCPXnt55SrWZyNc/YjyTKehd3R6HL+Wr16EsHEzksxGy0MmNyZnSv+wGK28PDKM0Yt+RgEOLnqKFqmECFPIhE2m0I8zTTy9FYwn5QbS9XG5Zm0figxYfGo1Cr6TeiC2WTh2Iaz2CxWOg9pSdtPmjhes2ytkux4vhKT3oTXe0p9kiTxw/lZRATFKBo3f9N2r083KNkYlUTzjxpk40YlxaQ6/n6zw02SJL7ZPprfFh2kcfe6PLjwmHWTdyCrZRp0rkXIk3CGLhpA8INXXNh7HYDkmBRMehNOrk48OB9ATEgcwibQOmkpVNaL/lN7ULZmSfYsO+J4HbVGhcYp6/xXrF+WOm2rK5o6skTddjW4dvg2STEpgNLV9SbCAiOY23sZGp2GJWdmkZaYTqWG2cudbvnzsDXoJ+LCEvApl119ummv+jTpWY9uee0K30LQekAzvEu/G1z+q2jYtQ5eRT0Y3/RbLGYL53ddpu/k7tRuW43fFx3EbLJgTc7Ab+81Og9tg0teZzJSBK36N8KkN/FZuTHZRCNByeipNCoMGUYe+D1m1Mov6PhFK148CEGlUVOnXQ3H+2raSyl9Xtp/g+AHr+jyVVu8vBV9pKNrT/H83kvK1y2NSqWizafNsgVMxSr6MOP3sRz95TQ9R3fEt7w3Lx6GIoRA66RBCDAbzYoatX0/nbOWsjWz9J7Cn0Vx9eht6rarTsmqSklTn24g7Q0fs/S3mglykYsPQW4glIv/aKSaDNyKD6G6R1G8nPIw+vpeQjISuRb3kmoe3jQqWIqWzSuwZccVQCkb1K9bEl8fD2LiUkAo4oMd2/29AaMkSXw1pAVXbwQhbIKHAeEYjRaiopPJSNXzTZ8fiQiOZfzKz2jcpaZjnx7DW9Osex2e3H5BtSbl3kua9jtwi0y74u7Fw3dAUhai9ORMipYuxLqbC4gIjiYtMYNlIzYiSyq8fDzQpxtIiU/DarHx8HIgOicdi49lZRcCrj3j6e0XWMxWTmy+wMhl2W023tfqbbMpXT86Fx2ZqXrSkzP4EN258MAoLCYLWmcNkcEx1GieZW7ad1IXLh++hdlgYtwbXBGARt3qODR0RjWaqRiQmuHC3utIsoQsy/Sf0t3RSefkosPJ1YnoV7HsXqrwgjQ6Da7uLvhWKErBYp48uvyEPXaSOYDRYObrutPZ9vwnMlIzmdxmPmajmW5ft6NszVI07lEXnYuWhZ+sBEmiSKlCbJ+3j4Hf9kaSJLbN3UvI43BkWebUVj9GrBjMszvBXNp/g+YfNaSMfWF2dnV6p3z4GpIkseiPGexbcYzGPes5gqC7Zx+x+NNVFC5VkIXHv8HV/a/LZCc2nuH8riv0ndyduu2VgCQ9OUOxkLDYCHkczsoRG9A4aRylSlmtonabauQv6M72oJ9Ijk2hUPECzOm1zBEEaXQa3DxcSYxKRqPTkK9AXgwZBgbO7M298/607N+Yhl1r2zWBsgtmBlwNZPHg1ZiNFm6dvM/PNxdx98wjNkz9DUOmkT83n0elVXP9+B1KVPHFp6w3bQY2JS48AQmJOfsnOlSu+03pyr4fTlCpUTmcnLWkxKcxYEYvipQs+M65sJgtjGnyLfp0I5tm7sa3fBGmbfmabfP2ERGkdLfpnLWMWjn4L89pLj4AAsi12MhFLv4zcCr8MZPvHEIIgYtax7kOY3BVa1FJivibq1qLEILJ3+xx7COA6bP3k5CYjkqlYtPazynyAa3SQgi+nrCDsLBE8uZ1YmD/hjx5FoXZbOXU2QCK6TSEPI3CqDfx69wDjkDoNTwKu7+z7W3UbVOFQ+vOYrMJen7VmrBn0YQ8jeTLuUoKv2AxTzbP3ce1Y3exmhVLiiIlC/DdgYlMbLuAwDsvqdywLG4e2RdQ3/LeCsdGQKU33OozUvWkJabnKCC4c8kRtszeC0CBoh5kpOkxG81UblSOXqM78sAvgM5DW1O0TGFMRjOrx24h6mUco1cOYvSqwSwfvoHCJQrQql9Dx5x3Tj/k/oXHrL42H++Shdg2bx+LBv1Mq/6N+frHQdkCxF5jO7Lsy3UKgVsIhE0QGRxD4RIF+O7QZO6cfUSHwS1IS0rn2+5LeOUfhiRLOLnoSIxK4srBm9w4fgebVTjE9QCsZmtW6/aErUTaF8n75wIYsXyQ8jm0r8HBhM18VnYMgTeDCAkIo3KjctRqU41ydUpx/ehthBCUrVWKpJhkRtWfjrAJ9i47zOGUbdmsLF5Dn67n2LozjgCxWZ+GzDkwOduYteO3kBidTHpKJhf2XKPT0PeLCUa9jGH16E2YjWYCrgRyNH07KpWKGi2r0GdiN+6f9+fJtWcYM40Kydled6rZsrLDa83JRUfhEkpQ0eGLltw+/QBZllly6lsMeiOLB/1MoWJejPxxMCa9iQUDVpKZZiCvRx4kCQr4ejHv4ORspGx9uuILZrPalK4sOxx6nwIsRgtXD9/m6uHbaJ01SBKsHrsZq9lK/kL52PpMsVb5Yn5/vpjfnyntvuPmHw/QOKkJvB3MmR2XaNi1Ni3t4poAZpMFQ4bR4VUW8jiC1eO2Ysg0YLbrKY1bM8TBSTObLCwa+BPBD0Oo3Kg8lw/epGaryszaM8Gh6p2LXLxGbiCUi/9IpBj1jL91AItQFjlhMZJgzOCXRh+z8+VtKrsXobqHD6mpmcTGZS9vREUrZQ+dTiIoOJYihfPxPDiG6OgUKlYowqmzAZQo5kWjBlm+Xyazled2oqYlyUpRbw80GqVE1LplJUpX8wUJnFy0VGlYhsx0Ay7/YudP5fpl2HpvEWaTGa+3DEcBgu6HcO34XYx6E5IElRuUZeTST5FlmeWnZ5Acl0r+gu7ZAgpDhpHLh24xYe0Q8hXIS1l71010SBwjG36LyWih95gOfD67T7bX2rP8mOPvxJhkrHYDzwd+T3h87Tkmo5kL+2/yW9BKzu++ht+e6xj1JlZ8tZEf/Waz7vYiZfyFx/hfCaRKk/LM+WgFZqOFczuvsOH+EvYsP4bNauPk5vP0m9yVAnaX8oyUTPb9cAKtk4aSVXx5ciMIWZao3UbJ2tVuW43adkPUSa3mEvo4HFCcyTNT9Q6lbcW65F1UalSe4pV9sglLyup373Dz5FPUl4UQuLq7ANBnfFdKVyuBRqfBbLLwcbGvHKKMVovC79Ll4CqyfOgvXDl4A9rCUYIAACAASURBVIvJikqtYv8Px/g95Bf06XoWfrKS2NB4fMsXIfplDMImKGXv6gOlPPfHr+coXsmHBl1qkxidxMSWcxyEaGGzcXrbBa4fvUPfyd34aGJXHl8NxNnNCZVaJiNVj9UikFUyH03qluM5adi1DrvD12Gzm5EWLObFrtC1PLgQwKRWcxFCYDZZEDaBwc6JS4xO4exvl+j+dQfHPLXbVqP/tB4E3grm8/n9AKjVpirDl33KT6N+dZyr1zDpzSz78hdHx2L0q1hsVlu28qvGSYMkK8HV74sOYTVbuXrkNuXrlHbw0pxdnZi8aQQ75u8n8mUsao2aEpWK0mV4W34avQnfCt5onDQMrz2NZr3qUbySD7dPP8SQYSTqRSySLHHz5H1ePgqlTI0SOZ6jXGRB/Afxd/5fIDcQysV/JCa8EQQB9CxWHR+XfEiSxLhKWYafVtv7v7HFi3lSp3YJnj6LYuzk35XWYp2ajAwjKpXMsoX9qFrZR5nHYkWWJWw2gdUqKF+uMHu2jyQtTe/IKK27PBv/a89ZM3UX5/fdZPyqz2jV5/0t40EPQ5nZbxUqlczC/eMoXt4b97/gKhUq5oVao0Jy1eFbrggrzsx0PCfLMh6FlOMwZBgJeRoBEmyde4BHV54q5ZijUxy6Nv5Xn2GxWDEbzRzbcJZuQ1vj6Z0VfNXrUIOL+28oC9Qbx6Bz0SqLmZ2zkZmm58aJe1jsInURz6O5fuIeGp0azyL5+LbHUswmMzoXnYMkbshUym0Fi3mRHJeKSx4n3L3cHK9x7dgdwp8pGkaJUcl0GNyCPPlc6Dmm4zvnJDEmGZtNKCU7SUKSJEraFa3TkzMx6o0Iq+KPpdVqqN+lFjN+H4ssy0zd8jXjms0iMiiGoLuvWD1mE6NWfeGY+7uj0zix8SxlapSgfF0lKJYkiVptlCBscpu5WTYdEpSvUxrXvC45fnaxIfGOwMxqsZIYlYwQgjPbL3L3zENFrdtZy+z9kyng60nxij6Ofef0Xsrja89Qa1R8f3Imt089IC40S0JBkmV++nojJoOZ++f9Gbp4IP6Xn2AymHHzyINaq8FqMeFROB81WlTO+eICtE4avqo9lehXcdRuU5X5h6fy5EaQIkJosTk6zmS1jM1iw2K2UPgtkUtJkhjwTa93tnUd3paHfgH47bn2zuu+Pod5PfMw8Ns+73DQpmwawcZvdnJmxyVHQC6Eokv07M4LfMoVwcXNmZb9GtGyXyMeXnpCQmQSTXvVQ61R8+PFuZgMJrq6D0YIePkolEkbh2M1W5U2fft1abOKf1m2IBf/HfjbQEiSJCfgIqCzj98nhJj9nrG9gX1AXSHEbUmS2gLfA1rABEwWQpyzj/UDigCv86vthBCx/7O3k4v/C7AKG5djgx2Pl9fpSZdiVUkwZDDj7lFkSeK7Wl3x0LnYOUCSg5hbplRBvLzc6Na5Bo3qK4tbaGgCEmAwmLFYrFgsNtRqFWlpWd1gQoBaJWOyWdGoZWQJXFx05HHNKoMU8vXEb/8t9JlGhE2w7OstlKtZAh/7XWt0SDxu+V0dRqT7fz5NSrxC5Dz6qx+jlrwrkvgm3L3cWH9rIcEPQ6n+HksAk8HEsLrfEBeR6DDIFDahONaHJzrG1WldFZc8zhgzTWQkZzK5/UI2PVrqeH7q5q/oN6kLd876s33+fowWE7JKZurmESTHpnD79CP6TerKrzN3c+OP+wqBXAhSE9OZ0+cHdC5aPO1ZLZs1y20cYPiSAahUMmuuL+DBxcec2naRcc3nMH7tUMrWKknZWiWRUMpctdtUZcxqhUuUmpDGT2M2E/E8iuS4VHqO6kCfcZ1ZPW4LFrMFWZKp0aoykzeNxLNIfjZM+81BlFapVQgJilf0QaVWEf48iiNr/swWuBxe8yclqhSjs93J3qNwPgbO7O2QWgCFN7Xo01XcOHbHwbtRa9WM+2UYbd7jq/b4+jPCn0dm22a1WFk0cCUB1545FuIXD0PQaNU4ueh4ePExlRuXR6VSkRKXitVsRaNVk5qYTmxYdh2p7qM6cGSNot5s0ps4ufm8vRymZNe8fDxJMqfwmT3rlxSbwq7Fh/AuXZhuI9o5MogRz6OJDVOsOW6cuIfVaqPNgKac2naBlLhU0lMUorHtdTBiE6wevYnKt7/P0QZDCEHQg1f8OGw9eT3z0LxvIy4duInVYkXrrHnHqb5W2+r0HJ092M1IzeSbzot59STcEQSBYs+y7Mt1BN1/RZ58rmwKWI6z3Vg2J7uM9OTMbFmM378/rFisvHWf9FpQMhd/g39gRkiSpIJAY8AbJa7wB24L8cYd9XvwIRkhI9BKCJEuSZIGuCxJ0h9CiOtvHYQbMBa48cbmeKCrECJSkqQqwJ/AmwzDAUKI2x9wDLn4L4LZlrUwSUDl/N5YhY1v7h7hYvRzBND0xHOqexRloLUOKpWMzb7Pi1dxbFzzebb5mjUpzxm/J4SFJTCgf0P8Lj2lbOlCNKiXJbLm6qpj4dze/HHqER3bVcPF5V0eCEC9tlXYsuAQoCwU677Zw/zdo9mx5Ch7Vv2JRqvmp7Mz8C5ZgNqtK3H1xH0Aajb7MK8jL28PvLzfL+QYF55IYkyKgxej0akp5OtFxXplaNK9tmNcvoJ5mb1rLFM6LMCkN7/THSXLMqWqFsNisrBdgM5FR+3WVWjUVZmj0xBF+fjU9ouO8UIIVCplkTdkGIkMjubLhf25efI+D/wevzG7xNWjt6nfsSbpSRncPfMIo97EjyM38vP1BRSv6MOG+0uIi0hULB3sWD/1N87uvOxo+14zfitWk8XRxadxVTNwRm9HAHbn1INsJrRWs5W9K47SeXgbprVfQExoXPbsg4CVIzYQcOUp/lcCSU1Iw8XNifjwBOp2rMF3R6dz5/RD/HZeyTpPKol+U7pTr2NNvv/0J5xcdAxd+il582dl9r4fuIq0hPQ39pERNoHfrqvZWsZNehM/j91EVHAMSNDso0ZM3jSSGTvHs27SNkrXKE5saDyGNIPScSXD0MUD6Tm6M7VaV2XL7N0E33vJs9vBuOZ1ISMlE5vVRuHiXux48bMj4Fk8aDX3/QLQaDXkL+ROs96Kh5skK6Vdk95E6wFNUalkvIp6sMl/BRazhY+8h5GRnJkti5IYncSl/TfoOCS7EnZCVBLjms4i+mWsfW6Je+f8kWSZYhWKEvkihrfx4sErx99PbwZhzDSSGJNCWGAk5rckJxKiknl294WjzTr6RayjUywneBTOR5dhrTnz22Ua96zHud8vI2yK2Obrz6BwiQL/cut/Lv7zIUlSS2Aa4AHcA2IBJ6AHUFqSpH3AciFE6vvm+NurQii/Qq+/5Rr7v5zixfnAYsDBEBRC3Hvj+QDAWZIknRDC+Hevm4v/XuhkNcVdPYg1pOGs1lDYOS+z7x3nSkwwr0N7i7DxJDkafTkLGo0Ks9mKSiVTq3rWj6XJZOHazWB8fTxY8t1Hju1dOlYnJ9SpVZI6tUrm+NxrlKzsQ+UGZQi4rojtuXkqd8rn993EbLQgyxKPrj7Du2QB2vRtSNlqxZFVMr45WHz8OyhSqiA1W1bi5p9KEFCqcjG6f9WGE1v8uLD/Bq37N3aMrVC3FP0nd+POmUd8NitnTZVytUux+OQ0ooJjadKzrlIiVMnYbAKVSmbId/3QOWnROGmo0rgcLx+F8eRmMPfO+9OiT33MJisT1g3jm67fExMSjyxJ/DR6E7JKplnv+rQdqGRRdC7abPpEBYt5vXN3rnPRIcsyNqvCs1GpZSxvCAfWbluNig2yyOBJsQoXTFbJqNQyZqMFo97EmnFbSIhMBKGYuY5fN4y147eQkaIkn68euY0hw4DNYiMzJROQuHXyAUH3X7Lsi5+zHZOzmzNtP2vOmvFbuLDnKsImOPPbRX65s4TilRSlZi8fD+LCE0AIGnavQ/SLWF76h2GzKuKDWicNFnuZpqCvF1EvYjBkGHno54/VYsXZzYlFJ2dwYc81ln2xBpPBhLuXG7P3T6aqPftRt0NNwp5HERIQBgKa9K7Pqc3nEQIeXnzC1/Wms/LKdwAE3g7GZrFhlSz2rsQMHl1+ys/jtpCakI7OWUv3ke2x2WyK8aqzkk006RU9LrPJQp321Xh48SmSpEgwvI3RDWYo79kOYRP2MrVCon5Nan4NSZJoab82L+2/weLBq5GQ6Daqg517p8PNw9WR1Qx/HkXxij6EPo2gapMKFKvkw99hzOohjFk9BJvNRmxoPI8uPkGWZWS1Clkl0Wtsp7+dIxd2/LO6xjoBQ4UQoW8/IUmSGugCtAX2v2+CDwqPJUlSAXeAMsDPQogbbz1fC/AVQhyXJGlyTnMAvYG7bwVBmyVJstoP8Dsh/tsoWv99iDOkk2jMoFzegu9tM5ckiQOthnInIZSq+YvirNZwNyEMs7AhI6GRVY5xv4ZfI7RfBvWdijG9agdKFM9aXOcsPMzd+yEIIVi78jNK5dA99e9gzo6R/Dh+O7JKZsQChTDaZ3Q7Vk/eiau7C3XtmkOXj95l8/yD1GxekZGL+/+lKNyHQpZl5u+b4MiS6NMNfFTsayxmK/5XnhEbmsDHUxTCrCRJDJjegwHTe+Q4l8loZlLbBTy7HUz/Kd34ceQmzu68gs5Fi8lgps/4Tnz5XX+GLf6EiKBoRtSfgUlvZuzqzxmxdABDakzFbDSzf+UfLD4xjfEt5yjWFxLYDGaC7r1i4vrhfHd4CjEhce+4y7+NoYs+Jn9hd8wGMwV8PClZ1ZdJreZhtVip26E6c/ZPyja+76RurJ+yA6+iHnQd0Zbt8/YhIREbFu/ImJWsWowd8/ahf218KkGbT5tycpMfJqsJEPbbOkHo43CFjA2o1DKjf/6SjkNaI8uyUhqy/zpZTVb2Lj/K+HXDUalVzDs0lR3z93FkzUku77+pZM40Ms36NKTvlB6YDSZc8jqTFJNCSnwqT28+x6g3Ub9zbYbXnEx4YAQFfL1o2rsBJoMSjKTEp/H0xnNHILT4s584s+MipWuUoMeojrT6pAkBl58S/iwKgNDASF75h6FP12MxKm3yQggadqvFwJKjyEwzZAtO0pLSGVDya5JiUhi2ZCA9RnWgRovK3PrzAS37N2bK5pH4X36Kp7cHRcsU5uL+6+xcdJAWfRvx0aSuJERliTm+jeKVfEhNSMsmLKrWqh0ct8DbwZgMZoRNEPE8ks0BK4gNiychKon5/Vc6SPHRL2P5fF5f+k7q+kHfHaPeREpcKhf2X8f/8lNAabvvNbYTHb9o+V65g1z8syGEeF/MgRDCAhz6uzk+KBASQliBGpIk5QMOSpJURQjhDyBJkgysAAa/b39JkiqjZIvetGweIISIsJfU9gOfAtty2HcYMAygWLH3p0Zz8Z+PwOQY+vr9ikAwuGxDJlR+v/FkHo2O5oXLEpqeSJrZQKvC5QhNT8IsrBhtFpxVGtY17M+QK79jlm3cuxfGAyk0WyAU/CIWg8GMk5OGsPDE/7VAKI+7CzM3Dc+2reOnTWnTryFqjYqA60GsmbaLW6cfYTJaSIxJoXXfBlSsW+p/5fUBRxCp1qhQa1UOteptCw7Se0wHtE5/bR4b/CCEQ2v+5OWjUIRQusheczSMdqXuvcuPU7ZGCZr3acAvk3c4tm/4ZhcVG5RV1J1tgrTEdPatPAEoJSpZJePmkYcRduuFas0qAtlLgxkpmczr9yNxEQlM2TQSWZbYMmcPlRqWY/DcvkiShFFv4ruj09C5aKn0RiboNXqP60zXr9qi0WkQQuDl7alkNSTBGv9wJAnyF3Qn8FYW32zy5q9p92kzeo3pzPVjd1g3eRvCaqP1gKZUa14ZlUaFRqeh+6gOdB7aFpvNRnxkIkOXDCQ1IY3L+69jswnObL/AlYM3GbbsUzp+0ZoipQoBWWKcGq0GLx9PNs/cSf+pPShRuRgX9uxmz7IjjszL0V9OOTSBol/Gcnj1ScdxarRqCvjau+xSMzn3+yUAQh+HU6NVFbROWn65t5SpHRbw/M4L8hd0x6d8EYyZJkcXVtWmFdm79Bip9rKdLEs069uQuh1qkJqQTrq9tHZg5Ql6jenEgmPTsVqsjnJitWaKPpTVamPRgFVYzFZCn0TQuGc9xq39krUTt2Xjhin+ZGoq1CvN8GWfEhEUzaktftw7648QAt8K3gB0G9mOm3/cw5BhZNDsvnh658fTOz+LPlut8P3sx2rUm9g2bz8vH4UxccMwNn6zk+TYVIYvHegoj75GUmwKw2tOJSM1E99yRRyfgyTLNOpWJzcI+hch/QNTEpIkTchhcwpwRwhx/6/2/ZcKpkKIZEmSzgMdUIhIAG5AFcDP/uNcGDgiSVI3O2HaBzgIfCaECH5jrgj7/2mSJP0O1COHQEgIsR5YD1CnTp1/4Mfz3wMhbIjUmWC8DHkmILsomQi9xcwnFzbzOCXaMfZkxOO/DIQAzkQGMuHmfmxCYBbZU+1CCEq6eaGWJLS3VOQJULPu7gUsJhv9+igeSBPGtGfhkmPoDWYuXQmkScOyDjn/v3KK/3eh0aqxWm1889FKJTMCqLUqBODl/fdaRh8Cq9XGrmVHiX4Zx6BZvfDy9mDxsWlM7qi0s7t7uTmUed8HQ4aBCa3nY8w0IlBKN6+P9208uvyU5n0aYNSbsm0vUcmHMtWLE3jnBZKseIW5urtgzDRhs9kwGZSOsPfhzO+XCbj2DLPRzNpJ20iMSiY2NJ6Aq8+o2rgCVZpU4OsGM4gNS6Cgryfr7i527KtPN3DvnD9lapZQSk0vY1g5ciNhTyOZuGE4NVtXxauoJ2ajhRXD1mV73ZUj1lOqajHSk9I5tfUCwiqQ1Wq8SxfBs0h+ipQuTPC9l0Q8j8JqtTK28UyC7r2kSuMKLD07m1Nb/Vj19QZMejPpyRmsGrGBpr0a0LJ/Y/7ccp6YV7EUq+RD5YblObDqBGaDGf9LTziSup3g+68cQZCskslfyB2ds47IYOV7odLIqKwqJCSGfD/A4XTv4uZMmVqleBUQRkFfT1aO3MC9Mw/pMaYTK87PISo4hgK+nmidtDi7OrHlyY+EP4uiTK2SbJ29RyEN2wTFKvrwzY4xSJJEbGg8KpUKSZZwy++KPsOAs6tTjqrisiyR19ONtKR0ZJWSHWs3uCUtP2lKj3yDFHVqrYrKDcuj1WloP7glRUoVomSVYjToXItrR+5QsJgn5euWwZBpROukZf19hbgvhOCnMZu5dOAmBXw8kCQJtUamYv0yPLkZjNlg5vqJuxzfeI4TG89hMVswGczM2Zd9zXt6Mwij3ojZaCHyRawyj1ZNh89b5GgZk4v/k6hj/3fU/rgL8BD4SpKkvUKIJe/b8UO6xgoAZnsQ5IxSa3P8KgkhUgCvN8b7AZPsQVA+4DgwTQhx5Y0xaiCfECLeTsDuApz50Hebi/9QmB+B/jigh9RZCOcuoD/A7fhMXqUnZBsaq09jws0DzK3ZCTdNzi2th0MfYLS9u0CrkOhToiajru0hw2omr1GNsAlsksjmC1a/TiksFismk4XL14I4eOQOG7dcwsVFy6rlA/DxflfL538Kyd7F9RreJQtQvEJR/th+mU8mdkat+Wv7ir/Dhf032L38GGaDhdjwBBYfm0qFuqX59f5iAq4+o1arKn9bRrCYrVjMiueXJElM2zKStZO2kxCdjLDasnXaFC6uZNFafdzY4V9Vq5VS+pu5cwzfD16DSq1i0Ow+jP35C6Z3+p6Hl54AOHzCckLxCkWR7QKJpasVx5RpIt5OMnZ1dyEtIY3I4GisFhuRwdGkJaSRr6A7ABNbzlH8qFQyLT9uzImN5xylsFWjfmXL05XU66iIW+778RiPrz5zPC8hcXrbBQ6tPqkcnyyh0anxLe9N1MtYQvzDEDbBtSO3WTdpG8H3X2E1W3l06QnpyRk079uIPzef59HlJ8gqGa2zDq2TBq2TljW3Fjve99nfLimlNEnhPgG0HtiUhxcf45rPlW4j2tF6YDPcvdxYN2kbSdHJtPq4CUs+/xkhBBUbZCmUS5LEyivfEfY0AovZyrim32K12Ni/4hjlapeiSa8GDtNagLyebtisEfQuMARJlqjfqRau7i6MWJElalmwmBd1O1Tn0v4bhDyJ4OCqP/hkes8cPytJkvjp+gIuH7xJhXplmNx6HiFPwhk8rx9tP2uO3+6rCCEIvKUosk9oMYffQ9bYgxo1TXsrEhPhzyL5uv43mAxmRiz/jG4j2xPxPJo/t/hhMphJjkuhz/jOuHu60WV4Gya2msfLR2H0Gd8ZFzcnJElCVqlwdX9XyKlqkwq4e+XFqE/AalE0i8xGM8fWnebu2UdsDljx3msxF2/hP8wH7F+AD1BLCJEOIEnSbJT4oxkKteffD4RQWty32nlCMrBHCHFMkqR5KK1pR/5i31EovKJZkiTNsm9rB2QAf9qDIBVKELThA44lF//JUBVRIgGcQS6KSFsKmTspjw6N1A0JRREaQG8182fEY4q55mdc5ZbvTLXqsR+nIp++s10rq/imajtKuHmy++VdANLqW5AsatSRAo+3VJeLF/Pihd2Y9OKVZxiMZgxGMwuXHmP18oF/6y7/d7h+8gE7lhyjYYfqDJjSBVmWGbGoHz9P3YkkS7i6uXD1+D1klcyNUw+pXK8MX87tnW3h+legtt+xSzLZgqqCPp4U7NvwfbtlQ558rrTo05CzO68ghOD0jkusODeLC3uvc37vNV48CHWUFk7tuESf8Z1p92lTUuJSOb7xHElxKSRGJ1PQ15MVZ78FIOxZJOd2XWHAjJ547ypEoRIFaNG3IS/9Qwl9GkmDzrXQOWeV62q0rMySP2eQGJ1M/c61SI5N4eQWP8rVKkmZGiUQQlC5cXkeXniCrFKRmWZAVqv4bcF+h8GqzkXHuZ1XsilLFypeACEEl/bfwKg3MffgZC7vu0Fmup6diw5RpHQhLuy95tjHJa8zs/ZMoHbbaljMFnwrePPyYQggceyXU3h65ycuLIGarauSJ58rkiSx4sI8wp9FcvPEPep1qvlOGXLjtN84uvZPEIKW/Zvw2WyFqL9yxAYyUjIxmyw06l7X0R04atUQ+3470KcZEEKwc9EB5h/OcrxXa9SUrFocfYYBV3cXR2bp+4E/UaXJaVZcmJftGA6v+dORxfMq6sGY1UOwWqzc/OMeBXy9KFnFl3wF8qJSK1mhPPly1ke6fPAmT64/Q59h4NSWC5StXYpou+fb3uVH2R+7kfaDW2Cz2pjecSEmg5mkmBQ72V75boU/j+LumYckxyqmuxaTheMbztJtZHvyF3ZH56xFVsl4FM7H0EWfOIK1X25/j9Vqs3eF2rCYrKQkpNFzVJbA464lhzm17SJtP2tO2VolqduhOid+Pe94XgiIDH63gy0X/ydREKXL/TXMQCEhhF6SpL9s0PqQrrGHwDveAUKIWTkMRwjR4o2/vwO+e8/Utd+zPRf/QAizPyJ9LbgMAdNdMF+BzCBAwlNr4JcK5xjg38pxoyEjoZZlPJ1y9ltaF3g5x+0mm5UnKTHUK1gSWZIUrqsOMipbcA6WWb/pAr26ZV1ayxb148atYMqUKsTd+yE89FdUioOCY7hz7xV1a/91l9jfYdFQReguPCiaRp1rULKyD50GNaNum6qs+3YP9/yeKCrIZisv/MMJfx6DT5lCdPvy3eDvQ9C0Z12S41KJehVHvwmdHdv/2OLHmkk7KFHJhyUnpv2tcFyNlpW4dPAmNpuNvJ5uFPT15KMJnWn9SWM2ztzFhb03QAia9lTKjLIsE/UilriwROLCE9m5+Ahf/6BwgEwGE2OazMKkN6F10rAzZA1OLjpePgrl64YzsFkFskqiaNkifH9iuoPfUaFeVuu8Z5H8DHgjIyFJkkOIz2qxcunADZ7fecHlQzeVTIyLhkbd61LAx4PdS484snBpielsmrmLXYsPISHRY3RHRv4wiNunHmAxWUiNTyUhMovo27xvQ2q3rUZqYhqGDCNrbi9myaDVXNx7DZDoOKQ1XYa3JTYsnu3z9tK4Rz0KlyyI356reBX1pGjZ7KarAE+uP8OQYUStVVOudil8yincmDetHaQcsnbVW1bh4E9/IAH1O9cmPiIBs9Fi5x8pcHZ1Yva+SUxqNQeLXVog8FaQ4/krh29x+OeTlKhcDK2TEmw36q74u60cuRE/e+fb0jOz+HLRAAoW88LZ1YmOX7Z2zJGZpmf30iPo0/Sc2HAWk9HsOL+Bt4LQOWvROmtp2LU2sixTpbFia9F/Wg/89lzjk+k9HO9Vn2Hg63rTFesRnQatswabzUaPUe2Vc6JW0bBrbWJD4xm/btg7JevX88iyTOehrbM9FxsWz9a5e7GabWz+dhcSoHHSonPSkGnOKqULm0AI8f9LOfz/JqR/WtfYa/wG3JAk6bD9cVfgd0mSXIHH798tV1k6F/9LEIlfgkgE4xnezKsKhKIFlCcCd7Ueg3BjRrUOmGwWnFQaehbPuZU9n9aZeOO7TtIyEkVc8hKYEsPUKm1Z+OgktkyB5x9anJ20lCmV3bDRxVlLy2YVycgw8iggHBcXLUajGUmSyPeeu+B/BR6F3EmISgakbB5gQQ9DuHM2AEOmCec8TniXLMCrpxFIEg7BxX8XnkXykb+Qeza15i3z9mMymAkNjOTe+QCHHtD70GZAE4QQPLvzEu/ShUhLysAtvysehfMx/PsBXDtyF4vZwu5lRzm24Sxz947Hu0xhh7N70TJZi/PmOXsd3VZWq40JrebSYVALjv96zkHAtloEEc+jOPPbZfpN6vpB77NZ7wY8u/MCIQRFyxZRFnwhUGvUDFsykC7D2wJQsUFZFnyyEkmSKVaxKH57rtqbwQT3zz0CYOvsPWSm6TEaTOQr5E5aYjoajZqh3w/g4r5rLOj/AwLwLOpB0dKFaftZc9w88tBrXCeuH73Dsi/WYDZa2Lf8KLXaVuPGsbuoNCqcXLS06Nc423EPW/oZCz7+9Da2fgAAIABJREFUAY/C+WjSqx4JUUl4FsnPkjOzOLLmT+q0r4FPDgFU3fY1WP9gGSa9idSEdAaVGwNCMGbNUNoPzgqcKzUsR/+pPTi46gQWk4WqLSrzeaVx9BjdkXWTtmMxWQi4GsiqKwtwdXchLjye9OQMnt4MUkx2nbW8CgijQr0yfDTh3c9i3aRtnN5xCYRQFJ5tin2HJIFzHifWP1hGenIGxSoUxWazsXf5MaJfxvLprD58+m12Kxd9mgGTwYzFpLTy74laj0otO4Qu9/1wnPO7r2K12Fg6ZC2D5/bNUTDxbUQGx7Br6RGsZuX6UuxUlMXb0SFoh6SScoOg/wIIIeZLkvQHiqgiwFdv6BQO+Kt9cwOhXPwv4XV5QqBUUJXHeqsrAiMZVjWy7EZpFy/uJYbRzrsCzQqXRQIuxwTjotZSy1PRZTHbrJTK40WiMRONrGJR7W4kGTO5EfeK6h4+bA++QawhHRuC/BpnulerRttGFTDFman1hofTm9i9/yZ+l55itQoKeOVBo1Fx7MR9xoxs+z8yYVx+bDKXjt6lcv3S2fzDCvl6IYRA56ylQu2SfLtlOEd/9UOlURH8KAyA1n3/up08Jxxee5pNcxSz1JiQePqMVZR6a7eqwpUjd5BlidLvOQdvQpIkytYsyU9jt4IQXNx/gx/9FMH4qBcx2Kw2R/tzcmwqv367m3afNqN5n/rUbl3V0QpvtVg58OOJbHMH3w/h5wdb3+EZqDRqKtQtzYeiWtMKWAxmrBYrc/sso4CPJ80/akRGaiZ7lx91uJU36laXRSe+ITY0gWYfNWDj9N85aO9i6zlG0Y6p16kmL/1DQcCM38dis1gpXaMEbvnzsHb8FocyeXxYAsnRydRqW41Ppvfil4lbObbulONcmE0WMpIzFDVqSZAcl0pCVBLOeZwcTu2u7i6Url4C9wJ5GVRuDMImaPNpMy7svobWWUNiTApFyxZBpZb5rv8PSpZn/yTyF8pH0TJKgPTr9N8c5S+/3VezBUKSJDFobj8Gze1H9KtYhlSZqJDOx29F56zFardDKVTci8lt5xPxPAoXN2fGrx/OqpEbKVKqIM36ZF17SbEp5PXI4yBKR72MVZzqJajboQYWk4VHF59gNlrQ6DR4FsnvyOr57b7K9nl77STlGBafnEF8RCIqjYr8Bd3xKJyPLxd9wslN5+k1tiN5PbJbzDi56JAkpdvuyfXnzOiymAXHplKtaUUO/PQHm2fupkK9Miw8Ps0hhrhjwQF2Lj6cTYSx97hOuORxJl9Bd/b9cNxevrNhswnGr/nyg6+5XPzj4QSkCiE2S5JUQJKkkkKIl3+3U24glIv/MYSwga4dGPbiWP10HSDPaELTLKzzX8ntlAK46/LyODka/+QoDoc+ZHCZBuTR6FgXeBkBLKnTg/ZFK3Iw5AEPEsMRCCrmK0RnX4WcO7BMPXqf20C0IUslOcms52xkINM7tIe/6E7P5+6icJSEzWHSmpAYQMP6ZbIpTL/73gTbFh3B/3oQn8/sQaW3xnoUdqf70HfLXKWq+LD40ARCA6No0rUWznmc6Du2A2PaLiL4USgarYYCRfNTrXH5DzvJKIvwruXHlDZ2CSKCsrrwJq0fSrev2lDI14v8hdw/aL7E6GRkWcKQYSL8WRT9S4yiXO1SfLNjFLXbVuXOmUcOm4mAq895eisYbEpreO221Yh6EUPpGiVwdVdUjuENovjbZEsJVl+dj4ubM2OaziIzVU/jbnXo8HlLiryVxTMZzbx4EMK1o7eztG8ExIUlYLVauXFc4YZtn7eXtp81o6Cvl6PVGyD6ZaySBUBi/dQdJEQlMXBmbxp0rkVeTzcKFc8uo+BRJD/xEYqQn6ySUWlUjoxN8INXGDNNyLJE4ZIF+WLhADy88zGp+RyETbB76WHWTdqmKIpfX0jxSr4s+PgHXjwIUYQp7Vykszsu2YNLE1cP3ST43kvK1SnlGHdw1Qm+WJBlwdJ6YFN2LzmsZO1uB2E2mdFo3+WV3TuviDJqtGrcPPKw4Ph0rh66Sf1OtXBy1RF8/xWgyBoUKVmQ315mF4xcMWwdp7ZdUBSqSxZk1ZXviHhu72JTybT+pAkFfb2Y0GIOgON6eBPCJrBZbSTHpnBu1xWWfbEWSYJFf3xDtWaV6D2uM7XaVCUjOfOdElXP0R2QZIm9y4+RGJ2MWgPRL+Oo1rQiW2fvxag3EXg7mICrgdRoUZmoFzHsXX4sWxAkSRLNejagXJ1S3DvnT2xYAk7OOlb4zaKEXfQyF/8i/oFkaTs5ug5QHtiMIv68g6wM0XvxP1d4y8V/FYQtEWE4j7BlBSMicysY3uTM28AWi6wpSyWPiixouJK+pVrxKj2R1xafFmHjz4jHPEqKRG81Y7CamXnnKIEpMehUaiRZRiXJeOnyYBPZS21vI9OavbVbCMHufTdZvOIEMbGpREQm8fue69jesJyR7XehXm+Ul3KC/7UgDq47i/+15ywYsv4vx4Y+i2LdzL3cPhsAQLmaJWj7caNsfB2zyaJkHyQwGXJuWX8bVosVo8HE09svHCUoCRgwvXvW+5FlKtQp/ZdBUERQNCFPIhyPy9QsQZsBTShbUyEnJ8Wk8ODCYx74PWbWrrEcituAbM+WCYTdfd1CbFg8n1eZyKR2C5jffyVVm1R4p/Qgq2TK1SmFd+lCyCqZNgOaUryiD/t+PM6z2y8IC4xk97KjjG48E+sbZGchBBNazmVKh4Wc3OKXbU6VRpWNIG612HL0wFKrVciSEoSkJ2Xw23f7SYlPo2ytUmidtdw4fpeM1EzH+DdLjA261GbuwSk066MQz79aPohilXyo2qwSw5Z9xs5FB9iz+DBqnQqrxUa83bvLbDRz66TiyeaS1xmVWs52TlzdXRympqCUckpVK46Tqw6NTo2TqxOvApRM4cOLj9m3/JiDsJ6akJ6N1/QaSTHJrB69CZvVhs1m48dL8yhdrTifzvqIsrVLodao6TelG1onDfU71cKn3LvluDO/XXIEa/ERiVw9fIuytUvh5KpTCNqVixH6JMLRiZiZpueXSVkqJ837NsTV3QUkpSvs6No/MRvNmAxm9iw/yheVxzO/3w+Mqv8N0zsu5LcFB7J/pmoVvcd2Yt7BSZSuXpz6nWvSwp4prdKkAk6uOlRqlcOkdvHna9HbO0NlWUKtUZG/sDsaZzVx4QmsmbAVk95ERkomF/dl0/3Nxf999AS6oTRjIYSIRJH3+VvkZoRy8cEQQo+I6wzoQfYCr9PKj701GoWg/0aQYnmJLboauHzG/cweXIoJeieIichMYXm93tyODyXFrCfVYmDVYz9+atCXDIuJA6/ucS7qGd3O/MK+Vl/ipNLwQ73etDuVdVcrAVXze5Ni0uOuVUoTV64H8evWi5jMVp48jaRJo3IkJKYjBDg7aXBzc6Z968rUq1vqHU7R23DL72Lnpahw9/zr79SU7itIiU/jxNaL1G1ThavH79GwUw1mbh7uWBRnbBrGjsVHKV3Nl9qtKv3lfAChTyMZ02IO+nTlTlySlCCjVuvKf+lJ9jauH7/LgoGrQZIYvWowGSmZbJy+E+c8Tvx87TtWjdmM/5VAEOBbPmvB7DikBRf33qBRjzpYTVbSkjJo9XEjHl0OxJhp4t75ALY9/YF1U7bjt/e6QnCWFE2lsauHUKpaMfRpSqcTQMkqxVDrVJgNCtE3PSUTq9mCLGtIjErGOa8TQfdeIoTSht5tZDtObDyLSq1iwvrhOOdx5uxvWUT6t0nhEUHR3Dvnj9VqRaPTIKuUFn2XvM7oMwwMrTYJo96IZ5H8bH7yI5IkUad9dR5efIwQ0GloG2q3zeKtla5egl/9fwCgv88wEiKTCL7/ClklZ8v4IElsmLqDPcuOsOiPGVw+eAPf8t6EPY1k7/KjpCVmeZF1GtqavpO74126MKVrlOTeuUf8vnA/vy/Yz/Bln7Fu0jZMpqyMh1MeJ6a1m09KfBqz9k2kZquqgCJe+DpA0Tpr8SqqXA+zei7h+rG71GlXjQXHpjNkQc5mv7/O+F0pgdmhUsuUrFaMtOQMfMsVodUnTSlZxReL2YJao8JqUQQ0D//8J30mdMHL2wNZlhV5AAGyJNOkZ30Cb79Ao1Vz59RDLCYLkcEx2Gw2hFXw8MJjmNkbq9WGsNlQa9QE3g7m/vkAZu+dQOE3RE/n7p/A05tBFC1bhPwF3YkNjSclPssuSlIpwWZiVDLDa03LFniqdWpq2mUecvFv4B+YEQJMQgghSYocpJ0k/UHIDYRy8eGwxoNIA0xgDQcMgDNSnuEIyyuwhoD1BQDClkSaXkuXJRbSDUcwVtJDEfCx5CM9QI+xug3XSA1bVl2ldIYHzwrHgpOEHAfDD/xGny61CEyNxYYgIjOZgOQoansWo3geT74o25Ddh2/j8kCNqZCVyy1fsOjhKb6vo2RIzCYLJnvXSEhYAv0LuKGLTEY4a+jcqy4hV5+TN91A1cp/719UomJR5v4+iuf3QxycHpvNxuZ5B3hyK5ih8z6ifG2lJvd6URFCcPXEfYSAm6ceER+ZRAH7IuVTuhDT1n84Z+Hk1guOIEiZG1QqiWELP842Lj4yke8/X4ssy0zdNALPItkFHO+ceeTgudw6+YAHFwKwmMykJ1u5deoBs/eM4+6ZR/hWKIq3vUvpwt7rnNlxGQQ4OWsZuSarS+xwtWI8u/2CT6Z1x93LjSmbRjJ8yafERyQojuhFPfEurczzOggCaD+oOUkxKWybvw+r2Yok4MtqkylatjAPLz7B0zs/Hb9szZ+bz1OnbTW+Xvk5/aZ0J08+V1zcnDGbLJSuXoLgB69o/3mLbItfamIaMzovIj1ZIdl7Fc3P4Ln9qNaiElqdhsjwBPRpekwGM5HBMZiNZrROWnqN7UKlhuVxcnWiROX3l1IKlShIUnQyNnspqEarKjy6+ARXd2ckSSIlPo30pAz8Lz9l0BzFeuXBhQB2L8lS+Jckia5ftXdwgRp2rcPpbX4YM01IksSjK0+xWq0Iu/Fsy48b4126MLsWH8JqtrJt9h5HIOSWPw/zD03h9pmHtOrfGLVGTciTcK4fU0qHt089JDY0/p1S4NFfTnF6+8VsittNe9fn6x8/Z8Wwddw7+whJlrh71p8aLSrx+YKPGb7sU379ZqeS0bRYmdt7Of2n9SAmJI6JG4ZzaPVJKjcuT6+xnej+dXskWWZI5fHEhSciSVDApxD6dD2D5/fjxcMQxjefjdlkYcrmkSwfth6LycrBn06yMyTLPFatUTs60gAmtp5HbFiWHpnNYsVisQdykoyQ7KRoCebun0jVJln75uK/AnskSVoH5JMkaSjwBR8oy5MbCOXiw6HyAefeYDgBLp+h6GuCJHsgeSgKvqmhTXFSx2CxqvjhdGMyDFokJHRPnVAHmzC9MqFFhUeoM4YMM7ctIQC4BCn8h/so5YGFK0/QanJ5zsUE4q51xhJp5fzTQJo2KMvUqm05Nd8fk8WKNkaFMcGKXCJrQXQ2WVDHpWJx1aF2d+HkmtPIcamoNSpOrT6N2WTh+YMQajarQJlqOdu2mE2KgapKraJ6k/JUb5LF5flj2yUO/HwKq8XGwi/Ws/XB9wDM3zWafT+fpn67qhxef46IF7F4FclH/oI5l6v2//wnl4/c5eOJnanXrlqOY/J62smlivohABaT9R2+yI6Fhwi4+hwk2Ln0MCOWfoosZ3XLdBnWhksHb2E1W/lofCeuHL6pTGuzkc8rL1qdhgada2WbMzYswVEOu3P6EbuXHaHXmE5onbT8cO5d9Qx3L7dsZaacIEkS3b5qy8ktfsS8ikOWJaJfxRH9Kg5JVoKJVn0bMvanLxz7FPTNsk3RaNWsvfM9hkwjzq5Z2aCYkDiG15hERmqWoGbZmiVp9UkTx+MipQrR9tNmXNx3nZ5jOvLjV+t5ejOIUau+oFabnM//m1hwbDrrp+zg9LbzSJJMmZol6TGmM/M/Wu7ojpNliRotKzv2KVe7FAV8vYi087nK1y1NiSrZg62Pp/ci4EogWictHYe04uK+6yDLIATGTBN12lVn95LDSCoVkS9jyUjNxDWvC6e3X2TF0F9wctXR4XOFp2Y2mBVRT7uYo3uBvOxZdoT05Ez6TelGcmwqv0zcpgTFUtZn0uHzlngUzkdCZKIjYH52O5igey+5fvwukcExyCoZn7JFeBkQSuCtIOZ9tAKVWqZIqUL86p8lWHjt6B0u7b/OoLl9yUzV8+T6M279+ZDe4zpRqUE51k/d4SjxHl13RjFstVhJTUjjzI6L1GlfI8fvTFpSht1RXoVrXicyktOzyubCqgRDsgw2G7O6LmLCryNoM6DZ336uucgB/8CMkBBimSRJbYFUFJ7QLCHE6Q/ZNzcQysUHQ5IkJPe54D73vWNmHv6EigUu/X/snXd4FGXf/T8z29IrhEBCQi+h9947IqACIlVAUEBRBERF6U1AqlKlKL333ntvoYUkJIRU0nuybeb3xyybrAmKz+PzvD/fN+e6vC4ze8+9s4W9z3zv8z2HhzEluBKqkAwZGVSgi8z7umWmGV43BQCSDHPrdCfJnE1EcBKTZirC0TK7PUhMyUKrVSvRAaJM2wqVcN6UwqwVaxg5qw/zPlmHJkuPTi3ScUgrjq1RDNbMRrO1O8hslnB4TRv7jVMPmTF0FVqdhoUHx+NfpRRxLxLZOv8Q/gGl2DT3oHXhy+9yW7VBOb7foGSQtX6vAS+CYildybtQN+nIkDh+nbkPQ66RGYNWcCB2eaEtvl2HtuHQL2esqdzIMhqd2iZAMzUhHZPBhEanBkHJCuvuOQwXTyeWnJ+Kl68n/lV92Pb8J+s5PuVL8CIoBlDMGQvDW8PbEXTjGU9vPyPmWRzrvtvO9gUHmbJ9LBXrlrV2SeVH6N3n/PT5enwqehMXnkBksBJ70ahLnhWZo6sD6x/9SMidcMa3m4Fao8bZ04nkuFQ8vN2oUCfP2+nA8mMcWnUSs1mi37fv0q5fCwRBsCFBoHj3mE1mkCVUGjUNOtdm4sbPrI9npGSycfpOPH3c2RG7mtsn7rNj/n5ys/TMH/ozW1/YRnEUBic3R75c/TG9vuzGZ40ncXDFSXYtOmxdNASVyKStX1hT6S0fF+9P7EkJ/+LUbVej0M+4Yt1ybI9RblyPbTiLWqNGMhtBEHh0LYSWLxJx9nQmNT6dnMxcbp8MpF6Hmiz7dC0mo5mczFyuHbpNr7HdKF+7DH2+6sGlPTcYMr0PJ349x69TdyKZJZJjUxgys2/eGicr22HD5vSnQafaAFSoXYbQu8+t1yaZJV7k05UJImh1GmSzbE2vT47Li1J5GZHA3IHLMOQaObvtCjVaViXoeihGvZG1326l+6hONOlWj/0/HUOW4a2P2tK0R33Obb/K88Bwlo5cg6O7I1siVhRwSJ+660s2zdxDo7fqcnrTOdIT0wDysvZkCSxblUaDxIkN54qI0P8xWIjPG5Gf/CgiQkV4YySmZZGRo6es9+u1Ke3qt2TqxlybY4Is4JgiUNzVkdS0bEz5xLEAdauXpmQJVw6ffmhzfMKM3fw4uRfXYsIwmhQSExyuuERr1Cr6vdMAzxwTa/rvVLpRRBBEAQdnO3JzDKjVKh6eVXy0BFFA56AlJ1OPSi3yzoh2lHpNCOu+1WcwGcyYjGYuHLjNwCqlmDV4BaGBL1CrRYwGhYSIKoHPFw8qdA6tTkOFWq8PCT6z46r1rtzJzeG1PicxYS8BGU9vV1r1bszVg3do8W5DfCsq+UlGg4lPGk0iOyMHjU7NmKVD2P7jIUxGMxnJWVzad5N38znxvoJvxZJWInRq80UeXwuhw8CWlAnI2y50dLFn8vbP+emLDRxcqfy2ZKVm8/Vbs7F3tGPQlN68PaK9te362f0IZg9cRlRwLMF3wq2akmm9F7Enfg12lqgJUMTdleuXZ+ml6YrzdLe66HMMOLo6WO0MwgIjFL2MpUKxYOhymrxdv1ACVq9jLYr5eBDz7CWjl3zI2590snn85zHrOL/jihII6+5E7TbVre7UvhVLvfZzKgx2jjpys3ORzLa3zeVrlqHx2/Vtjk19bwFProUAsPjijALWBslxqZzbfoWqjSuyfd5+rhy4hTafA3d6YgYLhq2kXoea3D//CEEUqFSvHJf33sBo0RFJkmwlMgA6Oy2eJd3wKOlOQlQysiwjS7K1Gy9/BIxaq8bZPU9KERMWn3dxAgUqA5FBMQQ0rUTP0Z0Jvh3G7ZOBDJnRN+8UMS94FuDBhSc4uTuiUou4eDqjtdNQvXkVvlz9MSq1itbvK3lqzXs0YEiVzxWhtV7xHfq9Y3ft1tWo3boa53dc4Vk+smYymBUXd1cHenzaib1Lj2LINVqtE4rwFyHzjzJUFAQhgz+oYcmy7PJncxQRoSK8EZ68eMnQhTuQZRjYvh5JaVm4O9nzSbcmaPIFNfZoUo2pG0/YnOvmZMeE91tSv3ppNu66zrmrwaRaSuMATRuU5/3u9RnYuxF9P1lrPf4wKIbTl5/SslFFlvxyxmZOk8lM3Rp+LP94nfWHVxRFnN0dmb9/HGd2XadGk4oE3Q5n84LDiCqRkTP7sPnHI5QqW5wPxhYkB6/QtldDHl4PRRQFqjepxIvgWEyWRf0VCXqFmYNXkJWew4SVw2jSpfZrZiyIvSuUaD21WsXHs/u8dtyikWtJiFSqQftXnKRmsyqEBUaQlpCBm5cLWanZZCRnKvlhBjOV65dDo1UhqgQElUCtloULsnuM6sTNE/cRBIEbx+5jMtzm2Pqz7IpdXYCUDZnWh4OrTlp/aiSTTFZaDr98s4X0pAwGfd+Lw2tOs3L8Rox6I2qNClEUMFkWXFmSeHI9lDr5toxeoWwNP8rWUAhj/ggOUATA5LsWnZ1WqXoVAmd3J9YHLUWSpD/NWgMoU600Cy9MJ+JRFM3fbfin4/Nj9+LDNiSocoPy+FX1YfzakeRm60HOE3HHhr1En2PAzlFHfGRiASI0of10S7u/iMlCbExGE+9+3pW9S48iy4ord8dBrRg0pTfFS3vi7uVKZkoWao1ayfLq1Rh/C4F9ci2EbT/sR5+tZ1qvhWx+/jPJcalkJGcybPYHrP5qk1XL5lrMmfqdatH2g7zu4vK1/Xl85SkA74zpQkJUMtGhcaQlpJPyMg1DrpHkmFSa9WxIs54NbUgQKNuY3+/4kh+HrSAzNYsaLQOYuGEUj64EU8eSg7dl9h62zt2HLMsYjSY6DGhJCf/i9B7/Nqc3XaTXuG4FSNArbJq5ix3z9xc4Lksyaq2K1Ph0Vt9fgJuXEmhbhP/9kGXZGUAQhBlALLARS2MtSkTYn6KICBXhjXA7JBqzWcJolthx/h5ZuQZUokhxNyf6trYlAM72WjIsZnCliyt7/fZuOibO3kuopaKTH+u3X+X97vXxKeGOVi1ieOVGLMmcvPAElSigVouYLMctekjGz9hN81p+xFs8YHqOaEP/L99CZ6+l/zglfqJm00q06F4PR2c7XDyc6ND3z/O42vdpTJ2WVcjJ0jO++4/kZOlxdtZZ1mTlyRXvFJmE6GSQYcOMPX+JCNVsXpnAi0GotWq8fDz5ou103Iq7MGHNxzbO074VvXn+WIkFMZvM3LvwCEEU2TJvP6MWDMTNy4V3x3Th+K/neWtYW/YvP0novQgEUaTjgJaUf40G6tbJQMwmCdfizqTEKVsM2Zacq98TIUdXB5zdHMlIyef0LSjbJsmWc28ev2fNtqrVugq9x73Nvp+Pc+fUA5zcHN7I5PH38K1Ykml7v+L8ziu4ejrTaUgbNFoNcc/jeXw1mAada+PsbmvQl58EpSWmE/k0hioNKzB66VBcijnj7OFEt4878OjKU2b3W4xnKXcadatL9P3nTOk5n6z0bKbuGkftNrYdR7dPBpLyMo3SVUpxcEUe0XfzcmHJ5ZmoVCKnNl3gx+GrEASYsX8i9TrUZMK6Ufz0+Xoq1StHw84Fvx/JcakYDSZ0Dlp8KpQkLjyeYj6eDJnZl9KVfTjyyymqNatMs3ca2hh/VqhTluU35xL3PN5G3+To5oBkNiOKitO5Vqdh+Nw8U90uw9pyfudVkOGbzWOo9ztt1Eez++Hh7Y7OXovOXssBy2sdOrsfV/ffJCo4ltFLPrSOj3waw42jd2nUtY41SqRJt3psj1lNSlwqHiXdEEWR+p1q8ejyUyo3KE9Y4Atys/WoRJHnDyOtcw2Z8QFDZtg2AeTHtcO32WQR2ReG1Ph0Dq8+xfmdV9mbtOG18xThzyH8AzVCQHdZlvNHFawQBOE+UGgcWH4UEaEivBHa16nIxtO3Sc3MoWKpYtwPj0UQBDTqgnffQzs1ZPmhq8iyTGxSBiZJYsrGE2iiC5qxqdUqypb2JCMzl7uPInF01GFIy6sW3bofQeDjKL4a2ZHLt57RomEF7j2K4vDpBxiNZlKKObLy/Pe4uDvi5Fp4ZEZJ/2KFHv8jeHq7cfvcY/S5iidKqt6AWqtGEARavdeQ87tvKCJPS5t23daFV15kWck5+n2VYsqm0YTci6BUOS/mfricJ9dD0WjVHF1/zuoWDfD1hlGM7zSLoBvPLLERoNGobNqMh03vw7DpSlVpw7RdCKKIALgWsyUJ+XFkrZLYnpWajUojYjZK2DvpbK5TlhURq1qj5rutn7PwkzWUrVaaz5YOYcX4jZiNZj6cokQqfPB1Tx5dCUZrr2XMT8PwqeBN3XbViQqOpbivZ6HZZ+d2XmXp6HX4B/gw+/DXBXQ/APU71qJ+x1rkZOUS9TSGlJepfFx7PJJZwrOUBxueLi309aUlpjOk8hiyM3LR2mn4fuc4Ri0aAsDzR5GMbzMFk9FMclwKO+YfYPfiI9ZKya9TdlqJUFRwDJ83n0x6UgZqrQrJrHSMiWoRB2d7lt+ci0olcnTdGRaOWGWtmh1bf5Z6HWpSs2UAq+/Of+3nMGnr5/w6eQf1O9WiVusAvukyh8S7qkjWAAAgAElEQVSYZBYMXcGkLZ/b5GvpcwwIAmh0Go6tP8uRX07z9OYzKtYrx6JzU9HaaclIUtr0RbVI5UJcvKs3q8JXG0YzZ8BSpryzgHknv+P05osE3Qhl5MLBVG9Whb5fKd2Xi0euwZBjREYm7P5z5p+ajD7HQPyLRCRJcR7/tLGSJv/btJ3sjF1treQIgrKFKIpKYOroBt+QFJeKnYOOH058R1RILDp7Le998VaBaywM+hw9s/stLkCCBFFAVIk2xzNTsjDkGl5bVSrC/1pkCYLQH9iG8i/xAyyeQn+GIiJUhDeCt4czx2cPV7xfcg2sP34TN0c7ejYt6NXxYccG1Kngw8I9FwgMiwXAy92J1tWrsv3AbQAcHXQ0q1+W4sVciYtPpfuHiljYZC7kbk+AXL2Rq7fDeB6ZzMTRHTlz+SnZOQYeBUUTFp9G89fofV5BlmW2LT5G0O1wBn/TnXJv0DpfrUF5SpT25MXTWN4f2wUHBy0OzvZ0GticOi2rsvCzDahUKrp/1IahU3sVOD8yJI4vO80hN9vA1C2fUq9t3taQSq2iSn2l7b5U+RI8vBIMApTIR9qyM3L4utsPhAW+yPdCwJBjJDzfnXR+9Pu6B3aOOgRR4J3RnQodA9D2g2YcXXcWJzdHdPZa4iISrAvgq+ceUecrEqKS6f1lNz6a/QG/BS22Pv791s+t/28ymihbw4+dMYrgODkulZSXabiXcMWvio/NuLmDfyb07nM+XfIhS0atJSstmyfXQ7l+5C6te9tW68IfvODrrnOUPyQzWWnZ+FT0xmw0o88xKFEgr9kKiwyKRp9jwGwyk5NpZna/xdYqwd6lhxVxLSCZZUxG86sGKgRBCaQNvh1GuZp+7Fx4iPQkxTzUlG9b1Nu/OAvPT8OzpDuyLLNs9FoblULHwa1e+97nR/0Otahv8S3qX3YUZpMZs8nM7VOB1jH3zz/ix+GriH+RiEarZvDU3vw6bRf6bOXGIuJRFOd3XmXHgoPWWA6TwUzEoyib54p4EkVGciYnNpxTNHAGMzt/PMSt4/fIzdIzZ8AyG+fpPuPf5sFFJTS478SeZGfkMKz6l6TGp+Pk5sCA73tZc8Qkk5kZfRfRY1RnqjevwuiG3xAVHEuXoW34ZOFgy2clY9IbSXmZysrbP1if59aJ++xaeJAuH7WjVa/CK7b6HANGva0BqUqjonxNf5JfppEYlddWX7N1QBEJ+nfxz6wI9QOWWP6TgcuWY3+KIiJUhL8EQRBwttcxpmfzPxxXq1wpohKUbRONWsVHnRrSuUEVGtctS3BYPMU8nJi3/AR6w+vdlT3dHalTvTRtm1Xm5w3nMRjMvExIIyomheH9m7P813MYjRJrtlyieb4k88Jw/3Iw25cdR59tIDIkjnXXp//pa7Vz1LHy3HeYTWarIPgVwh9HYTaakWWZF8FxNttJ2xYe5vyem5Qq50WmJVZg59JjNkQoPz6Z15/K9crhWsyFhp3zKrs3TwTy/HEUxkLeoxMbL/LFT0MLXJdWp6Hva0JNTUYTB1aexGQ0MWJuPz74qgfOnk5otGpr5ecVTm26YO1U27X4MB/NLnzLIvTuc8a1m47JaGbannGYjWZm9FUI05SdX9KgU77Xc+w+N44qi+7CT9ZYYzkks8SlvTfYueAgg6f1sW4hbZt/gJSXaZazZWSTibD7EXQd0Z6bR+/Sf9J7r9UDVW5YgYp1y/HoylNElWg1GwSo264mJzdeAEmm/+RedBzchkMWMXjVxpXY9/Nxdiw4hJefB7EW8bAgCji5OZCRrNxgvj2ygzVvC8DexR5jokKYRi3+0Ea8/KbIyqebcy/hStCNUGRZZt6Hy0mwLPT6HAO3Tz1AlvIaDox6Ayc3XuT5w0hUahWePu4ICFRrUpmPao4jKz2bnLQcDHojKpWKxm/XQ6NTI6pUNOvZgJtH76K109jYFAC4ebnyzaYxlK1eGpVaxZPrIWQmZ2EymEiNT+enMesYNKU3J349T1x4PNcO3uHaoTtM2fmlUjUySxzfcI4vVo6g37fvsm3efmRJYnKPeSy6MJ1K9cqRkZLJN51nAnDnZCABEZUo7utZ4L1x8XBm9JIhHFp1ku6jOlGnbQ1C7oRRv1Ntxrb43kqEBFFg/NqRPL0Zil+Ab6FVxiL874Qsy8+BHn82rjAUEaEivDEiXqZw+l4IzQLKULn0HzsyA4x9twXzdpyjcunitK6lEJX6tcpQv1YZJs7e84ckCCA1LZtzV4I5dTGIgIreJKWoAYGASiVJy8ixaobcX7Mllh/2jjqwCE8dnP/aj+PvyQZA54EtOLPjGvocA++PzetOiQl7yZb5hzDkGokIilHEvTK0eqfBa+dXa9R0GNCiwPEKtfwx5CgCWlEl0nVIa64euUtGcibVmlQq9Lr+CLsXH2HTrD3IMmQkZTJsVh65OfzLGdZ+uxVRLdJteDuqNqxofUyX7+46PjIJyWTGu6zy+Z/eeskaeXBgxQkcXR2sXV4Xdl+3IUIly5VAlmTsHHT4V/XFxcOJyOBYVGqBqwfvYNQbmT1gGfsSFcF8/oqGKAqYUbZ8ajSvytiVHxf6Gk1GE+smbSUxOpnvto8lKTaVpzdCadk7L2S0VZ+mlK5SCpNJonwtf8LuR1g9dR5fDbaOiwrOy3LrNLgVCVHJ3D4ZiCAKZOXbvhUEgUXnp/HT5+u5f+4R67/bRr0ONW2qYW+Cj+b0Y9ln6xAEgTptazChg0LWi/t4otaqFYsErZo+E7pTtoYfuxYdAlkhLJUblOfJtWBkWWbUwg8pX9ufwZU+z3O+BhDAKJu4dug2fSZ0p+/Entg56CjhV4zwhy9o+0HezU1GSib9/EdhyDUS0Lgiiy5Mp3ztMvhWLpnXXi9DpbrlCLzwmLjweOuxqJBY3Iq7kGhMsYa7Dpram3M7rhAVHItaoyYsMIKwwAhOb75ofc5X28iFwWwyk5ulp9k7DWnzQXPsHe0oaTH+nHXkWyb3+IGQO2GIosBnjSeRm6XHvYQr654sLjSjrQj/eyAIwnfAclmWk1/zeFvAQZblQ6+bo4gIFeGNYDJLDJy3lWy9gV+OXuf47OE4O/wxoejWKIBujQpqZzKz9Fy7nRcIrNGIeLo5kpyajdFk5tVvoVmSeVWjDXr2ktXzBuDkoGXygoOEhMejEkVMZonQ5wkYDSaeP4mhdIUS2DkW7BapXKcME1cMJTTwBV0HFSQdfxU+5Uuw+fGCAscdXR0QRRFRpbja9ZvQjdbvNcQ7n7uv2Sxx+eAdkmJT0NlrafVuQxuBdGJMMqH3IqjVsiqiWtE/qLUqOn/Ymo/n9ef60btsmr2P6R8sYeK6kQW6rV6HrPQcJElZbLIz8hZyQ66B5WN/tf69e8kRvlw1gn7f9OT++ceM+EER2948cZ/pfZS4iXFrPqZ17yY061HfYoon0X5ACzxLunNp7w0EBLoOa8PLiAS+6zGP1IQMPlkwgMUXpvEiKJqm3esjyzIPLz9l69x9PLgYBCji41fQ2CkLmNZOQ6V65Qi+GQwINsJrg96IxqLdAjix4Rz7fz6GSW8iMzWL2Ye/pXJ9W63Mi6BoxrWeSlZ6NrIkU6t1ADp7LZJZstl+EQRQadRotGp6fNqFx1eDla0iQSggpvar4kN6YgaSScJkMHHrxP2/TIS6jehA0+4NkMwSa7/bpoTrAs4eTvQe9zbF/TypXL88zu5O1GlTnTptq3P39AO6DGuHT0VvqjaqiJObAzVbBpCelIGUr2okqkV09jpyMnLIzdKzeeYeylb3o1XvJtRoUZUaLaraXMu+ZUetAasPLytdZFqdhuU35zKt949c3neTKg0qsHXuXkLu5P1bVqlFAhpXotfYbqS8TKOYjweSJPFVRyXMVa1VU6FOWcpUL824NtMw5BhQadQgS7Tq09SmKnV4zUl++mwd/lV9af1BMzZO24ksSSREJtH1o3a8eBLF7sWHade/BY3fqkd4YARmk5m0BCWGIykmmaSYFLzL/PlNWxH+0XgAHBQEIRe4AySgpNBXBGoDp4DZfzRBEREqwhvBLEnkGIyYJRmTJJNjMOH854WYQqH5ncGgySSRmp7DwF6N0WhUnLkUREh4PPlvDiVJpmJZL5auO8OziERkWSFndjo1jeuWZdzbC3gRHIdbMSdWX5yC1q7gXWCTzrVo0rlWgeN/FbIsc+fsY5zdHalUp4zNY66eznz360imfLAUs1nit9n7eXd0R5sx66fv4cDq0xhylVbzs7uuM//QVwCkJ2cyov63mE1mSpXzYuzPw/ht5h5qt6rKr9N3kZGaRUZyFtGhccSGxXNux1U6vaEepfsnHTi1+SK5mbm0fC+vQqJSq1CpRatJpGxJmB88pbfN+TeO3LVWey7tu0nr3k2o3qwKW8J/wmw0WwNf19ybR9DNZ5SuXIqln64j4rFiyDd/6Ep2RK+0ITL12tdgUjdFLyKqREYvGgwo/khpielKFSMnl6inUXyy8EPqtK1ujadY++1mtv+wD/9qpVl2bQ52DjqyMnKsOpns9BzMJjOiyjYA9eKua1YSBPDoSjAIIoIIflV9eBEUDTJo7LR8s/FTZBmCrofQ4t2GVKhThojH0daW//x4Z0xXFn28Cp2jjibd6r3RZ/J7eHi7cXn/TU5vumA99vRmKDMOTMTFI0/8fnn/TULuhPPeF2/hacmca9o9z8PIxdOZXl+8xe4lR3B0sadasyrcO2Pr03X37ENa/U6X9TIigdjweHwr+yieQJJsrbyAUv2aumu89e8+pUZYvxOCSkClUeMf4IsgCNYtrsToZB5dCkKWFaH59H0TLDEoSviwSzEXdkQXNLT8bcoOTAYT0aGxhAdGIEsSklnm7NZLnNlyyaqRCg98QYkyxfD08SAjOZOKdcvx4OITGnerVyBepAhvhn9S15gsy/uB/YIgVERJmi+J4i69CRghy3LOH50PRUSoCG8InUbNnCFd2HTmDt0bV8PL7fUdSb9HXHwasfFp1Kzqi0olotOq+XhgC1ZtvGipUCjVnxLFnOnStjp7j9xVMrVEwVIVgopli/MgKJpDJwNt0sr9fDz4fEgb3p97CFmG5Ph0EmNTKFX2P3cX+OvMvexbeRpZlvn+t1HUb29bHajasDx2DjpycwxIZomveyxg+Iw+VLV08dw8mZf7ZTKaCbkXYW1bT4hMwmQ0oc828PxxNIEXn+Di7ogoCtw589BKVlSWbr38i9Sf4eCqkyTHpiDLsHL8Rj6a/QF12lVHpVbx/lc9FG8XScankjctezUqcH7noW04s+0yJqOZdywmjYEXnvDgUhDt+jVn58JDHFt/jvgXiQiiQLFSHrTqkzePIAqIom1rfviDSGXBtXRj1Wqt6KjiXySSFJOCbFLCWVPiUnl0OYhuIzpYz9239CiyDHHh8QRdD6F2m+rK4mgxAkyNT+Uth/44eTjS64tuJEQlcnrzJao2rojWToMhx4igEjCbZGRZqQQlRiczeceXrJu0FS+/YkzrvVAJFFUJrPpqE7mZuSDAhsnb2Bz+s42uqtPgVrR8rxEandrm+F/Fppm7bP6WJJmvOk5n0fnp2DvacXHPdeYMUIj2jaN3WH5jbqHzfLxgEAO+74XOQcuIWhPQ5xiU8FSzhEarpnXvJiRGJ1PMx4OcrFw2z9rDjnkHkGWZ4qU9GffLJ8Q9T+DdMV0KzB1yJ4yfxqynQp2yxIa9JCokVvkMTWb6+Y1CVIssODOFyvXL41HSnXK1/AkLfEHlBuVx9nDCxdOZKTvHcedUIF2Ht7eZW5ZlnlwPIaBpZW4eu4csy/gH+OLk1paU+HSuHrhpFa6/Cr6NC0+wErfg22EcN27/l9//IvwzIctyCBDyr5xbRISK8MZoX7cS7etWsjmWmpnDxLWHyco1MGtIF/y9FAHpzaeRzNhyklLuLoRei0IQBJo3KI9GreLE+cc0qV+OtzvU5MjpBxhNEvY6DR1aKuX5McPaMH/lKTQqkQRLareDvVaRcfzO4yYiKpnE1Cy6DmrBkd8uUbdVVbz/hXb5v4Int8IUHxS1irCHkQWIkKOLPT9fnMKw+pOQJZnH158x/q15ePl6UKqsF1EhsTbjTUYTMWHx+JQvQdkapWnRsyE3jt8joEklzu+6jj7HQJKFwLyCzl7LjD3jqN60Mm+KS3tvWucIfxTJ9L6L6fxhayo3KE/yy1TavN+UnIxcRv44EFEUSY1P48Cqk5QJKE3L9xpRvqY/u2JXA0pl4MmNUCZ0mIEsw95lR8nJyLURdkc/i0MQRVRqFZIkMWrhIM5uv8KmmXto2Lk2Y1cNx7OUGzo7LfpcPa7FlcwzAO+yXlRvVoU7p+5bydOZLYqe5KsNnyIIAk17NuDSnus4ONtj0BtZOGIlPhW8lQgIlKgRs8lMekIGG6Zst7ZYP7j4hDlHv8PLrxiRwTF8332etXV+yPT3afFuI1q824j3fT/OM5E0ywoJApAhOTaVqwdv0+JdW8JYmE3AX0WzHg15di/C5ljEoyiOrDlN+wEtmPfhz9aut+z0P77ZdXR1IOJxFC17N2b3osN4l/Vi1qFvSEtI48vW0zCbTAz/YQBBN0I5v+OKVaOTEJlEvQ41KVaqcBf5eR8u5/mjSHQOOiasHYlBb2TnggMIokhYYAToYeWXv2HvbEf/Se+y9MosQm4/48RvFziw/DjdR3WiYZc6NMwXvfIKv03bwc4FB5EliR6fdmb/z8fYMmsPDbrU5sWTaMVJWhCo1qwyOZk5vHgSoxh4Gk2IahUe3oVn+xXhL+Af5Cz9d6CICBXh38K28/e4ExKNWZKYtO4o3/dvT+XSXkzZeJzY5AwiE9JwsAMxzcS9R5GkpOVglmQu3XhmY5JYorgzaov4193NkTFD23DxeihnLS63Hm6O1AzwZUT/Fly+GUpGpp4X0cl4uDlQqoQrn/7wAaPn9n1tVMXfiY+m9WLWhytx8XSiY/88V97QwBccWnuWxp1r0bhLbcpUKcWzB0qbu9lkJjY8gcSYVNyKu5CVnoM+x4DWToPOXouHZVtJFEXGLh/KiPrfcuv4faW1WxTwr+ZLVmoOIXcVPUalemX/EgkC8KnoTezzeGRJRhQFcrP03DnzkKPrzqLPNVCyrBcbHi+yjp/edzFBN0JRa9W4FnOmVqsAm/d3yai1VmKVnpSpiNAFQFA6rD6Y2JMzWy5Zt6eOrT9HWOALzCYz53ZepceoTlSoUwb/ar4E33pGdloOt04GUr9DTVQqkR+OfYvRYCL49jPGtvgeWZI5t/0Kw2b3o5iPJxN/+4x+376LWwlX+vuNtBo6au00fLd1LBFPotg0fSeGXKOSdC8KaLRqtHZaytX0w9HVkfTkTBxc7MlKy6ZcTX/O77pGQNPKVKpXjsoNKnD1wK3Xvp9zBixD/k22CoL/Lgz47j38q/mSEJnEma2XeHY/ArVGhWcpd6uBJQACfLdtbKFz7F9+nC2z9xLQpBI3jtxBVIm06duML1crIvNLe65hMpowGUwcWnWKuPCX1mojQDEfj9eGBQMUL+1JzLM4QMazlDvVm1ehw8CWXN5/k1kfLEGSJIJuhGAymnl4KYi3P+nA/fOPCbkThkanwZBrpOdnXdBoCy5Bd04Fos/Wo9KoOPKLsoWMrNgpJMUquWYarZqQO2EY9UZKlvNm+A8DcPd2I+haCK0ssR1FKMKboogIFeHfgr+XO2q1iGSUCYqK58MF29kwoS9iviRPwUmNk0nNqMGt2bDjKnEJ6RgMJisJEkWB8hYfoMDHUXw5bRcIULFMcXSWH8o2zSojSTLb9t8kI1OPWiWwdOb7lPcrhs5SRfhvkCCAirXLsOGe7XaELMtMfHs+Wek5nNlxjTXXZzL/8ER2/3Scc3tuIIoC8VGKC/Xo+f2RZRnfCt68fJFIpTplbCoJSbGpvHyRaL3rF1Ui733amVLlSzBr0M/o7DR8vW7UX77uiRtGcWz9OdyKu3Bw1SkSo5PoOboTqyZsAhnMJomLe65zbMM53v64A1npOZhNEhqtYO0Myw+34nlJ8yXKFGfu4a+5c+YhjbrUwctPqcr5VvRmau9FGHMNhNwJR2unQaNTAnM3zdpNclwaOZk5SJaOocUjf6FqowpMWDcSrU6DRqumSsMK+FYsSUJUEm5errh5uZKWmM7ohl+TEJnEJwsH23QbGfRGQu6EMWByL3wrliQ24iX7Fh+lRsuqtO3fkkr1yuHoquRrLRqxmnRL23vo3XBkSWbuwGWse7yI1n2a2BAhnb0W73IliHgcCTIY9cYC1b2/Cy3eacS2efuJeBSFAPT9qodVz/PWiPZc2X+T/t+9R4XaZYgNj8fJzcHqsi1JEsu/2IBklrh28DaCCLlZepuOuEbd6rFp5m6yM2RyMnOsW7WuxZ2ZeWAi5Wr6/2FX4nfbvuDkxgv4VixJ9eZVrMeb9WiAfzVfIp5EYcwxIgiQk5XLzoWH0NppkSQZfbaB1V9t4viv5/gl8McCcw+d2Y/pvX8kJyuHrFTFYsHZw5EvVn3MnP5LkUxmSlfx4dn959aKXbOeSkxKQONKBeYrQhH+DEVEqAj/Fro0qIKrox3fbzhOcmY2GpXM9aAIhnSsz8ytpwHIwczauf2p7FucFo0q8Cwika17b3DhegiyrGgggp8p7bdRliRrvd5Ert7E2h8HIggCfj4e6PVGklKykCQZjUaFp5ujlQT9TyEqNI7oZ/HUaV3VZjGWZQkHZzsGftODAV93x2wyc+XwPTxKuFK9SV5run+VgoGfXqU9adCxJlcPKXfyarUKnwre+FTwZsXVmW90Xae3XWHF+I1UqFOG6TvHorXT4ujiwHufdyX6WRzrvt9ObraestX9GLlwMA8uPuGt4e2Y2HkWRr2J++ces+jcFDbP3od/gA9lqvkWiN/4dtNnLB69FpPBxMQNo3B0ccDe2Z4Fw1ehVqsYtXgQv03fjdlkslaOSvgXo+uwdhgNRjbO3IMx14hKo6J608q8eBpN/ItE0hIzuLj7Ou36Ke3cKpWK5bfnEXo3nPK1/FFr1Nw8do+0hHQks8Tmmbv5cs1Ijqw5yaOrwejstbTs1Zg5/Zdy7dAtS+VNy81j9xj3y0gbsz1nz7zAUVmSUWtUOHsqhCI329YJ/edbc8hIzOSrjjMxGUwU8/Gg28cdeFOYTWYeXwvm0ZVg2vVrXqhfTn7cOHoXfY4BlVq0upoDfLJgEJ8sUMJ+t8zew6ZZe1CrVfx8Yw6lK5dCFEV8KnqTEJmEqBLxq+pLQmQioyxC9OjQOMY0mUROpp5vNn7KgeUnSIhUfHhKlitBlXzWCfkhyzL6HAM6e8VYtMeowg07nz+MVFr9dRpqt6nG/XOPMeQacPNyxcXTkRBLx2jEo6hCI12qt6jC1siVDA34gpfPlUgeD293pvScR512NfhoTn++7TrLot0S6fJRuwLXUIR/A3nNuv8oCIJQCVgBlJBlubogCDVRYjf+9EeziAgV4d9G04AyzB7ahVlbT5FjMLH84FUc8hEUSZIJi02ism9x7HQaqlUqSdCzl9bFUaUSGGYJfmzXrDKXboQSFZvC+JEd8c+3WOh0GkZ/2IrtB27TqVUAJYr/aajwfxSRwbF82mYGAgL12lZjzr5xHFh9miZd61jb5Z/eCeebnj8iCAJzD4yn4p9kbkmSxLP7EYz9eRhfrhjG5QO3qVCrDD4VvG3GvQiKxt7ZnuI+hWs4Vn29mYyULJ5cD+Xuucc0ypdzdWz9OUWILMtsm7ef6XvG02FAcy7uuWH101FpVPgH+DJ25XBG1J3I7iVH6Pxhaz5dMsQ6j7OHE4YcAzeO3WNMs8lUaVSBwPOPSYhKQhAEfhoj8fxRJGajpfKnEokNj2f999vxC/DFbFIqXmajmdT4dGo0r8qt4/dBlilZzlbsbuego3qzvMpD6SqlEEQBQRDITM1i8Ser+eXhQox6A5N7zuO7t+eSlZZlbUE3WITrWek5NkRo0tYvGFl3IvGRiXiW9CAtMY3gW2Gc2nSB9gNbsXT0WsxGM1p7DV6+xfCv4svP12eTFJtC3fY1CjV0lCSJDZO3E3rvOcPn9qdsdT9+nbqDzbP2IAgCokrg6Noz/Pp0yR9+F/pPepfJPeej0qisIvLf4/TWyxhzjQj2AvfOPqJ05VIcWnUSjU5Dh8Gt6TuhO15+xchIycTBRWnzvLj7Gllp2ZjNEnuXHmXmoW+Y3GMe2enZ9BjVCaPFryg/ZFlmcs/5XD98m/qdajPr0NeFVmAfXw2m46CWnN91jbrtavDtls/Zs+QIQddDGDSlN4ZcI581/hZJkq3dZa9w++R9IoOi2Th9F1np2Yo+aNlR1Fo1L4KikSWZG0fuEv7gBTKK4aksydTv+O93ghbhfwXWABOAVQCyLAcKgrAFKCJCRfjvoFEVPw5MG0qTL5ahN5oQBQGdWoXeZEYlCtSvaBtpUbOqD6eTMqy+NpdvhFK3hh9Ojjpmf93TOs5kMvMiOhnfUu5oNWr6vF2fPm/X//3T/48g4mkMAgK52Xqe3gmnct2yTFj5kc2Yg2vOkJ2hbCsdWnuOsUsH/+GcC4av5tKBW6jUKlbfmkOXD1sXGLN72TE2TN2pkKvDEwlopNzBy7LM6a1XiAyOoUItfx5dVRoo/PP52Ty4FMTxX8+DoGhpGnauTWZqFtP6LOLprWfIkky7fs14d0xXtHZa7p59hD47F6PexNkdV22IUHZ6DjeO3gOU8M3IpzHKAwLo7DWUq+lH4IUn1m4xUSVafHrMhN4NtwkRTYlPY8WtOZzfeQ2fCiUIaFyJzNQszu24SrmafjZbHkd+OcWyT9ei1qqxc9SRk5mLWqMiKjiGu2ceEh0ciyTJiJb5dY463Iq70HV4+wK6Fxd3JzaH/4zZLNHL6yNrN9LCEasUjxu1CrPRjGsxF+v2pdksMX/IclQaFTMPTKSYr6dNa/v1w3fZu1Tx4Yl/kcgvgT+ye/Fh664l41AAACAASURBVGdkNslkJGdYx8uyTFpiBs4eTjbvSUJkEqIoYMjW8+uUHcw58q3Ntd84dhedvQZRJeLo6kCTt+uRmpDOT2PWYzaZCbsfQcv3GrF17j6O/HKaUhW8WX5zDnXb12TTzD2IZom2/Vrg5OrAhPWjGFF7AktG/cLZbVeYdehrm+dKS8zg5jGlm/P2qUCeP4qkbHVbC4HrR+4yo89CBFGg+6hO1rDXPuNsnc5XBy7g5fME6nXIC3y9uPsaPwxehsloRjJLyJJM4LnHHMjYhEotMqbJJF48iSI3S09MaByCAL3GvU2nD9vgH1CaIvzN+AdWhFBME2/8jqD/sWuvBUVEqAh/Kwa3r8/qo9dwd7bHx8OVEh5O9GhSneK/a7efNKYLer2JK7dCMZllTl4M4mbgC7atGIbW0nosSTKffL2F55FJlCzhyvpFg1GrCo9U+LuQnZnLknGbyUzL5vMF/fHyLbziAtCwQ02qNa5A2KNIRs0rPNKmcZfaXNh7CwRo/AYeRrdOPUCfbcDOUUfoveeFVnyuHLiFIdeISi3y4GKQlQjdOvmApZ+vx2QwUa1JJSZv/Rzfit6U8Mvrolsx7jfSEtLRaDX0/qIbbw1vx9Dq44h59tI6JujmM6tPTvWmlXEt7oo+J5EeI239kBxc7HFwsS/QuaRWq/hi+Ue06duUbiM6EBUSiyRJODjaMXvAMhKikpUgWrUKQRQxGU2AjM5eS8dBLa3zfN9zPiF3whEEgaWXZ1C2urLgHfnlNCaD0lbv7uVKTpZC1Lz8ihPQuBIancZKsCWzhFqtYlPYcuu8Br2R2yfuU7qKD74VFU8ilUpkwPfvsmrCJmRJRhBFUl6mWZsU8/+07lhwgGTLFu5nTSZhNksMmfE+709Q3P0dXe2RZRmVWoWzm7L11vitulw5eBtREChbw48hM/sCSsfgxE4zeXQlGL8qPvx0fba1c07noAMBBJWIzkFL/ItEPEq6odaoyc7IYVqvHzHqTai1KtY9WoiTmyM5Wbk2F3twxQmuHryNZJZIjEri2d3nVG9ehc3hP5Gbpbf67EQGRYMsk5ul5+mtZwW+cy6eTpSvXZawwOdIJolRDb7h4/kD6WmxUQAIf6gI4U1GMyF3wqzH0xLTycnMtRob+lf1xb9q3o2R2Wzm9JaLGHONSFLeCqyz11rfi4Xnp3F5303m9FeqaLIMddpULyJBRciPREEQymOhcYIg9ALeSMRXRISK8Lfik25N6Fi/Ev3mbCEmKR1nex0zBncuME6lEpky7i12Hb7Dyt8uYDSZSUnLIjUtB69iigg3K1tPSHg8kiQTGZPMgRP38C3pQcPaZf5j139g7TmuHLmH2Syxesouvls74rVjtXYaZu0uvGvnFZp3r0eFWn4gCHj7/Xlb/8BJ77Dyq834VvCmWpNKrP1+B0G3QilV1osuQ9owd+gKEiKT0GjVOHs6ce3oXTbO3sfASe9QqrziKWQ2SYTee45Wp7YhQQCV6pUjOjQOSZKp17EmJqPZhgSB4uETG/YSnwrerPpqE8lxKXQZ2oZBk3sR8+wlG2fspmyN0vT+shvLLs9gyehf8C7nxb0zj0hLzGDc6hG07qN07niV9sSrdN725qZnywi+Hcbm2Xup07YaidEp3Dn1gKEz3y/wXryMSMSQa8TOUUdSTDKX9lxj18KDlK3hh0qjQhQFUl6mgqx8FlHBMTTt0YDFl2aSlpjO8rEbiAyKpvf47jbzTu+1gPvnHoEMK+7Ox7diSa4fvsPaSdsUPVbFkvhWLkXPMV3wKOXOvbOP6DsxL8KobrsaXNl3E6PBhFGvELJDK09ZiVDNlgF8/dtnRDyO4q0RikfO1xs/IzIoBi+/YjbC+DkDl1ldtWOexRH5JJrylu936z5NyM7IJjEqmdC74Qyp+gXF/Yqx6s48S5VNuSlQqVRWYbNRb6JO2+rcORWIqFLRtEd9dA46zm67jFtxF8pZtmZdi7ngmu+rUaddDWq2DODprWeMXFiwaimKIksvz2DzrD1sm7cfY66Rw6tP2RChLkPbcO3gbdIS0xnxwwBA8Rsa22oqklni4wUDC9UV7VxwgJtH7yIDTm6O6PUGjDlGxdjSAp29jjZ9m3F+xxWuHLhJvQ61aNClboG5ivD34J9kqJgPo4HVQBVBEKKBcKD/m5wovC7b5f9H1K9fX7516/XtrEX4/wNRiam8O/1XjCYJN0c7js8ezpdTd/IkJI7h/VvQt4ft1taydWc5cDKQ9s2r8NWojlbdgCzLTFt4mNOXgl555KHVqPju8660afbXWsffFCe3XeXnb7YjyzJdBjTjk5l9/iPP8ybY+9Nx1ny31aqxcXC2x2Q0Ycg1UibAl8+WDGZSj/nkZhvQ6NQcSPyFn774laPrzyFJMo6uDuyJWWkzp9kscevEfYr5eFC+prIodnYYYHVZBvAs6c6vTxeTlpDO4KpjMRlMiCqRndErGdNiMtEhcWjttUza/BmNu9ZFlmWuHLjF3EE/I4gCHQa05LNlQ/h3EXjhCSvG/0ZAo0p8vKA/3RwGIMsyGjsNFeuV47El+kEQBGq3rc7Mg1/b6H+UbShzAXPD90sNJzkuFZ2DlmrNqtCoa12eXA/h3ParALh7u5GVlo1HCVfWPlporTDl37YKuRPOZ02+tbac95nQncoNyvPbtJ007d6AITPef6MuxoEVPuNlhCIILubjwYagxdw//5ija8/QeUgbGnapgyzLdNb1Q5ZldA5afjw7lUp1y/H4ajDndlyhdZ+mBDRRtg6/6/4DN4/fQzYrFbHuozry6dKhJMWk4Obl8m8ZPQLEhsczsv5EstKy8atUigVnp+Bewu2147fN28+G77dhNkkENKnEkkszCoxZOe5X9v10FGToMKgVDy48JibsJYOnvU//Se8VGF+YwPp/MwRBuC3L8n9ND6ArXVr2HfvHN3h/F8LGjfvbX5sgCI6AKMtyxp8OtqCoIlSEvx2ujvaIgogoSMhA4ONogsPiMRjNrN92uQAR+mxoGz4b2qbAPEGhcdx/rARvvlqmDUYzkTEp/7Frb/9+YzR2GrLTc+jQt8mfn/AfhFqrsiEo+hw9aq0anb2Wxm/VoVQFb3It3jlGvYlHV4Pp9UVXTm65hElvsskvewWVSqRRPhO70HvPcXRxsEQeKO7PXT9qy5R3F1j8g5zITMnG08edJ9dDrdUjk8GERqOk1o9tPY2nN5+BoHRehd4L59Ca0xQr5U7jt/71u/aaLauy4sYcQFn8/Kv58vJ5AmqtmuCbeds3pauWYt7JyTbnXth1lYt7rvPOZ10IaGJLmkcvG8rPn61Dn2vg7qlAHl1+Sr9v3+XK/lsIgkCKZdsrOS6VsMAXzB20jJjQON7/qgfDZitboBXqlMHBxYHMlEw0Og3eZYszw5LDFvvsJW3eb4q9sx2yDCX/wOV89JIPWfTJanwrlGT6gYmYjGamvrcAo97E9SN32BG9GkdXB9oPbMmpTRfQ2Wv5tNG31G1fg1mHvrESoFfIzdIjmyVrI8KB5ScYuXAwxV4jqv+rKFnWi/odanJ+5zWiQuPY+sN+RhVSQXqFlu81YueCA2Rn5NJnQvdCx/T/7j2SYlKQzGY+mtsfF09njAaTdVvs9/i/RIL+x/DPqY9YIQiCJzAFaA7IgiBcAqbLspz0Z+cWEaEi/O3IzNFjNJmRZEjLysXLyxmVSsROp6F2IRlNr3D2ylNu3ntOr7fqUs6/OCt+u0CixVn6FSqVK0HPvyEv7HUQBIHWPf+7Yuywh5Gsm7ydMgG+DJ7cy9qx03VoG85uv8qja4rouePAlgyc9A6pCRmUq1FaCcXM94N1ftd1SpYrTnEfD/yr+vLx3MJ1S/kxvv0McjJzEUUBNy8XkuPS2Dx7r2K6qBJxcLLDbDIjmSQWjVyDIAjIyHiXKY5LMWe+7fYDIXfCFesAWTFtdHR1YOX4jQgCTNo85t8iQ68gCAJLr87m0eWn+FUpxaeNvyUzNQtZkkmKTuHwmpO07deCiEeROLk78sOgZRhyjVw7eIvtscp12zsqW1It32tCy/ea8HmzSQRdDwWgXE1/llyawfb5B0iISuLR5adUa1aZhMgkYiwdjtt+2E+P0Z0xGU04ujqw9PIMzm6/Qr0ONZk7cJn1WiVJ5vG1YJaM+gVZlun3zTsMmdG30NfV+K16bI/My9nKzdZbt7xEUUSwuGpPWDuSET/0p3dJZav24aUgYkLjKF3Z1n7hq/WjWDVhI7dO3MdsNFOhTtl/qQqUm60n9E44ZWv64eiSFyp4/9wjLu29qVyfSrRux74Opcp7szNuDbIkF+pLlJutx97Jjklbv7A5np8EGXINnNlyCS//4tRtV+Mvv5Yi/J/BNuAC8KqM2B/YDrR/7RkWFBGhIvztKOnhoohMZdCoVSRn57J1+TCiY1Op/Ls28FeIiEpi1pKj6A0mLt98xv71o6hepRSPg2PRG0yIosCwvk0Z1Pt/tkoTdCuMSb0Wo9KomLd/PGUC/lrC+O+R8jKNT5tNxmwyc+vEA4r7eFhFySq1igiLTkJrr6VMgC8uns54llRiTOyd7GjduxHndl5HpRY5vumSEjgqy7yMSGTi2k8KfU5Jktix8DDRIbFWo8RXmW+gkA6VRlmEMy3hpHEWPxdBFPCp4M23mz5jaq8fiY9MQkBApVZRp201Zh/6mi8tqeJaey2JhVTvYsPiWTRyNc7uTny5eoTNQvtHsHe0s7ZK//JwIUfXnmbT9F1kpWWzavxv/DplB9lp2RQr7WlNXpdkmT4lPkKWZWYc+Jq67fM6lb7b/iVbZu+mTLXSNHqrLoMrjSH22Ut0jnYsPD+NGs2rkBiTbK3KiSqR2QOW8vjKUzR2Wn6+PpuB3/cCoEGXOhxfdxazWWLyzrHsWXzEet6epUdfS4R+DzsHHfNOfM+ZbZdo3acpDs55VT0XT2eqNa1E6N3nuHu7Ye+kIys92+b98/Irxvfbx5KTlUt0cCxlqv91MbEkSXza+FviwhNQqUXGrlI0X7Iss2vRYavtQfla/vQY1QlZlrl26A4qtUiDzrULVGxEUYRCehwu7b3B7AFL0dppWHJxBv4BioA6/kUi49tNIyMli6m7x3Fo5UmuHrgJAkzf/3URGfpv4B9YEQJKyrKcf+91piAIBcWHhaCICBXhP4JmAWW48TQSR3st5Ut64Oxgh9sfLHi/T5oHGN6vOXWr+ykCVm9Xins6v+bs/x72rjhFlqVL6vCG84x+TbfYmyL2ebzViFGWZcIeRLJ13gG0dhp2LjlifS5DroEVEzezd8UJ1t6Zy7b5h9i55AiNu9RmX/xqdi89xqY5+5RJBQE7RzvU2sKdgff/fIINk3cgy6DWKttbKpXI1xtGceK3C1RpVIFTmy8Tej8Cr9LFeBmRgFqnBlkJe11w6ns8vN3QOehQqUREjYrSFUuSEJXMs/vP+WL5Rywe9QtefsXoMKBFgedfMf43Ai8EodKoOLzmdIH26jeBi4cz7fq1YMvMPdg56jAZzKRkKFta0SGxqDVqRJWIi7sTidHJgNJtlp8IFff15PPleWL49MR0QMaQk2vNN3Mv4cqwOf3Ys/gwJct58fDiE2QZ5BwD984+xM9iTfDpkiF0HNSKYj4eeJZ0R59t4N7ZRwBUblDuL722qo0rUrWxralh5FOFEM8/NZkXT6IJf/CCQRU+RVSpWHBmSgETRHtHOyrUKfuXnvcV9NkGIp9EW/8dzv9wOV5+xQh/8ILbpwIB5XswbHY/BEFg548H+W3qTmRg5MJBvDX8T2/AASWfzmQwIZnMXNp3w0qETm+5SHxkEpJZYuP0XeRk5FiNHF8+j/+XXlMR/k/ghCAIfYEdlr97Acff5MQiIlSE/wgWftKdZzFJ+BRzxTGfgPV1KFPak4mjO3H9TjjvWzREgiBQ/08MCP/bKFejNJcP30UUhQJhq7+HQW/EqDf+YcWjcv3yNO5am1snH1C+tj9nd17DZDRb77qtDPH/sXfW4VGcXxu+Zy1GEoIEYhDcLbi7BndocSjFKdYCpXhxhwLF3d0dgrsTJECIECcuazPfH7NskpIA/Ur7q+x9XVxkZ2fekWx2zrznnOcx/Rf6OoKwgEg2z9iHJMGVI3fo+n0rqrXwYtfCo+h1Bmq3qcTX49tkmhK5uO9GmmEF6nWtjnef+rx6EECdTtVwzOHALyPlNvKwwCgKeuUj8FkIkigxdf8osuWWi2N/PvQ9R1afIToslrPbr2DQGVg5ZguzT4xn/rmJ6a9Fio7HV5/jlMuR3J450VirQeCTtStxUfHcOf2AEtWLfqDEnMMtO0tvzOChzxMWfvureXm+Eh68eRqMaBSJColGEARUGhWNetTJdD9Go5HEWNnOQalSYutgg16nZ1DFHwh8Gkz5RmUoV68UT2/4IRkllCoFVdPoWQmCQJEKBcyv63SsRp5ibrz1C6PyZ6YG/e69Ztfcg5RvVAav+qWIi0qQ/c92XWV2z6UAjFk3iNodq7Hqh80mTSYDlw/czFQN+v+DTRZrWg5qzP6lx0GSZwGT41MIehEify4FqNWhKuXqyZ//148C0KboEAR4Y6rp+xwa96zD0+svUKqUVGqSWrdWrEphc3q4crNylKtfigX9VuBSMDf1TGrjFv48BOkf2zXWDxgObDa9VgCJgiD0ByRJkjJV4LUEQhb+FJQKBYXdc/6ubRrWKmZ2oP87cv/iU7bOOYSgEGjUtTqVG5XOdN0Q/wiG1JtGcqKWwXO60jSNPk5alEoFE7fL9RE+e28w99tVZpNShUrAoDWi0ihl3zFJ1lZxcnYku6sTcVEJ2NhZk9M9G7b2Nux4tQS9zoC9k12G+3pP1Zbl8b3hh2iUMOqNnN95ncSYZO6ceYQgCHg1LGVO62TJasfrh4EYDSJWthpznQ1Arrw56T21MzeO3+PCrmuobK3MnWhpEUWRAZXGEfRclvSo1qo8gxb0IIuTHdVaZl6PJUkSAyt8T2xkHCqNilUP5xMZFEWBsp6oNWpC/cMZWnU82mQdxaoWJuhZCHU6V+erH9sxotYEgv1CkUQJxxwOrH++mCxZM78uSqWSMnVL4HvtBdlyZ8W1QC7evgwj6PlbDHoj14/coffPXfDuV5/osBgGLOz1UYuM++cfc+/8Ixp2q52hsSjIgfLO2fvRaw10HtuGcU2nEx0Wy8U910GQUCgUdP6hDaGvw+WUJ7KIYu2O1Wg5oDH3zz5CpVFRu/2XTxcPWtiLZn3qs27CdopUKohXg1LkL50Hvzv+6HV6+kzvYl63+8QOBPgGo1QpMy2IzohG3WtTsXEZ2f7FUX5YuHbkNlM6LsDa1opRawaQx2RBs+zmrC97ghb+dUiS9P9OGVgCIQtfnMCYWDbfu4eXmyuNC325J9W/goSYRHz23aRQ2bxkyWrHroVHKVIhP4271eL53TcYDSIGvRF/3+CPjnPz1EO0yTqMeiMHV53LNBB6z4U91wnyC6VJ91qE+kfSbmgTfPbd4NTmS2iTdWTNaU/NNpVoO7gxs/quJDYyHiQYsbyPuY7E2s4KazurT55j+2HNiAmLZffCYwCmmZMYdCl6k4idCo213DLu3bceTrkc2TJ9H171S5o1btJSqUlZZhz5gdjIePPshyiKspihWkVyQoo5CAK4cuA2o1Z9+8naIL3OQESQnCJRavV08eiPQhAo6JWfn4+OY0D5MeZutzD/CPZErDVv++uD+XTLP5B3ITHmAu5PMevkBA4tP8HW6XuZ0HIWP+0eSU6PHLz1CwVgXp8VLLsxM8Ntrx66xeuHATTtWx9tkpZx3j+j1+o5tuYs29MUQ6dl97yDbJ2xD0SJpIQUFEql+doB6FN0XNx9lTzF3bHOYoWVtRVth3kDULVFBfZErUOpVKSTDPiS5CuVhyn7x5hfO+XKypzTEz5YL7enM0uv/fz/2kfa1vtHl57yU5s5IEGi3sCFXVe4vP8mCAKj1wwwm85a+AuQ/pmdeYIgtATef9melyTp8OdsZwmELHxxeu3Zy5voaDbfu8+uro4Ud868ffjvxrhWc3n9JBABgeyuToS8Cuf0tsu4FchNg85VObPzKiGvw1FplMRGxeOYSd1S+XolWD9N7r5q1jPjIMigN3Bh3y3CAyLYNvsgBr2RMjWLMuOgfPOxdbDhxAYfVBolnsXdGTxfNtoM849ArzVgZasx23f8HgRBICwgtaPUzsEGvVZPdlcnytQuRs+J7ajYqAwGvZFG3WqiVClpMyhjg833lKiW2qIe8iqcoTUnkBSXzNhNg6nRuhK12lXCZ88NANQa1Uedzd+jUiup91VNrh64aU5biZLE81svuXv2EXpdqnp++9/UGcW/S5CDReDZTT/iouJxzPFxb7o7px6wbOg6ABJjn3Lj6F0GLerFFJOC83vLDkmSWDp0LdcP36bbTx3wKObG9M4LMOiNXDt0i5FrBsjriRLJv1HdTos8yychIfutzTr5I/uXHqdgOU+2zdhHTHgskgQ+u66hsVIzbMU3FCjjad4+7ezcv4HFQ9aYU8CSBMkJWnQpegBuHr9nCYQsfBRBEGYCFYEtpkXDBEGoLknS2E9tawmELHxxtAYDIrLSv9bwWVYvfxtC30SgS9abCnANSKZvZkkUcXJ2oHKj0uxZdpKHl5+zfuo+hi3snm57o1Hk7M5rAGx6NBuDzpBpsLRi3A5Obb2CUacHUZTNRyPjubjvJiWqFcL/cRAIAkiy1cV7Rq7sx5LhG8hTxJWarSv+rvPbvego+5acIIebEwqlgGiUSIhJIiEmCZVayeX9t/DZc4Mu37eky5iWnxWw/JZL+2+QGJeMUW9kRvdl9Jkexfgtw3AtsIOdcw+R0yM7wS9CmNZ1MQa9kSY96+BWMDe1O1RBEGTvNisbDbsXHuXywdtIkoCgVCIZ5bqpGm0rU6ZOCWyzWGPQ6mn3XXPaf5c+EMrq7IB7IRdC/cNxLZAb+2xZMjrUdOxfetz8s9Egkq+kB54l89Dr567cPnGPbpNkcc1XD95wYt1ZtEk65vX9BbfCrqZtjMS9SyBvcQ/6z+nGlYO36DK2Tab76zSmFSmJKehS9PSa1gU7B1uG/dIPAO9+sqv9yDoTQTIZgptmiv5OGPQG/B8F4lbY5Q8HZrk9c+L/KBCAyt7l6DGpI3fPPkSvNZC3hPsntrbwRfln1gg1A8pKkiQCCIKwAbgLWAIhC38uOqORoYcO8yA0lAn16tK0cGF+bdOaJVevUtnDnXKurp8e5Hdw5u4LHr0OoWOdsrhk+/Lu82NW9+fXcdsoXaMorb5twM75R3HJn5PHN16iVKuwd7KTZwYkMqzF2bX4ONvmygab0eFx1GlXkf0rz1C2ZtEPWu2D/MLQJutQqZUUq5Qfa2s1vjdeMrvfSqztrKjfuZqs4SOKBPmlppbyl8pD4261MBqMZi8s/ydB7Fl8nDK1i9GgS/UMzy0lMYU143cgGkViwmNp+HUtHl1+SrCfLJL4XiXZoDeyadperh66w+JLk9MpKn8OXvVLsmnqHox6IwadgVU/bKVpr7qc2nQRUZR4FxrD2gk7CXkld8xtnr4HtZWahJhEQl6Hs2fRUTwKu1CsSiFTQTAUr16E0JchpCRo0dhocMiehc3+y0mMSTSnV2Ij47h39hElahQlh2s2lt6cSfDzEDyKuqFQKEiISWR0/cm8fRnKqLWDqNm2crrjbtS9NndMXVGj1w0iXym53un4mrOE+ocxtvE0NvotJZuLEwqlQjZkNRgJevaWPMXdyO6SDe9vGvDwoi8tBjSm5cAPrWXSkhSXTHx0ItldnbC2zTilOXbLUDZO3oV7YRdq/OZ4/w6MqDOJVw/e4JjTgbWPF/Dk6nMCnwVT/6uany2L8J7srk6ytxoCufM6Y22rQRJlv7h1E3bQdpj37/4sWvjPkRV4Z/rZ8WMrpsUSCFn4Q1x5E8DlNwEk6fVMPH2WpoULU8w5J7+0+vyiyc/lsX8oP647jt5g5NIjf3b91P3TG/1OKjQoRYUGqTolI1f0pWuxUcRExqPWKPn12hTzbJF37zofbB8Z/A693oAAhAdFMbT+zyTGJiGKIrny5mDgjC7mbrOBM7swd9BanJwdGLOiL89uveTGiTmAXB/ToGsNnt16hTZFT/cfU60G9iw+xqbp+9DrDOxZepz5J8czvs1cIoOjubDnOvlKuGdYtKy21uCUy5G4qHgMeiMKlYL+s7/i527LAOg4sjl7Fh3DEJsEEvg/DiQ6NIYcbtnwfxzIxPYLUFupmLZ/lNlA88iq01w/do9Oo1tSwqRyXKCMJ6sfzKF/+R8QDSI2DtasGb8dURTRWKtRKBRUalKGhxd90esMiEa57ioi6B2HVp6Wu9XeRNKkV10KeXny4qYfwU+D0CbpSE5I4cr+Gzy6VJ8ytUugyZWVq4dusWLkBqLeRgMSao0axxz2hLwOZ/CS3uZ00tWDtwh8Fow2SceasZs/CIRqd6xG6TolEI0iZ7de5MAvx/Hu14DAp0HmYvGIoCgKlPFkxZ05bJ+9nzObLwJyOjDoWQgPL/qiUivpOKYV3SZ0+OhnbeG3v3L98G1UGhXO7jmo3qYSw2r8SERAJG2GNaPvjK/J4ZadEb9mrAf1v0avM+BrEvuMCYtl68972T5zPwqlQrZcOTb+d40nGuUCcVESeeMbhLW9NQqlArWVCvtsWcySBhYsZMIM4K4gCOeQExK1gB8+Z0NLIGThD+HplBVJkrBVqynunNolFpmYRNcdOwlPSGBhc2/q5P//aZqkJUVvQBDkOpEU/V+TcpMkiYS4JESjiCQp0SXrad67Tqbrf/19SyLeyi3bXUZ6c2zjRYx6OaXz9mU4cwasYccL2YohTxEXFp9OvVmEvI5AoVQgGkUcsmehYJm8LDjzYXFqXFQCep1BFjp8HcGAqhPM9TAAZGJBoFQq+O6XPvzYZi5IcGbrpVR/LWdHuv7QilYDi7jFZwAAIABJREFUGzKuxRye33pFqZpF5ad0YOvMA4T6RyAoBPb/cpJvZ3+N/5MgVo7ZgjZZx+Mrz9gTusq8L2ePHKy8PYuHF33RpuhZMWoT2iQt2V2dWHplGk65HDEaRVIStTy69BQrGw3tv/MmMjiKczuvok3WsX7iTvIWc8WgMxATHkdWZweT5pKAS/5UReN5fX5Jd/4GrQG9To9oFNk6fS8tvpXrmwqVz4+AgLWdFeXqZ9zx5+TsyIqRGziw9DiiKOL/MICBC3uxedoeKjfzIr8pwHQtkJvvVvSneqtKXNh5lTNbLiAa5dkLg87AQx/fNL+veOb2+QW91sDINQPI4SpLBqjUSlAIIIBSraR/mVFEhcgClDtmH6DTmNbYO306pfe/Qq1R0XJgIw4tP0Xp2sXZMfsAoighikYeXPDl2a2X6SQFPkZEUBRnt15CNMqzkk+uveChjy8LfaZw//xjqrepZLHW+Av5J7bPS5K0TRCE88h1QgDfS5IU+jnbWgIhC38ITycnDnXvxouoKGrn8zQvP/rsGYGxseiMRuZfuvxFAiGvgm4MaF6Ve6/e0t/7rymcFASBiZsGsX3+Uao1L4dHYZePrp81pwOTtw4xvx6zog+bZx3k7atwVGoluT0zlxSo074yZ7ZdJiwwkjGr+me6XudRzbl3wZeXD/xRKBUkmAqJFQqB4Ut7UeAjNibTvlpizv/rkvWorUCv1RP6JgKD3sD3TWYQ+DwEx5z2TNwxzHzzKVGtMFcP30GSJIpWlG9u+hQ9RlEO8hLjkpnSaQHjNg8x6xc5e2SnftcaPLzoa65viQqJZnDV8Rj0RpLjUxCUAiNWfEOdjvLvc9Tqb3HK5cjexcfQpehJNqXCAL6Z0x0rGw35y3ji7JFqne5WyIWUJB1GvYEsTnbUaFOZc9svgw1Ua13JvJ5nCQ/WPFlARNA7CpXPx62T93ErmJuYiDie3fCjTudqZM3pSLBfCAZToH1szVk2vlxKy4FN0Ov06a6lIAhUbuZFrrw5ObPFh/cX1tbRll7TUtvLt8/ax42jd5EkkWVD15CcoCW3Z04GLe5N7nzOWNtZcXqTD1GhqSrcKpUynUv935UhS/oweHFvJEmiTfbeJJmKw/VaPaPqTeZQ3MbPGicpLjldWYouWceLO6+p7J0afFqwkBGCIPxWqOu9mJWrIAiukiTd+eQYFvd5C38GD0JD6bJ9JwLQs7wXo2r+t4XQ/B4E8PJBADVaen20diI6LBaFUoFjjo9LYoiiyJLvNnBigw+SKKHSqChbpzhTd4/46Hatc/Yz22oA2GW1xcpaQ5shjVGplKz8fisgi+ituPUznsXkItXrx+4xpfMiBAF6TGzP25dhHF9/XlZZNhUxW9tZMWnXCLPQXlrWTdjB7kVHMOiMH7wnCLLR69AlvQEIexPBiHpTiI9OZOKO4eRwcwJBIK/pWK4cuMmCb1eSr2Qephz4HtEocnn/DQqW9TTX9cS9i+ddSAx5i7tnOJMwteM8bhy7i2iUANmp3b2wK7/en0eH3H2JCY8FZAXlJn3qo1arOLDsOO5FXFl6fYZZsiA8MJJrh25z49gdbp+8j1KlZOCi3jTrW9+8r31LjrJmrNzI4pjDgfDASKysNeb1VozcwP7FR2WHe7WS7C5OTDsyFs/iv98e46/i/X0j7bV9/SiAsU1/NqUo5c/QSf32zx5z1/zDbJyyC22i1jx2lqy2LL89K13g+1/jr3aft3b3kDwGffx75EvhN27EHz43UyosMyRJkup9agzLjJCFP4XSuXNzolcPopKSKJ07Y3+x/xIFS+ehYOnMZ2oALh+8xYxeyxEEgal7RlK2dnpxyXWTd+Oz5zqdRjanSY/aXDty11zgrLHRMHH7sE8ex7wzPzL966UEv5BnjBNjkhi9uz9rJ+wkII02kgBmUUWAO6cfyrMkEtz38eXumUemICIV0ShmasLZ+ftW3LvwhBd3X2HUp3Y/CYJ8Uz2y6gwXdl8jX0kPph0Yw5aXSzIcB2DZ8LXEhMXim/CcjZN2IkkSLQc0Tpcuc8hmj0O21GBSr9MztvE0Hl1+SpdxbXly7QUpiVo01mokCfRaA1Fv37Fm3BazNtF7w9Mjv55Ko+wdxqNLTylVqxhXDtzkl2FrSU7QolQpaDeiOTncstO4V510x9tqUBMcsmXhXVgMjy4/IzosBgR59hDAtWBuVCaT0a/Gt6XL2LaZnvv/ClEU2TZjPwFPg6neqgJz+6xApVEx//wkPEuYAjaJVEV0MPvCfS412lRizfit5teSJJEQm8SW6Xu5uPc6uT2dWXhxSqau9Bb+m0iSVPePjmEpwbfwxRFNT4vujo6UcXH5T+T2E+OSuXToDmGBUZ9eORPO7ryGXmtAl6Ln4IpT9Cozhp86LECbrCPYL5S9S47z9lU4i4aux2gwkj9NYPXeif1TFCidl9X3ZmFlSjcpFAIRgVEEPntrXkelUZHV2ZHAZyHsmHuY6LAYTm6+aA4GmvetR612lTMsXl03cScBJqPY01suMrL+FM7vuopNFmsW+Uymc1rlYUG2ybCytUKpVpIQnciLO6+5efzeR8+hYNl8aKzVGI0i+5ccY8+Cw/zQZBqQOlPxW17cec2zWy8xGkS2z9xv1j1SW6lo3r8hHkVdKVa1CPsWH8WgM6Cx0dBrWmdZPiDNkHqtgQJlPRnvPYMF36yU67W0eowGkeb9G9F6cFOUyvSSAwqFgqc3/Fg3bhuPLz3lq/HtGbN+MFVNqtp5irmhVClwyJ6FRj3rfPTc/1dc2nuDbTP3c277ZRYOWE1yQgrx7xI4vvYsAImxiQysNJaY8DgQZL+08Vs/HZinxdbe+oPvCkmUOLH+PAnRifjdfc3a8du+2DlZyAQp1Wbjz/73JREEoYMgCPamn38UBGGvIAjlPrUdWAIhC1+Y5devU3jeArw3bCLpNzUVfxUX9lzn66IjmN1vJUbjX6O9Msp7NrO+WU3PsmOZ3X+1WR3499CiX3001mqs7azwu+/P25dh3LvwhMsHb+GQ3R6lWomVrYbsLlm5e+EJD3yeIigEbLJY03dqp0ytHNJy4/g92jh/QxYnW8o3KEmvqR2p4u2FWqOSx7K35ueDoxm5sh9z+65k45TdfFd3qrn2A+Dx1eeMXtMfK7OKtVzwq0vRc37nVQZX/ZEjq88wp+8KHl1+xuxev5AUL2/frE99PIq6Yp8tCz9uHUa74U3Jljsr+Up4yKrYkqxonBkpSVoeX30GyPYfgkK+WepSdMzuuZTG6k5M6zz/g4Aot2dOk9yAgFvB3FzeL4s7Gg0iJWsUJTwgklvH76JN1qFUK5FEkQ0/7aSgV37K1iuJSqNEpVGRwy0b2XJnJcA3CG2SFrWVilyeOek+qYO5ky4jTm04j15nIC4qHtdCuanVvqr5pr/ux20kxSXLnm1bL3/yd/i/QG2ahREUAk65HNFYq1Fbq7HPZk9cVDwzuy/FYBK4VCgUTNk/JlM176T4ZGb2WEqPwkPZ8vNe8+/KMYcD47cMSxdgCwoBK9tU5ezPUQi38J9lgiRJ8YIg1AAaAGuAFZ+zoSU1ZuGLsvLGLSQgICaGW8HB1Mrn+Zcfw6Ih60iMS+bywds06V6b0jWL/un7DHweIisFA5cO3aHx1zUo8zv3W7Z2Mfa+XYEgwKw+K4mNTECUJNwK5sbeyY5ll6bw6MozKjcuy4ape8yqu3mLudJheLMPxtPrDLx6GIBHYRdzTcumqXtJSdRi1Bup0KgMbYfIWjcLz0/kybUX1GxTkazOjlw9fAdBEDDojSQlJCMoBPOMk15rQBAERFNaTqFSkNMtG+GBkUiihKAQWPvjDvNMikqtQmUK0nK4ZWP1PVkiIO5dAl3yDsSgN6JUKRi/ZSgFynhmWlAeHhDB8JoTiA2PA8AQHku/Od14fPkZrYc0ZUyDKUiihM+ea9h9u5KvJ3Qw+4HdPfMIQaFAkgy8eRKEUiVbU1jZaHAwCV4aDSLWdlY06V2PY2vOoNfqeHbDj2JVCqFQKlFbqZh/YTKCIDDi129ZPmI9xasVYcy6QWbhyZsn7nFszRma9KpHpaapD6M6kx6SJErcOHaXS3uvE+YfwYhV31K2bkle3X+DJEoUrVTwd31m/iqqNPdi4IIeBL8Iof3IFiTEJDK2yc/smH2A/UuOERsZZ163SOWCdCs4GH2ynhGr++Oz+zqJsUmMWTcQl/y5WD12q1l2YPOU3ZSpXZyS1eW/lRptKrHqwVwmd5iPNllHvxlfUbCcJ7N6LMWtsCsVGpUhJiLOnFa08CfxzykdTsv7vKw38KskSUcEQZj2ORtaAiELX5R6+fNx4oUfGqXyf2atkaeoG68eBqDX6pnVZwXdf2xL4094ff1RBszszC8/bDcHCzndP+6qnhnvZ3XGrO7P1cN3cMnvTCGTv5dbgVy4mWpwGn5dg6PrzgPgd/8NYQGR5MqTvqB0dJMZvHoUQJasdqy9OwtrOysqe5fjjakWqGS1wuZ1C5TJS4Eyqd05lZuVpcW3DfC794aek9pxYr0P147exaOIC51Ht0AQBCbt/o4dcw5RvVUFWn7bkBvH77Fo0BrylfLg7tnH5rGGLOn9QV3HqrFbObzqNAgCams1Giu12YAzM05t9CEyWNZKUygVdP6hNfW/qkWAbzB3zz4kT1E3gv1CMej0HF97Fr87r81mnS4FcpE26SIHeQbU1lnIW8KDTt+35sbRu/Sc0okS1Yty8/g9Qv3DqdupOme2XESSJARk2weAaq0qUq1VelXv5IRkJraejV6r59Le6xSrXJCG3evQvH8jRGNq7czNo3fM7f6Lvv2VhZenUbFJORxz2ONRJL3o5t8FuaA9tQDc2s6KiMBIRFHCoDegsbFCm6RFqVKiQCDFdJ2WDF4ra0UZRFaO3sSkPaPSzZZKEuYg/T0eRdxY/WCe+fXhlad4fvsVL++/wWf3NVRqJb/enYNznv9uAbWFDAkWBGEl0BCYJQiCFZ+Z9bIEQha+KHObNaV/ZBSuDvbYW33aAPSPoDcYmbzpJH5voxjbpR5l8ssq1jMOjubwqjNsnL6PyLfRLBq6nkbdav6uWqXQNxEcXXeeElUKUblJ2U+u792rDnXaVebKkbsUKJ0H13x/LAhUa1TUalsp0/eLViyAnaMtibFJZtG5tBiNIr43/AC5bib0TQSexd35elwbqjb3wt4pC84eqe7pkiQREx6HY057JAm0SVr6Tu+cZn8F+W3Fh1e9kniZOsQkSSLw2VvK1i1B17Gt6VNqlPk8CpXzTHdca3/czu4Fsvq2Uq3kq+9bU6djtU+ah5asURS1lRpBgO6TOtJxVCsmtpnN9cO3UWpU9J/TDUmSWPX9FrTJWnTa1NRs8SqFmX36Jw6vPMX5nVfQm2bTIoPecWzNGbpN6JBOAHHN4wWEBUYyvul0OfMnCJSqVezjVg+CYJZwkkSJJ1df4HfPn0LlC1ChSVmum2bZYqNSNY9sHWwQBME8I/JPwcbOmi5j27B/2XHqdKxGywGNuHLwFlVblOfAshM8viKnL3O6Zyc8MBLUSlwLyk0T/WZ+hVFvJOj5W9p/15z8pfOSnJiCWqMySy+kZffCIxgNorkxQKGw4sXd15ZA6M/knzkj1BFoAsyVJClGEAQXYPTnbGgJhCx8URSCQJGcf80X1Ln7fpy950eKzsDkjSfZO6knADZZrGn4dU22zDqIta2CnO7ZMgyCYiLimN3vV/RaPaNXfYOze2pgMLblHEJfh7PfSs3i8xPx/AyvIzsHGxp2qfa7zsH3hh8rvt9KYa98fDv7qw8sBJ7dfsWpLZeo0apiui4yhULBgtM/cnbnVSo0KEW2NC7eIIsnth3cmP3LT1GmZjE8iqRanaRVnX4XGoMgCMzosYxHl59TsGxeosNjiQh6h8ZajVKlZPqB0RSvUuij53Hr5H02Tt6NNlmH/6NABi3sybaZ+6nWogJ5i8vXTpIkpn+1mKsHTRIYgjwb0GZYM2wysZhIS5k6Jfj1/lyS4pIp5JVfPk+VUg5AAI2NFY171kGXouf57Vf0MHmDvad41SIUr1qE4Su/wdvmq9RrpfrwoVGvM7Cg3wqCnsvWJoJCYMaxHz96fDZ21ozfMYJJbWanFq5LsnDiDxuHsu7HbVjZavC99oJnt14iAMNXfvPJ8/670nNKJ3pO6WR+/V7vZ/CS3tg72ZGcqOWb2V9z5/RDkuKSqdtZ/tuwc7Bl5KpUtezTWy4yr+9yAGq0qcyIVf1ZO34bD3x86TO9C0UrFiT8jSw2ajSKuBV0yVCiwcJ/G0mSkoC9aV6HACGZb5GKJRCy8I/FJZsDoiihUSnxyJk+EMia04Ffrkzh6a1XVGyYsYrwroVHuXf+MZIosX7yHsasSr0ppSRqEU03M22K7k87h1l9VhDyOgL/x4GUb1CKKk1TZ58MegNjms0kJVHLiY0+bH66IJ2+kP+TIB74+OLimZNS1YukG/fVowAafFWD/jO7ZrrvKwdv8XOPX0CS9yWJEi/u+qO2UiOJEtok+bx3LzzKT59ozVcolUhICIKAUqWgxTcNaPFNg3Tr3D79kOtH7pqvKxIkRCewdMhaRpsc2z+FW8H0gpbDV35DLs+cZHdxomH3WgiCQIeRH7d3USqVKNVKs+L3hok70VhraDMktc5qbq9lPPR5km47/8eBqa3iJqLDYxlefTwRgVEMXNyLLVP3oFQpEI0SXg1K0axfQ7PFx5ClfQHQpeh44OOLZwl3crhl59+GxkpNjbaVmd1zGeObz8DKxsqcls1IKXvdhO3m2Z5L+66T1dmBE+vPk5KoZWLbuSiUAgqlXIDtVb/UB9tb+PL8E5Wl/wiWQMjCP5aYhGRzq363BuU/eN81fy5cTdoyKUlabp54gGcJd7M6tEs+Z3MRr0u+9AW6k3cOZ8vMA5StU5wi5fP/aeeQwzUbkW+jkSTInju9R6AkYbYckCTJPMtwcpMPO+YfIfhlmDl4qdykLE655O3P777G/AFrABi6qAcNutYwjxEdFktWZwcUCgUXdl83p4isbDVok3RkcbLDqDdgUCmQTLMZVVv8Vrj1Q7zql2TAvO74Pwqg/XfNM1zH1t4GkzF0unNMW0/0e3HIZk//Oamec4mxiaitNelqknRaPSkJKeaiaKVKyayTE1g8cBUBvsHoU/RcP3KHNkOaER0Ww7TOC3hx+xVGg2jSOZJTXfuXHGX4ivSK31f23yDy7Tv0OgOLB6w2d0CpNSr6z+3xQeAEoLHW/G6NnX8ay4atI+h5CMF+oXKaRYDgF6GMXjeQgqaaN5AD8IigVMkJhVKBs0cOJFFCqVJgNBgxmtx0fmgynYbdajF67cC/9mQs/OuxBEIW/rHsvfQQgylQuPDwFcVccrBj3iHsHG1pP7SpuZMHYELb+Ty/8xoJiZXXp+OSzxnvPnXJmtMBvVZPrXbpDTgLe+Vj8s7h5tcRwe+4fOgOifEpvLjnT7tBjSiVptj4/8ukHcM4s+0KniXcyZY7KwdWnKJk9SIUKJUHtUbF1D0jObTqDPU7VSWrswN6nYGFQ9aZn6AFpYBSpTTbUADcv+CLNlmezbl7/gkNutZAkiTGNp/FA5+nFCrnyfxzP9H8mwZcOXwHSUwNsuIi41Fbq+UOrtIeGPRG3At93FYE5Bqapr0+1DXTpcgaSB5FXClepRADF/RgyZB16dbpOq71R8e+dfI+rx+8oVHPOjjmyLxb6Ojq0ywetBobO2uW3ZyJa4HcRIVE07/sKBJjEuk2sQNdx8nmtWVql2Da4bGMrDORpPhkvhovL9859yCPLj1FNIo45nTAo6grz2++BEHI0J+sRPWiKBQKVGolkiRhNMjXURQlXt7zzzAQ+i/wXqcqbYrw1YM3jG4whb0Ra8ypam2yjpxu2YgOj0USof/c7rTo35AytYuz7Lv1+F5/ka5e5dQmH75b+U2GtUQWLPx/sXyaLPyjuHD/JfN2XyA+WUvraiW4olKiFAQaehVmxZgtnN1xFQSJ01sv0/OndlQ3idb5+waRkqTF2s6Kt6/DccnnjCAI1Gglv//qUQAnN12kUpOyeNUtkW6fkiTxXeOZREfEmdMpd8/7sj9o6R8Wi8yS1Y5WAxoC0K3YCKLDZYuNdQ/mkD13VsrWLpauNkipku03EmKSMBpFKtQvSY+J7bBzSO28aTOoMTdPPUASJdoPbQrIXk73zj9BEiX87r8hMugdpWoUYV/YSgKevmVQ1TTmrqKEIGDWxbmw5zpLh20gfykPpuwdab7JfQq9zkD/8j8Q+TaafCU9WOQzmeb9GhATHsfm6XuRRIla7avgnaYb6bc8u/WSSW1mYzQYubj3OouvTM903QPLjmPUG9Em67hx9C6thzTl3tlHaJO0GPRGts86wPNbL/lmTndcC+TGJV8utr5JLzOSp6ibXJANtBnajK/Gt+P1owAUCoG8aSwvAp8FY9AZyFcqLxteLMH/cSALvllJ2JsI880/6MVb/qvEhMdluFybpDX/HOofzoAKP5jS0CJqjZqQV2EIgkBBr3zU61ydmPA4YiNjSYqTbWEcsmdJ94BjwcKXwCKoaOEfw+vQd4xZdZigyFhiE1M4dM2X07P7c3p2f0rnd8GgNyJJIgadkYCnb5nRcznx0bJdwtBFPcnpnp0qTctStlZ66wpJkhjV+Gf2LTvJxA4LzA7gaYmNjDcHQcAHXVqfQpIkrp98wP1LzzJ9Pzo8Fr3WgCRB/LsEwoOi6F95PF0KDmPr7IOkJGpRKBQsvTgZl/zOSKLIPR9fQl5FpBsrT1FXNj9dwJbnC8lXUr552zrY4FWvJEqVgkJlPcnh/t4BXUX+UnkoWjG/7KshQPGqhajcLFUDZ+WYLcRFxfP05ktun3rw2eccERhFRFAUumQdz2695NCKk+h1Br4e35b6X9VAbaXiysGb7Jp3ONMx4kz6NAa9McPfS1pcC8hdSUaDkdJ1igNQtl5JrGytUCgV6JJ1XD5wk1k9MrfvaNK7HhN2fMeYjUPoMrYNEUFRXDt0O92N/fqR23zrNYYhVcZxZNUpQt9EMq3jfCKCoqjaogKFKxSgVK1itB7c9LOv1b+NEtUzni1VaZTmh4eHF59i0BswGoxmUcz3Ni/7lxxj9bithLwOIykuBY21mub9G7Dh+eL/hFL9/xzpL/r3mQiCoBQE4a4gCJl/WfwBLDNCFv4xpOj0sv+TKR4pnjcX9jap3UYDZn+FxlrFyS2XEA0iCqXC3BFUs3VFaraumNGwSJKUzgzUoE9vDCoIAmPXfMO2eUfIV9Id+6x2NOxS7aNfyE9vv+JdWCxlaxVDm6Tj2EYfdiw8BhK06FeXpIQUvHvUpkApj9R9rBvAlpkHqNayPJ7F3Vk3aRf+T4JAgk3T93Hfx5dZh78nu4sTjtntCXzvIv8ZxdyCIDD94GhiI+JwyGGPQpH+GWjsxsGsGL2Z7C5Z6Teza7rutaIVC3D79EOQMHeAfQ658+WkbJ0S3DxxHwGBX8duI/B5KIMW9CA5PgW9SWRw49TdePern6FqsLWdNXqdLOCoS5ZnDn577O+5e+YhAGprFdGhMVAqL9ldnNgWuIKLu68z/5sVoAc7R7uPXqfK3qn1ZqPrTyLkdTgKhYK5ZydRoloRbp9+IF9zSXanf2aSKQC4deIeR5K2ZjT0fwJJkg1sdSkG87KqLcpz9dBtAFIStCTEJJIlqx0VGpXGytbKXJQvCNB/djcAIoLeyX+TktyxJwgCTXrV+6hhsYV/NcMAX+BPUdK0BEIW/jEUy5OL4W1qcu7eS2qU8qRT7fT6Pg7Zs/Ddsj5496nHhb03qNGyPH4PApjYeQk2dlbMPTrGXDydFoVCwfR9I9m77CQ121T8QJgQoJp3Oap5f9q2Zufi4+xdcYr4d0mo1EpEo4gkSbjmd0abpEOhENj7yylEUeLCvlvs9ltgDqiqt6xgTuUBFCmfH5VahUFnQDSK5lZugNG/fsOS7zby/M5r9q84TZlaxcju4vTRYxMEgazOjhm+5+yRPdPOsHGbBnH79CO2zzvCoBoT6TmxPa1N6by0GA1GFEoFR9acY/moTeQp6krvKR25c/YxRr0BfYqeCJMXW5+pnbh84Kb5qTD+XQJ2jrZIksQV002zanMvfmw5y1ww/t7Xy8om41b7cvVLcev4PQSFgoCnwRSvVgQbO2vUGjV1u1RHkiSCX4aYZ2pSkrQcXnkaxxz2NPg6Y52puHcJiAYREZHR9adQt0t1Tm64gEqjxsbOKt0sIUDTj6T5/u3ERsYxpMp4wgIiUSjla2ltZ4VXw9LmQEhjo8EmizUATrmysvrhPPqWHIE2SUeFxmXIU0wWlOzyQ2uC/UJJSdJSvEohSlYvSuE/sWnBwt8XQRDckdWipwMj/pR9ZGZS+HekQoUK0q1bt/7Xh2HhH8T4dgu4ffYxgkKgy0hvun+iMDczAp6H4HvzJcc3X6J09SKUqVGE+UM34F4gFxM3DcQmizUBz0P4tuZk840b5OBDkiSyu2TF3tEWpUpJwIsQ9FoD1nZWbHs8x3xjyAjfG35snLqX8KAoBs7rRvk0+inTui3j0sHbKJQK2g1pTJ/JHTId549y38eXiZ0WkZKoxSaLNfveLk/3/vH151kweC1W1mo01hrioxNRqpW4FchNqH84usQUrGytyOWZk4TYJMZtHEzQs2B2zjtMvc7V6TZBLlbeu+QY6yfvQa8zUKRCfl7deUlyfDIgkcvTmZrtq9JtQjuWDV1HZPA7mvWtT5Xm5bGy0WA0Gjm37TILB65GEKBUjWL8fGRspuc0t+8Kzm2/hEKpoM2QpljbWbN30VFss1gz+/QEcns6c//CY0bVnSRvIKTORFnZalh0aSqvHwUwu+cyuR5rRAv6z+n2pS/9P4ZTm3xYNHA12iQttg42pCSk4FowN+2Ge7N85EZ0yTrcCrmwzncBSfHJ2NrLYpKJcUmE+UcEhEjZAAAgAElEQVTgWdIj09m+/zKCINyWJKnCp9f8Mli7ekie/f+UeOMDnk0a8clzEwRhNzADsAdGSZKUcVvqH8AyI2ThX03VZmV5eOU5wO/2/nrP1aP3mPHNKrO31+vHQZzbfZ3It9HERydy+chdytctwfDGMxCNcsu1Qqkkp6sTCbFJJCem0KZ/A0pXL4ydgw0vHwZy6fAdAp6F0DbfMOq2r8SY5X0+2G/8uwQWD99IWEAko1b0TRcEARQq58lNU8qqwEeMSr8EeYq6olQpsLa1okTVD8UV10/ZAxJok/WgkBWWjXojAU+DcS+cG89i7rjmz8XeZScw6Ays/WkHC878RNPe9dKNE/g8xNzx9vTmS1r0rUdcZCwPfHwJD4hiz/zDnN7kQ1JcEnqtgfsXnuBRxJWVd2ejVCqxtrNGoRBISdQS7PdxLbW4SLn4XRQlds07hGgUEY0ScZFxTO+yiK7j2lK1RXncCrsR/CIEhVIgTzF33vqFkjWnI26FXChQxpPStYqjUqvIljvrR/f3b6dk9SIIClBbq/HuV5+vJ7TH2s6KlEQtZ7dfJvhFKEOW9GZqxwVc2n+D4lULM+/cJOwcbM1ijBb+c+QQBCHt7MavkiT9+v6FIAjNgXBJkm4LglDnzzoISyBk4V9N8z51KV2jCFY2VuTK8/8Tr7tz4Yk5CAK5DiJ/SQ/i3iUiiSJ5i7gS5BdqrnlRKBVsuPszOVycMOgNaJN1HF57gdEt5yKKIqWrFUY0igS/CkOSJM7uus6IxT0+aAm+fPgOb1+FoU3Ws27yHqo1T6/n0/G7ZhQonQcrG80HgopfGidnR369MZ0DK8+Qp7BLulqd8MDIdOrM2sT0NUtKpZIJW4fy8NJTDqw4hdJGg322LFw/fo9KjcukS0kVq1yIk5svYdAZUGlU5CuVh2a96zKi7iSi3srF0gkxiWaHctEoEvA0mPjoRByz21OluRfVW1fC7+5rhiz9MLhMy+AlvRnnPYO3fqHo9Uaz3o0kwdMbfkzvspDlt2cx//wkNk3ZRW5PZ9p+503IyzBy5c1p7p5z9vhvWz0kxSfxy3cbuHP6IbpkPYIgUMgrv9lDzNbehvnnJgFyOnJs0+lIEjy/9YrQ1+G4maw3Plb/ZeEv5q9LFEV+YkaoOtBSEIRmgDXgIAjCZkmSvv6SB2H51Fn415OniCuJcUnsXnKCwOchBL8Mw6A3fHpDEy6eOXnv2GnvZMf0ncOZsP5bxq7qx6JT4yhUNi853LKZxxRFCUeTeJ9KrcLW3obD6y6gTdah1xq46+PLvUtPUalVqK1UeNUplqEuSpHy+UEQsLbVfNDSD3LarUKDUh8EQUajyPGNPhxefe53neenOLr2PAeWn2LJiI0cWnXWvHxkw+lEBmfe0RUTEcfiYevJ6uzIkouTqdy0LPfOP2F6t6Vc2H3dvF5KopbFQ9Zh0BlQKAV6TWxPk561AZi0eyQeRVxQaVQ45rBnyNI+5DebxEoMqzEBnVaPSq3i+/WDWHV/LqVrFsvgaFKxyWJN0HM5Tfn+i1/1G00mg85AttxZGfZLPzqNacWueYcZVmMC8/qtwGgUMxn5v8PtMw9o7dSLE+vOExEYhWgUMRqMHFpx0rxO3LsEszu9lY2GMnVKotaocC+cm1x5cyBJEpPazaWxugszvl78vzoVC39DJEkaK0mSuyRJnkBn4OyXDoLAMiNk4T9AQmwSI5rMRK81sHbyHhRKgbxFXFl8bsIH3l4ZUcQrH1bWGiRJoljF/JQ0pYYqN04V2LOzt0ZjrUGv1WNrb4Mizbj+vsHERKS2X6vUKiRJomGnKrT+tgG582Y8o5CvhDurbkwnMiSaYhULfPb57l9+ig3T9oIEkSHv6Gmqv9HrDBxbdx6lSkmTHrV+tx5LeFCUuYPrvQs8YJYoeI9CKaDSqNBYqUmMSyY+OoEja85y8+R9arauxPM7r9Em61CqlIT4h5u3E0XRfN2UKhURwe/o7DkEg97AtP2jWHJtBgFPgshbwh1rWyt2zjkIgCRCRGAkYf4R6TzV3nN83VnObL1MhxHNqdQ0teDd2s6aLFntZB0bo4goiggKBbXaVSY+OpHqrSqQp7g7t089IJdnTh5e9GXd+G0AXNh1ldaDm1C8yh8X1fyncnHfdaZ1Wshvy0wVSgXeJnuVe+ceMb75TCRg4s4RVPb2YtbJ8YQHRJLTPTtKlZKIoCiuH7kDwPmdV01eZR9acVj4C/nnlA5/ESyBkIV/NOExCTwPjqBCIQ+sNSpT664+nehfSqLWJNUvd/iIRnjz9C3RYbHkcP14pxVAicoFmbJ1MMGvwqnXvnKG6zhky8LsA6O4fe4xNVt6cWT9BYJfhtFpWFMcs9ujVCkQFGqy5XKky4hmJCdqadajVjoriIxw9sieziX+c4iNiMNoEE2WGnIA9uz2K9ZN2s3jay/kAtX4ZDoOb/aJkdLT86d2hL2JIjQgApVKidEoolQq+GnbUDb/vB+3gs6c33UdXYoehULBj1uGML7NXIwmaYKE6EQOrjiFKElkc3akYFlPWvSTu6xEUWRM0xkYRRE7R1tSkrTsX3bCfJNd99Munl57hmg0MnH3SMrVK0Xwi1DzsRUo42l2N3+P0WhkaqcFXDkglyA8uvyU/rO/xr2wKxUalUGtUbHizizunX1MIa98HFx+kvCACC7suoqgUNBuuDfz+63AZ/c1jAajOfUJckrOJZ/z77p+/zbunn6YrjEAoP5XNajWqiJRb6M5/Otplo9Yb04rn95ykcreXmyavJvTmy/SboQ3rQc1IVvurLgUyEX4m0jcC7tmKKNgwYIkSeeB83/G2JZAyMI/lnfxSbSbugGjKFHYPQerhrRnZJOZvLjnT5MetRi2QPagyuHqRP/pnTi59bJZWblMraJkd/n84tYyNYt+UGydGJfErG/XEBsZz6hlvSji5UkRL08uH7nLmkly55O/71tm7RvBwhNjeXzdDzsHGzkI6p4aBKUkagnxj5ALkj9jhupTdPzOm7DAKAw6A70mtiMqNIYxzWahS9EjSRIqtZK4qITfPW52FyesbNVEBL1jz9ITuOR3ptHXNfGqVxKveiWJDovl3M5rgFwo7Xv9pfnJ0jGHPdVbVeDU5osoBIH6XavToGsNzmy7TNUW5bGxs+bl/TeIoiTPzhhSb7AaGzUqtcKsSnzk19NUalKObhPbs+3nfYiiSPGqhT+4dlM6zDe3bQMgSaweuxVBEJh68HvK1ilBDtdsNPi6JgBDlvRmYts55oDn3PZL3Dn9kJREraxflYZeUzvjlOu/XRzdalATLu27SXRYjHlZZPA7ZvdYhihKGI1G8+9RpVbi3a8+4QGR7JhzAL3WwPIRG2jaux5WNhpW3J5F0PMQPIq6WeqE/scIWExXP0AQBGvAB7Ayrb9bkqSJmazbDtgNVJQk6ZZp2VigD7IM3lBJkk6YljcBFgFKYLUkSTP/+OlY+C8RGBGDUZRI1ul5FhiBv28wb56+RZLg+AYfhs7vZi7Ebd6nLs37yF5Y2mTdZ9tEpEWSJO6clwunqzQpw7GNl7hz3heDzsDysTv4ebfsTRYbGS8/KUuSeRbKs5gbkW+jmdpzBZIk8eDyc75f0Yek+GT6VRxPQkwSJasVYvrekX/4umTJasvYtd+aXwe+CDEL3QkKgZptKtJlVHOCXoSyd9kJSlYrTL2OVT9rbEGhMM+6rZ+yF4/CLpzfdY0qzcpRrm4JRq7sx+ktl2g9oBH5SnlwctMFIt9GU7djVXpP6YCTsyOi0Yh33/r0Lfc9RoORrbMPsv3VEopULIDvdT+srDWkJGmRRAmHHPbMP/Uj8VHxPPJ5gihKNO5ZB4BmfeqzdfpejAaRA8uO03VcWxyypaZUHl56mu7YbR1tiY9KwMpGw6kNFxAE2XMsLW2HeXP75AMQ4NSmiwiC3AXlmMNB7jIziPSf8zVthv6+2bR/I3mLu7Pz7UqWDl3LgV9OoFQqqNCoDM9uvkSfrENjo0FhJf/9Lb89E/dCriTFJ8vLlUqyONqaFdo11hpL55iF/xmfMyOkBepJkpQgCIIauCQIwjFJkq6lXUkQBHtk9cfraZYVRy5wKgG4AqcFQXifVF8GNASCgJuCIByUJOnJHz4jC/8ZSnrmplrxvNx8HsigFtXxKJSbrM4ORIVEk6ewK4+uvKDUb6T+I99G8/Z1OCUqF0SpUpIYl8yCIeuJj07kuyU9yJ03ZyZ7g1Pbr7JszFYQoGHnqhT1yo9SqUBpo8G9oCzUqNPqWT99P6IoolSrGLmkJwAHV59l+4Jj6PUGRINI2JtIAAKfh5IQm4Q2Wcfd83/Ox9+jkAvdf2zLpQO36DK6BZWbyM7ng2tNJsQ/nDPbruBRyIVC5Tw/OdaIX3rTuYAsvJgYl8QP3rNISdJydO05NjyeR90OVanbQQ6qwgMjSYpPwWCqTcpfOg8O2bJQsGxejHojRoOIXmsg/l0iRoORty/DADlN5pAtC/HRifT8qR0ehV1IScrGiFX9yVPMnQKl82I0ithltSWrsyOJsUnYZ8+Szm8NoEnPuuxekKrIHx+VgGcJD+Ki4jm36wo+e64x7+xECldIrb8qU7s4654uoEfh4Rh08sxQDrdsDF7UkyxOdmR3ccK98Id1SP9lBi/uzYD5PeQXpvqxF3de03dmVxKik/As6WFOI9ra27DyzmweXHhChcZlLLM/f1csM0LpkWTFxffz6GrTv4wu01RgFjA6zbJWwHZJkrTAa0EQ/IBKpvf8JEl6BSAIwnbTupZAyMJno1QomNuvRbplq65PZVr3X7h/8Rk/dljI1F3DKG3qqgoNiGRA9YkYDCKSUcTZI7tZ10cSJVaO28HELYPNY4miyNmd19Gl6Gj0VXXePH2LXqdHNEoc3eDD+b03Gb6wO6JRpEqT0rx6HIRTTnsS45Nld3hBwM7BhvjoRH6dsAuD3ii3FpfNy4CZnZnacwX+vkG45HPG/3EQbQY2+tOuVfuhTWg/tEm6ZaIomv+SRfHzOqCy5nCgbocq+Oy9SU73bIS9loudJQkMhlSV5ZiIOEY0mEZsZDwgq05vm3WQyLfvEBQKJmwZgrNHNuKiEug/qysqtYrC5fObZ3EWnZ+Is0d2c0H3942n8fphAIJCYMy6gczsthSFSsHUfWPQafUUq1yIu+cece/sI5r0qot7YVfaDW/G3iVH06XZvt8wiCmdFmAIjUFlZ2X2L0tJ0qLX6rF3ykLYm1RlZICY8Fhmdl9KtZYVGLt56O+57P8Z0hbeD17c+6Pr5sqbk4bda//Zh2TBwmfzWTVCgiAogdtAQWCZJEnXf/O+F+AhSdIRQRDSBkJuQNqZoyDTMoDA3yzPuArVgoXfgcZKTVRorDn9FeofYQ6E/B8HIUmgNxVvhrwONxfjqjTKD4qSD685z5qJu5EkibA3kbQd0ADfmy95eusVolHCoDfimCMLxSsWoF+1icRFxVO0fH6+Ht2coxt8aNajFg7ZssjF27YaFCkG1NZq5h0ew9Vj97h99hEpSTrsHGzY8Gg2uT6hRyNJEo+vvkCvM/Ds9muKVy5I6Rr/f/2gKbuGs2vBUUpWLyK36n8mY1Z9Q/8ZXbDPloXHV56zf/lJarerjLN76vVb+t2GdC31hbzyEfYmAr3WgJWNhqldF6NL0aO2UnP18B1C30Ty/ZpveXrzJW/+j73zDo+i6uLwO1vTe0IChAAhlNB7700BqaKgVEGRojQVBZH2IQqiCAgoooICigjSpffeAoSekJDee9syM98fGxZCAiSA2OZ9nvAkM3fO3DsbsmfPPef8rkaxdfleer/1vDWPK+xSBHnZBmzs9WxctMPadPHQhpOM+XIoMaFxTO8zH2Oekb2rj7A2Yinupd1wdLUnPdHijNk52eJfuzzv/zCGJRN+IKBeBRp1qcee1Yf44o1vEEWJd759k7b9W9C8R0OC9l+mcbd67FtzhLxsAzfPhz32s1ZQ+McgKzlCRSLLsgjUEQTBBdgoCEINWZaDAQRBUAGfA0P+jAkKgvAG8AZAuXJ/bvdchX8HYxcMYsHbKyld0YvWvRtZj9dtE0ilWuW4dvYWgCVqI8todBo69m/G8JkFJSpS4tMxm0VkSSIpNhV3bxc+3z6J9Yt38cPsjZSvWprqjSoRfSuBjORMDLkmLhy5zpwN4+k/oavVjs5Gy+K9H3J232Xqt6uOzkZL6QpelvsD2Rm5zB76NQv3THnoun78+Hd+W7wTQ64RQRDQ6jUsOzqT0v6F9dMeRXZ6DskxaYyc+2qJq3QEQcDF06J9WKtlVWoV0bFbq9ei1qiQJMtf1LBLkdRpG0hqfDpZadlEh1i2wcwmMyd3BHHqjwtkJGXStFs9Vv1vg6Vr9KGr+FT0wsHFnjfmDmDFB2vJyczh5rkwtDoNgkqgWb42mzHPhJwf4UqOS+XWxdtUrOVHg4612bf2CLIMg6ZbXt9qTQJYdGw2ADu+28eCkcutUaMtX++mw4BW1shPbnYeiRFJRF6P5a1FD2/QqKCg8M+kRFVjsiynCYKwH3gOCM4/7AjUAA7kJ6Z6A5sFQegORAO+95gom3+Mhxy//57fAN+ARWusJPNV+G9SuW55lhwunM+vt9Xx2fZJyLLM9bNhmE1mdq89hk95T14a93yhfIUX3+pMdGg8hlwjr01/8e7xMZ14cYxlG2vn6iMseme1dWug++ttiQ1LZN2inQQ28qfzK80BS1PGbq+1sdoIqOPH8Ol9+Hb6ekxGS75MXrYBjU5dZHNFgItHrluVumVZRkAgKz2nxM/HbDIzstlUMlKycXKz57ugTx94z8dlzOeD8CzjRnRIHKd2XiAvx0BKbBqLDs9gzaeb+HneFsxmkYA65Qm5EI4kyxjyjBgNJgQEZEkm5lYCoRcjUKkFmjxXG72djuyMHEx5Zl5+rzvdRnTEzduFg78eJyk6Bb9qZQkJCgcZti3fy1uLXqPbmx2JCY2nUZe69H6rYILzN5N+4rcvtlqjgoIA3UdaXtfVszewevZvVGtcmU93TXnqz0dB4W/Nf+ydtjhVY56AKd8JssWS4PzpnfOyLKcDHveMP4BFGO2MIAi5wBpBED7HkiwdAJzCUqEXIAhCBSwOUD/glae2KgWFhyAIAlUbWLaCajR9cEM8B2c7pnz/5gPPA6yetxWzSUSjVfPesmG0e7ExwxpPJfpWPAd+O4VvgDeBD2iG2P31dkiSRGhwFL7+pehTbgx2jjYsOjityCaLQ6f1YfagJRgNJmSgY/9mVK5XofgLzycrPYfk2LT8ZGUTWek5uHg4ldgOWJyq2LBESlf0KpAnYu9sx2szXyI7PYcZ/b4kITKJN+dZGsL2f687FWtapEECmwTw3bR1GHKMDJv1Mg4udvSf1J2w4EgkSeL41nPIosTxzWcQTSKCSkCtVdOiV2PcfVw5uuk0nw1fhiSKVKpbAZ2NpSVBo+frYDaZmdjWIoJ79eRNqjWqRL0Od5tgbv1mD7Js+X1wK+3C9N/eoWqjSoiixA/TfgEZLh66woWDV6h/z3UKCgr/LorzMccHWJmfJ6QC1smyvFUQhJnAGVmWNz/oQlmWLwuCsA5LErQZGJ2/zYYgCGOAnVjK57+TZfnyE65FQaFIstNzeKfrXKJD43n7i0F06Fe8UvE77N9wiutnw+j5Rnurg7J91SHO7A2mSr3ypCdnIahUVK1fgdjwRNKTM4v1iUoQBHq92RGAkc0+QjSL5OUYOLXzAt3faF9ofPUmAUxYMoxZAxdjyDFyZk9woTHFwcXDiW7D27HrpyN0GtDisZ0gUZR4u9V0Im/E4letDAsPTS8UVbN3tmPujoIK8IIg0KTL3Q7PI+cW7Jjf7x1LAnxmWjb2znbkpGVzfPNpJLNIlYaVmPn7uzjnzzk9MQNZljEZzWh1Gr4+Pw+1RoV3eS/O7Qsu0PDv+plQqyOUnZ5D6xebsG/NEZw8HPlo3QTiwxPxq14WWZILvH53tgEVFP4zKBGhgsiyfBGoW8Txjx4wvs19P88GZhcxbjuwvbgTVVB4XE7tvkRsWALGPBMrZ28skSN0/VwYC8auwmgwcW7/Fb45NoNbwZF8PeUXDLkmnN0d+GLHJNy8XXDxcGRw3Q/ITs9FpVbx8vjnHxgNup/Og1rx7dR1aHQa6rYNfOA4O0cbkC0yBnYONsVex/2MnPsqI+e++tjXA6QlZBB+NRrRJHLrUgQpcekc33YOtUZF50GtiQtLICokjnrtLNpSJSEv28CoJh+SHJuGzkZDl2HtSUvMYNjH/XFyd7Qmw3cY2IorJ24QF57A+GUjrAKeYHGSBLWALFr6J9XrUBOApRNXsemrP3BwtefzA9OxcbBhVMMPEASo0rAS8/dNY8isfmz4chvtX2mBf+3yT/ScFBQU/t4oG98K/3qq1CsPgoDeTkeDDjUAS3JtelImHmVcC6if348pv5eMLMnEhCfSvexo+k/okr+lYkmErljjbrqbIdeILMvodFoa5b/xFoeeb3agVa+G2NrrsX2IgxPYuBLvfj2c0EsRdBvertj2/wzcvJ2p374Gp/64QKPn6rBtxT7WL9gOAkTdiGXrt/sQBIF67aoz7edxxbabnZ7Dp8OWkRCZDIAxD5r2aEid1oGYjGbeajqFm+fCeH5YO3qM6myVwDi54xy+lUtTqU55XEu5kJuZa/1kK0syE9vNoP/7vdi4aDvIkJuZy+0rUVw/cwtjfhXatVMhvOA0iIq1/Pg5clmJHTgFBYV/HoJ8v2Le35gGDRrIZ86c+aunofAPJCU+naSYVALq+JGVls2IZtPISMmm0yvNeDtfiuNBbP52Hwc2nCbkUgTGXBPu3i68PX8AF49dp8ugVpS5p2rr+rkw1s7fRr22gXS/x1EJPnGTU7sucXjLWdy9XZi2ahSOrvZ/2nr/DE7sOM9XE3/Cv1Y5Jq8cZZUIMeYZ0dno+PLt79m58iCCINCwUy3O7b+MIceIIMDw2f14cWzxujG/1WoaoRcirF25S/l5sCJoLlqdhpvnwpjQdrpFbkMAjU6DaDQjy6Cz1VnyiAT46uQcTu04zw/T1yGa7vY3EgSsydE6Gy3fXf6Cd9rPIPZWQqF5vLdyNB0HtHrCp6ag8GQIgnBWluUGz+p+tj6+csUhE57Jva58MuGZru1BKG09Ff4VmE1mlk9dx5xh33Bs23mGNZjMlBcXWPvNuJVypnLd8giCwI3zt60djw/8dgqA377ayfs95hN87EYh292Ht2PgpO7IoozORkvtVlXISs+hfrvqBZwgsCjVT189poATFHopkil9F/Drop3EhiVy+WQII1vP5Pyhq3/iE3n6LB7/I4lRKQQduMqZ3Zesx3U2FrmSIR+9SNNu9WnRoyFvfTmUCvmRMlmG76evL/Z9okPiEc2WBPROA1uy/OwnpMalsf6LrRhy8nD1ckKr1yIIAmaDxQlSa1QYc42IZhGzSeSz4cvoPqoz7fo1x8HlrsMp528relfwZNm5uSBAblYeADb2+gLzuHnm1mM/KwUFhX8OiiOk8K9g95pjbPl2P4d/P83Hr31NdGgCZ/cG8+OcTYXGVm1QEVcvJ1Rqga6vtSHkYgSrZm8i6NBVpr+6uND4nMw8pg+0CElqtGrUGjVfjFvFtFcWc3LnRcBSiZUQlVzk3JLj0hAEgTvRV1mSSYpJZeagJU/vATwFVn+yiR6lRjDt5S8RxcKdpivWKoeNnR5Zlikb4F3ovLOHI1NXv8UHK0fh7uPCrPUTcHCxx8ZeX6LqtonLhlO6Yik6DmjJ+CXD0NloGdtyKt9NWcsHXecwd/dUvgmaR2DTytjY67FzsmXSyjHUbm3JrRIEkESRjYt3MOqLIay5vYTuIzuj1qjQ2+no+kYHVt1YRNkAH35f/AcZSZbG+VUbVyogrir/17rKKSjcQX5GX38TlA1whX8FmSnZGPM7Rt+jjkBUSFyhsfZOtqw4M5u8bCN2jjbE3IpHlmVUagGHIpoLXj8bZu3fk5MlcmZPsFWH6tTuS3iX92BcpzmYzSJDpvSkz6hOmIxmgk/cpFyAD/XbVadDv2ZcO3uLUr7uHN16HrDkE73bfR63gqMY9Ul/2r/U5Gk/lmIjyzKrP92EJMoEHbxCWHAklWoXFMH8cNVoTu++iG9lH8pVebTelpO7I9+e+4TwK1E4uTswo98CKtQox4DJPR+qMdW8ewOa5zdKPLP7AvOHLyMlNi3/NVJhMpjxrVKaT/+YQvDR68SExjP/9WUICDTr2RCNRs2JbWf5aeZ6Qs6F8dG6CYxZOJQ+47uSFJ1M9WZ3u3FXaeCP1kYDCNRtV4OwixFkpmZjY69nwJQ+j/cwFRQU/lEojpDCv4LIkFjr9zWaVubS0euo1Cr6T7zb4TnschTRofE06lwLnV5rqcACSlcsxax1Y7l8MoT2RaiwJ0Qno9aoEc0irp5OuJVyJjUhA0El4FPBg6BD1zCbRUwGM3t/OUGfUZ2Y9spirpwKRaUWWH5sJmPmWtpkRdyI5dTuS8iSjE95T24GRZCXY+Db6etp/1ITS0NBQXjmSbqCIFC5fkXCL0eht9XhU76w+KzORkvzF+oXOCbLMvt/OU5ejoFOA1sWajzoWsoZ11LOvNl4CmHBkZzbe5mAuuVp2rVesea1ZOwPJMekWhtNevq6o7fT5c9HR732Nbl46AomgxlJlBCABp1qc3LbOURRIis122rLp4KXVfzzDq37NsXT1x1TnolarQPpNqITYZciqNqoEnpbXbHmqKDwr+JvFq15FiiOkMK/grptAjm44TSCAJ0HtGDWurcRBMHa5C/schTjOn6MIAjUbVOtgLgqQO2WValdhFQEQLOuddn87X7iIpJ4+/MBlCrrzrzR3+NZ2pUug1qTmZbNms+2kiXm0Ce/4/S1s7fIyzFgY6cn8macVTOrXGUfFvzxAWFXo/Cv4cv45z/Fxk5PjSYBnDt4hWmvLEatVjNv86NlQtwAACAASURBVDsE1PErcj5/FnO3TeLG2TD8qpYutuzGju8PsOy91cjIRIXE8cbH/YscZ+tgg6BWIcnSQ6vi7qdKo0okxaSQl2PAbBSJvBbDknE/MP23d6xjuo/sTNC+y+Rm5TJ0Vj9K+5ciLDiChIgkRswb+Mh7BDa521TTyc3BusWmoKDw30BxhBT+NmQbLNtP9vqSfxJv17cJ9i723LoeR/32NayRiaATIaxfcQjJYERSCZiyDVw5FVoi244u9ny1f2qBY0sP3m2jZedow9qrn2E2idZKqmHT+rBi5gYCG1SkepNKBa71r+mLf01LIvHyYzOICUukRpNK/O+1rzEZzJgws2fd8WfuCOn0Wmo0e3Cn7aJIjktDNItIokzyPSKr92LZ0lKjUqlw83GjZvPiC8W+8+2bBDapzJJ3ViEaLFufLl7OBca4ebuw4PDMAsdGzh9c7HsYcg1cOxVCxVp+OLo6FPs6BYV/K/+19DjFEVJ4pqRm5/Lq0p+JTc1kdt/OdKljeVM8GRrJyO83ArB0aC8a+/s+zEwhUhIy+OT99ciSzIGdwXy9ZTwxt5P4YOiKu4McHCHXRI5aS0RoAuX8vQrZOXP4OsvnbqdWw4qMmNwVjaZ4/0VUKhU6/d28l65DWtN1SOtHXudZxg3PMm4AtH+pCWf2BiMIAi26FW/r6K/k5M6L7NtwGnc/T3wrevL6nH4FzkuShEqlIiczjyunQpAlmeTYNNbO20Lk9Vj6T+pO+WplHmg/OiSOqX0XIIkSHr4eJNxORKUScL7PEbpDXrYBna32oflHRTG2xYdEXIlCo9OyOvwrHF0dS3S9goLCPxulakzhmbL/Sijx6VkYRZHFe44BFudozMpNGMwiBrPI5nNXSmw3OTET0SRiyDMREZLA89U+YOKrywoOEgQEL3dUNnqK6qF4+2Y800auJCIkga1rT/BCzal8N39Hseew5P219PEfy4qZv5V4/gAtutXjx6BP+Onip9QsYWTmr+Dzt38gNjyJjNRc+ozrikdpN+u5ua9/QxeXYcx8ZRG2DnoadqqFSiXgG+DNugXbObjhFNNf/vKh9tcv/IOYW/HEhSdSrUllVBoNkiyw/ssdpManFxi75tNN9PIZwZDq75CZnxeUkZzJ2rmbObzx1APvYTabCT0fjslgJjczl2/e/fEJnoiCwr+E/1jVmOIIKTxTavv5IAgCNloNbav5k56Tx7aga5jEu03vXqhbDYC07FwGf72O7p+v5Hps4kPt+lb0LFTynZZ8N1FWrVZh56DH08cZb183Lp0OIzE2rcD4qSN+QBIL/u/cuPJosdaVHJvG9pWHyE7P5bevdj+WKjxYdK2c3P4Z2zNlA7zR2+qQZZlSZd2txzNTszmw/iQAp3ZeIDkmlRm/jOWXsEWMXTQEAQFBJaDVPzzaVr1pAHobHXpbHbVbVcXZwxEbez32znbYO9sWGPv7kl1IokR6ciaXjlwDYPagr/jx443Me+Mbzu8vWsowOTq1QGfxrLTHe90UFBT+uShbYwrPFH8vd3a8O5SkzGxMZpF2c5YjihIqlYBOrebFRjVoUqkcAOtPBxN0OxazJPHZ9sMsH9b7gXbVahU6Gy15+WXu9yOKEjlZBnKyDAAsnrkJvV7LyCkv0OK5mtjZ60lLzipwjUanpl7TSkWZK4Sjmz1O7g7kZObh7OZQooTgR3Hu4BVmDlqKo4s9n219l1K+7o++6Bkwa+3bHN8RRIXqZQs0lrR3tqVC9bJE3YzDs4wbrqWcEQQBR1d7qjbwZ8KS17h8MoTYWwm8XPFthk7rw3ODC28jdujfHN8AHyRJplojf5p3rU/QoSuUDfBh24r91GhWmYC6lv5EbV9qyrZv96Gz0VGtkeU1y0zNRjSJaLWaAo7ptdOhnN17idZ9GuPl646btwupCenobLS8+Xnxc4sUFP6t/NdyhBSJDYW/jMW7j7Fs70lkoF750kzr1R5/L3frJ/TZm/az5ngQAF1qVWbeK10fYg1CrsRwYFsQ7qWcEE0iR3df5ublaERz4eaAd9DpNZTx82DJprEs/GgjOzecRhAERk/tQdU65Sjn74Va/eDAaVxEEsHHb1K/bXU0WjXXzt6iWkP/IvsRPS7vvDCP4OM3UWtUDHy/B/3GPf9E9m5fjyHmVgIN2pdcDLW4mIxmIq7F4FvZB52NttD5yyduMqXXfPKyLZV1v8ctK8JK0Qyp8Q5J0Smo1Cq+DfoUr7LuyLJMQmQyzh6OhF6M4Ifpv1I+sAxxt5MoH1iWIdP7olarSEvIYFDgBIwGEw7OdvwauYScjBxCzodTuaE/tvZPz4FVUHgaPHOJDW9fudKAZyOxETz/7yGxoUSEFP4ynqtVmVVHzmM0m3mtVQMqeroTmpCCj4sj9nodJ0MjrGNN0oOdmTtUCixNpcC7jf4at63G2L5fYZTN1m0zF3d7Auv5cf5YKLk5BowGM+E348nLNfLWjJ70GNQMN08nHO/beimKS8du8EGfLxAEASd3BxbtnYKgUj3UcXocmj5XmxvnwwGo2TTgiWyFX41mbKc5CIJAg/bV+fD7N5/CDAuj1Wnwr1Xugee9y3uiUgnY2OsLiNYWh5T4NExGMzobLUH7L9NxQEsEQaBUOQ8AZr2ykNT4dK6fvcXHm96lRrMqxIYl8OPsjXiWdUMUJWRJJi/bgCRK2DvbU7tN9Sdar4LCv4p/TnzkqaA4Qgp/GZVKeXD0ozeRJBm9VsOE1ds4cPUWDjY6Nk8YjKv9XWfERls4qnA2PJocg5EWlctz5vAN/jd2NU7Odsxf8yZepV3wrejFqv3vs2XNCX5etg9JlKjbLID35r7MuWMhfPj6CmTZUt795dQNTPqsH36VShW6T1HIsszU/osw5wt6psanM6L5dExGM96+7kxfMwZHFzt2/nSUdYt20qJbXUbPfeWhSvcPos/oTtRvVx07Rxu8yj7ZtljEjVgEAfJyDNy8cPuJbD0J7t4uLDvxP8KCI6ndulqJrp3y4xiWT15LTGg8i8evIvxKFG/MecV63tndkfTkTEwGM3OGLOG1mS+zYdEOQi9EoLPVUbGmL7FhiQz+qI+1z5SCgsJ/FyVZWuEvw2gWSczMRpf/ZnTw2i0MZjO5RhM345IY06EpDnodno72jGjXqMC1uy7d5I0VGxj/01aW7j3B2qX7MOaZSE3O5NCOi9ZxDk62vDS8FQPGdKDn4BaMntoDAK1WBdx1SuKiUko8f9U9ulTdXmuDIddIXraB8GsxvN7kIwbUep9vpv1KWmIGu9YeIyokvsT3uEP5amXwKutOcmwap/dcIi/H8Fh2GneqRY2mlfEo7Wrtdv1X4eXrTuPn62Bjp3/04Hto/FwderzZEbVGjSHXSNDBguK1H29+j27D2qHWqEiKTuWLUSssfaXyNcjCgqPITMli87LdT3M5Cgr/Dp5VxdjfKOqkRIQU/hKyDUa6z19JYmY2zSuXZ+nQngxuWZ9v9p3Ez8OF6mVK0evLVRjNIgazmbNh0Xg42mMwmfFwtOd6bCImUUSUZC5HJ9C2QyChVy3RjpoNCwp8qjVq+g4vmIy78KONqNUCZklGb6Ol95CWJZq/IAg07FCTY9vO07hzLUbO6Ud2Ri4n/riAWqMiIyUbBEt0wpBrRKNR41bK6YmeWXpyJm80n4YoSpSr7MPC3ZNLbENvq+N/v7z9RPMoCRnJWdjY64vMExJFibxsA/ZOj96GvJ9WvRuz/bsDJEWnMGzmS9bj4ZejyMnKpd+7L7Drp8Oo1CpKlfNg6pq3+PWL7Wj1WjYt3YVKrXqqeVwKCgr/XBRHSOEv4UZcEvEZWcjAoethxKRm8HanZoxq3wSNWkVSZjZRKRnW8bM27WPOlgOIksxHvdrRr2ltjt28TZbByPjnmuNoVrN383m0Wg0e3kU33LuXuOhUzCZL3pAhz8TPX++n5XM1iz3/5Ng0jmw5i2iWOLLlHJdP3uTdJa8BsOPHw3w5/kdMBjN6Ty2jP+1PYCN/7J2e7I03PiIZs1nEkGPkVnDkI8eLooQhx2jVVHtSZFlGEqVibydt/noP30z+Gb2dnsWHphXQ+cpKy2F0i2kkRqfw0vguDPmo+AKn6UmZfDF6BaX8PJiz5T1cPC0O5umdF5j16iIQYOCU3nx1dCbXTt+i8fN1cHS1Z+S8AQBUaVCR8CtRvDC8fQlWr6Cg8G9F2RpTeOaYRJFbCXe3otQqgbj0TACiUtIZsPQX3lm7nXuzaWRZxmgWMYkiG05fxtPRnrWj+7NlwmCOrD3LiBe+IPxGPKHXYvj124OPnMP42X1w83JCrVah1Wvw9Hm083Qvjm72BUQ554363vp9sy51rN+nJKRTpV4FPHxcS2S/KPxrlaNxp1o4uNgxfPqLDx2blpTJoDrv82Klcaz7svhNIR9ESnw6A2tNonuZ0excfaRY12z7bj9mk4jJYOLs3uAC5y6fuElGciaSKLH12/0lmsvqOb9zcsd5Tuw4z/fTf7Uev3o6BKPBhCHHSNBBS5l9h1ea4+hqX+D6lj0bMnByL1y8nixCp6Dwb0R4hl9/FxRHSOGZM2/bIWZv2m/dIi7v4UqdcpZqr9mb93P+dgxBt2Os5/UaNf2b1rH+x3muVgB/XLzO1vNXiYtOYcP3hzHkmqz27+Qjh16NITo8qcg5tHuhLqsPfsCMrwfzxntdmDSvX5HjHoROr8X1HqmH5Ng0lk/7lZO7LlqqsvLzhxq0q45XWTfO7A1mYte5bFhaMC9FlmW2rzrEihm/kZaU+dB7qtUqJn/7ButDFtBzxMOjGRePXCc7IwdJlPh9+b4Sra0oTu2+RGZaNqIosW7hH8W65oXX26PRqtHZaGnQoWC0rWrDitjY26DRaWj3cpMSzcW9tCuyBLIos2fNUZKiLU71c0Pa4O3niaASuHDwCqd3XXyEJQUFBQVla0zhLyAiOQ2D2Wz9OTkrh52XbiDKMmVdnbDRapAkGZ1ahVGUMJhF1h4PAsHS6Gv9qWAiUywSC681rYfeRodabcaQZ0aWZLavO43eRsfvq44iyzLTlw6mYlUfdDoNtvYFE3PrN68MzR9vHRVrlCXudiKiWcJsEvntq91sXr4fWZaRJRmNTs3737yO2SQyc/BSjHkmbl64TYP2NShX2QeA4zuC+HrKOsxGM6GXIpj6w0iWTv6Z7Iw8Rn/aH7dSJYtU3aF640ro9FpEk0SHl5s+3gLvoWbTAFRqNTo9tO7VsFjXdBvejtZ9GqO301nFaO/ojzm7O7IyeB4ZKVl4lC5ZtKzP2Of57qN1AJiNZqa++DlLjs3Cq6w7XV5ryw8z1mMymFnz6SYadqpVsoUqKCj8rRKZnwWKI6TwzHm/WxvSsncQEp9MnslMLV8fPly/C4BhrRrwYY922Nvo+PHIOc6HWyJDqvwwj1arRqdRYxJFZBnicrJZ8vvbBJ8NZ8msTWRl5CEAF07ewpBnQhAENq8+zplD19Fo1cxf/SYVq/o8lXW8s3goW+tXYPlH663HRLOIvZMd2Zm5VG9ciRf9x6G302PnYINoFhEEoUDOjjHPEsmSZBljnpmNX+9l//pTiKKINt+RKgmiWcRsEnH3cWFV0CdkpuXgWUJHoyjK+JdiVdAcMlOyKV2xsFjtg7izLSXLMp8MXcbBDado0aMBU1aNQmejLbETBKDRqGnQsRZndlsiPrcuRfDj/zYwaGofarWsikarRq1V07x7/RLbVlBQ+O+hOEIKfyoJeek4aW2xUd/Npynv6crPY15BlmVMosjnO45w9GY4sgyx6ZmM6miJYHSqEUDQ7RimbdhDeQ9XXqhbFYNZpFHFsny4fjcGk5kybs5E5GXRtlsdnF3tmf/Br9g72vDisJZ8OXUDdg42pMRnYDaJSKLEqYPXnpojpLfV8dzAlnw/a6O1n1Cl2n58tGokelsdH768ELNJRM420G1MJ+ydbKnVvHKBfKFWPRsQFRJP9K0Ehkzpyek9lyxl+YIaZ4+SqaDHRybzVvvZZGfkMu7LQTR7vjbHt5/Hr0ppares+sTrdXSxx9HF/tEDiyA9OZMjmy1d4Y9vP09qQsZjR7sAZvw6jvee/4TLJ26ADMHHbgBQtaE/312cS3Z6Ln4PUbZXUFB4MP81iQ3FEVL401hyYxerww5jp9GzpvnbeNoUTE4VBAGdRsPrbRsRlpiKwWymU40ATKLIz8cvsGDnUWqUKUWbqhU4eD2MyJR0hrS0fMof1KIec7cdZOmeEywTYO3o/twIjiIjLYfU5Cz2bwli3YmPuBEcxc9L96HWqNDrtTRtH/hU12jvaMv0n0bzx+ojPPdqCxq0r2E9V7NpACFBt9Ho1LTp3ZAKgWWt50IvRTJv1Hdkp+eQlpxJ+75N8CrrRpfBrdBoNeRlG+gyuFWJ5nJy5wVysnIRzSK/Ld7J7jVHuXrmFoJKYN6md6lSr/zTWnaJcXJzoFzV0sSEJuBd3rPETt79aLQapq5+iym9PiM9KZPX7imh9yjthkfph1ysoKCgcA+KI6Twp7Et+hwmWcQomQhKDaejT+F8jRyjCVudlvmvdKHr/JWMX72V6mW9ORsehSzDmfBozoRHA/DZ9sMs+OMo7ar7c/haGLmmu3lG2y9cp6anI2q1CpVKwL2UE3k5RiYN+oa8XBN6Gw0/7H0PxyfoHRMfmczMQUuQJZmpK0fiU94TgAbtaxRwgACunApl84r9qLVq6rSsWsAJAlj6wVrCr0Zbf979y3EGfdADt1LOPDegRYGxRoOJw5vO4lXWjZrNKiPLMr9/vYeokHj6T+xqjTDVaFIJMT8ydft6LCqVgGiWsLHTkRKfVuSajHkmLh69TvnAMiWubLt+Lpx1C3fQoF0Nnh/08D5MKpWKL/d/RNTNOMoGeD8VGRLXUs4sOTbrie0oKCjchxIRUlB4Orzs15SlN3fjoLGlgXtF6/FrMYnEpGVgr9My8offAfjghTZk5ORiFCXOhEU90KZZkgo5QQCOeh0dn6uPVqchOzOPTn0aYMwzWTXGJElGpbr75iuKEt98spWw63GM+KAb/tUeHUL4ddFOwi5HIcsya+ZvY+KiIQ8cG3c7CUEQMOQaiQ1P5Pb1GFLi06ndogoqlQoXT2dUKgFJktHqNbh5OePkVvS204Jxqzi69TwAM1aPITszlx8+3oTJYCLiRizzNr8LgN5Wj0anwWSwJI1LMrh7O9O0S10aPSBpeHLfBYRcjEClUrHi5CxcS1BSPrX/QjKSszizN5iqDSoUcvbuR6fXllhXTEFBQeHPRnGEFP40BlVsTZ9yTbBRa1ELFick6HYMA5etQ5JlbLUaDGZLBONseDRatRqjWFBc1d/LjejUDMq4OBGZkgaCQMcaAQRHxZFtMBKfkY1WraJ1tYoIgkDbbnd7+Oh0GiZ91p8d607R5eVG2DvaIIoSQSdCiAhJYOdvZzDkmpj33i8s2zL+kevxr+mLVq8FASrVuvuGnpmWzfHtQQTU8bM6Ay261+PkrotE3Iil+/C2vN3hYwQBOr3anFFz+nMzKNziBOk0DJnck+cHWbbEiiLqZhyGXCM6Gy2x4Yk4uTvkf2ITkO/55OZTwZO6ratxatcl1GoVaq2acQsG0fC+0vXg4zfZ9sNB2vRuxM2g2xhyjdjY6YgJSyiRI6TTWWQrZJkHzl1BQeEfiBIRUlB4Mi6lRfC/Sxvws/dgZu2XrU4QwI4L15Hy373vjercjE8m23i3F5BGreLd51vRvX41HG30ZOYZ6PLZ92TlGsk2GNgycQgvLvyJ+IxsAE6GRlLFx7PQXJp3rE7zjneVxb+auYn9W4IwiyKyJCOohAKNEe9wYNsFosISeeHVpjjnVz49P7AlPn6eSJJE3XuEQif1nE90aDwg8M2xGZTydUen1/LBckvF17bvDyLLMoZcE5dPhACWhoxJsamoVAK1mld5aPfntz4bwOdjV+Lj50HbFxuht9UxeHIPokLieeWdrtZxKpWKmWveQpZlbpy/jY29Dr8qBSNdJqOZyX0XYMwzcWTrOQa+1511i/6gVrPKVK1f4f5bP5TpP43hl4U7aNm9Pr4B3iW69g6SJPHj7N+JvBHLyHmvWpKxBazl9goKCgp/NoojpPDU+Th4I2HZCcTmprI37hJdy9QD4FZCCr+eCi7ymptxdxsflnNzJsDbg71XQvh020Ea+/vyWusGpGXnIQP7rt4CoHu9aoTGp6BWq2haqdxD55SckMHH49YQciUao8GMTq/BLEnIkkxESDxZGTnMmfAzSXHpdOvfhBWf7cBsErl0OoxPV94tYa/TylJ9tXP1EdZ+vp0WL9QjNjwRQ64JGzsdybFplPK9qxAvyzKBjf0pH1iGpOhUXp/RF4BZa99m5+oj+Nf0JaCO30PnHlDHj6UHPypwrPfIjkWO3bXmKPt/O0WfUR2pUq9GofOCgLXZoyAIdHq1OS+Nfe6h97+X6+fCOLX7Es261mXWkKWkp2RxKziS5t3qoVar2LHyINdOhdJ3XBfKBngjSRLhl6PwLOOGo5tDIXsbl+xm7bwtAFw8eo28LAOCIDBn87sENq5U7HkpKCg8JWSlakxB4Ymp4OBFdG4Ksgy+dnedgoSMLFQP6Kvu7mBHSlYOoiQTn5HFqI5NmPLrbiRZ5tStKAa3rGcdK8uQnWeka51qdKgRgL1Oh7Pdw/W01q84xLWLEZZGh1o1ao0ao8ESkZJk+HrJXs5djkROy2PzT8eQseQRZWfmFbIlSRJfTvgJSZTY/O1+hk3rw5YV+6nbuhrVGlYsMHbmoCWc3HsZJ1cHJi4ayuZv9zF35ApGzH6JfuO7FPOJFo+EqGQWvbsak8FM8PGb/B6xqJAumEar4dONE9j501Fa9qiPSwmqtzLTsnmvx3wMeUZ+W7Ibs9GM2SQSG55ETkYukTdiWDZpDYYcI8e3n6dD/2akxKVzbOs5tDoNXx2dgSHXiE8FL2vEJy4s4a79lGxkyfIXeM+aI4ojpKCg8ExQHCGFp870Wn3ZFxdMaVs3arnejdQ0quiLn4crV2MTAdDkJwsDvN25GXsvh7L/yi0MZpGTIZHUKOvFlegEAst4Ud7DjQBvD27GJ1HaxYkms5YgCDC6fTN61gvkUR1p/AK80Oosv+4mg5ncbIP1XKlapdl+4gZmd1twt8W5nDsRWbkIWhX2VQs3DxQEAc8ybqQlZqBSq6hUx4+0DAN//HKK2q0DaZGvNSZJEsd3XwaVivS0HGYM/RpBkjDlGvjqvbW07lm8Ds3FRafXWhpPCpYeR8IDvM6q9StStX7FIs/dz9Ft51n+0XqqN67EkKk9kUQJZDAZTbTt3ZhDm87Q6V49r/xPkhnJWWxYvMtqx5hnYlLXuaQmpOPt58mSYzPQaDUMnNKLI5vPkpaYYb1Yo1XTslejx34OCgoKT4gSEVJQeDJ0Kg3Pla5T6LhKJXAjIcmqticiI6sAGdaeuMiUF9pyIiQSAXi5SW0Cy3gRn5HFrfgUui34AZMo4elkR1xmJqIsgwwL9xxj6b4TjG7fhNfbFHzzTM/IJTMrj7KlXencpyEepZxJT8vh88nrLWEgQGWvIzwrB7MoWUXKEpHA24HcPBMh0SncjyAILNz9Aaf3BBPYyJ/tPx4lOz0XgE9H/UDDq3PR2+pQqVTobPWYjJbIkyxb/rGx0+Ff8+lXT7l4OjFn4wTO7A2mTe9GBarkHpcvx/9EZmo26UlZdOzflLFfDGTPL8fpNaIDjTvX4p2vhlrHBjYOYNT8Aayes4mEyORCtuIjLNufMWEJli3Ech44uTkwbc3bTOr2KYZcIwDPD21N3TZPt9+TgoKCwoNQHCGFZ4YoSRYHRgDkux86NGqB6mW8qF3Oh1PTRwMWpyk+PYvN569yOToeU341WVJWDmrhbqRDLQgYRZGN564UcITCI5N5c8KPiKLEq30bM6R/cxq0rMKgUd+R7eOAJtNAncb+ZCFzNTTeep1Op6Zj20BOnwsnNDyR0cPbFrkWZ3dHq4ZXzaaV+O1ri7CpJMlkpuVYE7CHf9STr6f9hlqjJrBhRYZP6UFidAr121Yv0u6vi3ey9vPt1G8TyPvLXy9xv53Ahv4ENvQv0TUPwzfAm1vBkcjIlPJ1p07Lqg/VLus8oCXXzoSy47uDhc751/Yj9MJt6rQOxCs/j+rI5jN8MnSZtTM3QExovFWTTEFB4dmj5AgpKPxJqFUq9Bq1pWT+nl2bN9o2ZmTbxsiyzLnb0bjZ21Hew5XXVqwnIjnNUgouCIiyjCxD00rlaBrgR8PyZRix8nfScnIZ2KxgBGrD1nMYjWZESWb/kesM6d+c9Ixcbkcmg16DSa/BZKvBxVaHPlKNJMPgfs1o1rAi/hW8GNC3+IrojTvWpO/oDuz+5SSd+zfBw8fFeq770Na8MKQVwj3OW6VaD07s/n7WRosUyO5L3AqOJKD2wxOp/2z+98tbHPz9DDcv3Cbo0DW8/TwKrOUOhlwjh38/Q9lKpTAbzKjUArIEYHnNBEFg6LQ+1GldrUCp/dk9wQWcIIDzB65ybMs5WvRo8CevTkFBQUFxhBSeMZvGDmT5gdNci03kdnIag1vUY3R7S4Th8z8Os/p4EAaziCTL2Gg1iLKMBnizTSO+OXgakyRxPT6Jr4f2BqB5JT+2XrjG1qDr9G1YC41axb7D19i0Pch6zztOjb2dDq1GjSm/d1HwtWjUajVqtQpZlPhp3XGaNSxe7sz9vDa5B69N7lHkuaIchwdRqVY5Im7EotGq8fbzeKy5PE1sHWw4s/cyJ3ZeZK/mJLaONrQpQn1+ztClnD9wBWQY9dmr7P/1JKIsMnByL87uDaZWi6rUb1+j0LPoPqI9R7ecJSMlyxoiVGlUqJ5C52kFBQWF4qA4QgrPlHLurszq0wkAg8nMrss3uRQVR82y3py6FVWgt1CeyYyApZt0aVcn7G10ZBuM9Kpn2VYymkW2XLgGwJWYeG4np1LR043TI1NRqQAAIABJREFU58OtNlQqgY75+SYajZpVS4ey6ucTlPJy5OcNZ8gzmBDymwLq9Rpu3krAv0Lx1dWfNvM2v8PlkyFUCCz72AKnj0NMWCJHtpyjXutqVKpdMGKVmpCOaBKRJcmaC3U/UTfiMOQY0dvpOL//CnJ+a4Kze4KZv2vyA+9bobovC/ZOZUTjKZjyq/iGzehL0651n97iFBQUSoayNaag8GyY+PN2Dt8IQ5Jkyrg5Ya/XWbfA7pCfX0xESjr7Jr1ORm4eXk6WfjSp2bmoVQKiJKNVq5k+43ciI1MIrOKDVqvCZJIYPrCgbldpb1feH/c8siyTlpHLmfO3adU0gC07L1LGx4UWTQKe5SMohN5WR70nTBS+euYW0aHxtHihHjZ2+keOlySJ8c99QnZ6Lms+28bK8x/j7H63548h926jywdVoo37aigLx66kfGBZur3ejuPbzqPWyLTo+ejtLZ8KnnQa0JJDG0/Te3Qneo3qVIxVKigoKDwdFEdI4S/jaszdJOiI5HQAvBztScrKsXafVgkC5T1c6duoJjZaDTbau2/QFyJj0ahUiJJIdpaB6Og8ZBkuX4ulSqVSLP1swAOTjQVBYPybd5sSjhjS+s9a5jPju1kb2LHqMDmZuWi0Gg5vPsuM1WMeeZ0syeRk5iGKEipJIi/HUMARKl3Ri8ibcSBDQmQy2Rm52DvZFrBRo2llJv8wkojrsQTUKc93Fz4lNzOPssXoOC0IAm99MYi3vhhU8kUrKCg8df5rydLKRrzCX8arTetyf3whITMbSZYRACdbPZ/07czW8YMp7VJYA6uxvy+2Kg3IMnaJklVgFSAjM++pKJz/nZDlB/91So5NY8PSPWSmZiOaJQy5RqJC4oplV61R8/7y4fhVK02nV5oxrtMnvFrjPW5fiwFgwsLBDHivG5Ik8euiXYxpN7uQjdvXohnbdhafj/yWWQMW4+7t8lAnSJIkrpwMITk2tVhzVFBQUPiz+He9Uyj8I4hNy+T0rSgGNqvL620aUdXHE3cHW8p7uFrHyMCJqaPoVqfaA+0429rw9UvdKXNDwDmj4K9yn+71HnDVP4/k2DQG1p7EC6VHcWTruQLn8rINRIfGY+9si52jDXo7HTobLeWq+DD+y8HFvkfQoWvE3U5ix6ojpCVlkhKfwabl+wHIycjl0vGbmE0ikigRdzspX1vtLjGh8QiCQF6OkfArUY+834Ix3zO5xzyG1fuAmPtsKSgo/IXIz/Drb4KyNabwTAlLTKH3otXIskSzAD+WDOrJuE7NAcgzmuj02XckZeXQrXbVYtmrGViWn799nZTUbMZMWoshz4Rer6Hn84UbOv5TObrtHGlJmZhNIt/P2kiTzrXQaDVkpmbzRvNpZKfn0qJ7PZYdmsblkyHUal4ZZ/fiS2cAnD94FUOOEY1WjSCoUWtU1G1teQ0+eXMFl47dKDD+y/E/MXfzROvPDTrWokHHmtwMCmfM/IGPvN+5fZfJyzFiY6cn5MJtSvuXKtF8FRQUFJ4WiiOk8EwZv3YbBrOlOujAtTBCE5Lx97I017PRaTk0eQSiJKEuQTM9d1cH3F0dWPXVa1y6Gk3DuuXRav89v9o1mla2NheMu53IB32+YOLioUzsOpfUxAyQ4dj2IN5bOoyW3es/1j2GTu3F52+txLucB6Pn9cfB2Y5ylX0AkETJIt2hFpBECbVajZNHQQFVrU7Dhz+OLv79pr/IonGr8K3ig7uPCwOqTkBno2X2xon4/IVVewoKCvytojXPgn/Pu4XC3x5ZlguozGtUAjfikqyO0B1K4gTdSykvJ0p5Fc4l+qdTtlIpPvx+BDMHL8NkMBF8PISv3ltDcmyadUzPN9oX254sy5zcdYmstBza9G6IRqumede6NH9AyfqkZa+xYsYGjmw9h1qjxq+KDxMWFn/brSja92tG+37NAJj5yiKSYlJBgC3L9/HGx/2eyLaCgoJCSVByhBSeGYIgMKCZ5c1WrRKo7etD66qP18Dwv8LlkyG86D+OmYOXUr5aaVQqgT5jOlr1ywD8a/gyZErPYts8+PsZPnn9Wxa/u4YVM3575HiP0q54+bqhUqkQTSJJMWnYOdgAFqfqm8k/MzBwIluWW2RGUuLTmdh5Dm+1mvHQ/J/MlCxMRvPdpG4ZTu28wI1zYcVei4KCwtNFwFI19iy+/i4oESGFZ8oH3dowqUtrVA/oR6NQkJ2rj2DMs/Tx8aviw6I9UwAIvxrNxG5zEc0Sb38+4KE2RLOILFtU3QHiI5IRzSJms0jMrcRHzmHLigNsXr4fs1FEpRYY+P4LACREpzCu4xxSoixRvqXv/USXoa3Z+NVOrp4KQZIkVs7awAc/jAQgOiSOfeuOU7dtdS4duc5Pczbh6GpHTkae9V5RN+OY0ms+v95eXMInpaCgoPB4KBEhhWfOf8kJOrTlHMNbzmTp1PUPLX9/EK17NUSr16LVa2jT+66obPlqZVh34wvqtw3k/d6f88uCHUVeH3opkr4BE+ldYSznD15FkiTUGhWeZdwoX7U0w2f2ASyRnfiIJKsC/L3ERSRjNooIgmU++9adpH+1d5n2ymJSEjIAS7TPs6w7KrWKclVLo9VrsLHVUz6wrNX+hE4fs2buFib3+IzNy/cimkVyswyFmjSq8x02BQWFvwilakxBQeFp8fn41RhyjSTFHqddn4ZUqVMyEdX6bauz+tKnyLJcqBIs7HIUZ/ZexpBrZOWc33lp7HMIgoAsy9wKjsLJ3YF9v54kN8sScdm0fD9JMan8+MkWjHkmVGqBlR9v4sPvRrBw4mr2/HwcB2c7lh2ZVqCh4ktvd+b8wSvER6ZgMpi5FRyJIc9EXo7Bcj+dDq+yriza+yGCINChf3PcSrlgzDPSOL967/bVaLLTc5Aly1+/ag39ObblHIY8I05uDlYHTKUSqNG08mM/bwUFBYWSokSEFBT+RLzLuaO31SII4F7K+bFsOLk5FFkO7+3ngc5Gi429noDa5a2CpqvnbWVCl08Z3ngqZSuVQmdjiSi1fbERhjwTUn7jSUmUOZOv/r5z9VHMJpH0lCyu35ejo9VriLoZT25mHsd3XEBGxsZOR4XqZRFUAoIgULFWOZzynSdBEKjfvgZNu9ZDpVLx48cbebPJVESzhJO7AyM+6Y8pf7sPGeq2CcTFywmVSkCSZOJvJ6GgoPDXIcjyM/n6u6BEhBQU/kTm/TaW47suUaWuHx4+Lk/VtoOzHcuPzyT8SjTVGt5NOj/xxwUMuUa0Og2GPCMrz3+MaBZx93bBZDSze80xbgTdBizaZvc2R5QlGb9qpQvcR6vToLPRIgM6vYahH/bk0KZzxIQlIEsystlM8KGrXD5xk+r3abUlx6Xx8/xtFtuyjNloplaLquht9QQduoqgEnjh9fa8/eUQZr26mITIJEbOe/WpPicFBQWFhyE8Tt7CX0WDBg3kM2fO/NXTUFD4WxAdGk96chbVGla0RoMATu66yMfDv8HNy5nPtr6Lu7cLSbGpTOwyj7SkTPqM7sivC3diNokIKoHWvRqQm5nHyV2XaNOnIZOWDSt0r6iQOE7svEjlOn5M7bfYmsAtSxKYLN87uNixPuIr0pMzmdF/IemJmZjNYoEIj1qnRqvRsOL8HESzhFavwdXr8SJlCgr/BQRBOCvL8qPVi58S9h6+crUe45/Jvc5+N/GZru1BKBEhBYV/IFdOhfJBn89BEOg1oj1DpvSynmvcqRabIgpWXR3ZfI6UhAzMRjOn9wTz4phOrP9qF5IokZdjZPrq0Yii9EB9trKVvHmxkjeJMalw74enexww2/yS+l0/HubG2TDMJhG1xpL4rFILyDKIRhGNRk1SdCpVGjz91glXT4YAUK1xpaduW0FB4d+J4ggpKPwDuX4uDEmUMRlNnD94jSFTHj6+RpMA1GoVKhstzbrU4cUxnTAazKQlpjPsI0vlWHFEaj1Lu/LesmEc3HgGjzKuOLnaoVYJZGfk0HlASwD8qpVBrVGj0Wpo0qUON8+HE3c7CZDR2+vo+EpzKtevAEDkjVjCgiNp1Lk2Nvb6J3omO1cd4qvxKwEY/cVgOg9q9UT2FBQU/hsojpCCwj+QNr0b8cdPR0hNSGfoh70eOb5S7XKsODWTzNRsylcrA8DrM/o81r2bd6tL8251+W7mBlbP24ajmz1LD37Erwu2s+P7A7Tv34xPtrxHRkoWDTvVZMs3+1gxdR1ms0j9dtUZna9FFhuWwJhW0xEQCKhbnnk73n+s+dzhyvEb1uqzy8dvKI6QgsJj8ndqdvgsUBwhBYViEB2WSFZGLpVr+RbIx/mrcPVy4usj04s93pBrZN+vJ7BztMW3sk+xoj+PYueaY5hNll5AZ/cFs2HxTiRRYvt3B3h5YjeqNfIH4PmhrYm7nUh6UibD//ey9frY8ESLYn22gfCrj1asfxT1OtTk7J5L6Gy0vDSh6xPbU1BQ+G+gOEIKfymRcan88sc56lQpQ4emxVOcf9ZcOhnKhwOXIQjw8uiO9H+7U4HzZpPI0mm/cftGHKNm9qFiYJm/aKYPZvm09ez86QhCfon6C6+1eWKbzw9qwfpFu7B3tKFem0A8y7iRnpyJvZMtTm53+xDp9FpGzOlf6PraLavS5Pk6XDkZwhtznkxfbPu3e1n6zo8gw/ivX6dsgM8T2VNQ+E+jRIQUFP5cjCYzH365lWth8YiSRGpGDlsPBOPr7UqVCqWKvEaWZRauPsjx87d4vW9z2jep8szme/VsGKJZRDRLnDt0rZAjdGTHBfb+dgZDrpHPxv3Ekl2TntnciktWeo4lGRoV2Rk5Jb4+L8fAmvnbUKkE+k/oit5Wx5DJPen9ZgfsHG3RaNUsOTqDq6dCqVK/Alrdo/+0qDVq3v/uzcdZTiEuHb2OIceIIAhcPnaDdv2aPxW7CgoK/34UR0jhmXPy4m3OXI4g12BCJViqiQTAnN/oryiuhyXw+54L5BnNzFy6g+xcA20bVcbR3uZPn2+73g3Y9ctJMlKzGfhOl0Ln3bycQJbR6jW4P+VeQU+LEbNeQhYl7JxsS6RUf4fVc7fy+zd7rT/fqVK7N/Jj72xHg441i7xelmUWjV/F8W3n6f/uC3S/Zw5pSRlM7v4ZyXFpTP5hJLVbVSvx/Pq9253LR6+jUqvo/dZz/2/vvuOjqtI/jn+emUwqJYQOoYP0Ks2CCCqirGWxN9y1YC/r6rquit111Z+6rgXFvoqKFXWtKIpYkCIdpPdeQwIpM3N+f8yAAVJhSkK+79drXs7ce869zwlJfHLuKeWuLyK/0xghkShr2rAWzjlSkny0bVGPerWr061dJh1bF/84IyM9FcxI9HkpKAjw2Kvj+fDrmYy693z8/iBJZeiByMsv4Pspi2mRWZtWTeuWOd46DdJ54bvip2V16duaO56/hNVLN3LCWb2LLRdPterV4LYXhh9w/WAwiCOUsB7I0mPL563m6zd/JG9XPiNvHc0plw/cM9bq2zE/s+K3NfgLArx41zs8OX5Eua/frEMmry34d/kDE5EqT4mQxFyzRhm88uBFLF+zhb5dm5PoK/3bsF5GdV6873w+nTCHd7/8lbx8PwuXb2DIVSPZsWMXZw7qzg3DBuy3oeuu3AKSkxIwM2595CNmzl+Fc/DyQxfSPLN2xNrU89j29Dy2/D0ZlcVFt56KWWg7jfNu2r9XbLdtG7PYtmkHzdo12mtQee0G6ST4vJgnibqZGXud8yX78BcEAPBUgIHoIlWeeoREoq9ZowyaNcooV52WmXW4+txjmL9kPdPmrsQfcGRl7cIF4N3PfsXn9XLtRf33lH/0hXF88NUMWjery6gHzmfpyk3k5vlJSfKxat22EhMh5xxTZ68gNSWJDq0bHHA7K4qCfD9fj/mZajVTOOoPPco98y0QDJK9fSfOOQL+AL9NW8qYJz+n1/GdGXzh0QAsn7+aG469D+eCdDqyLen1anDezaeQ2aYB1TOqcf/7f2X2j79x0p/673XtgtwCvD4PgYIggWDxj0dFRKJBiZBUKh6PMfSEbsxZtJYCfwAXCP3p4hzMXbRur7Jjx83EOVi5dhuLlm/k71cM4v9e/Jp2LevTt1vzEu/z6geTeO2DXwgGg9x21SAGHdW+xOQhP8/PE7e8ycrF67nuwbM5rGvTg25rJL1w17t8/t/vwYy8XQUcd3bfctUf/cgnjHv7JwBSqyUzbszP7Niaw+Rxs2nXsyXN2zVi7s+LCLog+bsKmPbNbBywYOpSRk15kIW/LuPvpzwMwM4duVx859A91z72rL58/t/v2bJuG5fec1bE2iwiB8BpjJBIhbNmw3b++/EvtGtRn9MGdmFA7zbs3JXPus1Z9D+8NQ+O/ILsnDyuG9afn35dyne/LKRXl2ZUS0tiR3YuNasl0zyzNqnJibz71GVluues39aQmxfaQ+ve/3zG2K9m8tRd5+z36G23if+bzo9fzCRvVwGP3/Imz1awmWMbVm0mP68Ab4KXTWu3lrt+clrSnranVEsOzQoLfyl8vtA2Gn1P7sbbj/2Pjas2gxnBQHDPFhtzJy0iGAxSkOfnly9ncPGdQxn/7s+MfXYcg4f1Y+RP90WmoSIi5aRESCq8Wx8by+KVG/ncl0CTBrXo0aEJfzi2057zLz90EX5/gKlzVnLbo2PJLwjw8Tezcc6R4PXg8RijP5rCpWcdUeZHQlecdzRLV25m3aYsnIPZC9eyYcsOGtSpUWT5eo1rgYOkZB+Nmpd9IHasXHH/OezMzqV6ehp/uOTYctc/9y8nh/YSc47Thh/HgDP78OmrE+jevz2NW4WWPKhVryavzHwY5xzjRv/AgmlLOeP6kwA4ZmgvPnp+HFvWbefiO4aSm5PHo5ePIhAIsmDaEjod1ZbMQ+ARpMghoYr1CJW6+7yZJQMTgCRCidO7zrm79ilzJXANEACygeHOublmdgFwS6GiXYAezrnpZvYt0BDYFT43yDm3oaRYtPv8oWvj1mxWrdtG58MakbDPqscX3voqS1ZtItHn5a6rTmZAn8P2nNuVW8AN97/D3EXr8Bj4w4/KPB7DY7ZnSr4Z3HP9EI4/quyLNjrnuObuMcxeuIZWTevywoPn4/UUvyLzzJ8Wsnb5Zvqf1oPklMTyNL/KWfHbGob3+n0mXrP2jXlu0v1xjEikYor57vO1m7hOJ8dm9/lfXq88u8/nAQOdc9lm5gMmmtlnzrmfC5UZ7ZwbCWBmpwKPAYOdc28Ab4SPdwY+dM5NL1TvAuecMpsqbt2mLC742ysEHfTp0oyH/nLaXucfuuk0Ro6ZyI/TljDiqf9xyerN/HnoEQA888YEZi9YC8DuYbZHHd6SzVtzWLRi455rOAcPjvySwzs3pVaN1DLFZWY8ddfZbNiyg7oZ1UpMggC6HNGGLke0IT/Pz/IF62jcoi4J4cdGsrfsbTkkJHrx54dmi61bvrGUGiISC0bVGyNU6oZDLiQ7/NEXfrl9ymQV+pi27/mw84C3DjBOOYQtWbkJ5yA3r4Dp81fvdz6zfjr9urfC4fAHgowdP2vPuU8KvYdQz8/1w45l45Zs/P4ghYf05OYV8OGXM8oVm8djNKhTY08StGX9dsa+9B2LZq0ssry/IMC1Jz3C9UMe5eYz/k1pPa5VVfverTn1iuOpkVGNjAY1uemZS+IdkohUUWXaedHMvGY2HdgAfOWcm1REmWvMbDHwMHB9EZc5B3hzn2Mvm9l0M7vTKsJOlhIXPTo24bDm9fB6jF25+Tzz5oT9yvTs1JSUpES8Xg9nDOq253i11L1XlvaY8dXE+Vw3rD91M6rRo1PTPcmQGbRsWqfIGF59fxLHDXuS2x4dy5KVm/ht6Xr8/gCfjJ/N1z/+tieh+evQJ3nxwY+5+cwn2bh2237X2bxuG2tXbCI/z8+CmSvZmZ13oF+WmJkzaREfPv81WVuySy98EHZsyea3qUsI+AOYGcMfOJcxy/7D6AVP0H9on6jeW0TKwbnYvCqIMg2Wds4FgG5mlg58YGadnHOz9ynzNPC0mZ0P3AFcvPucmfUBdu5T5wLn3Gozqw68B1wEvLbvvc1sODAcoGnTijUlWSIjOdHHiKtO4uy/vkR+QYD/fjyZS4YeQXKSb0+Z2ulpfPTUcHblFey1rcZDt5zGNXe/TX54Qb5A0PHCOz/SMrM2Y0deAcDy1Vv4cuI8enRswuGd9v8e2rI9h+femgjAD1OW8OO0pXg8RufDGjJrwVrMYGduPqcM7MzWTVkU5PtJSvaRvW0ndffZUqNu41p0O7INU76dT/9TupNW/fdYg8EgcyYvpXb9GhVmQPXSOau4+ZRHcEHHmH9/zug5j0TlPts37+CyHreRn1dA12Pac++YG6NyHxGR8irXrDHn3DYzGw8MBmYXU+wt4Nl9jp3LPr1BzrnV4f/uMLPRQG+KSIScc88Dz0NosHR54pXKY8rs5QTCA5vTqycXuWVGQoKX6gl7j7np2KYh41+/gTkL13Ddve+QFx5zsmr97701zRpncPk5RW/CmZfv56Kbf/+28weDWDD0bHfp6i0UFATweIz1m3YAcNvTf+L1xz6j7wmdaN5u/y1BPB4P9712Jf6CwH7jg0be9T5fvfMLzjkeffd6WnduUoavTHTNnbwYFwz9WG1Zvz1q91k+bzUF+X7yduYzY8K8qN1HRKS8Sk2EzKwuUBBOglKAE4B/7VOmjXNuYfjjEGBhoXMe4GygX6FjCUC6c25TeAD2H4BxB9sYqZy2bM/hsdfG7/ncpW0mZkaBP8BrH00iLz/An07vQ2ry/jOxVq3bxq0Pf8iy1ZtJ8HpITk7AnHH9n/rzwZczqF+nOkf2aFnsvbOyc9mRk7vXMZ/PS2pKIrdcdjzvff4rqSmJnDOkBwB9ju9In+M7ltqmogZJz/xpEbk780lM9rFw1qoKkQj1/2NPnrtjDAV5fpq3bxS1+7Tr1YrWXZsxf/JiLrj11KjdR0QOXlUbLF2WHqGGwKtm5iU0pmiMc+4TM7sXmOKc+wi41syOBwqArRR6LAYcA6x0zi0pdCwJ+CKcBHkJJUGjDr45UhlNm7dq99p8eD3GlWeHtmx489OpvDY21IOyc1ceN//5+P3qPv7yNyxdtRmAAn+QYaf34dKzj+TOxz9hwuSFmBn9e7ehScN0Ljo9tCHq1u072bA5m/QaKTRtlMFZg7vz/pfT9/QmNWuUwauPDOP1sb+wfM1WhgzoGJFd7i+9/VQeufF16mdmcPTJXQ/6epFQrWYab8x6mBUL1nJY9+YRvfbMifN59pY3aNuzJdc9cTGPfn5bRK8vIhIJpSZCzrmZQPcijo8o9P6GEup/C/Td51gOcHh5ApVDV4/2maSmJFIQCPLn0/vSIrwH2O5HZc5BILD3nyj+QJCfpi8lNdlHQoIHvz+IL8HL0b1asXDZBr6dtIBA+JHPuB/n4/V42Lp9F+MnLSBrRy7mMRK8Hp6880yuG3Ysl5x1JJfe9jpr1m+nQ+uG5OzK57k3JxIIOv774S+cfnxX6mZUO6h29hrQgTEzHjyoa0RD9VppdOzTOuLXfWT4KDau2sLaZRs5YkgP+gyuGMmfiJTAUeUWVNTK0hJ3GTXT+PA/w9m5K5+a1VP2HD9/SE927sonL7+A4eFeot0eeO5zvpu8CH8gQLNGGXg9xr03DqFpo9pcOeKtPUkQhBIpfyDIB18VmjofcHjMmLtoHZ3bNsZjxur12wkEgnz63RwuHtqb9Bqp5OzKJ9HnpUa1pKh/HaJt2rdzGTvqGwae1Yf+p/eK+v0aNK9L1qYduKCjbmb5NtgVEYkVJUJSIfgSvHslQQBJiQlcc/4xex2bNm8lr380mQXL1rMrr4AEjGWrtuBwPPfmDzzw11Np1iiDeYvWUeAP4PXYXknRbgleo0nDdE44uj0AiYlealRLZueufHwJXmpUT+HVR4YxZdZyunfIJCnRt981KpOCfD93XfAUBXl+po2fS+cjDiOjfs0S62Rv38nDV71I9rad3PzUn2nUsl657nn3Wzcw4YNfaN4+k5ad4j8eSkTKxoKllzmUKBGSSsM5x80Pf8CuvAJ8CV5qp6dRPTmJdRuycM6RXjO0YvQtlx1Hj45NqFMrjfWbdvDwqK/wej3k5hXsWbri1OO6cvNlx+25ttfj4ZV/XcTP05dyeKempCYnkpqcyKBwolTZeTxGgi+Bgjx/6LFgGVa8/uSlb5k2fi5+f4Dn7hzDPW9cW657ptVI4aSL+x9oyCIiMaFESCqV5GQfuXkFeDzGC/eeT/3a1fl8wlx25ORx2vFdgNA0+xP7/Z7AnHxsRwLBIBOnLOGxl74mwevh7JP3G/ZG3YxqnDKwc8zaEkveBC+PfnwL37z7M0cM7kaNMox3qt+0Dt4EL94EL41bla83qLD83AI+e+U7Nq3ZQnJaEoMu7EfdxhlsXreNT0Z9Q8vOTegXg0d1IlJGGiMkUjGZGSNHnMOnE+bSq1PTPTvBn9S/9OnszkH3Do33LLJYFbXq3IRW5Ziyf+zQXqRWSyZ7+06OHXrgicpzfx/NF69PxJ/vx8wYP+ZnXpj6T+4570kWTV+OLzGBjAbpdOzb5oDvISJyoJQISYU3fe4qRn80mWN6t+YPAztz5TlHl16pkKzsXQy75TU2b9vJBaf05Mrz+5VeKcrmTlnKPZe9QFr1ZP755jXUr4CDic2MPid2OejrbN2QRcAfWprAOUf2tp0A7NqRSzAQBAu9F5GKoaqtI1SmvcZE4sU5x80Pvs8PU5fwfy98zaq1W/crs2j5Rpat3lzsNWbOX8OOnDwCgSAfjpsZzXDL7I0nPidrSw7rVm5h3Lu/xDucqLrq4fPpPagLrbs1o8sx7Rgx+joAbv/vNRwxpDvn3DSEw4/vdEDX/vmzX3nzkY/YtiGr9MIiIkVQj5BUeImJCezKK8DM8IUH+ebszMPn8/L5hHk8/so3ANx7wxD69dx/PZzObRuRlpJyUbJkAAAgAElEQVRIQUGAIQMO7H+4kdbjmHbMmbwE56DD4S3iHU5U1c2szT1F7C3WvH1j7nqzqP2Zy2b+5MU8eNHT+Av8/PTJNJ787u6DiFJEgPA6QlWrS0iJkFRoZsYz957Dp9/OoXfXZtSvU4PPvpvDQyO/JCkxgY6HNSQv348BU2evLDIRqlk9hfeevpwd2blkpKfFvhFFOGP4ALr0bU1KWiKZrerHO5xKacfWHMyMgD/Ijq058Q5HRCopJUJS4TXPrM3VF/6+ntB7n0/H7w+C81M9NZlqKUmkJCfwx0HFr1zsS/BWmCRotzZdSh64vHnddu65dBS5OXnc/twlNGu7/yavFYm/IMDi2SvJbF2ftH3WhIqGnid0Zuh1g/lt6mIuvfecqN9PpKqoamOElAhJpXPa8V1YtGwDZh4mTF6E12OccWIvmjWqeAOOAXZs20liso+k5LIvyvj1+5N55o532ZmdCw5ee/RT7hx1aRSjPHi3DX2chTNXkFY9hRd+voeUage/P1tJzIyLR5wR1XuIyKFPg6Wl0jnluM58+NwVnHFSNwL+ILl5fuYsWBvvsIr06ZhfOO/Yhzi//0OsXr6pzPX+fctb7NwRSoISkxJo06UJzjlcjJ/dO+fIzy0otVwwGGTOpEXk7cwnJ2sXa5eVva0iUsG4GL0qCCVCUiml10jlnJN70KpZHRrXr8nl5x4V75CK9Mnbv+AvCJCfX8Dk7xeUuV7DZrVJSkkkMSmBmx67gJ4D2nNWp9s4o/2tzJu2LCqxOudYv3Iz+XmhxKcg389fhjzC6S1v5D9/e7PEuh6PhzOuHYTX66FT39Y0a98oKjGKiESaHo1JpVW3dnVeeWRYvMMo0R/O6c0zD3xMYpKP3v3alrneo+/fyORv5tC2ezMat6jHf24bQ07WLgA+euk72vdoHvFY/3X1y/z46Qwy6tfg2fG3s3rJRpbNX4tz8NnrE7n2X+diZsXWv3TEUC4dMTTicYmIRJMSIZEoOvns3vQ7sTNJyQkkJpV9jFD19FQGFlrNuc8JHRn3zi+A44gILHJYlB/+Nx1/QYDtm7NZNm8NLTpkkl6nOls2bKfb0W1LTIJE5NBgaLC0iERY9ZoHP4Oq98COjPruHwQDjgZNa+93fmd2Lt+8N5nGLevRvRw9T4WdeP6RfPrfidRvUpuWHTNJSknk+Ql3snHNVho2r1Oma2zbmEX1Wml4E0rf1FVEpCJQIiRSSdRrXPysuAeveoVZPy3EPMYDb1xNx14ty339ax86l0vuOJ3k1EQ8ntDwwcRkH41blm3D1X/f9Dpfvfkj9TIzeHr8HVGfNSYiUeBclVtQUYOlRQ4BG9dsJT/PDxib120/4OukVkvekwSV17i3fibgD7Jh1VYWzVxxwDGIiMSSEiGRCignaxc3D/03w/rczexJi0stf/PjF9KuR3MGnH44Rw6Ozhii0iQmhzqYA4HAno1VRaTyMRebV0WhR2MiceYvCHDf5S8yd+pSLr3tVAaffwTfjp3KwpkryM/z8+xd79GjX1vWLNvEZXecRsNm+4/XadOlCY+P/Uscov9dWs2UPWsfxXq9IxGRA6UeIZEoc87x5QdTGfPiBHbl5O13fu6UJcz8aSHZ23Yy6r4PAWjerhGYkZyaSI30VD5+9Xt++mImj974eqzDLzNfYujvqgSfl22bdsQ5GhE5YFVsQUX1CIlE2dcfT+fp+z8mEAiyfNEGbvnnmXudb9yiHh5PKOk5rGto/7GOvVryxEd/YdO67RTk+Zk3bTker4e0GtHfw+tAnXrpAF64+z2SU5PocWyHeIcjIlImSoREomznjlyccwQDQXZs33/sTO0GNRn5zT9Y8dtaOh/RZs/xFu0b06J9Y5xzXP/Q2axdsZlT/3TMfvUritOGD2TAmb1JTk0isRz7qolIxVKRxu/EghIhkSgbfGZPVi7dyJZN2Vz59yFFlqnbMJ26DdOLPGdmey2uWJHVyKgW7xBERMpFiZBIlCUm+bjmjlPjHYaISOkcEKxaXUIaLC1SCeRk7eLOYSO5fsijrFi4rkx1Fs1exfvPj2fD6i1Rjk5EpPJSIiRSCXw2+iemT1zAwpkree7u9/c6FwwGefHBj/j7OU+xaNZKALZuzOLmoU/w8kMf85fTHtd0dhEpuwoya8zMmpjZeDOba2ZzzOyGiLWxECVCIpVAw2a18SZ4SErxkdmq/l7npnw7j09e/Z4ZPy7kn1e/AkDOjlycC61RlLU1R4mQiFRGfuCvzrkOQF/gGjOL+JRUjRESiaF5M1bg8Xho2zmzXPWOOqkryalJZG3J5phTuu91rkatNFzQkeDzUrN2aLByZst6XHTTSXz/v+mcc90JB7xthohUPRVl1phzbi2wNvx+h5nNAxoDcyN5HyVCIjHy6ZhfeO5fnwJw472nM2BIt3LVP7x/uyKPt+venNufv4Rl89cy6Jw+e46fedVxnHnVcQcesIhIBWFmzYHuwKRIX1t/JorEyJxpy8nLLSA/r4A50yK7KWmvAR0466rjqKnp6yJSedQxsymFXsOLKmRm1YD3gBudc1mRDkI9QiIxcvZl/Znz63K8Xg9Dhx0V73BERIoWuzGFm5xzPUsqYGY+QknQG86590sqe6CUCInESLPW9Xjli5vjHYaISKVgZga8CMxzzj0Wrfvo0ZiIiIjsYS42rzI4CrgIGGhm08OvkyPdXvUIiVQQwaDjmy9mkZtbwIl/6IbP5413SCIiceOcmwhYtO+jREikgvhs7DRGPvEFDlizcgvDrz8h3iGJSFVTxsUODyVKhEQqiC2bswkEggSDjk0bIz4xQkREiqBESKSCGHpeX1Ys28SunXkMvy5+vUHOOV5/8it+/GoO519zHP1O6hK3WEQktgywKrYSvRIhkThbs2oL9/79HTxe4+5/nUO9BjXjFkvurnxWLNrAuy99T35uAQ/f8jZHD+5MaPKGiMihR4mQSJy98dL3LF28HjNjzH9/4Npbip4UEfAHWbJoPY2aZJCWlhTxOGZPWcbtl7wQ2pfMjMSkBNLrVFcSJFLVBOMdQGwpERKJs9ZtG/D9N3NxQOu2DYstd+df32TWjBWkpCby8phrSKuWHNE4vh47lfw8PwA9j2lL34HtOeL4jhG9h4hIRaNESCTOTj+7N02a18Hr9dC9Z4tiy02fuhS/P4gBK5Zton2n8m3cWpoBf+jGN2N/xTk4fdhRHN7vsIheX0QqB40REpGYMjN69mlVarmzLjySt177gdbtGpbYc3SguvRpxegf7sA5R7UaKRG/vohIRaRESKSS+POVA/nTFQOiOmYnrXpkH7eJSCVTBdcR0hYbIpXIvknQrOnLufe2d/h23Jw4RSQiUrmpR0gkCpat3sy8Jes5ukdLqqdFp5clEAjyjxveIC/Pz6QfFtChcyb16sdv6r2IHApcLHefrxDUIyQSYRu27ODPt7/Bwy9+xdX3jonafcwMb4L39/fe0I9zfr6fW65+jVP6P8h7b/4ctfuLiBwK1CMkEmEbt2QDjtw8P6vWb4vafTwe4/+evZgvPplO36MPo3ad6gDMnbWS3+atJi/Pz2ujvuWM8/pGLQYROfSUcWf4Q4YSIZFSLFq+kdse/4jUlEQeveWP1M2oVmL5Dq0acFK/jkyauYwrzzk6qrG1OqwBV980eK9jzZrXJSHBS3IKdOrWNKr3FxGp7JQIiZRi5JiJrFq/DY/H+ODrGQw/66j9yjjncC7US2Nm/O3S4+MQaUit2tV4acw1rF6xmbYdG8ctDhGRykBjhERK0blNI5KTfPgSvLRtXm+/88tWb2bw5c8w8E9PMmX2ijhEuL/0Wml07NqUhPAYIhGRMnMuNq8KQj1CIqUYdlpvOrRuQGpyIh1b77+Q4WffzyUrJxeANz6ZTM9OehwlIlJZqEdIpBRmRq9OzYpMggD6dGlOUmICiT4vxx3RNsbRiYhEkAMLxuZVUahHSOQg9ejQhHefuJT8ggCN6mkdHxGRykSJkEgE1KlV8kyykgSDjrEfTmXr1hzOPqcP1SK8q7yISLlUoPE7saBESOQg+QNBVq7ZSuMGNUn0lf9H6ssvZjHquW8IBIKsXbOV2+88PQpRiohIUZQIiRwE5xxX3/kWi5ZvpH6d6rz26MX4fOWbqZWfX4BzoZ6h3NyCUu/3w8QFABx19GFR3YBVRKqoqtUhpERIpDjOOZ4ZNZ5vvp3LmX/sxXln9dmvzK7cAuYuWotzsHZjFhu27KBx/fQ95wOBIC+8/SPLV2/m6guPIbNhrf2ucdLJ3Vi3djtbt2Zz+fCBJcb03ru/8PKLE3DAZZcdy9Azex10O0VEqjIlQiLFWLc+iw8/nkZBQYBRL3/H0FN7kJTk26tMakoig45uzxffz6NHhyY0rLv3YOlvJy1kzKdTycvzs3FLNqP+ecF+9/H5vAy/suQEaLcVyzeTn+8PvV+5+QBbJiJSPNMYIREBqFkzheRkH16vh5o1UvAVM/5nxPUn84+rTyxy8cLUlEQAPF4PaamJBx3TRcOOZsXyzWBwwYX7r3AtIiLlo0RIpBipKYm8PPISZs9ZTY/uzfB4ih+PU9wKzn27NedvVwxi5ZotnHVyj4OOqW69Gjzxn4sOqO7OnDzee3UiNdJTOeXcPng8WkZMRIqgHiER2a1O7eoce0y7A65vZpzYr30EIzpwzzz4Md9+Pguvx0NSso/BQ3vGOyQRkbhTIiRSRezalU8wGMTMyN1V8uw0EamiHFCBVn2OhVITITNLBiYASeHy7zrn7tqnzJXANUAAyAaGO+fmmllzYB7wW7joz865K8N1DgdeAVKAT4EbnKti/XFSqXw1cT4vvvMjx/RqzVUX9Kt0U9evvf1UkpMTqVErlZPP0mwzEREoW49QHjDQOZdtZj5gopl95pz7uVCZ0c65kQBmdirwGDA4fG6xc65bEdd9FrgcmEQoERoMfHaA7RCJugee/pwCf4B3P/uVQf3a07pZ3WLL7sjJ5dufF9KmeT3ataofwyiLV6t2NW558Mx4hyEiFZjhNGtsX+FemuzwR1/45fYpk1XoY9q+5/dlZg2BGruTKTN7DTgdJUJSgdWvU52NW7IxMzJqppZY9qYH3mPx8k0AvPLIRTRtlBGLEEVEpJzKNEbIzLzAVKA18LRzblIRZa4BbgISgcKLorQws1+BLOAO59z3QGNgVaEyq8LHRCqskfefx8Qpi+ncthEZ6Wklll27IYu8fD/JST42bs5WIiQiUkGVaf6scy4QfryVCfQ2s05FlHnaOdcKuBW4I3x4LdDUOdedUJI02sxqlCdAMxtuZlPMbMrGjRvLU1UkomrVTOWU4zrTPLN2qWXvvPYkWjapzeD+HejesUkMohMRiRDnYvOqIMo1a8w5t83MxhMazzO7mGJvERr/g3Muj9AYI5xzU81sMXAYsJpQUrVbZvhYUfd8HngeoGfPnhXnKydSgj7dmtOn25/iHYaIiJSi1B4hM6trZunh9ynACcD8fcq0KfRxCLCwUF1v+H1LoA2wxDm3Fsgys74WmnozDBgbgfaIiIjIwVCP0H4aAq+GExoPMMY594mZ3QtMcc59BFxrZscDBcBW4OJw3WOAe82sgNDKBFc657aEz13N79PnP0MDpUVERCTGyjJrbCbQvYjjIwq9v6GYuu8B7xVzbgqw31gjkcouZ1c++fl+apUys0xEpMKpggsqarMhkQhasmITpw0fyR+vfJ6x42bGOxwRESmFEiGRCPrp16XkFwQo8Af45JtZ8Q5HRKTczLmYvCoKJUIiEdSvVytSknwkeD2cddLB7zYfSc45crJz4x2GiEiFok1XRSKoaaMMPnnhKvyBICnJvniHs0fAH+DmP7/A/Fmr6HdCR/7xyLnxDklEKqoK1FsTC+oREokwn89bYhI0c/5qXvtgEus2ZhVbJtLWrNzC4vlrcUHHhC9mk5/vj9m9RUQqMvUIicTQuo1Z3Hjfu/j9AT78cgbvPzs8JvdtkFmLBpkZrFmxmS49m5OYqB99ESlKxVrjJxb021AkhnbuygcgEHRkxXC8js+XwDNjrmHThizqNaxZYtktG7J4+Ja3cc7xt0fOpXb9cu2KIyJSqejRmEgMtWxah8vPPYpu7TP55y2nxfTeCT4vDRrXwuMp+cd+9LPfMGvyEmZPXsroZ76OUXQiUiE4tLK0iETXeaf05LxTesY7jGI1alobX/jRWaNmpW8wKyJSmSkREpG9/PFPR1O3YToARw3qGOdoRCTmqtjK0kqERGQvZka/wZ3jHYaISExojJCIiIhUWeoREhERkT0q0vYXsaAeIREREamy1CMkIiIiv1OPkIiIiEjVoERIJILGj5vDAyPeZ+7sVQd8jZXLNnH1BSO5efjLbNuaE8HoRERK4YCgi82rglAiJBIha1dv5dEHPubbr+fy97+Mxh1g9/JLT41j8W/rmDtjJR+9PSnCUYqISGFKhEQOwtLFG/jqs5nk5OTh8dqe417vgf9otWhdj+RkHwk+L01b1I1EmCIiZRSj7TUq0DgkDZYWOUBrV2/luuEvA/DR+1P4z6hLGPHAmUz6cSFDTuuBmZVyhaJdOPxYWrVtSEpqIj36tIpkyCIisg8lQiIHaMOGLAzIzS1g9aqtbFi3neef+ors7Fym/LKEmjVTuPufZ1G7TvVyXdfj8XDUgPbFnl+9YjNp1ZJIz6h2kC0QESlCBeqtiQU9GhM5QJ27NmXACR1pnJnBNTcO4p03f2LVyi1s2ZzD2tVbWTB/LR++Ozmi93zntR+48txnGXbqv1k0f21Ery0iUhWpR0jkAHk8xk1//wNzZq3kbze8QcAfxOMxzAyz0DihVq3rR/Se3301h/x8Pwk+DzOnLqN1u4ZlruucY2dOHqlpSQf82E5EqoAq1iOkREjkIP34/QLy8/wAdOrahEuuGMDOnDxSUhPp0q1ZRO913iX9ePAf71KjZgpHH1f847N9OecYcfnLTP1hId36tuKBly5VMiQighIhkYM24PiOfPz+VPz+AOdffDSduzaN2r2OGtCej3+4PdzrVPZEZvvWHH79cREu6Jj5yxK2btxBRr0aUYtTRCqp3esIVSFKhEQOUuvDGvDeZ3/FBR2JSdH/kfJ4yj+0r0Z6Km06Z7JozmpatmtIeh0NtBYRASVCIhHh83njHUKJPB4Pj46+kk1rt1GnYfoBJVMiUhU4cMF4BxFT+m0ocoh7+7nxXDboUT57exL1MzMOarFHEZFDjX4jihzCNq/P4vX/jGP18k2MvP9jcnfml1h+47rtPPfgx4z7cGqMIhQRiS89GhMpg9/mrOazD6Zw1MAO9DqyTbzDKbPUakkkJfvwej2kpCXhSyz5Ed5917zGorlrSExMoG6DdLr21crWIlWOps+LSGGBQJC/XfEKubvy+fp/M3nloxupXbd8q0XHS0paEk99cD0zfl7M4ccchjeh5ESoID8Q2izWwF8QiFGUIiLxo0RIpAz23km+cv211KBJBg2aZJSp7B3/uZDX//MVrTs2psfRlafnS0QiRNPnRWRfXq+Hfz4zjE/emUy/4zpQu+6hs/6Oc44XH/6UiV/M4ryrBnLiWb259f/Oi3dYIiIxo0RIpAw6dm1KxygulBgvKxdv4OPXfyQ/z8+TIz7ghDN6amq9SFWnMUIiUlWk166GN8FLkseoVae6kiARqXKUCIlUAHOnL2f8/2Zw7Mld6dg9svuTlaRGrTSeGnsD86Ytp+cxbWN2XxGpwNQjJCKx4C8IYBaaqXXb5S+Tl1vAlx9O463vbiMlNSlmcTRqWptGTWvH7H4iIhWJEiGRGPEXBPhpwm/UrVeD3F353HnjG3i9Hu7794UEg6El7YPBIMEqNmNDRCoSpx4hEYmOJ//5Cd99MQsHtGnfiPw8PwATv57DXU9exOfvTWbw0J6kVUuOb6AiIlWIEiGRGFm6cB25uQUkJiXQpEVtfpuzGjM4ckB7uvZsQc+jtG6PiMSZA4JVa9NVJUIiMXLN34bwyF3vU79hOsNvHMywKwbi8XpIr5UW79BERKosJUIiEbZ7FWoz2+t4u86ZvPj+9Xs+p6bFbkC0iEiZVbExQlo0RCSCJv+wkFOPup/zB/8f69ZsjXc4IiJSCiVCIhH05ksTyM/zs31rDt99OTve4YiIlJ9zsXlVEEqERCLoqIHtSUxKIMHnpevhLeIdjoiIlEJjhEQi6IwLjqTXkW1Iq5Z0SG3OKiJyqFIiJBJhTVvUjXcIIiIHyEEVW9RVj8ZERESkylKPkIiIiIQ4cK5qLaioHiERERGpstQjJCIiIr/TGCERERGRqkE9QiIiIvK7CrTYYSyoR0hERESqLPUIiYiISIhzENSsMREREZEqQT1CIiIi8juNERIRERGpGtQjJCIiIns4jRESERERqRrUIyQiIiJhTmOERERERKqKUhMhM0s2s1/MbIaZzTGze4ooc6WZzTKz6WY20cw6hI+fYGZTw+emmtnAQnW+NbPfwnWmm1m9yDZNREREpGRleTSWBwx0zmWbmQ+YaGafOed+LlRmtHNuJICZnQo8BgwGNgGnOOfWmFkn4AugcaF6FzjnpkSkJSIiInJwHFVu09VSEyHnnAOywx994Zfbp0xWoY9pu887534tdHwOkGJmSc65vIMJWkRERCQSyjRY2sy8wFSgNfC0c25SEWWuAW4CEoGB+54HzgCm7ZMEvWxmAeA94P5w0iUiIiLx4jR9fj/OuYBzrhuQCfQOP+bat8zTzrlWwK3AHYXPmVlH4F/AFYUOX+Cc6wz0C78uKureZjbczKaY2ZSNGzeWJVwRERGRMinXrDHn3DZgPKHxP8V5Czh99wczywQ+AIY55xYXutbq8H93AKOB3sXc83nnXE/nXM+6deuWJ1wREREpBwe4oIvJq6Ioy6yxumaWHn6fApwAzN+nTJtCH4cAC8PH04H/AX93zv1QqHyCmdUJv/cBfwBmH1xTRERERMqnLGOEGgKvhscJeYAxzrlPzOxeYIpz7iPgWjM7HigAtgIXh+teS2hc0QgzGxE+NgjIAb4IJ0FeYBwwKlKNEhERkQPgXJUbI1SWWWMzge5FHB9R6P0NxdS9H7i/mEsfXsYYRURERKJCW2yIiIjIHhVp/E4saIsNERERqbLUIyQiIiK/q2JjhNQjJCIiIlWWVabFnM1sI7A8/LEOob3MDnVVoZ1q46GjKrRTbTx0VIZ2NnPOxWwRPTP7nNDXJRY2OedKWpcwJipVIlSYmU1xzvWMdxzRVhXaqTYeOqpCO9XGQ0dVaaeUTI/GREREpMpSIiQiIiJVVmVOhJ6PdwAxUhXaqTYeOqpCO9XGQ0dVaaeUoNKOERIRERE5WJW5R0hERETkoFS4RMjM3jaz6eHXMjObXuhcFzP7yczmmNksM0su5hrXmdn8cLmHCx2/zcwWmdlvZnZiLNpTTHwH1UYzu9vMVhe6xsnh4z4zezVcb56Z3RbLdu0TY1TaWNb6sRLNdobPNzWzbDO7ORbtKUoUv19PMLOp4XpTzWxgLNtVRJzR/J49JH73FCr7VzNzZlYn/LmmmX1sZjPC9f8ci/YUE1tU2hg+dmz4unPM7Ltot0VixDlXYV/A/wEjwu8TgJlA1/Dn2oC3iDoDCO1mnxT+XC/83w7ADCAJaAEsLqp+JWnj3cDNRRw/H3gr/D4VWAY0P8TaWKb6lb2dhc6/C7xTUpnK2kZCmzk3Cr/vBKyOd/ui1M5D5ndP+FwT4AtCa7rVCR/7B/Cv8Pu6wBYg8RBrYzowF2ga/lwv3u3TKzKvCrvFhpkZcDaw+6/EQcBM59wMAOfc5mKqXgU85JzLC5fbED5+GqEkIQ9YamaLgN7AT1FqQqkOoo3FcUCamSUAKUA+kBWhcA9IFNp4sPWjIgrtxMxOB5YCOZGK82BEuo3OuV8LfZwDpJhZ0u6f3XiJwr/lofa753Hgb8DYQsccUD183WqEEiF/pOMujyi08XzgfefcinD9DUVVlMqnwj0aK6QfsN45tzD8+TDAmdkXZjbNzP5WTL3DgH5mNsnMvjOzXuHjjYGVhcqtCh+LpwNtI8C1ZjbTzF4ys1rhY+8S+p/mWmAF8KhzbkvUoi+bSLexPPVjKaLtNLNqwK3APdENu1wi/W9Z2BnAtHgnQWGRbuch87vHzE4j1HM3Y59TTwHtgTXALOAG5+K+YVWk23gYUMvMvrXQo9xh0QtdYikuPUJmNg5oUMSp251zuzPw84A3C51LAI4GegE7ga/NbKpz7ut9rpEAZAB9w2XHmFnLSMZfFlFu47PAfYT+CruPUPfvJYT+ygwAjYBawPdmNs45tyQyrdpbnNpY1voRE6d23g087pzLDv1hG11xauPue3cE/kXoL/aoimc7YyVabTSzVEKPwIr6dzoRmE6o96UV8JWZfe+ci0qPdJzamAAcDhxHqMf9JzP72Tm34GDbI/EVl0TIOXd8SefDj3aGEvqm220VMME5tylc5lOgB7DvL6NVhLovHfCLmQUJ7ZuymtBz390yw8eiIpptdM6tL3SdUcAn4Y/nA5875wqADWb2A9ATiEoiFKc2lvX7IGLi1M4+wJkWGuyfDgTNLNc599RBNqdIcWojZpYJfAAMc84tPshmlCpO7TxUfve0IjTGaUY4Oc8EpplZb+DPhIYkOGCRmS0F2gG/RKRR+4hTG1cBm51zOUCOmU0AugJKhCq5ivpo7HhgvnNuVaFjXwCdzSw1/E3en9DAtX19SGjANGZ2GJBIaFO9j4BzzSzJzFoAbYjSD2kZHXAbzaxhoY9/BGaH368g/DzczNII9YrNj0LsZRWNNpb1+yCWIt5O51w/51xz51xz4AngwWglQWUU8TaaWTrwP+DvzrkfohZ5+UTje/aQ+N3jnJvlnKtX6PtyFdDDObeO0O+e4wDMrD7Qlij9AVZG0WjjWOBoM0sI9xz1AebFojESXRU1ETqXvbs0cc5tBR4DJhPqgp3mnAmMfO0AAADaSURBVPsfgJm9YGa7N857CWhpZrOBt4CLXcgcYAyhb/zPgWucc4GYtKZoB9PGhy009XMmoaTvL+HjTwPVzGxO+BovO+dmRr8pxYp4G0uqH0fR+LesaKLRxmuB1sAI+326c70YtKUk0fiePZR+9xTnPuBIM5tFqIfl1t09L3ES8TY65+YR+vebSSiRfcE5N7ukOlI5aGVpERERqbIqao+QiIiISNQpERIREZEqS4mQiIiIVFlKhERERKTKUiIkIiIiVZYSIREREamylAiJiIhIlaVESERERKqs/wcfIp/jDKAOGAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5, c=sites.vs30)\n",
+ "\n",
+ "plt.colorbar(label='Vs30')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Next, we need to get values for the Compound Topographic Index (CTI). The process is the same, using a raster of CTI values. (Though it is possible to calculate the CTI from a DEM using algorithms implemented in many GIS packages, in practice the range of the resulting CTI values is incompatible with the CTI values that Zhu et al. used in their calibration. Therefore it is strongly advised to obtain CTI data from a dataset that has a global range of 0-20; we recommend [Marthews et al., 2015](https://www.hydrol-earth-syst-sci.net/19/91/2015/))."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sites['cti'] = sample_raster_at_points('./tutorial_data/ga2_cti_cali.tif', sites.lon, sites.lat)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAI/CAYAAABj+03oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3hVRfrA8e+cW9N7J5CE3kLvgoBSRQERbIi9F6z7s6y9oK66dhcRxF5QFFAE6dUgvbcAgSSEkN5vO2d+f9yQEBOaVGE+z5Nn7z117sG9efPOzDtCSomiKIqiKIpSk3a2G6AoiqIoinIuUkGSoiiKoihKHVSQpCiKoiiKUgcVJCmKoiiKotRBBUmKoiiKoih1UEGSoiiKoihKHcxnuwEnIjw8XCYkJJztZiiKoijKGbF69epcKWXEmbrfgD5+Mi9fPyP3Wr3BOVtKOfCM3Oxv+kcFSQkJCaxatepsN0NRFEVRzgghxN4zeb+8fJ0/Z9c/I/cyxewMPyM3Ogmqu01RFEVRFKUO/6hMkqIoiqIop48EDIyz3YxzhsokKYqiKIqi1EFlkhRFURRFqSTRpcokHaIySYqiKIqiKHVQmSRFURRFUYBDY5Lk2W7GOUNlkhRFURRFUeqgMkmKoiiKolRRs9uqqUySoiiKoihKHVQmSVEURVEUACQSXaoxSYeoTJKiKIqiKEodVCZJURRFUZQqanZbNZVJUhRFURRFqYMKkhRFURRFUeqgutsURVEURQG8xSR11d1WRWWSFEVRFEVR6qAySYqiKIqiVFEDt6upTJKiKIqiKEodVCZJURRFURSgckySKiZZRWWSFEVRFEVR6qAySYqiKIqiVFHL21ZTmSRFURRFUZQ6qEySoiiKoihA5QK3anZbFZVJUhRFURRFqYPKJCmKoiiK4iVBV4mkKiqTpCiKoiiKUgeVSVIURVEUBfDWSVKz26qpTJKiKMoZVO5wsW1vNh6PfraboijKMRwzSBJC2IUQfwoh1gshNgshnq/jmJuEEDlCiHWVP7cdtu9GIcTOyp8bD9veQQixUQiRKoR4VwghTt3HUhRFOfdUON1c9dRkbh/3Hfe88cPZbo6i1EGgn6Gff4Lj6W5zAn2llKVCCAuwVAjxm5Qy5S/HfSelvO/wDUKIUOBZoCPeLN5qIcR0KWUB8BFwO7ACmAkMBH47uY+jKIpybjIMyb8+mE5OQSkAa3dkYhgSTftn/LJQlAvRMTNJ0qu08q2l8ud4x74PAOZIKfMrA6M5wEAhRAwQKKVMkVJK4HNg2Ik3X1EU5Z/hs9/+JGXT3qr31/ZrpwIkRTnHHdeYJCGESQixDjiIN+hZUcdhI4QQG4QQPwgh4iu3xQHphx2TUbktrvL1X7criqKcd6SUfPHbqqr3MWEB3D3iorPYIkWpmwQMeWZ+/gmOK0iSUupSyrZAPaCzEKLVXw6ZASRIKZPxZos+O1UNFELcIYRYJYRYlZOTc6ouqyiKcsbMStlGabkTAMMEu0yldHzmfSYtWkVOSRkHi0uPcQVFUc6GE5rdJqUsBBbgHT90+PY8KaWz8u0nQIfK15lA/GGH1qvclln5+q/b67rnx1LKjlLKjhERESfSXEVRlLNud2Yez074rXqMQmj1UNCPF6xgwGsTGfD6JOZvTj0r7VOUv1IDt6sdz+y2CCFEcOVrH6AfsO0vx8Qc9vYKYGvl69lAfyFEiBAiBOgPzJZSZgHFQoiulbPaxgDTTvrTKIqinGMWr0utMYhzZPfkqtfh/n44PTouj87sjTvPfOMURTmq45ndFgN8JoQw4Q2qvpdS/iKEeAFYJaWcDjwghLgC8AD5wE0AUsp8IcSLwMrKa70gpcyvfH0PMBnwwTurTc1sUxTlvDO4Wws+npaC26PTMjGKx4f2ZnC7pvyydis/rNyEJgRWs4lrurU5201VFCT8Y7I8Z4LwTi77Z+jYsaNctWrVsQ9UFEU5h0gpcbg8+NgsABRXOOj+/EdVGabXrx7EZe2anb0GKucsIcRqKWXHM3W/lslW+e2vkWfkXsn1M8/oZ/s7VMVtRVGU02DN5nRG3DuBB1/6AYezOkCS0oW1eDRrHvgft3fy/tHXODrsbDZVUWowpDgjP/8Eau02RVGU0+DNifPIyikmv6icT3/8A103GNirBY1i92IlFTTJHV3WEhj+IE1iqielGKUfguN38LsXzaffWfwEiqKoIElRFOU0aJoURVZOMbqu89X0lUgJ0+ZuYPak6xHYAAO7X3du6pyLcaANmOIg6EUo/R/ggKKHkPaNHFqxyTAkQoBawUk5ndSYpJpUd5uiKMpp8ORd/Xn2/kGEBflxaOinw+VBihBExBxE2DeI4A+g9G2gAvQMcK0HBGAFEQCeLQDM+WMbvW56m2EPTCC3QNVUUpQzRQVJiqIoR5CWlc+E6X+wcdf+EzpvzeZ0bn3iK35dsIkDeSVV26PDA7nuoU9ZsvogwtISXEtACwVsIATC1hMR9g1Ye4MsReZdi3TM5tOfU/DoBgUl5SxevQsAh8vNb0u3sGXXgVP4iZULnUSgo52Rn38C1d2mKEoNbrdOVk4RsVHBmE3/jC+y08EwJLe+8i0l5Q4+m7mS6a/fhiEl+UXlNI4PP2q31/PvzSQnv5Sde6tXCbBbzeQXleFwenjlo9lclHwACu4FJJgbIkImIEzRAEgh8K4trmE419K4fjLpBwoxaRotGkbz07z1zFi4id0ZuUhg/DPX0Cwx6rQ+D0W5EKkgSVGUKh6Pzs2Pfs7+A4U0SYrio1euvWDHwBhSUuF0I6V3Cn9qeg6Pvj8dKSUj+7blgVG9jnhuTEQgBcXleDxG1bZu7RNZvHIXNquJ6IhAKHoccFferACZfzPS3AQR/B+E/71I9yYQNmanlNGp/nj2ZbTmzmtvY8rstcxN2Y7L7UECdpuZjOxCGsWHs3NfDvVjQvHzsZ7eh6Oc1/4pM8/OhAv3z0RFuQA5yl3kHSw+4v6DeSVkZhXicuts3pFFhcN9Blt3bjGbNP5z3xV0bBbP2FEX8+Xs1ThdHhwuD4vW7jrquW88cSW3j+qOzWpG0wShQb4s/jMVaRi43Dp70nOZvjS08mgBhhP0XeBcCI65CEsztMgFYL+MAcnfMajjVt66bRoH80s4kFeM0+3BbNYIDfKlR9skenVoyH3jpnD3i99x9WOTKHe4TvvzUZQLgcokKcoF4kBmAfeOeB+nw8319/Tl2jt61zomOiKINi3iWLVhH326NcH3AstIlFW4eOI/08jKKeKZ+wbRIzmRHsmJfDL9D1ZtS8eQ3hlmdwztVnVOhdNNucNFcYmDLalZ9OzYkB1pOWiaxqevjmbTzv28On4OxmHLng/stJn6UW4QYSBCwTi0JIkLaRSBeyfC0hjKv+BQIs9mkVzUNon8wjKKSx0k1Qvjidv6Y7dZMAzJ+u2Z3qwXkJldSOMGZ6YgoHJ+UbPbalJBkqJcIDb8uRuPW8fj1vl96uo6gyRNE7z93CicLg826/n59SCl5KvpK9mdnsdto7oTGxlUtW/O0q1s3J6J063z1qT5fPraDQBoQiAAi1njyouTGdDVWx17X3YBY174CpfDjbkCzJrG5B9TyMkvRdcN5izdxs1XdcVqMeFwevDztZIUk8fYEcuxWz0gg0AevmabL5Q8i0Qgg94EUwx4igGJPewxXvpkPsvW7QbgoTF9sFcWqNQ0wVX92vLjnPW0aRpHYr1wDEOiaeqXnaKcjPPzW1BRlFo69GiMj68Vj1tn+A3dj3rs+RogASxdvYtJP6TgdLnZm5nPxHHXV+1LqBcGQmC3mWl62EDo0QM7ohsSp9vDLUO6VG1P2bQXt1vH4zEQOng8BpnZRVX7c/JL+O+nCzAMSdOkSJ68awANY4uR+VMBHYRGjdVvKav8XwnFL0HVUpdAyZtkZD+K0+XBbjWTlVMMzb27tqdlM2PRJkwmjR5tk7hh7KdkZBVw+7UXMeaqrqfu4SnKBeb8/SZUFKWGsMhAvlrwf7icHnz8bFXbpZR8N3MNm3bs59aR3Umsd34vkWE2mQCJEAKzueawzLbN6/Hh81dzMK+EHh0aVm23WszcflgX2yGdmsd7X5igdfM4srKKyCkoBSkROsRHh7Bx536khLBgfxonRAKRyOB3kK4UsF8BRfeDnkGO50qyctbTOnoXCA2BH971wg9x8sRt/Xh14lwaxIRyademVXtWbEjD7dbRDclPs9eSub8ACUz4ZinXDO2I1aK+6pXjJdClGq58iPp/jqJcQExmEz5mU41ta7dk8PG3S3E4PexMy+G7d245S607M7q2TeDBG/uwOyOP66/oVGPfvox8bGYTSQ3CmbdyBz2SE/H3tR3hSrBwTap3nJKmERMfzIsPXMbweyYgKgwEsH17FharCSEE3dolVJ0n7H0Q9j4AyPB5gIcH3vqebZmRtIrtxJg+Q+ifHIzMGwlUeE/SYmiWYGPyS1eDLEVo1V/ffTrFM2dZBc3i9jLqoi3c/NJQQCClQV5BOjGRiafm4SnKGSSEmAQMAQ5KKVsdtv1+4F5AB36VUv7rdLVBBUmKcoGzWkxI6R13Y7WYjn3CP5wQgisuTa61fdmfqTz7nxmAxOUjkL5mggPs+PvY6NQ8noeu6V2rHILNasakCYQU2KwWIkID+Pw/Y7jj4S9wuTyYETwz9jKiI4Mqs0h1twcsRIcEsDs7j505Eewv0nhvTg4jO31NlPYy6PlgZCAPXgzCBrIc6XcnWsBYpJFPnBjK5IdKARMCFyN6b+TX5c3o1GkL5XIT8Pkpf47K+UkCxrkz8X0y8D6H/QcshOgDDAXaSCmdQojTOkNBBUmKcoFr1SSWJ+8ewNZdBxg1uP3Zbs5Zs3rDPlwuDwBS03CY3RzIcwMlZOYUcUnHJrRpHFfjnFGXtMMwvPWURg/sCEBSfDivPz2Cyd8to1vHhvTs3Pi47j/u+kFMX7kZIQRvTF+My+Ph19UBzH76a4y8MWDsBgRIHfBAxfcQMBbpXAAUVc5H0kH4cP/IFQwYthA3ErNp+Cl6QopyZkkpFwshEv6y+W7gVSmls/KYg6ezDSpIUhSFfj2a0SAulIUpO+ndtTHR4YFnu0ln3P4DBQCYTIJOXRuydX8OUkoKSiqQUhIW5FfjeN0w+GHBOkrKndwwqCM+lTPNANon16d9cv0Tur/T7WHS/JUcKCzFJARSQrnTW6dK+N+CLFgNwl450LsUzJXZMC0O73pvErAgQiYipT+2wufx0QKJD33t7z0Q5YJ1jpcAaAL0FEK8DDiAR6WUK0/XzVSQpCgK+UXl3PX0N+i6wVfTVzJ9/J0XVKVtj0dn+Urv1HqTycQ1/dpT7HLRuF4EK7bspUViFPUigwHIOFjI2h2ZFJdV8NFPy/F4dH5csJ6LmidwYE8+LZvFcu/NfU54+v3NH3zPgULv4rWGlPRsnsgd/ToDIGy9IWodoCFzh4BeCq5lSNcqhLUL0udGcC0G/0cQ1o5YgIZR35yqx6Mop0u4EGLVYe8/llJ+fIxzzEAo0BXoBHwvhEiSUsqjn/b3qCBJUc4x27bt5523ZtEgIZxHHrsMyxkYJ1RW7sQwJG6PQVFpBVLCBRQjYTab6Nw+kbUb9xEZHsCj/5uOR5dEBPvxwys3VwWMpeVORj/3JbphYDaZkIaBbkiKyhzMm7MZYcDufbl0aZdI5/YnNlh6f351JXQJ5JWU0yyueriFEJbKfYd+F3izR0IIRNCTwJMn8QQUxUvKMzq7LVdK2fEEz8kAplYGRX8KIQwgHMg5+ml/zzkzOktRFK//vPorO3YcYMni7SxetO2M3DM+JoTbr+5B06QoXnxwyHlbhLC0zMmfa/ZQUuqote/Ru/uREB+GzWbG5fBQ4XSTfrAQXa9ef62wtAK3ruNweShzOPHzsaFpApMGmLwlBaQhCQn2PeG2PXllX8ICfNEqA7I9B/PZuO9AreNEyP/A50oIeBxh9c7Ok1JHGvmcpj+mFeVc8jPQB0AI0QSwArmn62Yqk6Qo55jY2GCysgqQUhIVdebGBl1/RadaU+JPhfGfL2Lm3E1cMbANvbs35cPJC2mSFMnto3ud0WBM1w1uffAzCovL8fO18e3Ht9eoH/TFlBR27ckBAQkJYRw0HNwwqBNms4kKp5uNu7JoWj+C0QM68vuKbQT62dmalo0QgrZN69E6NopVK3dz2aVtaJxUXYjS49HZujOLejEhBPjbMZm0Orsyh3VpybAuLXn40xks2ZaGr9VCk5jwWscJcwIiaFzVeymdyNxhoKeB/XJE8Oun9sEpFxzjHBmTJIT4BuiNt1suA3gWmARMEkJsAlzAjaerqw1UkKQoZ9XcOZt48z8ziYkN5p33biAgwIennhnGvLmbiYsLoVXreA5m5OMX6INfoM/Zbu4Jyy8s47ufV+HRDb78YQXzl24jPbOAjVsyadk0jou6NKrzvHdX/ME3m9ZzdcvWPNi1xylpS3mFi4O5xeiGxO3RKS52EB7mX7U/IT4Mq9XbtTn8kjaMGOKd6Sel5OaXvmZ/bjE+Ngs/v3Yrd1/Zg09/WcHu/XkA9GydyKcTl+By63w4eQE2m4nLLk1G0wRPjfuZtRvTMaSBx2MQFuLHx2/eQFiIf+1GAm/cOIRd2XnEhgTiZz+OtfM8O0DfD+jgmA6oIEk5P0gprz3CrtFnqg0qSFKUs2jypMW4XB6yDxSS8kcq/fq3xm63cNmQtgBMef93vvjPr5gtJsa+eZ23KOHANlj+IcuG+PvZCAiw43C48fW1EhzoQ9aBIiSSwAB71XFSSrbm5hDl548mBO+vTMFjGHy46k/GtGlHqM+Jd1/9VYC/nZFXdGTG7+vp37tFjQAJ4KrLOxAXE4IQ0LVDUtV2j26wK9MbDDldbrLzS0iICeWmyzrTsF44mhAsWbQdt8fbLefxGLzz8Tx03aB396as3ZSOw+lGCJASiksc/LFqN0P61a7VBN512BrXkUE6nDSKkXmjQN8L/k+CKRr0dLAPPJlHpCiVC9yqkTiH/DO+aRXlPNW5a0NmzVyPEIJmzWNr7CvKK+X7D+bgdnmQUvLGfZ9htppZ8ftGHnv/prPT4BNktZiZ/M5NbNiaSZuW9QD45fcNNIgPI7lFvarjnl4wl6nbtmDWNH4edT2BNhtFDgeaEOiGcaTLn7B7bu7NPTf3rnOfEILunRrW2m4xm7BZzDjdHoQQ7Nh3EIvZRFxEEL3aNmTarHXMX7INkN7xTJX/Xtt3ZfPBpIW4PTpms0ZosB+FReWYTBptW8UfV3vdHp03fv6Zvg2+oFlcNIHRryK0YKRjIeh7AAmlr0DkaoQsA+3owZWiKCdGBUmKchbd/0B/Bg5MJjw8gNC/ZDbe+79vKCsq974RIDQNR7mLtG37z0JL/76QYD8u7tak6v3oOhZcnZ+2G4fHg6/ZwtbcHHo3SOTnbVvRDYPxq1fx7169z2CLa4uPCmbfAe84secmzkYTglfuvoxebRt6ly0R3gyQyzCwBdnpkZyAxWyiTOpgArMuyS8s464bL2ZQ31YE+NuPfVNg1rrtNPT/inaxW0FuQ5Z+iAh8EixNqF4ZVyKMPIT5+AIvRTk6tXbb4dSTUJSzSAhBk6YxtQIkAKEJhElDWjVKGofiCLETmxTBfa9ecxZaeno90LkbZk0jLjCQng0SiA8MwmoyYdFMhPmefFfbyfrosZGMvboXHZrF4/boON0elm3YA0Dfns145K5++AbacQuJWzdo3TqeOX/uAE2AAF3zdsMtXZF6xABJSsnvS7bS78b3GPPY5xSXVhAZ5E9+uS8eQ8PABFooAJqlGdivAsxgGwimenVeU1GUk6MySYpyjnrgtWtZb3azp9ybTdIbhnLvw1fSvOn59wvxmlbJXNPKO0bHoxt0CIvlvk5dCfX1YWSLVsc4+/Tbp6czK+BH/Hv645/ui6abGdG7DeANdAf2bcWm3QeYuWgLIKuWKqk8AItJYEIybGDbOq8vpeT+F6awZnO6937781mQspOhlyaTsf8R3vttHlf1iSQp9vqqc7TgV4BXTufHVi5A59jabWedCpIU5Rxl8bOSVlFRVdUxMS6MVknRZ7lVR+dwe9iek0uTiDB8LJZjn1CHR6bMZGlqGgA/3TMak3bsL2zdMEjLLiAuLAj7aRjUPnHPj+S5CinRynj88REMiL6o1jEP33IJ/S9qTkRYAGaT4ONvl2EYkpjIIP775AgC/e34+9nqvH5+UTnrtmYctkXSvFE0ZRUuPpy4BLfbxLw/ipk5AXIKi7n3zR+ocLh584GhtEg8t/+bUJR/MhUuKso5ymYx07FFfSxmEw3jwpj05DU16vqca3TDYOikLxnz1RSGTfwKz3EMuF6cmsagjz7j3zPmVA3QXrtvP+UuN1LCjuzjqxF35wdTufaNr7ly3Oc4KhepPZWaBiRg17zT8RP86s7kaZoguVkcMRGBRIQGMOnV0Ugk6VkFjBo7EZf7yO0KCfQlMrS6yzW5WT22786muLQCj8fAoxtUVLi45ZVvuPs/U8g8WEhuURkTpv8BeDNRG3ftJzWj5vP6Im02gxc9xuPr/4du6Cf7GBTlgnPufuMqygVOCMH7j4wgO7+Esgon1z3zBTarmTfHDiUyJOBsNw+AwgoHewsKaRkdSXGFg/SCIjyGQXphEYXlFYT7+x31/MenzSKvvIKsohIGt2xC96QG/GtgL176dQH1Q4MI9Tv2eCSPbrByp7ebKre4jPTcQhrHntpZXnc2vJquYW0IswbTwC/22CcAFQ4Xuu4dXG0YkivvnUCPDkm88OCQGtmxecu38+mPKcRGBZNXWI5uGKzZnM7G7fvp0SGJh27py/czV7M7N5+tad4Fz02awG4x0am5dxHdr2av5qOfvJmrF+8YxKWdmnq37/0dXRpsKtrDztIMmgU2OJWPRTlP6fLcKCZ5LlCZJEU5h2maICY8kE+mp7AnK58d+3L4ds7a035fKSVLN+9h2ea0Iy51kV9WTr+PJjHmqync9+MMQnx9GNKiKSYhuKxFE8KOI8CpHxqM3WxGSklMkLe6+JDkZrw5cjA7s/O49bMfmbx89VHbaTZpjOjmHbfUqkE0iVGhf+MTH51JaLQPaXHcARJAw/oRNG4QUfXe5dZZ9Gcq23dnV22TUvL8+zPZnZ7L5p1Z9O3WhNZNYjGbNJwuD/uzixh2aTKD+7fGsHh/cQkB1/XvwEePjeS6/h0AWLR2Fy63jkc3ePu7RVXXbxWYiF2zYjdZqOdTvQ6coijHR2WSFOUfoEViFMs2pAGSZg1O/y+7bxet491pSwFokxjD7gP5XNenPTf1q16LcmduHm7doMLt4Y+0dPbkF/D8oEt4/YpjFzTclp3D2wuW0S0hnpHtWtEiOpLEsJCq/Wv37cel6xhSsix1Lzd171DrGnPX7eTxz2YSFujHFw9fwxOj+mIxndrFgPNdReQ5C2nkX7/OpUSOZuuuA0gkLRpFe19Lb1AUExlUdYwQgvAQf/ILyxBCcP8NF+Pna+OVj2aTcaCQ/7uzHwADuzZj6qIN5BSUcm3/Dtw1rHuNJV36dmjMup2ZgDezdsi4NnexsySDeN9I/C3/vIrtypknEaqY5GFUkKQo/wA3DOpE0wZR2Cxm2jaJ+1vXyMop4sFXf8ThdPP6o8NomhB1xGN3ZObgdHmQwModGRhS8t70pVx9cRt8rN4B2e3iYmgRHcn6/VnUDw5i6MQvCbLbmXnHGALtR68DdP+UGewrKCIlLYOPrr6C5tE1A7/h7Vsyff1WSp0u7uldu64SwPhZKbh1g/yScuavT+WaXnXPHDsRn36/nJ9nr+fyS5MZPKwxD619DYmkc2hrGvjF0ja4GY0Djq/Latz/ZrM7PQ+b1USDuDAKisp5+OY+hATWzLBNePk6Fv+ZSnKzOEKDvd2Tz4+9rMYx4cH+TB13S9X71dvS2bAri8HdmhMVGsCoS9uye38em3Zn8ci1vauOs2hmWgQl/L2HoSiKCpIU5Z9ACEGXlic3nmTq3PVkHCjEkJJJP6bw2iNDj3ishre+jwCsFhMCQaCvDZu5+ivDajbz9Q2jAGj9+rs4PTqlThfbD+bSqf7RyxT42ayYhEBKiZ+19vpkccGBTLppBE9Mnc2EJSt59coBBPrUDLwuadOYvTmFCAHtG9YOHGet3s74WSn0SW7I/UN6HDMTVFxSweQpKei6wZdTVxDbHSQSp+Fiae4aluWuZUr6bD7p9AKBlrrXXTtc/ZgQMrOLAHj8jn4kN6s7uA0L9mN4/zZ17vtmxioWrNjBNUM60LNjI1IzcvljUxoTp6egGwYzlmxi6qu3YNI0nrqpX41zcxyFvLTlMwwpebrljUTaQ+q8h6L8laGKSVZRQZKiXCBaN47FYjEhgPYtj16dOaugBCnBrGlc17sdTetF0Klp/RpdPIcb07Edn6SsokFoMK1jjj4l3eH20KthAmG+voxq14rkuLqPf23WYlbvzcSkaXy1Yj3Xdm6DEBBUGSzdNagr/ds1JsjXToi/L9NWbMbp8jC8WyvMJo1/fzkLt26QubCYQR2aHXMwt6+PlaAAOxUON3abhW6RyczKW0RmRTa6NDAwMKSBU3fBcVQ3ePaBwcxbvoO46KAjBkhHs3d/PuO/XYbL7eGpt37BEmpBlxIkuHXduw5cuaPGOdv2ZvPlrFV0a53I7vAtbCveC3hnuT3S7PwrQqoop5sKkhTlPDFr6RZe+2QO8TEhfPj01d7lMg7Tq2MjJjx/LU6Xh1aNjz4A+ZEre/H4pJmUVjjxGJI+bRphMR95vM9jfXsy9uLuWDTtmBmbN+Yt4bs1GxECejVKOOJx8SGB2CpLHpQ4HFz8n48RAsaPHk6XJG+QlxQdBsA3i9bx9vQlSCAzv5iHhvYkKjiAnOIyNCEI9a8ejzPx22XMXbqN0Vd24bK+1YUqzWYTn711I2u3ZNC2RT1CfPwIsQaS7cgFKajvF024NYTNxbu42BZyzM9ps1oY3LvlUY85Gj8fK1W3EOD06GhC4NENfGwWWiRGccfQ7jXOuf/NqRSWVjB/VSq3PtgMq2ZBAgl+qpaScnzUArc1qSBJUc4T479fhsPlIf1AIcvW7mZAj+bousHLb/3K+k0Z3HXzxW+csEYAACAASURBVPTr3aLGOVt3H2DGks3YrGZWbd5HUr0wrrqkLa0bx5KcFMuMlM18u3Atof4+3HjYoO26WE0m1u7MYOx70/CxWpjw2EjqR9Xu4il1utClgQlBqdN1xOs93K8nTaIj8LdZmbVpBy5dx1Js8Nwbv3D70G5cOaAt6eW5vLzpB7J26XgsbmSFRl5xGQCfP3wNCzfuom1iLGGB3rE+GVkFfPXTn7jcOq9/OJsBF7fAbPL+Qsh3lvBH2Q7atU0k1Nd7fGrpPhyGC7tmxaqZWVO4hfVF27GbrHQNq+4iyyjPYXdpJp3CmuNjqrtg5IkKD/Hng+eu5otf/mTRpt1YzRoXtUli9/48Hrr6Yrq2Sqh1jtvjrcXk1nXk7kD+3X0MhpR0Dfv7wZqiXMhUkKQo54kuyQ2YvWwrAmhRWZl745ZMlv25C4fDzX8/mlsjSPLoBnePm1K9fAawY18O81bs4LMXRwMg3RLh1Nm0cz+r6qcTHxlM1FFqNH3620rKHC7KHS5m/LGFe4f1qHXMv/r1wpAGdouFm7t6Z63NXrKF1yfMJTTIl3eeHklsZBBmk8awtt72BthszN2yE58sgyJZzrufL6R7hyTe3jeD9YVpEAfWODDpZlo39ZYSCAvwZUT31jXuHRjgg9lsQghBYIAdU2X3oSENbkp5j2JXOULT+Knnvwi2+nNr4gg+3TOVJgEJlOsOPIaO22Pwvx8W0f6WllgtZg46Crh71RsAJPnH8k77sSfyz3ZULRpFM+7BK8gvLqfQyGNr+WbuCb6UeN+6u++6tExg/uqdABzILeG2sG6nrC3KhUEiVJ2kw6ggSVHOE/+6pR+X925NZFgAESHegcWx0UEIwG63kNTgL2NypKyqcn04t27w1czV3H9dT2b+vhHDgIVrdrF8y16EEHz7zGjqRQTX2YZebZJYtT0DKSW+ZjMe3ajK1BwS6uvD68MG1dj27ucLqXC4yXQUccdTX/PLhLtr7O+SFM/yx+9h+F3jKa9woWkCX7uFOJ8wTEJDx/s5dLOH93b/wqikbnV2hwX62/nkP6NZvzmD7h0bVh3jkQa5zmIkgA5jV0/ks25j6RvVhb5RXQA44Mjl1h/ewJWvkb5asqHHfjq2qk+WIw8Ah+Fib9mBOp/LyQr0t/J/q1/DYTj4Lv1HxrV+njjf2l2m9151UVXV7TGDOwEwceoffPHLn3RtnYDVamb5uj3ceEVnbri882lpq6KcT1SQpCjnCU0TtGwUU2NbZEQgn7xzI7vTcujUPqHGPrPZRJC/DzkFpQAkxoayZ38+AIUl5QT62vGzWymtcCIFOFwefGwWUjPzjhgkXXVxG0J8fXjuw5l8PnUF6Rn5PHPXoDqPPVxMRBAFRRUAFBRX1HmMr83CxHHXsyBlJ53bNCDQ34cHml5GmM2fybsX4DDcWISJSHtwjQBJSsmXaYvYVJjOHY360TA2mvqxNQtOWjUzNyddwqTd8wDYUZKFx9AxdMmW1AMkxYcR7R9Oi4wurN6cjtmkkVjPOx6qVVAS3cNbsaFoN7cnDTnmZz2SCr2M/RVp1PNJwmaqWdPIIz04Daf38yCZmfU7bYNbE+cbS6xP9b95/agQfhx3c9V7w5B8MnU5UsKydXsAidtj8OG3Sxg9pNMJ135SLgxqgdtqKkhSlPPM9tQDPPvqdAID7Lz6zAjqxYbgY7dwz2NfU1Lq4MUnhtK8ifcXa35RedV5HZrHY7WYKatwcdfIizBpGhOevoa5K7ZjmODr+WtpXC+CLpVLYRyJo8KNCUGF083mXXVnVopKKnjriwXYLGbGju7NDcM789SbMzAMSWjQkSt114sO4YZhnXl/+0weW7SOaxv05MakvoxO7M2+0hy2FGfQI6JZjXNW5+9i0q55OAw3e8oO8P1Fj9V57VsbXsK24gxScncwIr4rZs3EHc98w659OdisZr5/91bGPTaULTuzMJk03p68gIb1w7lxeBeeaHHDUZ/JsXgMN29tf4QKvYwgSyiPNP0vmqj+ReU0XMTaY8h07Adgce5SFucuxYSJy2IHMPvAPJoENOLhJvdj1qq/1jVN0DQhir3787FYTJRVVI4BE7BmawYdWhx9lqOiXOhUkKQo55nxkxeRlV3EwdwSZs7dyOiRXZk5ZyNp+3K9mYUvlvLmiyMBaN0ohvU7MjGZNFo2jCEkyJd6kcE0jvd2zZU7XGzfe5AurRqw6J17a93Loxu8PWURu7LyePTq3jSMDadP58b8ungz6QcKeHhMnxrH64bB1t3ZTJm9lrkp29E0CA/247YR3Rk5qB3bdmVz/5jeR/18WRX5TElfjsvw8P6OmQyP74rdZCExIIrEgKjDjitge3EmfmY7Em/tJ7updk0mAI+hs7konSdbXkWo1R9RWcNpS2oWhiGRUpKZXUjTxCiSm8Vxy+Nfsn1PNstW7yIpPpxenRqdwL9QbaWeIko9RejSQ67zAC7Dgd1UHSx+sHM8WY7aAaeOzm9Zv+OWHnaUpLKrdDdNA5vUOGb8M9ewKTWLRvHh3P3Sd+zOyMNiNnEgt/ik2qycn6QEXdVJqqKCJEU5z7RoFsvmbVlIJI0SvZWsmzSKxlI5YDky3J9bHpiMQ9PZU1CE3WZhcI/mzFy2hbXbMjCbNGwWM3abmWf/N5OiUicrNu9l1a5M7DYzrRvG0CAylE7N4pm/Zic/Ld2Ew+Xh6Ymz+Prp0fjarXz471F1tu35j35j8epU3G4dJGjChJ+vDU0TjL2xZkC1M+0gNqu5VtdYkMUPm2ZBQxBk9cWq1S5NkO8sZfSy/2IgifcN49nWo9henMmV8XUPZH56w9ek5O3EhODF5OsA6BLemBuHd+Gzn1ZgtZgpKCrDMCSaJrBZzVVdVTbrkb9GHboLi2bGJI7+SyfIEka74J6sL1xGl7B+NQIkAJfhwqD2+LEoWyRhtlB2le5BExpR9tpL1tis5qqM0b/vGMhdL36Ly60zeVoKg3u2UF1uinIU4kiLV56LOnbsKFetWnW2m6Eo5zQpJavW7SUwwE7TRtX1cVL3HCQ9I58X3/gF3ZAYGriCvAGGxWzCpAmcLg82q5no8ECy80qqZr4ZJtBsJnRpIITAYjLx5j1XYNIED30wDV036NgsnvfHXkmF0439sCDicIPu/rBqzJGmCQb3bMHjt/avNbh76ux1vPeFd6HWcY9eQde2iTX2H3QUsb4gjU5hjQi2+tW6z9aiDG5b8QGGdyg2Sy59GXMdwdQhAxa8QLG7HJtmRpcSi2ZiSGxHWuQ04vUJc3A4vVPrOyc34O1/X0VeYRnf/bqasBA/5i3bhstj8NJDQ6gXXV3yYGrGYsanTiPE6s9HHR8lxHrkWYHHctCRw/fpU8msyCKjIoMkvwRuTrgBP7MfgZYA3t35ERuKNhHvE8dzrf6NVau72uX+g0Vc+dAnVe/fe3wknVofvftUObuEEKullEevv3EKJbQKkP+eevJL/ByP25suPaOf7e9QOTVFOc8IIejULqFGgATQKDGSzdv2oxvewEEYoFUGMm6PjsvtoVf7hlx1aVsO5pdS4XRXFTMUhyptS+9gYKfbw5vfL6Rj03hevm0w9wzvwbjbB/P85N/p+cD73PTqt7g9eq223XlVj+oCiVISFxlcK0AC+GPdHpwuD06Xh9fGzyGvsKzG/kh7EP1i2tQZIAEk+kdWBUhmoZFZkV/rGF0abCrcR4GrlLsbDcCmmZESPFKnQnexsWgvYcF+GEb1H5IrN+zF6XITFuzHPdf3IievlC27stm55yATvlte4/pTMxZhYFDqcbAqf1ud7TxekfYI7mt8J+OSn+Pfzf+PGxOu5/uMqTy24Sme2/wKG4o2AXDQmUNGefVCt2n783C5vQFeXmEZQf41B4Rn5RadVLsU5XynutsU5QIyfdb6qtctmkTz7OND+d+PS1mxaS+3Du3KyH7tAKgfHcL73y8h0NdGTkEpUsDwPm2ocLmZusT7Czn9YCFZ+cX0btsQ8AZP05dvBmBnRi5pB/JpXC+ixv0H92rJO18vosLhBuHNJP1VcamDMcM68+f6NNweg5yCUr78+U/G3tSn1rFHYjdZuSiiOX/kbifJP5o4n9Baxzy9/mv+yNuOWZj4uvvD/H5gHWsL9lTt7xLWhE6NG/Dig0P47+QFZOcW06tTI2zW6ixNUnw4VosJEDT8S4mFflEd+W7ffCyaCT+Tnev+eJ4gix+vJN953FmlzPI97C7bQuugLgRbw5lzYD7fpv8AUuKS3ixfRkUmiX4JpJenE2QJIs4nBikld7/4HdvTsomJCGJwzxZ88uNybFYLJk1UBcqhwUceJK8oigqSFOWC0qJZDGs3pAOQuicHq0nj4dF98Pe1YdKqMzpDe7dmaO/WSCnZuiebkEBfYsIDkVKyPT2H1MxcosMCiQyuXuhV0wQ9WiWwcls6EcF+xEfWrrbt9hje8UiASRPYrTW7hd74ZC4/z91AXFQwY67swlfTVgJQP/bEF2d9ve0YClylBFv9aswUO2RV/i4cuhsfkyC1NAsfkxWBd1kGszDRM9IbwPXs1IiLOjakpMxJgF/NatqDe7ckPNQPt1une/ukGvtuTBzEoJiuBJh9eXrTJ+Q4C8l3FTP7wJ9cU/+SY7a/xF3Ah6lPY6CzKGc6/24xnp2lqbgMFwKBr8mHct3bdeln8uWNNuMIsgRi1syUO1xsSs1CSklWThHT5m/A7THQhIeWjWLZtucAvnYrrf5SMkJRJGrg9uFUkKQoF4D8gjI2b9vP5QPaVAVJAnj764XMW7WT+tEhTH7h+lpBixCiqnr3ofcT/3U1+w4WEB8RXGs9t7fvG0ZmbhFRIf5YLbW/Xvx8rDx950B+mLOWoX2TCQqo2f3zy4JNGIYkN7+U9s3jaRgfgdmk0aNDdQBS4q5g7OqJZFUU8EzrUXQLb1rnZxZCEGo7csbm9kb9eH/HTBr5R9MuJIkWQfF8s2cxpbqTy2M70jQorsa1Av3tdV6nc3LCEe8RafcGdy0DE9levA+JpLF/vSMef7gKvRyJRJceyjzFSCkZGjuE1NI9SKeZobED+Cz9SwA6hrYjzFadLfO1W+nfrSmzl2+jTdM4endsxFtfLMRus/LCvYPx6AZhQX742I9jpV5FuYCpgduKcp5zONyMunU8LpcHt0fH4zHQNMGIy9vz1dL1GIbEbjXz4RMjadnw+DMLP89ax4y5Gxk5pD0DT2Ih18O99OEsfl+6lfAQf75440b8fGpP2Z+e8SdvbZuB03CT6BfJ1z0ePiX3Pl5SSjZty8TP10ZSg4hjn1B5zrrCVALMvjQKqLmkyJrtGeQWltK3Q2PMfwk6F2T/xMaiFVwSOYKWwd4K2t/8vpp3pyzB127lnScGExJiJc6n7gWLyx0upPQGp2UVLmxWc51jwJRz15keuN2gVYD8vx/PzO3ubbbwnB+4rTJJinKeKywup7zCVdXNZbOZQULHDoms2L+f1LQcIkL8aVivekzN6h0ZfLdwHQM6NuWS9o1rXTO/sIx3Ji3A7dF59YPZ9OrSGN86ApoT9dTdA7jzmh4EB/rWylId0jTQG2TYTVbahSbVeczp9OUPKXwxJQUp4eUnh9G5XeIxzxFC0C6k9nNcsXkvj7w3DQFMmb+OxNgw2jWpR/3oEFomRtMnajh9oobXOOeHBRvw6AZOl4edO4uJCQvkzXk/M7h7cy7tVJ1VyzhYyJgXvqLC6eb/briEguJylm9M467h3enQTBWRVJTjoYIkRTnPRUUEMnRQG+Yu2sqVQ9rTtFE0LgzumzANQ0osvhqvPzQUu83b9eLRDe57fypOt87ijbtJTooh4rCxRwB2mwWLWUMisVpM3PvUNxSVOnjpsSto0bh2NuqXzOVsLkrj2gaXUN8vqtb+Q4QQRITW7CKTUuI03FWFIJsGxvFFt7HkOItoG3LsAOVUW7sxHYfTg6YJtu48cFxB0pHsyy7wfj63zvrU/azbuZ+fF2/EajHz8p2XcXG7hrXOGdEnmfemLMFqMdGhaT2ufeYLXB6dFZv30q5JPcKCvDP+lm3wzhD06Aaf/7aSnIJSHC4Pj70/nfnvewuDutwefliwHrvVwtBerWqMS1MuTBKBoRa4raKCJEU5zwkhuP/2S7j/9urBwu/8tASjsqtdNyQFZRWHHU/lL0sdIbwDsv/K18fKx6+PZsXaPSxK2cmGrd5p5y+98xtfv39LjWM3F+3hw9RpOA03m4rT+KLrk7Wul+8s4ZXNP6IJwZMtr6qa2u/Q3dy+4gN2lWYzsn43Hmp2BQDxfuHE+4XXus7p4nJ7mPjVMkpKK7h6WEf27MslwN/O4EtandR1B3drwbINe9izP4/cwjJcHh0pvSUZtu/NrjNIuq5/BwZ3b4GPzYJJCMwmDZdHR1S+PqRrqwQ+mroMwzAoKXPidHswCVGjDMAHPy7lh/nrEULgcnu4pl/7k/o8inK+UUGSolyAujVvwNfz1uDRDTo3i6d9o+pxMiZNY8LDI5m+fDO92zYiLLDuWkQJ9cJIqBfGbws2V23z/8vsrxV5WxifOgOP1BF4lwapy8epc0jJ3Q5CMHn3fB5sdjkAW4rSySjPQyL5KX0FDza9/LgqRLs9OmaTdsqqSU/7bR0//rIa3ZBUONz8NPmeU3JdPx8rbz84HCklPyxYz4pNaWzbl0Owv50reycf8bzgwwKdjx+/mlkrtnJx20bYrGaKSisI8vehQXQIv/33Tu587Xu2pmUjgI4t6vP0Lf2rzl22YQ+uynpWhSV1LyysXHh0VUKxigqSFOUC1LlZfaa/eAsuj058RHCt/c3rR9G8/pG7xQ732F39eXzcT/jYLbz8rytq7Ht+02c4DTcmNHpFtOG2hpfVeY1Ie1DVwqyR9iAAMsvz+L+1n+Mw3AgEbqlz7fK3mNjlPvzMNYMxKSWFZQ6CfO18OW817/60lIhgf75+4jpCAk6+FpDFYgIhEEJ6X59iQghG9m3LyL4nVunY49FpWC+csQ0uZl92AYMeGu/tUru+L1f2TsbHZsEwvMuZSMDl8RBV2Z0ppWTfgQLAmy1s1ziOLTuyiAjz5/tpqwgJ9uXqoZ0wqYHeygVMBUmKcoGKCgkgp6iU2976HsOQvHLLYKJDj6/I4a69OTz0/BQA3npmJDM+vYcdu7P57IcULurUiK7tveN0giz+5LuKMQmNuxsNJcJeOyADuDGpD1H2IDSh0S86GbfhYXnudlyGt2CirKye7V2OZA/dI5pVnSulZOyH0/hjSxoNY8PYmZGLBPKKy/hj614Gd27+dx9RlSH921Dh9FBSUsH1I7oc1znbsnIwpEGL2OMLNk/Uqq37GPv2T5g1jfGPj2Ldjkycbu8YpG/mrMFuM3NRclKNyuf6YdXDhRB0a53A6m3pBAf48u5Hc8nJLUUIcLm9mbhAfx+G9D9yRks5/0jAUHWSqqggSVEuYJNm/cn61P1I4JnJs9iekUNCdAgfPTACX/uRZ6t9/8tq8gvLva9nrOLxewdy39PfUV7hYub8TXz34W1EhAXwbvv7WXhwHa2Dk44YIAGYhMZlcR3Jqijg8kXjKPVUcG/jQZg1Ey69+pe8WZhoFlizzlC5082yzXuQElL353GoIqRhSNo2jONUMJs0rh3W6biPn7VxO09O/R2Ap4b0YUSHkxu7VJfv563D5dZxofPrsi2MuqQt43/+AyndZBwsZNxncwkP9qd+ZDB7svLRhCC5UQyDHx5PTFgg/x07nP+OHc6+7AJ8LGauuf1jdEMiqF6GRtdrL6qrKBcSFS4qygWsQVQoFosJq8XE9owcSiqcpGbmsmTTnqOe16VtAjarGZvVTKe2CQA11jg7NCg8wh7MyPq9aRZYcxHVCo+TFXlbyHeV1Ni+6OBmyjwOPNLgy7TFxNpDMIvKRXiFiU+63EOoreZMO1+bhc5N62M2aSRGhWAze//2u39YD2LDAk/8oZwCK9O8WR2H28OK3eknfP7rX86j513v8vLkOVXbDhaUsC+7oOr9wK7NsFpM2CxmerdvRHxUCLPevpP3Hx2B2aThcHnIOFjImh0ZdGnRgGduGUDKpr3kFJaxYVcWlz82gez8EhJiQokKD6TPRU0RAi7q0ojLLm3NtcM7cVm/1qfkeSj/JAL9DP38E6hMkqJcwK6+uA0xIQHoUrJwXSrz1qYCkqb1jl4ksW+PZiQ1iEBKSWK8d5bZW89cxY8z19C7WxOiwo8enNy35h0OOPKxCDNfdnsKf7N3IHKn0EaYNRPSgEJXGXmuEqyamYsjWtI/ui31/Wq2a+X2dD6dvZJAXxvRIQE0iAohPacIkybYnp4DeIO3jz5ZwOatmdxze19atTj57FJJqYNN2zJp3iSG4MDaY55u6NaORdv3oBsGt/U8/gwUQGFpBVMXbkA3JL8s28ydw7uTnl3A/W9OBSQPX9ObK/u0oW/HJiQ3isWkaYRUtsFmMdO+ST0uv6gls1dsp6TcgcPlodzpYnD3FqzZnkFqRi7gzcAtWLOT6/p3ID0zn+Urd2Mxm/DztfHYvQNO+hkpyvlABUmKcgETQnBxG+8084uTkxjaoxWxYYHEhB47A5NQL6zG++TmcSQ3rxmAHKjIJ9uRT5OAeHwqB1vr0mBvWTYSidQk87PXUN83irYhjWgYEM3PvR5nb1kO962agG4YuA0P1yX0Ijm4AQcdRaTkbqd9aEPifEIZ++HPOFyeqvvtzy/GrGmAQK/MZq1em8aM39bjcLgZ+69veOf1a08qUCosLufauz6hrMyJyaTx7f9uIyoyqOazCQ9h7qO3/q3rB/jaiA4LJL+4nCB/O8F+dqZu2YfL40FKmLd6J1f2aQNA+F/qV4H33/Rfoy/hliFduPP1KeQUlLIrM48RT0xi7KiLmbFsc1XWr1Nzb4bvwcquUoAlK3b+rXYr5wc1Jqkm9SQURQG8U/87NK53xABpUcoOHnnhBxal7Diu603Zt5DRKS/x8LoPuWH5OHZlHsQwJCahcWvSYPzNPtT3jeR/O6fz5IYJzM9eA0CgxZfWwQ3oE+kdxyOBr9MWo0uDm1Le5a1t07kp5V3KPE58/rLWnM1s5rq+7WgQFcyf2/bx6eyVhIT44akcvKx7dN54Z9bffEJejzw7hbIyp/d6usHPs9ad1PX+yqRpfPXcDfx37DC+eWEMZrOJgd2aE+hrQwgorXAecbr+1rRsXvx0NrNTtmGzmGnXJA5fu4WyCheZOUVs23eQuPAgzCaNXm2TaBzvzQbmFZRVXWNAn1OzxIyinA9UkKQoyjGVljl57q1fWbEujefe+pXSyiDhaGZn/YkEpAcyv/Hhpie/YuxrPwBwbYNLmNbzZWJ8wnFKN27Dw67S/TXOHxTbHptmxqaZ6RnRArfhodhVgdPw4PR4KNedvHDjALTDaiFpAob1aEVGbhFFZQ4+mLaMBvXDiI0KBkOChHpxISf1LA7mVI+jEgKSW9ResHZfZj7XPzCJMQ9O5p2J85k+Zz0nsk6mn4+VDs3i8ffxZt/qR4XQrZV3xuDWtGxemzK/6tg3ly2l0/iPePqXOdz04tdMX7KZZyb8xvOTZvPrsi0UFFdg0gRCE0zYsYbwbqGMe+wK4jtFsCXnIEIIHr3n/9k76+gqrq4PP2euxp0kJMFCcJdgRUqxohVKgbq7v23funvfKrS0pdRLDadAcYdACBoSCCGEuHtybeZ8f9yQkCZY7aPtPGtlNXfmnJlzh9V7f9ln798eRWiIL5eM6cF9J5mO6vw70XOS6tG323R0dM6IwSAwGBScLhWDQWA01v99daQih2XZOxkY0pE+gfX9ySa3GMYbyd8hK4yIaiNOl8bOA8dxudS6Rq43trmYjOp8rAYTl0UOaXDPfsHtmDvoQVyaRpRXMD8uT0Db5gnhDrRUDzZoR7lsVHc6tWzGgWN5KALCg3wJ8vXCw2zCoCgE+3qBlGQcL0IARqPCtdMH/a5n8cQDY/ngs/WEh/pxzeT+dOnYeOtuzg9bSc8sBiDteCEWixEPq5mRg3+7HUFosA8nas2Wph/mCcdIUouLmLlzBwBzD+7HxxMM1e7EeSkliiJQhGBM/w4sKE+hVNjZkpnBpox0HKrKJwm72HLTrYwf2Y3xI/VSfx2dX6OLJB0dnToKKqrw97RiMjQ0TPSwmpnx4pVs2JbC0AExdX3eNKlx164PqXLZWJS1ne8HPUqwxZ2fMyY8lmHNeiA0wT37f2L/4WzGDu7coNN9lGczZsc+fMr1hHsE1v2+eM1+OO6BSPZAAp99v5UQL08+ffBKEo/nkpxRwOje7fCymvnxqWs5cCyX3u0iMZmMjBjeiTXrDtIuJozo1qdPSv81UkpUTda1/Ojfuw39e9c31k3KyufbbXsY0qE1Izq3RQhBx+gwNu9IxeFw1QoWsNmc53RfgL2HslA1jZ4dIrl2XF8+OhCPE4kIEEgpOVxUVDdWM0NZGzDaYIy1JS/cOpb56/chJUwd2ZNDiyvYk5uDlBKXqiKBGpeLIZ/NZsm0q2np78/x7GKSjuZhVBSGxrZt8G+l8+9ASqHnJJ2EOFMIWAhhBTYCFtyi6icp5TOnGHs58BPQV0oZL4S4Cjj5E7Ab0EtKuUcIsR4IB05sro+SUuafbi19+vSR8fHxZ35XOjo658xzi1YzLyGREG8vFt5zDT5WyynHljgq2VKQRGe/Fty84z3smhOzYuTbgQ8TZm28neVu4urC+qsconNh0ep9vDF7NZomEarEVKNhtZgYEBvNM49NPOP8mhoHVqvpnFqV1DicXPXhdxzOKeT2i/px98iBjcYMfGIG6jEbBgcoKlwyujsP3TqCect38/n329CkZMTgDtx7w4XnJDqWbUrk9TmrAbh72hAmj+rJmqOpzNq5k8mdO3Nll66U22wMnTObMoejwdw9d9xJWkkp7YODsBrdz9zucrH5eDoxQUF8sGMHPxw8ALhtpZ4eeiHNys28/MEKTlgjkLx4vAAAIABJREFU9eoUxYxnp5z1enX+HIQQu6SUff6q+0V09pd3/nDBX3KvJ7v8/Je+t9/C2USS7MBwKWWlEMIEbBZCLJdSbj95kBDCB7gPiDtxTEr5DfBN7fmuwEIp5clZjldJKXXVo6Pz/8jRgmLmxu1lwe6DuFSNshobiVl59I9ucco5t+2cQZG9AkUInukyjRU5CVwY2rVJgQTuiqvfKpDsDidL1h7A39eDJR/dxtufrWP//kwqnVXYbE5S0077t1UdHh6nNsc8FXuP53C8sBQJfLEpoUmRRJYD40l51At/2cvKjUmEhfhSWlGDyWggMizgnKMyB1NzsTtdICExNZfJwIwdcRwuLOT59fkMiIqihZ8/A1q0ZMWR+oq0bs1CufS7ueRWVhDh48vyq6/FoChYjEYuauOuZOzdvDnzkxJxSYkQgvjk4+xacARO+pt576Gsc1qvjs4/kTOKJOkONVXWvjTV/jQVfnoBeI2GkaOTmQZ89xvWqKOj8ydy45yfyK+owiAEBiEI9PKka2RYgzGHcgvwtpiJCPBDSkmerRRValgUE5GewdzbfgIVzhpk7ZfuH8mbs9ewaksyihA8fudonr9/PHa7k2dfXsTxjGIevHvUmS/yG0nLL6bG6bYY6NGyeZNjRvVuz9qNyWiq+71LKamucWCzO7FaTEgpiW51blt8ANPH9SEhKQNV1bh+Uj9yKipIzM/HpWl4GI3kVFTQws+fF4ZfREJONvlVVYR5eVFUXUVWpfsj+2hJMfetWEZyYQHPDB3O4JYtAbi8U2dsLhcLk5M4WJDP8pxUPMPBuzZ3XgjoGP3ntFPROf9R9e22Os4qJ0kIYQB2AW2BmVLKuF+d7wVESSl/FkKcSiRdCUz61bHPhBAqMA94UZ5L+YeOjs4fgrN2f8VoMDD7+svo0SIcg1L/IfnZ5njeX7MNKWH29ZfRu1UEj3WawhdpqxkS0gWb6uCWHe8DcHWrYdzQZuQfsq7P5m1n7pJ4rBYjDqeKELB8QyIXDWiPxWLilecm/yH3OR0rD7gjNALo0SK8yTFP3jGG2M4tMZkMlJXX8P7n69A0SfvoUMZf1JUAP0/atTl3wdE8xI9vX7u+7vU9y5biqm1W2yYgkL4R7qq6kpoa8qvcJfy5VVUNrtEvMor1aWlUu5w8uvoXtt50KwCKEFzTvQfJhQXszctFCpAWgaeHiZcfmkiNzUHPJqr2dHT+bZyVXJRSqlLKHkAkECuEqGtEJIRQgLeAh041XwjRD6iWUh446fBVUsquwODan2tOMfdWIUS8ECK+oKDgbJaro6NzDnx83aWM6dKOpycOJ7WgiNFvzeG1ZRvqStbXJx/F5nThUlXij7m3YMaE92LuwEe4I2YsB8rS0aSGXXOypTDprO97ur+JXC6V2T9sobLaTkl5de142HUgg7i9xxqNL6+o4bmXF/H0iwspLas+h3d/eqYP7IFBEVhMRkZ3jWlyjNFoYOzwLowc3JHLx/ZEURSkhK3xR9mTmMETry/mged+5N1P11J2Cn+j0yGl5MEVy1l55AgGIfAwGrm6e/c664OdWZlNzovw8eGZYReiIfEwGmnt794KdWkaNyycT6eZ7xHk6YlBCKQAV6jCu69Owc/byvPvL2fCrR+xNeFoo+tWVdvPyc5A5++FBDTEX/Lzd+CcYmpSylJgHTDmpMM+QBdgvRDiGNAfWCyEODkZayow91fXyqr9bwXwLRB7int+LKXsI6XsExJy7iFrHR2dxhSUVrI7JQuXqtE5IpS3po5jUo9OvLB4LdmlFXy3Yy9HC4qRUuLrYQXA02xifPcOACSWHeeu+A/5MOVnLmzWjRCrH1aDmZvanHnrq6S8mssfmM0F173Dsk2JTY6RQKuIIExGBVWt/0J2utQGjXfLymvYviOVTz7byMatKWzelsKnX27+HU+mIXvSczAoClJKdqdnn3kC4OttxWBwb7t9u3AnOfll7Nybzrzlu3n9w5UNxian5fHp/G2kZhSe8nopRUUsTzmMU9NQpeTF4SOY0rm+Ye6QVq2xnFSN6G0yExMYxNeXX0G7oGB+uOJKXhw+go8nuAP5+/Ny2ZGVhc3l4qP4nfhaahP0zQoGg8L8lXuosTtxulTmr2xolPnkW0sYfcNMbntqLi69+a3Ov4AzbrcJIUIAp5SyVAjhAYzEnXsEgJSyDAg+afx64D8nErJrI01TcEeLTowxAv5SysLaZPDxwOo/5B3p6Oiclpyicq587is0TWNQ19a8dtt4wJ2H0jzAl8KKKhRFIcjbi18OHGZtUioAlXYHwd7uHmHP7P+aXFspSWWZBFv8+H7go2edi7Rl91EKS6tQVY05C7YzdnC9w7PLpXLXsz+w/3A2Pt4WnK6GX8Sx3VrSrYPbl6iiwsa06z+qa6dxgrgdqb/puaQdK+CNt5YTHOzDNTdfwO1fLKKw0r1Og0Ehv7zqjNcQQjDrlems2ZxMt46RPPH6IiqqbLhcGkiJprn9ixwOFw6Xym3Pf4fd4eKTeVt5+b4JDI9t1+B61TYHj76yEGeYitEkaB0UyCUdOzZ41hG+vuy89XY+37ObUpuN2/r0JcTLq+58l2ahdGlWv93XOiAAi9GAENC1WSjPDLuQL/fuYUBYBI8/t5CikkqEcG+/jhtWL8bsDhdra93WD6flk51XSovm9RYNOv8UhJ6TdBJnk5MUDnxRm5ekAD9IKZcKIZ4H4qWUi88wfwiQIaU8OW5rAX6pFUgG3ALpk3Nfvo6OzrmSklWIJiU1Dhfxh+q3aoQQfH/7NDYePkbPFuGkF5Xw6E8r6qo0JG4hBRBg9iHfVoZDOnn/8BIKbWXc0W7cWd2/W7vmKIrAYjYyrG/DLawjxwtJSXdXq1VU1rt6Gw2CGyYP4PrL+tcdy8wuwWZv7D2UX1jRwLDybHnn/VUkJedgNudTFKCRV16BlODvaaVfdBTXDu51VtcJb+bH1Zf1Q0rJq49dwqGj+WTllOBwqPTsGsmoq96j2u5Eegi0k3atZv+0rYFIcjhdvPLJSnJyywjMg4poidNfJS4zk3bBwRwsyOerPXu4pENHLm7Xjjv6xvL65k08vPIXnhgylJigIByqis3lqo8WAf5WD1ZfewNf7d3DvrxcCqqqePmikRxKy6OkrLpOmP74/o00C6pvUWM2GejbtQV7krKICPMn/Ff96nR0/omcTXXbPqBnE8efPsX4Yb96vR73FtzJx6qA3uewTh0dnT+I2A4taB8VwsGsfAJb+/De6q3cNbw/BkXB39ODiT3crtD7MnIxCMEJGdIyyL/OZPKNHjcycdML7ugIks2FB89aJLUID2T+2zdTUl5N64iGTXIjQv0wCwW7S0MqAhSBj5eFCcO78uWCHWxNSOO9p67Aw2oipm0oLVoGkZZW2Ci74ZKpM5j17jVERpx9pCOiuT+HDucA0LtVc7blZYOAOy7qz9WDGn0EnpG3PlnN0jUH8PIw89U71xPg78VFU9/BXtuQV1Olu48KYDQoXNCrdYP5361IYM0Od+RGSECFY6WlTJ/3IwZAKAouTWND+jH6RESwIyuTz/fsxqlp5C6r4NNJlzJh7tdUOhw8OWQo13avfw+qpvFh/A4cqsqWjOPsvf0uoqOCMRkN2B0uFCHYsiuNS0d1r5sjhODqS2IZ1KeIicO7kplbSmJKDkP6RuPr7XHOz0fn/MTd4PbvkS/0V6A7buvo/Muwmo18+siVTPvoO/Zl5HC0uJiY0CAu7tq+wbiRnduyLvkoybkFTO7dhSv6dkUIQamjipkpS7EqJqpVd7Tn2tZn3+8rs7CU7zftpWd0BG0i3Tv15RU1bNl2hCXL92ArqKn9YJI4vRSocjF3cTxSQFJqLrc8+CUvPjqJ/YeyySooQ1gVpF1DSLBaTdhsTmw2J5u3HWHq5CZTHZvkgXtH4xniyYo9hzmeV8a8e6+ipLyGksxycnJLKa+wkZ9fzoD+bevct0/Hms2HcDpV7AYXB4/kMqhPNFaLEbvD1UjU3Xz5QK6b2HCtinC3FNGQKBIspaBZJE4fgQqI2pwgVdUQCHZlZ+OsrX4rqbGxMf0YNqcTl6bx5d49DUSSUVHqEr9Ntb8bDQb6dW/J+rgUjEYDVmtDX6utCUd54q0lCAHJqXmsj0tBSsncJfF889b1Z/2cdXT+TugiSUfnX4qn2eSuxKr9/deYjUbevHJso+MzU5ayMnc3CoKBQR24MXoUHXzd5eJ5tlK+PbaeGJ/mjI9oWqDc/sF8MgvL+H7zPr5+cCotQgK49o45VJRW1yVpC9x/0Souic3uAKsAo0BTJRnHinhrxkp8Aj3rojIGo8AkDEwY042FS/dgNCrE9mnd5P1PhclkYNmewxSUVrJ2Vwp+BhOLftgFgKIIjEYDiiIYNrg9/33Q/VwW/7ybdZsOMf2KfvTt3fB+V4zvxWc/bCPQ34uWzQNJScvn+YcmMOf7rfToHMlXK3e5rQ0As9FAbnUlV6/4nsyqcv43eCxXjumF3eFk36Fsdu09jme+xFoIBf0kiqIQnAgV/hq+lQZyskqJ9PXFqChoUtK7eXMuaNESs9GIKiXTunQjJ6+M0vJqqmscPPnKQmKsJrpP7sDU2B51EcJHbxtFy4hAgvy9GX1Bwz5zGbmlaFLidKikZRQCErvDRU5B2Tk9Z53zH/Xcarr+0egiSUfnX8qbU8by1bbdtAryZ0i7UwuKkrJqklNz6d4xEk8PMx4GMwoCIQR9gmLqBJJLU7l22/+oUu0YUAjzCGjQ8PYEdqe7b5gA7C6VG979nmO+diyawKOkPklHAAa7dIsIBwhNgCrRJBzPKOaRK2LZm5iB2WTklScuJap5AJ6eFqZe0Q+rxYSX16nbqpyKFqH+VFTb0KTk5yV7645rmkTTNBwOjZTUPACyskuY8fE6HA4XiQezWLHwQRSlPkZ0w5SBTJ/Ul4LiSm78jztRXgiB3eFi/6FsHrhtBD+sSiAs2BfZwsCgH2ah1WaAvZWwiYtbtqPrwCgG9G3Dzbu/cT8TDZZefjWRof7c98yPHMsqRggIC/blqjbNyK+qIn5tKsnfp/F9rgfbb76VKoeTDesOcdVLszEoAl8fD6qqHVRVOzAfctJpXLO6NXt7Wrh5StMNgMcP68yOvccoLKnk8TtGs3TdAbbvOcatV/6+hsE6OuczukjS0fmXkJldgofVRFCgNwABXh7cO6KJNhtAXmE5DodKcKAX19z3GXaHi+BAb759/0bujBlHkNkXD6OZyyLr5x+uyKrbflPRUGXTJeLv3TqJT1bG0TcmimZ+3iRl5iONArufwKOkflx4qC89urVE1VTGjOhKZEQg9z38rTsiUlbNYy/Mp39sNK8+eVmDaq8T7++38NZ9l7B2VwptI4P53xsr6gSRh9VEx/Zh5OSVc/+dbrNMq9WEwL0t5uFh5uTiPpdL5fl3fiYxJZdhA2LQNInN7mpwr8++3cLiz+4EYNSCT+sEEoC/xcq4xZ+TXOK2BggNNqIUapiNRpoH+OJjsfD+M1P4dvFOlm88yNtz1vDsfeO4vXsfJnywC1XVWLRmPzdOHsCOhDRmzFmLy6XhomGj3YQDx8/62Xh5WvjfY5fVvX7ghuFnPVfn74NE6DlJJ6GLJB2dfwHzF+1i1pz1CCF457VpdGxf7x69MS6FD77cQM8uUTx82yh2J2bwyEvzkcD1V/SnusaBw6mSmVOC06ViNZm5rk3jHKRIz2C8jB7UqHZCLf7EBrZrNAagY1Qz3rppAgA2hwsfDytVNjtmkxFF0dBqS74cTo1HH7wYgFVrE1m97iDtYkIpKKrA6XJLiu27jrJj9zH69Tq3rbVT4Wk1M35QZ7ZsTyE9owiDQRAe5k9oM1/2H8jEy8tCQIC7vD4o0Jv/vXIlCXvSGT60QwOhtnNfOtsS0qixOVm+LpGwZr5k5pRw4YB2rN6cjJTu7b0TXBrdmTcTNtcJy6KaGtIrS+vOF8WqtBEBvNJ7FH4+7iRpLw8zq7Ykk1tQTml5NZt2pjK0XwzNAr0pLXebVj75ykIiwwPqninAxDE9+HFxPAhBbM8/5rnp6PxT0UWSjs7fFCklR48V4O/necboybqNyTgcKgZFkLA3vYFIemXGCiqq7BQWVzF6SCd27jmGw+FCAvuTsrhoWHtWem7DFC7ZXJzI8NDuTd7D1+TJ9wMf4VhVPp38ok7rmySlZP+xXPy9PZj/2DUkpGbRNyaKuO2pfPTpBlRV49Ybh7B63UF27Unnl1UH0KQkJNibe+8YwVsfrXLnLCkCL89zb1x7JnbuSsNRm++UlV1CVlYJEnCV1bB63UGuv8q9xdSlUwRdOkU0mh8ZFoDTqQJQWWlnxgtTadPCnaQ+sHc02xPTKG6r8VzcGh7uNZg7uvVnUHhLbl4zn8Kaauyaqy4vC8ClSSr2VHDPzz8yuE80rz48CSEEraOCKCypREqIDPPHaFD48o1r+Wp+HD8u3MmB5GwKiytp0yKI1PRCpISfV+/ji/dvIK+ggu6d9dYjOo3R9JykOnSRpKPzN2X2l5v4cWE8Qgg++N/VRLc+tSP9VVf256kXF+LlZeHCwR0anIsMD6hLxG0W7MPFF3Zm6Zr92B0urro0loqQctYlbsWmOnjv0JJTiiQAP7MX3c1njk7M+HkrX63bhaZJ/nPpUKYO6QHAxSO7cvHIrmia5MrrPqSwyC0ATiCEYOLYHvTt3YqFy/fSpWNzunRoLFJOsD8pi607UxkxpAPRrZqdctyvmTS+Fxs2H6aqyo4mJVK6hZ3JaKBX95YNxmbllvLAcz/icLp4/fHLaNcmlKjmATQP9eN4dgmKQZCw/ziB/p48+cZiKqvsBI0NYmlWMmQLPAxGHukzlG4h4fw88TrGLv6C3Gp3g1qrwUgbv0Cy80sx5GtouKvMSitq8Pfx4Om7x7I14SgtwgNoX9sfzsvTQt9uLfn2R3eLzfyCCh5+9nIef2lhXXl/RHgAEeEBZ/08dHT+regiSUfnb8rm7SnY7S7MZgMHDmaeViT1j43ml4UPIgR1EZ7c/DL+++pCnE6VG6YMZECv1jQP9QdgSW2ujBCC5IIs7N96Q5mBoEm+p7zHubA9OR17baTljQUb8PPy4OLe9RYELpfaSCApiiA40JuCwgrCQ/254/qhp71HeUUNDz79A3aHiwXLdrP0m3vOqnQfoHXLYBbMvRuHw8X8xQkIIYjt3QovLyvNQnwajJ2/fDc5+WVICV/O286LD7vbf9xw5UBeeHcZUsKho3mUV9jYn5yNqmrkHLQj/ARCUFdZBrA9N4Mqp9tBXACalIQVWqjZIHBoEpNRoU2LEGw2JxP+8wXlFTaevmdsnUA6QY/OURiNCi6XhtGo0CzYlyfuH8uO3WlcPl63qNM5NVKCquck1aHH1HR0/qbceNUFmE0GgoN8GDywcf7P3v0Z3P/oXObWRhQURTTYApu7KJ6j6YUczyrm6PFC2rSsF1lC1I9NP1iGudIKLkH5pt//4elSNcbHdsSouD9+NE1yJKdh7zKz2cg10wbWijrw9XH3j0tOyWXOV2fXm83pUtFqVZbTpbLvSBZTn/qCR2YuxuZwJy8XlVUx/ZmvGPvgR+w7ko3TpfLiZyu55ZXvSMkowGw2MnVyLFde3pfWrUIaCSRwCxKzyYjFbKR31xZ1x0cO7khYiC+qqrFu62HsThdGg4LVYmJCQDumtuvG2FYduLVLvVVCv7AorAYjCu6tNoemslZkUGV0IgREhQfy3L1j2RSfSkWlHZeq8dXCHY3W9OPiXe5WKIC3t5WWkUEkpeTyy/qDfDZ3S4McJR0dnVOjR5J0dP6mDL2gPUMvaH/K80++sICKChtJh3Lo3bMl7dqGNTjfLjoUs9kdxegQHdrUJQDo2DYMgcBqMdKvNtHXrjpRpYan8dzL7O/+aAF7jmbjaTUR4uuNt4eZ6bXbbSdz4zUXMGlcD/LyyzmYnM3szzcigeZhZ9cOIyjAm8fuvZhf1iUyeUJv3vhmHalZRWQVlLFmZwrjBnVi6ZZE0rKLcKkaM+dtZtKQLvwSl4zN4eK5Ob/w9TNXn/E+g2Pb8vFrV+F0qnQ46Rmv2ZxMRZUdg8HdIHdY/xhie7SisspOcFtfLlv2NQoCTWq8O9SdyN7M05utU+7gpyP7eXLbKveFBBT30QjdZCQts5Dn3l/O43eMwmhQEAJGNCGQ07OK6n4vK6/G6XQxd4FbTG1PSON4VjGtooIazdPR0WmILpJ0dP6h+Hhbqa6ygwRPz8ZiZtzwLjQP9UNVtQYRkF/TIiKQ72beRH5RBR3bhpFcnsndu2ahaiovdruGQSGdzmld8UeycLpUQPDMtBF0b928yXFZ2SUk7D3OjvijHEjKYuTwznTpHMnIC898v+pqB0KBEUM6MmKI2xSxVVwimfnuirHI2r5jHVuFYVAUjAYDPWIi2LIvrS7iExrgjholJmUhhKBTh/p1Op0qr729nKPHCnjw7lGNkreLSqp48f3lOJ3uZPmXH51Ex5j6ZPmpy+ZiV93bjRuz0hrMFQLiczPxNBipVt3J4yYfExazgsOpYjYZiG4RwryZN1NZ7SAyzL/R+795+gWs23yorvnvhGtm0jIykLzCCrw8zIQ2ERHT0TmBbgFQjy6SdHT+obzz2lRWrkmkc6cIIps3TtKtrnHQLNCbDXEplFXUMHxg+1NWpAUHehNcW0G3Lm8fNtX95bswc/s5i6SbR8byyco4urQMpVOLxhGs7TtS+WnRLvYdyEBq1AoqWLJ8L2vWJ9G2TQjRrU+dhB2XkMbjLy9AEYK3np9C145uAfPszWP4bmUCSOjU2h3xie3Ugs+fmkZZlQ0BfPt2AlK6HbBfuPVilizfy4yP1gDw4N2jGDq4PSaTgc3bUti8NQWb3clrby/ntZevwMfTgo+Xe1vQaKxv+2H+1TYcwMFit/8SKpRV2imoqSLEw20tsPzYIX45nkKNWu+r1DYgkJiO3iQkZtC6NgLk7+uJv69nk88gKNCbn7+5hxff/pk1m5KprnHQsV1zHrm7K61bhOBh/eMrAnV0/miEEHOA8UC+lLLLr849BLwJhEgpC5ua/0egiyQdnX8ofr4elJZUsWrVAdq0CsHPt74JaUpaPnc8Phd7bW6O0aiwKe4Id1w7hNDg0ydnD2nWhXkZW1Clxvjmfc95Xbdf3J/bL67vee10qjz93HySDuVw603DePuDVXXl8ydQFIGmSaprHKxel3RakbR01b66+as3JtG1YwRFpVVc/+RXFJRUIYANcYcZ2ieGwb2jaRvpzsU6llOMxF3B1jzED0+rmcSDWdjtLoSARb/s5fkvVhLg68mTN45CIrFYjEgDTH34M4wGhTkvXEWr5kH4+Xjw9jNXsHnnEUYO7ojRWJ+cnVdYTpsCfw5WFiFUd+7XnE3xPDrKnYge7uWLdIKlyABBgnA/Hx7vMYxHvp2HqkmWrj3AzVMGEejXtEA6gcGgcOGg9myKSwEEwwa2o2tHveRf5/S4zSTPm3Tlz4EZwJcnHxRCRAGjgLN3Q/2N6CJJR+cfgNOpsnL1AXx8rAwe1A4hBPMWxLP45z1omkTVNB57eHzd+O0JaTicrrrqMadTY82WZFLS8vnm/RtPe6/Ofi1YPOQpXFLD13T6L+qzYfeedPbsy8Bmc/LR7PUYDYp7m8qgENrMh7Gju1FWVsOCJQkoisLAftGnvd64EV3ZujMVRQhGDHHbHayPT6GorBpwJ0QfPJpHcloeny+KY8WsOzmYmovBIJj50OUkpuUxpr973rQp/dh/MBMhBJmVFaiapLLGQUm1jTdfmkJmVglfrIrHUeEWZbsOZtCquTvS061jBN06RiClJDe/DD9fD6QG0+/6lJw2EsVS+0UkYeXBI4T6+BDgaWVit460d4VwqLoQi8PAbd1i6RochsFsQHOoeHtb8PGykJZbzJKdSYzpGUO7yKZF4+D+Mdz/4BhsLif9e7f5vf9UOjp/KVLKjUKIVk2ceht4BFj0Z69BF0k6Ov8AZn60hhW/7AcBDz9wMRdd2AmL1YQQAkUBq6VhA9vB/dry1fztVNfUt6iQEiqr7Wd1P0+j9Q9be4va7SOr1USH9uHcfMMQ1m5M5oIBMXTuWJ8HNHVyLEajoUFErCn6927DrP9dzWtzVjNnSRwt41PYtjeNX28kahJq7E6+WLSdb5fvAgkP33ARF/Vui7eHezuqZVQQ33x6KwAf/7SFr5bsxGhQ6NkxkrBgX7p2jkR6KLz0yUq8PS0M7tlQwFVXO/j0uy0sXLYbD6uJl/57CS6niuISaGY40cvEpCi8tXoziiI4mJPP4dpqPynB38PKL3sOUx0kcFVBy7b+aFJy+atfomqSOat3sO6l2wjwbixYlyYk8/yiNQggt6qKu8c03YZGR+dk1Eb/t5w/CCEmAVlSyr2nM6z9o9BFko7OP4C8/HIcThdGo4HCwgoALpnQi/KKGtLTi5h+Zf8G41tFBtGudSh7DmYCYFAEJpMBIeDIsQLatjq159LpKHNU422yYhANw/U7Dh5n6740JgzuTHREcINzYWF+zPnoRtIziujVoyVms5GYto1zlc6lJ9ucBdtJTM1BEYId+9NRNYmn1cT911zI6m2H2HEgHQCDQZCYmovd7gIBny+K48WPV+JhMTLvnZsJ8KkXHrdOHsSkC7vi42XF86ScnrGDOzNyQAcMitKgwe2XP25jzrdbQLr9jgwGhaLSKoYNasfaHSkUtgVZq10DvDw4XlKGUSisOJhS57Qd6e/L6E4xbEs+jlAERh8TLUL9sTtdqLVl/FJCSnYhse0aJ9+n5RfjVFU0TXI0r7jR+ezicvLLK+neMvy0Duk6On8SwUKI+JNefyyl/PhUg4UQnsDjuLfa/hLOm41HHR2d3849d4yge7cWDBoQw4Rx7nJ6p1Nl4aIE4nYe5Z4Hv0FV6xvO1tgcdQIJIDTEF4dDpbC4ik+/2/Kb1vDes3tdAAAgAElEQVTS/sUMX/0al254jxqXo+54XnEFD767gG9W7uKWV75HysYePeHh/vSPjcZs/mP+bosM88diMmI0GFCEwGwy0CzQh4nDunLoWF7duNYRQdx/9YX4eFsRCDJyS5FSUm1z8u3P8Y2uGxrk20AgncBkNDQQSADzlyagaRLF4DaN9PPxoHe3ljz30ESefmYS0lQ//tVLxjAougVmg4H88sq641ll5aw9dJSurcLo0jKMFiH+XDOsF76eVvq2dSekhwf40LNN067jVw/uSe82EXSOCuX+cRc0OHcou4BJr3/BLbN+4qp357I+MfUsnqzOPx2Ju7rtr/gBCqWUfU76OaVAqiUaaA3sFUIcAyKBBCFE2Gln/Q70SJKOzj+A5uH+vP36tAbHCosqqK5x4HJpOBwuHE4XHgb3F7zVYqJtqxCOHCsAYGCfaJas2ocQgq4dmi7Jbwq76mRD/iFaewWzKHM3qtQosJWTVJ5Nr8BWgNs88oQsOlGp9mdz+5QLiI4KcXsxBXiTeCSH4f3cnlK+3lbKKm0ADOzRhubN/KiosvFr7WYx/r6Px1HDOjNvaQKenmZmvDyVpJQ8MrKL8fONoE/LCIK9PCisqmFi1w6E+/kQHRzIpiPpDa5hd6kkZGTz/JerKKtyr/nad75ny2t3MfveKdgcLiwmwymjQIHennx6xxWNjhdVVLMvPQcJ2B0qB47n8ciXy/j87il0imoYxUvOyic1t5jhXaPxMJsaXUtH569CSrkfqEvAqxVKffTqNh0dndPidKrE70ojKiqQyIhAsrJKuP2eL1FVDS8vC1dN7d+g7FsIwWf/u5b9ydn4+bgdmUcP6YjN4aJHp7OvgPpPwnfEF6UhJQwKacum/MMEmL1o71vvCRQR4sfj141k3a4Upo/q/Zds6xgUhTGDOta97tim/g/NR24YwYNvzAcg0NcTs8lAVFgABcWVmE0Gqmocbifrn3cy5eJe+Hr9tvyrO28YxuQJvbHZnbw3ew17EzNBwjsvXslja1ZTXG3DoAh6RoXT++UZGBQFkyJwaRKLyYjN6bYAWJl4uE4ggVt0OlwurGYj1nOIvOWXVeLnaeW1RetZEJdIiK8XUUF+HM0tcgtEAZU2R4M5R3ILufa97wFYvDORj26//Dc9C52/E+dPdZsQYi4wDPe2XCbwjJTy079yDbpI0tH5B/DsiwtJ2JMOEj7+4Hp2xB/F4XBXr4WH+jFtSv9Gc4QQdOtYv01zstnh2ZJSnkeN6sTDYGJCRE8e7zIRf7MnJsXQYNy4gZ0YN/Dc/JT+LLw8zDhrW3a8+80GenaI5OOnp/KfNxeSX1JORbU7pGR3uDiUlkffLi1Pd7nTcux4IY+/sgCHwx1Bs1qMZOWUklJQK0wkzNwQh1PTkEiGxrQmtlUUszbuqBNJVkPDj2l/Tyu+nucm3N5cvJFvNu8GCS7N/d7Lqm28NG003lYLM5ZvoUerCPq2bSiQM4vKEAJqHK4mc5p0dP5MpJTTznC+1Z+9Bl0k6ej8Azh0OBebzYnVaiL9eBH9+rbhsy83I6Vk0oSeqKrGzI/WciQ1j7tuv4j2MX/MFv5TXSfx0oEldPANZ3BoO0zKuX+kxCcd57FZPxPk68nM/0wmyM/rD1nbyTicLj5fFEe1zVFXuQYgpeSVT1cyYVg3DqTmNJq3PyX7d4mkLTuO1Akks8lAbM/WDB3Yjh6p+9idkYMAYltFsirpCEaDwt3DBtAxvBk5ZeV8s3MvZoMBP9VMxknXvHPcQG5+/0d2p2bTPjKE2fdcgSIEdqcLv1NEvRbHH8R1Uk4auLfiOkWG4mU1M/OWS5ucN6hDK4Z1jiYxI4/HLrvwNz8Hnb8X2nlc3fZXo4skHZ2/KbsOHKekrJph/dtx710jeHfGKtpGhxLbpzVms5F5c+/Cbnfh6+vB5q2HWf7LPmw2Jy+/toQvZt/yh6xhULMYlg1/8Jzm7E3JIi4xnTEDOtIiNICZ87ZQWlFDVY2DX+KSmT7qj+9S//2KBL5euhNNk1wYG4OH1USNzW1/UF5px2xsuL2gCIEmJTkFZb/rvhNGd2fp6v04nSpSStq0CiE1LZ+H+w3gY+se1qccZVniYXpFNeeDaZPwr40QPTp6KNNjexDo5cne1Gzun70YD7ORT+6ezNG8EuJTMt1+T8fz+G7jbj5dtROb08XjVwzn8oFdG61j6qBuzFoVh5RgMRq4c/QArh3aG4MiWBB3gPzySq4a3BNva8P2NSaDgdeuGfu7noGOzt8ZXSTp6PwN2RKfytNvLQEB+5KyePDmixjyq2a3FosJS60/UoC/F1JKTCYDQUGNS+lT0wt4+s0leHtZePW/lxDg/8dEc3KLK5i9aBttmgcxbVQvCkuruPONn3C4VD5ftpOf37yFvp2iOJJZgJTQufWfVqRSh6fVzOqP72bG3I0kHc3lnquG0qF1KCu2JJGYmsv0sb35YlEcSFi2OYm7pw/Fz/v03kynom3rZlx6cQ/m/7wbKeFAUhZzF+xAAHnhGgS4xVlCRjbeloY5Yy0C3T3ZBnVqRdyb9yCE+7jdpSKEQEqJEIKiimrsThcuVePHzfsaiaT1iamUVdv48q4ryS2toKSqhgHtWmA0KPyckMzLC9bh0jSO5BbxxjXj6q57MtV2B+sOHKV9RDBtwxpaOOj8s5ASVL13Wx26SNLR+ZuRk1/G1wvjcDhVNClJyzx9YYdLU+nQMZwXnrmM9PRCxoxqHGmY9dVG0rOKMSiCWx75Ggk8ed9YenaO+l1rfeLDpRxIzcEkFHy9LPRoF1mXE+N0qfxv7npeuPViBnVtjb+PJy3DGveYOx02u5MXPlpBXlEFj98yijaRTX+BXzmmFzV2J9U2B7dcNhCDQSGmZQg7DqSzOymTztHhzHxiSt26Fq/bT1WNAx8vC14ejZsDn8DlUjEaDVRW2fnyh214epq5+vJ+dW1I1m85hIeHhcH9YzAYFCxmI7v2pSMl+FQZsde+3R6RYRgNp06WPdleoFurcGbfO5nVu1MY26cDPp5WFm5PROJiyuDuDealF5Twn6+WYXe6+GHrfhTFbaJpEAqvXDWGKrsDKUHTJMWVNVz84qfklVXy4tTRjO3doe46d3y8gKSsfJAw7+FriApu3FRXR+efiC6SdHT+Zjzy6gLSMgoRCCJC/bn/huGNxhyrLGRvcSZ+Zg8e2vkjilD4/ILrmdy76V5r7aND2Z2YiUN1kdkiH5Fn5L1P1/LqS5ewKDOe9p7NqdrvpFmID316tz7rtQohUGokmqry1kdrmTfzZkb0iWHVzhQURWAxGxFC0D2maZ+fM/HzpkQ2JaTicKq8Pmc1s56e2uQ4s8nIrZMHUVZew7ylCWTklLBkRxLgdtK+qF97wkPcPetMRgPfvHod+1Oy6dY+opF4sTmcPDNjGXH7jmF3uLhidE8cZXZWbjiIogi8PMxcMbEPOxLSeOndZagujd7dW/LGM5PJzi1lf3IWqqrx5H/GsTo9jbbNghjXtUOjNZ+O3tGR9I6uT7Je+9Jt2J2uRgndqlafh+TSNKh96UJjc/IxnrxsOMfyi8krq6RLZCgf/LIdl6rx0artDURSWn4xNocLD7OJrOKyOpFUUlOD3eUizMfnnNavc35zvlS3nQ/oIklH52+Gy6WBBJNJYVjPNgT4NNwKKrRVcsX6j9GQGBDYNHeV1Pz0BDr7N+2BdNPUQYS38uWFQwtwhjrABe0yQ7lr52ekVxXiscIDa6oFRQief+ZSYvucXR+w/15zEdc//BUaEiklxzIKee6WsXRqnUBFtZ1rxjQUbctX7GPR0t1MHN+TsWO6NXnNtGMFPPvCQjw9LUy6ojeKcIutiGZnjm489doi9h/MxKVJ8BQgBAZFwcvD1GCbyc/Hgwt6Nd0jbuWWZLbtSavzfJq3ag/j+nZwu/DVRmUAyittCNwl+2UVNQA0D/Pn65k31V2rc9uz96Q6HRaTEYup/uO8oKSS71bvpn2LEJ6+/CKW7znEziMZuMu7JV5WE9Mv6IHJaOCRScMAOJpXxKyVcVhMRi7qGgO4E9s/XLkdXw8LRsXAgHYtqKixM3PFNnaWZbMpMx2DELwyahSXd+n8h7wXHZ3zCV0k6ej8DVBVDUNtROPVRy/hk7mb2b7xMEvm7WLjqiTmfndn3Rd8gb0CVWrYNRcCMCDQkHgZT71tJISgX6/WKOXuaIOHyczDt4xk/MY9aEhEqcDpUDGbjeTllZ/VmhNTcrj7uR844SRpd7h4+t1lfPPWdVw1uk+j8ZWVNt567xdcLo233/uFCwbG4NtEn7ZPP9vI8YxiFEWQfbSIVx+YREFxBaNP8kU6FRWVNlRNIgCrQ2CwKtw7dSiX3zgLq9nEjFen0TIy6LTXSE7La2CK2b9bK+65aTieHma8vSxcNq4XAMMGtefQkVyOZRRxz02No31/Bi6XyiNP/cSWzEykye003iYimIgQP3544CrKamx0b9m8kTs4QJvQIJY9cSMHM/N4/qfV/BS3nwfGD2bO2p3YXSoWo4HLB3Thto8X4HCpuIwSQkCVkgUHD+oiSecfiS6SdHTOcz78YDU//bSTjh2b8/Y7V9MyIpBbrhjIjl+ScKgaxcWVaJrEYHB/8XXwDSPcw5f0qmIMKEjhjgh8eXQ7N8YMwt/cuBEqQLDFh5l9b2BbYQoXN++O0WjgzV5XMStlDW1uCiXlx3zCQv0ZNeLsvgzj9h7D4XQ1cLIurajhwOEcBvZqHIkym41YzEbA5f7d0vTHU/t2YexKSEciiW7TjP7dWp1yDfsTM0k5ksdFF3bCz9eDpx8azwefrSesmS8xrUPp27MVb81ahd3uwm53sWLNAW67bugpr6dpkkVr9tW99rCauO+aYfh4W7n/1hENxhoNCnfd+NeWzR9JzedgUjbSx/1v7lQ1ko7lkZJRQExkCDdO6Fc31uZwMmvBVmrsTu66/AJ8vawE+XgSd+Q4eaWVSODp71fWjXe4VLalZCCEuxedOOnf9aY+f3xFos7/D5K6liE66CJJR+e8Z8GCXQCkpRWQmppHhw7N2bTxUO32EAwcFIMQwt0nTBEIITAbTEjAIASythLKKBTMipG3E1fxddoOhoe15/XelzeoZOoZ2Iqete1EALr4RzGj7/XuF0PObd3DB7Tji/nb64wbwS0curRreovJbDbywfvXsj0ulf6x0XWVeb/m6ukDad8uHA9PM107N3YHtztcHM8oAgn/eeIHNE2yYvUBPn7/Olq3COaNZybXjS2vqOFoekHd68Ur9zFlUp9TVvcpiqBVRCDHsorRpMRud7Jh5xGumRh7Vs/kzyYyMhCr1YRflQNDqJXgUF+OZhViMCiEBDSsavx2ZQI/rtmDJiUuVeOpG9w9Q2Ojo/h20x6ctb5KQgDSvaXXoXkw1w3rw8GMPKYM6U65amdQyxYEejYtvHV0/u7oIklH5zzlRI5Mn76t2Z2Qjre3laioQHYnHCMlJRch3IJIIJgw/n8oiuCBV8cSFunHs93H89SexbT2DuKmtoP4MX0XI8M7IYBPj2xBAsuyDjAuoivDwtufaSm/iVYRQUSFB3A0owiA5qG+zHj6Sny9rThdKqqqYf2VEGoRFUSLqPrtLk2T5OeXExLiU7fdKIQgtm/DSNSylfuY8+Vmmof5cTyzhJoaBwEBbqHjdKoUFlc2GL9rXzoff7UJqUkKiurPOV0qCfszuGjwqROpP35uOjO+3cDPGw5gUJTfZTb5R+PtZeHrT28hI7OY3IpKnvpkORKYMLgL4wc1dDw3GQ1uWwHAbKx3SB/SqQ1z7riCO2cvxKmqxLaNIsDLg+jQQIZ3aVuXr6Tzz0U3k6xHF0k6OucZVRU2HrzuEzKOFXDnf8cx5YpYOnWKYOLEXqxalcgnH69D0yTR0c0IC/dHdanYbE5srVTuT/kR0zEDD3UayeLhdwHwxO6F/JKVyPKsROYOuQWzYsRem8ydXJ77p4kkAA+rGUWAyWTkgeuHExbiy9GMQm59ci4Op4vn7xvHsH7tGsx5/4PVLF66hwsGtqW0tJrEg9lERQXy0czr6krrf83bM1a5xdBJgqegsJzxY7qTmJTNyOGdcDjc23gAz76xhLLymkaVaxazke5NRKdOxsvDzKM3jeTaibFYLSYCfP/6KMraDUl8/s0WLhgQwy3XD2kQDfT2stCxfTgLv1yNvba1SXmlrZH30bQRbif2qho7HduFk1tSQViAu0qtR+vmrHzqJrJLKmgbGtRkDpOOzr8BXSTp6Jxn7I5LJTe7BIeXmbc/XIvBqGA0KqSm5uNhNWG3OxFC0KFDc+67fzQbNiSxc+dRqqJUNEXDpmrMObKF1w+sYExEFxKKj9f1VztUnssLPSbyWMJCvIxmxkY29kw6GxwOF4uW7MbT08zFo7ud8kv0xQfG88X8OFpFBdXlIW2IS6HG5vbn+WHZ7gYiqabGwYJFu5AStmw7gtPpTpDOyCwmL7+ciOYNfZSklBxMzsHHy0pZRTWqWp8oM2xwB66dPpBrb5nNZ19vYWtcKu++7m4FFejvRXWNAwH0696arNxS7rhuCLG92tTmRZ2Z8BC/s35efyRSSl5+82dcLo15ebsYcWEn2rQKaTTuiuHdWbsrBU3TmD7KnUxuczgpKqumebAvRqOB68fFcutH8/hi7l6EgEWPXEeYv1soeVsttAs/dbK/zj8TCXpO0knoIklH5zyjXecIXCYD0ujeC1FVDVXVyMos5plnL+Xw4VwURXDhhR355ustREYF8dnnt5HnLOfh5HnUuBzk1ZShAcuzDvBUt3G8eXAVrb2DuDC0PV4mC6MiOmMQAkWc3g9ld/ExHt79Lb4mD2bF3kiIxZdt21OZvzCevfszMBgUNE0yYVyPJueHBvvyyK0jGxwb2KsNXyyIw6Vq9P5V1MZqNdG6VQjZOaX4+liJiQll27ZUOrQPJyy0oSjJzCrmjvu/pqI2SuLpYaZf39a4XBp33zacZiG+7DuQgapJbDYnh1Jy6+a+88IUVm1MomNMOF1rm/xm5pQw7bZPqLE5efXJy84YUfr/QghBs2BfioorEYrA36/pSFbbyBBWvXtH3evSyhqufPILKqvtjB3YicevG8HGPUfZk5ZNjdOFp9nEsfySOpGko6OjiyQdnfOOZuH+PPfWNJ544ke3J1ItD/1nLBERgcz+9GYqK21MueJ97Hb3dkpsvza89NIUVkbdjyo1Lln7ATk1ZXgbLWRWl/LdkJsJ9/CjyF7Fpes+pNxZw/v9ptE3uNVp1zIrZTUljirKnTUszdpNZFowb737C06niqa5c6bKK2zn9P4iwtx+Rpom+WZJPFdfEovFbMLlUikurmLmu1eTciSf6DYheHpaqKqy4+lpbrRdtHZDMpVV7ntLKXE6XTz16IQG4zp1jKBX9xbsO5DJzdfVZ54H+HsxZWJDG4Llaw5QVFKJlPD1T9vp3nky5yObt6WgSUm7mFAevHs0gQGnbiFzLKeYJZsPkHQsD5PRQGW1HYdLZfXOQ3SPac5rX60Bo4bFy0Cf6Eh6t/ltpp46/yx0M8l6dJGkc14Ql5bB4bxCJnbviJ9H053M/0306duGjz+5iVkfriE1NZ8bbxpK+/bhdeePpxfWCSSAHXFH+ebrLVxz7QUYhMIPQ29la8FRHo7/idkpm/g8dStOTaWFVyA5NWVoSD48tOGUIkmTGk/v+4n9pRkYhIJRKHTxjyIpJweXS0NKSVCQF/36RnPZpF7n9N40TTthnYSqSTQN1q1P4qVXl6BJicVixOnUePC+0Ywd0w0vLwvV1XZ+nB+Pr48Hkyb0RFEEvXu25OvvtuFwqnh7W3j4/ovrBFJmdgkvvrYEq9XMs49NxN//zHlDvbq24IdF8QAM6tu0keT5wGtvL6eiwkZpaTXFJZXMmrOefQcyuenaC5h8Sb3wW74tiRfmrMSp1ns6CdzValMu6klmfilOl4Z0aHQLD+Wd6ydg+lXOV0WNnXvmLCKruJxXpo+hT/T5GV3T0fmz0EWSzv87B7LzuO3rhWhIViSm8M1NU/6/l3Re0LJlMK+8emWT5776agtC0MCD6IufNrO3Uw4v9bwED6OZaB93HzMJODX3F2VWWQlGswEFGBJ66iqlVTkHWJm9DxWJguDrQXfRxqcZHSY1Jyk5h6pqO489Mp7m4efew8vX24MX7h/PsvWJXDKyGx5WE2+/vxK11qnaZnOLvy++3lLnuv3+B2tYszYRxaBgNhsYd3F3OneMICoykNS0Aior7bz46hJC35xO27ahvP7hSpJScjEqgp8WxnPz9Wf2L4huF8qst65GkYLWLc6vJq4uVWPVjkNomkaNWUMzuPvWZeeWsXd/Bjabk08+39hAJG3ak9pAIAGYTQYemj6cS4d2paSimq9XxKNqsD81h1tf/Z7P/o+9846Oovr78DOzLb2TTgIJSSih9y4QiiBVQFFRFEVUrGDXn12xomJDRUUFpQtI7733FJKQhPTe25Yp7x8bAjEBgi+o6D7n5Jzs5N47d3Y3O5/91pfu4HhsBsWllfTrFsb6E/FEp+VikiTeXbWDpU/d9Vdfuo2/GtVWJ+libCLJxt9OQUUlgiBgtkjklldcecJ/HFlViA3LpqSFEZftdog5VrEkKQrbcxJYnxnDmKAONHPy4rm2w9icFUdmaQm5KeXo9xvQOMFTDwxkXIuODa5vUSTe/H0l9vv0mCNkmvbxJMTZGwAXF3tmvzXhqvd84Ggy8xfuIbJVAD27hJCVUYSHgx3NAzxJTM5Fa9CillObeCxqRfz83GorjVdVm6zuPVGl2mipXdfJ6YLV0SLJbNkRy7wNBzicnY3srcW+EnKNVUQnZRMZ6selWBcbz9OrNqIVRRbdffXXdz1Jzyrmq+V72Hk6CZOkgE4FLw0uJQIbTsRT6qziqNHS+g8tTu4c2pndp5KpNklo7TW0bepLZHNfRvaxFgN1cbTDbLkgomJTctl7NImX5/wOAgyPSSeyfSCoKo6lIGgtlFUYcXGyWXpt/HewiaTriKqqfPL4Ao5sPs2UV24l6vZef/eW/pH0bdGMWzu14XRmDs8Pu+m6nSehLA9HrZ4Ahxu7g/nuvHhy/cuQFAX1dhh0ug27TyVQ2M8EqHWub2KzLoQbfXli3nIMkgFVBbkUog/mMO4SXjJFUdEv1iJIAtp0Dc+NH3lV+1NVlc++205ufjlPPDAIL08nXn1/DVXVZuKTclm14YS1v5kKCUm5pGYUYqq2cD4KwtXVgQqjibiEbFauOc74MZ15fMYQ9DoNri4OjLooSPzVF0bx0Web2bs/EY1G4EhaFnG5Bdb1RahyhtWH41h/IoH5z99ORLB3g3tefOw0FllGkmW2JiTRxs/nqq75ehEbn8WjL/yKRZaR9YCTpra6o+Cs4VRqDpIWqtxE4qpLOHomHY0osnzHSQZ3iyAwwovo9FxkDfTp2YJ7+l+ojK0RRWbdOYBPFu9CUhTuG9GN9OwSZEXFIsms2xnL79uj8XLUU1kpk1NZwpeLdvHstCF/2/Nh4/qjYquTdDE2kXQd2ff7MTYs2AXARw9/ZxNJl0Ajirw0/Pq2b/ggejM/JR1EFAS+6XUXXbz+OQUArxYvgzX7SC9qCfXw5vkXRvGkbGF9RjQBjm714ox2HEqsrZcjCgJarcjwfnVbi8REZ1BVZaZL1+boNVqcHOyoLDOhEzX4OrhRVFiBh2fdis2XYs68Lfy2/gQAyefyWPTVA3i4OWAyS8iyUhuMLooCsqxY0/xFAUWvopUFOnYMYte+BGRFpaKimpTUAma+sJji4ko0GpHu3UPp2rk5YA3AfuOlMZSWVfPeT1vZciwRVVURa2KTFFVFqXmcXVh2SZF0R+f2HEnPRCdqGNzyn1MscffBs7V94nRmMNjpqDRa0GhEbh3ZmYWbjqERRSRFobC8io8X7yQlqwiTRWLb0UTuGtuNxOwCa2++Fk3rrT9xUEcmDrpgUayoMnHgZAq5BeVkZBdbBVNJNTqdBlUFg77hKug2bPxbsYmk60h2Sl7t76LGpsz/LvbnJfNd4j5UrO6cI4WpN5xIqpJMHC5MoaWLH5FugcztNpmk8lwG+7ZhWephmtg5Mza4YffZ0D6tWL39NBZJRqcVaRHUhDYXuZ727IrnnTdXIQgCEyf14O4pffn8iyls2RRNizBfHn14AZUVJibe3p37HrjpintNyyiq/T07r4yS0irmvjOJzTvj2LY7jnPphYSH+tA8yIvJE3pw18PzMRotCIiMGdOJybf1QMVaiHLiuK58+tVWiooqAZAkhW8X7K4VSedxdbEnOMAD/Wlr4PEj4/uy52Qyp5OycLTT07VVEH3a1Z1T5zlqFcbBkIfQiiJ2un/Ox2Lr8ItchCqseu9+Fqw7TBN3J24b1JEurYLYeyqFJVuPoygqmfmlyMqFjMiJPdtxS5dWONrp8XC6cvC6k4OBj18cj6qqzJq9kv3HU+jZqTmFJZWkZRUT5Od+xTVs3PjYYpIu8M/5NPgXMmBiT5bN3UhpQTnTZ9+BqdpMYXYJfs2b1EtntnH9+Dh2W202lVbQMDKw3d+6nz/D1P3fca6yAI0gsGbAk3T1bE5Xz+a8fGI5m7KjEQSBdzpMYIBvq3pzW4X4suHrhxnx0JdUVJlJSM1n74lkonpYK20nJeXWpvQnxGcD4B/gQUWFkc8/3URVlQlJktmw/lSjRNJT06OY8vgPSJK1vtPbn66nX/cwJozsjIuTHR9/vYWEpDw6twvG28uFeyf15qsFu/D3c+XeO3vj7GTHqy+Mrl2vY7sgtmyPrbVAJSXnsf9kMhsPJzCwSxj9Olgz0aaO6kGgjxt6rZZBXcK4Paph0XgpnAz6qxr/VxAU4FH7uwr8tv00g7tF0KqZDyt3nOLjJTsJC2zC85MHM/vnLZRXmbDTaxnULZze7Zrj6eqI56WXvySCIPDes2OwWGSS0wuY8doSjKQvUd8AACAASURBVCaJT3/cwbihDdfEsmHj34hNJF1HPH3d+CVhDoqsUF1h4r6Oz1FWVEGf0V149ptpf/f2/jOkVV6wbDzcsh/F5ioKTBW0dQ+odcv8EzAZLezccBqfAHfW2kWzOvM4twS056W2o0ksz0FSFew0OrKrS3DXO7I89TAbs6MxKxJ6UUuuseySa8cm5VBVbQ14NlskwoIuVGgeOaoThw4kUVlpommQJ8uXHiI01JsN605ZLTwCaDQio8ZcOdU/LjGbd+duxN/Hldz8ciRZ5siJcxw/lUZ5lYmysmqrIFNVUmssTpPGdmP8LZ3RasUGvzwMjYokKNCDR2YuRFGs7rNn5q7BqMhsPhzPytn34e3ujEYUGd7T2p8sq6CU6e8tparazIePjaZ92I1Z/+fi7EGzs8i81fv4Zu0BvnthEp8s2UWV0cLJs1nodNaingadFg9XB9YmJrI6Pp5vdh2muLKaaVHdmdSn8eLm9+3RzJ63iSYeTnzw/DhEQcDeoKOpv82S9G/HVnG7LjaRdJ0RBAGNVkNydDqVZdVYTBL71hz7u7f1n6HYVMUtgW35OfkQAIvPHeGTuO0IwGD/VnzS/Z9TbuCDl5ZzaHcCsoNK9iwZGZXf0o/xcPggnm59M18lbqeXVxgtXfyQFJm3Y9YgqyoC0MMrlNFNL2050YgiOq2IySIT4O1GsP8FC4WHpxOfz7uXH+bvZMmvBwG4ZVQH1JqaRYFNPfnwkzvrZJJdivc/30Ryaj6iKDCkfyvSs0qIS8gCFYqLK5k0titxCdkYTRamTe5bO0+na7gn23maNfNCvajewcVaSmggyHTN7hhyC8tRVJVv1xxk7lPjrrj3fyI6rYaBfSLYticetAIWWcFeqyEzvwQXRwOVRjMAR+IyEAWBwCbO+IV4kBxXDkBijrW58OzfdnB77/aNtmD/uPIgiqJSWlZN3NkcfvrgHs4k59KtfbPrcp02bPxTsYmkv4jwTs3wCfIk7Uw2t9x/fYOUbVjJM5YzcssXmGQJDQIyKjnV1puHCuzNS/p7N1jDzo2n2b89juSEHExGC3pBi6vqQLXWgofeARedPTcHtOe39OPsK0jkQEEyPb1CaWJwocRchUYUebPDrdhrLu0uahvuz/MPDCH6bDaThtetNL1542l+WbgPBwc9inI+qFrk48/uJiE+m779WzZKIAFoanq4KYrKgWMp1nR9QaBL+2AmT+iBs5MdH7/ZcO2ny2HQ6/D1caWkpAqDnY5XZo5mzb5YBnYOo4l7/YDyDuEB1sKIAvSKbHbV5/sn8cITw9l6NgWlJl2/e5tg+rYPISEtj2/XHKwdp6gqqbklJBcUw/mnRBDQCAJBXm5X5eIf2DOCX38/giiKtG8ZgJ+3K37ef0+vOhs2/k5sIukvws7BwFf738BstGCw/+fFPvwbiS/NRVLk2o739hodjho9BWZrEPD08CsXGLzeZGcU8eHLKzCbJOzsdIS29COwmRfTBwznUGkK7npHNILIpqxokivyMCkSc+I20KvfDBb1mc6e/EQ6eQTjorO/4rmG9mnN0D6t6xyTJYUP3l2LLCvodBp69ArDydHAXff0wcnJjrBw36u6nlFD2zNn3hZUVIxGCZNJwqDXMqhfK+ztdOw5eBY/HxeaNfWiotKEq8uV9w3WTLhvPpvCqeh0Wkf44+bmQMeW9bO1ztO9TTCLXp9MtdFyyYy2GwWr+8P6u06r4cV7BlNlsuDj6UKQrzv5xeV0bRXErhPJ1sw+CbTlIDlbRZGsqng41w3aPp6SyeGkDG7uGEFTT6tLb+ehRA6ePMetQzsyfVIfhvdvjZuLPS5OjXuNbPx7sLnbLmATSX8hgiDUEUiL56xl3Xc7GHR7L+5+cez/e31VVakyW3D8BwagXsyBrTH8/OkmvL0cGXNff9r1jrgu5+niGUyocxPiSnOY0fImujVpRqS7P5KiYKfRNuqbdUlBOTq9FsdG3syvFlG80CNJq9fw2a8PIQgCiWU5vHJqJQDjmnZhuL812Nxeo6OLpzVLy8PgxKjAqwtOrnd+jYCTsx1lpVVYLDLBzZow5b6+fzqxYMTgdkiyQnFJJb4+rrw3dyMms8THX2/hp6X7ySsoR5ZVJFlGVWHYwDY8+WAU9nZXfs86ORro1b1Fo/cS5PPviJ8x6LTMeWIsy3ecZESv1rg52zPu+e/IL65EIwosfmMKTdwcGT7za8oqjciKiotWh2SvocxoAuBociZJOYWE+nqSU1LOtHkrMEsyv+w5yfZXp5GWVcSrn67DZJbYeegsa795CB8vF2a9s4LTCVn07NicN58aiUa09fSy8d/CJpL+Jn6fv53vX10OwKL31xB1Ry/8mze+gF1xbinznluEk5sDD7w9CVGvYfKXi4nOyKNHaFPu6deZPuHB/7gsOlVVefvxhZgLSjgrSRzecJL3V8+kZeeQa34ue62OJQMeqHdcJ14+/uU821ccYs7jPyFqRN5d+SQRHZtd4x2Cj78bL35wu9XdFp/Nrb3fYtqsYVR3EVBVFZMisSnrNNtyYjErEk0dPHmi5Z8v5mc0WVBUFYcaUSIIAgGB7pSWVAGweNE+OnUOpn2HP1ciQRQFxg63CrfVm06i1MQRVVaZqawy1xu/YVsMm3fG8cwjQ7l5UCSKohIdm4mnpxMe7g6NEk//Bbq1DqJb6yAAzmYUkJFXUtuSZuxz8wkP8uamTi0wWyQOxKRSVFaFtkC+4HaD2nLmVSYLKtYA+AqjCbWmltR5FNnqcn3ug1UcjUkHYPeRJGITs2kbcWMGwNtoPCq2tiQXYxNJfxPbluy/8ECF4ryyqxJJXz2zkF0rDyFqRDx83TCEeHM2KRdVDwejU4g+lMwDk/ozdWC3a7Lf57ds4rf4WMa1as1bA//8TVoQBNw8HMnLL6p5DPmZxbTsfIWJfwObf9mPxSyBAIc2nb4uIgmge78INBqRHetPY6w2M//jTXy75QkWnttHRmURpZZqLKo1HiXXWEpWdQnNnZrUWyfmbDZvfLUBSZKRZIVJwztz280XntjoxCxmvLUURVF5d+Zoera3WqSCgjyJi8msvele3PbjShw6lsLug4ncMqQ9EaEX3r/fLtzDT0v31xmrEQXs7fXotBqKS6tqj8uywtz52xjUryWfzdvGxs3RmM0SgiBwz129uOeO3o3ez7+dBesO8fVv+9GIIhpRwGSRkRWVuHO5xJ3LRaMRrQ2EVdAIIk8M6cHqE7GM6NyKUB9rMYAQHw+eHNGXX/eexE6nZW98Kn1aNuO5B4ew/3gyk26xxqwdO5NeW1sMwN/nxq5Ub8PGn8FmO/2buHXG0NpPHwcnO5q1vLpvaGlSJRIqZlXm999P8fOb62iyKQ99qQX/LQW47ilkw3tbr8le86sqWX4mBpMsszQ2hsKqqitPugwfLn6EwXf1QaPVYDZKrPhiM7IkX3niX8yoqTeh1WmwdzTQZ+TVdbq/WoJDvRFFATt7PW06BuOqd2BZv0f5odc0NMKFf1N/kzuHNqWQllFYb40Pvt9KamYhmbkl5BaW88WXWxkyeDYzZy5CkmQ27zuDySxhkWRWbTtVO++xJ4cR2SEIQStiEVT+9+ZvvPHOau57cD679yZccs8FhRW88M5vrNpwksdf/NXaCqSG1RtOoKpWEezqYsfIIW2ZemcfVi14hOXfTcegr/v9rLrazNZdZzh+Ig2TWaqJw1FZserSmaBpGUXExmfVyXr7t1JQWsnGw/H8tPEI5hoR3DrkQqHJ80JGlq0CqWmAO3cO68zUod1Y9ewUpkV1R1VVlu84yavfbkAnQVZxGWey8nn8+9VIssLQvq149bERRIT48MvO45S7qZgdrX30PvvfBDzdHP+ei7fxl6Mg/CU/NwI2S9LfRO+RnVma8ilnjqYQ1iEYR9crV8O9mMKRARQa89EoIrozlaiyip29ngdat2XNzh0ggynz6pvFqqrKke1xqKpKSGQgP3+6CYtZxq+5A4WiiSaOjrjaXX2DS1VV+f2nvWSnFjBh+iAK0wpRZNUaf3MyjbSEHJq3/meZ8nsMa8/ShI/QaEV0+mv7r5JUls/0/b9iVmQ+6zGRtr7+fPPbY2SmFdK6fVDtuJaufvyv3WgOFyYz2DuSt2as41vTLhYs3MeKhY9gZ3ehTYSfqxOp+RZQQGmiR1MhIwNn4rI4m5hL+zB/Vm61iqORN7UFoNpo5tTpDE4nZCNrBUBAscjs3B2PLCu89e4aNqye2eA1KKrKefOTclGVZ4DhUW1ZsuoILs72/PDpFNz+8P5+9tFhzPtxF6qiUlxaiagR8fZy5sGp/Xn7g7WYTBZEUSTqJmug+Q8bDvPT5qNEdQ7nuUkDOBGdzjOvL0cQYPKEHkye0PP/9Xr8k7FIMre+toBqswVJtt5aRAEyS8qQ9VYLnbuDAwUllQgqqCJkFJexdO9pHhzdq9blfiAmlTm/7MRkkVi3PxbJXUQADFptvXphe+LOIQOCs0inHiFsS0jB188NX3fnv/z6bdj4O7GJpL8RZ3cnuka1/VNzH+3di/szs2g2Px9VBgTo2r8lPTqH8ru6ExWVoBBvTEYLBrvG9VvKzyrmlXvmkZaQg6jXIGl0qIqKIMLNI9oz8KkRtGnijVYUMZssCIJQKx7KS6vYuOwwQSHedBtQv+rzvo2nmT97DRazzNmYTCSTBKIIioLOoGPtDzuRzDKtujYn6vZeaDRW60lVhZHvXl+JIMC9L4/F4S/uQG7ncO1jYoyyhfE75lMlWWN0Poreyvd9J+Pp7YKnt0u98cMD2jM8oD3lFUZMJguSpKAiYTJLdURSqKcbB2u0SqiLK85+diQm5GAwaMkvKOPDd37HCejaPYTeHUMwmSxMeWA+pTWuL71ei9lszQRUFGu2WxOvS98Uvb2ceXnmLaxYc4yC3DLmfrWFR6dHIYoC0+/pz8TRXXByNKBvoM1HVL9WRPVrhdFkYdOOWHy9Xejc3hoHtW75ExiNFkpKq7AIKkVlVXz2214UVWXVvmjuHNSRmPhsJMnqajp8IvVfLZKScwoprzbVPlb1oIgCo3q34buNh9FqREyKjKoTrO4xQUCSFSqqTSiqiuZ8HztFqbW6qSq4WXSMH9aBtORCoh77gruGduG+kd0BeHBoD6JTc9CKIgcSUtkdm8KB+DSWPHvXX379Nv5iVFt228XYRNINhlGyUGI00rdpM0K/KUCtuSlqNCKz3p/I2l8OoNGISIpMcnw2syZ9wcfLHq0VHZfji5eWkhKXBYAsiSDUuDFUcHK2p1tAIADH9ibw6oML0GhF3vv5QfybefHGIz8RdzwVUSMyclJ3UhOyKS2qxFhlpnWnZrTr1QKLWUKRVU4fTEIQBbQuDvj5OJMen83a762NgLcs3k9RbhmTnhoOwML31rDx5z0gCIgGkQdeHY+2kYHXfzUVFhOZFWWEuXldtpJ3vrECsyzVPm7vEdio9Z2d7HhyxhB+W3OcUSM61Euf79YtlGXLDoOqMnhQJK1a+VOQX86HH67jzTdWoaoqsqyyf08iZ+KycHA0UFJSVSuMXnpuJPPm7yAnpxSNRqR/33AefnDQZffUv2c4n8zdTFFxJeuLounTM5zOHa1ix6MR7hk7g45RQ9vXP26nY9XmWL7fcBitVsTbzZHSKhN6rQZPV0eGDmjNhm3RlJZXM/WOPo16/m5U9FotGlFAPu/OFARUFQZ3DmdM70gcDDqW7z7NZ6v24uvhzLg+bdl5KokpQ7rWyUbr1bY508f2YuGmo5RXmQh0c8FX78jiU0cwWWS++m0vd9/cBa1WQ7vmfux85yEOJqTx+NerUFQVo0W6xA5t2Pj3YhNJNxB5lRUM+/VHys0mJodE1onFePh/o9AbdAwY1ZF1vx4kIzkfVVE5G5PFvQNn88WaJ3G6Qhq7i4cTWp0GWVLwaOJMhVHGYpHpP6IdTXzd+OyVFdzxSBRzX16BxSxhMcO8t9YQdyINVVVRFRUsMsu/3QkXuV/Sz+ayd9OpGrN/zTdZRUUGcjOL6uxBkRXys4prH+sMOgRRQFEVlmQfYMX2RH7uNQMf+39WEGmxsZpBq76hSjIzMDCUL/pfuqRDoIMbtzSNZH1GLFH+ETze+qZGn2fE0HaMGNpw77m2bZvy888PcS4ln//9z5o52ay5V21fNqtQVpFlhTlzNvDFl1Po0D6Iw0eSGX1LJ27q15LomAxWrj6KJCkcP5FeGzuUkVnEwSMpdO8aQuAfWlP4eLtQUWlCVVS8POsXdvyzrD8Uj1mSEUSByUM642hnYMXu0zz40TLevG8Yg/q2ZO2W0+zYF0+71gH/uEzOa0VzXw+enjiANftjiEnNrT3exNWR7KJyvttwmD6Rzdj7yQz0Wg2CIHDfsPoJG4IgMPnmrowf2IGBMz4nIT2fOYt3Ym/QIYoiPh7O9b5MdQtryvSbexKdmsP0m3tc92u18fdja0tSF5tIukGIK8hn3dkEqi0WLIrCmtREgpwMmI0SdvZ6Bo/rCkBhThlDx3fl5IGzHNllDbotL60m9ui5Bt1g58lNL6R9rzD8gr3w8nMjpHUAS7/cQrueYTi5O/Hhc0uwmCVS4nPIybggYtKTc2tThlEUqx3/D/EpABUl1RjsdChKjZgCVIuE2WiqMy6yRxiTnxlZ+/iOmSMw2Ov5JXUvlVEKBtnM/oJExjTteslrWZiym88SNiIg8GzrkYxu2o2KciMZGUW0CPNBq732lqi4kjyMsgWjLLEjM/myYwVB4N0uY3i3y5hrvo+8vFJefnkZJpP1W39aamFtQHXrNv4kxOcgCAJBwZ5oNCLvvjkBVVVrBUZhUUXty1dZZSIpOZ/wMB8efOxHzBaZ737aw8pFj6DXa1FVlW9+2IUgCowb1Yn+fSIIDvoz7VQbZsqwLrz58xZc7A1EdQ5n8faTxJzLQVFUHn3pV0rzrUVB12w6xcgh7QgJrp/x92+hua8H/dqG1IokQQB7vY5pc5ZSVmVi9f4Ylr9yN/6eF6pimy0Scal5hPp74uRgqD1+MjETqeZ/VpYVfnj5DtJyiugQFlhPaAqCwJRBdSu027DxX8Imkm4ADmSmM+X3FQjU9IITBKZ06sy4lS04vi+Rzn0j0Om1lBZVMnPSF8iSgqOzHSMn92T9r4ewdzTQskPQJdcvKSzn4cHvoigKvkGefLnlee7q/DKFuaXs33CKu56+xTpQpTZQ9zw9B0eycYnVxYN86Qw1URSY8fYE5r6wFLPRgkYjIFeazxuWagnv1Az3i+Jy9HY6Jj01HDnFiS8SNqMTtXT1DK23fpVk4rXTyygwlRNXmolc44f8IG4tg9zbMeWurzAaLbRs7c8Hc+68/BP+J+jk5U+IiycxRTlMa939mq/fWJYuOVQrkLRakXbtgzhy2CraQkN8eOD+AeTkltK374UCnhUV1sazAQHu7NpzIZvNzdUBvV7LiVPpGE0WZFm11m4yS+j1Wo6dSGPF6mMYjRZyckrYsj0WWVZ4780JhIU2vpzFpRjTO5IRPVqhFa2Nb5v7eqDTalBVldL8CxmWggAe7v/ezKuTSVk8/sVvKIpCoJcLTg52PHVrP77dcJCKamtcm6Kq7ItJZVyftog1rWEemL2ElKxCHOz0rJx9H/YGa/xafkkleq0GsyQT6O1G05qfy1FWZeSDlTsRBIFHRvRiT0wKTZu40TXs0lXPbdy42CxJF7CJpBuAmII8FEXFrMh09PHjp1HjcdJbA4r9LvrmXl1pQlFUJItMZVk1Dz4/ktumDWTb6mPcO+hdOvRswQuf3lXPpF6QXYIsy5iqLaSfzeWRoe9SWmzNjFNV6NQnDFGrISu1gHH39WPq4Pdr5w6d0JXs1EJij50DrYBUU2Onaag3RfllVJYZ0em1THo0ijlP/4Ii16giSa4nuABWf7ud8Y8Mxq1J3QDmu5r3Y7h/Jxy0euxqepSpqsprp5exPTeGtq5NOVGSilmRsBN1SDV1hZoYnMlIL6LaaMFktHD6ZHrtmlVVJg4dSCIs3JeAQA/+P9hpdfx+yxQUVb1sPFKFxcSB/HO0dffHx/7aZwr16hXG/v1nAXj11bG0iQzkyy+2oqgq997XDycnO9pEXoiBSs8o4sEZPyDLCpNu68HQwZFs3ByNl6cTLi52PPLEj+i0Wrp3bk5eQQVjRnbEuSZ43tXVHlVR0WpFZFmlqOY9s3jZIV56dmT9zf1Jnvl6LbHncnjm9gE8N2kgs3/ZRpW3Fm2Jheaubrzz8ljcXK4uO/RGIrfE2m/QLClkFJSh01ayZn8sm48l1LzfrG7qj5bvJLOwlMfH9kVWFGJTcgBrH72sglKCfT04dTaLjuEB3NSpBWm5xbw4ZXCj9vDluv2sPXIGgCOJGRSUWa14Xz48jk6h/6ysVBs2riU2kXQDMC6iNasTzpBXWcGLvfvXCqQ/4tvUg3tnDmPHmhNMfPAmNFoNnj4u/PjxJiSLzNE9CZyNziSifd1vf6FtAhkwtguHt8Xi6ulEckwmoigQ2jaQCQ9FEdI6kJDWF26sT707gSXztjN0fDc+enYpOemFSBbFmummA4MGykuqqCo3AiCIcHxPwgWBBLh6OlFiNNU5BtY2HWkJ2fVEEljbcFxMZnURW3JOY1YkDhcloRe0GEQdgQ6enK2w3iD8HNxpEeZDmzYBnDqZxu139KqdP+uJhaSlFiII8P3P0/G6TCZXQ5SZjSw4c4xAJxfGNG+DIAiXFUiqqjJh+3xyqsvQiSJbhz2Gs+7aZutFDY6kZSt/NBoRPz83Tp1M49ChJNzdHYmOTmf16uO4ONsTFdWGLl1DOHkqzSrAzTLbtsfx4/wHmHZffybe9SV5+dabsyxbqK628O3nU+qcq0WIN++8disJZ3Nxcbbjky+2gABdOjW7ZtezPyaVfdHnqDZbmPnlGpr7edRWiPYPb8Ivr09pcF5FpYnc/DKaB3nVWlZuVAZ0aMH+2FTWHYzDIitYJJmY1BzkGpeZooIgqBjNEgkZ+QBoRJG7b+7CL5uP0b1NMM39PHlx3lr2nkpBEGDRa5M5Fp/B1iOJ+Lg7434ZkWmRZPbGnUOSFbQakSqTGaNFwk6n5futh9lyMpFHhvfC0VYd/V+BreJ2XWwi6QbA3c6eVRMa5yIaO6UvY6f0rXMsLDKQlPhstFoNfkEeVJRWUZRXRtMWPgiCgCAIPP7eJAB++mAdmcn5gMr46YPoP6p+EcXBY7sweKw1TuGXL7YiWawf1hazhCDAu78+zMzxc2sNRaoKt0zuw+mDF2J17FzseeblqZzem0DLziEc2nKaAxtOEtGpGa261nenNYSXwRlnrT1VsglfO1cejbiZYnMlzZ2a8Mjh75AUmQlBPdBqNbz30R315qelFmI0WrCz05GXU9pokaSqKjlV5bx0cCO7MlPQiiL2Wh3Dgi7fg05BJaWiEBUVnaohs7KElm5X10C2MQReZBX75psdFBVVUl5u5PXXfqt1xe3YEcfrb9xKj26hfPfjHiRJ5o7brIG5zs726HQaLBa5phikA1Pv6dvguTp1CKZTTQuT1i39URSVkOaXjw1as+M0Xy7ZQ+fWQbz68M0N9gOzSDInkrJwcTCgoiJgdSll5JfWVJtWmTSo4b51JaVV3PXIfEwmiT7dWvDK09fOqvV3oNNoeGXyEA7GpZJTY63TiCI3d23JmoOxqCq4ONjh5eLIE+MuNG1+dEI/Hp1w4fGx+AyqTRbsDTpW745h0aajWCSZ2JQcPp81/pLnPxCfRm6J9bx6jYY5D4zi3WXbkWSF/XGp7CcVSVZ4YcLA6/QM2LDx92ETSf8BZv/4ADFHztEswhdTtZmHomZjMUsMntidGW9PrDP2zqeG0aJtIHaOBjr2uXLj2efm3MEPH21AVVTyc0qZOO0mItoHM+ON8Sz8dCOhrQJ44KVRBDT3piivlHmvrwIB7nxsKP3HdCGguTezRr6PqkLbnmG8tfTxRl+XnUbPr30eJ748i7auQdhrL3yT3TjwRSRVxkl7aUvN9Eei+GH+Trp2D6VlIwtZqqrK/duWsyMrBREVSVXQIFJuNl1xrkYQeaxVfz6N24Giqrx1aiM/9bunUedtDGazxLyvtlFUXMn06QOJjc3E2dkOg0EHqNjZ6WpFEkBeXhn7DiVRXl6Ni7M9PXtYm8dqNCJzP7qLLdti6Nm9BW0j65coUFWVbxfsJjomk2n39adNK3+aBXs1ap8fLtiG0Syx+1gSsUk5tA3zr/3bpyt28+v2Ezja6akyWdCIIp89OpaPl+/mbGYBAF/PnECwj/slLReJKXlYLDIms8T+o8nk5pfx0VebcXNx4MnpUdgZGlc3DCDxbC679ydyU98IQppZxd/OPfEcOJTM2FEdCW9x7UXupRjTuy1frz0AQJtmvjw6ujdZRWVUGs28M3U4Qd6Xb+g7Y3xfPli0jfCm3gT7Wscqqkq16fJtaIKauEFNoHiHEH86NPfnl6fv5OuNB/hm4yHUK7iYbdx4qDZLUi02kfQfoLiggjUL9+Pt70rLyABkScZstLBvw6l6IkkURXpelGKuqCoWWcagrftWMUkSJUYjXfu3pGv/lnX+tic9ldJ2jnyz60XsLprX/5ZOfPfuWiwmic9eXk7/UZ3IyyxCEARM1WayUvKv+tpc9Q5086zfGd5OowMufTOsrDSxYP4OKjOKSBSAi7pUSRaZDYsPotVpGDy+a50YrqVJp9mamVTzSKBjE386eQUwJqRNo/bb2yeErxP2Ui1bOF6YfuUJV8G6tSdYt+4kkiSTdDaXnNxSJElBqxV5552J+Pi4Mv+7nZyOyaB1uD9RUZHMu/NzJEnBaLIQdyaLdpGBfD1/J6qqMm3qTTg6Gho819ETqSxfdRSj0cJr76xiyY8PNXqfoUFNSE4vQBDAz+uCW9Volliw6Qiqav0dsAYbCzD/6YnsibYGC7cIuCDGVFUlMaMAF0c7fD2slsC2rQII9HPn/R7J0QAAIABJREFU7Lk87ri1Gx9/vYWDR1PQaEVCmnnRv1cEdgZtvTims+fyORmXQf/uYXh5OFFRaeKhJ39CkhR+XLSPX76fhqKovPX+Wsxmid37E/j9MqJeUVR+WnaAzOxi7r+zL95ezsiyYnXL/gkX4NSbu+Fsb6DCaOKuQZ2xN+j4+skJjZ4/sk8bBnYOY/v+eIKbuDN5WBdSsouYMb5hK+F5gr3dWfz0nSTlFNGndbPa41MGdkGWVUySzLSh16ZHpA0b/zRsIuk/wMcvLuPkgSR0eg2+gcPw9HUj61w+t824fNBmTkU5o35ZSInRyJsDo5jYJhKA4upqhv38IyXGau5o245XbrpgZt+TnsoD61eiAnsyUpk7xJoZV2KsJqX4Qk0kWbaWC+g+pC19R3fm7Mk0Hn530rW/+EuQkV5ERUo+anElGfllrPt5H7fcbS1K+POnm1j53S4QBKoqjIyb2r92XnxxPuerPRk0WhYMug1nfcNCoiHauPnT2bMphwpSeSii4ZtTZYWJ7ZuiCW7uRduawowAxw4kMf/TzXTo0pz7nxxSL13bwdGAIICoEZAkGbOqgl7EDBw7kUZqZiF7DySh02lIzCjAYNAyZmQnFi0+gJurA5FtAvlx4T7WbjgJWCtwPzK9bjHJymoz015cSEpGEVoRdFqxTssRVVXJzi/Dy92xwUrbAJ89P4HD0am0CG6Cl/uFODODTkOInydZhWWIApgtMo46HU56a1PcAR1aIP+hvMS3aw/yw/rDqMA3sybQprkvdgYd8z++h4T0fKZ/uAwprxpRAItF5tfVR/hq0R40osDc12+jVZi1/1lhcSXTn1+Eoij8sGQ/HSOb0qdzKJJ04XwHj6bQ9SqaHP+29hjfL9gNKqSlFzL97v48+/IyNFqRT9+/gxYh3o1eC6wutkkDG3YxXowkK+w9moSnmyOR4f51/vbMuyuJPWuN1/v27TsJDapv/VNVldiUHBztDTTzs7pum/l40MzHg90nklm2/QSj+kQyqGs4Dw3/91Y6t2EDbCLpP4GTiz0ajYiAgKePK9/ueglZVq5YhXtbSgrlJhOSovDN0SO1IulETjaVFjMWRWHlmTi6+gewM/UcUzp0IrO8DBUwShJpZSUApJQUc8vSn5AUmVEPd8I93sTIu60NbgGe+vTauZwaS2gLb1wcDZQWV6IRRSou6kpfUlCBJCkIApQU1u1/N61NN47lZ2GULXzeb/RVCSQArSgyv8/lWzu89sxiYk9nIAAffj2F8FbWG907zy+jrKSKjJQCetzUkradguvMi4qKRJIUSoor6dkrjGmPLsBSE9ybmVvCoaPnUFUVs1kiN68MWVGZOqUfd9zWA4NBhygKJJ/LrxUG1cb6bpjjMemkZ1tfV0kDvXqGcPdFLUH+98ladh0+i4erAz9/OAVH+/ouMXs7Hf261Lf+CYLAB9NGsmzbCYJ83Pls8S5KKyp54bPfWfrevTzzyWp2HUticI8I3nx4BAC7TiRjNEvotCInzmbRpvkF99dve6IprTSCA2gR0BpVCoorUQFZFDh44lytSCotr7Y+NxYZc2kV2/bGs/vQWXp2D+XAwST0emuGn5+vGy8+PaLW3XYp8vLLWbvxNNRorLzccpb9dhSTWQIzrFp7nE69QugQFnDZoOk/wyc/bGftjhhUVeW9Z8bQtd2F90lGTom1nY1BR25BWYMiacG6Q8xfcxBVhTlPjKFrK2v5kGqThWe/WINFkjkcl07nVk1xc7p8gVobNyY3SvPZvwKbSPoP8OTbE1izcB+e3i70GWbtFdeYNiU9ApuiFTWowNhWFwpRdvb3x8PeHpMkMSIsnFmbN2KUJLalpLD7vvvZk5FKWlkJL/ceQHR+LqfzcpBVBZMsc8Szku2fT71el1oHY5WJHz9YB8Dds4Zjd1FBPa1Ww5ernuTL/y3D0dmeMRdZi6bMupmKsmp0eg0Tp9cNRvVxcGbl8MnXdd+5OaWYTRJ29joK8soJr3nqvbxdqK4yo6oqdva6OkUgwVqLavjwCy0+XnlhNC+/uRJUKCquBKzp4hqtyEP3D0Rb8x6wv0jIFBVXodas5e9fv3ZOy1Afa2PbGvacTGHPyRT6dQ3j9SdvYdehRCySQmm5keS0fNpGBKAoKkdPpeLl4UTzBm7K51EUlelvLaai2oQgCNZYF1HAoNeSV1zBvpMpAGw9lMDTdw/E1cme6aN78uy8tXg4OzCka3id9XpFNmPJ9hOoCEiOAlqtBjtJwCLJ2Bt0DOx9IeYuJMiLO8d2ZeeBRFIziqyNZAV44ekRmE0SDg567GtioPr3iaD/ZeL1KipN3PfQd1QbrTWMNBqRscM7EODvzqEjySAIbIw+y6rYBBzsdKx5/wF017DAacK5PIwmC3qdhpSMwjoi6eUZN/Px99to3cKP7h2a1R5PTM9n1txV2Ol1ODsYMJolREFg36mUWpEkigJajYhFktHU/G7Dxr8d4eLWFg0OEAQ7YBdgwCqqlqmq+solxt4KLAO6qqp6RBCEZkAcEF8z5ICqqtNrxnYGfgDsgXXA4+oVNtOlSxf1yJEjjbowG9eGMpOJcpOJAJe6KfmyolBpsZBfWcnIX37GKEl42ttzeJo1NqXcbGLQou8oN5to28SXjPJScirKcdIb8HNyZt6w0TRzu3yg6f+X+W+vZtX8HQCMnnoTbbo0Z8F7a+k8oBVTXxj1j21jEXMqnc8/WE9YS38ee2Y4Gq31ZlRaXMn29afZuPoYKYl59OwfwSsf1XdRHj2eyuyP1uHmak9aehEms4RWq+G5p27m3TnrUVWVpx8fxtCoyHpzN22NYfZH6xAEUGSVsaM68dhDUXXGDL3vM8or6gaqC4LAzKkDOZdRxPKNJwhp6sm3b9+BQa9jzrzNrN8Wg6qofPzmbbSJqOsCAqgymimvNDJ21nfIsoJep+HR2/uRnV/GbUM64uXuxF0v/khWQRnBfh4seO3ORsX1zF2+m0VbjyMg8OTYvgzuHo6TgwFRFC85Pzo+i407Y2nT2p+TKdl0jAhgSLeWDY41mizMWbyT8iojT00agJerI2kZhdz/yILanni3je/Gug0naRHqw8xHh2BRFCa9/jNyTUr92g+n4XENrUlxSTm8NncdTTyceGfW6DrVti/FM5+tZvuxs4iCwJDu4ew8nky1yYJeq+HTmePoHGEtGxKfmsfmw/Hc1LEFkaF+12zPNi6NIAhHVVX9y8qeO4X7qh2+uPsvOdfewe//pdf2Z2iMJckEDFRVtUIQBB2wRxCE9aqqHrh4kCAIzsDjwME/zE9SVbVDA+t+CTxQM34dMAxYf7UXYOP64mIw4GKo/yGrEcXav70bNYQd51JIqyyh03ef83Lvm2jh7km52US1JHEkJ5OzDz5Jm28/pcxsoqzIxKhlP3Ny6ozrKlSsN0GhZr8C7z32E9WVJrLTCuk7ogMRHYIvv0AjSDqTxeZVx+k5oBXtu4X8qTXKSqtxcNTXtktp064pX/w4rd44V3dHevSP4JuPN6EqKvu2n6G8tApn17o32E+/3EJ+QTkFheW1ZRgG9m/JZ/O2YrFYi2yuWnu8QZE0ZFAbgpp68NjTvyDLEitWH+PhaQPrWA2c7A2UV5jQakRUrE1zNaKAJCk8dd9AHrqjL3YGbe1rGx2XhdFoQa/XcjY5r55IOpdVxL2vLsIiSQzpHkFCWh5De7Zk4uC67qwf37iLtJxigv08Gh34/OitfRnarSVO9nr8vVyvPAGIjPAnMsKfMc/MJ6uglDV7Ywj28SAiuH4M0eKtJ1izJwZFUUCFtx+6BX9fN9q2CSA+MYd77ujFoiUHKa8wERefTWp6Ib17hHHPzV1ZufMUo/u2vaJAKqsy8sS3q8krrWT23TcTGXz5jLpWob78+vF9jbrW83QID2B/9DlUYEDncIrKqjkUm4YkKxyNS68VSRHB3g0+DzZs/Fu5okiqse6cD8w4nzLUkMXnDeBd4OkrrSkIgh/gcl5oCYLwIzAGm0i6oTBJEu/t3UNhVRUDQ5vz3I5NVEkWXtuzncNTHqK9tx8Hs9KZ1qELaeWlGKUL6eeVZtNF+WSXR1YULIpSJ1PuYhZ/upGln2+m+5C2zPr07tqb8x2PD611K942YzD7Np4mN70QUHFv8v+vdi3LCrOmfEt1pYl1Sw+xYMPTHNp9huQzOYy/tw9NfK/chPeHr7azeMFe3DwcmbfwQVzcLn/DbOLjgp29joqaGkZrlhxCEEVatQ2kQ41IaxnuS25+GcaamCKDXsuuPfEYL0r/jxrY+pLnaBbkhZurPaVl1YS38KnnVnnt8RE88uoSBAEiwwMI9HHDxdmesUOsrj57u7pZhTOmDuCNj9bi08SFgX3rW2QORp/DIslYJIWzGQUservhGDW9TkuLplffny38EnOuFJcnK0rtB90fA8bX7Y9l7d5YYpJzsEiy9TlSrVXcf11+mOjYTAAMeh2RrQM4fOwcAtC8pr/cQ+N689C43o3a/5pDsZw6Zz3P+yt2suDJ2+qNSc0rxmSRCA+49PNjkeQ6br2C4gpOncnE1dme0X0jadXMB4NOS+vmvrg62hGdnI2jnZ7hvS79XrHx78RWAuACjYpJEgRBAxwFWgCfq6p68A9/7wQ0VVV1rSAIfxRJzQVBOA6UAS+pqrobCAAyLhqTUXPMxg3E4pjTLDp9EouiUGSsAgEctDraefui02j4dcxttXEzlRYzrgY7ys3WeJO5USMaVVslvbyEUWt+otxi4sM+wxkdWvcDW5YVFsxeg6qq7Pn9OBNnDCE4wuoGMNjrufvpEbVj31v2GHvXnaBlp2Z4B3hQVWHk5clfkRSdQfveYbzw5b0YLo7PyS/j+/fX4+ntwl2PD6G8tIqNSw4R2ibAWvZAVZElq2VGVeHUkWS+ePt3LGaJ2BOpzF38yBWvb+3Ko8iyQmlJFfdO+Jy2HYJ48e3x6HQNx6hotBo6dg9l95YYAFYsPEBlhQmdVuTzXx+iaTMvnn7yZvr3jWDHnng2b43B09OJgsLy2jXaRwYy9pb6RULPY2enY8HXU8nILKZ5A7WPrO47kWqjhTPJuXz2ysQGVrlAx7ZBrPj+0iUC+nQI4duV+5FkBZ1GpKCkAi83p0uOv1pUVSWzoBRPF0fsDTokSebxV5dyMjaDW4d35Mn7B9UbP/vHrVSbLTjY6bBYZB79aDkezg5MuaU7HcMDeOuHzZgtF3oV6gWRg+vjmbgtmU4dg7CYZQRRIDu3lKaB7uzZn4iriz1vvvc7Mx8bQmjzS1tjFEUlMT0fH09n3JzsCfXzRCMIaPU6WjWtP29v3Dme/HYNADPH9OO2vu3rrTdr9goOnDjHwJ7hvPnkSCqrzdz51A9UVJlABW8vZ354bzLVNS7Czi2bsvOLR//0c27Dxr+FRokkVVVloIMgCG7ASkEQIlVVjQYQBEEEPgKmNDA1GwhSVbWwJgbpN0EQGldQpgZBEKYB0wCCgi7dpNXGX4+DTl/bcNfLwZGNt03hbHEhvQIvvE7nrTqOOj2bJt3Lidxsevg3bdCF1xCb0s5SYanJsIs5XE8kaTQiwS39yEkrRKfX4tVAsPF53DydGDG5T+3j3b8fJ+7YOVRF5dDWWNYt3MfY+2+q/fvcl5ZzaEccWp0W70B31v96gJS4bLQ6De//+jBhkYG88eU9rPxpHwOGt8PR2R5BsN5kL04dv5iEuCwO7E6gz4BWhIT5MHRkB1YsOoAsKZSXVnPsUDLHDibRvU94g/MBuvcJY9+2OGRZobLCaG3totNQWWFtA6PViPTq3oJe3Vswc8YQNBqR12ev4ejxc4wd3ZnqKjOzP1zH9Ptvwt3N2hg2O6eE2DPZbN0Zx9BBbejfJ+KSTWrbtQwgMtyP0/FZ3NyvNeWVRpwd7aioMjF/6T4c7Q3cM657o4ORA7zdmDqmB3MW7iQ2JZf7XlvE6jn13Y1Xw5ylu1iy7QT92ofgZK9n3YEzODkYWPLq3RQUlHOmJg1+xfrjPDF1YB2376nELFbtjq5jPbJUmiirNPHm95v44aVJdSygBp0GIduELKlUSDJtWvlTXm5Er9Ny+/hujJ30GaoKJaXVlJRW896c9cy7REanJCs8+clKjsVnoNdqePm+oazceYoxHVrRNTKIAe3rZwUeTkzHbJFQgR2nkzgYn0ZhRRWv3zGEYG938orKORqdBsCOg4mUVxopLq3CaJJq3bGFpZWMfPpbzBaZSYM78vht/eud5zxLt55gxc5T3BbVkTH92jbyFbFx42BrS3IxV5XdpqpqiSAI27HGD0XXHHYGIoEdNR80vsBqQRBGqap6BGtME6qqHhUEIQkIBzKBi8v4BtYca+icXwNfgzVw+2r2a+P6Mq5Va0ySRGF1Ffd17IyTXk9Tl0vHfXg7ODKkef0P+cvR178ZH4oaBARuDa0fQwPw0ZqZRB9IIqx9EI7OjU9JDo7ws2ZRYc2icnKpO1dXE1cjADq9lvKSKmTZ2qPufMkAF1cHoo+kcOLAWd748h4mz4giKS6bux6q36KhqtLErAcXYDRZWL7oAEs3zuL+GVHcOqkH7736GzGn0lFVCLyoaXFDePm4otVpQIBmod44udjTqXsIEW3qG2MNNdWlX39pDACLlx9iybJDSDU9wP733CjmfrWVlWuOoSjWf6/DR1NoFxlYK6D+yL5jyTQL8ORcRhHrdsaw50gSS+dO5ZMF29m4Kw5RFHC01zNpZOPjMUtqBB5AXlHFZUZeGZNFYuHmo6gq7DqVjFYjYpZkKqpMfLZwJw+M64mri9WdGBnhXyuQFEXl5Q9Ws/NQIrKTAIJQzx+sEQWauDnx7OQoEtPz6NY6mCZuTjz62E+YsVqWTkdnMvu1W8kvrECSZNq1CSTmTBYWi4xer8HHu+H/EUlWGDnrawpq3luqovLiV2uRaso4LN17CndPR756eBxhAU1QVZVjSZl0CQ1k/ZF4qs0Wgr3dWbb3FJKsMHv5dp4bfROero4E+rqTmVtCi+AmODkYcHIwcMuASNbuiMYiyXj5OpNeXAbA8h2nLimSisuq+OjXHdb1f9pKVJfwRgWG27Bxo3JFkSQIQhPAUiOQ7IHBWGOPAFBVtRTwumj8DmBWTXZbE6BIVVVZEIQQIAxIVlW1SBCEMkEQemAN3L4bmHstL8zG9UcUBO5s1/7KA/8fhLt7sX/iQ1RJFvwcG44jsne0o+ugqzJQAtCyYzM+WPE46xfuo3XnZkRNqFs1+LE3x+MX5IWp2sy5+GymzLyZTcsO06pjMB16hQGwYcURKmoa+b788I9IFpnRd/bE/w9CJ/ZUOot/3GsNnFbBYpZrG5S6ezrx2ge3c2jfWYJDvAi4gkjq2D2EWa+PJT0ln6hb/o+9tw6P6lr/t++9RzJxJyQkEEGDS3C3YsVKgVJapEihQr3UW6qHlrpQKKVAgeJS3N1dEyDubpOMbXn/mDAhTaA9v3PO963MfV29mtmz9tpr1mxmnnnk87TEzcOA528MvKzsYjZvvUDT6BC6dGzgOG4w6EAQ0IgCBoOOklIT6zef5c66UlEQ0Gpq9gLdSs7l7S+32fV+KrDZZEruMHJ+i6qqnDibgF6vpW2L6snyufmlnDuegKFcxWIQ6Nv57uX15WYrb363nfi0PGoHe/PIgHZ0bhZeZUx6bjFebi6Um214uxsY3CmaJTtOI1ll9uy9RlZaEVPGdmHdtvMM6lVpeGdkF3H8bAIooC9VwSBg8HFBoxUpKTPj7+3Ou1MHMevzDSRk5BMe7MesMT3QiCJPTuvNF9/tRZYVTpyO5413N3LhciqCAJ+8PxqtVkNOXilFhWX071vzvXojJcdhIAEOjSuwJ4GqCuSVlPH4d+vZ+950vt5ylOUHz6Oo8N2MEbStH8qu8zfYcPwKGlEkM72IiS8tw81Vz9KPH6HUaCE02NdhFL44tS8vTrVXLn72ywFW7DoHQJDf3UOdri465IqbRVYUCstNTiPpb4gzJ6mSP+JJCgaWVOQlicBqVVW3CIIwBzijqurme5zbHZgjCIINu6za46qq3pZdnkmlBMB2nEnbTu6Ct4sBb5e792D7T2jSJpwmd+la7+HlygOPdeeRru9jtdhwdXdhzdl3HCKYAB26N2b72tPIsoK53K6Ls37JEfoPb0u9KHv+iKqqvPL0ckzlVgQBGkYH07ZDFPt3XaHvwBboXbToXbR07VVzmXlNdO/XlPi4TKaNsrcVeXHOCHoOqAx9vPj6GtLTC9HpNHzywWj2H4pFq9UwYVxnJEmh1Ghm9MgYJElGoxEd4cH+vaMZMrAV+QVGzpxPolP7KLthVcGdeTiGCgHKgT2i8fNxZ9aEXni4ueDu6sKogZWVacvXnWTp6hOoqLwwoz/dOjTgx1+OotNqmDimEys3nOJGfDaoKv1aNGTOjEF3fd3bj17n5JUkrDaZtLxiLsRn8NUzI3h1wTYMeh3fPjeSp77YQHGZBb1Ww4fTBtO6QR2iawfywVfbscgyRcXlfDx/FzZJ4cNvd9CpXSReHgYC/T3x8XajuMSEi17L4D7NmDauGwOe+x5ZUSktt5BXXMbN1DxkRSE+PZ+CknICvN0ZOrg1yakFbN52AQFITs3HapUQRYFLV9J4eExHmjQK5tKVNMY8Oh93dxc++2gstYMqvUphQT64GXSU1yDiCaBWfFrfjgKevpWGySqh04hcScmmbf1Q+rVqgF6robjczBdf78FSsYbEtALaNas5XUGSFY5eSkQQ7Mnxc58Yetf9N7joEPy0WMts6Nx05JeWExbw+wUKTpz8Vfkj1W2XgGrSsqqqvnmX8T3v+HsdsO4u485gD9M5cfKnRZJkbst3STYZRVG508fSpnN9Fm15jhtX0nj32RUACKKIVltz1ZSqQnFhOetXnkRVVS6fT+bld0bc9fpGoxlZVvC+o8x/7dKj/Lr6NMGhvljMNlQVtq07W8VIMpttdtFHAeb/sJ+rsZkV11d5YlrVUOCHbz/Anv3XGHRfc1o2r0tqWgETH/8RRVGoG+ZHZHgtLFaJ55/qT3T92jz1SA/OXU3l0ZEdaBhemUjs4ebCrAm9KCwpR5IUSsrNaDUabiXmYrHYEESB+ORcYm9lsWnHRQQBdDoNAYGeaHUaRKBpg8rwl80ms3PvFTzcDfTo2hBBEAgNsjdblbWginZvxrKdZ8kvKUcQYP2hyw6xS0EQcKsIN/bq2JAb8dncTMxh6kNdePqtVZS5qUh6Aats94q56LX8/MUkElLyaBBRCxe9/eOxdcM6nLyajNkq8a/le/DxNJBfXE6jsEAmzFlOkdHMhzMGM2ViN1xctOh0GhpEBTHnw83ovfU0aFUpebBgxSHS/KxorVZ27L7MxPGVOXKebgZ+/XgqiRn5XLyZwVdrDzuei6rrT2xBPlpRw5fT7gfgmaFdeXGxXUhzSEwTx2vu2TwKgOzEQpZsOElILW+aNbi7plFuoZGMrCIEi4JNlQj8naT5tx/qz+dbD9OhQV1a1HNqJf3dUMGZk3QHTsVtJ07ugV+gF89/PIZ9G88xbEJXdPrq/2QCa3sTWNubOd88ys4NZ+k3rDV17qgKy8ooome/aHZtuYQsKxhLzXZZA0khNTnvrteOjc3guWeXoygqL788hF69oyktMfHjV3uQJYXcrGJcDDokSWHI6Kr5Px+8NZIlK44SWS+QDb+ecxxPSSv47WWIaRtBTNsIwG6Y7D143REKTE4pID29CEVVWbj4ELOfH0TPjg3RasUaE7M37bnEpz/utTctdhMQdCIP926N61VXAr3dGT20HSvXn0JARUDgenI2h5PTEPw1PDesK6Puq/w99t0P+9m64xIIYLVJZGUVc+joDYZ1asrqU1eRFQVFUekYXZczcfZ8rtYN6jCoYxOW7TxLTOMwGtW1G3GiKDDjke6Oucc82olv9tq9W//afJCPH7FXQbq56mn2Gx2nj2bezzuLdrDjRCzFRosjTSkjr5gysxWbpPDjlpP0aF0fpaGBeUdO0lYM4Z0vHmTamk08tmkjr/Tpwbi2LUkMsmJ0ExFUMPlXN6S93A20bFAHL383PPwMrNl2ntr+nrw3bTB6vQaNUCmC2SYqlL3vTa/55gGmje3K5FGd7C2J7lFJaimzYsi0oSgqQXW9fjd8NrB1Iwa2vntI1ImTvxNOI8nJP4r87GKO7LxCs3YRREVXV36uiR6DW9FjcE16qFVp370R7btX/fIoKTYxY/wCZEnG4KqjXmQgQx5oy8cfbgWtyM3EXGbNWEJJUTnPvzKEZi3CHOceO3YTS4W20cZNZ1m27ChGowmDqx7JJqN30bJ40yxEjYC7R9VwZIP6QYx7oAMvPrscm6QgaAFFhXIJWVIcKt53Umo0M/HpxfYWJhVdfD3c9dgkBVEFPz97Ivf011eSV2hEEATWfvUYfnckeG/ee8l+PQFki4CMwo87T4MOcsuLyDOWM2V8V3Q6DVqthkNJKfY2F0BSZiFWm+zw4GTnlGC1SWg0IrFxmWz49RyqCvFJubhFuWO0WvF01TOwYxMahgXi6+mGIArM/Hwdkqwwrt/de6t5eRnQiAI2WcVkrTm8dRutRqRj83C2n4gF+7ag14h4eRgoM9vbf/RpZ69G/PrISayyzIX0LH69GotNklCAXXG3GNe2JX7+7ghlheg1GuqE1aw4fyI5lalrNiIATwzswPRO7WscdzfibmWxbONJTqSl0zCqNp9OH4qhBuP+NjdvZuOi1WC2SGisztqYfzwq/E4jjn8UTiPJyT+K58Z8S2FuKaJG4Mc9L+NXy+v3T/oPKCqwVzhZLRI2m8ynCyaREJ+NRiOiKDKKrHLtsl0y7ItPtrPwDqXtHj2asH7dGSRJJjDQk2tX01EUlRatQhnUtzmtOkTg6V01YTs5KQ9QqRceyOWLKUiSgiIr6BGQZZWrl1M5fTqB4GAfgmp7V8k3ir2VRanRjKyoaF21PDe1D107NeBVXBzzAAAgAElEQVT4qXisVonB97UAICe/FJsko9dpWLLhJMnpBUwd04WmDYLxrDDWBEFAdBHR6TWY70jyPncjjcZ1a/H4BHv1VPiZG7y2cBuuGTZ2b7xI7OkUXpg1gF/WnqJZ0zqYzFY8PVypHxlY+cGtqjSNqs2J68mUWWzc99ICVODdSQM4fzOd7EJ7ddySnWf4YErN+U0j2jcjKbeQg1cTsEkK11KzWXfyCqF+Xkzo2a6aovfgTtFczcpmx6UbdKkfjrfWhRVXLyEECcTUC+PRgTEAxNStw7m0TFy0GrpG1mPz1VhkRWFqJ7unb+7QAXx64AhhPj4Mjq7ZG3M+PRObLCOrKkcSk/+wkaSqKnPmbWHv4QpjToALShqHryTQr83dJSU6dapP2Hp/0tILmDqp+13HOXHyT8RpJDn5R1GYV4rNKqE36CgpKncYSXu3XGD1okP0HNiCh6b1/K9dLyw8gP6DW7JzywV8/T1IT82nfoPaDHugHetWnXQ0cnVx0RERWVUtOSqqFus3zEKWFa5cSePY0ZsIgkBMhyj6Da3u2Tqw/xpzP9wCwAsvDaZX36Zs3niOkpJygoN9SM8oQlVVVq04TmxsJqqHFq8Ad/x9PXj28b5ENwxGFO0eJlVRMJosaDQiA/vZc50kSeb4+US6xUQRm5BN84bBbN57GYtV4szlFOa9MpLTl5IBe3irX4dGuOi12CSZrSeu4+vpRt+2Vb+s+7ZrSKPgACY/vhirVSIxKY+X31xLSYmJ46duMeGhzhw5cYu5n+9EFO175e/nga+HKzqNBkVVkWS7Mvaagxd5qHdrNh2zC212jK5eSVdmtvLEoo2k5hfTq2kkWcVGUvOLuZySSZnZil6nJcjHk0Ft7En0iqKyLzYeg07Li8N78tKIXgBsvnAdrguYbBLJJUWO+ReMHs6VzGwi/P0YvuhnrLKMTqNh+ZkLuOv1tKoTzMdDB97znhnerAnrL1+l2Gzm6W6dqj1/9mIyb87dhI+3G1+8N5aAimq09KwiDp24WTmwwiNwMz2PY9eSmXxfDGGB1ZOsPdxdWPDtxHuuyck/C+UP9UL4Z+A0kpz8o5j92ThWfL2HTv2aEt7Q3gNLlmQ+fXM9sqSwYsEBegxsTkjYvcvw/yiKrJKanIfNJpOTWcyCL3bz7qcPMf3JvnTu1pD4m9nUredPSYmZLt2rexb0FWGSmJhIvv5mAuXlVprWoIcEcOZUItaK8Ny2rReIqh/E8tV21W+TycrxozcJjwhk+pRFSFoBWZYozykhK6eEOZ9s4edvH6NDmwgOHr9hT/hecohFK4/yxbtjqBPiy8PP/0RBkb1E3c/bjYeHtmfvsRv216mqfP/LYSJCA8jIKaLMoLLtZCwaUWBk9+ac/v6Zu+bFhIb40qVTfQ4fu0H/Ps04UOEJkSSFJSuOOSrqbus45eUbubY3gfsHRWOy2Nh34RayrDCyW3P6tGlARG0/JEXB1UXHteRsmtSt5bj2ros3uJqajdkmsf9Kwu2oIqVme2WipCgci0umb4v66LVaFh48xYKDp1CBN+7vzYi29vL9/k0b8PWe46QVFpNWWMz+6/H0ahKFTqOhdWiIY08AbLLMnpsJHIpP4r3B/egeGY6f+93bzwR7ebJz2kSySkqp5Vk9iXrhz4cpNVowmW3sPXydMcNiKCopx+Ciw9PDgNFoRtSIDB/ehroRAbz/y14sVonLiZmsfeP/pnGpEyd/F5xGkpN/FJ37NaNzv6pFlaJGxNvHHWOpCY1GrKY59J+wa+tFrl5KA9XuXakbHsDpE/EkJ+URGuaLRiPSKLoO7u6/rzVTUFDG+fNJeHu7ElaDETdyVAwnT9zCWGrm2pV0Zk77kW++n0R4RCCurnp6V+jzDBvehnW/nqsQ0rRrJvpW9Ix7empvSoxmrsVlYDLbsFgkjpy6RZMmIZRXSBwAGMstRNUNYMbD3fj250NotRqaN6rDzIe7sXznOeZvOQ4KyIqKXqetYiDJisLBCwn4eBho0zAUQRB4+9VhAPzw0yFHE15vL1cKK4wyUQQvL1eKikwAFBaVsfXIVdCJjO/blvF92+Dlbg/1RYb4c+5mGhM++gVBgCmDOjB5oD1k1SDYnlDvqtfRuVFdQv29mb/rJFJFXb2qqGy/EIeHQc/sEb24mZ2H2SYhCgIJuZVJ70XlJjIKiytej8qOKzdoE16Ha9k5tAwJxk2vY+GYEbyxfQ8X0u2VhVZF4a0de/FxdeXAE49V2RNJUXhn1z6u5+TyZr9efHn4OMeSUqjn68OmyePR36Fb1b5NOAnJuagqRDcMYd/hWN7/YhuiKPDBqyMQRYHohsG4GvScvXln96fqnIxN4cuNh4lpGMasEd3+pw2nnTj5K+I0kpz8pVFVlSXvrufo5jOMf2U4PR7o8IfOs1okLp2MJyyqFkF1fPly5QxOHLhOi5gIPL3v3WT230GrFdFoBBRFoEHjYDr2aMQrz6205wopKjqdhiMH4/jX5+PuOU9mZhFvvrEWi0Vi+7aLzHpmAFarRO/e0Y4mrZFRtVizYRYPj/6a7OwSDAYdKSn5hEfY1ZnLyiy4u7vw5Kz7mPp4b35ee5K0zEIi6gYwfKA9fOfpYeBqXIajOa5GI9CjU0NqB3nj4W7AKpUR4OPOk4/2QFXhoSHtaN+iHlm5JbRsEoqLXke76DDkzccA8PUwMHN41UauX647zNoDlwD4YOogerSKcjxXZrI6KuuKKoQV9ToN774xnGbRoUyeuZjcvFI8vA0UKzawKqw/fImpg6u+7xfjM5Bk2W7AnIpjwn3t0IgizerWZuUzD5FZWErnRvZw3NXUHI7FJdG8bm0uJmciyQoZhSUcjE1gao/2pBQUY9Bp6RMdxbFbybSPCEOv1aDVaLDKdoNuZJumDPj+JwpNJnSihp2PT+RWXj5mm1RlXSabhEUyYpNl9Hc0bP7l/CXWX76GVZZ5fvN2kgrtIbzU4mJSCouoH1BpFE8a24VO7aLw8jBQJ9iX599e4zAsL1xJZer4bsiKwonYZIJ9vXjxwZ5cS85mYv92bDx2hY/XHKBxWC2+eXIksxdtpajMTGJWAT1aRNG6vrOF5j8dFaeY5J04jSQnf2mSr6ez7qvtWE025k79nu4j2/+hX8PvPL6Yq2eTEASB77c/T60QX4aM+WMG1t2wJ2dLVSrN+gxsQWmxify8UsZM6MrliykIgoAs2yvArFaJ7Kzi35/bKjmMh+JiEx9+sBlBgNTUfCZPrtpC4unnBvDpx9sIq+tPTEwkAO++vYHDh+Jo3DiEz796hO+WHGTbniuAysMPdMCrop2LqqjId/SdE0WRdz75lYh6gfz8yaMoqsq8H/fxzpfbWLL+JN+8PQZFxa7CbZN488lBFNssjvONZmu1yqqbqXmYrRJajUhiZkEVI+nCxRTH37cTtUVRxFhmxd3dhZWLp5OdU4yo1zD41UUoqkq52cbF+AzaNaqsDBzUoQmrD1wiu7CU5OwC+rwwH7Ms07xJCF89Noz6te0eJaskMa5rK94c1Qc3Fx3vrdtHYZmJE2lpHF2VSi1Pd9Y9OZ6MohJGf7sCQRDo3TiSOSP68fbwPiTkFNCzSSSCIFBoMqOoYJFlXt2yi2PJqVVed3RQIIUmM491aFvFQErIL+CjfYewyjKiIBDs5Uk9Px8OJyTTMDCAcL+qVXCCINDkDt2jkYNac+FyKlqtSK8u9pDtu8v3sOtsHKoKP704lpFd7Hllj879hXKLjeupORy+kuAw4mySgp/nf+/HgRMnfxdqVrxz4uQvgoevO6igN+jwv6Plwr1IT8rl/NGbWEw2ZFkhNT73P15HSmIuowd8woP9P2H9Lyc4dyqBdStO8MSjC/H0cWXq0/3w8nalXYdIohrWplaQF02a1sHL25WRo2OqzKWqKgu+3cvMx37k3JlEMjOLMJaaqXeH9pLNJmO1yuzYfqnaWjp0rE+LlnW5fCmVmdMXU1pq4tCBWFRFJf5WNhkZhZy9lILZYkMFR7NXsPd6e//V4Xh7uqLVikiSTFpmESfOJrD74HW8PFzZeywOWVFJSstn8NTvmPrqcsrNViRJYfXWM1WMott5RHfy7OgeRIX406p+CCN+0yA1O7cEVbWHALVaEa1GRKsTad40lNJSMwt/OsTRE7cI9PGgY3RdXF10aLUaIoL9qswT5OvJE8M7Y9BrsckKxWUWLGaJc7Gp7L8S7xg3Y+FGnl68maH/WkK51cYH4wYwa0hXJEXBZLWRnF/EyK+WEZuRgwCYrDbOp2Qw9MulzNm8j0M3kpj20wYm/rCGIHe7FIJGEBwJ8Lfp2zCKxQ89wMEnp/BoTFVpglt5BWgqxrvrdTQMCOBEUipuOh1fDBvE8nMX+WDvQfLLy6mJLu3rs3XFU/z685PUj7DrQl2IT8dklUCAG2mV93fbBqEYdFpkWWHumgNYJbsHysvdQL2gmiUJnPzTsDe4/b/476+A05Pk5C/N9y+vsOfVAG//MusPnXNwy0XH3waDjhYdIv/jdZw4fAOL2e7tWfD5bnR6LVaLXQ370/d+pVvvaAwGHRvWnOZmbCaKopCXW4qiqHz/9V76DWiBq5segCuXUvl1/VnMZhtz3lyPVVUQBIH27SNJScl3hFYACgurN4NVVZUD+66hqpCTU0JmRhFt20Vw8UIKISE+uLu7MHJAK75beoiQ2t706FS14qxj20hWLZjG7kPXOHY6nnOX7d6d4CBvUjILEAUBRVWRFRVQkSuXQ25hGfe1b8zW49e5kpjFc6Orl5Q3CA1g9Ts1JxC/+sJgFi4+RLs24Tw5vTdZOSV4e7ni5qrnrfc3cfTETURRZOOWc9QNC2DulME0Dq+Fv1fVZrwJmflYrBIN6gRyIy0Xi02yhxEEiAyqNKgup2Riskq46nUk5xYS4OlOuL8vgR7upFbkHGUUldKibjBN6wQRn1PA5G7tmLv9EFZJ5kZ2HjqNiE1W8BcMzBnTF1EQaBlcm37zF1NoMvNou1a83r/XXe+dbpH1qOXhTlapkdf69OCLwyewyDKiKPLjqXOsu3wVqyyTWFDAwgdrVmc3uOiqPH7hwZ68tXQndWv50rtVZVPpl8f04lRcKiXlZvKKywDQazV0aFxzyxInTv7pOI0kJ39pzu+/is1sw+DuQn5mIZHNf//DvnWXBqz6fj+qqjLhuQFVVLQL842IooC3r/s9ZqhOwwphSkEAjUbEUpHTo9Np0Oo0fP/ZLgYMa43ZZEVVVUerk5rw9XVHVVV0eg0GNz0WoxmLxUZqagGbf32OoffPw2ZTKuav/k9YEAT69G3G/n3XqF3bm/DwQN55bxTxCdnINpnxY7/FapUQvHUUFJU5KuhUVeXU+SQ0okDblvUYNqAVg/o0Z8/h6/j7utO+dQSnLyffc+05+aWIgsC3zz3wb+0fQLnJSl6+kSem96Z9hQJ48B29zSwVIUdZUkjJKiLRWILsKdJqZlUtpJxCI498YDeeQwO8Gd+3DYt3nEZWVQSNQHpBMYk5BXRuVI9nB3fjy+1HaVUvhHKLjbzSMg7fTCLXaDcgBGBQy0aE+XqzdOpowO4dOxiXyOEbSUQF+pGUX4hGEJjUtR09oiIc6zj57AxUVaXcZqOw3ISvW80FAbvibpFVas9T2hF3k8fat+GDfYfwMRhoEOCPWlHKf2fD29+ja9MI9v7r8WrHrydnI91h1broNLz0YE+GdXZ2iHJSyZ9FTFIQhB+BIUCOqqrNKo59DNwPWIF4YJKqqkV3n+U/w2kkOfnLoaoqh9YcpzivlHEv3c+Pb68jPDqU5l3/WIPYJq3rsXjfbCwmK8F1KxNij+69ykcvr0YQBN795lFatq/qYbp+KYW5r6ylTl1/Xps3Ftc72jesWnIURVHQ6kRC6/qTlVGEwaBDQaW02MTWDWfZuuEs738xjoH3t8JqlejUuQFHD9+g38DmDi8SQGhdfz6YN5ZP5m4jN78UT29XLGYbU6f2RK/X8trrw3l3zkZEUaBx4xDHnnz80RaOHIpj5Kj2vPza/cx4si8engbKyixMnbiQkhITYXX9sVrtXhXJJCHrLJSWmnHx92D1pjMsWnEUUJk1tQ+D+7VAp9MwsHflF+iNxByHGvdt9FoRL09XzBaJ8cNiEARYuf0sF+PSeGxkZxrUrar/dDfem7uFM+cSEQSBj955gNYtq+oceXsa7F4sVMw+IpJBYN+leAq+2sjCF0c7xuUWG1EBs1UiMauAWxn5judkm8ILS7eh1QgE+3gxoHUjJFnhcmomzy9JQ6vV8Ooou9dHpxHp0SiSj0YNqLIOURT4fsIITsanMHPZJmRFpZanO/e3blLtNd3IzWfMkl+wKTLvDuzLyBZN77kHqgoTYtowtnUL9BoNSYWFiBUh5Ad+59w/QquoEHw8XDFbbXRpGsHUgR1oHuHsv+bkT8tPwNfA0juO7QZeUVVVEgThX8ArwMv/qwU4jSQnfzkOrDrGvCnfoSoKfcZ3Z0v+D//2HH6BntWO7d92CatVRtVp2LP1QhUjSVFUXp6+BGuZhcy0Avb+eqFKordOr0UURURRw9gJXTm09xpHD8RWmV9y1fDinPU0qB/E15+MQ6fT0qmbPdT1w5LDHDl+g4kPd6Fnt8ZYbTL5RWVYbTIWs41Nm59zzNOtWyMWLJhMYlIuHTvaQynp6YUc2Hcdq1Vi+bIjjHukM94VZf034jIpL7dgs8lkpBdgMOgo1qvIrhrcXfUO+YFbSTlYrPYQ4ccL9pBvNPHoiKrJ7PVC/NBpNVhtMgIwpHdTWjUJo1fHhhjLLJy5lMyBUzf5fs0RzBaJG0m5rP98yh96T3JyS7BaZVxctOTlVw8jZuWUICsqokZAI4O+QEGQ4caJFCRJRlvRSy66XhDDujTj4Plb5OWU2j/lRBBUMIg6rIKKySqRlFvA/F0nUFTVkcDsKkBdXx8+GjWAjKISHoxpXm0dt/Fxd0UFtKKIn0fNSc8HbiVgkSVkRWXV+cs1GklDohuRVWoko6SEp7p2BMClIrF7e+xNzJKEoqqsunCZ+6P/2A+B20iyAqrq2BtPNwOb35mEyWLDw/X3ZSec/DP5s1S3qap6SBCE8N8c23XHwxPAqP/lGpxGkpO/HIVZRSiygmSVyE+v3rC1JkzlFuY8s4KMlHyeeWc4rTvUrzbm/jEdOHgmAUUUOHAmkd7nkygvt9KxY33KyiyYZbthgAqevwnHvfDGUFYtO0atIC969GtKanIeRw/EogKiTkSVVBRX+z+31LQCVqw5xfJVx/HxduOVFwaxZsNpLBaJ9+dupUfXRoRHBKLRiBgMOpo3D6u21vCIQMIjKj00/v4euLnpETUCvrU8yCoo5VJ8Bmv3XWBQx2h8/TwwZxbh1yqI1NJSpDx7o1arTeZ6fBbNG4UwcUxnrt/IIiWzECsKC345yvhh7au06OjaLorIED9uJObiohXp3CqKHh0bYLPJTHxuCWaLDY1ORNWAKAiOPmx/hNnPDeKzr3dRL8yfnt2qGwOzZvTlg3lbKbPZSFLLEMptdqeWpFJiNDt6yAmCwMtje3H9WBLGQhkVsLkLgIDOKtO7b2OOXktiaOvGnMvM5Eam3dMkAB0a1MVcYmXhT4eoXzcQfcfqyuYmq43XVu4kITufp3p1QhFUhrWJxipJvL9pP0duJBFdJ4j3RvWnT8Movj92GoskMb5dzf3/NKLI9E4x1Y7fSsujLKMcvSKi6qB/w+r37PJTF1hy/Bz9oxvwfN+uDgX3H5Yf4fjpeBJScgGBT+eMpk1FKFojik4DycnfhcnAqv/lBZxGkpO/HAOn9uHGuXgKs4t58uvH7jou6WY2OzecpV3XBuRll3D5bBKSTebVaT/xzZoniaxQ3L5Ny/aRiC5aFElBkmVemb0ajUYkMNCLnJxiPEJ9KM4upVmLMLr3s3sEjhyKY82qE/Tt34wRYzugd9EiigLjp/TAWG5h547LhIUHkJZZiM1sRRVAIwqsXn8KSVIoLjFxPTYTQRDQ67Xo9RpGjvuG+/o246cl00lLK6hRYTstu4irNzPp1CoCLw8Drq56Fi2dxtYDV/hm23HGvrkEWVFRFJW4lFy2zZ/G7lNxfLnmMBabhEYLggSKojDr3TXodBpCanmTU16O3lOPKCv4eLlhsUq4GqomBbu66BFVuzFyO7/FbLVRWmZBlhW0ksiLT/QnKbOAUf1qNgxMZpu9q/0dVWD1I2vxzafj7/p+RkYE0n9Uaz5auQ8EUN0E9OUqUeGBVZrsgj38mJSab6981GkQRQFLhWBkz8hwjuyNY3PWJcYMaMOzQ7pRv3YA3m526YaRz/5ARk4xeYVlHD4bT+8OVRPbVx29yO5L9vYfn/96mB2vPcbnW45w5FYSecZyVCC72Mj8fSd5eUgPTjwzHaus4OGirzJPfnEZNlmhtl91r2ax0cTk91ciyQpBBh3z3xxTRSsJIK2wmPe27UcFfjh6hp4NI2hXL5SdB67y89qTd+SOqXy/5CDff/LIXffWiZPb2HPg/s88SQGCIJy54/ECVVUX/JETBUF4DZCA5f+TlVXgNJKc/OVwdTcwe+nT9xyjqiovTv6B0mITm1YcByrL0VUVtq87zYyXB1NabMLLx80hHTBlai+WLT1CSIgPycl5mM02UlPtngaLRSIyOoQvvpsI2HuZvffOBiRJIfZ6Jt98uRuNVsNnX44nOSkPnUHHD0un8ci4b5FsCiIg6EVMZptjLRpRoHOH+nTuWJ9TZxJZsPgAigJrN57hwRHtaNGiuhepsKScCbOXoqgqtfw8WfXpZAC8vd0olm2ONh6iIKDViOh1GlxddAT5eyIIoNNq8PLSUVJgqqhQA9kikZxegKyo+Pm4UWq0UFRSzhufb+GT2SOQZAWNKJCZU0xyej4I0KtzI3p1suvyeLobmP5wV9Zvv8DQ/i0Y0vPuicDLfj3F/NVH8PdxZ+kHj7Bu90WW/nqK9s3q8dGzQ6sYTrfJLynj7SW7OBNXqT2kDzTw/rj76BwTVW28IAg8MaknS9ecoFPbSIYMbMnmA5dpEx3G/tM3sNlkFFXl6s0MZozuSmxiNpcK0+ncKoLIOv7kGI2YRIWggOoGTFJeoeNvRYV31uzhaFwyioDjE1UQBPzc7Ynaeq2WOx1ql1IyeWvtbhIT8tGbVF6b2J9h3arul9FkRVYUbJJMsVHm6Q/WMu/p4TQJD3KM+W0i9+0Q3dpfz1VLrm8YFYQTJ39C8lRVbffvniQIwkTsCd191HtVkvwXcBpJTv622KxVe37dybbVpzm4/TLGUhONm4fxyU9TEEWRBx9sz4MPtqe83MKbb64jM6MIo9GM0WgXSMzLLXHMIYoirq56ysstKIq9Yk2WFT7+1xZSkvKRZYWNG86i0YhINgVVFFBUQFEAAUEAV1c9z85eiayA0WjG4GJv4eFi0OHhYcBssfHFsgPkF5URFRZATPN6eLkbkBUVi1UiPacYmyRz/EIiQf6eDOzUhCXbTtlzd0QY0aM5o3q1wuCio3urKN56bAA5haVoZYH5Kw4jyyqyYs9buW0w1Q7wotyUh9kikZlTzM+bTvHdisOE1/Gnd/sGlJaaURSVs5dS+G7ZQSaP6YyrQc+44e0ZN7w9566k8OnCPQzs2bSK6OFtVu04h6yoFJWaOX0lmUXrj6OoKqevJHMxLp0bmXk0CA2kbcNQVFUlr6SM7zYd4+iVpCrzPHpfDN06Nrjr+//g0HY8OLTy87dJVG2GPPE9ZqsNBAj0cefxMd04dz2VZ+euR1WhTi0venZqyL6cFERBYOGh03weNbTKvI2CAxGEygqgxJyKkK9qz3sK8HSja6NwJnWv+bP/mZ+3kF1iBHcV0QY/7zhdzUiqE+jN48M7s2zHGYpKTeQWlfHD5hPMe3oY++MS2HjxGmPaNmf2fT1Yefoiw1tG07yO3TPq5uVSZX1hIb7MmtrnrvvkxMlv+TNrGAmCMAB4CeihqmrN4mH/RZxGkpO/JYIg8P78CaxbcoRrF1Mwl9swmyp7j8myQklFX7AbV9LJyy6hVrC9Q3pJiYn9+68xaVJ3mjYNpaTExMdzt5KWVsCMmZVfNqIo8PX8iRw6aE/QXrTgAKoKiXeIU1rMNh4c24FfN5/DqCp2jYAKVBVHb7LbmC0Sb782jBZNQ3HRa1m26RRbD17FJskcPhvPym1nWTjnIZrVDyY+LY+ZY7vx8aI97D4eh6qqfPnaKEJr+ZCcVYhWo6Fry0gi6/g79qRvTMOKa6vUDfZFlhUaR9XmqXdWk5RegFYj0q9LY24m55KQkscLU/ry3AfrUFXIyivB1U1vTwKWZPIKjazdeg5VhUce6MCxMwnUC/XjxffWY7FKbNt3le1Ln0Sn01R5jY0jgzhyLgGrTSIls4joqNrEp+bhotfy+cYj3EjLRRAEFr80mq83HuVUbCruhqqhKle9jge6Nyczu5gbCdkE+HkQ4OdBUKDXXe+JcrMVo6kiJKgRWfbho5QYzXyy5Cg2m4SiQmJ6AakbT6ENEDEhcyk5k6IyEz7uleX7Izs0Y/H+M2QWlQKQUWj/vwhotRpyjeVsuxjHzL6dCPGtup6lR85SbDI7HgsK+HnVnPT9yMAY6gX78ep3WxEEiGkSRmG5iVmrt2CVZfbHJXBq9kwmdGrjOGfP9VscErJx9RHRFSmgQlm5lVKjGV+ff0/WwomT/78RBGEl0BN7WC4NeAt7NZsLsLsiAnBCVdXqehf/JZxGkpO/LU1b16Np63qYy63Ex2Xy1lPLMJaYq43z9nPDv1bll9krs1eRkJCLIMC3300iPDyAd9+rLKAwGs0sXLgfnU7LlCk9eejhzhQWGFn8gz1UdhtRFNBqRbr3aMzQEW15ZOoPSNK9tW5at6hLz66NHI/d3fRVEqcFARatPc6VW5kI2EUEYxOzMVtsuOi1JKbm89HM+/lu/RGahAfRqVl4jddRVJUOLcMdYcYJIyAOX9gAACAASURBVDvy3rc78PZ0pWeHBowZ3NYxtntMfXYfjUWn1XBf92j6dWnMT2uOs23f1YoRKtNeXk5+oREQUCo2QVEUlDs84WXlFsrMVkKDfBwqAglpeXz7+miuxWcREerPuPeXO1SgF247yfGryahASZkZvVaDoqqEB/ny2RPDUCSFSbN+cugn6bQibzw3hJ5dKvfvTrw9XJkxuivr91xkRJ8W+Hi68fDspeQXlVUZJyDQLLQ2Z9MzKTZZGPzhYpY+NYaoILux6aLTMnf8IJ78cRNmqw1LxXo1oj28ebufG7/5MZ6cV8jnO446xuuLQZThcnwmyVmF1KtdXfG6e6soFr/+EBarRLOoYEpMZoedrRGF316C2KxcLIqE7KfiaxERTApFJeUs/uUYzz3er8Z9ceLkt/xZdJJUVX2ohsOL/i/X4DSSnPztMbjpadq6HvOWTOPr9zcTfz0DjUZDmdGERqvhwUndHE1iwa5SbbVKGAw6CgqMhIcHVJnvhx8OsGP7JQRBwMPDwMSJ3fD182D02E5s2nAGD09XnpzVDy9PV3z9PQgNtSs8v/XKUHbvu4qvrwfbdl7CZpNxNejs7UFU6NIxijmvV1VUHtanBYIgcCM5h4TUfDo0r8eVW5lYbRJajYbcAiPPT+zNnG93EBLkTd/OjXF31TPv6eF33Y+tx67x7qIdGNAyvFszpo3tyn3dmtC1bSQz317FyCcWMnV0FyY+YC9Hf+Xx/owd3BZfL1eHN+LpSb3w8jAgyQonzyeRnmXXcnPRa5n5aA8uXk9nxIBWjuq2pIx8Jr+xHJukMH5IDOF1/LFJMo+N7IRep6VV41AAZgzrxJuL7RW++8/HO4yAimwyxvZqxdMju6HViFyLy0BRVEdPO5ukMGfeFgwGLWazRPvWEbi5VfVAjR8Sw/ghlZVkFotd9PO2CKiiqEx9oBP39WjKwPcXYZVkrJLMuM9XsOuNqY7k7lYRIRx5dwZxGblM+W4tRRYzdWv5MmdUPzaeu0av6EhCfKp6kdxc9AiCgCgIqLKKpsKxaa82q7rOO2kQVlnF6OVq4IfxI9lx9QZDWzbB5Tdiog+2bc5PPx/FUKCiKiparQiqXajzP0VVVQ5fS8RksdGvVcMqxrsTJ39XnEaSk78dxqIyfnhlOToXHY99MA5DhehjvahafPzjFCYP+ZTM1AJEjcjIR7tw/9iOVc5/7fVhzJ+/j+bNQ2nVql61+fV6e96QvSKtMpQ0ZXovpky/e/uJRg1q88kXOzGWWWjVIgy9XouXp4H9B2NBEGjZvG4VYw3sX6Aj+rasciw9u4gPF+7Cx9ON4X1b4GbQs+7LKUiSzJnYVOrW9iUkwJu7sXDTcVSLisVqY/X289gkhRen9OXarSzSsopQVfh582mHkVRaZuHlDzaQnVfC9Ie78vCIDri46Jg+vjux8Vls2HHBMfew+1owanAbHhzStso1T11ORpKUirDhLVbOnVjj2kL8q677zh+09jwrez83gMYNgunRuQHHTsdTWpEzJooCr3+4CY1GJDTYl0WfT7jrPgDMe3GkI2ncy8NAg7qB1K8QvxzXtTVLDp51XLu43Owwkm7TKCSQIe2bsPLEJdKKijl6MxlBEFiw7xQv/7KDMD9vFk55AB83A4Ge7vw07UG2nLnG5t2X0egEWtQP5qkHu+PvXXMozGSx8fI3v5KcVcCbk++jbeMwYsJDiQkPrXF8LU933EwCKCoqdsV3i1ni4LE47uvVlJhW4ffcj3vx66lrvL9mHwC3svJ5YlDn/+e5nPy5+bPoJP0ZcBpJTv52LHp1BTt/3IcgCnj4uDHh7TFVnpdsMqpqzx/p2KMxR3ZfJTermEEPxuDm7kKrVvWYP3/SXeefPLkH7u4u6PVaRo1qX+W5rMwi0tMKadm6rkPAr7zcwrtvbeBWci6lZfak59S0AlYvnYHFKhEZHoher+X+QTWXy/+WOkE+PD2+J/NXHWHV9nNMHN4BQRCY/e0WTl2391lb8c4jhNbyqfH8JuFBZKZVqPirYK0QUqwfHohep0VRVDq1rmyvce5yCkUl5SiKyi+bz/LwHQKT4aH++Pu6k5NnpHPbSJ6e1LvKtXLyS5FkhW5t6rNo/Qlkk4WHBrVlz4k4zBYbA7pGO4wegJZRIfRoGcnp2FRG92zJir3nsUoyggBRIf5MGlDpBRJFgace683jj/bg0vU0Pv1uDz7ermTmFGMy20hMzUNV1Xs2PW7ZqA7zGo3AbLFhttrw8XTj2IUEcgqMPDWgM1G1/flx32kGtm5E3YCa99MiyfZWMwhcTMnkdGKaI2QYn1PA7is3Gd42mmd/3sKF5ExeHNydCXPaUlhqIjo8qNr69p6+wScr9tMkIogeraI4fyMNs1XiX8v2svr9iXd9LWDPO3t15gA++mw7iqRiMtluP0NR8d1zXFVV5bNNh9l/OZ5p93Xg/vbR1cYk5xZhkxQURSEp217hV2g0cSIumdaRdajtW70S0ImTvzpOI8nJ3w69QYcgVnh6ftP4E+Cdrx7hlx8O0rxtOEUFZXz65npkWeHk8Zu4B3vTuXMD+ve/u9KywaBjwoRu1Y5npBcybbJd/btd+0jeftfev2z3zitcvJCCSZZRXeyGk1TRe81Fr2XMA+2rzQV2iYHcQiNB/l6O0EZiWj7urnpe+WwzGTnFnL+eRrMGwcQ0q8flhExMFhuuLjoSMwruaiS9Ofk+EtLySU3Jo0VUHZ56pCd7j8Xx1bKDtG0axoSR7YmqW8sxvlmjEIeHq7iknBPnEunYxm5EGVx0/PzFZPILjdWSpk9fSeaFeRtRVZXZj/Vj67fTkWSFnUeu8/HiHahAcmYBT4ytbIKrEUU+mznM8Viv07Jk5xlEAeZMGoC3e6UnZ/3W83z5w14URUUQ4PkZ/fjqh31YK6oaUVU2bL/AyEGta9yH26RkFTLp9Z+xWCWG9mzOtsNXUYGLcelMH9uVpJwCImr5svLoRUrLzTzQsTn+nm4Vl1BJyS5EsimE+XvTt1l9zialI2A34hRVpZaXO2cT0zkRn4rJauOjXw9w/O2ZNXr7CkrKeWX+FlQVjl5KpEVUCCrg6qKl0R3vSU2oqsru67eYt/2wo1IRQBSgd7fG9LpLrhZAfFY+vxy+iMUm8faK3QyJaVLNeBvfsw1XkrMot9iYdX8XFEVl7NzlFJWbUBSVGQM78WjvtlWM3n+XeGMSWzN3E+FWj8EhfRGF//e5nDj5b+A0kpz87Zj03kO4e7uhN+h54NnB1Z6PaFibV+bavUs7N9jDKZIkc+FWNsrNLE6eiCc6ug6BgZ48/9wKbt3KZvr03owYWVnSXVpuZt2Ry4QF+tCntb0MPTHRXtVmNtu4djUNgMyCEi4X5mFzFTBYNFgEEDUiUZH37mdmtUk8MnspmTkltGtWl09fHsmKrWdYsOooCPYkZLDn1EgVOTnPju3BJ8v306heLdo3rbnR7+HLCZy5kcrM0V05fSMVHw9X3Fz1zF24m9IyC8eNZob3b+kwylRVZeHqY5hkCVUAWYUl6044jCSwh3Rq16r+hX/sQiIWq91L9dnS/byzYCd1annTuXk4kqwgKyqZucX33IfH7+9Ev7YN8HZ3JeA3IamNO85X0b5atuYkslxpHMiySuzNTODeRtKJi4nYJBlJVjh8Lh5FVbHaZDJzi3li0UZuZeVXNCW2j996NpZNs+1hvJySMs4mpCMqkJVXjFxopU9wPWQXgRMXEzFrFF5YsY1FUx9AwF6VFx0aRG6JkU2nr9EsrDYdG1a+V4kZ+Q7VbEVR6dIigk7Nw8nILaZby8o2OZIik1iWS6irH65aez7TitMXmbvrEJTa8KpYq6u7nlmTezO4b3Nii7MptZpp6hPMT7dO4qbVMz4qxtFWRSMKGHRaArzcEQQBo81MXEkG0d6huGr1+Hq48v0TlY2LLTaJnGKjIzn/u+3HcNVreahHa+Iz83n9550Eersxblgz0ix5DAhuhYeuarjyTlRV5f1rn2JSzBzPP83FoivMDHv8rtV/Tv43qAjOcNsdOI0kJ387DG4uPPrW6N8fCPQe0pKb1zLITi/kclo+pUZ79ZtWK3LhQgpJSbnYbDI//XQYt2APEtLyGN2/NW8u3cmZuFQ0GhEPgx6dVsPVwnxC6vmRlJBLSKtgJFlhyrw15BSVoqnrwssDuhIU4EV6ZhED7+GpSksv4JnZv5BuM4EAxy8kIskKB0/ftKtlayo7zIqiQEJqHp1aRjCgYxMGdKzeZPU2CZn5vLRwKxabxLI95wDQ6zV4uRmIDAsgLjEbFahzh8GTnl3MzsPXsEkKsl5AMQhcys3h4s10VBWaRtZGp9XUeL37ezZjy6ErmC0SRrMVUEnPKSY2NZfAAE8y8kqITcnFbLFhqMHjd5uokIAajw8f0JovFu5xGC9dYqLYdzSOUqOJAD9PDAYdjzzY6a7z3qZzq0gWrj2Goqg8NKgth87cwmyVePmxfjyxZJPDCBBkQIWkjALScotYsv8c5xPSCfbyJLuolABc+O6XIygVelmqav+Ald00lFtsbHr2UW5l59MhKoyHvlhJQnYBOo3Iymceon5t+2tsHhVM88hgzqVloOgFNpy7ykvDelbxIp3OT2D2+ZWU2swEGDxZ1+0ZXLV6UguK7canr0CZVaCOwZNFrz9ErQAvjmYnMOP4KgQE6nsGEFeSg4A9iXxMRGv2FFzkyQltcTd60qNZFBbZxpjDn1MqmQkyeLOq26xqXh0XnZbnh3fnqy1HK3rfCZgqQrcfrdvPtdRs9KUKZ86fRRQFdmVeZEGH6fd8L9Q7stAuF8Ry37z5tKwfzILZY52J4k7+f8FpJDn5R6PTaXnytfsBSErMZdu2C7SLiaR2bR9OX0+l0FvExUVHcFQgb83fZg+DXEhA9dBgkxU0GpHErAK+2HAESZYR9AJSAxdO5Wez++wNSsrNyIqKVifQtFUYelkgvF4AHu53753184rj5GWX4iKAzUPENcAVrUZk0ohOzP50E17uBjq3jmT9sSvIAgT6/7FcEItNqqbErKoqNllm3isjOXEhkfr1Agmu5c3S3WfYcOwKo7q0wN1Vj0aUsLioWBQZmyQz4+O1aDUijevVYsHsypyvFTvP8s36IzSPDOar5x9g85fTGPbsQopLzHYhIVTMZit5FWX3eUVlxCbl0KpR9dYrt0krKEYUhWrVYiMHt6ZPt0YcPnkTdzcXusTUp2XzMGrX8mLH/qvsOhzLjgNXmTqu6z33JTTIh63fPo7VJvPMv9YRn5qHIICnmwufTxrKtzuOUVxu5lxcOgAuOg0bT17l11PXMFlt+Hm44lMsUmYxISuKI6nfng8FMZF1SLyZw0vvradReBDtXw2l0Ggfq9eKFJdXylLodVpen3ofoz5Zhk2S+fnQeZ4Z3BV9hZq2rCrMOrMEi2I3RoosZaSU59HIK4SpXWO4kZOHpCjMfW4Atb0r74vLhRnYFAVZVcg0lWBTFEQBymwWXr+wigM51wB4omF/fD2akWkqpNBWhk2RSSnLwyzbcNNWv2fH92rD4JgmfLrxEB6uesZ1t3vtwgN9uZSYiepqRhQEJNVCuvkqDx59gWcaPkyXwOrePUEQeLXJs3wc9zWlNiOFF+yG46X4TM7fTKNto+rq807+N/xJFAD+FDiNJCdOKgiPCGTmE3YtGVlR+GjpXiQtCD5avEO9ULNzAEjNKWbxk+OYt/YgEbX9iKjth1WSUFUQRdBXeFb8vNz4ZPr9LNh6gu7NI7lxKYOvv90DwLtvjySmXUSN61AUxdFIV2tSiK7o3daxZTgHlswCYNmus3BGRJEVtp2OpX8ne0PYkjIz+aXlhAf5VsspaVI3iFkjuvH91uOUlFuoF+RLbT9P5q09yOpDF/n5pYfwdDOQX1LGV5uOICkqn6w/iIu7hlohHkzp1oovVh1EVlRskt1YunQrkxNXksgtKqNPuwZ8sfr/Y++8w6Mo9/b/mdnd9F5I75RAQkLvvaqISFNUBCwHEY69HLsejx57w95QUBQUBZHepYQSIJQkpPfeN8lm68z8/piwEBMUy3l/r+/Z+7q8zM4+88wzs0ueO99y3/uRFYUT2WUcTi+ie1gABpO1nSCpKCivZ2DvCI6fK8XVRUePyEunHreczubx77cDsPymaxjdM7rD+yfSS/li/TEGJ0ezJyWHwycLVX0mWcEmyXzx/VFumjkEt19osQeVnDjptOSV1tkjW+U1epJ7hfHmLari9rqUM7zwzV4iAnwYkxDLqr0ncdZp8XV3o7GqyW7dMm5wD2aM70t6XiWjB3anR2Qgk//2DharRF5JLaeyynlj4dUs33qIhIgg3t5yCJNN4pX5VxER4EOwjyfe7q7UNxsQRYGbl6+lsLaBiclxjBgVjFbQYEYlST29gonzUC1H/D3cWLFgdpf3Nysqmc2lGTRZjQwOiGRrWSYg4KzRkaEvs4/7vvQYZ5pKuCV2HFNCkthdmc7syKFdEqTz8PVw5V/zpwKwquAnVuTvY3CPOB6PmYC/pxsbTPs51ZSGICiYZDMvZ33GhoB+KCidolM9PGP5aNDrlFY3MufTzwEFjSgQ5CgKd+D/ExwkyQEHuoAoCHi6u9BiMKERRSYP68WBUwUoisLkoT2JDfHn3btmAfDuxkPQLo/YNzqYiQN6EhHozdB4tdbk/P8fe+o7e43O/kM5DBwQ3WUKYfrV/dm3X1XQThoSzZO3XsHra3/icEYRPcIDmTUmEX8vN7QaEUEQaGw1klVSg4erEzf8ezU2Sea6scncN3tMp7nnjE1CpxUprG5k2/FsirMaUYBavYHUnDIm9OuOm4tTBxFIs1WiVm/A1c2JCYN6sPNYjv09WZa56/Xv0WoEfth/tkOkSiOKhAR4MW10H37Yl24/LghwJrcCUI1uz5vknkejwcjZsioGRoexKzPPLr74U1YBggDv7D7MuF6xLBk/lBfe2YbRZKW+MRMvT5d2gqNFp9WgUxR8vNxwcdahKAqb92dQWFaPs7OW5F5h+Hi6smrjMQYnRnHthCQAHlgwnve/OcjAPhEk/sxSZc6IJOaMSLK//vjvs3lr40FaTRbCI3wpLq7nb3NGcPPVaiH+kL7R9rGDEiI5fKYIjUake0QAAb4erFg6l7c2H+RUcSWyrPDWlkO8umAaLjotd0wawr++24MkKWSWq+R80/Es9rmmIjtLBDp7MidyKLd3v7TkxMXo5urJxkmLSakp5LPcIyqhF6DebGBB7BheP7cJgDpTC5XGJs42lrBz0hM8kzS301xpDYXUmpqZEJyIVuyYan0/dyeSInOg5hzZLuU8GjOT2WJ/sltP2KMTMgpfFP3IurJdhLsF8Wry/UiKzPOZH6O3tvJg/ELigiLY9vod7EzNoW9cMGGBl5a0cOBPxv+swe3/ejhIkgMOdAFBEFjx9A3sPpbD4IRI4qODCOvmQ1NLG0N/pmIdFeSLc7v1xuBekcyfOKCLGeHG64dy5kwJRpOVbdvPUFPTzEvPz6WpqQ2bJBHQnjbrmxDOZx/dhr7ZSO/4EL7dd4Y1e9KQZIWCygZ2nchh8fThPLlgMs+u3EFmURW3vbSW+64fiyzLmK02dp3MYcrAnpwtrGTKwF5oNCLZpTUcyihk7b7TWGwSF/8eFAVIjFa9v1yddCTFhnK2sBJFURAFAbPRynMrdzJ7ZF80oogkq9Ye54vGbZLC6bwKrhgWz67UHJK7h9K/Z5iaQrl1CglxIaxYf4TGFlVKwNROFq02CYPRYi9EN1qsTH9rJSarjUBPd/49ewp7zuVhlWTOlFWxIS2TNouVnKo6xvaKITzEl9IK1Ttt6YIxfPjlQWIi/HngjknkF9XSI6YbtQ0tpOdX8urnuzFZbAioxeauzjr0rSYOpRUQGezLa6v2UFbdxCO3TebKUZ1b4H+OJoOJ9JJqzFYboX5e7P/83kuOfe7uqzlXUE1YN298LypEjgnyQyuKoIGYbn7248u3pHSeRFQwC1YERaHW3MIneXtZGDuaKqOenVVnGerfnQSfrvWTAD7MPsT7WQeRZNn+GcZ4+DMnuh/DAnpQaWzkoZNfIijgouk68na0Lo8HTnyBpMisLjzEx8MX4yRe2EZ6e4WR01yBRZGoMum558TnDPaLZU7YJL4r3w0o6AQt26pSUFCoNtaz+PizSIqM0WZCQubTgvX8O+luymqbeHPtT1htEu6uTnz8yPXEhQU4apMc+B+FgyQ58JdE5skivn5nF4PGxTNjwS/XnPxehAZ6c/O0C7o8vWO6dlKfNqQ3Pu6uGM1We6fbwfRCDpwtZPbovvQMV9NJiQnhvPPWzdyxbCUWi41jqQWknSrmkSfWoSgKtywcxQ3XqQKOYWG+hIX5UtvUqhqyXgRJVjieXUpFvR6zVY2ySJJMcmwIfl7uVNY3M2tUEn9741tkWWHtvtO0GE0YLTZEQbBr+KAAAmg1Ip/edx3dfDzs11i+9Fo2Hs4gPNCH51bvok5vQEJhy7FzDOodzuncCrUwWSPaCQ9AQXkdN00dSHZBNeMXv8O4Qd158a7pTB+dyL7jeaScLrSPFYBR/WMJvShKUNtioNVswWKTKG3Q0yc0iABPdyqaWsivacDVSWe3/fBydWH5s9dxKDWf+O7BRIf7M2mUWrhe36jWPF1358fYJJkBA6JUI9/227ZYJSztz04B0vMqKa9uwmyx8eG3hy6LJKXmlGBuL1R2d9Fhs0ls2p+Bs07L1JG9O2zmGlEksXtns98r+/XinW0p1DYbSMkuYunUYarBsU4DRnXMuD4xGBQzp3wyEHQXInXOGrXYfdHhD2i2mvhU3MemcQ/h69y1MGVKTSFGSf0uaRQBGYVPcw8zNqQ7LVYrwwJ68NKAm0hrKGRG2CC2lp9Cb2mjztKM0WZhSc/JFLXWYFMkJEXmXHMZH+fuYlmvK+zXeG/I7azI28PnhT/Zj53Vl7K051QGB/Tli6IfGeKXSKmxmn01qUiyhN7aeuE5CRpcNWpq7/t9Z7C2f1cNRgs3PfMFrs463rx3Jv17XpoMOvAnwFGUZIeDJDnwl8Qziz+jpamNs8cKSBwUQ1yfSxf+/qchCAKjEtX6orLaJr7YdYINh9KxSjLbUrPY99qd9vqg8DBfYmMCycmpYvy4eI6lFmBpJxmffLofrUakf79onn/pRzQ6DRk2PYoIVw6NJ6+8jsr6ZjSiyG3ThnDn69+p1wdumzaEHuGBbHz2FmRFIbO4mk+3HcVik6jVtyLJin1DP48gH3eS4kIZFh9FeGBHTSVPV2dig/35ZNtRNYUmAIpAgJc7x8+V4u3hyvL7ZxEX6s99b63nSIYqYplfVk9BRQNyu0fdgZP5NBtM7EnNJTWjGFA78sK6eTMwPoL753dMF0X4eXNNv95sT8/l5uH9cNZp6RcRQlObCVlReH3eVWRU1DAgKpSwdvPYK8YldJgjr6iWJY+uxmKRkBW1X+pYRgldZRDc3Zy4alQCzQYTgiDg4qRlRHLXtWI/R15Vg/35j+odw0frUli7/SQC6qY+Z8qvi4PWNhuoazZgk2TSS6vJqagju7KWl266ine3p3CuvJa0ogpunpHI6doz9vNi3AN5uM/VCAgYbGZkZGREjJIFX7omSfJFxoJS+y6Y6BvC5O3voigyo4KjWBo/hr/3uoIfy07wcsZGrIpkjyYeq8+nyHDBvFkE2qSOdicuGh2L4saxpSKNGnMzGgRcNU5EugdwX9qLVJsbyG4p4uWk+4hxC+Xjgu86nC8pEmmNWRytP8vEQT3ZevicXfNJUaDNZOWu175n37vL7GKtDjjwn4SDJDnwl4SruzOtzUYUVG+2/y1Y8tZ3VDY029vSzVYbeeV17E7LZXTfWBKig3lv+c20tJhwctJSXtHIdxtOYLWqG/rBlDwOpeRRVFSHIArgLWL1UjeD1U/Ot19HURR6RwZRUFmPv5cbC9uVqAVBQCMIJEYHc+P4/qScK2bpNSPYfCST/WcKmT68D1uPZWG0WPn7jFGk5Zfz3Fe7eGHtHr565Eb2nc7HYLIwND6Sez/YiMUmodOIBHm609JiorZBJVxGs5V6vUFtTRcEu3iiogCKgoerMxazje7hAXi6uWAwWqC95Ty5ZxjvPzrXThzP5lVwPLOUyUN7ER7kw7MzJ/PszAtmrC/OvZKjBaWE+3kT5e/DkNhf7nI6fa4MWVbsdVWKSJcECUCWFL7dkYZGIzJuUHfmXz2Y+EtEDDt91lcM41xpNe4uzswdlcQHXx/AYlWjdXVNF6IjJrOVljYzgb4eneZw0mroFRpIemk14xJimf/2GmySjItOi8lqw9ZObNLS6gjt7kOFqQkBKDTU8lb2dlaPXMbLA25kVcF+poYkE+rW2ST3PLoKDlQbm1EUBUkwcqwhndNHs/lX8nXUm1uRFBlZkVE/XYHiiwgSQKibP3f06Gya66Z1ZsPYh2gwt1JjbibKPQBPnSty+wqsso1n0t+ju2ek/djFMFU58dSG/YT6+PHFU/MxWqxsP5rFN7tV+xubJLHtaBa7UnO4bmI/RvS9PFLrwOXDUZN0AcLPW4L/N2PQoEHK8ePH/38vw4H/BagsqWfnd6kkDo5lwKie/7+XY8eEhz6gqdVof63RCDhptZjMVpydtGx/4W+06E0s+ftK2tosPHT/FfRNDOeeB76itdXMc8/M4lBKLlt3nEWSZNoCtSjuGt6/fzZJcaH2eXefyOGpT7cR4O3BRw/PvWT3T2NLGy+s2YNWFHn0hgl4urnYO9PcXJwYcvdye0qjZ1gAhdWNWG0SGlElNLKioEVAZxPs9TwajYivpytfP7sAbw9Xymv1vPTFbmRZ5lhmCaIoMGd8EnMn9Cesm097Ss7K8q/302Iwce9N4+xeZXVNrcx6cAVWm4S3hwtb317yizYil4O6hlaWPPoVdQ2tyLKMpIDkIsCvTDuqfyyvPjjzlwf9Am5/+msyOlYABwAAIABJREFU8ytRUOjm64m3pwv/uHUy9778HSazjUUzhnLbrAu6TfUtbUx/6XNskky/6BBuHNmPuz7baH//vIwAgJerM2vuu5FypY4HTn6JWbLR0zOYr0b9/bLX92zaNr4sSO10PNjVixapDq1WQkRgfswobo0bz4uZG9FbDAQ4q9+teksrR2vzkJBxFrU8nTSHySFJnea7FIoNFbyXt5bs5mIkJDy0bqCArMhEugeT1VKEVtBS83UkFqN633Fh/qz5lyrc+enGI+w+nsOMMX1Z/s1+lcBrNex9d1kno9//SxAE4YSiKIN+feSfA5e4MCXixTv/R66Vd92T/6P39nvwf/eb5cD/aYRE+rPgvit+feBvhKIofLn5OCezy1g8czi9Y4N/0/lv3jmDT7Ye5Xh2KZIioxU1WK02FGhvnZdJOZKHyWRFkmTWfX+cqZP78u1Xy+xz9EuOJDkpAh8fN3r3DkMUhQ5WD7Ks8MQn27DYJMrr9KScLWTmmK43q/c2prD3VB6CINDN15N7Z41WO7/aUxXuLjqaWlWS5ObihNKe2lC1nURG9Y4hu6yGxhqDfc6oYB9WPTUfp/aNKSzQm+X3z+KNNT9xPKsUSVbIKq4lKuRCIbKLk46HF07stD6j2WpXlzYYLSiK2v32RxDg58Ed80fz3PKtyO2ZQmcJFFcNkqTKA1z8p6FGFAj08+ShWzqvT1EU3tx4kAOZhSy7ajgTk3tc8rqVtXp79Kq6oYWahhZe+Xx3ewefzKb96R1IUkF1PTZJxmixcrqokoVjB6IVRWyyjKerMyKgN6rGvc1GM98fSefuq0Zyd8+pZDdXclv3cb/puRhsZvvPIoI9ilNjbEFGh7egQauV+aLwAHurM3l94AK+LznG2uIUZBSG+MWxYvgS3s3ZTptkoY/3b6sLinIPZUncXB449RqSAgabkSF+iTyRsBjA7rM3e/MKSoyqt6C9fg647Zph3HbNMPStRt7+9gAAOo2I5o9+YRzohL9Q7OQ/DgdJcuC/GpIk8/HbOynMr2HJvVNplqx8suEwJouN3JJaNr21+DfNlxQbwvJl11Jep2ff6XyG94mitKaJr/emcc2IBPy83Bg8MJoVn6sk5cqpncmNRiPSMyGURS+sQd9q5IXFVzF+wIXNuaqh2b55KEBJTdMl1+Pj6dpOsAR8PTpbQmhElXyJAlw5uBc9wwL46WwB+lYjt10xlA+3HMEmyWg1oEPEapPRG8x2gnQe6/ed4esdapu3KMDS2SMv63lFBPkyaUhPjmaUcMes4b+pc6m+0cCajanERARw5fiEDhGoleuOIEkyoiAQGeZH375hbE05h0VW8PF0xWS2YbHamDUxiSF9oxnRP7YDEf3m4Gm+2HuSoT0j+C4lHVlRePCzTRx++S5cnLr+tfno7VN48LX19tcajUBeaa29A/D6qR27HvtFh9IrNJDTRRW4OusI8fPixtH9OFlQzvUjknnm2132sU5aDQNi1W7B66N/XUW8KyT7hbG+RK1rujN+JO9lHUQBZGQ8XEwoAljaN8daUzMLD72LSbbayVRqQz7Pnv2OotZaZGReP7eZ1wbe/JvWEOMRzvyoaXxRvBmbYqPCWGN/TxAE8lpLuXvpAL5dm0eb2crjiy6k8zIKKjmSUdxOymdy6EwRU4fGO2qTHPiPwkGSHPivQn5OFa/+6wcCg7x59NlZpB7JY8uGk5hMVl58+nvufHI6cnuhqrurE3mFNWzdm86owd3p37drP7S86npajGb6RYXYN+qwAG9uapcCiA3xZ2xynH18VGQA675eitFoxd+/c50KwJ6TeehbjVglmRVbUjuQpG6+nni6OdPSpkYGxF/4S3rxtGG46XT8lJJDVU49prEXLEBkWaGp3YZFUaBvdAjXjenHo/PUiIrFamPVrhOYrTa0GpG5wxI5m1/FXXM6m/vuTcuzR2cUIMT/8nRtzhVWszs1F4vFxqpNqcwYd/npmydf2Uh6TgVOOg3+vu4M7X+hNiU+Loii0npkRcHJScOym8ZyLLOE8ho9FquN1S8uIMjf077BljfoEUWREB9P1YR23V4kWaG8vtkeHZJlWPDSVzw6dzwCAk46LX3iLkQaRw2IJTrMj/JaPQgweUI8u3dnY0Omd2wQ864c2GH9Oq2GxMggzhRXUt/SxrzXV9MnrhvnKmp4dt0uunm709DSRoivF28sutpuXfJ7kd5Uaf+5rE3P6KA4jtQUImFDFDpG8EyyFUUGa4kbSpsGdDK6EBP5VIMCOkFDsGvXBsq/hulh48g3lFHaVsXS7hfU2tMas3g+8yNAYPrssSyMmcOZsipmffAl/qILGallqsq9KHD1yASeuGXK730UDvwC1LJCR3TuPBwkyYH/Krzz6lbyc6spLa5n55bTRMUEogBanQYZuO/xNTiLItOn9mX+9MEsuvszjCYr32w8wb8fvZbRQzumWw7nFvP3lRsRgNvHD2HJxKGXtQ43N2fc3C6tYpxypgCrVUJQoKGplbqmVgLaW/S1GpHVT97Ek59sxcvdhZunXjqlr9NoKMmopji9itLMGsKCfZg/R5UZEATwdndBbzCi02owWqxc/ewKGluN3D55CLdMHszqR27kYHohIxKiiep26aLg264eSmpmCTZJZmB8BMHtmk96o4m9OQX0DQsmLsCv03nn1cXPpyN/Cy62WbFYJdraLLz87jaOpRXh7+uOTiditcpIkoKHmzOe7VYwVpvE/pP53NBOWnaczeGRtdsAeHP+dEb2jMLH3RWDyYJGFLA2yQgmGVkDxfW13PX8twiigCiKPHnHFUwa1guAtLpy0vrWQL2C1UthpZDGhLGxuFSIPLBoQpf30CesG1qNgFlno82scCKrHEWjgK9EZEgIH1w5k4gAH3SaPx4tSRbDWC+fRhRF5sUMJMrZl7ve/R6rVYJReopNNYS5+iIrCpWmJqQyN2zFbpwv5pKqXXAdWQ8yuOaHkJapZ+BHbxEe4M3bd8ygqdVE78huVDe24OXmgpdb12a2OlHLQ/GLOh0vNJRhU2QkRSKrRZWKeOKHHeTU1ONqFHFSLqSC88rq/vDzcMCBy4GDJDnwl4Ch2cgjs9+gvKCGe16fz9gZv6/WLzI6gLycKlAgNNyX5IHRPPavWZSV1LP7VD623BZkUSHYy4Nu/p52LR2At1fs7USSzpZWY5UkJFnhWH4pCeFBPL9hDwnhQbw474rL2twycitZse4wg/tGMu/qQbS2mTmWUdLeUwQ1Da1Me+BjXlo2nXEDugNqpGrFI/N+de7cgmr0zcb2TV3o4BknCAKrHprHzpM5DO4Vwcvf/0RpnR6A5ZsOcc3QPkQE+nDD+M4+Wz9Hco8wNr+xGHdnHc66C2a181d+Q0mjHgGBbcsWcjC/GKPVyvUD+uKk1ZIQF8L9N4/nVFY5N189uNO8sqxQ3qQn2Nuz07N89oHpfPzVQWKjAhg1OI63P9nDnoPZALQZLfRPisTJRcedN6vK41NH9qGgrB6NKDIoIRJ9mwlBgJ3pF1S9957LZ0x8DGsevomDmUXEdfNj2T/XYpNBbO+gt8kKyAqioJCRV2knSTtKc7CIMrS7rCiAEi3y9qLOqtXnMX1QHza2pnGoIRckATHNHTnJAM4KR4VzeHpf+acQJEVRePejQ7hbXHHWaQkc5cGWg+coym/AJskMdY9keO/+GPUSPRLceDNvE4pV114j1U5eJQFrlTNyrQtVjWZq2moRgcqGZq5/aTWyIuPu4qw2Lgjwyi3TfrGG6+eY2G0oh2pP0WRt4ZaYGQBE+vlQ0qBHcVeI9+5GQWk9vl5uPDy/a9LpwJ8AhUu3g/4XwkGSHPhL4OiOs5TmVWNus/D5cxt+N0m66+GrSB4YjX+AJ8kDowEYPlrd5LzCvMl+Zxs6rYaRg+PQakTu/dtE3vhoFxpRJDaqc7rj2kF92JR2Dr3RxN1TR3Dfl5uoaTZQ19rGwewixveJo7xBT151PcO6R3bZhfOPlzfQoG/jZEYpSfHhhAV7d2rEkhWFlVuOodNqSIgJxsfT9VfvNb+olqX/+AoECA3y5roZg5k2qW+HMWEB3iyaopKT8AAvThWqdiFOWg2uzr8urbAnPY+P96Ti5ebM0bxSPF2c+f7++QR6qVGvkgY9JpsNV52WVcfSWH3sNAoK5U3NPDJlLAAzxvZlxlh1XecqaxAFgV7BKtP426rvOV5UTrivN+uXzbf74gGEBfvwzP1XA2A0WTidecGDTBAEbpw5hMH9ou3HbrhyIGMHdcfd1Ykz5dVc9++vEYCHpo1h37kCRFHguiFquq+btwezhidislhxc3XCYpVwddbi5e6C2apqB7m5ODF36gUCeVVkPCuzj2OS2rsARQ23xncmfjZZYktZOu46ZyYE9+J0a4nd/Ffu1wrtj11C4UB1HrOifp2kXg5cnNQuS0ERcNJqCPH3QqsR0WpEWkWJLw+dRpYVrrbEM0UzhnVlGXQUDhCw5bSbDCugOIGgKjtgk2UsNgmTtc3+/sOfb+Hwy8s61a9dCt5OnrzW/8EOx16ZfSVb0rOJ9PNhcLRDQNKB/3k4SJIDfwn0SI5EQNVE6jem9++eR6vVMGFq3y7fmzougeEDY1XLChd1p7r2in70jA2itKKBccM7Sw108/Jg4wML7a+7B/nTYjKjKAqR/j5UNrVw7RtfoABJEcGsWDyn0xxurk40NquyAa4uOrw9XHls0SS+2n6SHhEB7DuZj6IolNfqefT9Tbg4adn48u322qJLoaKqCUEQMJmtmC0S10xN/sXxT82bTEyQH1WNrSyYMBC3X5lflhUe+HIL1ou810xWG8fyyxiXEMvx4nIenTKGTw6fYEz3aFw0WlV7R1aoN7R1mu+HtEye3rgbqyQR6efNuzddQ0q+KlJZ3qSnrFFPbGDnlB3Al+uOUlRShwCEhfjwyN1XktRH3VSz86vJLahm3IhednXvjScz7cXv2ZV1HPun2l0oCAKVtc08tnwjgiDwwj3T+fKFBaSdK2Ngnwi+3ZFGfmkdQ5OiWLH+CM99uJ3XH5qJi7OOvv4hnJxzL5Ki4KrVqfIJothprW9m7uarwlQUReHp5Gks7D6cd7P2qUTp57z0T+oyEgSBjx65nk0HMxiSEEWwvxfB/l64uajWLHuLCrFUVah6V4LA1tMX/PnOp0M7rEkARQPPzZ/KoB4RPPDpj6SXVHe4pk2SWbnnBH+benkp6K7g6qRj9oDE332+Aw78UThIkgN/CfgEeOId4ElNWQM9+3VdQP1noKXVRF2DgaQ+YXadmgNHc0nPKic81Jc+PUJYt+kEWXnVLLp+BBGhHet0li+4hr2ZBcQF+REX5M+RvBIUVE+y80alP8dbT87lxz1nSOoVRky4PwDXjkni2va2fn2rEb3BxJzHPleF/ySZ+ua2XzX9HDYwluGDYsnJr+b+O9UuocKSOr798QSDkqPwD/Miq7SGqQN64eOhpmFun3L5G1qjoQ0XndZeF6QoCq5OWobGRTBvxRrKGptx0mrYffeteDg702q2UKZvps1i5eHJnc13DxeUYLapquBF9U3ct3YL05J6seVMNn1CuhHp17lQOLegGqPJik6rQRAEtDoNo4b2sBOk0vIG/v7oVxjd4IOdR/j62YV4ujgze3AiuzNUaYRrBvTu0Bm3YsNhsgqrEQSBlT8c4+FbJzF1ZG/2peaydvtJTGYbR84UYZNkDKZKvt56gkUzhqqK3doLxPJSBfUlhgZM7fYgr2bsZM8V9zMuqCcLD35Om2Tp0J7/1KmNTA3rg7vu0vVrl4voED/+PvdC0b2iKPh5uRMV7Mdjm3faj4+Nj6HB0Ma+c2pd0JS+PSht0JNbVY9Navf8U0BUoEbfyj0f/YDFZmNKvx6k5pXh5epCSW0joiiw7tAZwvy9uWpQfIe1FBsqeTL9HRRF4dnEpcR4XH6UyCpJ1LYYCPH2RBAEyhr1pFdUM6p7NB6XEf104NfhkAC4AAdJcuAvgeN7MtDXtaDICmve3MaVN3fusPqjyM6vZtljXyEgcPXkvtxz+0ROnClh3aaTmMxWnn55I4uuH8HbK/ahKAo5+dV88c6tHeZwddJxVb9e9tcDY8IY3j2StOIKHprWmRgAhAR6sfj6UazemMrTb21meP8Ynvr7VYiiQGl1Ixv2n2VArwjmjE9i44EMxvSLY39aHp9vSWXioB48dNOELgUYdToN/3z4mg7HHnj6W+oaWtm+N4PWYBGTqPDCur28css0Jve/fFFOqyQx+43VWCQJnVbkk8WziQ70w81JhygK5NbWoyhqmrCquZXugc54ODsxLaEX6RXVdCVie+uoQezNKqDZpHbt5VXXYZMkrkzsxfMzJ3do0QdISc3n6Zc3Ighw89zhLLhuOJIkc+OsIfYxNfUtmF2hsZtCo2DgH2u28t6iaxnWPZJDT6l2MS4/Swd1jwi0p0XjIi+kWNtMFmRZQSOKeLo702a0YLbY+HzDUUxmK3def3nfyXv7TGRXZRYArVYzpYZGEnxDOTLtH2Trq3g87Qdymi8Q6sLWOhJ9f7vtzu7UHDYcOMvsccn2Wrb88jo2H8pkZFIM768/yOncSjSigCZYy/lm/1e37OeOCcM4lFOMVZI5XVJJdIAvMwf1IdDTgzWHT9HYYsRN1vDNoTNUNrQAoNNq2ffvJbQazby2YT/rD6dT1dTKk6u3MzohBk/XC0Tvx4p9NFqaAVhfvof7ey3otP4TxeW8ufsQAyJDVXudVgM7z+WpVjMKjOkRzT+nT2LGe1+gKBAd4Mv3S276zc/JAQd+CQ6S5MBfAvEDYxBEEScXHcOv/OW00e9Fdl4VkiRjs8kcP6X6jHl7uqAoClqtiK+3G+u3nbJv8KUVDZRVNVFraiO2mx/eXXTz6DQa3l54TafjF0OSZVoNZt5ffQBZUfjpWB4FpXV0jwpk6SvrqG5sYe2uNERBRFEUjmQUsTNVLVD+bu8ZrpvYn+iQrtNQP8fF5MRu2wF8vOMYk/v3pLC6gcXvfIdNknnvzmvpHdG1RUdds4FGQ5sqOqkRCff36XD/940fyScpxxnfI4ZXdh3gQH4RV/bpya6sfMw2G+8eOMLVifG8OGOqPeLSMyiAW0cO5K3dKWrtKFBQ10h5UwvDzkQwd1DHNGlmToXdziUju4IXn5jVaZ39EyNJTAxjf105igD1rRfSfEW1jZwsKmdy3x5087ogxXDd1P5EBPsiCDAsKRqAI2eKeOnTXciKwvDkaP5x22Q+33CEH/adxWy1cfRs8WWTpFjPQK4ITWBHRSa9vIOJclc/O62o4cOcA+S31NpTXAk+ofT0vjybFJtNIjWrlIhuPni5u/Dkx1ux2iSOZZQQ1s2bRVcN5s21+2lpM/PFtgvOBTZFwWS74OvXZrHRKyQAjSiiEUVqmg1U6Vs5WVzBmqXzmDGgN0azldLaJu795McL87SnXT1cnXlo1jjWH05vPy5zIreMcUlxtNlMpNSfItg5ACdRjbr19+kYZTqPu9b+SIPByMkStU5O+hmx3pNdwOLRqkSD0Wojt6YOSZbt2l8O/AE4Ikl2OEiSA38JhEQH8nnqv2isaSayV2c39T8Dnh4uSO3Cfy7O6j+NHrFBvPj4THIKarhyfAKfrU0hJ1+tvZBkhWmvfIakBVcnLXsfX4yHy29LixiMFhY9vIqq2mY8PVwwW6xYbTLPvrOVZ+6+CqPFag99WyUbNkmxu9mDSnT8vd0u+3qvPjOHtRuOMzA5ij3FxWxPy0Yrikzup3Yhfb3/FDV61Xfs893HeWnRtE5zvLbpACv3n8DD1QmdqGH2kET8PdQ1pBVV8OIP+0gMD+LIg0soqm9k5sdfIckKm9KzcdFq7O3+O87lcvOQfvQNvaA19PbewyiARhAI9/WmqrkVQYBg7862K9OnJLP/SC5tbRZuueGCeKXVKqHRiIjtHX3L75/DS5v2UVTXxCPTxyLLCi9u2sdXh0+hEUVWHjzJjn/cZj9fEARG9OvoB3YiowSLzdauCC4Q6OvBbbNGcPJcGXVNrdx53ajL/gyOVBdT0GBgbvhwnhwwCUEQkBUZURBx0ehQ2k15B/hFsGr0LYjC5W36j324mSPpxSiKwiePXs95XU5ZUSitbuL5z3ei03b9K18jCHYS8vzcKfQJC2LNshsoa9DzxLod6NtMWGwSc95ejUYUESygWOQOczw0a6z9ZzdnXYd99p5PNrLv+Tt4pfATsluKAHg4fhFpDVm8lbOat3O/5unEJST7XIjC+rq5ojea7cReFAQEFKT2iXsFBZAUFszg8HAO5BWhaZB56uNtPH/HVZf1vBxw4HLgIEkO/GXg5eeBl1/X4ot/Bmw2CWcnLSazTTWXbceg5GgGJUcDcPdtE0g5nk91bQuyCDaNWsXaZrGRUVbN0O6/rV7qXH4VDXo1ImM2W5k0Kp4tezPIK67lln98yQuPzOC7fWcYnhiFTZb5YX86M8cmsWprKnVNrYxKjsXzEno0XSEuuhuP3atuIlNJ4OHZ42hpMxEdpEYzhvaMYMORDGRZoaimkd2nczu1ca89chpZUbDZZF5bOI3hPaPs7z369TbKGvQU1DQwunc0Q3tE4uvqgt5kokdgAON7xvBJygn1L35BJNTbq8PciWFB5FbXo9NoWHnbHPZmFRDi48XoHtGd7iUo0ItVb3dMd27ZdZZX3t2Oj7cbH7+2gAB/D7QakcdnXGgZ33eugHXH0lEUNcpR29zK8YIyYrv54efRNeGcPr4v2w6dw2SxsuCaIdQ0tGCy2Pj65UWX/ewBKg3NLNi9Bqsik91YS4J/EK9mbsUiS3w0/CZu7zGSLeXpoCic01eR3lRBku+v1+vUNrZyKqcco9mKq7OOwsoGNBoNXCRh4enmwgtLr+aZT7bR2NyGrCh08/VgycyReAe4s/5EOjMHJjKy/fPsERxAj+AAVt5xHTPfXNWePgVZkkEAbTtZcXHSMn/cAIbHR3dY04j4KFKy1IisoJG57+C7tHlXY5GtuIhOWGWJLVUHUVCQFJnPCn7gtf4PomknhSsWzOaH05nE+vtxML8IXzdXenQL4B/fb8Mqy+TU1GGTJTz0Ah4V6mL2HM8BB0n6gxAcYpIXwUGSHHCgHeNHxZOdX01JeQN/v3V8l2O0Wg1fvnMbr7y3g6yCKtI1rdhkVQU4Ifzy0iIXIz42CC8PF6xWialjejM0OYZNe9Q0hSzLGFrMvHb3DPv4eZNUFe+ZY/tS39xGUBfO8r8F/p5u+HteIAYTk3uw6j5vbnrta7LKanlk5Va2/zMMP0830kuryK9uYHJid7acysHDxYk+P7vnYB9PaptbkWSZJzbtwt/bnZULZtNsshAfHIiTRsPCYQM4XFBCn5Bu+Lt3JCUrb5nLqdJKegT54+fuxrwhvy21+tX6Y0iyQovBTMrx/C47+jxdnREENTLhrNUQ7ufNks83oNOIbH3wFnzcO8srRAb78uM7dwBwKruMuQ+sQFHg3vljmTWp32WtrbC5gambP8aqyICCFQs/VZ2j2aqqnr99bi9nmypQFAURAZsiE+Ti9cuTAueKqln84lokScbFSUtiXAi9o4PsxsWgWsVcN7Efg3tH8sPLt3PwdAHB/p74e7nzzKfbaGozog10osVk6uIKSodCXgFArTsnwMuN3c/d0eW6nrlhMvNeWU1jmwFBJ1PrXIooKWgFDSMC+jHEPwF3jQutktrZWWAoY/6RR/HTeaMTtTzW53YWj1bryyb1UWuqDGYLni7OmGw2unl6oNNoCLz434AjTeTAnwwHSXLAgXZoNeIlydHFcHHW8eR9ahqqpL6J/ecKKapr5IGvtnDvFSPpHdoNWVZYefAEVU2t3DFhyCUjFB5uznyz/Db0LUYC2n/ZTxzRi31HcnBzdaJf764LdnVaDcF+nVNQfwbigv3RaTTYJFntPlqzi/HJcTz93S4kWaZ7sD9b/rEIPw+3TrpPby+6hs1pWaw7nc7Z2hoaLEa2ZeaxZPSFYmp3JycmxXfvdF2bJLP5rJr+SwgNaveM+/VUU01dC+WVjfTtE86UsX1Y9c1htBqR/okRXY4fGB3GK/OuIre6jrlD+jLxxU9UOQAnHUV1jfTrgiRdjOMZJVisauptz7EcZk3qR7lBT2ZjDSODo3DTdt1htbUkC+tFqVJEiTNNZWjbIyehrt6caSxvr8dS0CqwuzKLG2OHdDmfzSbx0Q+H+WrHCaw2GVlR6B4RyHsPqjITN00ZyI8HVcIdGxbADVNUgq3ViIxKiuFoZjErNh21mxLbquFUaRUrD5ykm5cHz8+dgoeLMz5urogXpeM0ooBNVBC1AqsfuKHLteVW1HHz618jywoxowxY/OsQ20NPNkXCKttwEp14Z+Dj7KhK4YfyvRgkIwabkVabWjf2bekOlvWYh8Um8cQPO8itqeeZ6RP5cdkC0iuqGRildqAunTWS3ak5NLeZ6N8zjMUvruW26cMYmhDV5docuAw4yKYdDpLkgAN/AJH+PsR08+PN7QcxWmyU1DWx9eFb2Hwqi3d2HMYqSZQ1NPHuomsvOYdOqyHA14Nmk4md+fksuHk4d908Fi8Pl05aSOl5lby3Zj9JPcO4Y+5IsopruOv179CIIu89NIe4sN/n71Vep+e7/WdIjgtlbHIcn949h7UHTrP5eBZ7z+bzU0YBNq0CAuRW1XOuvIYJiZ2JjqerM/NGJFNnbSMvpQFFgYSQbtQ1tPLlt0cID/Nl9rQBXXbjffDTUT49eBybJCEr4OXizLqlNxHmc+loSmW1nkX3fIaiwJD+0Tz3yLVMGtsbT3cXPH9m6FvbYmDhh99Q39rG6zdezR0TVLmDuyaP4N1dh+kTHMiuXecw9DMycmBcV5cDYOqI3ny38zRtJgvzpw9mZd4hXjvzE5JVRw/vQDZcsajL80aHxPDK6Z/sr0URzLINrSCiAL19QkjXV1LUWq/W4QjQZjN3OdfHkOR3AAAgAElEQVTGA+n8e+XODlYuOq2G268ZZn+9dPZIdEFOpOSXcPuE4R3Ssk99vJU95wpQjBJajYisSCgatX7pbGkVWo2Gb4+dZeagRK598wtkRUEAdBoRoc6GT48mnOJMFNtKCSahw9rabCZOFpQjKwpmm4QtJxTd6Hqki3beM02qDpO/szdlxirapHYPwYvGhLuptWq7svLYlpGLRZK4/fPvmRwVy62TBtvb/b09XNn+1hIyC6u48+V1mK027nnje1ycdCyaNphF036/TpMDDjhIkgMO/EF4ujihKOpf2F7tbc7nO8dQoM1spaG5DT+vXy6wvunbbylsbARgxy23dCkW+fjyH6mubyGzoJpBCZFsOJiOvt2k9pvdp3h0waTfdQ9L3/yesromnLRaVj16AwmRwSy9yp1tJ7KxdTE+Nb+sS5J0HsvGDGNwVDheLs70Du7GPU+s4XRGGVqNSFFJPYuuH0HAz8x9K/UtWG2SPWLRbDIz491V3D95NDdeIu1WWFIHCphMVo6eKeJkTQUDgkK7HLv1dDYVjc1YJZnlOw7Za29uHTuIW8cO4urFH/B9Uxmb96bzxasLCA/u2qsuItiXLe8tAWBVwSHeydmF4CQhKVaymmq7PEeWFdbvzyS02IdavxZc/bVMjoqiVTJxoDoXURCpM7fy48RlNJgNvHR2Ox46Z+bHDetyvi+2HUeSZAQbiFoBH283Nrx8Gy5OF74zZ8uref+noxitNnK+riPlH0vs7+0qK6LZ2wZeMDu6Oz0iutEiWCisbeSnLFUfKcTHk/zqOtrMFpW6yOBVCZK7Bff+zQg6hVdyPmdd4Cv2edcUb2N18Va0Fld0riHIiogSV45W0AFWJEVGkSEgsy93Hf6O++eNwyiZERDQICK1UymNIDI+UFXV93d3swt/GtosbD6excn8crY9c7v9uhpRJLDd21AU1MYAg8nC+9+nsPCqIV2ScgcuAcVhcHsxHCTJAQf+IJIiQ3j1xqvIrqhlzlC1Tf3q/vFU6Vs4ll1KZloZ15z8hLfun8nAXl2ngABK9HqMNhuuWi1VLS0Eu3vwrw+3kXK6kIggHxr0BloMJkRRwGZTO7gCvNztCshbT2dj/QYemz3hstJUF8PU3kUnCOrPAMG+nrxx+zX8lF7AoJ5hPLNuFy1GCx5uTswb8cu1QoIgMDQ6AllWsEkykk1V2rbIElt2n+VQah7fr7jTLtgpyQr3ThpJfauBiqYWCusasckyrRYrz2/dyw2Dk7rc6JITw9EE6JCrrFT0tDJ381f8e8Rkru+VTJPZyN6yAgYEhhLl5Uu/yBB7W/voXjGd5rJdVMNjs8md3v/5/QE0WgxqDZEArloNDyV1TVJPFJWzMe0cRosVf6sHBxcvQSOKlBsaefjE97hodCzqPgIAP2d3XhrUWc7gYlwxNJ6PvzkECmhlgUfnT+pAkJqNJj46eAyzTUIEvFw7RtV0XlposyIA9S5WRLOe/h6BlJXXck10DwryaynJrGP87Fh8nVyosrbi3KhgNcqI2vbvlgTeLioxURSFTws28EP5PmQULE5t+EzJx1PrRoutDaMMUe7ByIpEz8b+rE8twGSx8eTHW3nrkRv4rHA9vk7exLqHsb0qhStCRuLlpM49IDIUL4uWNsmGaKHd8qXz9zu/qJYIN0/8/N05V1WLTZKJCvZ1ECQH/hAcJMkBB/4EjO8Tx/g+F1I0GlHkjglDyT5bic0iYxVlPj18HA8/F3oFBtrHlen1HCopYXBYGHG+vmTW1jImOpp+ISFkFVSz91gOJosNfYux4wVF+PS7FEb0j8VJhlYPMMsW1h9NJ8TXk79N/m0phjeWzeDjzUfoFxdKdmktLW1mRiREM7KP+t/mE1nYLDJOggabWebJr7bz3h0zf1HyoLisnjsfXo3ZYiMyTNUdUhSVgDQ2GbjnibUEBXiSeqoIfYuJx+65kg9unglAbk0d8z5Zg6JAqI/XJTe6o3VlFAwxYzzfF64oPJ6yk8LmJtbnZ9BgMiIIcHDuHSRFhrDxvgU0thlJCOtcZP/6Y7NZvTGVEQNiiA73R1EU/nX2B7ZWnGFmxCDu7z2Vt7J2UGSo48HeVxLlEcCt3cdQbWrGKks8ljgdP2f3LtcZ5O2Boii46LRE+PnYN/kwd19Wj7mty3N+CbPGJbFuaxqNzW1oRdEuWXEey/eksC+7EEGA5PBQXp/bsePriWkTeOKHHXi6uHC4sASbJLOxWcG97AI5LC1tJCk+jM9un8OSp9ZgMlkxCzbkFi2tPwQx75beXNdHreErbatic+VBu1I4gIiAh9YNs6yS7tnhk5gYNISjGcWspwCtRsTX0xV/Z28ejF9kP298UMcaLJ1Gw5p7b2T3mTwEATJLath7Np/ke95gwfiBPHCtKtL6+OubsFhtVNU2s3jeKL7blUb/yFAURXEQpd8KR02SHQ6S5IAD/0HMmzyAo5nFNEbI7NOXsP/rr/nx5puJ8fXFZLVyxapVmG02dKKIAFhlmaKmJkRBIDjAC80lIkKyrFBQXsfTS6/iyJkiUqsrMSg2JFnhw+1HuWXC4N8UTeoTFcQbS2fw0IebOHhW3VzfWDqDob1VSYMavdqxZpVkkCCrvJadp3OZOfTSvlq795/D0GZGUSC/qA5QU5LdAr2QZYVT6aVotWK71YrCl+uOMnlsHwB6dAvgx6ULOFtRzcjYrmUVqgwtpFSUYJY6JgQlReHj9GPYLmrJ+nfqPt4cezVhft6E+XVt59KnezDP3z/d/rrW3MKPZaewKhJrio/Q3aMb35akYpKsNJoNfDlqCV46V17oP/cXn21ti4HTJZU8eOVoJEVhfJ/YXxx/OVj2/De0tqlRxRuuGsiQxChaDGra1dPdBQ8XZzSigCRDYX0D7+w9zJ3jhtnru3Jr6rBKMk1tRmjXfhLad0ZRFFQxS0VhT0oWCnDTNYNpazPT0mZmy74MJiX05c5+k+3kw8fJC40g4iw64aZxJsm7B246V+ZFTsEsq2m2yPYao6EJUTx5yxQq6pqZPT7psu43Ntif2GB/qptaSc0ts6ezV/900k6SfL1dqW80IEkyK75NwWC0sKk+nfFDe9K/j8Mc14HfBwdJcuC/GpW1eg6eyGdIUjRRoZenWv1bMKRPJD+9dxcjPvqQeqMRN52OMr2eGF9fipqaMFrVv7LNkoSTKOKq1RLnp67Dz9uN1S8uZG9qDicyS0lJK7xQ6wQ06I3c/cI6vnppISW1TVz70kokWUGjuby/ms1WG3vS8ggP9KZvjCrQWVGnx2y14aTVkFlczdDeat3T+j1niPTzodlsptmoFhP3Cg2kyWDk0S+3YrRYef6mKzoQkCEDYvh6vWrk2qt7MOlZ5fTqHsw7L9zAYy9soKHJoLaTCwIaESaO6ai8HOrjRehFRdsGs4VXdh7AYLbQ5mFlU3mW/T1RENAIAmHuXjRbzDSYjYjA+bhIo6mzoe6vwdfJDX9nD/RWIwHOHgS6eKrpLUHE2+nyBDybDEamvfo5BrPFvs7Xth7gzflXMzb+95OlmoZWrDYZF2ctI/vFcuxsMQ+9vgGA1x+axdKxw9CIAu/tO0pjm4l1aRlsz8xl3wN/w93ZiR9On8MiSbjqtEyMjyPE24vB/sGcSi9j1MA4zmZXkFtcw6Z9GYCahtWIIuOG9mDXqrvZW53KnEMP4al1Y3hAMhXGGu7teSMlbVV8U7KTww1n6O0Vi7fOg13Vx/DWeRDhGoQgCGw6lMHzn+/E3dWJKUN7XbbO17ubU/h4x9EOQQ5JVrh1+Tc8NW8y7z5zPfMfWIlNkmgzWdBpRSxWG+k5FQ6S9JvhiLydh4MkOfBfC5sks+ixLzGZrWjXHmLje3fg7vrnG2RqNSIvTJnCc/v2MTA0lBGRamQkwN3drnSsE0WWDhtGRXMzj4+9oFwcHODFDVcO4oYrBzFl8Ts0Gzp2OxVVNGC22Ijq5svy22ew63Qus4f37TKKpCgKLUZzu06QwJMrtnEwvRAU+OD+Ofx0Op9zJTXotGr7/4c/phAb4sdzX+7kfBPVshkj6BMXTLCPJzFBfizffIgjOaXIisxbPx7k5YUXFLoT48P49pM7MFtsBAV6YTJbcXbSIggCTz9wNZt3nSU8xJfE+FBaWk2EhXRdKH0enx46zrqTZ7HJitoi7yVi81FpUIJfN9x1Trw/fgZlBj0PHdhGVVsLKArhnj48NWwigCqiKCv4+3SdFuvwuQkaZkYM4HBdPvfHTyXJL5J/Js+k1NDAddFdt+X/HGWNetraCRKoBf0Wm8T64xl/iCT96+/TeP+bgwxNjCKhewjPvL8VS7tw5I6ULAYlRHLriEF8lnKStvYaM7NNQm804e7sxMLh/Xlp2348XZwZ3T0ao9XG4MRo+saFggDHz5ZQWtlov955Hz6jyYpZsvB69mpkZEwWCxsr1I690025PBS/AFEQMcsWakwNfJD3HburU5ENGu5JsjIxdBBf7TipmgMbLfx4MANnnZbtR84hyQovLZtOTKj/Rde9kCr75tCZLrNAJ/LLWfjmGrY9dZta+C/JiAI4O+lobTOzYt1hBiZG0qd7cBdnO+DAL8NBkhz4P4F9B7M4k17GrOkDCA/zI7e4hrue+xZFgeWPz6FXTOcaFKtVwmC0IEkyigJGk+V3kaTzkZdfqnuYGBfHxLiObeUBbm6smjOHXXl5+Li68sGxYyiAh5MTj48b12mOaycksWbbSQQBokP9KSpvYNakZHsX3OjeMYzu3bkgWZJlJEnmzo82cCK/jP/H3nvHV1Gm7//vZ+a09F5ISEhCgITee2+CgqiIiGBDwbp2XXvBsuraK1aKFaSJIALSa+glhBJCSO+9nTbz/P6YcEIEXN3dz+e3+/nmgrwIZ2aemTlzzjzX3Pd1X3e/9jHMveMazhSUYXe6sVlM5BRX8tX6/cb6muG543JL9p3MxcdmoabBmOhX7Ejltsv7kV9ezdPfrqXB4cKkCIQwERt2IckJPK9lyvnVej7eViaM6cp7n29k3eY07rt9BN/tPUxhdS0zB/YiwOvC6IK3penaCARqXRNJOlVRio7k6V3r+WjkJBICgjhZUYKCEV2qdNjZdzSLR15djpSSR24fzcSRXS7Yx/nYV5bJ/DPbadBcPHV4KT+NeJDLooxtpJS4dA2zojbbpqiqlvWp6fSOb01SVBjJUeFYzSr2RgIjhKGxubbv7+/7YsjIKWVjykkG9WjLgG7xDOjWdK2vHNaZTXtOIYTg8qFGytLHamHx7Gm8++sOjuQXMblHJ09k7qb+PZnSsws7MrJ4ZOkapJR89NMOOO3Ax8tCXb0DRRWYTQpuTadTu1ZU19iZPK47mtQuenwSSZ+QToyM6ENGTQ53JE7mm6w1lO/yo+GUHy+u3kmvVzoxvn8S6TmGsHr+6hR0vaka9OPlO3j9niuRUvLYgp9Zf/AUl/dO4pUbxzOqayJLdx0FoEubCNIbP79gVJBaLWYemzWa1z9djxCCuoaL2ye04A+gRZPkQQtJasF/PVL2neHF11ahaTrbd5+mf+8E9h7Npqq6ARTBojUHePbu8Rds52Uz8/isMXz/834mDu9CaJAvqVmF7DqZxdju7WkT/vuRDYCPl+3gy1UpBPjYeO2eifRKunT12sXQPyaG/jExfJiSglvXces6udXVF1337uuHMnF4F/x9bOw+chaTSWFk3/YAZBSWMfvjpWi65OM7ria5dTgAZ4srmPHOd9Q7Xeiajg7sSc+hoq6BZ24cw5yv1hMXEczmw6dxazpCgI/NDEJgNZuYPLQLo3u34443lyCB8X2TySwq5/q3vqXB6cJqVpkxrCftokK5rHv73z3XkrIatuw8RbdOrWmXEMGiH/eyfrPRAqWorpZd5lLcms6ZknLev37iBdvfPKAHDrebT7bvweF24/YzCJLa6DOk6ZIapzExJgaGYDOZcGoam3LPsCUvkyurEzzRltc+XU/HxFa0jb24r5Qmdeamb6JBMyrAvNQmgmbXXNy881NOVRcys+1Q/pI0BjCI07SPvqOitgFFEax9bCa55VUet2p/LytrH52Jqir4WP8cGXe7NWa/8B31DU6+Wb2Pnz64Az+fJiLZq1Ms6z65BwSeKrddZ7K58+sVWM0mvp55He0jmp+rzWyitLYeKY0oU6Vdw0/Tqa61G55IZpWn7rqMHh1jueaez3C63Dz11k+s/fIeHk++hR9y1pPsH8/20kPoUufhDjdhUczc226qZx93JU7h18yvQAeHXWfcg58QGxGI1WzC4TJ6EZ6PDrHGw0xpdR0bj5xGAr8cOMlj1wzn2etHM7ZHO6SE/h1iEUKwZMcR1h06xa2j+qAogjGDknj90/UeI9KhfRPp3z2uJYrUgn8aLSSpBf/V0DSdOa/9hLuxMW11dQM/rzuKW9NQTaB7q2Rkl1BcVkN4yIUO1ROGdWbCMEN8XFHbwMz3FuN0a8zbsI/tf7sbRfn93Px36w8AUFVn587Xf2D2pP7MmjTwT5/HdZ07M//AAaodDlr7+9Pjww+xqipvjByHs9LJgK7xeNnMxEQGMW/5bhasTAGgrLKO6y7ryXfbDlFSXQfAgk37efVGgxSuP5xOrcOJrku8rWZcbo1OMREEensR3Nabpc/fTE29nREPzQUM3cm8x64n4byUB8D6v8+motZObHggd8xdRkNjCkfTJT3ioxjayUgd1dod3PXJcgoranj1xvH0atukBbnrsW+oqKpHVQTffTILPx8biqIghMRsVUEzIgpVdjvr0tLpGxdD4Hl6FbOqcn2frny+Yy+ql0DzBrNqws9sIdzbl+PlJZgUBV1KHuwxmKSgMF7bt5WsGkMIfyaoxlNhh5S8NW8Dc+6fcNHUW3p1Iccq8wDjofq93tM9y45W5pJdV44Evjm7y0OSAMpr63FpRhXg22u2kxgZitIYYQzy8cL/T/TZOx9uXTdcvhvfc6f7wmiOyaR69lXdYOeub3/EoWk4NI0Vh9J47LKhlNTUkZpfRJ3DyZMr1hHs40WfuGhKa+rwztPJUcuJCvcnt6ASTZcktglHNv4B4/smgUFh3RkUZrRjuSPx2ksed5RXGDeP7ce8VXs839HMgnKC/LzQpcTf20pZdZNeLKfISPEF+XrTOiSAwooaokMCPBYG/Ts0d9G+dlBXurSK4MFXlmJSFT56YSr33zKC71ftZ/ywjtw25c9/F1vQgvPx58xUWtCC/zC4NZ36hibNR3KHVk0ToW483Z/OLuGdrzb9w7Fq7Q4cbsPMrs7uZMBjHzDlta+orr9YPysDw3o0T6F99uNuHK6L2S8aMCrEjAnu51On+HD3bioaGjhUUIDd7cat63x9+DDVDgel9fXcO285c+b+wv2vLqG8qh4pJfklVTjdGi63Rn6xEXXq1z4Wq9mE1WxiYFLTRDIoqQ1Wk4rFpPLwlUNZ/dRM5v9lajPy5+tlJTnWSAvFhgcSG3FhBM3P20ZseCAAMSEBmFQFRQiu6tuJIR2b0j6frkvh8NkCiqpqefKbXzyvSympqKrH5dKQEmpqHQwZ0I5ZM4Yw68YhvPrAVdzYvweXdWzHkdwCHvhhNVd8OB+9UQxVa3cw4cOFDH7jU5xuDb0BLIUqS6+YzvprbiOtvBgdyY6CbDKry1GE4Ir4JN4dNgEv1WQ4SbuLGX2TQYh1CQeP5XLv84svep2ivIOwqWa8VAtdAlsT6R3oWdbBPxJvkwWrYmJoeFPXeiEEf592OclRYQhgxYE03l+3k5nDenNFtw58cNOki+zpj8FmMfPK/VfSu1Ms113Wg582p1JWWedZvvPQGUbMfI9xd35EdkE5+7LzPO8dwND28RRV13LFBwt4+IefefLHdTg1jZKaOnafySGrvJLkgTH8+PFsfL1tRmsUXbJjfwYhgT48/5fLGdY3kTeeuAazSb3IEV4ad149iO9fvKnZa5/89ToSooKpbXB4iB3A2pQTnC0ox6QqLHp0BvPvv47vHrnhdx9W3l2wicrqBkor6vjb3HVcO64HSz64vYUg/SuQ/0s//wVoiSS14L8KGZklfL5wGx2TWjHjuv5YLSZunjaQ+d/uQEo4nJrD7FuGMe+b7TiERBPGE3bYH2gEG+bviyLwiJTtLjfZJZVsST3DxL4dL7rNnFnj6RgXwbuLt6IogrBAXyyXmEROlpZy3fff49Q07uvfnw9TUnDpOrtzc3lx1CiklHibzcQFBZFeWoouJdZ6gd3hIjWjgIn3fkKP5NY8c8dlFJRWo6oKN13ZF5dbY9GOw2i6zpSBXbmyT9OxdoyJYN2zs7C73EQEXvw9EELw5V+nklNUSUx44D+0Dqh3OBsN/QTjenRopsUqr2mKCpzfMkMIwfOPTGTBol0MHdiOQ0ezef+LTaiqYGCftpzNLuPuW4dzrKSENceMlhVldQ3Y3W68LWZSzuaSX1WNlBKL2URUgD+zh/Shc2gEc4+kePZjVgTW83RCPcKjGBIdz6bcDBQhGNApnv0BZyivMo7zt/5TWfnlPPnGSsxmlU8fmEmVuY6uQc1TqP5mL1YNf5BCexVtfJpH3MZ0bsfoTon0ee5DQAMkE3okExsSyL+KIT3bEhbkyx1zvsft1li38zg3TuhL3y5tmLcixSNa/nX3SSaN6Yav1UKNw8EVnZNwuNyMfucLw8LhPGhSYhKCBpeblMwcnrliJBNHdeF0Vgkmk0K/7gYBHtG/PSP6G+nUTbtPkX62mKvHdics2PB/Wl2wjdPVuXQIaIOCwsiIPpiVpuklPiqEV+64nKWbjzB1dA/aRAZzKrsECVjMKkhwujUUITwkzGYxkRzTpCU8W1zB5qMZDEqOo12UkTqsdzipbGh6iDlng9CCFvy70EKSWvAfjdrKOo5uO05S30SCIgJ55uXl5OVXcuBwFsntW9G7Rxwjh3Rg/vxtoAp0oH+feNq0CqKorAa3WaCoggnDL+3ncw6KgAcvH8yWE0ap/YEz+dhdbnLLqqhpcHDHR0vJKq5gzg1jGdWtHWBM/tPG9mJM3w4cySigd1LMJQXcP504Qa3TiHqtPmUQAbeuU2W3ExcUxJqbb+ZsRQVVdjuPrV2LEILAeF9Ul5PKmgY0Xefg8RxsFjMfPNnkzXPwTB5HswpxazpLdx3liWuaN+kN8LFxMWcgXUrq3U68VDO1bgeVlnpilH88mWcWV+DSdKxmE9mllfRt10Qibh3Vh1+PnMbp1nj+ujHNthvSvx1D+hvv26yHF+Jya7g0WHsgHQVQVMG0af09FX9eZhPeFjMFRVUs/mo3LrOGRVUJcVroVh9Aa6sfh07l8sXevZzromB3a0xY+RVbp8ymvsbB3X9fgtOtceuEniS3juCyNu0IvMfMs++sRqgQOsHC3FMbuaPdCIQQfPHDTjJzy1AUwZq1adx/ywiO5RaxLjWdcV3akxxtaL28TBbifcO4GIQQfDLzahZs28/oTokegrT/cBYvvb2aVhEBvP7stfj6XNqIE2D5lqOs33OCG8f3YUDnOABq6x0IIdB0SWZeGa/N+xWLSaGuMZqqqoK+XeII8fVmw4O3UVZXT3SgP/d8t9JDkCyqSoCXjZLaOuP99PGi3uXinuH92Z2ZzZihSQzt3Rar1XxBIcPRk3nM+WANLrfG7kNn+fLVGRyqPMmXZ1bi0JysL96NCRM7S47TyhZNG98wxrXqQVFlLZpV8NpfriSgMeV48+V9+WbdPrq1j8bkZ6K6vIFZl/cjOuzCT6tL05jx1nfUO5y899N2Ev2CeHHWeD5au4vTzipUxdBYPTRz1O++py34A5BAS1sSD1pIUgv+Y7F9eQqv3fIhUpfYfG18dfp9fLysKIrRysLby4KUkscf+A5zg5EmExaFZx5ZTHlpDapJ5ZP5s2gV9Y8nfiklt8/5nqyCcgJ8vbjp2r6kZhXh1DRW7T1OTGggGYVGNc3bK7d5SNI5hAb6MrJXu0uMbmB4fDzzDhxAl5KZvXpxuqyM9LIynhhqmOFF+/vzzskNrD95BrdU0XRJqzaBfHnfNdwx53vSzhTSrX00/r9p3JoQEYLVpAKS7vFNfcvq3HaqnPVEeV/o//Rx2nbeTN0MQKSXH7UuB05do1doDDPb92NX8VluaNuLOL9gHJqb5/avIaeukhd6jefpa0fyzPfraB0cwOU9m7yN9hzM5OCRbBbffwNREYF8snwnz360mnH9k3h0+shm5PG6K/vwyrs/4/AWuBuL3s6WV9I6KIBPpl/NzjNnmdyjMzW1dh5/eRmZWaUEqwKbr4XaumrW+9exOf0smi5xBGqQBCjgRqfe7SK/tpr3vtxMTnElAMc25fLUCyMB6N89nnXz72XCprc4Ul9E+pl8uge3oX9oW5ITItm+7wxISYeECEqr65j64bdICfO27mPPC/diM19426xvcLJy7WHcLg2LxcTwQR1478Yrm63z/hcbKauoo6bOwaYdJ5g49tKtXfJKqnjjm4043RqH0vPZNvcvqIpCr44xTL+iN/uOZZN6ugC7w4X9vCKu3h3b0DnR8LzysphpbTEIx7U9O7P9dBaKEMy/5VrsLhePLvuFqAA/nh4/HLum8dCS1dQ5XQQ26n9aBfjz8bQr8bc1fd7q7S6EMMxMz09zAzS4TdhMbsqdKmsL0oF0rMKE1AQvzd2FW9cJ9fNm9RO3IoTgnmsHc8+1g7nt4yXsOHUWi0nlSEERKw4fZ0Snts0+Wy63ToPTZUQnJZzJL+Pv32ykWnXjkDq2GAuPTB1N9+TWjetrPPfOKtKzSujSIZpNu0/Ru0sbXn30you2NGlBCy6FFpLUgv9I1FTU8vL099Aaq5GkhMqiKv72/DX8uPoQ7RIj6JgURXV1PSWNuhwB4NQpzDcmRqsiyEgvpFVUIOmZxeQXV9GpXSS/bEkjrnUog/s06YmcLo2TWcUAaNV1xIYEYjarIODy3kkkxzRGECxmeiREU9fw5+0CekdHs23WLJxuNyibLtEAACAASURBVJF+F4rIj1UWsLHgJA4vF9LmRa/AGJ4bORJFEXzy7PVUVNcTHODdjGw0OFxs2HuKF6eMJTDQm46Nx5nfUMFNO9/DqbuZ1mYwd7W/rNm+Pjmxy/N7qb3W4069u/gsB8pycWpufs5JY/vE+/kpO5VVOcewa26e2PsTP4y6lWWPGRqTg0ezOZKWS9eOrXnylRW4XG7WbUlj4Ye3sfCXvei6ZMXWVG6+vC8RwcY519Y7WLBpP3qkheToMFLPFCAE9OkRB8DgxDYMTjR0Vfc99T1Z2WXGZ0CT2KsdYDPO/1xkxFqhELZLUN9ap761pE9oFO2DQlHP07Eo4sKJ0c/khSqM6jNfkxHVuX5CLxLbhGE2q9jNOiNf/cxTnabpEremwUVI0usfrGXrrlO4NR1VVVi8ch9LvriT+gYnc95cRVFJNTHRQeQXVSF1Sdu4cM+2lbUNrNyWSnyrEIZ0T6C0qo47X1/kEWdLKfkpJY0tx85wy6je3HBFb/YVFqDWWvFpgGqHA1mvowrBjAm9Lzg2gJFJbdn+6Gx0Kal1OokK8GfbI7NJOZvDjQuWIJG4NA1d4vFVKq2tZ+WRE8zo290zTt+ubbjp6n4cP13I7OsHA9A9sAO3JVzFy0dX49YFLr0p3emQbl5OW4K7nYWGo37klRuu8KbzDE/P2WfouuTTX/fg1nU2pZ6hS2wkMaHGA4631cxL0y9j7prdFOZXYjGrJESFMHl0d17+YQPx4cF4uxVufGQBI/u3Jz4mlN2Hs7A7XOQVVQGw62AGp7NKLmoH0oLmkP8leqH/DbSQpBb8R+JvM5oIEsCYG4cSGR+OEILbbhrieV3/nUaksW1C6dU3gROnC7nnme8RQmC1mqirc6CqCm8/N4WuSdGAIQA/p0fSNEnHNpGsff52qurttA4xnsaXP3EzB0/l8uaXGxn763GeuX0s4wZdXKsEkJZfzOz5y1AVhS9mTiYxPIRgL69Lrt/aOxCTouBjNpPQPpDFI6/3LFMU4anCanC4OJNfhpCGr8zBU3kg4MNHrsWsGhPU4YpM3LqGU3ezLCeFa2MHEGZrcq8eEZXIzzlpaFI20096qWb0xlomp6ZR63KwMT8dt66jSkH+6Up2+mdgNquEBvvy2JyluNwaNqsZZ6Nnjd3hwmY10SrEn/LqerxtFgL9ms5766EMsgrLsTvdlFTVcuWQzvh5W7lhbK8L3pPyyjp0KRuduY1UVvuoUEpwUt3gaGrMiyCoyMLEiHhevmICihA8f/t4Zv1tETnFlZzMLub1bzbw2PSmdMz7fWawLGcfSf5RdA40IhBCCPp0NQjazM+WNNNVdW4dccledUUl1Z7qLU3TKaswGt+u23yMfYfP4nRqWC0qLz0+ifBQf+JimrRMj32wkqMZBaiqwgcPTWZX6lkKy2o9y4UieGXJRhwujT2ncnhw0hAOZOQZJMrHhrSo2K2S8EBfenW6eAsXAKvZxKS5X5NXWc2ghFjm3nAVh3MLcOkami4bBdTSk+506RoxQf7NxhBCcMs1/S947YqowewqyeHXwiMX7FdDR0TaCS4NZna/wRdo3l6ZNo63V29j5b40z/stkUhdkpZZSJvIYHy8LIzvlcT4XkkcOJlLaWUtI3u1w2RSWfjA9TicbkbOeBcJZGSX8tRdl6FpOhaz6rF90HXw/h8wi23B/238Q5IkhLABWwFr4/pLpJTPXWLdycASoI+Ucp8QYgzwKmABnMCjUsqNjetuBloB55STY6WUxf/a6bTg/wI0TWffuqab7eNf/YWR1w+ioqKOt15djSIEDz1+BQGB3kgMAnGukqdtYgSh4X5MmNST/oOM9NfZ3DKju73DhVvTDA8Vk0p1TZPIUyIxmYwbqsmkIITA18uCn1fTpBgV7M+6klrqHU6khOc//YWOCZHEtjLSWbnlVQR42/BrnEjnbdtHeZ3x8f529yGevfL39RJBVm9Wjb6L45WF9A2Lu+g6DpebqU8voKi8xqAyxl9sFhNF5TWe9fqFtMfbZMXudFHrbuDuvZ/xw5CHPcvf7HcVdyQNZFvhGd49tgVNc6MKwVv9r6LUXse2wgzuSB7E349sZFPBadQK8DpjQpxy8cSaZdisZkKCDSH4b1Mv984cgaoofP3cDPadyGHVjmPMfPk7nr5lLMlxESS1MZ7kbRYTAzrH8cRNowGoqm7grY/Xk5NfQUVVPddN7MV1k3rz7qcbcLs1FEXQs2sbnrhvPKHBvry/eCsLf9kHgElRQEJCVCgmVSG7qIIfNhxqFu37YeNhEgb7Mzm2N0IIQm1+zG43Ak02EW1d6jx5cAlbC09RZzcBVkyqwgtXj2Ziz+SLXpPD2QWcqapo9pqm6cx5axXHjufjdBqTdMbZUswmFZvVxKFjOXRJikZVFSprGjy+PlV1dorLm/tkXTeqO9+mHPFc/xW7j3miTDUNDsIDfCnV67jrcqOaq6yunk+27SE2OIDpfbp7Io9nyyoprKrBpWlsTs9E03Umde3I8kNplNc3UNMogNYawwhSwgurN7LizqhmKbdzkFJyqrqAV9OW4W/2ZnRkVzYVpqKhYxUmHLKpylMIGDYmlOndejQbo9bu4M7PlnG6sKwZIR3YIZY5X6zlZFYxfj42lr5yK16NZqQ9O1zYYqS23tGM7C9YnmLcF34TEokMbU76WnAJtESSPPgjkSQHMFJKWSuEMAPbhRBrpJS7z19JCOEH3A+knPdyKTBRSpkvhOgMrAWiz1s+XUq57187hRb8X4Pbef7NVdC+VzyapvPWq6tI2XUaJEyddJqkjlGMn9AdVVXQdWPSyDxTzNz5tzcbb/iA9qzffoLsvHJunNyPTTtP0j4+goG9mtpC+HpZeePBq1i1NZWJQztfMpU2qFs8H/+wHTAmkbe+2cw7j1zDBxt28fnWvVhUlSX3TCc2JJDB7eLYkJaBBAa0vfQT/vmI8PInwuvSN/Ki8hrKqus8N3+LSSUyxJ+uia0Y2TPRs16w1ZfXe9zIPXs+wyHdVLnqmo2jCEFSYAQuXePdY0YEaXBEAqOjjZL269v2BGBp5mEAVCHwO21CYBgtNthd5BVUcNfNw9h9IJMDR7LPG12wLSWdAb3bUlPvYPexLBxONy/PX8/Xz88gITqEH16+haKKWroktPJs9eG8TazbnOYhvO98tgEppSf0bzabuPm6AYQ2krPdx7I822pSx+2Gr9bu45rhXbn3jaUUllU305/o/m5eSl3JwfIsDlVkU+Wqx0u1UOKoYVBoO97vO4NdJaf5pcBwdSbegVpi4bbBvRncIY7HF63BZjbzyOVDCPBuiow99v0aSrDjI0BIUBTjs7Fx2wnO74HlcLp597MN5BdWgYARgzrwxH3jefnOK3hn0Rbax4RRWFZNvcON2aQAgvumDOH6MT3p07kNH67eyYm8Yo7lFOFrs1Brd6JLSXSIP7+8cJuHDD26bA0pmTlYTCqhvj6M62hUpQlhEFO7282VXZNQFYUIf1/W3HsLLk1j4BufUGN3YDWpOBpJWGltPWvT0pnSs7lDeKm9mtkpc8m3VzRecdhXblQQxniFkVdfxm9xqqbQ8/vR7ELsThcl1XVkFpdf4PtUUl1HRnoRABI7eSWVJLa+uFAeICTQh6vHdGXN1jRG9GvPL9vSkJJmfQyjwgP+tH1BC1rwD0mSlFIC52K/5safi/HMF4HXgEfP2/bgecuPAV5CCKuUssUvvgWXhMVmJioxkvKCCmzeVkKjQ3j3jTXsSznDuYd+TdPJOF2ELnXMZhWXS0NVFbr3bPIIcrrc7Nx3htjoIN58erLn9StHX7zzeL/ObejXuc1Fl51Du9gwurWP4vCpfAACGkXUqw6f8JQw783MJTYkkEk9O9IxOhxVUUgI+/c0z20dFkjf5Fi2H8kEIDEmjKmjurNi61HW7z3F+AFN0Y5OATHc3HY4KaXpzE4cc9HxugRH8dXwGWTXVjCudbKRVhPGE7iqKDzadSRW1YRVMTGodxsyzpSQdjKf/UeyGTk4CZdb56/3juOR53+gsLgKoQjenLseRQhGDO7A2MuMqkKbxURsRJOAPjLEn8iQ5mTQZjWjCIGORFUVTKqC4zzC3Kd7HB07NAnTyxtNCBVFoCoCl1vH4XTzxrebKKmsNaKMquC5W8fyetrPVEcYkbYtRcep11zoSGrdxq1oR2k6J6sLee7wcs/4AvC2WpjUsxOvrdrMmiPphj7o4HGW3DeDxAgjZRYZ4EtxaA0OVWdsQgKFeZVkZpeiNbpJm81GLzyL2UREmD/5hVXY7S4OHc3Brel42yy8/9Bkft17khe+XIvTpRHoa+P1e6+kR3sjajKoYxxnS8rJWGmQj9Hd2vFjyjEkRu+y6//+DV8/NA2A1OxCNF3i0nQ0XVJtt7MvK4+X1myist6OzWRiRt8enj5yNrOJoupaj7+XU9MY3LYNe7PyEAI6tbpQwzNz90cUO6o8/5cYRFUD6jUH7t9MEQIYG2l879YfSefJb39BCJg2sDsCgZfFhL+XjaKqWoRbUpBRQUJUMJn55fRoF92sn9ul8OisMTw6awy6LikoreZQWi6KUFBMEkVRuH7ChencFlwCLdVtHvwhTZIQQgX2A4nAh1LKlN8s7wnESClXCyEevdgYwGTgwG8I0jwhhAYsBV5qJGQt+D+M8sJKqkqqiet86VJ5IQQfprzCsR0n6dCnLTZvK8eO5uJ2G20zzBYTSCMasuS7FOx2F916tuGuv4whLr7pafPZN35i39FspJR89tp0EmIv/ST6Z/Dmg1fxypfrURTBQzOMcvvbhvRmzo8b8LdZGdrB8JZZl5rOW+u2M6BtLM9MHPkP3bv/CBRF8PYDV3Puq1JvdzH6vo/QOlZzpPAIhadGc2t745iEEMxsO4qZbS+e5nNobm7YtJAj5fnclTyIJ/eu4sfsVGyqGYfm5vYO/flrt1E82X0MOfkV3PbAfBxON4/cdRn3zRrFjLu/wOnSWPTjXt6ecx13P/4t7kb9h1OXnMoo4okO43n3waspKK1mTN8OFz2Oc7jrlmEEB/rgdLkJD/WnbVwo9z+9CE3T6dcznpefuKrZ+jeO7827i7cSHujLlJHd+PTHXYCgqLzGE41KbB1qGHw6VIQ0Q6SbCbE9WJ67H4fe3PTzTE0xdZpxe1KFwhMdJ3LN5b1QFIGfzeZRs7o1nflb9/H8NWMwqQrv33Qln63azc+LDrAt/5QngjF8UHtuuKYfTpcbHy8r5VV1VFXVk3aqAIfTTf8+CUx/7iuyCsuJCPZjVO92Hv1MZa2d1DOFHpL01MI1rNp3gqToMK4f2p3xvZI4mJlHVmP1XmZROacLSqmzu6BSRzGBimRkhwRGvP05dU4Xmt74hCGgqsHO8Lc/o6y2nr+OHcqMfj3oFx/DttNnmdA5ideuHse+rDwi/H1pExzI2rRTfLJtD+M7d+C2gb0odV68dQ5AvG84Va76Zu+vSagEWw3hfmp2oWEIKiVZpZX89PgtFFTWUFJdy8PzV2Gqh3rNSb6rmrsnD+am8X3+0HfH4XRRUd3Axp0nOXw817hWbo2pE3px5cguxLX+x0SrBS34Lf4QSZJSakB3IUQgsFwI0VlKmQoghFCAt4BbLrW9EKITRpRp7HkvT5dS5jWm6ZYCNwILL7LtbGA2QGzsH0tZtOA/E2eOZnP/4KeRumTyA1dw64vXX3JdH39v+o7vQX5GIbWV9Qzo0or8nDLcmsTpcGO1mpjz2nU8+fD36Lrk8IEsjh7ObkaSTmeVNIqIzWTnVfzbSJKfj42//aV5b7EpfbowqUdHzKrC/qw8XvppI1tOZuJ0a5RU1zGpRzLdY6MuMeKfxzmCaTIpmP1B79AAKnyWuZ4b2g7Gqpp/d/u0ikIWpO/hRGUxEvj0xE5PhZtdM6qbPju5i85BkVwR24n3P9+I3WFMeh8v2Ezn5BtwazpSSqpr7Cz60ciaa7pEUQT+fjbun2WQs14dYuA3/Ki23sGjH66kuLyWObPGoWqCz77ZRpfkaGbNGIIQAofDxWtPT8ZmM9GpQzS/xQ1jezF5RDcsJhUpITTIF4fTjQAy8koBCPb3Ji2zCBCYdvvy3INjmNClCzckDGBr0QneOv4LOnBFVDd6hcRjEioWRWdqm35cG98bXZcUV9fy8PghVNY3sD71NLqUrDx4nF+PZfDoFUOZ3Kcz8d5GVMyTGjSZCAv147NvtjF9cj/i24Sy8dsTfL98ryc6tmLdYZxBhtVDfmk1izcc8pybWVWaqgEbHPy8/yQAGYXl9G0fg81iYvFjN3LHR0s5llVIiJ8PbcKDsTtdWFUVxSXomRjN5zv2ecwWFSG4vFN7hraLp7K+gRq7A01K5u0+wE39e/LZ9Ktx67qh7wL6xrVuvKY6Dy9dg1vXySgtZ0xSIn9Nvop3Tq6mQWvSogkMMtQxIIb7OlxBTn0pq/MOsLfM6MEW1+grNW1Qd7afOEuD08Xd4wYQHuBLeIAvf/36Z4SiIFQdVYLd6ebTFTs5nVvCMzMv4/0ftlFRXc+D1w8j9DfGqOVV9dz48Hxq6520iQry5DqEIhjaJ7GFIP1JiJZwhQd/qrpNSlkphNgEjANSG1/2AzoDmxtv3JHASiHElY3i7dbAcuAmKWXGeWPlNf5bI4T4FujLRUiSlPJT4FOA3r17t1y6/2Dous47d37G/vVHuOXFqYyZYfj/2OsdPDT8eU4fzPSsu3XJ7t8lSQA7V+7jlenvousSt8uNtJiha3tQjIamsXGhqCYBTkNv8dnHG3G5NKZMM6pvHrljDC+++zN2u5MtKacY0jfR80R6qSjWvwKLSUXTdW6ft8yjsTCrCiCJ8L+w5P+fgabrzFu9h/ziKu68ZiDhQX58dP913J02FyEkgVafCzrT/xb1bidTNy7ArrmQgFVRceoX7+y+pySbK2I74WwsCz+H+NhQ2iWEcyK90IjumVR8faw4HG6kLnE63ZSV1150TICfd6Vx5HQ+TpfGm99tpiazmqKSao6m5dGtY2u6dmzNbQ8tpLikhvAwPxa8dyvn9D31DU4OHMmmXUI4EWH+5BVX8revNpBVWM7Tt4ylb8dYwoL8cLk1Xpq/rmmnis6LuctJjA2lxtXAytxD6ICCoLVPMKFWX1p7B3GyuoCcunI0XWf6x99zPK+EHnFRzJt1LSv2p/Hiil9xuHVq7A7mrNjAmM6JjBqSzJoNqRQUVxEXE0KXpGh++Gk/TpfGkWO5rF30AKcziz0ESVEEwf5eyBAbuY3RIFVRMKnGLe7eKUMZ08fQEvnYLCS1DiejsIzIQF9eWryBlJPZ3DCsB/Puu46c0koig/ywmk14W8389MytZBVXkNQ6nPc270QBdKBtaDBvTr4cIQT5VYZeSwABNhv1ThfeFrOHIJ0PRQiCvL2oarCjCAV/m5UJQb25LKo7o359AQ0dFUG3oDjMipkJ0b2I9g6hrV8kg8OS2Vp8nEivADoGxNDgdGExqyx95EbAEH+/vGwj6w+nExHoixBAgEKX8FaknSrA6dLYdjiT5ZuPsHzLEdxuo4fd3//SvMVLWnoBdqcbl1sjt8jQfJlNKleO6ERMq3/cqLoFLbgU/kh1WxjgaiRIXsAYjKgQAFLKKiD0vPU3A480EqRAYDXwuJRyx3nrmIBAKWVpoxh8AvDrv+mcWvD/E07uzWDTop046h28d/fnjLx+EOsWbCHreC65jRqecygrqOBvN77HfR/cjk+A90XH+/XrrTjtTZOzcLiQJ7NQOicwfkI3nn/8BxrqjeVSgq5Jas+rWOvfIx63W8Ph0ti2J4OlPx/k0++24+1l5qOXptH6f+DmKRDNembFBgfQLjKMJfuOcueIfp4S/X8W6/ecZMHqPThdGoXl1Xz06BQ6x0bxQ9hDHK48S9+Qdhf1BDofbl3HLY1GpQJ4u/9VvHhwHcUNtZ7y/3No7WPoiMYM68ih1Bx0Cb27G7qtF/86iTlvrkJVFW6fMZhH77mMh55bzKHUHIALKovOR3xUCEIIbFYz7WPCOFnsoKTMMAn18bFSXdNAXkElmqaTV1BJdU0DQY0WCPc99T05eeUoimDYuE6s2HbUUxn12tcbWPa3mQzqaqQ8v1m7n6MZ+YZGp3c9NuCn3IN8d3a350wtqol431DyGirJqC1BBzYXn+DNQ+s4kV+CW9fZn5lHdYODcV3bs2LfMfadzUNVBDaTCavJhNXLxGdvGd5Rui5ZvyXN8/7abEZUb+ywjhxKzcXPx8pVl3dn7LBOBPjbeGfxVsqq6hjXL4nnv1yLlJIubSM9RF4IwcKHpnK2qAKXpnHLO4vRdMlXmw7QKSaCUd0SsZzn3RTo40WGWk6/1z82qsraJ+Bvs/LEuOGeMaMC/BmSGMe6tHQySstYuPsAdw7td9FrJYRg8e3TWH88na6tI7l54RJOl5TxwIiBXB7dk/WFh5FSklaVi47kzj2fsnLY4wghMCkqIyMNXdrZkgqmvfMtDpebRycNY9qg7mSVVrI8JRWHW6O8tp6bhvciyMeLqf27Mvu1xZzOKWHGuF542ywIIVBVgY/XhTYM3ZKjCfT3wuF0o+s6UoLLpbFs3RH2HM1m0bu3XfKz2ILf4L+or9r/Bv5IJKkVsKBRl6QAi6WUq4QQc4B9UsqVv7PtvRg6pmeFEM82vjYWqAPWNhIkFYMgffbPnkQL/jMQHhuKUAQ2HysRbcL4/MlvWTV3vUc/IxSBbJzM7HUOti1NoVVCBLe8MPWCsRa+8APbl+/x/F+aTZDQGrOXhbseuIzomGBWrzz0m60kwcHNw/BxMSFkZBmpl80ppxodil28+N7PfPzy7zfO/CPYeDyDDzfsYmRyW+4ZNQBFETw1cQQvrtyAIhT8bDbWHzuNqgg2lZ6kR1Ikf+0yBov6z1mUmRpJlmjsSXcOEV6BjPXqfqnNmsHfYmNCTEdWZB1FAsvOHmXRqFtYnZ3GT9mpHK8s8twjl509wqykAYwf1YXK6np+/OUwFRX1lFXUEhHmz4ev3gBAdm4567cc55apA1kfmUariABGDUnmdG4JmfnlDOmegM3SlALskxzL3EenUFpVx5DuCVRMqGf1+iN0SIykfUIEUkq6JkdzMDUHRRHUNzhRVYUFi3dx+kwxupTYrCZ+STnRrHQ8KsQfKSUb96fjcLp5874r2bAvnTqfBj4v30hr7yDWFaSiN56hr2rh772mMSAsEZeuEecTSnpjFdaSwhTCQ6MoLKmjf9tY/L2sCCFYcOd1nC2pYOvJTIZ2iMf6G3PJTxZuYfnPh0BKRg1N4tbrBwHw5sfrqat34HJrDO7bjtAQ47P66HTDCfz9H7ZSbzfsJeat3sNb9zVpsMyqSruoUOodLnxtFo/I+omFa+jRNpp591/X7Bi+3nMIu9tYJ9Lfl+euGIVb19mSnkmrAD/ah4cS4uNlRJOE8NhW/Bbrj5/mUG4+9U4Xyw+l0alVBHkV1UgJX+zcz+7H7mRCdC90qXP//nk4dTflToNsq42Rv+y6UvaUpVNy2hCKuzSdpbuPMm1Qd0L9vLGaTaiKQoifNw9PGOIhct++cCOarqMqihFN1jQqaxu4fnRPz/HNX53Cqh1pTBjYiaT4CAZ0j2flhqOe5RLILay86Lm1oAV/BH+kuu0I0OMirz97kdWRUg4/7/eXgJcuMXRLqcH/IaQfy+P7TzYx5flppB7MYN+JYrI+34iwGykdU3gAorTKM/kKRaCaVALDL9ZVDL5/azUiOAhZ3ug/ExUG/r64BGSkF9GtZ5tm3cMB3G6dz+duZNK1Ta7Dbz87hV0HztAuPpwDR7M5cjzPON7MYvYdyaJv97h/6bwf+f5n7G43maUVjO6USIfIMKb27crQpDjm7NnInkM5gMSt65yoKiTjbAHxfiHMaNv3n9rfqN7tKK+uI7+kipsvbxpjxZYj/P3bTSRGh/LxY1Pwtv2+ad6AiDjW5B5Hl5IgqxdR3gHMShrAVW268PqRDazKTgMk46ON1hCKIsgrrKK4tIbi0hq+WrybB+4w/I0cTjd3PPoVDqcbi9nEigV3Y7OaSc8tYcacr9GlRA+G0KG+fDXyBsK9DHLQuW1T+X9osC83T23q2i6E8Jgz6prOph2nSD9TxLbd6SiKwGoxMaRfOwJj/Fm4Zp+HiFfV2flozTbmL9+LQHDd2B48MmUEO09mYV/mT5mvmZJuTX5SY6O6MCAskap6Ow0OF98NuYunDy1lfUEqCMmUKxK5Nro/xcXVfPnDLob2TSQqPIBNW08QFuxHm9ALW94cO5mP3eHCZFLokBhJTLRR2ag0migKjM//b9E7OZZFvxrEf3DXBIoranC6NFqHN+3D22rmrdsmcvv7P+DSDKp3LKuptH7jkdN8t+UQCbHnWtXAqCTDGuL5Vb+yOvUUUkoW3jKFR0YPJSrAH2+LuVmJf12Dk4Vr9lCju/j2ZCpOze1p+nw0vwCr2YxVmhjZIQFFKHQLigPg5vjh/Fp4hJsThqM2RjMb3E5u3f0BLl3DbLdiNQej65JpgwxCbzILrp4STG5BHY8NvOqCNPg5CwdFEVwzvHkbl8KyauYu34Wm63y0bDvmOqNZrsWi4m5o8r6S0kjr/U+k2P9vQrRUt52HFsftFvxb8MxdCyjVNLYcNqrJpI8Nd3I86tEMpI8Ne3w0Qgef+gbufutmnA4XVi8rY24aetHxAuNaUVHZgBYUABVV4HCCNEp5wyL8OX22hFn3jWbu22s9pdY2LzNtE5uXK3t7WRg1KIm6Ogeph3LwV8zUSzdCCIIukeb7Mwj186a42vAgCjzPTftoRRGb8jNpCHARbLIRH+bPKe8846ndfKEx359BQDtv/Np5NXOx/nj5TpwujcyCcvakZTP8PM+ki+HqNl2REk6kF9G2NITqWjv+vjbCvHx5KnkMBz7Pwik0lq44yFrvNF5/7CpatwpqTOtIoqOaUpVvH95Erd2B0AWadDJt/XyuoKASOgAAIABJREFU6dCdJTuOoEkdoQlktSSzppxlmUe5s+OAP3SeIwZ14MTZQmSYk5iO/pzMKERKw/Tz7luGM2mcMdF2aduKp+auRghBXKtgfjl9DKkbE+PerExgBB/8spM6hxOH20Ww8KOaOsyKyv1JY1l3+BSPfvUzAGH+PsRG+jOxbw8CrF5Mjx/IjpQzvPzxWlxujW9X7aNv1zbsOHAGk6pgs5oYPTCp2XHffctwnn/jJ4IDfRgysB0lVbWEBfjy9pzrWLHmIH17xBMTdWGqd0DnOL6bcyMOl5uqWjvXPD4PieTxG0cxcXBTg+Zu8a2YOboP32w5iMut0ysxmokvzmP6sB68sXwLLk3nYGY+ix6Zhp+XheKSGmrq7RzOK6TB5cJmMpFeXErX6EhmDrywjcnbizbz8440NBto4QJdgqVBYHaANdTCirtvosZuJyHUIDzztu0jr7yau0b357bE5pWU9ZoDp+bGJTU0q86ap29BRfU4ly/L3cj26hQ0b513ztRyU9wVdA78/c8uQG5xJfNX7/FU7KmKgqIav9vtzfVzivif0SC24P8NtJCkFvxb4LKo6LoAIVAAqetgNmHqkYjDZKRZfJPjiGrlz9EyO4OHtKdf37YIAfu3nsDLx0rHXoaOxO3SaJ0UTdXeM1iC/HnoizuozC7mcGoeHQYnseSXw5SV16HrksBwXy4bmszAQe1oaHDRvVfcRY9v0bI9bN5+Ek2ThIX5YjGrrFp9iPvuGo2q/vMNL7+ZPZW1x9Lp2SaaiICmVF9r3wCklHhZTHSMieDT0VfzTcYeLC6VnF9LWRt/jMtGdPrT+5t/Yh9/P7QFkOR0rWJ2J0NH0q9TGzbtT0cRgg6x4b8/CMak0V2N4oOFm1kvJRt3nOTTl4zUWV5RFdIOmsPwvamoquejb7cw6qaO9PNJZJhfW0YNMIiBW9f54mwKXv0UvE+p2Nvp5DcUkXpwLZpZwTfEjKlGUJfkxqQodA/54xV+3YdH4fYqRkPnqfx5RAwIZERoJ+o0O9/6rKPyTBk3J4xiWI9E3ntoMoXl1Yzu3Z53jq7nW6+9CKdg6ijDDmFocjzpBUba9bXk69H8XHTwjyTA4s3rP2726KeKqmopq6lnQEJ/Zo3ux3sLN7N83WFPab7brVFb50DTdJBQWdVAaUUtXjaLx4DUK9BGq76tCPb1YsJL89AlTOybzNqDp7CaTOSY7LRqE4QJhSfnrsbLaub1eyYSEuBDTIRBnj5Yss2TUlu352QzkiSE4O4rBnL3FQPJK6viqpcX4HRrvL5sM1azyegfJwRRgX7c/foSsosq8LZZePKusTy7+ldiggK5rNFgEgy/KX8fm6ddSF5xldEXr14wJKoNTqGTtjsXl1sjUCiE+/kQ7mfow9YcOclHv+7G5dbIKa/ks9smU1RVi0lVCPH1JsTqx93tx/FT3j6mxg4kwNb8wcSmWhAoSHSOV2fybOrHzOl8F50DE/lu3X4+XLaDzgmteP+hazxGkJ+v3M281SmeawJww9ie+KkWggK8+e6nvRSUVqPrEl2XPH7HWFrQgn8WLSSpBf8ydF1n8IiOrNp4zIgiKYKhw5O5+ebBlJfV8sSTPyClJDAqiFO5FZwsOMK69alMubYPfk4Xiz80nJUfeXs6g8d3Y/2SPZw4lIWU0LZTNMMmGhqEScAd9y2kpLSpaqqy1s62g2e46y8XN0s8h8AAbwQCKXVKio10S1nZMQb0bUv/vm0vuZ2Uki8Wbudoag6zbh1G547NS9HD/H2ZMeCCbDQdQ8JZdPk00itLuTyuAz4mC7M7DGb2w19x6kwRZrNKeKgfPbr8cVsLp6bx8bFdNGguBHC2ptyz7PnbxjF1VHciQ/wJCfD5Q+OVVtQZpfZON9n5FUyc/TFJbSN58cEJ9O/WhpTDWTQ4jKfyPfYcth44i0QiQhX6uOLIrq2gY1AkfmYrNW0dNLT9TR89RVLbrempftXY2/C1WLl63XxqXQ7Gtu7A1LbdiPVtHlVx6m7Sa/LZUZKGRtOYRc5K3H1q2FF8BBzwZeZ6xkX1IsIW2KxVRa67AiI1EPBW5lqKRTV3jBnG0I7xBHp7ERXc3MQyzN+XoiojGqgIMKkKbcKMY0o/a1SkKQJahQdy1w2DCQny5Z7nFyGl5OuVe3jvq81YTCqfvTKd+NYhPDZ/NafySg1jzMY01aq9J9ClxOHS2HQ0g5N5JXQNCyc9pwRFEXz/60HumTzYc0zj+yez8Oe9SCAtswiXW7uoW3TKyWw0XcesKgT4ePHRXVez8fBphnaOx9ti5mS20elJ13Vi/QLY/OCsZtu/NG8dP20/hi4lUWEBzH9qGjlFRopbFTCpcxIRwX7M3mG4mzc4m3tLgfEd0aSkrLaBnw+d4Kkl6xDApzOvoXdCa6bFDWZAWAJ17oYL0l6ToochgKU5G6lwVQMqhfYyOpPI3BU7cTjdpGUWcjg9j97JseQWV/LVL3ubESQBjOrTno7xkexJyybXXoclyMK8J6aSEB3628NtwR9Bi3Dbg3/+EboF/0+isryWPVtOUHdeFdmPX+1ky9J9mCsaDA2ShPLyOuLjwujVK54Vy+/nhmkDyMur8GhHNE1ny9YTnDqcg73BicPu4t3HF5F5Ih+rzXBeVlSFwFA/dP18fcGF396GhubhdSkli5bs4bW31lBUXE1efgXfLk5BP69HlyKMSqrQ0N8vzT+SmsuS5fs4nJrLcy+v+N110yvLmJOygc25ZwDoFhrJlHZd8DE36YOcLqNEXkCzG/3vwa3r2N0uDpfmUetq8mK9r2vTpKoogk4JrX6XIGUXVXAmr6ldRIf4CMYPS6ZDQgS6lJRV1nMgNYf9qTm88sgkfl34F4+wXbdI3FLHpevk11cxes1HTN/8FffsXEKf0Fh+m8xQhaBbSCva+AahCME1cV1oFxjGZ8d3c6Qsn4zqMuam7WTS2nlNJocY1+7uvR9x//5P+ClvT7MxTSiYzrM30KSOn+nC1KWpUYysSUm1u4FP0zdT4aynY+sIrGYTW9POUGtveh8DfZrGGNapLe/eeiVjuxmRlvtuGk5c62C6JbfmvpuGsWB5Cl//uAezqqDpkuKy2saydI1dBzORUuJrtaIqohkZ8PWycH7GR1UE7WJCsVlMWEwq3v8fe28ZH8XZt39/Z9bi7o4EEkjQ4FCcYoXS0hZKS/Wquzv1UjcqVCgtRQqUUqy4S3ASNCFO3G03KyPPiwkbtgktva/r87/lyfEGMr6zs3Me50+Ow2Rwajsdyyjk501HneNUvdlKRW1rOYWqejPvrNyBrKgoqspPj99E18hg7p84iG7Roej1Om6b2A+jQceQHh2JCW2d4ttw4IwzilZR3cjO41kkxoXibjKg1+voFBlEXkmNs/7PbLHxybKdzv3HJ3dxps7yKqpZmpqOXZKxSTILdh9m8ocLeWbVah479iEvn/yKZQWbXM6vE3RMixrFnKR76OgZSb+AJK4K0SZFveKjcDcZ0ImiU3F7zncbsTSn00RB0CJWvp4Y9TrKqhv4cMl2bA6JxiYbWw5ntvq87WjHP0V7JKkdVwxrk537pnyKzerAP8iL7/94EkEQqCitQ3LICLKCTgDJHQoKKpkw8QOum5ZCr14xHDqc04rglJXV8/IHMzl9OIeGWguNdU0s+ugPXvr6DiyNVjYvP0Tq1tM8MP59Pl3zOCY3I688dw233P2d8xiCAAldwmhosOLtrQ12+1Kz+P6nPdgdMmczihk6OJ6q6kZUFdzdDHh7u3P16G70T+lI545/nZry9nZrNr8V8fubGqabNiylymph8bk0RkZ1ZGN+JlfHduHrUVOdA+Ybz05lwdJ9xHcMpX/vuL+951l1lUzdsBBLs8CjAOgQGBbegTCPK9de2n0imxe+Wg/Ac7NHY6mzMm/Rbjzcjfzw7q28/+0W0s4WoaISG9FioTJ1dDJb92cyOboztTFW6uxWpsQkcbiigCbZwYGyXHZMepi3T2xm/YUzSM1E1KDT8Wa/iST6hdLosOFj1L6bBL9QjIIOmyqjAvV2G5KqIKoCVfZ6PHRuZDQUogIKKtMiBrG2+BB6UeSZxOl46k1sLm1xO3LXuXZl5TdWcbAiB0VVMAo6REHATW/ES2/CYnMw7f2fsDkkgn08Wfvc7QiCwOCucRzJLkIFpg9MZnDXFmua+LgQlnx0BwBT7v2ayhoz5/O06M+lxsoIAh9u2st3qUf56v5pbEvPIi7En9yyGn7afpR6Swspu35wEreP7kd0kC9dYkI4fKaABesO8v3agzw24yo+WbYbh9QSsXF3N3Dvl6uoMTfx4V2TGdBFiz4a9DoneTEZ9IQ0Cyw+Mv93dp3OYXBCLF/eP42Hpg9r85mYt2IPDqmFoOp0Ap2jgmgwW4kJC2DCoEQ6RwU1m+/qkBXNbGT5thPMujqFYH8vRFHArbm7TxQExiZ15lRhKQadjv3nC3DIChdqagkdKGLwsXGyLouZaARXVVX0oo7MhnzSajN5qfvdhLq1iD5++PAUTuWUEhPmT4CPB6VV9dQ2WJzrBS27T2WdmZlzFrk0chh0Ovp3axcf/i+jPZLkRDtJascVo7aqEUujDYddoqywBpvVgZu7kZvuGUFxfhWFhdXkNPtp1ddrkaaly1JZuqzFCzkkxIeqqgZ0Oh0mu4Of3l+Pb6AXlkYroihia5J4/NpPmHrHVeRllKAqKmWF1WSdKqR7SkeiIgO46fp+LF91uLlrBQ4dzeWLb7bz3JMTAXDYJWeUJv9CFTdF9EMQBEQRJoxLIjunAncPE8ndW7uJ/xkd44KZ+9r1ZJwvZdxorS5EUVS+/WEXp88Vc//dI0nsqnVp2WXtnIqqsqngPCqw7UIWJeYGIry0FE90ZABznrqmzXO1heVZaU6CBNq7SxRFXug7ymW78poGXv7mDwRB4M17JrRSJE49leescdmXnkva0QIkWaHRbCP1eA5zn57KobR84qICiArTuqm27s/gj92aUai7zsAL/a8GNDuTn7IOk15dzAPdhhJg8uCDAdfyQq9xlFrqaXBYCfPwIdZLI1sXCRLADR17UGFt5JOTu5FVFQGVsevnkxTiyRlzBkEmH6ZEDmBd8WEGBHbl8cSp3NJxJN56Nzz0bjgUiXivcM43ljApPMUlWlNnt/DgwUU0SNqzF+Lmw4MJo+kXFIdRp6esphazzY5dkrlQVYddkjEZ9Nx6VR96xUXgbtTTOezy6ZnwYF+qay1at56i0jcpmhNni/B0N2ILFJBsNhqabBzPKeaBiVqn3pHzhSzc2uLhLQA3DOlJTLB2j6/q1Yn1+85gtUsIApzILEZWZGea7uoBXQmP8mfBlsNIisJXGw44SZKPhxuf3zOV/Rn5TOybgEGnI6ekil2ntUjm/nP5lNQ0tEov/rojjfX7znAqp8S5bFRKPE/PGsWbP2zm0JkCBAEOny0gJSGaB64fwmMzruKLlXtxSDKyovL0F2uYPbU/RXX1vHH9WBYfOEGf2AhuHdKbmYN6IgoC13z0I6W1jQgCRPsGYDeYmR03idzGIp5J+xSHIvFE11v4JHMxkirze+EuFg184xI1eR29urSkt++Zu5yy6hY7FFVVcUgto/mlulwfPtLie9eOdvw7aCdJ7bhihEb6M25aX3ZtTOfaWwbj1lyo6uvvyatfakJ60677lLq6psseo7xce8l5uOuQs0s5nl3uXCejcGzPOQA+eHIJQ8b34ODW03j7edBksbNn/QkGX53M/XePZNWaYzguSVddqndkNLU81nq9jjXr05r9tETW/pGGw6Fw7nwpKb1j6dI5rM3rdDhkBFEL5/fuGUvvni3RhXUb01j+22FkWeW1d9awbOG9APx49XS+OXmY0dEdWXDmKHl1NYR5ehPs0XYK7JfVh9m5P5PZNw5iUErHNrfxM7m3WuZQZEx/0ln6bk0qJzKLQIAF6w7y5M0jEYWWlM/0kb3YfvQ8kqxw6/gU9u4+D2gDi5+vJ0aDnqEprrVZZZX1SLKCJCkcPJHHotWHmDG5Lya9nl9G3d7qugJMHgSY/jraJggCt8b3ZXl2GoXmWkRBpNBcR0l+DaGBMnUOM2PDevN0YoshcahbSwu8QdSzYMBjWBUH7rqWNGaxpZbpu75wGtYCJPqGMymqxcw4KtCXKSnd2JyWyaxhvXl95VZOFpTy/LSRDOry18bGAB88P40vft7Nhp2nEUWBLnEh3DCxNy9+sBbJrCIECIgGgX7x0c59usWEEObvTUGlptXTPTaMzn8ya71jcn/SsooxGXRMHdadLYcynOusdolBCbEs2KKlHgsqamlssuHlbmLtoTO8unQL7kYD0wZqBN4mabYsF4Us/T3dWfTHERosVmZP7EdNvYWPlu1sleqdOiyJIF9PymsacTSrxZ/NKyMjv5y9adkUVtQjCgIxof5kF1VxOr+Mx5asQyeKRAX6svaJ25zH2nEmhy2nzvPQ2MGYrTZO5Jewb3c+s4eOJcGnAwtyVmORNSK7oWSv0xy3wWFmR/lh+vgn4mdsHSWtt1hRmn3xvNxMmK12FFlptR3AE5+t4eU7xrkYPrfjH6A9kuREO0lqxxVDEAQemjOVh+ZMvew2gYFef0mSLqKh0YbobsJgt7S5XlVUnvhgJvVVZvIyS3jzngUoBh0RKw9SbpMwGfWIooCqwpiR3ZAkiTlvreaR+8fw5ntaWkkUBcaPTWLthjRAq4O6mB5RZBVPj7YF9FIPZfPyG6sxGnXM++gWOsQGUVJWx6Il++kQF8TCn/c5ZQe8PFuO0TckkvmjtZnv1E7dyKypJN4vsE2bkILCar5dvBe7XeLluavZsuLxNtuUb47vzeLM4xRbWmbQRlGH45I6niqrBYvRgcGgyfdZ7Q6G3vsZfl7u/PDyzYQFeNMxMpCNH9/n3Cc6zI+8Iq3w+3J6mtPG9uT0+RLOZJVSWF7LvFW7+ObsPt6/axpJ/uF4GVrfv9M1pbx2fCNxXv7k19eTU1/FewMmMzKypa3bx+jGjmvu51R1CTO2/YwBHcEeRlShkUCjN128W6IHqy7sZ3VRKoqiMLvDKMaF90EQBBeCBJBecwG5OdWnE0SGBnfmnT7TnevrLFa+3pxKqK8nO1+7lwMZ+SzceZQmu4OXl21m6yuuBc1twdvTjefuHcfMyX2564UlrNqcxtJ1RwGNkHjUqMy9eyKdwltIkKrC7WNSiAjwYWDXmDa/44TYUDZ+rBHtNXtOYtDrnFG/tPPFjC6vw8fDnepGCxabnQPn8hmUEMtby7cjyQoWm51dp3KYPaovCVEh3DEmhW1p2Tw0eTDr9p1m/ur9yIpCZZ2ZB64b4jIA6kSBh6YPY3Byh+Zr0YrJL0JRVXJLapx/C4KmRSTpVByCFj2tbDA71xfX1PPcL39gk2Q2pGXQNy6SkxdKscsyH2/cy8xBPekfmMza4j2oqsr4sMEMDExmV8UxCswlzDu/HC+9OwsHvNZKOf6Dh6bw7ZpUhvXsyMbUc2Q2X6deJyLLisu47pBk1u493U6S2vFvo50kteOKUV3RgLmhiei/qOOZfn0/3nt/Q6vlOp2Av78nNTUWrX0aUAK9UATolRxNeIQfm3456LLPy7d9w1uL7qV0WxV2QcAS4Ut9SS0IAgaDjhnT++Pr7c4X325HVbUXuCgIeHoYsVkdGPQ60tI1iwxBADeTAUuTHb1OZPq0FBetn0uxYvURHJKMQ5LZsfssHW4dxpy3VnM+qwy9TnTWcYiiwJOPXN3mMUw6PclBbUepADbvOo29uVPIy8vtsjoueQ01gEqouxeTY7uxpTCTiTEJdPTRUll2WWbCuu8wY8czycBbA8bz4/pDSLJCnbmJ7UfOc/O4Pq2OGx3h7yRJf+w6w8mMYiaO6E7H6JZ0k6eHiXeemsqH32/jx8JDNCXIgI3bd/2Mh97EY0nDublTitPv62xtGY8f/I3chipO1ZRgd6goKty391dOXP8E7voWxW1REOgRGMGqcbeTXV/J6Ih47KoDT72bU4gwq6GEeefXYW92k3/7zAqGBnfDo41i7cHBnQlx8+GCuZrnkiZyU5yrWOc7v+1gU1omOkHAx8Od/p2jUFUVN4Pe2cl2pXAzGbBaHa1sV7rEBjOsj2tE8LHv1pCeW4IKLHpiBl0jXU2WK+vMbD6YQXKnMH7ccJhdx7NdFLxrG5t4bcFm+vWJ5VB2IYIg0C0mlG3pWc66JUVVGZIY13J9RgPBvp4E+3pSWdGgdZyqWqNA5oUKl+s26HX4XFK4XlRR5/z/xYjUpcgvrSG5UwQ3jelFekU5+87n8+jVQ1r2EQQuvS1H84rwcTehk0X8PNww6fV09+nII/EzEAWR4SGapvDgoJ7cc/hNHKqEwy4hqTLGP5GklMQYUhJj2HIow9m1ByDJCoIA3u4mbhzVi2Vbj2OXJGaMbd112o4rgMr/GDFJQRAWoNmWlauqmtS8LAD4BYgD8oAbVVWtaWNfX+B54FogBO2TlQO/A3NVVb0iKfZ2ktSOK0LWmSKeuuUbVFXl+juGUV3ZgK+/J7c8OBqDseUxGj++RyuS5Ovjxn33jaJ3nziWLN7Prt2Z1NVZQBBwuJsYMLo7190+jBkPjuGO4W8538znjuWye+0JBl/dgy8++kNbKAigqkgOmT49Y/jw883Ol7IoCnh7u/PZ+zezeftpeiVHc+ZcMQsX70MURR6+fzQ/Lt5PZIQft868vKDh2FHdST9ViCgK9EyKIb+gClmSNT8oyTW8//D61ZQesvHxVZMYGxt/xfdz+RotAqHXizx858jLbvfcgfUUWzTJgh8zjtA/JJozNeVU2SwEuXlS77BSY29CUhTs/jLd4sOaC3o1IpKSEN3mcW+Y0IfU47mIgsCB47k4JJk120+yacGDrQjbvTOHMn/tAa0XVgUZaJBsvJu+jRp7E492H87S7GO8nbYZuyxjEETNVLX5e1FUleOVRQwOi2t1HQl+IST4aaTbDYPLOpNO79I1ZxINGMS2X1k+RnfWjnoURVX+1rsOoHNYEAsfvJHssirGJP+9eOGlWLb+qAvRSOwUSlxUIC/ef3Vzi7yKh0mLdF2orMPqkHA3Giiprm9Fku57dznFlVoq6yLpkWSZmWP7sGzrMVRVi/RNTenG/ZMGE+rvTaC3B/UWG3qdDr1OZWzvLs7oVXpeCQu2HsZql3ji+3VsevUuqurM1JmtPHT9MD5dvsupZO7n5cbApDiuHtgihtklJpj0LM1nccaY3pTXNHKhrIaahiaqGyzYHDKVdWZG9IlnBPE8cglBAgj38+bjWybx0oot1DdZSekYxTs3Xs2J/BIGdIpGFAV+KdjELwVbAJBVmVGh/QlxC+C66FHsKDvMtKhRGEXXZ+Eivl+Tyk8bD7darqpaRKm6wcLS12/F38fDxQanHf9rsRCYB/x0ybLngG2qqs4VBOG55r+fbWPf5cB2YISqqqUAgiCEAbc1r7siAa12ktSOK8LJw7nIsoLkkFm7JBWL2YZeLxIY4sOUWa6Ew9PTiNlsByAiwg9BAE9PN158cSXZl9QgoaoIksSSDzdw3e3DCIsJwmDQ42iOsMiyyo7fjyLqRUxWCclsR3E3IOp1IMIzL6+kf984Z53T9Gv7ctusIZhMBm6fpb28e/WIYcSwBDw9Tfj6uDNhbDJ/h/FjkkjpHUtTk4OHn1qMpcmBr4+bSwu3qmoF3LZDDTSMg/eO7vlHJKl3UjTHT17AYNARGuLD/c8sxt/Xgxcfn+iSBuzoE0hGndYaLqsKqWX5CILAvJP7eLXfOILcPLk7oT/Ls9OZFd+b5RuPcy6/HFEUuWZoEl1igts8/8ETeSiKio+PO1W1WrqkqcnujMhdCi8PEz5ubtTZrVxkLULz9VQ0aa3pu0uzsMra9zYgOJZ/dR3Ewowj7C3Nw8dgopu/qxL6lSDaI5h3et7O9rJ0fA3uTIroh0HUU9JUzam6fAYEdsXH4FoDdSlBqrGZyTNXkuQXxfPTRuLv6Y6vh4kbBiVzIreYp3/eQIivJ8O7deRcUTmP/LCGxiYbn9wxhf6dXcnlofQ8qmstxEb4s2pTi2egv48H37x1MzpRdNYICcDn917LoIRY3px1NXNXbqdbTChDu3Vo9Rmr6iw4JBk3o57oUH+KK+sI8fPmgeuHEBcewOpd6fSMj2Rk33inRQdAYnQIvzwzi6KqegYmtHRxebubkBUVUQBfdxNGg56Hb2hRtb/2qmS2Hs5EVeHNeycxoLtrLdZD04cR5OuJyajHzaBn5Q4tVf3g9UPZdTybgrIanrq5hdTnVlSz+1wewxM6ENcckRuR2IldL3WgssFCsLcnoigwrJueM/W5xBtjyG0sxqbYERHJN7cUj8+Om8zsuMmXfR72puXw3dpUJ8n7M2oamvht10m2Hs5k+7wHL3ucdvw9hP8hNUmqqu4WBCHuT4unAiOa//8jsJO2SVKcqqrv/ul4pcC7giDceaXX0E6S2nFFGDouiV8X7qW+xkyHLqGcPVEAAugNrettZt08mB8WajUHhZYGFKvMe++vd6aXnFDBTVGJiQ+jzmrlYNEFTGGeOApaQv7H92Zy+nAOj75zA6lbTjNoYk+O5ZazYVM6DoeM2WLnh6/vxMfHHW+vtu0+IsJb+2v9HYICvTl8NBebTcJul6iptaBvbrkeNTyBbbvOoaoq5iAFd72eYRFtF/5eTHX82Uj3rRemkZlVSmS4P69/uI7TGcUY9DrWbk5nxrX9nNt9MnQqpVt+5kRxMaJZQPUDo6An2qvlMz3bZyTP9tEGrq9y9mrnUnGxLfkzft+ajqyoNJit6EQBWVFxdzO4XKeqap5zBp2OeYOm8/zhtXTxDeG1PhN488RmZFXh8aQRANyfOJSjlYW46fS80XcisV4BDAntSG5DFWHuPi5aURex4WQGr67bRueQQL679To82pj59w/sQv/ALjRZ7RQU1VAd0cDtqR8jqyrBJh96yWqVAAAgAElEQVSWDnmmzc9XYzNzzY7PsNhtGM1ufNhrBs9eq11rdnEld85bgQOFqgYzC7YfZtHuY5rKNDBv435+ekgzXc4vreHut5ZS22jFzSGApCArWi2PJp8wC50o8tuBk7y6dKvz/KtTTzEoIZaU+ChWPj/7st/DO/dP4uvf9jEwKY4+3aJ45IPfKK9r5PXvN/H2/ZO5bkRL4bnV7kAQBIx6Hb/vOcXqXemczi0jMS6Ub5+/CZNBT61ZK4gWRZHusa3TvT3jI3n17vG8NH8DT33+O188NZ0tu85w+nwpj90+kh4JkU5PwLd/3KLVRqmQeaGCr565AavdQWlVgzZBkCRmzFuKTZL4cusBdr90rzNVKAjg4aHTZBJUhUePfUC1vQ43nYk3kx+gqKkck87I1KjLR1EvhdXu4MX561sRJAHQI6A2yUjuGolssNiwOaRWxsPt+D+DUFVVL7LrUuByM7B8QRCeAX5UVbUMQBCEUOB24MKVnqz9KWrHFSE43I+fdzyHqqpYGm0s/3YnPv6eXH19a++nGTMGkpwczTs7d3GwvhRUHR1KfBjYLY4VK7VQuaeniQFDOxIY4s65YBv9vvsKEQF5iicdv65HlFynMpXhOhYn17G7Po0PJo5jx+5zWKx2dptKmGytYkzEX6dMVFVlXtoBjpUX83Tfq+gW+PfWHUndIwkL9SWvoJKZNw7Ay8OEp4eJiVf3oFdKHO98vQmPepFbvPvwyIDWHnT5xdXc++pSmmwO3nvyWgb0iHOu0+tEunXVLDqiwv1IP6v9FMNCWtq1zVY793zxKwXFtXg5tOiSqgdREsinBtqoSb3rmoG4mzThwpljW9ciXcTVVyXy+9Z0vD3dMJl0lJQ3MHvagJZz2+xc8+mPlNY3cufQFJ4aP4wdkx52rp83uKUoWpJkErxDODT1CQCqas1U1ZkJ9PWkk09LjZNDlnn6142cKSnj5UmjmLN2Kw02O2kXStiZkcPE5K4u15idV8GTc1ZoKt+ApclOVJIP0lAFm+KgyFp92fRabmMlNsmBJChI7haeW7iBPe8+AMCS7ceR7AoYtGigdEkRvAD07xTFmfwy4qOCWLzxiEY8BLAJCvrmTcOCffnq9ZsI8vdCVVXeWr7D5fxTBlyZ5czApDgGJsUBMPbNb5EUBUGG1LP5zm0O5l5gzi+bqcmqx6DXcd+1g5i/+gDW5klHTlEVWw5l8PPGI1glCUFRcSgK2aVVLufKK6yivtHK2r2nta5FWWHxH0c4fCgPq83Bq59tYNWXLQXssyf048T5Iq34fFJ/zE12bnxpITUNFrzdTdx57QBskqSRy8BGnk9bwo1xg+jlH8tt+78g31zJ1KgUHk+cRKm1EgUVhyJTVWnl874tE//U9DyWbjjClJHJjB7g+gxchO0SWY+L0OtE4qODMefXU2ZpRDJqucm+CZHtBOnfxf+7SFKQIAhHLvn7G1VVv7nSnVVVVQXhsnGvm9BScbsEQbj4wi8D1gA3Xuk52p+kdvwjCIKAp7cbdzwx/i+36949kvM7GlB1AiZRx433DmFSUgL9+3ckK6sMzwQfntm3BWu9BPWX7GgQKBvqjeqmI/6CSL/OsQyd0puXzh/EJssU1tdzXqplxktX8c6eXdhQ+PDAPsZ0/GuStL+kgC/SDtIkOciqrWbPjff87Wd1dzPyw9d3NovpuQ7EWUWV2AUFVYLC7GqXOp4fVx9ka2oGUaG+1JutqCosXnfYhSRdiofvHkVCl3D8fDxcpAD2nsklq7gSh0NBaM5zCc3BuN8PnuGVGWNbXZfRoOf2Sa5FyxchSTKr1h9HkhUeumU4s68dgK+3Gwa9DllW0F9ie7H6+GlK67VU2sJ9R3lqfNuChBl5Zdz3xi/IssL7T1yLJCs8/+kaAN59fCqDerakmPacz2NXZi5NDgcv/76FBpuWkpVVlb27M1j1w0HunjWUgX21e/Dzr6lU15pdznf+aBXXTOtDam0Gt3UYddn6o2T/SBK9IzhRU4Au18MptAgwICGG9QfPIksq904cyDUDu7F8XzoOVaFXdBgrtqTx84ajhPt6UVKqPZyCAL6ebtTqNYmBaeN7EuTfckxPNwO1Zm0Qf/a64S6F1FeKWsGObATRAd6RnqQXlqKi8uyqjdQWNmBQNLKQerrApTja7pD448AZsouq0IkiISFeKEaBlJBwZj2xELPFhtlqx26X0ekEBg/ojEGvQycKjOjTmUMHczE22+RcCn9vD964ZyKdIoPQ60ROZZdQb7bikBSqG5r4YNFO7psxiDWFJ6iMqGBvZR17K88xt9fNlFhrUVBZW3SM55OmcVPM1SzP3Yo1y4Mnf1jL/FdmktAhlPpGK4+9+ysAh07lk9w5gpDA1u3/vl7uPH3zSH7dmc70Ub3olxhNRkE5A7vH8fBzS6iobMStVkHUCbwyexxnz5cQFx2Iu1vrCGY7/kehUlXV1jPtv0aZIAjhqqqWCIIQjlaM3QrNxdzP0nYq7orRTpLaccUozKtk37bTpAzpQqeE8L/d/rkRw3h92066hwQzuqtGYvr27UDfvh3412+/YTPLoMP1KRQE6vto0ZS07gInhUrmn95Ez9Awys16QKBXaBg1TU3Ym329At3/WpsHwMtgRFVVREHA2/jPXpx/JiIAU0Yks2nvWax2B7OntERgLpTWsOC3A9gdMjmFlRgNelRVZfTAtmfIoGk5TRiV1Gp5QlQItuZiXlEQmD44mZ2ncqgzN9G7Y2Sb1/VXWLb6MAuX7QegvqGJ+24b7lz3y5F0Pty4B50oclP/nvSMbknVmC4hT2VV9ciySkSILwAb952lqdkmYsWWE3h7mJwz/u0HM11IUnSALyoq7gY9nYMD8XN3I7eqBqMN9u/PRjZLvPr+WjYuexSAvIKWSIgogqJobu+9qhJ4ZkSLjtKlcMgyn6/dR3ldI+9PnUFlfSOnAssY26ulXmxcSlc6hAUgyQpdooPJLKzA0ASSHU5llDq3yy+pRddMRiYP6U55TSMHT+cjCNDgsDu3EwSBhY/dxNwV2zmcVcjn6/czKDGODqEtyuVXgifHDeP19dsQEOibFMPshSsACPPxQvDWoVpkjM1WI/HRQSzeqFmXBPh40C0ujPQsLQPx9PQRdI0K5sZHvkdWXCfZDgn2H8zijkl9uXXaANxMBsIDfMguqGTc0JYC7jqzlWue+habXSK5czjfPT+DLjHBxIYFuHSWdY8MJt3PQGWLjSAXzFUEGL2osNYzKkx7rmfFTmDNvBLKS2oxGQWyCio4X1DOpr3nnPtp4rBtBwUkWcHa5GBUz86MH5CAu5uBqBAt5fzeK9N5/q1fycwuR1ThvmcWY7U58Pfz5Ocv7sLQRklAO/5XYw1a8fXc5n9/b2sjQZu53oAWF1sJjEKrZzoHfK2qatvFbX9CO0lqxxVBlmQem/U1Foudpd/s5Octz+Dlc/maF4BpSd2YltSt1fIGm41dWfkIqgASGIwCIR6eVDRZsMuyM9IrNxtnApwqK+O3GbPwMRl5cMM6zlSUoxNFJEXhXGUFdlkmo6qSTv4BeBha17b0DA7n85HXcKqyjFkJPf/t+xEd7s+aL+5ttdzbw4ROFBFF7fd3x7SBjB2U4CQVoOk17dmfqc1+TXpGDU/E8xK9pYrKBs5nldGrZww6QURSNQPT6wYn8fR1w9l1KoevN6byxHdreXv2BNyMV/YzNlvsWseZqmK2tAzyNofEW+t2Xrw6Fu47ylvTxnLfiAEcyrnAMxO0VOKBtFye/Vh7H71873jGDkpgeEpnVm1NQ1VUJg5NJMjfix2HMkGAqSOTKaqt597Fq6lutPD8+OEsu3sG2RXVjE7ohKqqHC0oZv7OgxwWitBJOiLrWgivsXlwMxp0JHYJ51yWRmA6xbWkSu0OCYNe54zkrTl4hmV70nBIMg0WG1/cP43uMa61Obml1dz94QpNjFBV6RsfhcmgR1EU7Jd0L4p6AYMiYNDruGlMb05mFWuCnUBKomthd4fQAGotVmRFxSHL7D+b949J0ox+PRid0AlFVflo616szVpJvu5u3DU9hQhvb5Ijw/DxdKNfYgz9EmM4dKaAa69KJibUn6ROEXh7mOjTNYq6hqYWyxQ0kqlJYDiw2iR+WHWQjjHBjB7clV6JUfRKdFWnXr71uNPcOO18cfP3oGfRnFk8M28tu45n0a1DGD82bOVcfbFzP50gkuwfw6wOQ6myNxJi8kFRVB5+ZwUXSmsx6EW6xobQMSqQ+99Yjs0hoWuugxszsCuhQS3p5tXb0/nwx+3ERQQwdlAC3686gKKqlFc3MGVkMrmFVfyy8RhXD0lkUL/OZOdVIssKtfWaTltldSOV1Y2Eh7b89trxvwuCICxFK9IOEgShEJiDRo6WC4JwF5DP5VNnX6C1/hvRyJEJjWBNAroCj17JNbSTpHZcEeTmmZwiK8iSgM3q+FuSdDkYddrgpzbTIUlRqbI28UC/ARh1OtZnZnC6otwlLS6j0i04hDd27eBcZSUqmvGru17P8Lg4blixlKzqKgLdPdhy6x2Y9K0f7XGx8Yz7Bx1ol4OqquwpzMfP5EaPENcB2M/Hg7ceu4an31+NrCh8s2IfMyf2ddnm24W7WbXmKHa7jF4vsnXnWT59byagRXjuuG8BsqwQEe7HnNvH8uWG/fSPj2beuv3UN1mpM1vJr6ilsLKOP46eY9qg1lGotjBtYm827ThNk9XByKEtkS2dKKJrNoS9+PkMej2PjBnssv++4znOKNHOw+cZOyiBXl2jWPP5PUiy4jTXXfzu7ZzJLiE2IoBXNmwjq1yLCD372yb2P3MfCWEtHXdDOsXwr0WrNHkBk8hDD48BNMXzi4OdJClcKKrm4btG0adHDFHhWhfVZ2v2smDrYTqFB/LzkzNxNxowW+1OIcZGmx1JVlqZzW47dh6z1eaUKEjPaR7kBegQFkBeaTUqYDDqePOOiaAonM4pZWTfeLrEhpBbXEXnNtzlbx7em9eXbsXdaGB4UtsK6n+HYG9Ptp7N4ve0s85lJ4vKmD9rGn4eLY0JO49lcS6/jFnj+hLcnPYb3rtFMd3X252bJvXllw3H8HQ30CMhkqOnClzOdfR0AaMHu0Y4SyrrKaqsIzbM/6LaBpHBLSRDEATef3iK8+/x29926liJCOgFkY6eGokNddP2q6huIC2jyNkR+v6T19LQ7GUnAH7eHqz/skXo9CK+/XU/DkmmsKyW7AuVTjuYzfvPsmn/Waw27bxZFyoID/IhKMib+vomunQKJf1MIYNTOrnU+LXjyvE/qLtt5mVWjb6C3YepqposCIIBrcA7XFVVezPxOnal19BOktpxRTCaDDz77g38tmg/Y6f0JvAfvHyK6uq5UFdHv6hIdKKISa/n6ZFDeG/PXhRBQUGLGkV4+3B9YncWpZ9ARXOSV1SNSnUPDuZIcRG/nE53KisDdPIPYM7w0fSePw8VqLCYKWlsIM7vnwkE/hN8cGgvC04eQ0Xl63FTGRHj2trdIz4CN5Mem92BosBDb63g4ZuHk9xFK9ROPZyD3a6RDUlSyDxfiqqqCIJAWXk9DknGZpPIza/kSOYFfD3cND2jjALk5iLji7Pv6KAr79xbveE4VTWa0e+877Zz3+3DSekZh14ncs/w/szfdQhFVYkL8md8UpdW+08dmcymfWeRZIWbxmtF4cfOXuDEuSLGD01k8brD/L7zJGVVDYiCQLC/F0MmtAzCoiC0UvfOLKtEbCZosqrSr7n1vqyynspqrSZKUVWqay2cPFPIlKtbooBLdh9HBYqq6jmZV0r/LtFY7S0+d9X1FgY8+TneHiZuHdGH8upG/jh4luQO4Rj1emwOzS9NUhRnjU95bSPv3TOZeb/vI9zPm2fnrWm+dvjkl13O6MrXq/ax9v1/udRxTR3QnbG94jHodRh0//UUzxc7U13+VlSV239cwZK7ZuBhNLD9SCYvzt+ArCjsTcvl51dvafM4j9w2gjtvGISbUc+tT/2IzS6j14koimbYPHpQVyqqGwgO8KbJ5uD7tan8tOEwKhAa4MXLd4yjpLKeGW00AJyrK+L9s2vp6hNBkaWaAotWmC2rCpN3votOFPmq/910840i0N+T+Jhgsi5UkNgxDB8vN3y93XnnsSkcOpXPtaNcZTlUVeV0VgnJ8RGkpuWiqiodIvyZMiKJmnoLu49mO7vcxOZ3RElpHUabptSfmV3Gzt+e+i/f/3b8n4EEoKqqQxCEw6qq2pv/lgRBuKJUG7STpHb8Awwbm8Swsa5Ri/paC28/vQxLo41n595AZKw2wz6Qf4GXNm0h0teHY0XFCILI2M4d0et0/H76LKM6dWRGUjIrzp3Erip46A1M6aLVRLw8bCQv7diCXhQpM2uFu54GY7Prt+som1VTTWljAzcn9WTJqTSGxsQR4/vPW/7/CY6Xl9AkOdCLImeryluRJE8PE4vmzubGJxagqAonM4t58NVlRLl7ERnmx4XCapftHZJMUXENUZEBdOoQwoihXdl/JJuE/tFsOp6B1SFTUWd2qddwMxqYd++19OkUyZViV2qmkwxk51fy0tzfmTQmmU79IqhsNDOxR1csNgfPTxqBKApUNVpYevAEnUODGJ/UhfjYEDZ/o+nPCILAqaxiHnxzOSrwy8ajWKwOp+8XQGFZLaIoohMFFEXlxQnDWXcygy93pXJVfAfenDKWEG8vTAY9VruDQE8PZ1dSeIgvPRIjOZpegChqZetbdp8FAV54dCKCIDAiuRPb07PwdDNilyReW7qF6CA/THodKmB1OJAUhdrGJr7ccABJVhAdcDyriHmPTCMswIeCshoe/fJ353U/MHUwo/vEM7pPPBMen+/8LIqKkyABVNZZ2J2Ww6i+rpHJiyKS/w7GJHbmbGmFy7Ks8mqWHznJtcmJvPLdRidJMFvtbR3CCS8PE7mFVYwc1JVl644QEeLHRy9Mo7quiQdf/QVJUnjw1qs4eaGULYcynNHbsupGBnaPc0ap/oxXT64kp7EMN9HAy8nX41AkFuXuQRAEshpKQYZPzq7HXW/irk4j+e71mzmXU8aGPadZueUE08f2YnCvDgzu1Vo76rtfD7B4w2EURWX6uN6s3HycH9YcYlCPDuQVVzkVtnt0icTSZCevuBpRD6JdQtTrCPD7+xrFdvwN/ocobv+bKBUEwUtV1UZVVZ2dRs2Ckn/9w7kE7SSpHf8Wfl9ygJNH85BlhbnPreCxOdfSKSGc5/7YRFF9A/m1dehFEUlxkFpQSHVTE7KqsiUrG4MoIqkgGCHC29s5+w7y9OClq0ayJTuLDVmZ2jIPT/pFRPHkoKFsy82m3moju7aaIA8PYnx9eWPUGF4fOfqy9h7/STw/8Coe2LyWADd3bkhoIY0ZeWWs2pLG0D6dGNa3Ex2jAsnM1wY7wSxTXFNLRUUD/n4eNJpt2GwOTEY9JpOBgABtMBJFgaceH8/1b//E9gsF2oAAdA4LoMHq4MyFMgC6R4f+I4IEEB0RQHFpnVbALgpYrQ6OnMznx+Iz2BwSUQG+bHqiRWPt0SVrSSsswaDTEeDhTv+O0S73d+73W52Dal2jFQ83I6BFxLw9TNw2dQArszKaxQ0FVh47TUZZJZKisOFUBrcM6EW38BDiQwI5WVRGg83O3qx8hnaORacT+fiNm3A4ZDKyS3nwuSWoKmzbc457br2K4EBv3r51PLllNQR6e3D1nO+cNTwmg473bptETmkVX29MxS7JWmu9AEajDpNBT3xUMN7uJurNTXiYDJhVlS6RQWw9mknPjhF0iw2lW4cwdp/Ivuz9fHn+BtR7JjA6pXXU7d/BgyMGEh8SSEldA2vTz3GutAKDTiTEx5PKOrOzPVsA5t7ftvjir5uOs3DVQZK7RLD/WA6iKDJ2SCLP36eJDO9IPY8kyTgkhdVb0sk317kUeQf7eeHvc3myEermS6FFS6MGu/nQyz+OiZF92Fl2mpfSfkFRFU7XXcChKqTV5HF9zACOL63iXFY5BoMOu0Pixqv7YNC3jrgdOpWP1Sah0wms2X7SmeLNvlBBZXO3o0Gv41xuGQ6HTGSoLw/NvIogb09OZxQz6pIC9Hb8/xeqqk64zKp6NKuTK0I7SWrHv4Wo2CD0eh2qopKTUcITs7/h40X3uLRmG3U6PAwGnh91FZ/vS6Wovh6bJDtNWkVRJCFYq1M5XFzIbat/RQASg4Jxa64tmhTfBUVV+e7YEepsNvSiwNLrbqRrUBBuzZ5g/y8IEkBycBh7ZrkaoqqqykNvrqDRYmPj3jMs++BOvnxlBkvWH2HrgXMYm1QqiutQgUcfGAMqREf5U1pWT9cuYXi4t0QgKurMFFfXO6MFOlHk1lF9iQ7255kf1mHU65l72+V+/5fHy09MYt2WdPx9PPjtjxNUVDUw7bq+nN61W3NiV1Q2ncrk16OnmDmgJ402G7KiYtSB2d564uV/iVhleJAPnz4/ncOn8hnSqyNhzQW44VkBPLR0LXZJ4nRJOSa9DoPOgChoaaWKBjMWu6NZdFPlva83sTU0nBcem4DRoMdg0JEYH050RADllQ34+3rg7+tBTWMTN3+whNKaBp6+7ioXmxC7Q+bMhTLumzCQ2BA/iqsb+HnnMfp0imRy30S6xYTi7a4Vyr/x81bqmgUYz14oR1XhpQV/sOq12xnTv4sLSTIZdEQG+5JTrEUC7ZJMQWkry6j/CMZ1i+ebPYfIqtCIyL+G9WNCd42MXT+yBzuPZXHXNQPpGhtCUUUd3h4mpweboqh8/MMOFEVl79FsBASsNgenMlsKrIf07cSClQdQVQeNit1JRHy93Pnk0WnExwT9Zffk271msqHoGDGeQfTyj3MuHxHanQ6eIeQ2lmNXJU3fSrazOHcvpoZAVFXFZpf4fMlu1u0+zdJ3b2917PtuHMoLn67BYnXQ2KTVLvl4mnju7nHM+WI9sqIQGx7A+YKWaNvwFC2i171Ze6wd7bgIQRCGACdUVTULgnAL0Af49Er3bydJ7fi3MHJST7z9PPjgxZXUVpvRG3Sknsvj3v4pvLRlGwA2SeKX22aRGBLMmM6dyKio5Jsjh9mUd15L/6hwulxrK86v1TwHmySJJkli7YxbEASBjv4BWCUHFRYzsqpi1OkI8vR0EqT/LhSUVHOhtJZ+STEu6TBVVfF0N/Kv6YO5+/pBSLLCvgPnCfD3okdSSydRXGxr25Bwf2+GduvAjpPZiIKAXicSE+xPbIg/y5+99Yqua/PO03z67Xa6dgrlnZeuw2TU4+lh4qap/SgsqWH+ot1YbRJdwoJ4YdIIjuQVcWO/Hty5YCV2WeZgTiFL7rmJr3ak0jk0kPjQIGfd1EW8+fBk5n6/Bbss89r9EzWxTTcjb3yzEb0o8sQdo5i34wCy0tKxGOnrw40pydglmXk7D2CXFfSiSJ+YCErOVVFzvo79BWZ27stk3AitM1KnE/nu49mczymjU1wIer2OfWfzqGm0oKgq32w8xKszx/Lr/pOk5ZZgMuoZ17sLz//4B7tOZWN1yJgMevadzeO1m8e5CA36XmLuetH/6+Iy258U4n+ecwu1jVYe+GAlkiwT4uflooj9d5BkhfS8Yo7nFDM5JZFQ/9Z6QJdi9/k8rM3dXwaxpYPv8RkjeHzGCAAWrD3I92tT0etEfnxlFnHhAYiiQHSYP+VVDYiiQFxUIGWV9Tx2u6ZuXVhaw90vLKHJ5mDOwxNYvjuNkmZNrOgQX5I6tW3MfJHgmIx6PPUmboht2/8wp7EMhypjEHWk+HfiaE0OdkXCb7SK//5QzuVq0dDcwqpWzxRAr4RI1nx+LzOe/oGSSk2nKtDPk2c+Wk1K9xgemDGMx5u1lURRYOqIv7caasc/QPM7+f8QvgJ6CoLQE3gS+A7NC274X+7VjHaS1I5/GylD4nl27o189sbv5Pd34+3sI3hcaCEvsqqSVVVFYkgw7gYDvSLCOVlVpv0OBa1A+7GBWifV5C5d2ZKTTV5tDW+NGkungEDncdz0Bp4fOpzvjx/l2oREIr3/eztX8oqquOPFnxEEgf49YvnshRtYsek4V6V0crb8n8ku5ZG3V2h+ay/eQNcOf+1hpigq57PLePXGMbw6cyzb07NIjA4hNsS1ED2ntApPk/GyA+28BTtpaLRyOqOYY+n5DEpp6XxavzmdymqtgPvnlQeZ+9J1TO3djc2nzju92fSiSOeQQN6YNo4pn/3Ewr3HuD4liZevGeU8jo+XGzaHxP4Tudw1ZzFJncI5eraQ8qoGBAHeWb6dzKoqpOY0jigIXKit46Nt++gcFOhM70iKQpW5iUEBERwy5qKqEBHm2rbtZjKQfEmbescgf8Rmic2GJhtv/LKNVS/Mxu6QeOzbNTw8fzUNTTaszRESm0NCURQarXYXkjT37onMeGsxpdUNBPt6UtvYxJn8MtYdPMvEwYnMXbQVWVYxGfSEBHgTFxHIT6/cTGWtmf7dYlvZzVz8Dr9Yv59zheU8NnUY8RFBfLlhP/M3HkRoNh5edeAU61/5a/uo+6/qz/1L1qDXiQzo0LZR8caDZ7FLMoIgcPTcBeLCA1i1Iw3BR8f4Xt25dXI/woJ8qLNY8WoWVtyemonZokUJl/9xnA+en8aTn/2OucnODaN64ZDkVmkwVVV58rPf2ZuWw8DkOD59bFqbkdv0mgImRfZhW+lJ+gV25s2eN7Esfx+nagv5V+fR2BNV7np5CYqq0iEy0OUYB0/mkV9czferDmBusjN9bG9WbD6OQS+SX1yDoqocSMsl50Kl85lQVfWyIq3taEczpGZl7qnAPFVVv2+WD7gitJOkdvxH0HtgJ35Y/wRJH32OVZIQBQGTTodNltEJAgOiXHVYUiIiKM1sQFZVREll/4HzDA2NxtPLjfmTpzq3kySZC/lVREYHYDTqubN3X+7s3ffPp/9vQV6RprTdZHNwNruUbp3CmPOAaxps5ebjmJu0VNWvW9AuaQQAACAASURBVNJ44Z6/Np5+58P17N6XiV4n8sPXd3Hd4Naz5EXbj/L5+v0IwDcPXU/PDlqKQVVV1h0+S155DZ3jQzh1StP0iY1uIZrHsgtZeeIMCAImg46BfTvQYLbyyM9rSCstA0Xlmp4J3DakLyaDntScApocDuyyzPr0cy4kydxkZ/+JXADyi2vIL25JPbkZ9HQNDWZfdRFCc1ebThCxyxppOVNarnXoNc9Yq8xmXnliFtv3ZRAV7kdSQiQNFiubD2YQHx1Mj84taZS1m9P4eP5WvPU6hDA9jYqEXhXJL6/hYGYB+RW1KKqKrnkAdjPqCfDy4PrBSQR6u9bZ+Hi6s+Htu5EVhVFPfu30b3tj0WYcNgd6UYcsS/h5uzfXXIGEyovLNqMXRT6/byqhvt4uEandp3NYvOsYTXaJkpoGVr0wm5+2H2v+jrRJw8UU38Xvra6+CW8vN3SXpLhK6xsRBQGrQ+LT7fv5fvZ1LteeejQHT1nzE/TyMDKsV0dq6i28u2w7Fg+Vk+lVDB/ShW93HmZl6kligvz45fFZ9O8Rx8JfU9EpKlcPTcTbw405d41n5is/MXfRNjYdzODTx6e5nKu2oYn9J3NRgcOn88kprKRTtGsUdF9FBs8dX4IgwA0xg3i4q1Yre0uHSyx7vGHxu7dRUlFP/+QWv8PthzJ5/as/kGQFRVFRVJXj5y6wY8HD6HQid89ZQl5RNU02BxfKahGAmyelMPmqJDpEBdKO/zD+b0WSGgRBeB64FRgmCIIIXHEKop0kteM/inv6p/D5/lSCdW4klZtw7xvItP49CPF27ZL5YOwEmhwSO3OzCd/YxCF7GnevPM+Pyx/E2CyOqCgqj/xrIfl5FYRH+DH/x3vQ6f+ZyvQ/hcVi44OPN9LQaOWpxycQ+hdSB4N6daBH10iy8it44rZRbW4zrG8ntqVmNP//77VzDh/Nw2aTEN0MnM8uJSS4daRoe3qWU4TvSFahkyTtP5vPm79swyHL9O4YyVvPX0t0hD9hlwhZvvvrTsplK25RBmaOTmHq+F7c8OQCMnR1GKtVTFbIsZbQ9XqtS7FPbCQBnh5YHfXMGtDL5To83Y14uhudJPAi9DqR5+4ex7hBCVw/uie5ldWoqoqHycgTKzZQWtfQLPEgIoqazxgqmEwGF+Xxxz9Zzbn8MhAEFr50M52jtGtatzkdSdL2CZTdMAsSkk0m3NebnnERGPUnNJkIFWRZRa8T+ePVlomj3SGRejqfuPAAYkK1CJ1OFLln0gA++nWPU5m9qt7CxUDHpTGThduOUFmvFRDf8sFSZEXlocmDuWOMZkzs7W5CVbVj+nhotU/Dkzqw42QOogDxEcE8PHkIoE0CHn9lOSfPFhEbFci3H92KsTnS5WYwQHPkyd2gp6yinkB/T/R6HRaLnRffWY3DIeNp0LHi09vx9nKjyeZAdhO0Cxbgl/1p7DyTg6KqlNU1cq6onD4dI1n1xb9oskmEB2vPd16JVmfVZHNwNq+UP8PXy52uMSGcz69AbFS449mfefjW4dwwoUUeIKuhFFnViuTP1RU5l9c5GrHKNkLdNDLTITKQDpEtxEZWFDamnsOmyCiy6rzXRje981589fJN7D6SxStfbAC0Mbxv9+h2gtSOy0IQhC+AJWgebjcDd6qqWioIQgzw/pUep50kteM/ikeGDmJqZGceumU+52wSnqlFDJg+sdV2OlHk0/GTWHTkGMuXbUFSZWprLNTVWghuJibmRivZ50tRFJXCgirWrTtGZGQAKf3+a0J9V4Lffj/Gnn2ZyLLCF19v4/VXpl12W5NRzyfPtW2PcREj+3eha1woggDhwX+v/Hv7rCHM+2YbUZH+JHeP4svFezhzvpjIMD+mju7BnM/WU9zQgMFfh5+nGwd3Z7No4X7uumEQ4XEBIGgF2GcLyxG99C4ECbSuuPxyLdIysEcHJFmhsKyWi/EVASgtq6eorJboMH8+/WkntlP13Dq8Ow+PGUxhWS3f/rqPztHB3DK5H9+/fjPvfr+VyBBfjpwuoLahiRf+NY5xgzX33XBfb8J9W4jejifu5mRRKV/tOsigjjGU1/9/7J11fFX1/8ef59xYd/fYGBsxmtHdJakgoIAdX7uxG1tsRfmqgCghIindzcjBAhasu3fznPP744w75gaign71d58+8LHtfk7e7d73fcfrVcOe9PM8NKR3k3uRX1qFySLh5KCjuKKGbYlpLN5whFg/bzRaEauzSJHBgE5RcHLQcr6wnIEdo/n6wSlU1Nbx5oodZBSVMXNQY2uoxz9eTWJKDoqisPjFmwgP8GL38XQ+WbYbB0UgJNiLyEBvpg7uhJ+7C4eTs5k5qsEPr0dsOFtPnMNqlTBb1X6rZbtP2IKkLi1Dee3mkZwrKGVyfSbw9ZtHkVFYRpC3WyOZgJfeWcPxpBwAcvPLycouJSZKLcmOateKGpOJwqoacvbmM235lwT4ufHfebMQRDV4ArVcfSEDZTFb6R0Wxvb8bDQagUHtonHU61h/NBlvVydig9Xsj6e7MxcLZSS0CadTq1DOZBbw8I0DmjwXoijw1dM38vWP+1n000HMFolVm080CpLGhXZlV1EyFeZa7o9TM6pnq7N59PgHyIrM7VHjGRvS1ANw0YbD7EnKQNaqGTGTVcJktZJedFFmUq9jaM84Nu9PYeeRc3SPj6BXh2v3OvD/nf8VMck/SSrwNhAELAVqABRFOY/ak3RF2IMkO1cdvU6ddgPQaATMZitP3fstKUm5zL5nMJNmqP1HDlott/VIwHpDJWt/TmTgkLb4XpQ5cXVzpN+g1mzffBpZVvjozQ1oXfU8OWcs/Qe0vibn7uPjikYjohFF/Hwv31h7pQT7X7ktwvixnRg/thMAP6w9wpLVh5BkhcTTOWzdl4LFKqNYZOJ8vHlsxmAeenUFZovEV8v2sXXhA4zt1poVe09RazTzwPyf2f3GPY32//SUwQxoH02ApxuxIeobpiDQKL3u4eZIkJ8HxeU1/LLnNBarzKotJ7nn+r489OYKsgsq2K5Po0WID306R/PJMzew8/BZNu1PQRDgWEquLUhqjviQQD6Z1lBSfeQS6166YyTvLdlOfHQwXVqF8sC7P6IAp/KLaN0lhONn80BRA7t20UF0b6uWb1qHqYrPP86JwCrLTYQdk7MKMZgsOOq1vLloK73jW3AyPc824VVdYWBffgbT0xey9NVZXNe3XaPpufE92hEb4sf0d5bYdKeGdmrFlkOpfLFqH/07RXP3xN4M7tBguiyKAtFBTbMeF6xWADzcnQgP9eFAYgarNx5n9JD2TOnaHkVRGPDB2ygKFJfVkJldSmzLQN57+Qa27kpmUN8423Tkq++v48TRTDRBIhZHhWNZ+bwydRj3j+qNt6vTJUUudVpNkxLbr9FqREb1b8vSdYlYJAlNfCXl5iq89OqHGk+9C1/2aGzVk1iRglW2IiGzrehws0FSWVUdsqw2cA9IaMXRlBxyiiuZNqyxiKUgCLz58Phmm73t2Pk1iqLMA+YJghABTAUWCILgBCwBvlMUJe1K9mMPkuxcddw9nVUBQFHtwTh1NIuzyQVYzBILv9huC5IucNcDQ7nrgaFN9pN6Jp+Tx7KBevNLwGq0kPMrMcaryfCh7dDrNNTUmhk5/O+dmtFqNY3c3o1m1afMQa+lT9doQgO9MNVbM5gtEidScpg5qCs/HzyDxSrZGnUvRiOK9Gvb8Ak8JbMQV2cHqmvrbSIEmDAonkfeXolOq8HT1ZmqOiP+Xq6cPJtPTqE6fWi1yui0GqySzJ0vfs/pc/lQb2ORmlnEyi3H8fNypU/n6CbncKV0iQ1j0QvqNJ+iKESF+JBXUoVOK3I6oyG4iAz25pNHJzfadsuhVLYeSWPKkE6N+pkAHps2iLe+24rJLHEwKYvjabnMHt2dHbpzCPVlNoDSylrScop5atEGsosrmD2kKw9cp77Jx4X64+roQFWdEZ1WQ5i7O09+ugaAnOIKhnWPxdlR38TW49c8eMdg3vzoF8KCvZn73EQkq8yc11ZisUjsO5zOqm/uxdXFgRED2/LLttM46LXc/shCunWM4M3nJtMurrFWltFkwaJRsNQ/9d/vOc7j4/oT4NG8KOTvJdjfg/53e7Ar/xglXjJLszdzZ/TES67v49uR5dlbMUhGJoc17yRx69gelFTUIsky903ui4erIxarZCu1/Rp7gPQX8O/IJAGgKEoW8AbwhiAInYAFwHOo9uq/iT1IsnPVqa0xYrFIKDJUVxrwD3JHqxVxdNLRvkvkJbfbufUMRw6mM/76brSI9mf+J1soLakG1L9ZAWgZG8jY65raJFwtBEFg0MCmprzXknOZxXz+7Q5ahPty2/S+NtfycUPas3H3aU6mqO7uYwa045bre1FRVUfLCD8MJkuj17LNe1Pwb+FFoKcr0UE+PDLhtydc73r5BwxGC6IAXu5OlFYa+GrlgXrBSREXR53q1yfLvD5/I4IgoCgKQX4eeLg58eAby0nOqJ9UVCA80AtXZwfeX7QdAVUm4M8EShcQBIH/PjON42m5RAZ5M+vl76iuMyIrUFRew8rtJxjRszXpuSW4ujjy3JfrMVskdh1PZ8O7dyKIAk4Oaq/m4G6tGNytFbe8uoSkdDXYignz46s5U1m4/jCF5dUcT8ujfcsQCipryC6pQAEWbD7M1H6dsEoSbk4OfPvwVDYcSaFXXATPfbbOdq6KrHDibB5zF25FURRuGZPA3RP7NHtdvbq15KdvGjJORpPFVkZTbVzUr596YBR3zxrAdTd/DMDx0znk5lcQHtrYRHfOA6P4+OttbC7NwYJMXIj/H7JIMZospGQU0jLcDxfnBvPlxKRsNrxfjKQE4T6sgqDoph52FxPs5Mv3PV9BQUEjND0Po8mCs4OOV+8a3ejnFwdIJrOVTbvPEOjnTteLmr3t2LkSBEHQAiNRs0mDge3AC1e6vT1IsnPV8Q/0tHW66nQaKssNLFh5H3nZZbRq3bzY2/nMEt54eRVmk5V9u1NZuuYh2saHciYpF7NJbVKeeXt/ps1s/s3mr+L0mTwen7MUrUbkvbdupEWLpjpHv4eyilpue/gbJEnhQGIG/r7uTBqjBoFajUhmfdbMQa+lRbgvnu5O+NWrczs76hnSK5bNe1MQHESWnT6D8biaWcotq+LVm5oXnJRlhf9uPkRWcTkGo2q1IStwoWVWEAQ0oogoQE2dagSbV6zq1YiCQFigJ6/cN4bH3llFUVk1AqqWUbe24bz/xCTufPF7m55OcXlNk+PnFFXwytcbcXdx5LlbhuPq5NBkTXM4Oejo0S4SgB9emcmqXaf4ctV+ag1m3l+6g89+2kutwUSAtxtyfblXlmWGPfQZiqLw7v3jbSU5gNfvHsN/1xwgKsSHPh1aMOHJBeQWV+Ko1/LFkzfQqVUoRZU1tmyeRoCnvlnHsYw89FotSx6bxl0jewDQKz6Sn3cnIcsKc+8Zw5KNiTbdrCWbjl4ySPo1jg463n9lCpt2nGZw39Y4OzdkAz3cnYhvHULquUK8vVxwctJRW2dqFMQE+Lnz0mPjeNJkIau4nJbNlPh+C1lWuHXOYvKLKtGIIk/eOZTBveJQFIXv1xxGsqofWcLyWjE2uC+KonCgLAmNINLVq3WTTM/FwrIXs/VIGs98tha9XsuCOTcSVd/MXVBSxb0vLKW6xsjcx8bx06bj7Dqsinq+9cR4e6D0V/AvyCQJgjAUuBEYBRwEvgfuUBSl9vfsxx4k2bkmdOsVw7FDGTi76ImI8sPVzQkPT5dLrr/4b/JCP9OsOwbQoXMEOp2GoBAvfP3+fkfv5T8eora+NPXz2mM88J+mZcLfQ15Bhe1NWFHgbEYR3y7dh85Jx+KfD1FTfyyT2cr7/93GsnWJLHlvNt+sPMB3qw/Tu0sUW769j2+2JfL5hn22/TrrdeguMQn43Y6jfLhmDwrg4KFBWyUhiiIv3TOaNTtP0bZlEOt3nyY1s4gAH3fy60tcoJbrPnt2Kj6eLjg6aBEFAY1GIDzIm4LSKlIzi3jytqHM/WoTgb7ujOzbNCv37pLtJKbkoNWI/Lj9BDeP7Pa775uHqxMjesSxYPUBnBx0WKwydUa1THa+sAKdVg3yPFwcKaq3sli182SjICnA240nbx5i+76yxqDe6/rJQQAfN2cevK4PC7clEurjTuK5XJT6NQdTs2kRoGZyHps+iDG92+Lv5Yqvpysms5XDyWqpuM1vaGP9mraxwU2Uo8/XB8vzXplCVk4p5zKLmXrnfERRYN4rU2nTKqjRemcHHa1D/X/XcS9gNFvIyimz9WG9/PEGAnzdOXe+hIMnsgDVYPnOcQMQBIHl2VtZlLUegDujJzAyqNcl930xP2w6ikWSkYwWtiWm2YKkX3aeobCkCllW+GrZXowmqy3ozq8P1u3YuQKeQp1ue0RRlD8sjW8PkuxcE55/eypZ6UUEBnvh7PLbmYKISF8eeWoMh/afY9LU7oCa0eh8DSfZ/gjR0QHs2pOGKAok/Ma5mc1WzBYJ18tcf+uYIHp3i+ZAYgYx0QFs3nUGq1XGqshIuqZBTm5hJQXFVfWWErDr0DlmT6pmUPtovt5yGItVYljnVtw9suclyyybjqfZglJZJzC8dxsmDG5PalYxw3rF4enmxHvfbkNWFApKqoiN8CeroAxFhncfm4BPfbA774nJrNxynNLKWjbuPYPFKjNv8XY+fvoGPn9uaqNjmixWjp/Nw9fNmWA/d/Q6LQLgfwkD1QtU1Bg4ePo8HVoGE+DduJHe38uNr5+dxtHUHF7/ZrPt5y1DfcnIK0VWVIsXQQCdRsPo3m0veRxJlqmplzLQiCLOjg5YrBI3vvUdGUVl9IqLIKFVOKeyCpEUVVZgQLuG518QBNq0aFCqHpoQS2SQNzlFFfS5wimstPRClqw8REKnSLp0iKCq2kB0pD/b9iTz2vtqEPLUAyMZ1CeOT7/eiaW+0Xz3gbQmQdKfwdlRz6QRHVm2/qjt2uqMZrLzy5DqdaQG9Yyla7twALLq8jDLFgQgqzb/io8ztm9bTqbnoxEFerdvMLptFxtkE7Ps1TmKbu0jmPvZRkICPRlm92W75gjKv2O6TVGU5nVZfif2IMnONUGjEYmKad7e4FIMGtaOQcPa/fbCv4mjx7JYuHgPoigwcng8PbtfutcmL7+CO+7/BqPBwgP3DmXsyA7NrtNoRF6do04VbduTwuvz1iFJMhqNgKgVsVhltFpR1QVCLbt5ebjg5+1KRZURJ0cd/j5uuDjp2frqnVglCXdnx2aPdYFB8dGcysiDWhnBJLNp3xlq6kwcOJmJKAh0bx9hyyK4uThwNrsYSVZw1GtxuqgZPMjPnXum9mXvsXS27E9B4yAS04zNiiwrTH9+IVn1PmcDOkfz+PRBuDk7MKBzyybrL6AoCje/uJiKGgNajcgPL8+kqLyaVuH+6LQa8oorueXVJZjMVuKjg8gqKGdY91huHduD21//gZwiNUvn6erEj3Nn43aZ+6IRRbrGhXHyXD4+Hs6E+nuQXVJBVlEZVklmZ1IG94/pzaTe8ZRW1fH4pAGXtRU5kpzN4eRsRvdq06yJK6h6Td+tOIjFKjFjcncefXE55RV17NinmjqLgsCMyd3JK6y0WaQcOJLBoD5xTBjVkaMnz6PVigzoHXvJ8/ijPDR7ENcNjufzJXtoExNIt/gIWob7kZJRhMUicde0him1GREjOV9XiEYQuT5syGX22pgxvdvSs10kDjotrvUlw13HzvHEJ2twdNfwwi0jiAxWM3UL5s64uhdox84VYg+S7Fx1CnLL+XnZIdp2CKP3wGszqn+tqKkxsn1nMjEtA3Fzc+T7pQeIiw1i1Ij2pKQWIEkyVqtMRmbxZfez/1A6ZpMVqySzcnXiJYOkC2zdnUx2bhmjhrQnv7CCqRO6sWV/Kmu3J2EyW/Fyd2JQz1imjO7Cix+to6LSgILCnLuH41I//u3soONKhGRvHtSFipIalvx8BABZUCgur8FskXDUa9FptaqMgwLjB3fAx8OZr37cT7f4cFpFNi3h9OoYxbwnJ1NRXWdr0pZlBVmWVeFDk9kWIAFsTzzH87eO+M1eJItVorCsWlXPFkVGPfIFoiAQF+HPvIcmMuPFRVTXqeXI/NIqNn/YIHfw/cs3M+7xryiprCU8wPOK+p4+enQSy7ce479rDvLwB6t4454xBHi5kV1SCcDzSzbx3aPTmt1257FznMspYVy/eIxmCw+8txKz1cqqnadY9+4dzW7z/cpDLFq+H0UBg8GMRlQzhxfKzSZJYvveFCJCfXBy1OGg13L9darafO+ElqxZ/B9EUcRBf21exqPD/XjzifG27709XfjwuRuarAtw9GFep0sJOVweH4+GEvyx1Fwe/mAVoIpsbjqUwu49ZwF45p4RDO519YNBO5dAsU8QXsAeJNm56sy5bxF52aWsWablvQW3Eh179UoB15rHnlpKRkYxCODr60ZeXjkbN58iLNSbYUPbsWlLErl55ei0Gior6/DwcG52PwldIvnqGw2yonDdJQIkq1Vi6+5kCour+HbZfiSrTMf4MN59UX0jcnZ2YPXWk2i1IlHhvjxyqzpCnV9Uidkq4eigpe5XatdXgiAIFBZW2753cXLAbLHi5+VKlzZh3DmpNz07tMAqSYzu1w6tRmTKiMtbwXSIbRhFzy2q4JZnv6PWYOLl/4xmYEIrBneNYcthVZZEp9WgFX9bOV2r0TCiRyw7j6XbSmGyonA6s5BDZ85jsUq2tdOHNxaMrKo1UlHfY5SUUUBljRFPN6fLHu9AUhZvf7cdgJq0XPaeyOTJSQN5ZMEazFbJNmmmKApzl29jR1I6d43oSbSfF3M+W4vVKrPz2DmenT28fh3UGS/9/EiSXO8lqmCVZN598XpWrD1KTAt/Fq84QFllLYoC2/emotdpeeSeYbRs0RCkOjUj8fBPZu7ChpKpAhhrLLYM2r5jGfYgyc7fgj1IsnPVMZutajOyoApJ/pMoKFBLG46OOlXGQAEBAVlW8PZyoUf3aJYuP8ixE9nMX7CTRx8a0Wh7SZLZtCUJgKXf3o3FKuF5iUDqgy+3sn7rKSRJRhAErJJMRaWBTUdT6RQdwrnzJeqkkAId4hq87565ZwRvfbmZyFAfBvZo9buub9Evh1myMZFAN1dEQUBWFKrrTFTXmdCLInu2p7BzyxluvqEnMyb3QKv5/TYw2w6mUWMwIUkyz36yjnsqqpl7z1g+XrGLb9cdJtDbjazCcp76ZA0WSWJc33aEB3gxNCFW9cIzW3DUaVn0y2G2HjnbSMgRYGDnlnSJC8PZUa/2DQ3twvThjYM4L3dnwgI8ySupIszfE3eXy5cgAZZuOWb72iopRIf6EB3iy31jerHvdBZ3j1Jd71PzSvhpfxJGi5UXvttIjIOqgyTJMlW1RqJCfHjghn7sOHaO2WMSmj0WwLSJCRiMFswWK7fP6IuLswOP3K0OAlw3Qg2s75uzpH61Yssw/S9hkSXSKouIdPPBWfvngrZgPw/O5ZYC0KdDC+4Y14tDJ7OwyBItwu32I38p/3u/an8b9iDJzp/CYrby+n2LSD1xnjufG0ffkR148d0bWTx/B+27RNI6vnn38j/Kzj2pJKXkMXFM58v6qv1RnnpiNJ9+sY2O8WFMGN+FJUsPEBTkyYmUXESdiLubIxpRREHB3a3pG+/3Sw+w8Lu9AJSX1zJoYBtWrDxM544RTeQCsvPKMZmsaDUi7VoH46DXcbCykKcXbsDJQceEuDiskowiK2TnN5SrWkb6MWZgOzW4qv/ZudwSFv9yhK5xYYzq1bzOk8Fk4aNlu5BkhbKqOsb0b8uxMzlk1wtEyiYJyaoGawu+28PuA2l8/tZNjUxXr4SEdhHMX7EXSZIxyxIfLN3J+H7xrN1zGllRKKms5ZMVu8kpVnuG5q/aj16noarOxPnKSr7dlkgLfy86BQepDvdA++ggcsurqFWsaNx1eLg6svqt26iuM9lKNhXVBg6dOU/HmBD8vFz59tnpnC+sIDLIC1EUqK4zcveby8kpruC5W4YzqEtMo/Me3asNB5OyUIDnbx1By1D1+Vr/yynyiip54OhyfnzvNnzdXRBFAa0oIlkksvPLCQ/zwdfblUl94zmelMPkQR24fnBHLkcNRsq6luHn6IaDY/Mvxc89Mob/fr+XsCAv+vX8fQHxX8H07d+QXFmEt4MzG4bfzdHSHNKrSxkXHo+r7sqkHS7gFeSKlAwIAv7hHjg46lBE1X/v02W7mTqqi60kacfOX4U9SLLzpzi2N42je1Ix1pn55PmV9B3ZgehWgTz31pSrfqwzqfm88vYaLFaJA4fT+fqTW676MRK6RpHQtWEa6YlHRjFh1ieUV9ah02pY+PEtONZnMMaN6dRk+6KSaiwWCUEQKCqq4u77vqGmxoQsKwQGeHD/vUNsU3EP3D6Y1+etw8vThWcfHs3J8wX88smPAFgkmRED2nAmLR+TWeL2KQ1j1UtWH+bLpXuxWmWWrD3Cpy9O5f53f6SovIaNB1OIDvUlNrxp75Bep8Hb3YWKGgNWSUbQCzw0YwDPzFuDLMLMiQksW9EgO5CeWUJZRS1+Pm6czSnhkQ9WodeKvP/QRJuK9I/bjrPrRDqzRnenQ72ydatIf354ezZTn/kWSZFxcXLgw+W7kBUFvU51re8VH8mRlBwsVglZVstNRWXVLN13HEVRyC2rYmLPdrTOD+BUUTHptZUYsGCwWNl24hxHz+XRNSYUHw8tO4+d4/3vd1BcoWoy6bUaPFydyC2p5PHpg2gVrgY7O4+mk1VQhtFs5aPlu5oESUMTYukSF4Zcb7i6bMsxxvePJzO3FElWcNBrKSqrJibCn6WPz+DrDYfYtDUJQSdQnFVOUXIJyfuz0Go0TJuUwKwplx+Ffz3pJ/YUJ6MVNAQ4ejLAvw23HficAmMFUyJ6G8zqXwAAIABJREFUcV/sCPx83Hj83uGX3c/fhVmWOFamGtmWGmv59MwuPk/eiygIbMlLYUHf6b9rfxIKsouILCucKyjF2VGPIArotBo8XB1t5U47dv5K7EGSnT9FSKQfiqLg6Kwn6iKhyPKiSh4d/BJleWU8tfh+EkY0DSh+L2azFUFQS19Gk+VP7+9KUBSFmlqTTZzQZLYybuylr2XWjN4UF1cjCDBjWi/WrD9um0zLzSvntTfX8NOy+wGIDPPh87dvsm2bXVqJRhSQZAUPF0fiIgL4/JWmjcKV1QYsVrUUmFdYyczHv6WiyoCoA/RqebA5NKLIM7OG8sD7KwFYv+cMO9efQasoeHs6M2tiDyaP6MSjzy8j+WwBHduF4VsvXLlg9X7ySioRBPhh81EevnEA53JLePeHHZjMVo6n5bH1o3ttxwr0cef7V2eSmJKNySzx7pJtGM1W/Dxd+fb5afi4uyDLYDCZSUzNxVGvZcaIruTV1bA+MQWTxcqHa/YQHeyDRZYpqzHg5drQUxTq22D18fKCjbb+I1Abvs31wdeCNQeYNFAtXcXVN5076nUktA5v9h55uzvz3vfbWbb5GIpVJj2nhIdvHsRXK/fRu1MULesDrjA/T56ZMYTB8dFs3ZPC5i1J9c3qClarzPFT2ar3OFBZZWDuh+uxWCSevG8kvj7qPdUJmvrnSkAriEzb+wElJrVXbGHGTmZG9cddd/k+qr8TvahhenRXvjt3mAS/CL5I3ouMgqwoHCzO4mRZHvHezYvH/pqCimrWHElGqv87O5aZz+GMHOa/cCOJp7MZ0K2l3Y7kL+TfIAFwtbAHSXb+FMGRvny0+mHOny2ka/+Gxsqdy/ZRkFGIxWTl62d/uCpBUvu2ocye0ZtTp3OZPb2pa/y1QBAEXp0znkXL9tO3RwwRoZfvjfDycuG1lybZvp/z+Bi+XrSH3NwytFoNwUGel9x2ROdY1hw8Q355Fa/eNOKS626e0J0jp7JJzShCFAVb5kcnCTw9c6gtc9IcT36i+ouhKJgNFvRWEYtFIr+wCqtV4qFnfiArtwxPD2deeWqc7Y2pY0wIO46dQ1GgXZQq7WCxSMj1ujk1BhOPffQzr981Gm39yHugtxujerYhMSXHJphZUlHDTS8uRpJkag1mRFHg2dnDGNZd1b95ecZwvN2dWbQtEZNVotZgxqHeouKR8f1w1GlpFeJH4EXj92EBnhjNFqySjJuzAwO7tGTjgRQcdFr6d2qQaYgO8WXZq7MoLK+hdbg/+09lEurvSUW1gaSMAoYlxOLl7kx2YYWaDZTh5y0n+fG9W5k0tGOjRnFQfzd6dYwiyNudzZuTbD93cdZz+4yGEfnFKw6w/0gGiqLw/vzNGAwWggI8eHTWdQQ7e+Eg6lmXd9QWIAFoBRFnzf9+Y/bznUbyXMcRKECXVW9Sa1Ub1c2yxE07vuXYhCevaD+1v2pwN1klTp8vpH/rKGIu8/tsx861xh4k2fnThEb5ERrV+IWsdfcYdTzZ2YGuwy8//n6lCILA1IkJcGk/zWtCQqcWJHRq8dsLm2HggNYMHNCatLOFpJ0tpF/fS0/ouDk58O6tYxBFsVHWpMk6F0e+fG06b325mTXbTqLIqn5Sl3ZhjOx5eckFQQQUBX2FjEYGBxct7q6OXH9dF1auO0pqehGgZu0Ki6tpEa72lQT7eaDIqgFuYVk1r32ziVU7T6HUd3gqijodlpiaS0KbxlmazrGh3DisE4s3HMEiyZRUNHYFeOaLdSSm5PDkzUPU57hvRzYcSaGyzsiTkwcR4OmKIEBUoBqgbjtxllnzlhIT5MO8O8bx4cOT2HH0LK3C/Wx9RPdM7ENJZS1RwY2D2kAfdwJ93Hnyk9XsPZmJJMu28/9p50mWvHQzSRkFIAooooIiKXz90wF0GpFlm48RHuTNgpem22QXCkurOJKSQ0LnFhw+molGI3Lv7IG0uUgx29/PDa1WBAVSzhZQVFyNXq8lrmUg9w0byXvJazlanqHauyDi5+jOe11mohV/v+faX8UFyxVBENR/wA8DZ3PLrsUUGdWyp0G68mxvdKAP/xnRk0827MdgUbdbtPEIG9aeZOHrNxHg8/er7f+/wp5JsmEPkuxcE1p1jWb+ibepKKoittufNzj9pxPTMoCYlpe3p9hyPI0nv1mPIMBHd04goVXjpvfPluxmy94Ubp6QwNhB8ew+fA5JUl/NHPRa5j427jfP44snp/D0x6spKlNtLmpqTTz94Cg+/3YnmdmltnUXjGwvcCApE6skoQBHUnI4kJTVZOpMlmXC/Jt3vJ89ujuHz2STnFmEtT4wAdXiT1Fg2e6TrE1KJSbYl4/vnsDGl26/5DW8sWI7ZdV1nDCZ+WzNPkSLwqSBHQj1b8jSebg64XFRoGmxSvznnRUcT8tl9pjunDyXj8FkselBWawSxeU1fLR8F9V1RhDqPcckhZ+2nrC9Z+QVVXI8JZdOcaHsOHKWd7/dajOlnTquK34+bowc3FgQdeKozri7OlJeUcfx0zmUldeBAB4e6vmFOfugE7WgwOzoAcyOHnjJa/+7kBWZr87uJKOmmP7+bXni0Gr0oobF/W8mxkMtYyootqAToG/A7/u7HxIfw3trd3Mh7SjWKVRbjCxYuZ+tB1MJ9vNg/gs3NjK/tWPnWmMfFbBz1ZHrXygDI/2JS/j/0UtQW2ti5+4UCgor//A+1h9JwWyVMFkkvt92lBvu/4rH3liJyWwhO7+c79ccJrewgje+2IRVkomJbMjeVdUYUa7g019suD9LX7/FJkAoCgKFJVVk1XuDgapj5OXhzPmcMlWvp7yW9ZtPoamTQVGYOCCeId1aNdtI+8mK3WTkqcHW2r2nuf31H9h4IBlnRz3/fWYas0Y39mnz93bDUa8FJ5Eqg4nT2UXsTsq47DXEhfrhoNUgyQpLNx5l8cYj3P+u2vCuXOImJGcVciajEElW+GbdQVuTuU4rMmlAeyKDvIiPDuKHzUexWGX0Og13T+iFVhQbfai2WCViIvx4+K0fmfvlRqpqjJgtkqqHNaojk8Z0bjINKIoCZ9IK+GLhLk6dyeXmG3rw9AOj6JOgqo23cPFDI4h46J0ZE3J5Paq/iy0Fp/nq3E7W553klZOrqLOaqTAbWJ6pyiZUm41M3PIVpWbVP6+jVwjv9fh9KV8XBz0iApo6BaciBa1ZjZdW7zhFda2JlMwiPvl+11W/Nju/QmmwJrnW//4J2IMkO1eVJW/8xEin6dzV5QkMtca/5Ry27kzm+lmf8uo7a2xeU9ea+x9ezKtzVzPt5s94be5qW6P37+GGPh1w0Glw0utIP11ITkEFR06dZ/uBs3i4OaHVanDQa/HzcuXIqSwSk7IRBQFnRx33zuh3SfuLi9lzIp0B936EPtiZbp0iuePmvvTu1hKdTkQQwNlJx1svTOapB0bw6rx1fPXdbu55YjGmUhNag4KuVuZYWh4v3jYCR4fG6t4mi8TGg6nc/NJiVmw/zotfbuBYWi7PzV9Pbb0Y5IQB7YkM8sbDxZE37h3D9OFd8PVwISbYBye9DlCICbl0D4rBbOF4huoP5u7kgAb1jdRksfLClxvoftt7PPXpmibBUpCvB1ZZlUwI9fdke6Kq5CzLCh1jQigorWbfqUxMZitajYBoUpi/dC+xLQLo2jYMnUZEqxXx83LF19OFjNxSjGYrOq2GQF83bpvUk2C/5rNoABu2JmGxSlRVGwkN9mJA71jbh4dP0zZRazVRaqphY/7x33wO/w70YkNQ7evoioOoRS9o8NA5UW6q47GDK7HIkm3NZ32m4KZrXpuq1mjmqcXrGfXaAr7YfMD2XHm5OvHWTaPQS4LtDVQQUIPoei7ng2jHzrXAnre0c1VZ+tbPKLJC3rlCkvak0HXY1elH+j28/eEv1NaZ2Lk3jdHDcugY3/wk09XkfHapbYptx+5URo44T6eOEb+xVWMSWoWx5417QYAXP1jH3jIDiqIQFuSFu6sjX78xg2NncunVOYr5P+zGXG9w2iLUh+nXdWuyP4tVIjW7mMhAb1sPzec/7cNgUpucu4yOZtqwzgB8+sZ0TiXnMaBXK7w8Xdh94CwCAlarTJ3BbBOeRAGrVRW/vBCAigIE+LhTUKpaiAiCwMfLd9syMDqtBp1W/Tzm7+XGsldnAVBZY2DEQ59jlWQ0ZQKv3TuG2DB/QnyaDzbyy6qY+f5Syuon2Sw1Bh6d0IfjZ/OYMrgT9769HEWBLYdTee1bPbeN7WkzxT10+jyiqstJRl4ZGlHAQafBQafDo17vSpIVnPRaxvVpx+otJ7FIEqfPFdAuOhBRI6LTavj02SkIgsCc24bx/qLtxMcE8exdI22imwcTM1i96QSjh8TTo0uDlIS5vs9GVhT2J6az2e0o+YYKnm43ga7eUaRW56Mo0MYjlP9F+vnH8nibkWTVljIzqg+VZhO37FrMFyl7+fbcQcpNdba1HTyDGbTuQ0ySlde6jmV97hmqzUbe6DaOcFcv3lu7izWJyQB8unE/3aJD6dRCVWwf0j6Gli/O4qn3V2E0W/nP1H60ivTnxU/XERboTY/4SMqr6vByb16g1c5V4h+S5fkrsAdJdq4q3Ud1Zs9PB9E7aonuGPm3nENkuA9nM4qwGq28+vpqbrm5LyNHtL+mx7zvniF88PHm+k/FCv5/UOjyQjbo+ftGsevQWUICPImNUnuZQgO9CA30AmD0gLas2nwSgJTMIvKLqwjya3zMO99YSlp2MW4ujqx4bTZODjr6dYwiPa8UAegY09BcHBMVQExUQ89Ur27RTBjVibT0Qm6f0Zc1m0+w62g6oS19mTU6AUEQeOf+cXy97iCDOsdw/eCO7DmRzmvfbKZlqB+HzmTZ9vXETYOb9JF8sHQny7cdRxBUXSO9Tkvvti1sk2zNsfrQGYor1AkwjShwy5BujOzZhsz8cg6dOU9EkDc5hRVYrBI/70wiJauYb59TtXpC/T3UtEQ9oiBgscp4uGqICvZh5qhu7DmRwV0TetOhZTD7j2aQV1zF0B6x/LL3jK2UaaiXnujXtSX9ujY2560zmHnqtZVYLBI796XSplUQwwe1Y/yIjshSw7vO/tPnKIwuAC3MPbWKL3vcSU+/WDx1zkS4/m9OcgmCwMTwhkDcUaMnv64KGQWrIuGg0WGULGgFEQSBuvqm7RePrscsS0iKzBsnNvFxrxsa97Ip4OzQeIovMtibJW/Otn3/4+ZjnEkvIi2rmK0HU9FqRBbPnUmgr72Z2861xx4k2bmqPP71PWSdHod/mA8ul7DjuFpYLBJvzFtPemYxD987jHat1U+jb79yA6vWHuXrr3dRUlLDO/N+YcTw+N/VG5VfWMnPG4/TvnUIPbv+dgPqdWM6MXhgG3btSSWmZQAhwV5/+LpADZYG9bz0JFyblsG4OjtQU2dCI4rodY1LbZIsc/KcWpZSFCN5JZVEh/hy23U96dexJe6ujgR6N4zRK4pCWXUdXq7OKCgYzVbuntXf9njrVkE89qtz6N42gu5tI2zbZ+aX0611OLeO7c7kOf+tvw6RuIiG4EuSZT5atotFv6jmulqNwK3X9WB497jLBkgAnaKC0em0CMDdo3oya3BXHv1gFbtPpKPVaHhgSl8UReDDZTsxma2YLQ2WOPHRwXzy6GRWbD/O5kOptixcUXkNq3ae4rbrenLbdT1t65e8OZvC0ioeemMFoMZXHeNCibqMBIQgYFOoUhRISsknLaOIuOhAEjq3YN/hdAQBKg0G9ZO6FVwtjgiCQAev35d1/Ltx1uq5K643C88dYnRoW6ZFd2FLXiqDglux+OxhjpblABDg5E6+oQotIuGu3gA8PKYvkiyTUVTOzP5diA32o85qRidq0DUz0ffduiNIssyFyrnooCMls9AeJF1L7JkkG/Ygyc5VRRRFWrS7ulYkl2LX/jR27U3DaLLwxvvrWfj5bQA4O+kZOSSeRQv3IjqK+Pu5NRsgldXW8djqDZisEm9dN4Ig94ag4eHnl5JfUMlynYbP355BVMRvf8J3cXFgxLD433UNp1LzmPfNduKiA3hw1sAmtgunzxawbkcSA7vH0KVdQ9lQFAU+f+VGNu46Q/eOkfh4ujTaTiOKTBvWme83H6VLXCiRQd62xy7WUSqprEUAnvpqPUfTcokL96Osqo7C8mr0Oi0aUeSj+yfQIfryooB7T2by2co9mCxWzuaU8NiMwSxYfYABnaOJDlEDC0VReHndD2zYogZvei8z3v4apg/vjKP+tzWBusWEsfzJm6g1mmgdpgZeGo1oi04cdDrG9mmL2WLlTGYhd4xvrHjdvmUw7VsGM2fmUPrc+UGje/lrLJLESws3kVFagUZRDzHviUlN1l2Mk6Oel54dzZwXfsY25KWAVivyzEOjmb9oF44OOk6n5nF6q4DiKvPkg+N/87r/V3mw3UAebNcwiRfnqepnPddpBO56R+qsZp5oP4S9RRnUWEyMDlOn/lwdHXjxhmG27VZlneDJQz8jCALDQuJ4rctYPl66m8SUHP4zuS9tWgWRX1qFBrXkGxboSde2/6yg0s4/F3uQZOcfS6Cfu2p1odcS8iuRRk9PZ774dBZnkvPp3i2q2e3n7z/M3szzKAq8u30Pb13XIOBoNFrUsoCAzYn8WvDCh+vIK6zk3PlienSIpHeXhqyV1Spx34tLMZgsrN12ipWf3I7nRb0Y586XkJiUTXCABx1bN+5lOZdZxNjubXho6oBLHnvb0bM89eU69ViShKzAmfNF6LUaZAWM9de9cNOR3wySLvTkCAhoNCKTB3Zg8sDG/WjHK86QWHUcGV/c2pXh3b0cQYD5Wd9xX8ys37xXAOF+jZ/nOTOHEOTrjq+nC6N7t0EQBGaM6HrZfWhEEa0oYK1vrv/ip3046LVMHdLZtua5xRs5lJ2L5KY2MomCwNn8EloG+TbaV2l1HTPf+56C8hqentGHjcpS/KabqT7gQbx7a8YM6UjLFuqI/MN3qea1JrOV40nZtAj3xc/HjX8beo2WEe5teWbRL9y7exWOOi1Oeh0Db2yFu3PTZu53T21DQgFF4ZfcZPwkV37ZnYrBZOGRD35CFEUER5G37x9Pgj04+kv4p0ye/RXYgyQ7/1jKTEZqfEUE4PopTd3WQ4K9bGUvg8XCjrMZtPL3JcpHzaqEe3mg12hQ6r++mNefnsjXS/fSJT6C1jFB1+wa/L3dKCmrQVHAx8u10WMKXCR2qHBhYG7NtlMs/OkgOQXlKAokpxfSu3MU3vXZpC27zjD3gw0APHL3MEYMamvbR1lFLV4eqkHrxsOq5ACAo06L0WLFw9kBi6SgEWVAQavR0L/Db5cbE9qE88i0gZzNKeGmSwQpTlpHnCKr8RtixinEYGsROlmR/HtuWSM8XJ14cEpDWbDGakAv6mzTWABm2YpBMuGhU++PViPy0WOTmfvtFjLzyzBbJXYfz2DqkM6UVtYy57O1nCwsQpLVJnRFABn4bscxnps6pNHxt504S1FlLYJLHUvqvkTQyogh4DPJxP3tbyfMuWlw6aDX/mFx0n8Kc5dvI6uonOzicvX32Efi3PoCXhs8hjb1GScAiyyRb6iyfa8RBILcPVAUxWbRI9VPzd37zgpG92rNC7eN/Ksvx87/Y+xBkp1/LCt3nMRa36iw83g6sZEBfL32IG7ODkwf3tWW3QC4/YefOJlfAMDq224i3MuTqZ3a4+3sjEWSGNm6scN6XEwgc59u0HkpqKrml+Q0akxmTuUVckuPLnSL+POTSG88Po4NO08THe6Hj6cLyzccpUNcCDGR/ui0Gt55aiI/bjzG8D6t8fZwxmKVeOPzjTaPK1FQS04OF41JJ544b8t+JZ7IYsSgtiiKwiPPL+PoqWxiowP4eO40rh/Qge3H01Hq/wMorzGi12p4887RtAr1wyrJRAT8dn+VIAiM79e01GiWLeQbighxCiTWLYpbo6YwnyWN1kwOHXXZfe8tOktqdQHjQjvh5eByyXWrc/czL+VHHDUOfN7tAUKcfSk1VXHrgXeosRqY2WIYN7VQg5wusWG8/+AE7nxjKbUGM7eO7Q7Awg2HOZaWi4SCt68zkYFenDpfiCAI9IhtOiXZMSoYURBwCTCj0Qg0VNkUMmuzmw2S/j/gWN9fJisgO8qYYg2clg3cvGMhh6571Fb+NlotBDq6U2qsQRHgqQ5DmRbVlR5PRPL2d9tsfXUXWLv3DM/MGmazvrFj51pjD5Ls/KPYefQs732/g2qDiXF927HvlAZRFBjSrRXvLtnOhn1nAFi35zR3TezNwHqn97TiEgwWK846HdkVlYR7eSIIAsPj1MeTC4tZcTyJAS1b0DuqcUpfURRu+O/3lNTW2ko0ezLPc/zx//xpoUw3F0euH6mWeSbe8wWllXVoRIGlH9yKr5crXdqFN+pF0oginu7OVNcakWWFhA7h3Dm1Ly7ODfox11/XlQOJGciKwpTx6kRSbZ2ZxBPnkRWF1PRCikur6RwTys5595CeV8b01xY3ul4BgZB6E9mNh1OZu2QrMaG+zLt3fCPdmsthka08cuxlyswVRDiH8Gr84wwL7EelpZpl2WtRUOjp04WhgX0vuY+kilwePPQdVkVhc/4ZFvW5tBL3Tzl7sCoyJsnMgdJkJjr3IbH8LEbJglWR+S5tByfW1PLAlP6E+nsS4ufBmrcb7y8yyBt9/RvwjN4duXVsD9LyShAFgeighqbtzMIyLJJMTLAva56bTWZFAd+ULKDYVGYLOPONRVd0n/6NlF1kOGxDAONFViU5tRWM2/wFBqsFGRmdoCW7pgJBEIiLCGBE9zjKquqoqK6j1qhu5+Hq2ESs046da4n9t83OP4bM/DKe/HQNOcWVVNYYWbPnNBvfv4uN799FfHQwVqvaV2ORZNLzy3j683VU1QtavjRyCEHubgyMaUH3iMaN5YqiMP3bZXxz8Ch3LV1FYXVNk2OX1hlsARKAXvP7PskqisKexHQSk7Iv+XhpZR0Wi4SiqArahSVV3PToN1x3x2d8vWI/BqMFURRYMHcGoYGeyIpCYlIOub9S+Y4M82H5V3fx44K7ia5X5XZx1tOlYwQajUir6ABbL4xOoyE2zI92LRpKIB1ahtC3fUM56J1l26moMXAqo4B9pzOv+JpLzeWUmMoxyxbSajLZULADi2zl+rDR9PPtjhYNh8qOsSpv0yX3UW6uUwfBFIliY9Ul1wEEO6n9QpIi09FTLRF29mqJo0aHiEjtaT07jp7j+fkbLrmPcX3b8frdY3jx9pHMHt2dwvJqdp5Kp6ymQQdoZ1I6N7y5mBnvLGH5nhMUVFXw+t5FFFVV0dWrPVEuEbR2i2FE4P+evchfRacWDRk00SgilKvedTpBY/tgcagkC4ssY1VkZMAkWzlbXQzA95sT+XD5LnKLK6k1WnDQaZg0oD0/zb31/4WC/9+O8hf9+wdgzyTZ+cdgNFsavUC2jgzA9aIMysPTBqLXaVmzJwlJVhBFwTYtNjwuxpY1+jUK2NSCAVsJ7wKCIPD+hFF8uucAcf5+eDg5MLFD28u+WB8tzKeoroY+IeHUWa2sXX+Cb386CApMGtGRWoOZ8UM70CrS33aMlx4YzYLl++ifEENUmC+fLdlN+vkSFODLZXtJTMrmg+eux8/bFQ83J9uLzJU0lguCwNvPT6aisg4Pd+cmE11zbxvN20u34+fhwkOT+zWasotvEcS+pCwURWmUTfkt/B18iPeI5WhFEgKwMHMFeYZCbo2aglEyYkUCBX44v5qhAX1x0TY19XUSdVhkCQEwSVZkRVY91ZohsSwNUNWhy8zVRBGEj4M7y/o8y9ZjqbySvBmNRsbV+dKTdIIg0KdDQ6P/bR8tJ7e0ElEQ+PK+6+kYFcy+5CzMFisK8OP+kyQtLUQQXdE6OaK77jSLenx4xffo34aiKKoCurXhd7J/l0g2uJwCoE4yU2U24q53pG9ANE4arS27JABPtleb24vKqrHUi7MKgvq/cf3iG/2927HzV2APkuz8Y4iLCOD+6/uxPfEsfTq04PpBHRs97unqxDOzhzFxQHs2H0plYJeWJBUVceeyn3DW6/luxg1EeHs22a8oCHw1dQJfH0xkROtWhHg21V8ZGteSoXEtm/z813x27ABfnjhChcmIVhSRZbXfp7XBC6PJiigKLFl9GFmBzXtT+GXBvbZgq39CDP0TGgK51tEBaLQiVquMLCtk5TX4qz37n5G8/eVmTqcVsHTdETq3DcPP27XJ+VyMIAh4eTbf0xPo7cbbd41t9rHXbx/F/uQsvijZwvVHPuL+uCFMj+rZZJ1VltAIIsuyDjH31Dqi3PyYEz+I4xVnkJGxKFZKTeo1TI8Yz4HyY7Zta6y1uGidUBSFrQVqyXRgQBz/ObgYuT4arDDXYZYlHC9RbuniHcPB0mQEQSSztpC2nhE4aRzQiVqGdWqNPFMgp6iCGwarvzdGk4UV20/g6erEqF6tmw16K2uNavMwCrd9uJxRXWNZdeA0Oo2Is4NONRhWQJFELHU6Bvn3vtTt/9dTXmNg+jtLKCivst1LJ72W7u3D2HBODZIcNFqctWqQ6uvoyvrh9zBywycYZAt9A6Jp6a5mPmeN6U52UQUGk4X46GA6tgqhdeTlDaLt2LkW2IMkO/8opgzpxJQhnS67pk2LQNrUl49u+f5Has0WDGYLK0+e5sH+vZrdpltE6GUbsc+WlHIsO59lx06REBFKQkwoj+/4hRYeXswfMR4XnZ608lLeOrgbqV5R+IJXmAIUeZqICfdFI4pk5JQgW2Ukq4zBaMHZqfnMRv+EGD55YQrzf9hLYWkVD98yyPZYoK87ep2WimoDVbVGlq1P5J7p/S57X/4oOo0GhwBIzSrAIFn4MHlLkyBpRdZhXjrxM3pRi4NGi1WRyagu4ouzP6ERRGRFRi/oyDMUcfuhJ3g49jbujJ7OqtyN9PVNIMBRLZUtTN8H9kjMAAAgAElEQVTHR8lbsChW2nmEICsNWb1AJw8+Tt7C3bEDmJeykmJTJWNDetLLtw0OGh3Px9/EloJE3klewfxz6zhQmsxbndSeI0EQGNmzdaNzfnPxVn7Zn4woCmQVlOHkqOO7jYm4OOr55LHJBPt68O6tY7j1w+WAqp206sBpQO0Nm3/f9aTlFvPs4l9QFJg5uAu3RPXn/yu7T2dQWl2LJCu4OOqQZQv+nm6IbgKOohajbCXQyR2NIFBjMeGi1ePt4MyWUfeRU1tBKw9/2748XZ145/5/robUP5p/kPnsX4E9SLLzr2ZwTDSHz+eiAD0i/pjI5eaUczy0cp2thJBcVMKPeUnk11ZTYTKwISONfqGRTFy5GElREACNIBLk6kaV2Uit2cIt7bvQt3cYrs4OpGYUsf1gGpnZpQyd9SHD+rTm+fuaTnhV1Rh4c/4m8oqqeO7eESS0j2z0eFxUAPuPZYACMZH+Tba/mkS7+aMVNDhpoLN3U62aj1O2oqD2lYgICICElUJjCeGufoQ5BxPo6Mva/K1YFYnFWT/xSvxjDAno02g/mTXFGGW1/HKyIocbIhOoNBs4UppJnqGCb9L3srHgMLJQg0Wxcqz8HOEu/izo/ggaQcRR44CAgFE2k1NXfNlrqqg2YJVkREVg4YbDyLKCrChUVhuY8+labhnbnX4do4nw8yKruBxREIgK9Ca7uAJvN2fC/TyJDfGja0wYWo2Ir/ulJ+/+P9ApKhgR1WZmUq947hrRAye9jjrJzJqcU2TWlPF8p5Hcv385m3JT6OgTyuIBN+OqcyDO054lsvO/iT1IsvOvZnqXDnSPCMVJpyPE44/ZGOxJz2zUY6EoCm18/Ck3GZEVhVZePqRXlGGS1L4mjSCwe/rtBLq4YZEkDFYrq9Yf497lPyArCp3ahCLJCtn1Oke/7DrD03cPbzLWvOPgWbLzKzCZrXy6ZDf9Ehr3VN00PoFWLfxx0Ovo1ObaGqP6OLiycsB/WJJ5gBaufo16g/LrKtDQUKoyyBZ0okSERzmioKARRB6Nu4PTlWmsL9iOHhFXrQtHyk7S2atdozJXB+9wVmUfw6JIaAUNrdwDmRzRlVl7vqLIpPq2VZqNuNW3psgoZNUWUW0x4KF3oZdvG/r6tyOtOpeHYhskHJrj8ZsGc987K8gtqsBS34d2IfOXlFHAnE/XsuiFGSx44Ho+W7+PEB8PZgzoTE5pJUFe7rYpv0Cvf58g5O+h1mDmzZXb2Z+ShckqAQJtQv1xcVQzpK6iA4sHzATAYLVwy67/Y++8w6uo0j/+Obem905IQgo19I6AVFFAQRClY1cs6FpX3Z9Y1rY2xLUsuiqyAlJFVJrSe+8QQhJI773cMjPn98eNCRGQxIJtPs/D83Bnzpw5MzD3vvOW7/sZEjhakk1mVSnRte1KNCkx6EnZvw90T1IdupGk86cnPiiQk/kF/HfnXgbEx2JCEOHvg7mRFWpR/vV5TH7ubrwz7lo6R0awKSONSG8fWgUEk1FeWpf8rUkIcHMpY5uNRkwGA5+cPkh6ZyfeqbDnSDpSStxrf0Q6tom8oO5L2/gwhAA3q5keHc733ggh6NXpfFFCVdVYtf4oiqIycmiHX0xTZnH6Xj5L3QkCqhQbE1r0AuDm7f8lr9aA+R53sxMhpKtXmbOCD1LmMzxiEC93eILFGV+xr+QoR8uSmB4/mSuCXDIF1YqD5w5/iVOqGBDMaDOUMVEueYRZ3ScwdesHZFaX4GH04m+tBrAsYwunq3IAyT173+bjXo9gMZh4qt3ERl2Ph9VMZn5pg0R9o9GA0WDAXtv3TVFVgnw8+cdNLn2lD9fuZu76vVzRJoYXplx9XhuZvxq7jp/lrveX/eA3VbJo22Gu6dYagLLKGqQEP2933IwmegbHsK8ogxivQCI8XMKR9+1YzLrsJK5tnsjrPa//LS5FR+eC6EaSzp+ecpuN8XM/x6GqvLZhK9YqQVxwIIvun9ioH7kOzcJwM5mQSDo1C6d7lMtrMzi6Xonay2LFajLhUFW8zBaM57wRJxUXkuFbjaJBaSL4bjUCkmuubMtNw7sSEeL7w1MCEBcVzPw3b6GguJLEJqh+L165j/9+thUJFBRVcsdklw6RU1NYlrEHozAwOrIbpgs0E/0xcqpLcWgKBiHIramXHShz1GviGAuNmLMtaLEmvHw1atRqKpQq1uZtYX/JMdqeGEpSaC4OLwdGYSTPVlh3rFQlRgw4cXmRSnbYGPni+yiqxutPjmHhFXeTUlFAnF8I7kYzC9I3uI4D8m0l5NYUE+V5fthxyf6jrDx8glv7dOPKlvVGpbvVjLeHlRq7E1XTkNLVx21wrzjKqxxc2SGeFs0COVBykhC3AA5mpLOgfAlaczfWHXAwsX9nOrT49dTYf++s35fM43O+Qlpqm9vVYhCCG/q4hEX3nkjngVnLAXjlnmvp2zGWT/pPJru6jDB3H0wGA7nV5WzMcVUmfp15jKc7X42v5fxKR53LiO5JqkM3knT+0OSVVXIqp4Ducc1xM5uQUmJX1DrFX4Bqp4KiaSiaBhIciuR0XhGFFdWE+v54RRhA1+bNmDN+NGeKS7gusc0Fx/i7ufP5tTexOfMM17RoyYpVB8nILmHyDT0JcPfAaDBgFYJQb08eua0X1TYno4d2wGL+8UcwLMinyd3OS8uqUVWtrg0JwLHSTN4+tYZDxWcRQlCp2Lk5tmmJ3jPaDCGnpJyCXdW42z1QW2sYDQZmdZ/Ae0kbiDYHsnHpWRxOFWuqJ/c/OI2/f7wAv1HpCBNUVNtYsuogRl8rMTcEkhAezrAwV6Kzpknum7kYa6UHHgkaztOwKO9A3Xf1+/O3cCIlF1WTvPzIKLp1bE5mdb2BFe8dQTOPhn3VVE3jwc+/Yl1SCgD7szJ5Zkp3mnsG0yOwFWaTkc+emcKek+m0jg5hyfpD5CnFbI/cgjDClMRE3jo1n20FB1GlilNTcQsBS4AdZ6EHzQL/2l3odx9PRzolmAEkaDCyexsGJsZSWFLFso2HeGPBJhxOl4d11Y4T9O0Yy6yDW1meeozb23ZnWpuuBLl50dwrgOzqUlp4BeJtPr+/m47Ob4VuJOn8YSmqrGbUa3NRNUmriCA+vmscU979nGMZedzQsz0zb3CFSMK8vXhiyJUsP3wM7JKTFfn0im9OSBMSbXvFNKdXTMPE78oqO8+/8RWlZdU8+eBwOkaG0zEknM07TvH+3E04nSppZwuZ9c+b+OL6iezNzcbbZKXS6eD6Vh2wmFyPX7XTSXpZKQkBgb9I+GbS2J7kFZTjcKrcObkfBbZy7tz1IXbNiQRMGChzVF9ynh8S4uaDz14fThwrYkHSPiKD/Bl5ZSK9guPoFRxHUVkVG+QHACiKxtHkHOw5Vko3BBHWTtDF2INMkYxaZqFrzlVc07It36w7Sf/u8bi7WUg+k4+mAYVG5DnCnVaLCZPJiM3uCoF9se4QvTu34ObYq5iX8h3VhW5EKR0x/kA/6f7PV7I+KbXus2/LYv5z+iuEELzc8TY6B8QT7O/F8N5tAXhs8mCeOvQxzkIFNFifd4DDZUnYNIcrFV2AlCCE5J6r+hL4F0/UvnFQJzbsT6aorLru3hTnVfDMzjVITaJqWl37HJPRwPVXtierspz3j+7Coak8t+c7bkrogJvJzIohd5BWUUSsT5Cel/QbI9Cr287lkkaSEMIN2AxYa8cvkVLOvMjYscASoLuUcm/ttieA2wAVmCGlXFO7/WrgLcAIfCilfPnnX47OX4mMwlJUTVLjcHIyq4Dk3EJO5xYhgSW7jvD02MF1ScGTunZkUldXV3qbU2ngaWosUkr2HDqLw6FwRfc4Vq49xJ6DZ1EUldkfrOf1Z8cBUFpeg6q6RPXU2nyXVgHB5FZUMv2bL5HArsxM3hw2nEqHgyH/+4gyu50eEZHMHTX2Z98Xby83Zj5Sr3l0prKgrjubAcGQsPbcGjeAs1WFfJa2jc7+0VzTrNPFJzwHg0GgSbA7Vd5ftJWYiADW7jhJvy5xdE+M5v/uuppvthzjxmFdSIgK4uv1RylIFnSN7sD0if3wUfxQVcn1V3VkwoMfo6gac5ftYuWcu2kbH8bRUzlYLSZsdieaBD9vN957fgLllTYOn8xCk5IRAxMBGB7Uh9fmHcepafzPcJDp/Xrhd06X+b1nsxreF08LNbIGqzCzOmcPCOjs31D7alxUf/YWn8JkkGwp3IFAYBYmfM1elDsrUYXG7XHXc11kw6q8vyKxzQJZ8+bdvPq/9SxafxCTQdCrfQxH03KxKypWswmL2fX8zXtmMtGh/lQ67biZTBhVA94WKxaj6zm0Gk16hZvO75LG/FLYgUFSykohhBnYKoRYJaXcee4gIYQ38ACw65xtbYHxQDsgAvhWCPF9J9F3gKFAJrBHCPGllPL4z74inb8M7aPCuKJVNHtOZ3D/1VfQIiSAQC8P8ssriQ0JYF9aFt1iG1Z95ZVVkl5USufoCExGA5U2O/9Yso7yGhvPjR1KZMCF84MAVm04xhsffAvANQMTaRcfhtEoMBlNNG/magLrcCp8MG8zmpQYTQaeeMDVsXzuoQO8u28XTlVFkZL0cldOT0pJMeV2OzZFYWvG2V/jNhHjFczdCUNYn3eM2+IG0C/ElVA7efs7ZFUX83XWAWK8gmnj2+ySc/3jzmFcM/09ACqr7dz30mJsdoUV64+wbNbtXNWnNVf1cc2fW1hOZY0Dp6Ky8rsjtIwJwcfLnVaxISiqhqppOBWVskobqqqRmVsKuKqcfLzdKa+0cef4vkRHBGCzO3ly+jBimgWQEBOCqml4u1kJ8PSgwm7Hz90NL2tDvakbOrfjox376z6f2eNJzyEelGuVrM87yMb8w7zV9R5a+9R7CDv5x/G/3o9xx57ncUpXmCjI4sddcWPxNnsQYPGlmcevK7fwR+PRyYP424QBgCs1Kb+kkhNn8rh/XD8qqu3ENQuiWbDrufIyW/nm2lvYlZdB/4gWutfo94ruSarjkkaSlFIC3zezMtf+udAtfB54BXj0nG2jgIVSSjuQJoQ4DfSo3XdaSpkKIIRYWDtWN5J0Go3RYGDW1IYq0Ssfm8aDc79id0oGd3+4nPduu57ucS5DKau4jNGz5qFornydcD8fvN0snMguQErJK19t4u2p19XNpWmStZuPY3cojBiUSFpGIQ6niqZJVqw9xLdbT/L4fVejaRpX9Ign5Uw+/r6eVFU7UFUNgQFPDyulthr+uXVjnbhk++BQnrlyENO/+ZKkogKifHxJKi7itk5df7V7NTW2H1NjGzaS1aRW9yBrsnHfiv4+Hgzr05pvd50iNNCHnEKXsSeRKGp9a5eS8mru/r+FlFW4kroVVePjZTspKKrEYBC88NC1hAb5UFZew4xpAzCZjLSJC+Pg8UwQ8MELEwkN8sFUq6494/nFpJwtRAiX2vgzs7/BaDDwxpOjqTapdIoMZ2daBjtS07mhSyItgvyZ1rsrc3fuR629NCkFf4+dzHNp/6XYUYGbMFJkd/WDs6kOnJqCt9mDAnsJhnMkDUod5byeNI9ege15tM20Jt/7vwKmc1TQH5006EdGQqSXL5FeF38Z0dH5PdGomIMQwgjsA+KBd6SUu36wvwvQXEr5tRDiXCOpGXCuxymzdhtAxg+292zi2nV0zsNiMlFQUVkXUsssLqszkk7luhJ9HYrrxzyjqLTOSDAbDYT7NdS7Wb76IO9+ugmAnPwybrq2G0eTsjmWlIOmSRRFxdfXg/atI5hy738pLauhbatwbp7Qhy9XH+K6qzvi6+OOXVHwMJuxKwpWk4nFN4xnXeppNp09Q43ixNtiYcu0O4j0+fFEYCklewszUDSVQyVZdAlsTo/g86UBGstbXacxN3UznQNiaOfXeJ2lZ+4ZzgOTB+Lr7cahpCwWrdnPkF6tCT0nkfn1D7+joLheFqBNXCjZ+WU4FRWrxcSTr3+Jw6liMRvZvOc0OQVlzLx/OMdP55CaXsjytYcYP7IrQf6uxPrTZwux2Z24Wc0s+mZfXb+6jdtO8fBtg0kvLuXehV/iUBRWHjnB5ofvJNTHC193d4qrXYaal8VM6/AQnvKYyNunvqCldyS9gtqwNmcfr51cgqqpPN72RgaHdaF3UAcOlSXTI6AdG/P3YtMcnK7M/Mn3WkfnD4OuuN2ARhlJUkoV6CSE8AOWCyESpZRHAYQQBuAN4OZfY4FCiDuBOwGioqJ+jVPo/MmYOXYIMxd/S1SQH9d0alW3vXdCNG0iQjickQOAqkmklJiNBkZ3bccjwxtWexWVVKKqGpqUFBRVEhTgxXsvTmT+F3uY89kWWkQF0aF1BJk5JZSW1WB3KBw4ksGbz93E1HH1bTusJhMrb5rM5vQz9I+KwWoyEe3nj6q58pUqHA7uXfUlK26a/KPXNfv4Jj46tROb6kQAFqOJlUPvqhPjawoVThv59nIeaTuyydVEQggCfF06UF3aNKdLm/OVzM1mI0aDwdXwFEg+W0i39lEUl1ZRUWkjoza0piga2/ensuNAGmUVNfTrFs+Hi7fjcKrsO5ZOs1A/fDzdmDG1P+98toXqagdJqfmYTQYMBgP9u7tyiuyKUneu/IoqknILaBUWzBVx0Xx15CQSmDHQ1ZKmnW8073d/AICvM3fxRtIS1Fpz+cusnVwV3q3OY2RT7RTYS8iszuee+HFNvc06Ojp/cJqUvSqlLBVCbACuBo7WbvYGEoGNtUmyYcCXQojrgCzg3G/QyNpt/Mj2H55zDjAHoFu3brp9q3NJEpuHsfSh8w0ON7OJT+++ESklRzJycaoaX+w/TlSAL7dd2R2DoWF+xITR3cnMKcFmV5g+pd6Amji6OxNHuwQQv/72CK+/uxajyRVuGDuiC1m5pSxYtot2rZsxYohLLybK14/J7euTo9uHhPJE3/68uHUzTk1F0TSqnU7MBsNFRS53FZylprZjuutBEJQ7bE2+P05NZfzW2ZQ5a/A1u/PFlQ9jbqJm0qV4+LbBhAR4k55Two4DqdjsTgqLK/no5cl8snQHc5fvRlU1WrUIISkt3yXd4FBw1Io4SinJyi0j+UwBBiHoVxGHm8VMVbUDh6IyZVQPrr+qI4F+nqw6mkReRRVxQQGcyHO1Ilm47wgzRwxiYvcOZJSU0T8hhqm9uzRY43vJK1mUvqnOmyiAUc1cxu3Cs6tZmL6GVj4xvND+viZrSuno/KHRf2nraEx1WzDgrDWQ3HElW7/y/X4pZRkQdM74jcAjUsq9QogaYL4Q4g1cidsJwG5c30cJQogWuIyj8UDjZHJ1dH4mQgg6RLlEALu2uHiysrenG889ct1F9wN8snA7iqphMhn5v4dGMPTKtkyc/iFZ2SWs23yC6MgAEltf+BzTOnRG1SQnCvOJCwig45x/42WxsPKmyUT6nJ+z8XDiIGbsXIJDVZDA9dHtaR8Q0fgLr6XSaaPAXoEqNRyaQqXThr/1p5WzK4pKVn4ZzUL9GuSleHlYmT6pH5XVdv7+6gpyC8r52y0DXdc9phfx0SG4WU20bxXBe/O3YrM7uWdSf7w9rdw8thcpZwvRNI3Ne1KQSLbsS3HleQmByWhgQM8Egvy9+PbEaZ5YsRZNk7QND8Zaqy5+ZUIMTlVl8seLUaXkYGYOHSPDuSKuPjz5ZdYOJK4vowCLD//sMI02vtGoUmPe2W8AOFqWwpGy03T2r/dI6ujo/HVojCcpHJhbm5dkABZJKb8SQjwH7JVSfnmxA6WUx4QQi3AlZCvAvbWhO4QQ9wFrcEkAfCSlPPYzr0VH54JU2OxMe38RZwpLeGbMEK7r0rZJx6/bcoLjyTmMG9GFiFBXi5IVaw+x60AarVuGUVpejcEgaNsynOzcUsrKqxv1IiaE4LbOrmTta+bPrfMmfZeWyrSOnc8b3zWoOS93u477diymRnWyJS/1vDGNwd/qybionqzM3M+1kV1+soGkahq3Pv0ZZ7KLiY0M4qPnJp3njfPysPLvmTc22CaEoG+3erXyB28e2GD/1NGu9MSKKhteHlaqahxs2ZuCpkraJoTxr8dG4+fjCvcVV9eABKeqYjaa+HL6VIwGQaS/LztS0lHPSUg/mpVXZyRVKjUMCOnIt7n78bV48lz7aeTaSojxCkP+IInd1/zX1kPS+Quie5LqaEx122HgvG9sKeXTFxk/4AefXwBeuMC4b4BvGrtQHZ2fyuaTaaQXl2JXVGav2d4kI+l4cg4vv7MGh1Nhz8Gz/G/2LSSn5TP7ow3YHQp+Pu6898okggK88PP14MY7/kNllR2DQTDlhp4X9SL9kBvbteelrZuwGIz0jbp4MranyYJEYhQCT5PlouMuxaNtR/Jo25E/+XiAkrJqUjOLUFSN5LP5FJVVsnlfCkaDgWsHJJKdV0Z6Tgk9OkRjbmL/uBqbk6mPfkphSRVWs5FRQ9pTUl7DPRP74evtjs2h4GYxMbpjGw5kZJNVUs7z1w0lOrC+z15xdTUG4eqlJwT0iXPlNL699RuW5W/BJ9DM7K734m60cNf2t8AoaO0XyVtd72FK9AhWZG1kQEg3Yr1+3ebBOjo6v190xW2dPz2JkWEIBO5mE31bxQBgdyqUVNQQ6u/VoAv9D3EqKqJWTTgzr5SBk99i2vUuFQshwGIxEd+iXjfHZleQEixmI73O8ZZcils6dmFkfCs8zGY8LRc3froENefV7qM5XprLpLhujZ7/1yDQz5Me7aPZfjCNKzrHsuzbQ8z/eh8ISM8u5os1hxAIuneI5uVHRzV63opqOzPfX0Veoas6zgH06xZP18QonIrK1BcWcCI9j+v7tmfckE6s35GMompsiU0lIySANpHBBHp7UmV3uN6INTDY4OZ3F3F/lx4sXHocKQOpGl7OmYQ8TuwopmJRILhpHG1TwqBZs0mIDubTZ/7ZZONOR0fnz4VuJOn86YkO8uObR28hr6yCds1CKauyMe7ZTymrsnFdn7Y8NWnIRY/t2CaS6VP68+3WJE6ezcfuUFi29hDPPXItB45lMGpoxwbjX/7HGD5dvIMenWJoGVuvIHzoRCabTp9muXaCUA8v3u9/A37Whk08gz0bF9YZFtmGYZEX7iH3a7JlfwqvffIdLaNDeGHGSCxmE288Oga7Q8FqMfHyf9ehqCpCiDphyArhZP2JFP63Zi+ThzXOqLv3zaUkpRegWcFsh+AALzrUeuROZxWSmlOElLBsyxGWHT6Gorr0nt76emutwrlg4cMTKatxefREtcTgBIdTZc7SbaAIEBKZb6FLQDz/3bAUpACngZr9boCTI6ey+XZbEtdc2bTQrI7OnwFdAqCen98oSkfnd4BTUZm1eDNPzPmajQdOM/qpj7l/1jJstXo6wd6eLo+SEBw/m0eVzaUEvXp3EgDz1u3j7jeXsD/5fC2cscO7cOuEPmhSw2ox0i0xiopqOz07t6B5hH+DsW1bhvPyU2MYM6K+kio5LZ+Hnl3Ce2k7OVtVwt6CTEZ88yHbctN+xTvyy/Ovj78lr6iCvcfS2XGofu1Wi+td6+4br6B/t3gG9kjgsduHEBsTjDQJJPDu0q2NPk96XimKpmHwNHHNkHbMf/NmCsuqmLd2HzaHkwAfDywmI5gFzloDyWgQ2J0qiiZRNI2nF65lYo+OjGzfBl93a10/KqfJ1VolPMSXT6bcA5VGamyuikF3o7nBOk6m5f7cW6ajo/MHRzeSdP4UrNx+nEUbDvHt3mSemPM1GfmlbD92lvdXbD9vbPsWYQT5eGAQgnFXduBkej7vrdjO7pMZPPTu+XUIVTUOHv/XCjTpUhY2Ggy89P4aHn1lOdv2uTrMV1TZyC0ov+DaCosrXVVZRSAU0JDk1FRw9+Ylv+xN+Jl88OUO+t49m4fe+qJOw+lcWkaH4G41I6UkKvx8bSY/bw9eeuA6nr9vJEF+Xrz2+PV4e1hxt5ppGxPW6HXMvHkozUP8uLZPW566fRgWs4lbXl7Iv5dt5b5Zy3n/4RtY9OxU2rcOx91ixstq4aXJ19CtVjRU4NLAmr/5AE9dPYDvnrqDCb074FEJXtLE9UM7sPTtO2geEsDiVQcoq3SJTbaLD2/YJkPqLTN0/qLIy/TnD4AebtP5U1BWZcNeq7Fzru1/Nq/kvLFe7laWP3cLNQ4nnm4W0vNdytsGIfByt543/nhyDja7y9tQVaOx42AaTsVlRGzbn0ZEiC93Pv4Ziqpx16S+jL+uO06nyqETmcREBtKjUwzXDGzL8eQcPAK8+Lr8JAA1ipPx6+ZxojSfZ7pexfWx7X/Zm9IEpJR8uGInmpTsOZHO6YxCWkU37FH24oxr2XEojeiIAFo0C7zknH5e7ix+4WZSsorw83Lj0bdXkNA8mNuv631eFdy5DOySwMAuCQDsOHaWZz9ZQ2FpVZ3HyKmoxIQF8J/pYzmQmkVGURlPL1iLEDCofRwmg4FNx1J5b81OTmTm88Yt1/LEjYOZNqAb+UUVdGhVn0zfNj4Ms8mIENClfRSnMwopr7ThbjVzy1i9CYCOzl8d3UjS+VNwJre47u+dEyLYdyoLo0Fw24j6H7rkrELS80ro174FFrMJTzdXgnRUiB+z7x/NodPZDO91fq5PXmE5JqMBRdUI9PMk0N+T4rJqhIDIMF/2HU5HUVzNWldvPM7467rz2IvLOJqUjRCC+W/fysN3DgXgdFkh61YlI5FEefpztDiXatXJywfXc31se+yqgkBguYig5K+FEIJ2sWGczizEajHVNSQ9F6vFxIDuCQ22SSlZs/0kNruTkf3bYfpBonOgryeBvp5MePpTTmcWsvP4WVpFh3Jl58Yltf9rwXoKSqswGQ2YTQZCA3xws7jCYlaziV6totnzzTYcqqunngCuaBPD5uNpqKpKebW9bq6IEF8iQhpe16DerQgJ9MbhVOncNpIxV3UkJb2QtvFhWC0Nw286On8J/kBensuBbiTp/Cno1SaKdXtOAYrAZnoAACAASURBVDCqbyJvzbi+TngQXAbStJcWIISgZ5so3rinoUhk91bN6d7q/PYaAP17JLBkzUGy88p47M4hhAX58Pw7qwkJ9GLUkI5UVNTwyeIdVFTZmTDKpcR9/FQONTYnbm5mzmYVExTg6kEW7xvEsmE3k1SaTxu/UG5YNxcPk5nuwc3ZmpvG7RsXYTIYWDBkMu0Dwn+t23VB3n9sHMfScomNCMTL43yP2oVYseEws+ZtRALpOSXMmHTlBcd5WM0YBEhN4unWeOMjsUUYBaWV1NgVFFXjTE4x/1qwgTfurf/3m9C3E7uTM6i2O5gxoi+RQb4k5xSSU1zBI6P7/8jstedoWS/I6ePlTue2F/5/oKOj89dDN5J0fjdU2RwAdR6epnBNrzZ4ultIziykV7uYutLtXSfSmbd2L6om0aTE4VQ4lJLdpLl9vNz45JUpDbZ9+urUur97ulv48qN7UFQVi9n1SE2f2p/35m0msVVEXWXW97T1D6Wtv6vybe2Iu0ivLKFbcHPu27oMh6bi0FSWpx657EaSxWyic8umaQIVllShfN/frqTigmOklLUyC4JAX086NeEcM28eRofYCF5duAFVc73eBng3rAoM8vFk3gPjG2x7bPSARp/D7nBy/HQucVHB+Hg1rY+djs6fkd9TdZsQ4m/A7bj8W0eAW6SUTe/H9BPRjSSdy0pZSRUPTZ1Dfk4pDz8/lgHXdABgz8kMHnh7OQBv3X893Vs37W2+oLSSJz9YhZSS1buTWPzsVNLzS5g+a+l5Yytr7KTmFBEbfn5ezc6Dabz96SY6t43kwZsHYTI1rrbBYBBYDPWP0+hhnRg9rNOPHOEiwtOHCE8f1zExiWzMTsEgBFdHtW7UeX9Ltu5PYdXW4wT5exETEcD9Ext6kTRNYjAIqmwOjqTkuAyp0io+XrmTtJxibruuF3HNgi4yO6TnlTBj9hdomiTEz4vc4goMBoGfl/sFx1fbnbiZTT+a73Qh7vrHAtIyizGbjSx753Z8LjK/jo7O5UUI0QyYAbSVUtbUdvAYD3xyudagV7fpXFZ2bjxJYV45TofKvHe/A6CkooaH3lmB3alid6p8teN4k+ctLKtCUVVsDoXU7CK63vEmt/5r0QXHGgyGCwpIpmYU8ujLy0nLLGLZ2kP0n/gm7362udFrePPD77h6ytu8N29Tk9cPcHVUa7aOvo9to++jR0jUT5rjcvLPOWvIyi+jrKKGiSO6ERLgXbfv6Q9W0fP2N3n031/iYTXTp0MMBiGIDvNn7qo9rNtziodnr/jR+eet3UdmfilZhWUkxoZjMAhUTTJv7T6KyqsajJ2zdhd9nniH4S98RHm16yWztKqGD9btYu3BUxc9h6KqnDpTgFNRqa5x8O95jf/31tH50/L7qm4zAe5CCBPgATQtFPAz0Y0knctKm47NEQKsbmZ6DWhNeZWN1btP4lTVujEjeruSp0sra7jj1UWMmzmX5MyCH503JiwAVa1/6iRQXFZd99loEHi5WQj196JZkA/7T2WSW9wwPPTIS8vqQjrfs/DrfY26rsLiSlasPURllZ2FK/ZSUfXTvMFBbp74Wz1+0rGXm+jwANwsJqSUhAX51G0vr7KxZpergm/roVTyS6t4Y8Zo1s2ezlM3DwUhEIJLqll3jIvAajHhZjHRvXUkfl7uuFvNeLlbz6tC/GzLATQpKa2sYW+KS+vqkblf897qnfxj/hp2nkq/4DkKiqs4116uPCfRW0dH57dFSpkFvAakAzlAmZRy7eVcgx5u07msRMWG8NHXD1FSWEmNFa55/AMUVXOFq0xGru+XSI/WLi/KF1uPciglB1XTmLVkC+88OOai85qMBtwsJqprS/UFDWVuVE1SaXNQWZv39OL89XgYjPx9zJUM7NMKDw8rxaXVDeY0m4x079A4j46Ptxt+3u5U1Tjw9XHH4yfkVV2MvQfP8NRLX+Dt5ca/X5pAWMj5lWe/BW88NobN+04THxVMVFi9qKaXu5X4ZkGk55UQ4u9NkI8HQgh8PN1IjA3n6Vuv4nByNpkFZQx94D3uHduX0f3Plz8Y2actMeEBSE3SPi6cgZ0T2JuUQVSoP0s3HaZzQjPaRLtyu4Z3ac2ibYexmE10jHHlcpVX21A0DbPJQEVNvfFzLDmH3YfOMLhPK0KDfAj0c1UrWswmZkwd8OveNB2dPwCXMScpSAix95zPc6SUc+rWIYQ/MApoAZQCi4UQk6WU/7tcCxQ/7Hj9e6Zbt25y7969lx6o84fg/S+38+FXu5BAp/gInpw8mNjwwLpQ2GufrmfBloOA4OpuLXnhrhE/Ot/J9HxW7zpJiL8XTlVj/YFkTqTno6jnCyMKVeKVo2A1mYhs5s9H797Cy3PW8vX6owghePi2wSS2DCcmMhCj4eIO1+zCMvafyqJ3YjRmYeBYcg6JrSLw9vzlEoDvf3IBh45lYjQKbpvYl8k39PpZ8505W0hWTgk9usZiNv86UgNORSU1u4iY8ACs5vPfxQ4lZ3H/G8uosTtxs5jZ8v79jZ77uic+Ir+0EqNBsPT5mwkL8EZKSU5JBf5e7iRlFTD7623EhweSXVxOfFgg94+4AqPBQHFZNWPv/QCHU8Hb041V/72HqhoHp9LyaRMXhnsTKu90dC4HQoh9UsrL1qjRPay5jJ/80GU519HXH/rRaxNCjAOullLeVvt5KtBLSnnPZVkguidJ5zdkaLeWzP/2AA6nwrRh3WgRFsiZzCJCg3zwcLdwcN9ZLGUaGECUKZecr3VUCK2j6gUQ+3eMZcqL85FSQo2GaoIQNzcS20Wy9/BZkAoOh0LamQJsNgeP3zGUm4Z3JdDPs1FVTvtPZTL9jaUIIfDzcuOzf0xCWgwYjb9sFPuKHvGcTHa1yOjY7ud1pE89U8D0B+chhKBH1xY894/Rv8QSz8NsMtIqKuSi+5sF+2IQAnermYTmwU2au6i8ytV42GxkV1I61/VqixCCiABXyO+hj1dSWFHN0Yxc3r9rDF1im5GVX8qHS3cQEuCNJjWkhBqbE1WTeHlY6dJOL/vX0anj9+M7SQd6CSE8gBpgMHBZPSW6kaTzmxEXEcR3b9yNJiVWs4mnX/uSrXtT8XS38NnsW/D1dseY4RrrZj3/Df9gUhbVNge9O8Sw4/AZ/v72Snw93fjg/8YTFuRDi7AAVr18O8u+PsD8/+1A1TT69Yviqekj2bv/DI/+Y5Erf1DCq2+t4f8ev5YWkZdWkgZXWfsDs7+o81IVlVUzbuanOBSViCAfZt03Cm8PN1ZsPcrcNXsZ1CWev08cdMGE8UsxfnR3enSOwdPDSmiwz6UP+BHSM4oQQmCzOTl1Ou9nzfVzCPLzYuHzU0nOKKR7m6YZKC/fNYJZS7ZwtqSEF5Z/R3J+IY+Mqq+s8/N0p6SyBqdT5fFPv+GBkX1ZvHwvp87mY7WYiIsJITu3lDtvuqJOR0tHR+f3h5RylxBiCbAfUIADwJwfP+qXRTeSdH4znE6VotIqQoNcVVHb9qXicCgYDYKU9EJuG9+HJ19egdVqYuoPQkzr95zi2f+sBgFThndn55Ez2B0KxWo163YlMWWES9TR28ONSWN6YsFAWXkNk8f3BsBsNiAQyNpXppzarvVNQZxTaj5uYEe+2HIUu1MhJauIsf83F5PJQI3NiQRWbjvGhMGdiQk7v+dZY4iNdnlbCosqOJ1WQKfE5rj9hNBQ7x5xdEiMJO1MIX+7d+hPWssvRVigD2GBTTf6+nWIJau8gtdWbMLmVNmdnNFg/3/uHsOH3+5m6c6j5JVV8szn6+joEYhAoKqS5KwCnE6Vxd8eYMxVl5Zp0NH5S/E7U9yWUs4EZv5W59eNJJ3fhOoaB5NnfExRSSU9OrXg1X+MYfy13fh06U4iw/1pHRvKtIfm4nAq2B1ODh7PIMDfE7tTIdDXk+R0V9m2qklOnsnjyq7xnEp3VcB1ad0wJGUyGpgwrmEfrtdmr8VgFGiKxGo1ceOY7k1avxCCvokxrD+QQv8OLXh0/AAqa+xsOpiC0WCgrLa6zc/bHZtDwWQ0EOjj+TPuGJSWVTNt+keoqkZ0VCD/eXPqpQ/6AVarmX89P+5nraMplFbW4G41XzAvSdU0auzOC/bLuxTDOrVk6Y4j5JVW8ODIfnXbk3MKqbY7uH1ID1bsPo7B7ArDvXTndXz21V7MZgOL1hxwVTs2UlVcR0fnr4tuJOn8JqScLaCguAIpYcf+VHLzy7hjYl9uuakPJqOBopIqsvPK6sa//t/veG3hJjQpefzmwdwwuBO7j56lssbBPeP64mY1s2rbCSxmYwO9nouRm1uGUtuk1m5XmLdwJwP6NV7AsaC0ku/2JaNoku/2n+ZAcjbP3Xo1AMs3H+Gf877FoagEmo08PnEQHeMi8P6ZP8q5+a412+xOTqfmX3K8qmrY7U48fiFjQEqJpslG51x9vuEgry/ehLvFzGdPTSQy2K9uX0W1jQn//Iy8kgqmDevOfaOvaPQ6SsureeXdtcRJT+Y8NgZ/X5dkwpYTaTz88VcA3HNNbxY+PIkjZ3O4sl0sPh5u/G3qQADaxoWTmlHImCG6F0lHR+fH0QPyOpcdxamQtTsFajWJjEZBflElANl5pUx/cgHPvPEV52bvqAaBU1VxKiorNx0l0M+T/86cyOcv38yaHSeZ8MRcUjILSTqbz7yv91xyDY/97WqCAjwxGoXLsAq+tGF1Lr6eblgt9e8YMz9aXff3Aec0by0sqyaxRRgh/l5Nmv9CJMSG0rtHHN5ebky/dcCPji0treamae8zctxs5i/a+bPPXVxcyfib3uGaq19l1apDjTpm8abDKKqGXVHYcfxsg30HU7IpqaxB1SRLNjVuvu/5ZNEOtu9NYcvhVN6fv6Vu++EzOTgUFZtTYfepDGJC/Lm2e1t8PBom4Q/q0ZLbx/YhwPePoUelo3M5EZfxzx8B3UjSuezMeWIB7zw8D/ORDFBUmkf4k9jK1WR01gfrOXIyiyNJWXVhcYvFyA1DO9U9VEN6tOTbXUms3n6C7IIyPlu1D5ujtvpNyjpxwOSUPDKzii+4hqGD2rHks3t5+dkbuOfOQfzf49c26RosZhOBvvXhs4LSSmYt2sSWQ6lMe3Fh3Rp6J8YQFuDNppwUbvr2U/57cleDeaSULDx9gFcOrqfI1lBF+ocYjQae+ft1fPX5DG4Y9eMVwQcOp1NZZUfTJEtX7G/StV2InTtTqKioQVU1Fi7Y0ahjbhzY0aVfZTbRp11Mg32JLcLxsJoxGw1c07NNk9YSFOBFVYiBilADS06fJLfUJQo6tld7IgJ8MAjBruQMtp4406R5dXR0dH6IHm7Tuexkp+bjqHFgsjmR3u6U+HuxYXsSqiYJD/XBajGhSYnZZMCpaDgcKkvWHQCLQABfbDpKVr4r0XriNV1xs5gwGg3YHa4k6eUbjuCpGVm6dC9SwkvPjCUuNhiLxYSHe0ORx+5dW9C0bKR6WjUPIbugDEWTOFWNeev2s3DDIZASKcFsNPDiHcNRFJXpW5diVxWOluRyZXgc8b6unmXrsk7xzwPf4tBUjpfk8W7fsTy3fy0VTjvPdh1GsPtP80C1b9cMi8WEqmoMG9zuJ15hPR06NMdoNGCxmBg4sG2jjrnxyo5c3a0VbhZTXePf7/u5+Xu589WLt1FWaWuyl238dd3415btADg1jRkfrODzRyYR5u/NDb3b8/Y323CqKnPW7qRvm5gmza2jo8PvKnH7t0Y3knQuO3e/Momy4kpSc0upaR5I25ZhvPTOaiQwcVR3HrpjMJ4eFhZ9tZ8jJ7OQEowIMAjMJmOt8aQigYKSSj57YSoHkzJ59dP1VNS2lThwOB27XUEIwfIv97Frbxomk4G3X59EfOzF9XuawjO3DCOxRShvLq4P+aiqhpeHFbXGTqf4Zgx44F3crWZ8elgpMblyoLzM9TlCdtXlAZNSw64pfJy0mxVnj6FJDYvByKw+TdMxUlQNVVEJCvRm0dy7Ka+wNTmUeCEiIwOYv+AeystraNas8RV6PrWimlJKnvjwG9buPcXgzvH8666RWM2mnxSGNJmMXNEmhm21nqKk7ALeWbWD+4b3oVt8JGajEZMRBnWIb/LcOjo6OueiG0k6vyqF2cV4+Xnidk7ycGRCGG9vnImUEqei8v68zew+cMZl9BRVctt4VxLvgN6tOJqUzSvvriGqWQBDB7XF7lTp2iaSf364FrtDoVmwL9mFZQzr0wY/bw+enbMabw8r40f34LWzq/H0sFBQXFlbCaexc3fKL2YkuVlMjO7XnreXbavTS2oTHcJr91yHm8XE/W8tR1FdFVyTfbpiiTfSMySKMI96o2VEVFvSyos5U1nMwx0GsDH7NEYhMGAgoIk93HLzyrhrxqdUVtl59MGr6ds7ga07kmkRHUjnjtE/+3q9vd3x9nb/SceWVtbw3f5kADYdTqWovJog359e7Tf7tuu4/Z0lHEzLRgIH0rIA6BAdzsonb6HSZicurHGaVzo6Og25jG1JfvfoRpLOr8bHzy5hyVur8PBy4/1d/yQw3L/BfiEEFrOJKWN6cjarBIfDyaCOLVCcKstWH+A/n22lTVwo/VtHsvVYBtmZpUyozcWZ0rs9sxZu4sPknQgBH82cyIm0XMqraigpr2bVnpOsXDSDk6dymLdwB6eNBqxWE317J/yi1+jlbuXN+0bxxdajjO6bSJ/EmLp9HXuGckTNxFTgxtWdW5MQGVS373hJHo/s/JJyp41iWzWjYhKJ8PBhQnwXzAYjVYqDifFdmrSW7btSqKpx4ETj86W7Wb3uCMdOZGMQgrf+NYHWrcJ/qctuMr6e7sSGB5KeX0pksC/+P9HY+h6z0cgbt4xk+n+WU1JVwwMj+9btC/XzIpSfnyivo6OjoxtJOr8a6z7biuJQcNidHNl2igE39DxvjK3ajrvFxHMPjuCOgS/y4qL9tOzYnJ0OG5pBcPBoBie/PISxysHcLanMf3oFvQe3Ze/mJGrsTkSMN84AK2t3nCQ6IgCjwYAQkmB/L2psDh58fCE2mxOr1cTCT+7C52f8OOfmlfH0s8vRNMlzM68nItxV0t4nMaaBcQRwoCid/1VvR3aEjkHNGhhIAM/tX0tSWUHd52VpR3io/ZUEu3txY1zD0nSHU2HjliRCQ3zomNgcKSVLVuwlI6uEKTf1JrhWjLN9YjOqPUETRpIqSjGUl2JQVTwsZopKKi94TQ6HwsGDZ2nRIoTgJobljqfm8ulXu+nVvgWjB57foPZcDAbBvCcmcCavhJhQ/x/th9dYAr09WfTI5J89j46Ozg/QPUl16EaSzq/G6OlD+fiZJXj6uNPpyvoKptSjmeRlFuHu7c7MWz4AKbn7mTFUllbjdCgc2ZmCISEQzcsKEozVDoSqgV1BNRjYuzkJW40TIcBU5UTxt+DlYWFkv3ZYTEYqaxxc278ddruCWhsGcyUM1/8wq6rG2x9v4PTZAh64dRAJLS4dglu4aBcpqflIKZn32XYef2T4RcdmVpciENg0Jxk1JZwuz6fAXknPoBgMwkAInhhVgSYkFpOBYHdv/KwXNuD+9dZqNm8/BcDLM8dSWWXnw0+34nAqnEkvYvYrEwCwelgwWY04nCqalEgBgRHeDOgUR6/ucRec+7HHFpJ8Khej0cAnc+8iIKDxIbC/vb6c0ooath8+Q2J8GPGX6MFmMZtoGdm0Pm06Ojo6vyW6kaTzq3Hj30Yw8vZBWD2sdQKEJ/ak8si1r6KpEquvJw6HCsDR3SmYzEactaX87qeLUDwtxEQFUWAyEdwqmLzsckBwxVXtOHUki+oaB0W5ZXiVKfSf2QIhBMP61BtjFrOJpx+/lpWrDnHt8I54eVpRVY19R9I5k1HIV98dwWZXeG7W18x765ZLXk98XGhdlVZCfL1RVeao4buckyT6RdDSNxSAYRFt2ZSbREpFIZNie3DjpjkIBGOiO/NUh+Hkzc/H1yJwU83cNaEfo/t2wmwwXvC86ZnF2O0KVouJrJxSfH3cqX/Vq3/liwzxo3u7aLYdTMVoEJhMRh6/92r6dGrRYL6DJzNZ/t0hhvZuzamkHOx2BTc3M9nZJU0ykiwmo0uWQboa2uro6PxJ0D1JdehGks4vzom9qcx6cB6R8aE89t6tDRSaN32xB011PYH2ajuYXP8Fz57KpabKXjfOaDJy96MjGDymO54+7lRV2Lh9+OtUVdiorrQz56u/cd/YtynKKUOokkPbTxMbH3reWvpd0ZJ+V7Ss+/z6nG9Zu/kEqqohpUQIccHmues3HCc9o5jrR3XBt1Z0cOTwjkSE+6FpGl27xNSNvWXrJ5ypLAIhWDn4Xpp5+GExmnitu6v9x8K0PUgJNs3J/qJ0AHy83PFOq8RkNNA9MrpBxdsPefjeq3jlrVWEh/oxdEBbrFYTt03pR3pWMdPG96kbZzAIXn/0eqSUnEjNw91qPq9hr1NReeCVpdgdChv2JDN9Wl8+X7CTDh2jaNMm4qJruBCv/m0Un361h8E9EogO/2k96TRN8tGCbZzNKOKBOwfh7eWOENQZozo6Ojq/Jfo3kc4vzuyHPiM9KYe89CK2fLmfITe5mtNmJOey6tOt9QOdChgMYDCQdjKnbnNETBAxrcPZseYIc579go59ErjhvqGUl1QjJexcfxKAwaO6kJ6yGqPRSOfeFw4nfU9hcSX/99qXJKXm43AoWMxGVE1DSkjLKKSiwsbzL64gv6CC0dd15v0PNqIoGoeOZPDmqxPq5unS2VUltvTMfv5zajNDI9qSUVWCTVNwN5rJrymnmUd9+w0pJZ0DmtPSJ5TcmjIeTbwKgFeeuYGv1x4mIS6UVglhP7r2VglhfPTvhp6uG6+/sLrTyk1HWbv9BBOHd6Nt3PnzCqgTugS4enhHJtQ2/W0Mx1Jy2HYojQFd4/n77JWUVtRwKj2fAd0SMBoMrNh4hCOns5k6ogdR4f5omiT1bAEhQd4XzAdbvHIvny5yiVMeOJlBOQoGIXj7yXG0T2ia0aajo/MLIPXqtnPRjSSdX5yoVmHknC0AKYloUZ+DUphTisHwAzF6TQODAf8gb0qLKtBUjcKcUiY9OIw3HlmApkkO7zzNmLsH1R0ipaS6ysbAER25Ykg73D2tePv+eEL2/C/2cOxUDlKTmEwGTEYDDqcr1KdJyXsfb2Tf0QxUu8qyL/YBrrylqnO8W3VLlhrPHFqJKiXzU3fzSLuhzE/bTa/gWDoFNG8w9v5dC9mUewpfiwcvdR7NyvcP8a+kVdx352Cm3NR446Qx5BaW8+rH3+Jwqhw8mcWGj2Zg+kGfNZPJyL+fvJGVG48wqGdL/H0aLzNQXmXjnpcWY3cozF+9D6dTRVE1svPLqKy2czanhDf+twGbQ2Hz/hSG921LWW4FW7YnYzYb+WjWNOx2hYhwvzpPUXZufX++EpsdtTZq9/XmY7qRpKOj85ujG0k6vzgP//tmtq7cT3h0MG26x9Zt79i3JRGxIaQezQTAaDKgmk0IYOpjw9mx+gg71x3FYVc4uD2ZhA7NOX0kk/j2kS7vUkIYZ5LzCGnmx7hezyOEYPK9gxkyussljaQWzQOxmF2/wA6nSrXNWbcvKiKAVZuPIx0qAggM8CI7p8ylDO13fo6OQBDm7kuRvQqjELTxC6fQVsWSM/vpFdyCoREuRWpNaqzPTQKg2FHFvbsW4JfvhiiBWe+tY1D/xjfUbQwWswkhXKrkbhYTBnHh7kiJ8eEkxjdODmDrliTee+872rdvzq13DUDVJBJwOhWu6tWG73YnMbJ/Ir5e7kBJ3XFllTYWrN6PUCQWp4bDqfLAPz6nuLSa8BBfPn5rGiaTkVsnXsGmHacoKa1GIAGByWRgcM+WF1uSjo7Or43uSapDN5J0fnEsVjODLlDubzAYOHMiu+6zZrGAdD2PX83dyvTnxnJw2ymEEIyY0pf4xEiKcstIT87lriGvoBhNBAR7U5hbVpvXJPl09rfMf289k+4dzE13DGhwvrKKGsorbDSP8GfkkPYEB3pTVlHNi2/XN6M1mwxk5JSg2hQMtV8MJaXVmM1GbDYnqWn5512HEIJFV97B5rxkOgdGsTB1DxWKDYCH9yxh98gncDOaMQgDFoMRh+byWElA8dHwdrOS8AsJWp5LgK8H/35yHDsOpTG0d+vzvXY/gddfX0V5eQ2lpdUMG9aeJ28dyjdbjzN+WBf6do5l5l1X143tkBDBI1MH8eHyHeQWufqpyXO+bXPzywHIzi2lsLiSsBBffL3defHJ0dzz4mIUpytpf/TADnRP/Pnilzo6Ojo/F91I0rlsqKqGVluSDyBVDYTAaDaS0KE5bbrEsPT4y4DLoCrMLeW7ZXtIPpyOIowgBCVFlRjOCSEZjAKnQ2Xd8v0NjKQzmUXc8dj/UFWNKWN7csuNfejVpQWTZnyEqrl+uLu2j6K6xsGJ07kIo0AIicVsYuiQduzZm0ZqWgH33FUf5jsXf6sno6Jcekbdg2L4JMWVVyNxVbu5ubuSwR9NvIqXjqzGJAx0CYji8buGUZhdQbcuLS4474Klu5m3cAfdu8Tw9GPXNkh6bwztEyJ+0TBVVFQgp0/nARAa5kvniBiG971477Zr+ydy7HQOyzceASkxV9cbSQmxISSn5tOlQxShwT4AbNpximdfW4nDoIFZgBBk5JbU9XjT0dG5/Og5SfXoRpLOZcNoNGC2mnDalfqNAsbfdxUTHrgKKSXH9qThF+hFs9hgnpjwLtlnCjEaDRjMRpf2j4ROfePo0juBxO4xzLxrLuWl1Yye0qfBuZYt24PDrqBKyfptSdxyYx/KKmo4m1lcN0bTNPx9PbBajGgSbpnciyu6xhEXG8KkJiQzDwxvxe0JV7As/SA3RHUm1N2nbt+k2J5MbNEDcU7oq1XUxRO153yyCU2T7NyTQkpaPi3jfzyp+9fm5VduYsP64ySdymX//jOEh/s1uJbvsTmcvL6USwAAIABJREFUrN+TTFSYPw5FxSAEUsD3Jp4Q8P/s3Xd0VNXawOHfnpZeCEkgdAhNeq8CEkAREGxYLyIWUNBrueq9Xst3Vey994KKBaxIFxAUpUsPHQIkoaQQ0qed/f0xIQRISJ9J4H3WmsXMOfuc/e4skrzZZ5dJ4wbQrVNTLEWWC1j99z5cLgNtO3nPNVsPsHTtLuJ6ySM3IYRvSZIkvOq9Px5nxusL2Lv1IEn7Urlq8lBuuN/zyOaTZ39h1md/4LA70YbG5m/FcBtYLCauuzOOGR//gctpkLDjCFPf98z26ta/JUtmb+S32Ru4dGxPzBYzv8/bxIKP/sBoGgoWE+Ou8jz6CwqwYbWYcbo8j78270jCbDJjNpnQboPPf1hFv54V2xT1/vbDuL/9sGLPFZdUlKR1y3rsP5CGxWImpl546RdUs4AAG6tX72XFil38utBEYKAfcXFn9iQ9+vZc1mzdjwYevCmOhSu343JrJtx0IetW76NLh8b07Nr8jK/FlSO7sWzlLtKMIss/mBRm6UUSQtQAkiQJr2rQPJp7XxsHgCPfyfI569mxPoE2XZuxacVu7HkOT0GtceTaUWYTLpdBvZg6BAb5k5tjZ9gVnj3NnA4XS37ZCMDu+GSS9qfRuEUUf/+1C5NLE7TnOGaziYsHen6pWyxmvnxjAtNmrqReVAhf/7yWfLtn5W6twc9mYde+I7Rs5rtVod947no2xScR2yyKkBB/r9WbnHSMZb9vp3v35rRufWrvVXp6Ni6XgWFocrLzi71+/6F08h0u/P0srNqyH8Pw9Pqt2LqfD567ocR6Y5tF8d5L/+CGf39WONtwynUDGdi9YsmqEKIKyOO2QpIkCZ95dtLHrP0tHsPtpl7jSAJDAzCZTSfHLRkG2u0GPxuHElL4fMm/yc7Mo26053HW8fQczCaF29BYrGaevutzDu45SpsuTbBaPT1G4/859JQ6G9YP5793D0drzfHMPNZs3M/A3i35ZdFmGtYPZ0Cvqt0At7z8/Kz07NqsUveIj08iMTGdgQPb4u9/5kKZpzMMzZQp08jJyeeLz//k628mFy6gCWAv8nhUldDD88itF/PcZ4uIbViXq4d05o+/92DWmrgyfD0bRocxamAHFq/awfWXdue6S7uXoZVCCFH9JEkSPrNny0FcBduQHErwbPYa0TCCjLQcDENDwYrYjVpEc+kN/fDzt+JX5Jf+9g0HMKNxO13kHnORlJWP1rB9/QFadWjIq9/dXeLAZ6UU9088mUDdedOgamypd3z44W/MnbOBnBwHFouJ35dtZ+rTY0u9TmtNbq4dt1tjMhnk5zkJCzt5vmHDOhw4kIZhhqSMLLJz7QQHnrpCeJc2DXl68kgSktJo27we3790C7l5TprE1Cm1fqUUD90ylIduGVpqWSFE9ZOB2ydVfituISpo9K0XcfpwnfSkdAy7A+VyERwWwANv3cQHSx4muuGZv2w7943FViRpcheMNQLIOp5X7plhNZ3WJf/kSk3N4ruZa8jMzMftNrDbXRw8mF5i+aLMZhOPPjaGJq2jGXZ5F25+4itGTnmPvYmpADz071GMnzCAvAgLX8xfy/j/fnHGPfYlpnHrY9OZ+v4CHn51FpHhwWdNkAxDs/5gMkcys8sUoxBC+MK59VtE1AopSels+nMnl98+mGvvuYQWHRoRHhlMw9iCvde0RhuamdtfIu7KXiXeJyQskP+9fzNWPwtW26kbrI65qX91NsGrUtOyGDv+XYZe/jK//7njlHN5+Q4Sk9IJDvYjKMiGn58Fm81C06aRPPDgiDLXsXJPIvsc2fzw1xaOZeaSlpHDjAXrAcjOs7N6fzJOt4Hb0CQfPc6BQ6cmYAcPH8OkFPl2J3sPppZa36M/L+SWad9z6ZufsT8to8xxCiGqmfbiqxaQx23Cqw7uOsxdQ55Guw26XtSOJ6ZPYfx/xgBgz3MwoffjHDuayeCrit+b7HTtuzfns98e5lhKFg9c9w72fAc2fysjb6jaLT986fe/dnHseC4ul8EH036nX++WWCxmMrPyGH/nJ2Rn5zPowjZ89PFtbN6cSJcuTU4ZU1QWqzcfIN/uwmo2ocwKs9lErw5NAHj87Tms35Z4SvlnP/yVdx+/tvBz3y7N6dO5Gdv3HeHBCaU/Nvtr7wHynC4CrBbiDx2haV3fz+QTQojTSZIkvOrZ2z/EkefZEmT1ws0c2HmIJq09W2T4Bdj4atNzuN1GuR6VRUSFEBEVwvvz/0X8ugS6Xdgaq+3c+a/duUOjwoUVkw9ncP8j3/Lw/SO568HpHDuWgwaWr9jFow+MYtCgim11MuW6ATz1/nwaRIXx4IQhhAT507xhXQDchkaZFEqDNjRms6JO6KnbwFgtZp65d3SZ67tvaH/+98sSWkTVITo0mEEvf4ifxcLH466gcYQkTEL4VC3p5fGGc+c3iajxtNYkxCcVfjZbTCTEJxUmSYXHKziWKLpBHaIblD5QuLZp3CiCJ/87hken/oTT6WbT1kRee2chqWknx/NcPabsM8K01qxYsZvs7Hzi4tphsZi5qGcrLupZ/Ey0J6eM4K2vfmfp6p1gVjRvFMkjRbYjqYgxndsxprNnaYa7vp7FkcxsFDB99Ub+M7z2D6IXQpwbZEyS8BqlFKNv92zzYbaYaNujBb2GdfRxVDXb5vhERl3zBo9N/YkWzSIxmRTXXtkLp/Pk9i4tW0Rz200Dy3zP337bxtSnfuK1V+fz/vtLSi0fHRFC/chQlDLhdGuOpmcTFGADPAnXG18u5fK7P+D7XzcAkJaRwx1PfMOER77k4OFjJd43Izcfh8vNvtSCMg7N2qV72LbncJnbIoSoWgrP7DZvvGoD6UkSXnXH09cw8amrMZkkPy+LOQs2Yy9YJqFZ40g+eG08AHsTUrj7oa9wuw0euOuSs97D7TbQWhduB3L4cAZut4HLZZCcVPqg6e9+3cDMhetxGm7MJsXEqz1bwBxJy+TWx74iLSMHgFemLWFMXCe+mbeOzbuS0Ybm/Rl/MvWfowBISDvGLxu30S+2KWsSEnlr6UrCAvzIyvcsIKotsC/5GPc9/T3zP5lSga+WEEJULUmShNedTwnSb39s56Mv/qB3txbcPSmuXFuUAAwZ1JbFy+IL3l9QeLxFsyhmfX03/3tuFvc98g3jrunLjdf0OeP63buPcO+9X+JyuXn66bF07doMs8lEdHQoNj8rk+709OxprTmUmklEWCD+tlMXoEw+ehyny41SiqF92zBveTwffb+CiLDAwgRJAfXrhmA2KZo3rIvN4tmQOLZxZOH9b/joWzLy8vjoz3WE+ttwGQY5dqdnCxJ3wU0UWM6j/x9C1Ei1pJfHGyRJEqIaPffqXPLtLlJTNzIsrh0XnDb+qjQ9uzXnu88no7Um/LQZa3sSUli1bi92u4uPvviDG8b2RimF1po9e44SFhbAr79uIS/X01Pz4w9rSUnJ4rPP/sDhcGEEmnn3hz959p7RPPfxr8z5fSshQf58/cJ4wkNO1nXT6F6s3rKfwymZuJxudu1Pwe5wkWd3FJapFxnKJ1P/gVKKSwe0o254EHaHiwu7xQKw62gamfl2DA2g6dwohkXb92B3uQgP8CfP6QKtMGvodEHDin2xhRCiikmSJEQ1iqkfTvLhDFCKyIjgCt0j7LSZZIX3rheGn82CSSmaNYks7KX6/PPlfPvNSgCmTBmKzWZBa82QoR3IyszDMAw0oHLdrFqzB5fLzS9Lt2BoTUZWHlt3H6J/19jCemwWMweS0nG5DX5fuweTSRHgZ6Vlkyi27k7G0NCqaRRhIZ44lVL07tSs8Po3lvzFO8tWoYA6Af7cM6QfS3bsBTx/sPaNbcLqPYlkH83FnKU5nJJZoa+TEKJqqLMsXHu+kSRJiGr0xvPXs3zlbtq1iSEqMqRK7x0S7M8X79/G3oQU2rdtUHh8xV+7sNtdWK1m7A4XX38zBZfLTWRkCE6nm/nzN7FjxyHPPXIVB5KPcaJ/XWtNbKPIU+qxWs342SzgcGGzmrnjhgEsWrOTpMMZGBrcZvh7bxIbdyXRudWpvUCp6dl8+Psaz70Bp8tN35hGBFitrNx7EJNS3NCrM0+NHMrDL83isCuT+26Jq9KvkxBCVJQ621YHNU2PHj302rVrfR2GEDVCYmI6xzNyade+4SljnVau3M1TT/5EREQQr70+jrp1g0lJz2LSo9+QfjyXccO7MeOLv3C5DLAoBg9uR4bVzfL1e7m4X1uenDLyjLr2J6ez/O89tG1Rn3te/wG70w1agwvPn1pKERLox5K3ppCRlce/3vyZY1m5mDNc7AjIxhHsiS8iGYIzFV+9exsOs4HNYiYyOMhLXzEhah+l1DqtdQ9v1RcU2VhfMOY+r9S17pN/ebVtFSE9SULUQlu3JPLgg1+jlOKqq3pyy60n1xbq06clc+Y+cEr5JSt3kZaRg9PlZvnWBK65vi/fzliFW2vy85289PBVuA0DcwmDpps2iKBpgwiOpGedHNOpFBQZ4x3o71kWYNbyLcTvO4zLbWAzFGHJblSAQjlBuzT4WTialkW7co7PKosN6Z6VwbtENKryewshzj+SJAlRC23fnoxhaJxOF+v+TjglSSpOl7YNMZkUfjYLg3q24sbRPXE4XRw7lsOk2wYDlJggFVUvIoSnJo7g11U7iI4IITTIH6tZkZPv5LIL2wMQ27AuZrMJq8XMoE4t2LPxEIeOHgetsflbGR7Xngta1Qdgf2IaexJS6NujBQEFSVZFfZ+wnic3zgfg8c7DuapZ10rdTwghJEkSohYaHNeeuXM3kp6ew22lJEgAbVrUY8Ybt5KZnU9sE8+YozsnVmzsT1z3VsR1b8WbM3/no1krCA8O4Osnb+LzeWv4cdkmRvRrx7sPXs3x7Hz6dWzOj3PX8+5nS3G5NT26NOO+ScMAzxYrt9//OaBo07Iebz5zfYXiOWF9WiJ2t2fLm7/TEiVJEqKCastCj94gSZIQZZCYlE52tp02reuXe62j6hAREcTHn9xe5vJ2h5MFf2wjONBGs0YRZeo1Ks2sP7bichvk5DtYsWUfXy1ch9vQ/Lh0ExNG9qJjrGcw+WWXdOLQkQyOHc9j8oSTCd2JWX/5+U72HUitdDz967Vg+dE92EwWbmvdr9L3E0IISZKETyXvPcqP7y2iQ99WDLqip6/DKdbGzQd56NGZKAU3XtuHcdef+gvYabj536pF7DyeyhO9htEuItpHkZbszc+X8cuSLZhMCsPQXHlJl0rf84pBHfl8/lqCA2z0at+U6DohZGTnERxgIyz45LIFNquFu249s9eqS8cm9O8Zy5btydx16+BKxfLt3nU8s3khoJna9TKah9St1P2EOK9JT1IhSZKE1zlcLu79dg5bk48Q/tshHKuSWDh9OQ1aRNOqc9Nir9Fa88GrC1i9fBfjJw9m4NAOXot367ZkXG4Dt9tgzd8JZyRJ8/bv4Id9W8lzObn/z9nMv+wWr8VWVlm5dgzDAExk5drLfX2+3clHv6zEpBS3XNYbf5uVyVddyA2XdCfY34bFYuarJ8axaU8y7ZvXx1qwBcrZWMwm/u+ByyrQmjOtSztIvtuJAv5OO8hlTWRPQCFE5UmSJLzuz937Wbn3IHlOJ8faB9FgpQYUhsso8Zrd2w8x5/u12POdvPDYj+Rk2RkwtB3BIcUvtFiVhsW1Y+7CTWRm5nHLuAvPOB8dEIzWGj+TmZjAql0Lqarcc9NFGIYmONDGtSO6lfv6D35ewTeL1hd+nnyV5+sQXqTHKDjQj34dmxd7vdaal9/9leWrd3PT2L5cOfLkeKH0nFxunv49R7NzeO3KkfRp1rjc8U1s0591aQcwK8X4Vr3Lfb0Q4iQZk3SSJEnC65pF1kGjCbBa6RATQ/urw+nYrxVtuhf/CxagTt1gz4xzmwWX08U7L85lzg9ref2z23G73Nj8rCVee4Ld7mTFHztp2jyK5rFlfyQWFRnClx+VPP6nT/0mvHfRFSRkHuPqlt7r4SqPiPAgnrp3VIWvN7TG0wev0BXoi993IJUFv23F7nDxxkeLuWJEl8KxXb9s3c6e1HSchsGLS/7g+1tuKPf9W4ZGsXj4P8t9nRBCnI0kScLrmkdG8MOdN7I35RgDWjXFZin9v2FkdCivT5vIotkbmPXtKux2F3t3Hua6i18kKzOPMdf0YtK/hp+xeW5engN/fytKKf7375ls2XQQrTVvf3obTZtFllBb+V3UsAWcw1uOTbq8H6aCpObWUWdupHtCemYux7JyadGg7ikD3CMjgrFYzJhMiujIkFPO2cwWnIanF9GE7wfFC3Hek56kQpIkCZ9oHhlB88iIcl3TLDaaW+4eys74ZDat24fbZZCZkQvAz9+uwmI1c/u9lxSWf+Olecz+cR0tWtbjjQ8nsG9fCvn5TvwDrCQnpp81SdJa89eh/QTb/OgcWfWLHnqb0+nm11+3EBzsx4ABbco9Q89tGGTm5nsW2XYbbN17iGlz19C/U3PGDPSM/9mblMbNU7/CMDTdYhtQzxbATWP70rhhBKEhAbz4xNVsjE9k9NBOp9zb4XZhMSlchsbQJT9yFUIIb5MkSdQqJpOJy8b2ZPuWRJxOF9rwJDRaw46tSaeUnfvzerSGpIPp7N19hPv/M5I3X55P67Yx9OwTW0INHm9vWsHbm1diGAbP97+UMS3anTWxcDhcvPjSXA4cSOP++4bTpk3NSqzef28xc+duBBR2u4thw8r3WPCjWSuZ82c8AEH+Nub8FU9mTj5/bU6gQ2wMsQ0j2bg7CcPQ2J0uVsUfwP+Ym+27DvPF27eyfd8Rpjw7EwVkOx1MGntybNeo9m2ZuWErKVnZPBA3oApbLYQoNy1jkoqSJEnUeIcPpDHznUW07NiYS2/sx4VD2pGb6+DooQz6DW7Lq0/8THZ2PhPvu4Q1S+L5a/5GugztQEDdQLKO5xESFkDTZlEEBNr44ru7ylTnuqNJ5Lk8CxPe98dsvtq5kW+GX1/4yOl0y5ZtZ/nyndjtnmTpow9vrbL2V4UjRzJxOFyYzSZSU7LKfX2AnxWTydP2QH8rNou58MHYiZlsA7vE8tncNRxJy8KWb4ACs9nz+HPTTk8C5XS5+XPDPiaNvZCFf21nxoK/ueyijsyeOK5K2imEEFVJkiRR4z1564ck7DiEzc9Kw+ZRdOrXiktGn5wd9db0O3A53WxcsZOpt3+Ew+5i9l+7cftZsdjM6AAr38xYxc3jLyzzY6YHug1kV0YqiTmZaGB9ShKHcrJoGBxabPl69cIA8POz0KBBnUq3uapNnjKU3DwHoSH+jB5T/tltt4zqTZC/Da3humFdGd7nAn5ctole7ZrQpJ6nvXXDgvj5+VvRWjN/yVa27z7MdZd71r4a0qcNMxduIC0jmzvG9icv38kT787FbWji9xymS9tGNI2peV83Ic5L0pNUSGl99q+GUsof+B3ww5NUfae1/r/TytwBTAHcQDYwUWsdr5S6EXiwSNFOQDet9Qal1FIgBsgrOHex1vro2WLp0aOHXrt2bVnbJmqRtMPHSU5IoV2P5phPW2PnziHPsn/nIax+Vh58fRwXjjy5EGJ+rp3/Xv82O9bvR5kU7oJlBNyN6kJYgGenezx7sT76yGgGD25X5pi01lw3/2v+TkmibZ1ofho57qwrVW/YsJ/k5Azi4trh71/6bLvzWUJSGtc99Fnh5xaN6vLV8zf7LB4haiql1DqtdQ9v1RdUt7HuMOI+r9S1+st/ebVtFVGWniQ7EKe1zlZKWYHlSql5WuuVRcp8pbV+D0ApNRp4BRiutZ4OTC843hH4SWu9och1N2qtJes5zx1NSueOuGfRWtNtUFse+/C2U84/9vFtTHt+DqsXb+H5u6ZxYNdhbrh3OACfPDOLbesSPAUNDQp6D+3AUWB3ckbhPbSGF16cR9euzQgPDyxTXEopvh5+PYdysqgfGFzqVh5dujSlS5emOBwuEhJSadSoDpYyLKp4PsrMycdqMeN0uQFIPnrcxxEJIQAUMiapqFI3cNIe2QUfrQUvfVqZzCIfg04/X+B64JsKxinOYQnbD6G1Jj/XwZZVe84436BZFL2HeXaYdzndzP96ReG5Bd+sOKWsQnH745dzNNuOy2VQ9Oma3e7kl1/WUx4mpWgYHFqYIB3NzebT+LVsSTtcbHmXy83ESZ9yx52f8c97vqS0ntrzVcdWDRg7rAthwf7UDQ/i0YnDfR2SEEKcoUy7XCqlzEqpDcBR4Fet9apiykxRSu0BXgCKW9XtWuDr0459qpTaoJR6TNWEXUOFT3Tu14rYjo0wW0zk5dj55NlZZ5TpcmEb/ANtmC0mLht/cgZUUOipvUIms2LpT+u4c9JgIiND6Nq1aWGipBQ0a178tP+3N62g3ZevMGnJj+w8lsKWtCM4DTczdm1i9r5thcnOVXO/5Nm1Sxk7dzqHcjLPuE9qahaHDmXgcLjYufMwubmOin5ZvGbjjiRmzP+b41l5pReuhOPZecTvOYzLbaCU4p//uIgF709hztt3MLRvm2qtWwhRDlp751ULlGngttbaDXRRSoUDPyqlOmitt5xW5m3gbaXUDcCjwPgT55RSvYHc0665UWudpJQKAb4HxgGfn163UmoiMBGgSZMm5WqcqB38Amw88Oo4bhs4Fafdxcx3FnHDvcPxD7AVlomIDuWLNU+Rn2snOOxkYvT4R7fx0Ng3cNpdALhdBl++PI+mbeozY/F/AThwII3FS+Lp0rkJXbueuTfcsWM5vD3rd/LqaRYf3M1viXswKUX3qAasS0lGATlOB9e27kxKXg4Ow42/2UKGPZ+YoFMHckdHh9G1S1NWr9nLRRddQFCQX+E5w9Bs3nKQyLohNGxYMwYp7zqQwuQnv8XQmi9mreaXd+6olnoysnK55oFPcThddG/XhJcfuKJa6hFCiKpUrtltWusMpdRvwHBgSwnFvgHePe3YdZzWi6S1Tir4N0sp9RXQi2KSJK31B8AH4Bm4XZ54Re2xfvkO3AXjU8IigvArZuCzxWo+JUECaNutGT/vfplt6xJ4+Pq3cOR5pu0n70stLNOkSV0m3Fz8+jsOh4vbbv8YoydoE7i0gdKe58W7jqfhcLsxKUVyjmfa/NsXjeHVDcsZ2qglbetEnXE/k0nx3HPX4HK5zxiP9NZbvzJ/wWa01rz+2j9o3bp+2b9A1WTLzuSCLUcgNSOn2urZm5iG0+km3+5iXfyBaqtHCCGqUqmP25RSUQU9SCilAoBhwPbTyrQq8nEksKvIORNwDUXGIymlLEqpyIL3VmAUJSdd4hx3LCWT9x//vvBzu56xKKVwOlxMf3Uenz47i7yc4neuT05I4Y4hz/LAFa+i3Qb+gTb8A23c8fTVzPplPSuLGeNUVGZmHllZ+ThDNJg9z+VsZjMR/oFM7XMJfWOaMKRxS25p55mAMaRxS2ZfdjP3dj37cgLFDdjesPEA+fmeJG7nruLHNHnb0L5t8LOaUQpiG1fdNi2n69AyhtbNorGYTdxyRcnbmgghfE9p77xqg7L0JMUA05RSZjxJ1Qyt9Wyl1JPAWq31LOAupdRQwAkco8ijNmAgcFBrvbfIMT9gQUGCZAYWAR9WvjmiNtq8cnfhe5PZxPiHRgLw44e/8e1bv6INTW52PlOevuaMa997/HsO7PQkHE6Hm2vuGsY/7h/Bk0/9xJ9/7kIpxYABrWnQoA43XO/55ZyRkUtKShZhYYE0bhzBFZd359PE9Rxt5enJahFal3ljJvDe5pXsPZ7O2FYdCfPzr3Q7J00czLPPzaZ+vVAGDWxb6ftVhZAgf35+exIJSem0i63anq2/tx3klWlLaNcyhn/fMpT3H7+uSu8vhBDVrdQkSWu9CehazPHHi7y/5yzXLwX6nHYsB+henkDFuatjn5YEBPvjcrm5/p5LaNras6WH22UUzpM8sf7RCS7D4Pfd+7BFBGCxmnE53VhtZvpc3JG98UksX7QVl9kEChau2oYFE8ezcln22w6ysvJQSmGxmHjxxeu4884hjHNeyJhfPmd/VgZdomLIdtp58e/fcWvNu5tXcmObLtQLDKlUO3v3juWnH0v8VvGZsOAAOrep+t15n3h3HkfSskg6epxB3VvSv2uLKq9DCFHFNLKYZBGy4rbwuTpRoXy++gnycuyE1gkqPH7VpDjycvLJz3Mw/sFRp1zz8KwF/Lp9D0ZdNx0vb4WymHj6/rE0janLA1e8hjqYhqoXRl4DK4cHg2GF10yb8OsDdVdp/DM0JpNi+/ZDdGjfCBOKhKwM3Nrgu91bmNKxL3X9A8l2OrCZzYTZKt+T5Gsrtu3n62UbGNmzLZd0r/7ZZA2iw8jIysPQmui6lUswhRDCFyRJEjWC1WbBajv1v6PN38ot/x1zyrHV+xP58M81xB8+Sp7TiVkp1kc60Bpe/nMFb1w9ikYt67Fz0wFMSekkXt8Iw4/Cv4zs4XBoqImYvxXNdR2GxHlW4PYzWwj38yfH6cBqMlPHP4C5oyfw56H99K7XGH9L7V5B2+lyc8/7P+NwuVm5fT/dWzUiMjTorNdk5ebz6CfzyczN54mbh9MkOrxcdb50/+UsWrWD2EaRtGpy5iB3IUTNpIzSy5wvJEkStYbWmklf/0Su04nVbCIqKIjQABtJGVlorYkIDADgrmeuoVPfltStF8auKAePLF+IWZnIdzkxFGBRDBnfhacuHFZ4b7PJxNzRN7M0cS/9YpoSZLURZLUxpkXZtzGpyZRSWMwmHC63530pq4cDzFi2kRXx+3G7DV6ZuZTXplxerjqDAv0YM7hTRUMWQgifkyRJ1CoBNit5TicmZWLGrdcRExrCz5u2kWm3c223joBnqYC4Kz0bq3YGrm7dAbdhsPjAbh7/azEWZWZChzOHxNULDOHa1p292RyvsZhNfHLfNcxdvY2LOsUSHhxQ6jUN64ZhMZuwmE00ia74uk4mASUOAAAgAElEQVT5LhffbN/E4exsAq0WxrbpSExwCEdzsvk8fgPt6kYxooUsJilEjSFjkgpJkiRqDaUU08dfw08b4+nbogkNwjwLOV7eufTeHg30qt+YlTfcWc1R1lxtG0XTtlF0mctf0rMNgf42snLtXNKz4knMU3/9xswdW3AYbhTw867tLL7uFm5f8BNbUo9gM5uJDgymR/2qHzwuhBCVIUmSqPFWHTrIB5tXc0nTVlzTphP3xfUv1/UZ+Xlc+sM0UnJzmNipJw/1GlhNkZbd5u1J/Oe5nwgKtPHG/66hfnSYr0M6g1KKgZ0qPyMtJS8Hp+FZXkEDxx35AGQ7Hbi1BhTZjpq/fYsQ54uatIZRwTqNHwEd8PwIuUVrveLsV1WdMu3dJoSvaK25eeF3LDq4h0dXLCIh89gZZbYfSWFPanqJ91h7JInj9nxc2uCr7RurM9wy+2TGXxzPyuPw0UzmLt3q63Cq1f/6xxHXpAUdIqPpG9OI9y/2jG16d9hohjWNZXKXXgxq3KxC917+9x4++3kV6cdzqzBiIUQN8jowX2vdFs8Iim3erFx6kkSN52+2kOtyogCbybOSdbbdjs1s5ufN25g6fykaePXKEQxpE3vG9d3rNSTYZsNhuBnbuqN3gy9B7y7N2LQtCYCO1bBGUU3SIDiUjy+98ozjrSMi+XB4xfdw27L7EI+8ORuXy+CPdbv5+MkbKxOmEAIK1kmqGV1JSqkwPAtS3wygtXYAXu12liRJ1GhKKWaMuoHvdm1mQMPmNAgO5adN8Tz6y6/4WS10aRhDvsuFAlYmHCw2SarjH8Dy6yZx3J5PVODZp717y3Wje9KlfWMC/W00aRjh63BqpaycfJRSuA2DzOx8X4cjhKh6zYEU4FOlVGdgHXBPwYLUXiFJkqjxWoXX5eGeFxV+nr5mA07DQDtdhPr7EepnI8Bm5fruJU83t5nNNSZBOqFtKduApGRkc99bP5Nnd/LCHaOIbVh9e6tVBafbTXzaUVqERxBi86v2+vp0asb1l3Ynfs8hplzn+3FmQpwrvDgmKVIptbbI5w8KNrU/wQJ0A+7WWq9SSr0O/Ad4zFsBSpIkap1runVi25HFmJRi0Y49mE2K23p2oUVkzeyRyczMw8/Pgp9f2ReknLMynhe++o2cPAcaePfnv3hp8ujqC7IK3PDLDLakHCXEZuO3G24lyGqr1vqUUkwaW75B/EKIGiVVa93jLOcTgUSt9aqCz9/hSZK8RgZui1pnbNcO/H7vRP7RswsuwyDP6WJD4iFfh1Ws2b+sZ+zVbzD26jdJTCx5cPnppk5bRHZBguRnNdOuWX201mgvjxXQWmN3uUotZ2jN2kNJ5LmcZDrs7D+e4YXohBDVQnvpVVoYWh8GDiqlTqxBMgSIr3wDy06SJFErRQQGML5XN1pHR9K4Thj3XNTP1yEVa9asv3G5DBwOF6tX7ynzdQ2jwvC3WbBZzfzfhEsY0LoJl135OiMvf5X4ggHfVU1rTdLxzMKkyOF2c9X0r2n/2hs8+uuis15rUoqJXXpiVopeMY1oE1GzHw0KIWqNu4HpSqlNQBfgGW9WLo/bRK1VLzSYnyf+w9dhnNXoMd14842F2GwWevc+c1B5ST7597Us37yPDs3r06ReHV55fQE5OXYAfvhpHe0uqPoZcffOmcvCXbuJCgpi3s03kXAsgx2pqWjgm42beGroEJRSJV7/cN9BPNx3UJXHJYQ4f2mtNwBneyRXrSRJEqIajRrVlUGD2uLnZ8VmK/u3W2iQPyP6XFD4uV/fliz4dQsA/fu1qvI4ARbs3IXTMEjPy2VHaioXREURGRhISk4O/Zo0OWuCJIQ4Nyhq1mKSviZJkhDVLCSk9H3SStOnVyyff3I7htsgJib8jPO5uQ4WLN1K4wZ16NGlWYXquKZjR77etIlGoWG0i4rC32pl4S03k5yVRdPwM+sszrGMHEJCArCY5Um+EKL2kyRJiFqiXnRoief+78VZrN98AGVSvPLEWDpe0Kjc939y2BAeGjSAQKsVU0GvkZ/FQvM6Zdvc9vl3FzB3yVbqR4Xw6cvjCQyo3tltQohqoHWNWUyyJpA/94Q4BxxJycThdKNQpKRlV/g+wTZbYYJUXvN+24rbbXAkJYude49UOAYhhKgpJEkSogbKzrHzz/unc+2N77Jp88FSyz9y7wjat4lh6MC2DOxTPWOWSuNn9XRMu92yArYQtZnS3nnVBvK4TQgfc7nc/N/jP7B1ayK3TxzMyJFdWPJbPDt2HsLhcPPmO4vo0a0ZickZ3DlxMA2KGZPUpmV93n3BtzP9goP8Che/FEKIc4H0JAlRzbTWzFm8mek/rCI378y9GbdsSWTDhv1kZeXz3ruLAWjePAqFwt/fSmiIPz/O+ps//9rJsy/M9nb4ZWa1ejYftlhMpGfk+jgaIUSF1ZDFJGsC6UkSopotWBbPqx8uxnAb7DuYxqP3jDjlfKNGEZhMnoSoTZsYADq2b8Tbb4wjNTULh9PN1m3JmEwmgoOqf0+0irrq0m68PW0pAX5WenVp6utwhBCi0iRJEqKa5eTa0YbG7dbFjtWJjAzhk09vJyEhlc6dmxQej20RTWyLaLTW/Oue4SQfzuDKMd29GXq5jB3VjYsHXYC/nxW/cqwJJYSoWWrLeCFvkJ9kQlSzUUM7sT8xnfRjOfzz1rhiy0RFhRIVVfwUf6UUw4a2r84Qq0xYFawJJYQQNYUkSUJUMz+bhfsnDvV1GEIIUToNGNKVdIIM3BaiFsjOtXPvKz8w/n/T2ZecVqZrth4+yier15F8PLOaoxNCiHOTJElC1AI/LdvM6vgDbEs4wivTl55yzjA0b874g8nPz2R7gmcRx9ScHK7/8lteWrqcsV98g5YVdIUQZSWz2wpJkiRELdAwOgyLyYS/zULTmFO3CVmxeR8zF69n7baDPPLOHACy7A4MNE7D4Fhefm35eSSEEDWKjEkSwou2bTqIyWyiTfuG5bpucPdWBPzTSkZWHkN7tTnlXFhwAFqDxWyiTqhn4HTziDrcO6Afc7ft5M5+vSq81YgQ4vwjs9tOkiRJCC+Z+/1a3ntpPgD3Pj6auEs7lev6Ph2aFXu8Q2wMz991GbsTUxk9oEPh8dt69+C23j0qHK8QQpzv5HGbEF6yZf1+7PlOHHYn8RsOVOm9+3Vqzk0jehIuU/CFEKLKSE+SEF5y7YQBbN1wELNZccWNfX0djhBCFE8mehSSJEkIL2kaG8202ff6OgwhhBBlJEmSEEIIIQrJwO2TZEySEDWEYRgsnrOROd+twel0+TocIYQ470lPkhA1xLwf1vH+ywvQWpN0IJ2J91/i65CEEOebWrTQozdIkiREDZGemo3bbWC4DdJSZCsRIYTwNUmShKghrvxHXw7uSyEvz8Ht9/muF0lrzbTP/uCP5Tu5aVx/Bl10gc9iEUJ4lwKUzG4rJEmSED6WeCSDf78xC7PZxAsPjqZ+ZKjPYsnPd5KQkMK3M1bhsLt45plZDBzUFiUrdgshzkOSJAnhYx//vJI9iakoFF/MWcOD44cUW87lNtiVlELjqHCCA/yqPI7Nmw/y0IPfoLWBUgqbzUydOsGSIAlxvjF8HUDNIUmSED7Wtmk0S1bvBKBNs3ollrvn7Z9YvzuJQD8bPz55MyFVnCj9unALDodnVl2v3i3o17cV/S9sXaV1CCFEbSJJkhA+ds3FXWnaIAKL2USPdk1KLLdmx0FcbgMFJBxOp2PzmCqNI25IO379dQtaa668sic9e7ao0vsLIWoHGZN0kiRJQviYUoo+HZuVWm78xT34dP4a2japR9vG0VUeR5cuTZn53d0ABAf7V/n9hRCitpEkSYhaYsqY/kwe3a9axwhJciTEeU7WSTqFrLgtRC1yeoL0965EHnx/NgvX7vBRREIIce6SniQhqsGBhFR2bkumz4WtCQ6pnt4Zt2Ew5Y0fsTtd/LF5L51aNKB+REi11CWEOF9okDFJhaQnSYgqlno0k7smfMTrL8zlgcnTqq0ehcJi9nwLKwVms6eXyeF0MfmZmQy89Q2+nr+u2uoXQohznfQkCVHFUlKyALDnO0lOPFZt9ZhMio/+NZZZK7YysGMLosKCAdi0K5n4vYexO1x88P1fXD+8e7XFIIQ49yjpSCokSZIQpdi74zBT75tOQJAfT759E3Wjz74idtt2DRh6aSfWrdrDhDviqjW2No2jefC0mW7NG9bFYjYR4GelS5tG1Vq/EEKcyyRJEqIU095cSPLBdExmxZwZq7nprqFnlNFao7Wnd0cpxT8fGuGDSD3qhgUx88UJHDh8jPYt6vssDiGEqO1kTJIQpbigcxP8AqxYrRZaXtDgjPP7E1K5asQrXDb0BdavS/B+gMWoExpI59YNsVjMvg5FCFHbaO2dVy0gPUlClOLa2wbRpmNjAoNstOnY+Izzi+ZvJisrH4CZX62ga/dmXo5QCCFEdZCeJCFKoZSia5/YYhMkgB69W2Dzs2CzWRgU187L0QkhRBXSoAzvvGoD6UkSopI6d23K599OxuFwE9Mg3NfhCCGEqCKSJAlRBepGVnwRR8PQ/DB/PenHc7lhdE+Cg/yqMDIhhCinWjJeyBskSRKiktwug8SDacQ0rIPNVv5vqXnLtvLOl7/jdhskHcngiXtHVUOUQgghykuSJCEqQWvNfVM+Z8/uI0TXC+ODabdjtZZvRpnD4UIDhtbY7c5S6/vz9x0opeg3oHW1bnYrhDhPSUdSIUmShCiB1poPX5rH0nmbuGJcP8ZOGHhGmfw8J9vjk9AajhzKIPVoJjEN6xSed7sNpn28jAMJadw+OY6GjSLOuMeouI4cOnqctIwcJv9j0Flj+mHGaj77cBkauHXiRVxxTa9Kt1MIIUTxJEkSogRHkjP45ZuVOB1uPn1tIaOv74ufv/WUMgGBNuIu7sDiBVvo3LUp9WJOHbi9fOl2fpixBrvdSWpqFm99MOGMeqxWM5PHnT05OuHg/jQcDhcABw6kVbBlQghRMiVjkgpJkiRECcLqBOIfYMNsdhMaHoDVVvxjtP88NoYHHh5V7MKNAYE2AMwmE0GBlR+QfePNF7I/IRWl4Mbx/St9PyGEECWTJEmIEgQE+vHeD/9k6/r9dO0Ti8lU8rJiJa1s3bNPLPc9NILEg2lccXXPSscUFR3Kq+/cVKFrc/IcfPPLWkJDArjqki6YTDKeSQhRDOlJKiRJkhBnUTc6lIGXdKzw9UophlzcoQojqriXP17Mor+2YzaZ8PezcFlcxdslhBDnA0mShDhP5NudaEOjlSYv/+yz6IQQ5ykN1JLVsL2h1G1JlFL+SqnVSqmNSqmtSqkniilzh1Jqs1Jqg1JquVKqXcHxZkqpvILjG5RS7xW5pnvBNbuVUm8omcssarils9dz28Uv8vELc9C1sDv6gVuHMOzCC7jy4s5cPqyTr8MRQogaryw9SXYgTmudrZSyAsuVUvO01iuLlPlKa/0egFJqNPAKMLzg3B6tdZdi7vsucDuwCphbUH5eBdshRLV7+aEZuJxuZn3xF3Gju9G8bUyJZbOz8li+OJ7YNjG0uqCBF6MsWUR4EI/fdamvwxBC1GAKLbPbiig1SdKeP5mzCz5aC176tDKZRT4GnX7+dEqpGCD0RKKllPocuBxJkkQNFt0gnNQjmZiUIjwy+KxlH7nrS/btOgxK8c5Xd9CoaaSXohRCCFFVyjQmSSllBtYBLYG3tdariikzBbgfsAFxRU41V0qtBzKBR7XWfwANgcQiZRILjglRY7387RRWLYnngq5NqVPKXm2Hk49ht7vwD7CSeiRTkiQhhKiFSh2TBKC1dhc8MmsE9FJKnTFdR2v9ttY6Fvg38GjB4UNAE611VzwJ1FdKqdDyBKiUmqiUWquUWpuSklKeS4WoUuF1g7lkbC+atKxXatkHn7iSprHRDBnRmU49mlV/cEIIUVW09s6rFijX7DatdYZS6jc844e2lFDsGzzjjdBa2/GMaUJrvU4ptQdoDSThSbhOaFRwrLg6PwA+AOjRo0ft+KqK816Pfi3p0a+lr8MQQghRCWWZ3RallAoveB8ADAO2n1amVZGPI4FdRa41F7xvAbQC9mqtDwGZSqk+BbPabgJ+roL2CCGEEKIypCepUFl6kmKAaQXJjgmYobWerZR6ElirtZ4F3KWUGgo4gWPA+IJrBwJPKqWceFZeuENrnV5wbjLwGRCAZ8C2DNoWQgghRI1Rltltm4CuxRx/vMj7e0q49nvg+xLOrQVqxlLEQlSh3Bw7jnwn4XXPPgNOCCFqHFlM8hRlGrgthCibhF2HuXHQs4yLe555M1f7OhwhhBCVIEmSEFVo7e87cTpcuJxuFny/ztfhCCFEuSmtvfKqDSRJEqIK9RnSDv8AGxaLiTH/6OvrcE6htSYnx+7rMIQQotaQDW6FqEKNmkXy9R//xe0y8A+0+TqcQm63wT3/ms627YcYOKAN//fIGF+HJISoqWpYL0/BxLG1QJLWepQ365aeJCGqmNVmOWuCtHVdAt++/xtHko55Laak5GPs2nMEQ2uW/r4dh8PltbqFEKKS7gG2+aJiSZKE8KKjyRn895aP+fz1hTx443teqzemfjgx9cOxWsz06NYMm006kYUQxfHSGkll7K1SSjXCs/7iR9Xa7BLIT0ohvCg3Ox8Aw63JOp7ntXqtVjMfvTuB1NRsoqPPvjNQano2U1+Zg9aax+4fRaQsZSCE8J3XgIeAs2+YWU2kJ0kIL2rWuj433XsxHXo25/G3x3m1bovFTP36YZhM6qzlPv92BRu2HGTj1kQ++/YvL0UnhKgRNN7sSYo8sTdrwWti0VCUUqOAo1prn00Vlp4kIbzsqgkDuGrCAF+HUaJGDcKxWc2e9zF1fByNEOIclqq17nGW8/2B0UqpEYA/EKqU+lJr/Q/vhCdJkhDiNGNH9yA60vNIbmDf1j6ORgjhdTVkxW2t9cPAwwBKqYuAB7yZIIEkSUKI0yiluKh/G1+HIYQQPidJkhBCCCFqNK31UmCpt+uVJEkIIYQQhWrLliHeILPbhBBCCCGKIT1JQgghhDhJepIKSU+SEEIIIUQxJEkSogr9tjieqU/8RPzWpArf48DBNCZO/ox7H/iKjIzcKoxOCCFKoQFDe+dVC0iSJEQVSU4+xovPzWbpknj+/cDX6Ap2WX/48TJ27T7Clq1J/DjLZwvNCiHEeU+SJCEqYe+eoyycv5mcHDtm08lvJ7O54t9aLZpH4e9vxWIx0bRx3aoIUwghyqhmbXDrazJwW4gKSk4+xt2TpwGaWT+t4633bub/nrqSVSt2M/Kyrih19j3SSjJ+3IW0jK1HYKCN7t2aVWnMQgghyk6SJCEqKOVoJgrIz3eRlJjOkSPHef+dxWRn57Nm9V7CwgJ54umrqVs3uFz3NZkUAy4seTuQxIPpBAX5USciqJItEEKIYtSSXh5vkMdtQlRQx05NGDykHQ0b1WHKPRcz89tVJB5MJz0th0PJGezccYgfv19TpXXOmL6CSeM+YNzVb7F7x+EqvbcQQohTSU+SEBVkMin+9dBItm5J5MH7v8LtMjCZFEoplPKMS4ptWa9K61y2OB6Hw4XFYmLj+v20bFO/zNdqrcnNdRAYaKvwo0AhxHlAepIKSZIkRCX9uXwnDrsLgA6dGnPr7YPIzXUQEGCjU+cmVVrX9eP78/RjPxIaFsCAi9qW+TqtNf959DvWrt1H165NefHZayRREkKIUkiSJEQlDY5rxy8/rcPlMrhxXH86dqraxKioCwe1Zc7S/6AU5Upyjh/PY93f+zC0ZsPGA6Sn55R7rJQQ4jxwYp0kAUiSJESltWpdnx9+uR9taGx+1f8tZTKVvwcoNDSANq1j2LXrCLEtoqhTRwZ9CyFEaSRJEqIKWK1mX4dwViaT4o1XbiQlJYuoqJAKJVpCiPOBBm34OogaQ2a3CXGOm/71CsZN+IDZczdQv35YpRa6FEKI84n8tBTiHJaalsW0L/4kMekYb76zmLw8x1nLH03N4s2PlzB/yRYvRSiEEDWXPG4Togx2bE1i3o9r6R/Xjp79Wvk6nDILCvTD5mfBZFYEBNiw2c7+Lf/IMz+ya+9RrDYz0ZGhdKvGQehCiBpKlgAoJEmSEKVwuw0emvQZ+XkOFs/ZxGez7qVuVIivwyqTgAAbH75zM39v2E+vni1KfdTmdLnRWqNQuFxuL0UphBA1kyRJQpSBPuUvq9r1V1ZMTDgjY8LLVPap/1zOp1//SevYevTs2qx6AxNC1DyyBMApJEkSohRms4ln37mJ2TPXMGBIO+pGhfo6pCqjtebdz5axbMVOxo3tw6hhnXj8X6N8HZYQQtQIkiQJUQbtOzehfRWvnl0T7E9M58e567E7XLz0zkJGDOkoywMIcb6TMUmFJEkS4jxWJywQs9mEv5+FOuFBkiAJIUQRkiQJUQNs2ZrI4iXxxMW1o2P7Rl6rNyw0gI9fvYkt25Pp3b251+oVQtRg0pNUSJIkIXzE5XKjlMLhcPHAf77Fbncxb+FmfpxxNwEBNq/F0TCmDg1j6nitPiGEqC0kSRLCS1wuN3+u2E1UZAj5+U4efuw7zGbFc1PHYhTMJjEMXfheCCG8T0tPUhGSJAnhJa++sZAlS7ehtaZ1q/o4HC4Alv2xg6lPXMnceZsYMbwTQUF+Po5UCCEESJIkhNfs2XuU/HwnNpuFpo3rsmPHIVCKAf1b06VzE3r1aOHrEIUQ5zsNGLLB7QmSJAnhJf+cMoznXpxD/Xqh3DlpMBPGX4jJZCI8PNDXoQkhhCiGJElCVLETq3Mrdep0+nYXNODzT24v/BwYKI/VhBA1kIxJKnT2jZyEEOWy5s9djB7wDDeMeIXDyRm+DkcIIUQlSJIkRBX6+tM/cNhdHD+Wy7Jft/g6HCGEKD+tvfOqBSRJEqIK9R98ATY/Cxarmc7dm/k6HCGEEJUgY5KEqEJX3diXnv1bERTkR92oEF+HI4QQohIkSRKiijVpFunrEIQQooI0yIK2heRxmxBCCCFEMaQnSQghhBAeGrSWxSRPkJ4kIYQQQohiSE+SEEIIIU6SMUmFpCdJCCGEEKIY0pMkhBBCiJNqyUKP3iA9SUIIIYQQxZCeJCGEEEJ4aA2GzG47QXqShBBCCCGKIT1JQgghhDhJxiQVkp4kIYQQQohiSE+SEEIIIQppGZNUSHqShBBCCCGKIT1JQgghhCigZUxSEdKTJIQQQghRjFKTJKWUv1JqtVJqo1Jqq1LqiWLK3KGU2qyU2qCUWq6UaldwfJhSal3BuXVKqbgi1yxVSu0ouGaDUiq6apsmhBBCCFFxZXncZgfitNbZSikrsFwpNU9rvbJIma+01u8BKKVGA68Aw4FU4DKtdbJSqgOwAGhY5LobtdZrq6QlQgghhKgcjWxwW0SpSZLWWgPZBR+tBS99WpnMIh+DTpzXWq8vcnwrEKCU8tNa2ysTtBBCCCFEdSvTwG2llBlYB7QE3tZaryqmzBTgfsAGxJ1+HrgK+Pu0BOlTpZQb+B6YWpCQCSGEEMJXtCwBcEKZBm5rrd1a6y5AI6BXwaOz08u8rbWOBf4NPFr0nFKqPfA8MKnI4Ru11h2BAQWvccXVrZSaqJRaq5Ram5KSUpZwhRBCCCEqrVyz27TWGcBveMYbleQb4PITH5RSjYAfgZu01nuK3Cup4N8s4CugVwl1fqC17qG17hEVFVWecIUQQghRDhrQhvbKqzYoy+y2KKVUeMH7AGAYsP20Mq2KfBwJ7Co4Hg7MAf6jtf6zSHmLUiqy4L0VGAVsqVxThBBCCCGqTlnGJMUA0wrGJZmAGVrr2UqpJ4G1WutZwF1KqaGAEzgGjC+49i4845geV0o9XnDsYiAHWFCQIJmBRcCHVdUoIYQQQlSA1jImqYiyzG7bBHQt5vjjRd7fU8K1U4GpJdy6exljFEIIIYTwOtmWRAghhBCFast4IW+QbUmEEEIIIYohPUlCCCGEOEnGJBWSniQhhBBCiGKo2rTItVIqBdhf8DESz95w57rzoZ3SxnPH+dBOaeO5oza0s6nW2muLBCql5uP5unhDqtb6bOsu+lytSpKKUkqt1Vr38HUc1e18aKe08dxxPrRT2njuOF/aKSpOHrcJIYQQQhRDkiQhhBBCiGLU5iTpA18H4CXnQzuljeeO86Gd0sZzx/nSTlFBtXZMkhBCCCFEdarNPUlCCCGEENWmxiVJSqlvlVIbCl4JSqkNRc51UkqtUEptVUptVkr5l3CPu5VS2wvKvVDk+MNKqd1KqR1KqUu80Z4S4qtUG5VS/1NKJRW5x4iC41al1LSC67YppR72ZrtOi7Fa2ljW672lOttZcL6JUipbKfWAN9pTnGr8/zpMKbWu4Lp1Sqk4b7armDir8//sOfGzp0jZfymltFIqsuBzmFLqF6XUxoLrJ3ijPSXEVi1tLDh2UcF9tyqlllV3W0QNoLWusS/gZeDxgvcWYBPQueBzXcBczDWDgUWAX8Hn6IJ/2wEbAT+gObCnuOtrSRv/BzxQzPEbgG8K3gcCCUCzc6yNZbq+trezyPnvgJlnK1Nb24hn4+wGBe87AEm+bl81tfOc+dlTcK4xsADPmnWRBcf+Czxf8D4KSAds51gbw4F4oEnB52hft09e1f+qsduSKKUUcA1w4q/Li4FNWuuNAFrrtBIuvRN4TmttLyh3tOD4GDwJhB3Yp5TaDfQCVlRTE0pViTaW5P/bu5fQOqo4juPfHwRL2wiNi/rKorYaFRGhWivS4KIFlz4XtYuKbi2Im1YQRAkIilgXFReWulSKqBUrLbagLUWtGG2S0uKrEOOjxQeIEVHbn4szF2/DJN7kzrlzvfw/q8zMPZPzYx75z5m5GQNLJfUBi4E/gV8r6u6CZMjYbvssMuRE0p3AKWC6qn62o+qMtj9tmjwOLJa0qHHs1iXDtuy1c892YCuwp2megQuL9faTihQzwFMAAAOFSURBVKS/q+73fGTIuAl43fZk0f5MWcPQW7rudluTYeC07S+K6SHAkvZLGpW0dZZ2Q8CwpI8kvS9pTTH/cuCbps9NFfPqtNCMAFskjUnaJWmgmPca6Q/q98Ak8Kztn7P1vjVVZ5xP+06qNKekfmAb8GTebs9L1duy2T3AaN0FUqHqnD1z7pF0B2nE79iMRTuAa4HvgHHgYbv2F4BVnXEIGJD0ntLt4c35uh66RS0jSZIOAJeULHrMdqNyvw94pWlZH7AOWAP8DhyU9IntgzPW0QdcBNxSfHa3pJVV9r8VmTO+CIyQrt5GSEPKD5KuTs8ClwEDwGFJB2x/XU2q89WUsdX2lakp5xPAdtu/pQvivGrK2Pjd1wFPk670s6ozZ6fkyihpCem2Wtl2uh34jDRqswp4V9Jh21lGsmvK2AfcCKwnjdR/IOlD25+3myd0r1qKJNsb5lpe3C66m7RDNkwBh2z/WHzmHWA1MPNENUUaEjVwVNI50ntoviXdZ24YLOZlkTOj7dNN63kJeLuY3ATss/0XcEbSEeAmIEuRVFPGVveDytSUcy1wr9IXD5YB5yT9YXtHm3FK1ZQRSYPAG8Bm21+1GeM/1ZSzV849q0jPVB0rCvdBYFTSzcADpMccDHwp6RRwDXC0klAz1JRxCvjJ9jQwLekQcAMQRVIP69bbbRuAk7anmubtB66XtKQ4AG4jPUQ305ukh7eRNARcQHqB4VvARkmLJF0BXEWmA7hFC84o6dKmybuAieLnSYr775KWkkbTTmboe6tyZGx1P+ikynPaHra9wvYK4HngqVwFUosqzyhpGbAXeNT2kWw9n58c+2xPnHtsj9te3rRfTgGrbf9AOvesB5B0MXA1mS7OWpQj4x5gnaS+YsRpLXCiE2FCfbq1SNrI+cOk2P4FeA74mDSsO2p7L4CknZIaLyncBayUNAG8Ctzv5Diwm3RQ7AMesn22I2nKtZPxGaWvr46RCsJHivkvAP2SjhfreNn2WP4os6o841zta5RjW3abHBm3AFcCj+vfr2wv70CWueTYZ3vp3DObEeBWSeOkkZltjRGbmlSe0fYJ0vYbIxW5O21PzNUm/P/Ff9wOIYQQQijRrSNJIYQQQgi1iiIphBBCCKFEFEkhhBBCCCWiSAohhBBCKBFFUgghhBBCiSiSQgghhBBKRJEUQgghhFAiiqQQQgghhBL/AHYaMhQchFFiAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5, c=sites.cti)\n",
+ "\n",
+ "plt.colorbar(label='Vs30')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "## Saving and cleaning up\n",
+ "\n",
+ "That's basically it. We just need to save the file and then proceed to the [liquefaction analysis][liq_anal].\n",
+ "\n",
+ "[liq_anal]: ./liquefaction_analysis.ipynb"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sites.to_csv('./tutorial_data/liquefaction_sites.csv', index=False)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3.7.3 64-bit ('oq': conda)",
+ "language": "python",
+ "name": "python37364bitoqconda2538d931db6a43dbb13a044a946dcd86"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/_sources/contents/sep_docs/tutorials/liquefaction_analysis.ipynb.txt b/_sources/contents/sep_docs/tutorials/liquefaction_analysis.ipynb.txt
new file mode 100644
index 000000000..35ede3c80
--- /dev/null
+++ b/_sources/contents/sep_docs/tutorials/liquefaction_analysis.ipynb.txt
@@ -0,0 +1,526 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Tutorial: Calculating liquefaction probabilities from a single earthquake"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The OQ-MBTK has several models for calculating the probabilities of liquefaction and the displacements from liquefaction-induced lateral spreading given the magnitude of an earthquake, the Peak Ground Acceleration (PGA) at each site, and the susceptibility of each site to liquefaction (which is based on local geotechnical characteristics and a soil wetness variable or proxy).\n",
+ "\n",
+ "These functions are quite easy to use and the calculations are very rapid.\n",
+ "\n",
+ "Functionality for calculating these probabilities and displacements given a large number of earthquakes is being implemented in the OQ-Engine, but is not yet available. However, the functions below are easily incorporated into a script that can iterate over the results of an event-based PSHA, though this will not be demonstrated here."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "from openquake.sep.liquefaction import (\n",
+ " zhu_liquefaction_probability_general,\n",
+ " hazus_liquefaction_probability\n",
+ ")\n",
+ "\n",
+ "from openquake.sep.liquefaction.lateral_spreading import (\n",
+ " hazus_lateral_spreading_displacement\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "plt.scatter(hazus_liq_prob, zhu_liq_prob, c=event_pga[\"pga\"])\n",
+ "\n",
+ "plt.plot([0,1],[0,1], 'k--', lw=0.5)\n",
+ "\n",
+ "plt.title('Example liquefaction probabilities for Cali, Colombia')\n",
+ "plt.xlabel('Hazus liquefaction probability')\n",
+ "plt.ylabel('Zhu liquefaction probability')\n",
+ "\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "It is clear from these plots that the two liquefaction models produce highly discrepant results. This is a warning that they should be implemented with caution, and calibrated on a local to regional level if at all possible. Both models may be calibrated by adjusting the coefficents for each variable relating soil strength and wetness to liquefaction. \n",
+ "\n",
+ "Unfortunately, the tools for these calibrations are not implemented in the MBTK, although the functions used internally in the MBTK may accept modified coefficients."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Lateral spreading displacements"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Displacements due to lateral spreading associated with liquefaction can be calculated given the earthquake's PGA, magnitude, and the liquefaction susceptibility of each site. The model currently implemented is from HAZUS."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "hazus_displacements = hazus_lateral_spreading_displacement(event_mag, event_pga[\"pga\"], sites[\"susc_cat\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAI/CAYAAACF0oasAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3QVRRvA4d/sbek9gZAQAoQSeu9VqihFigoWEAVRUbH33j4VC3axK0oRlCICIkV6lx5KgEAKhPR+2+58fyQGYxKKVGGec+45uffO7s5uDuE9M++8I6SUKIqiKIqiKJXTLnYHFEVRFEVRLnUqYFIURVEURTkFFTApiqIoiqKcggqYFEVRFEVRTkEFTIqiKIqiKKegAiZFURRFUZRTMF/sDpyJkJAQGR0dfbG7oSiKoigXxObNm9OllKEX6np9unvLjEz9glxr83bHIill3wtysXPgPxUwRUdHs2nTpovdDUVRFEW5IIQQhy/k9TIydTYsirog1zKF7w+5IBc6R9SUnKIoiqIoyin8p0aYFEVRFEU5fyRgYFzsblyS1AiToiiKoijKKagRJkVRFEVRSkh0qUaYKqJGmBRFURRFUU5BjTApiqIoigL8lcMkL3Y3LklqhElRFEVRFOUU1AiToiiKoiil1Cq5iqkRJkVRFEVRlFNQI0yKoiiKogAgkehS5TBVRI0wKYqiKIqinIIaYVIURVEUpZRaJVcxNcKkKIqiKIpyCipgUhRFURRFOQU1JacoiqIoClBcuFJXU3IVUiNMiqIoiqIop6BGmBRFURRFKaWSviumRpgURVEURVFOQY0wKYqiKIoClOQwqcKVFVIjTIqiKIqiKKegRpgURVEURSmltt6tmBphUhRFURRFOQU1wqQoiqIoClCy+a5aJVchNcKkKIqiKMolRwjhIYTYIITYJoTYJYR4oYI2o4QQaUKIrSWvO85Xf9QIk6IoiqIoxSTol84AkwO4SkqZL4SwAKuEEAuklOv+0W66lHL8+e6MCpgURVEURbnkSCklkF/y1lLyumjhnJqSUxRFURQFKI5GjAv0Oh1CCJMQYitwHFgspVxfQbMhQojtQoiZQojqZ3rPp0sFTIqiKBdQgdPJrqOpuHT9YndFUS62ECHEpr+9xv6zgZRSl1I2AyKBNkKIRv9oMg+IllI2ARYD35yvzp4yYDrbpCshxEghxP6S18i/fd5SCLFDCBEvhHhPCCHO3W0piqJcegqdLvp+8g3Dv5vBqO9nXezuKEoFBPoFegHpUspWf3tNrqxXUspsYBnQ9x+fZ0gpHSVvPwdanq8nczojTH8lXTUFmgF9hRDtKmg3XUrZrOT1OYAQIgh4DmgLtAGeE0IElrT/GBgD1Cl59a3gnIqiKJcFw5BM+G4emSn5OPPdbExMxlBbUChKpYQQoUKIgJKfPYFewJ5/tAn/29sBQNz56s8pAyZZ7N8mXfWheM4xU0qZRfFwWd+SG/STUq4rSer6Fhh05t1XFEX5b/hh6ioOf7CFKiuzMeUbjGrdDE0NrCvKyYQDy4QQ24GNFMcTvwghXhRCDChpc1/J7Nc24D5g1PnqzGmtkhNCmIDNQAzw4UmSrroA+4AHpJSJQASQ+Lc2SSWfRZT8/M/PFUVRLjtSSn76bAVCB3OhTh2nBw927nixu6Uo5UjAuEQGPqWU24HmFXz+7N9+fgJ44kL057SSvi9m0pUQYuxfCWFpaWnn6rSKoigXzILNe0gNEegm0HSJ49cDXNfgcX6cvIzM9Dwy0nIvdhcVRTmFM1ol9y+SrpKBvy/xiyz5LLnk539+XtE1J/+VEBYaGnom3VUURbnoDiWl8/C8haQ19yCxfyCap1aa1DD9oyWM7P8uIwdMYs3y85Z6oShn5AImff+nnM4qubNJuloE9BZCBJYke/cGFkkpjwK5Qoh2JavjbgXmnPXdKIqiXGL+2HoAtwUQAsOmcc0NbUu/C6gWgNPpxuV0s/L33Revk4qinNLp5DCFA9+U5DFpwIy/kq6ATVLKuRQnXQ0A3EAmJUlXUspMIcRLFCdrAbwopcws+flu4GvAE1hQ8lIURbms9GvfgEnr1lHgZdAsuAr3jLuWHj2asPSXbSycvRkhBFabmWuHtb7YXVUUJPwnR38uBCH/Q8taW7VqJTdt2nSxu6EoinJGpJQUudx4WS0A5OcVMbTjKyAlEnji9WF069fs4nZSuSQJITZLKVtdqOs1bGKV0+aHXZBrNYlKvqD3drbUXnKKoijnwbrERB5dvIjogAA+6T+wNFhyOt08Nn4KhqcFXDqaSycqpupF7q2inGBINcJUERUwKYqinAfPLVtKUm4u6YWFfD53NbZEJz37NaGgwEHikXQQAqxmRt/fi1p1TwRMUz9awurFuxhxTw869Gx4Ee9AUZS/UwGToijKedAoLIzkvFzIdTP/+5VIXfLr7C18/dN4rFYLUkLzVjWpWi2Qge1eomq1AO57uj/TPl2O0+7ifw9MZc72l/hr1yjDkAhB6XtFOR9UDlPlVMCkKIpyHvyvV2/6xNThw/eWUmjkIQCHw42fnxdfzxzP0eQsatWpwp2D38dhd3EsJYu9O5MRgMVqwhrpy57E48RGVWHBlr08NXUhIb7efD/hRkL9fC727SnKFeeM6jApiqJcSRIT0pkyeTlxOxJP3fhv1ickMvSLqcxdvYPUYznkR9pw+GiEVvNlzHXvsWPTIerUD2fThoP4VvXD6mFBCEGLDnV4a9pdNLqpBckxntz+5gyW/Lmfyb+vx60bZOUXsmznAQAcdhdLZ29m77Yj5+PWlSuURKCjXZDXf40aYVIUpQyX003q4XTCa4ZiMpsudncuGsMweOC2z8nPszPj65V8+8sD6N4GWc58avuEn3Rq7JHZC0nNy2ev+zgBGAgEVn8PclNycRS5ePv52TzmbeW5p2YipaRG/Sq8+vqNhFTxA8C1woojQUcTgm3xKTT0DyQxLRtN02gUVZVpm7az5Nu1pC1JAAlvTr+HOo0jK+2PoihnTwVMiqKUcrvc3NPxGVIOplGnWQ3e/v3pKzZnRhoSu92JlBJDwoHcYzy1/UuklAyK7MBddfpXemxEgB+ZBYW4hY4104XFIencPZb1iTux2sxUCffnzdd+we3WAcjJLeKRx6ZRs2YoTzw5gDHXtGP34ePYLCYOz9/D/q1JhFrghQ9H8t2mrfy6ax+uABchISaC0w2OHkknukE4cWlp1AoKwsdqvVCPSbkMqVVyFfvvjYkpivKvFRXYSU/JrPT79OQsUg4cx+VwEbfxAEX59gvYu0uLyWziuYnDadqqJmMn9GbmjPXo8y04Cl2sST95Ve7JNw7ivi7tCcwwo/la8GgQyPxjCTh9TLhyCjj85yGyEtJBUpzb5HRz5HAG69cdYPWqfdSNDGX+q7fTr2EM6515ZNf2QZeCrIRMjubk4XC7MVlM+NUIoHX3WNr1bMQtM2cyYsYMen/1FQVO54V5SIpyBVEjTIpyhTiWcJy7WjyCo9DJzc8OZcSTQ8q1CYsKpmGHumxdvpvOg1rj5et5EXp68RQWOnjuqZmkHs3msacG0rpjHVp3rMOUr1eybUEiGFYsbhj1WK/SY+yFToqKnOTk24nbe5SO7WPYnZaGSWhMefomth05ypNLFuOWGqYUN/4OJ27NhDdg8bER4GPjUGIm2Mw4XW5yiuwcOpJOzagQflyyrXhLFYsJw8dK66tiOf67g9ygQmpFhPLS4z3xtFgwpGRTcjKS4lVOR3JyiFV7byr/glolVzkVMCnKFWLrsl24SvYtW/TV8goDJk3TeP2Xx3DanVg9Ls9pHSkln6/ZxP60DO7t2p7qgf6l3y1dvItdO5JwOt18MGkRH39+OwCaECDAopm4JqoDPaq2ACD5cDr3Dv8Yu0vHWcUbk0nj22lriKvuwC0Mftmxh7t7tMNiMeN2u5FNAvE87KTIJbHb3ZizizicmosGCIeONdKPiZ8sRmiC5+7vRzUvL/IKHGCCsQ/24aPXfmHDin0IAbd+1BlPi6W0f7c0acaUHdtoVa0adYKDMaQs7reiKOeECpgU5QrRqk9TPH08cTvdXDeh30nbXq7BEsDSfQf5cMU67C43B9MzmXnHiNLvakSHIAR4eFio87dikkOHt8OtG7icbkbc2qn0881r43E5ddzSQHcbON0Gcd75ONwCa7Yk3ZzPR28vJThfJ7RdGC/e1huv0Qb3Df0Ap9ONMIniApaAQFIgdTBpSCn56J2F5CdmYQmwIhC8P381jTMtOB0ubB4WUpOzoFVNAPYcOc5vP+8ixDDRp1ktek//ikPZWTzctiP3tGh/gZ6solzeVMCkKFeIkGpBTEv6FKfdiafPiak2KSU/f/I7ezYd4qZHr6VGvWoXsZfnn1krTt3UhMBiKrsKsHHTKN5+/xbS0/Jo175O6edWq5lbR3cpd65mbWuDAM0laVIvnAR7AanBRZgKdTyOFtDIvwo7MlOREqLzvIgNC4UwePKdEWzfcJBu/Zvx8uM/ciw5iw79G7Fm3xH0fB1Ngo8B+U4da1Hx6JZpbwH3fzCS91+aS2R0CF37Ni7tx9pdCbjcOroh+WHzVhJ8MpEI3t60ijHNWmPV1J965XQJdKnSmyui/hUpyhXEZDaVCZYAtq/exzevzsFR5OTAziN8sf7li9S7C6NLTDRP9ulGfFoGt3cou+9n0sE0bJpGdHQoK5bspk3HGLx9PCo916qV+3B728BTEhkWyJP3Dqb7u59T7dcUzAU6CUf2YKkbghCC9s2jS49r2z2Wtt1jAfh6zv3oboPB06cS7yfwy7PwWL/utAsM5/4bPqaw5JiqAT5UjQjk7SljKShyYrVZSs/XKTaa735aiyvdjvNwInJI8e/Y6ung8NFU6kREnJuHpyhXMBUwKcoVzuphASSaJrBYLads/18nhOD6Fo3Lfb5u6W5eu/97AHSbBc3Lhr+XFR8MmnWsw9inB5YrsWCzmdFMGlJIbDYzVfx8mDPuZh6a9gYuqWPLd/L0uL6ERQVRJ7riHeCFEJgtJqr5+hKfkYEzSJAr3MxKjefZ70bxwxuLyckp4nhCOrde9TrO2CDyTZJbB7RhzLCOZGfk88htnyItBn55Ar3QTWRCDoUtBF47Db5Zt4SXP7z1nD9H5fIkAUMtoK+QCpgU5QoX26oWD0wayb4/DzPozqsudncumq1r43E63SVL/QVOTcOVlE66lBw7kkGnq5vSsCRn6C+DhrTGMCT2IidDh7cDoE5YCC99PobvJy2izVUN6Nil/mld/+1+/fhp1y6EDq+uWoHT7WaOnx8rvhnL47d9TvK+VBDgTivAHerBnGU7GDOsI2vX7+NQY28kktwig+o7QCxw4/2rBGHGt++VtdJRUc4XFTApikK3wW2IrBXKyh/X0nlIW8Kirrwl6ceOZIAEk0mjVc8GxB9IQ1gEuRl5SCRBYX5l2uu6wbwf1lCYUcDQMV3x9DyRKN+0Qx2adqjzz0uclCvPycLHfictIx+/+h4cb24trac0eFRndm05jNXDQmGwF55H82lWqzoAwTWDEQKkpiF8zbz80fV4+diY/Mav+Ph6cP9zA8/yyShXGlVWoGIqYFIUhazjOUzo9Ay6W2fGxDlMS5p8RVX4drt01i+NA8BkEgy6qR05UqduRDB/Lt9D3SZRhEcFA3A0KYsdfx4mPyOPb99ehNutM3/WRhoPaUKcrYCmUeE80q8rmnZmz+/R4R+REZ+KAPz2CRoMrsc97doC0KZrPX7e9DxCE9w19AMSs5zsWLyHnYMP07p5FCO6t2B1XAL3X9uJRo1rAPC/z0efuwekKIoKmBTlUrN3YzyT7v6MGg0iefCzcRckr6ggpxBpGLidbnIz8pFSXlEBk9liolWXemxbF09IeACPfvQrbsMgJNCb6W+PLn0WBfl27r75U3TdwGzWMKREdxvkZBUyMzEet02wLzWDjnWj6VQ3+oz6kJqYCRKkpxUkeM5Oo9E1J/KezJbiFX1SFueZFCv+PT06qBsMOuvHoChIqVbJVUY9FUW5xEwc/RH7Nx9k5az1rJy57oJcM7JOOCNfvIE6LWvx1NQJaNrl+achv8DBhs2HyMsrv+XL+BevIyqmCjZPC84CJ0UOF0mp2ei6UdomN7sIl0vHYXeRp7uwd69GdrtQZIg3JqfEohXXUAr28Trjvt39wnUEhvqieRevyktMSGfvruRy7Z6fdBO9BzRn7EN9adQiGiieHszJLkRKWa69oijnhhphUpRLTHjtKqQcTAUpCatx4XKJrn94INc/fO7zXb54Zjq/fbOCa+64is5D2/HF87Oo3bg6I58aeEEDM103uOPer8nOKcTb28bUL8ZitZz4Ezj942Uc3HMUAdRuEkFKgJmb+7fGbDZR6HSx7chRYquFMfTm9iz/bSeyWRA7j6UhfMzE9K7ONfWrsPR4IkObNyK22omRIbdLZ++uZCKigvDx9cRk1iocves9rA29h7XhxUdnsHHNfjw8rUTHlF9ZF1EjmAdfHFz63ulwc/etk0k+kkn3Po149Hk11KScHUPlMFVIBUyKchH9/v0K3hnzCeG1q/DOipfwDfThyR8msPSHVUTEVKVRx/ocP5KGt78X3v7eF7u7ZywrNYefJi3A7dKZ9uZcVvy6jeQDx9m1Pp7Y1rVo17dphcd9/+Y85n+zgqtv6cwtjw04J30pLHJyPC0X3ZC43Dq5uUWEBPuWfh8VE4bVVvwncWD/FgwoqegtpWT4x1NJzsrF02ph0cOjGXXXVXyxcAP7F2QB0K59bV7fsgaHrrNv5QpsZjNDWzRC0wQvPDyV7ZsTkA43er6DwFBf3pt1L0GhvuU7CTz9v2EcOZhGWLg/Xt62U95XwoHjpB7NQdcNlizcoQImRTlPVMCkKBfRt89Nx2l3kXoojXW/bKbXLV3x8LLR744eAEx/YzbfPDcds8XMg5+NQwhBh0Gt/zP1krwDvPAJ9MZe4MDLzxP/YF+OHc5ASvAJOBEASik5uDOJ4PAANE3ww1vz0d0G095ZwIA7uuMfXHFwcSZ8fTwYNqg18xZupVf3hmWCJYCBIzsRHhWMEILW3U6UAnDpBgeSM9Ds4La6SM3Jo2ZoEKP7tCamWjCaJli0ez8iS0d4g0savPrrMnTD4Oq6MWzfnIC9yIVW5ARDkp9TxMble+gzrHWF/dQ0UeHI0t/lFtoZ+dY0jiZkMmFEN0LD/DiakkWXqxqc9XNSrmzFm+9enlPyZ0sFTIpyEbW+ugWLvloGmiC2bdll6DnpuUx/Yw4uhxsp4fVb38dsNdPxlzY8/u19F6nHZ8Zqs/DpxlfZuWYfjTvVByFY+N0qoupVpVG7mNJ2HzzyA0tmrMdk1pj02+P4BHiRl1WIZtLK5BCdrbtu78Zdt3er8DshBG0rCDisZhPebjMOw43JKdh75DgWk4nIIH+6NqnNjLXbWfjnPjQX+GtmCk1uDCGJjzvKTU8txI3EbDYRVC2QnNRcNJNG4zY1K+hBeS63zjNTFrLtj4M0iKzCc4/2x8/Xk5W7DpG7JAkfu8GXLyxgzsJHKCp0Ehj83xuFVJT/ChUwKcpFNP690fQZ1Y2QiCCCqgaW+e7dcZPJz8ovfS80DXuBg4QdRy50N89KQJg/nQadGE25YULfcm02LN6Bo8iJh5eVgzuTaHN1C5bMXI9hMjHzk6WMffa6C9nlcqJCAjh8PAspJU/O+A1hgrduvoZuDWrj62FDUDwyRLZOuNtC86618D0GeVbAZsXrUBbZWXmMfrw/vYa2xsfv9IpJLty2l5W/78GcobM5NYFvf1jD+Dt7ULdqCFphcaaJcBlkZxUQHhF4yvMpyqmpVXKVUU9FUS4iIQR1W9YuFyxB8X/AoiQpWtd1DMOgWkxV7vtozIXu5nl308PXYraYCKseTMurGlIlKgSLpwdmq4WAkLOfjjtbk+8byoPXdaFFw+o4pY7DrbNizyEA+jaryzNDehCkWzFn6uhFOu1DqzE38QCGRcMwC+xVvHG7dNYt3lFpsCSlZOHqXXR58ENueHUKOQV2wvx8kJbizXeFJggsmcasUz2UvoOaYzJrdLkqlqrVAi7Ys1CUK5UaYVKUS9T9n4zlwLYEkvcfQ+oSs83MQ5/fRYP29S521865vrd0ou8txUnWulunfstoht/XG/8gH3rf0PYi9w4O701l7lvL8QnywifcjMlq4vp2xQnrQggGtGrA3h0p/Jq5G5DYPSU5VjeeGoDA6jIwW0z0u6lDheeXUvLEyM/YtuEg5gALh9voLPlzP4M7NebBEd1YMGcrHdvU4cahbUqPeejJ/jz0ZP/zf/PKFUXtJVc5FTApyiXK5mklJf5Y6fvohpHUb3tm221caI4iJwlxKdSoXw0PL+upD6jAa/d+x+Y/iqtuf7jgEUymU//x1g2DhNQsIoL98bCe+z9rn7z7G+lpeeTmFvHMoD5cM6hFuTYPjexB7w6xhAX5Ijw03lq3lnyTpLbuzQfv346fryfelYwuZaXns2NLApmNPDEsArNbp2GNKhQWOvh64u+4XDpzD2Zy64gOJOfkcuvMmRQ6XXx63UCaVK16zu9XUZTyVBipKJcoq4eVZlc1xmI1E92oOu+uehmr7dJdHafrBuN7vcZjQ95lfK9X0d36KY/ZtGQXYzs8z7sPfFea3B23+RD2wuI91BL2HD2ta9/54U8Mn/gDg1/7FrvT/e9vohKxjSPw8LQggFp1qlTYRtMETetFEB7qR1VfH+bcPJyqf+RS8OsRbu8/Caer8ucREOyN+aoqZLT2Iau5D/XbRHBwWwq5uUXobgPdbVBU5OL+cV8ybuIPHMnK5nhBAe+vWQsUj1DF7UgkIT61zHk/m7uW9ndOYvzbs3Cfw+R5RbkSqREmRblECSH436KnSUvMoCC3kDubPYzN08aLcx4lJCL4YncPgLysAlIOpRHTpDp52YUcTUhDdxscO5xOblYBgaF+Jz3+rfFfk52eR1pyJl0HtaJ511jueGoAHz/3E+HVg/APOHVytFs32Lg/EYD03AIS07OpUy3knNzfX8Y/dDUdOtcjJMyPmrVPvuT/L84cJ+S5ANCdbkb2epM2XevzxMQbyoyaLdi1jw9XrCOgdTXM6ckYUrJ122GO7zxEuw51GH9/H2b+vIEDGens355CUZoZrbMXNrOJ9lFRAMyasoavP1qKNAwee3kIXXo1AuDzX9aj6wZb9yez53AqjWqFn9PnolyedKkKV1ZEjTApyiVM0zSq1Ajl+5dmciQumQPbDvHze7+e9+tKKdn4xx42/bGn0u02stPzGN3+OR4f+i4vjZ6Mf7AP3a5rjWbS6Dqo1Wkla1erGYrN04qUEBoZBED3gS15/J0RHNoUz5PXvc1PH/520n6aTRpD2hcHCI1qVKVmlaB/cccnZzJptG4fc9rBEkDN2mHUjK0GUiIEOF1u1izdTfzftjuRUvLI7AXsT8tge+IxrqlTlzZ+4VTZa+BwuDmaksU1A5rT8a5W2EPMSA28juvcH9qEKTcMY3SrlgCsXb4Hl9ON26Xz2RvzS8/fLKYanjYzHjYLNSpYWKAoyulTI0yK8h9Qt1VtNiz4Eykhpnmt8369ed+t5ss3FwCS2MYRHNl7jEG3d2XY3T1L2xzZexS304290Mm2VXtJ2n+M8a/fyMPvjzzl+Q/tSuLr1+bSpGt9+tzckdqNo4isfWKqa/f6eFxON9KQbF62i8H39C53jlW/7+J/j/9IYLAP7343lieuvwqLyXRO7v8v6Vn5HM/IJ7Z2lTPejHhH8jGOdfShWq0Yjv4SX7JprqRK5ImATghBmI8P6QUFaELwRLeu+FlsvJk8j5TkLB54pB8AAxrUY3q77eT7ZXFb6xbcMbxrcRmDEp261WfXn4eRhkQvcJZ+/sGDQ4hLSCU6PAhfL4+zfBrKlUAiVOHKSqiASVH+A65/ZCAxzWti87TSqFPsvzrHsYTjPNH3ZeyFDl6a8zgxzSsvnnhwTwp2JFKXbF+1D8OQfP36PPrf1gUPz+Jk7vqtalK7cXX2/plA1YgA7m7/ND4B3ny2+bUyVbwr8tLoyRxNSGP76r08+81d1G5cvcz3vUZ0Ysn0dRTkFXHTIxWvBPvh0+W4XTrZmQWsXhrHgBvPfjXde2vWMnXbdq5v0pihtWIZ9dh3SCnp3KwmsR5etOhcj7pNqp/6RMCzPy9m//EMPDQTzWOrkJeSx12PX0NAUNlnM/32G/l9TzwtoyII8Sn+7qnnytadCvPxYfHY20rfb99wkLitR7hqQHNCq/ozYER7juw5yt6th7nz6RP7AVrMJprEVPu3j0NRlL9RAZOi/AcIIWjZq+J9107XvI8XkRJ/DMOQfPfij7zw86OVtpV+3hgle9eZLRpakQMff6/SvdaguIr3xDkPAdA/+HacdheFeUUc2pVE444nL33g5WNDMwmklHj5lB/5qBIVzGu/PMrEF2YzffpGHmkQgY9v2Xymjj0akHQ4HSEEjVrUKHeO5Qu28f0ny+hwVQNG3dfrlCNE2UVFfLhuPW7D4JP1G4iyeyGlxO5ws3TVHjZtT2Xah4v5dvWz+AWeuqJ2dEggiVk5ANzz+mBa1IiosF2ojzfDW1X8u53x4wZWrNjLsOtb06F9HQ7Fp7JpTTzT3v8d3W3w20+b+WLhQ5hMGve/MrTMsWnHc3nl6VkYhuTpl4cQVtX/lH1WFABDFa6skAqYFOUK0bBDfeZ8sBAENO3e8KRtjx/PRVKcuzNwXA9iIgNo2rEumlbxH9KBd/Vm5rvziahdhbotTr7th6PISaseDfEP9ePqmzpSr0V0he0mv7uInX8eRjNpzJm+gf7Xt0EAviVL828a153OvRvi6++Ff6A3P/+5C7vLzZAWjbCYNCY+NQu3S+fn5DV079eU6EpWt/3F22ol0MODApcLT4uZbq3rMHvBNo6kZGJNyMYwJIYhsRc6Tytgen3Y1SzcsZfqQQGVBksncyQxgy+/XIHT6eb5F5JxNPIk6M+C4mk3iwnhcJOfW1TmmPidicyavIyW3WKJO5jOnpJ8qSlfruBBVbNJUc6KCpgU5TKxZPoaJt37FRG1qzJx4RN4+3uV+b7DwNZMWvMKjiInDdrVPem57hzfk/Tnf8kXtkkAACAASURBVKYg346u67Tv2xSLpfL8oDtevoGRzw7BbDGdciTnq5dn8+u3KxGaoPVJNoutGhFYWkYhv9DBjQPeRQjBKxNvpFnLaACiahUnYU9Zt5W3Fq9ESkjOyuXhPp0JreJPRloumgb+fwtwvnt7AX/M3cL1d/ek9/UnpvEsJhO/jLyVDUlJtImMINjbmwi3mezjTgzNTM1GkYRGBLFzcwLdqwWc8j49LGYGtTh5YHoy3l42hAAEGCZwF7jRpUR36Xh4WYltUI2bx/csc8xTt35KbmYBqxZuZ8gDV2MpqUlVo1bov+6HcmVRm+9WTgVMinKZ+OaFWTgKnSQfOMb6Rdu46vr26LrBG6M+YvvKOO54bQQ9hncsc8y+zQdZ9M0fePh5sXVtPDXqhnPt6K40aF2bBrHVWDx/K3NmbMQ/wJvrb664SvVfLFYzOzcn8Ow932LztDDx6zFE1Ci/vL8grwhDNxBoFObZKz3f7eN7UjOmCt4+NpYvi8Pl0sEwePWZWdxyexf6D2nNkbRsnpuyiNS8HIwcO7qPhfT8AgDemXIna5fF0aB5DQJDfABISUhj5sdLcDrcvPfYdHoMboXJXBwIZmYWsHnDAZo3jSLEuzjA2rf3KPYiFx4+Hlh8PNm0aj9/rjuAh5eVDj1PBEPJh9I4GJdC62718fCyncZv69SCg3145+2b+G7eehYmJWD2NNG+ezRJ+48z9v7etGpbu9wxrpIaVG6njs2t8/TLQzAMSbtOl3bBU0X5L1ABk6JcJlr2aMTS6WtACOqVTIvtWr2Xtb9sxl7g4IP7vioTMOlunYd7voS9wAGA5udD/J6j/PHbDj6c/zAAssCOnp3P3rX72F4zmPCaYYRWq3x5+vQv/qCwwEFRoYPFc7Yw6r7yq9vueG4Ihm7g4WVj8LjiEZKlMzfw/iM/EBDiy2sz76dqjRBMZhO9rm0GgJevJ6v+2IvbbpCdWcAnk36jbce6vDl7GTs3xBO06ADhBmjBvrR9oXipfUCwD1cPbV3m2r4B3pjMJqxC4BvghVZSD8kwJHfd+SU5+XbwMDHt63EE+Hsx7r7eTH5/MfUbRmBPycbt0nG7dL58exGtutTDajVzPDmL8de+A0Ct2Gq8NXP8mf/yKlG/fjiv1B/Eg3mFpObmsfZAIsPv6kqdqhXXmWrRuR6rF2wHIDUpk+H3ln/+inIyEqHqMFVCBUyKcpm4d9JI+ozsQmhEEMHhxUFN1ZrFU1Ye3jaiG0aWaS+lRHefqP4svT2QVYNxATOnrmfMhD78/v4CDN1g7cz1bJ63BaEJPlr+NOHRFU/xtOsWy7YNB5ESbD4e6G4Dk7ns8L5/sA+PfHhbmc8mPzcTe76dY/l2Huz3Bj/seqPM981aRjNrwUPcPOBdCgsdaJqGh6eVyJAAvI4VgLu4VpSRWcAXz/7MoJs6VThl5hvgxXvzH2Ln+gO06dGwtI3brZORVUBWDSvSBHe9/xNTn76Z3lc3offVTQA4mpjBHX3fQtcN0o7nsnvLYZq1q82xpEwQYC90cnj/sXLXPBd8PW30fetLCuwu3vl1Jb/cdTPRNcr/Dm579NrS6ujDxvUA4PtPlzHjq1W07BCDKcSb9RsPMOLG9tx4Q7vz0ldFuVypgElRLhOaplG/VdlpmrDqwXy88TUO7ThCy95NynxntpgJqBVOWnwKmoeV6s2iOXw8HxDk5Dvw8fPE08dGYZ4dqRs4ipx4eNtIiEuuNGC65vo2+AV789rLc/l+2jqOHMvmsScHnLLvVaKCyDmeCxQXxKyIp6eV9768g1XL4mjZthZ+/p48eF0Xqhgmfr7/BxwFDix+XoRGBJUJlqSULDi2gAP5B7gu4joia0USWatsAUqr1czw0Z346I+NIGBvUhouXUfqkr27kqlRK4zw6sG07Fqf7RsOYjKbiCopYtmwVU3a92rEjvUHuP2Ja055r5XJL7ATH59KvbrheHqW3YfPpesUOV2gFY+GzZixjlbd61ErIoTo8BN1nSJqhvL5sidL3xuGwZRPliOlZMO6eFyBHuR5ST6cuoIbrm97xrWllCuD2ny3YipgUpTLzP4th3j5pvfxDfLhpZ8eIiKmKh4+HjzY53/kZRXwzHd3l07ZZR/PRbPZQEKzRpFYknMoLHAwalx3TCaNt395hBVzNiMNyezJS6nVMILmXStP1AYocuoIswm73cWe3SkVtsnNLOCT52ZitVkY+/xgbrj/al657VMMt0FAlcqXv0dUD+KGWzvyxQs/8cKsDQy+uyejxvXkliGdSDqQyr5tibTpUbZ/cXlxzEmZg9NwklyUzP+a/K/Cc992Y0e2ZaaxZtdhru/aFIvJxISxX3IwPhWbzcLXP43nufduYs/2JPC18Pq8FdSpFsLtfdrw6DsjTvpMTsXpdHP7mC/Iy7MTGuLLV1+MKVOY0uF0U98SQHxGJl4pTuaylzkb9oGXxq19W/Pj/C00rh/Bm48Pwmw+kZyvaRoxseEkHkrHYjOTUc1MoYdEE4JN8Um0rnN6NaUURVEBk6Jcdj5/ejrHEtJIS8pg0bd/cOMjA/htyioO70nB0A2+eflnXv3pQQBiW9Zk19r9aGaNek2qExDkQ3h0CLViipfgFxU6iY87Ssuu9Zl14J1y19LdOp+99guH9x9j3NMDqVG3Kp271mfRwu0kJ2Yy/v6yOTS6brB/RxJzvljGyrlbEEIQVMWPmx/qx8CxPdi37TBjnh9y0vtLPZLOnM+W4nK4+fz5n+g3sgs2Tys16oZTo+6JvdKSs3PZdTSV8CoaSBAIrJq1wnPqbp09O5N5/saeBAb7IERxjag9u5IxDImUcDQ5i5h64TRsUYMRr39PXOJxVuw8SO1qIXRvUj4B+0xkZxeSnVWIy62TnJJFUZETb+8TyeOPfTmfQ1k5CENDChOlKSZ2g6nzNuFy6Wzfk8zO/UdpFlt26vWtr24nbnsSNetU4baPZxJ/LAOL2cTRzNyz6rNyeZISdFWHqUIqYFKUy0yDtjHs2RCPNCS1mxQXdKzTLBqz1YQmzIRGBnN395dxF9lJ3HsUm5eNnsPbs2TWBnasicdsMWH1tGIN9uXNu74mPz2PP1fuZfuKOGyeVmI7xxJZM5SmbWqxatEOFs5Yj6PIxZsPT+WDuQ/g6WXlrUk3V9i3iQ9PY+3vO0tXc5lMGt6+nmiaxtgXygZK+5LSsFnM1KhSNsncL8gHm4cVk0nDN9Abi638n7GMgkL6f/wthjCIDgzk6WFjSChIoEeVHhX265UnfmTz2ng0TePJV4aAIWnZuS433taJaV+vwuphIjs9D6NOFTRNw2Y1IzSBBGyWyv+M2oucWKzmMpvtViQ01JceVzVg2R9xXHtNszLBEoDd5S4O3JAITRSv/ZaSatUCCQ/wZff+Y5hMguoV7BdntVlo2rp4RPHF4b0Y8+oPGJlFzH5hIf3nN1DTcopymkRlG2teilq1aiU3bdp0sbuhKJc0KSVblu7EL9CHOn8rInlwRyJJB1N5/e6vMXQdaUiwF6+QM1s0zD5eOJw6Ng8rwe3rkpqRj6PQiSkpE2F3YKI4J0Z4e2IODeDZd0agIXlh7FfoukHTdrV5+asx2Aud2DwtFf5HfGOb58nJLAAp0dxuegxuxf1vDi9d2v+XGX9s452ZKwCYOK4/HRtGl/k+LSWLXevjad4lFv9gn3LX2ZFyjMHzvsPlqaM5BXtHP4xFq7yO1NCr/kdeThFWmxmZ78AioPfQ1tRpVZNJr/+Cw+5GuNy0alCNV74bR3puAVOWbiHM24sNUzbjcug89cb1VIsKLj3n7O/W8NkbvxIQ5M0Hs8YTeBqbEVcmKT2b9+euJjE+nZStqdSPqcqDE3rjb7PhH+TNcy/PZsuaeKJrhPDhp6PLVGT/u2OJmYzq8TqC4pjr1al30qLl+d+bUPn3hBCbpZStLtT1ohv5yqd/anZBrjWm3qoLem9nS427KcplRghByx6NywRLALUaV2f32n0Ybh0QCCFK82RcdheOnHza92lC/9FdScsswF7kAgHSJPh77KMbxQngk1/4iabtavPYOyMY+VBfHp90M28/PYvr2rzAhBGf4Hbp5fp26wN9i89lGEi3m2rRIeWCJYA1OxNwZRfhtfgAH479kszUnDLfh1YLpNt1rSsMlgBiwoJxeekgQPMQHMnLLtdG1w1270omO7uA2+7pic1iQuTbcek6BSaNuD8PExTsgzQAKZG6wZ+r9uKwOwnx82bCoM4U7Ehj385kDuw9yrcfLS1z/tnfrsbQDQry7WxZE19hP09XZEgAr4++hh9eHcn7bwxnwj29+OaV+dzRZyIPDPuQLav2I3VJSko2hw4dB8BtGBzIyMThLh7Ny0zLwy/QC2nSigeozBopaWpaTlFOl5qSU5QryPxPFmNoJjSLhXrNavDE53fwzfMz2bxkJyMeH8jAcb0ACJ+3lc8/XYqvzUx2ShZ4Wrnmpo7Y7S5+nbcNHC5S4pI4nphJ+16NgOLRp99+3gJAwr5UjhxMo1a9qmWu33NwSz57Yir2AgfCpNFjaJtyfczLKeS2Pq3Y/e06TBl2crId/Pj+b9z58rDTvk9Ps4WekTEsTz5IvcBQonwDyrV5+fmf2bj+ACazxhff3skfP25gx4aDCACLmeY9GtKiTS2eenkwH700h4yDObTv0wSbx4k8qOiYKlgsZoSAmnXLbr3SY0AzfvxiBWazCU9/T4YPfZ+AAC9efeMGAoMqDvT+affR42w4nESf2DqE+/sye94WPvlsGUjQk7Mxu3QS9qdSr21N4pOyCA72oUZ0KFJKRkydwa7UVCL9/RltRDNl0mJsHhZM3lbcBggBod6ep+6EoiiACpgU5YpSv01tdm5PASE4uOcoFquFu968GS9/rzJ5Nv36N6Nf/2ZIKdm37QgBIb5UiQxCSsnBHUc4FJdCWFQwIX8rYqlpGq0612Xb+oMEhfkSUSO43PXdLh13Sf6SZhLY/rF8/oOnZ7Jg6hrCo0K4dVhHZr73GwCRMSffB64in3UbQrq9kGAPL7QKpgf/3JKA3e7Cw9PCwQPH8fC2lUwjSkxWE+271QegfZf6tPutHvm5Rfj4lQ0weg1oTnCoLy6XTpvOZbebueXeXvQd2hofP0+eefJH0o7nkpmZz6IF27nxppNXTQdIyy9g+NfT0Q2DL9duZsUDY9i5KwmHw40Q4Bfqi6MgEwn42ax8O/VugoK9MZtNFDid/Hn0KFJKEnNymLdiE26XjqYJYptGsW/vMby8rdRvFHnKfihXFolK+q6MCpgU5QqQlZrN7rX7uGZcb3be803xhwI+fXIaK3/eSGSdqry//NlyAYwQgnrNapR5P3HuwyQfSCW8Zijmf+wv9+JHt3AsKYuQqv5YreX/vHj5ePDg+yOZ98Vy+t7SCb9/jLQs/nE9hi7JSM2hSaf61Kwfgcliom3vxqVt8nMKeeqmjzmWmMEj795Cq+6xFd6zEIJQz8o3yR05uguTP15CrdphNG0WRexbw5n1+XIKilz0ub4NMfXCy5zL9x978/2lRfuYSq8RGl48stWwUSR74lKQUlKnbtVK2/9drt2BlODSDTILi5BScvPwDuzecxRhEdw8oBUfPTsbgA49GhBWxa/0WG+rlf716zE3bg+tIyMYen0En74yDw8vK4+9Pgy3LgkK8cHDs+JVg4qilKeSvhXlMmcvdHBz9F047S5cLh3DyxuT1cqgMd2Y/cEiDN3A5mXljV8epd4ZJADPn7aehTM3MvCWDvQc2OKc9PWth39g+ZwtBFfx56OFj+Dl41GuzcKpa/n42Vk47S6i6lbl0yVPnJNrny4pJTvjkvH2tlGrgmrblR2zdcthfP08iKlTNmDasekQGWl5dOrZsFwA+umqDfwWF8/dndvQo35xYPbNui288ftKvG1WJve/liCLrbSI5j8VOJxggLenlcJ8BzYPc4U5Y8ql60Infddo5Csfm3VhLndP/eX/qaRvNcKkKJe5nLRcCvPsuBzFSdxewVYQ0KJbA3as3svBbYcJrhpAjdiI0mO2rz/AvClr6HpNMzr1bVzunFnpeXzy2i+4XTqTnvmJjj0b4ul99pvOPvjmcEY+3A//IB8sFYxQAcQ0ikQI8PCy0qRd5aM758uUH9fx3Y/rkBJeeWoQbZrXPOUxQgiat4wu9/mWtfG8cP/3AMydsYGo2HBi29ekekQQDWpV5c5ObbizU9k8rx82bcdtGDhcbvYVZhMe5MtLP8/mugax9KtXr7Rd8vFsbn3+e4ocLh69tQdFR3LZuO4AI2/vStMWNVAU5cyogElRLnNhUSFcO64XS39YxaB7r6Zeu3q4nW6eHf4BUkrMHjaen3YfHl7FAY/u1nnm9i9wOtysXxpHbPMogv9RfdvD04qlZDTEajPx0KjPyMsr4qmJwyvMi/n125Xs3niQG+7rQ/U6lU9JCSEIqVo2QVtKicPuKp0+imlcnQ8XPUrGsRwatT27gpH/xp87ErE73GiaIG7fsdMKmCqTfDgDKSVOh5vd2xLZlJ6Bc9deLFYzr9x1DV1alL+/4a0a8+bvq7CaTbSuEUG/b7/DqeusSjhMm8hIQryLpyFXbTuEw+nGrRtMmb8R++Z0HA4Xzz81k58XPASA0+1m2ppteFgtDGnTCJOmcleudBKBoTbfrZAKmBTlMieE4O53buPud05sePvFM9MxpEQIgaEbxbWRThxQmgAuBGgVFF309Lbx7vS72bxqH6sX7WDXuv1ICROf/JHP5z5Qpu3ujQeY/NwsHEVO4jYd5Iu1L5Q7X1ZaHu8+OhVN05jw5o34l+Q2OewuJtwymYT4VAYMb8ddj/YDIKJmGBE1K56GOh+cTjffffg7eTlF3DiwFYeOpOPr40G/no3O6rw9+jdj48q9HDmURlqBE7dNwwBcbp09CakVBkyj2rVkYJMGeFktaEJg1jScul7681/aNY7mk1mrcZkNjvk4KKpnIniPjt/fEtffXbCaaWu3IYTA6dK5uXPzs7ofRbmcqYBJUa5ALXs05qePi0sMNO0YS6O/TW2ZTBpv/DCO32Zuon2vhpUWXIyqHUZU7TAWz1hfsvUIeHtYyrTZ8McevvjfPNxuvTj4qmQE49u3fmXT8j0IAdPeX8ydz10HwN6dSaQkZiIlzP9xI+Meufq0KlO73Dpmk3bOqljPn7GBOd+vQ9cNigqd/PzN3efkvF7eNl788FaklMz7eQsbth1iW04m/r6eDL6qSaXHBXqdCHqm3XgDc+Pi6BUTg6dmJje3CD8/T2pUDeTXSXcy6tMZJC5NwNsN9XrH8Ozoq0uP/SP+EI6S301mYeE5uSflv09XJRorpAImRbkCNevWgK+3vYHL4aJarfJL9mMaRhLT8PSWnN/38lBeGPslHt5Wnnn/ljLfvTrhBxx2FyYvTzp1q8eoJwZUeI7Q8IDSKb6QkpVlR5Myef7BqTjsLoQQuPPt3HnVa7w778FyyeBSSnJzi/D19WTKks1Mmr2KsAAfvn98BEG+Fa9uOxMWiwkECE1Umlt1NoQQDBjckgGDW57RcW6XTv3gYBp260pSYiY3DJiEw+Hingl9uHZQCzxtFjwP2/FJcgJgTiokNKx4NZ2Ukv2OLDQrmDVBizqR7DhyjKpeXsz+chX+wT4MGdXplNu6KMqVQgVMinKFCo0IIuNoNg/3egXDMHj867sJq16+dlJFDsWl8OSIDwF49fu7mbrxBeK3H2HqxF9o37cprXoUT1X5B3mTmZaLyWRhzAtDCa3qX+H5bhjfi9BqAWiaRteBzXE53WxYtR+nw42hCaRZoOW5SDuaxc4NB2hzVcPSY6WUPPnUTDZuPEhU/TD+NLJBQnpuAeviDtOvTcVlB87E1UNaYS9ykp9bxLDRXU7rmL3JaejSoEHkmdeQOh1bNx7imfunYDJpvDn5NnbuTMbpdON2G/z84wY8zRptutTDYdKRAoQE198WyAkh6Fw7mnVHEgn09OJ/M5eRmpNH8NZ8TEmFmM0avv6eXD209Xnpv3JpkoCh6jBVSAVMinIFm/bmXHat3QdSMnH8Vxw8lEn12mG8OuWuk656m/35crLT8gD4+fPlTJg4nEcHTqQwz87iqWv4cuPLhIQHMvH7caxcuJ2GLaMrDZageBqw17C2pCZncXO318nPLeL2h6/GbDbhMAkQAiPMH3NhEXWbRJU5tqjIyYYNB4uLbGZkQKgJ6QLdkDSrHVHJFc+MyWxi6KjOp91+0da9PD21uOjmE4O7M7jt2eU6VWTu9PU4HcVFQH//ZSsDhrfjmy/+wJCSYwfTeO/FOQSH+RLcN4pDjbLQdKjXpgbDr32HKuH+vPTWjXw2dBCHMrPwMlvo++oX6IakyO7EWxbvWm/oxjnvt6L8V6kwUlGuYNXrhmOxWbB4WDh4MIOC3CIS9hxlw9LdJz2uZbf6WD0sWD0stOhSvJT9r/9cpZTFG/sCoVX9GTyqM/UaVy9zfFGhgw0r95GVkV/m8zVLdlOQZ0d3G/z46TLChRNzSd0gs9XMO3MfIuAfOVWenlZaNK+B2axROyAQs5cZwwPuHdaRasF+XAybDiTjcLmxu9xs2J94xse/8f0SOt31Hq98s7j0s/TUHJIPp5e+7351YyxWM1abmQ7dY4mIDGLGnAm8PvFGzLqBw+4i5UgmR6bvo2P16jz2UH92LthHRnoeu7cncku/d0g7mk3t4CDC/X3p07Qumgla3tCMPoNbMmx0Z/oM/s+UyFHOGYF+gV7/NWqESVGuYP3v7EloZDCGbrD2j72sXrgdJNRucPKRmS79WxBdvxpSSmrULa6I/cqPE5j72VI6DWhJaETQSY+fcOvnHEvJxmI18c28CXj7FuckNW9fuzRAyklKIzMrF0uwH+2Gd6J7r0ZERpWdMlx7OJFP12+kWg0vQo/7U7VuMFtcBbgNwfbcNKB4j7vPX55L3JZDjHl6EA1a/fsyAH/Jzyti19ZE6jeKwD+wfDXxmzo3Z8XuQ+iGweirzmxKKzu/iFnLt6Mbknmrd3HnoA4ci0/jyTu/AuDOR6/hmuvb0LlHQxo0icJk1ggo6YPVZqZJy2h6D2rBsgXbKShy4rC7MJLtDGzagAOx8RzanwqAPa+I1Ut2M/iWjhxOzWTpgYMITxPWEBv3j+17lk9IUS4/KmBSlCuYEIL21xZX6W53bQv63NCOKpFBhEUEnuJIiPpHPaWGbWNo2LZsIcnUpAxSEzOp0ySqdIpP1w0OH0xDSolhmFn280aqR4fQtEss0XWq8u3Sx0iKP8ZjV7+GLsCdnc+wwa1o0Komqdn5rI47ROs61YkM9mfsT7OxF7qossGFuQiOHc+BTh5Ii0AvGeX6c9U+fv1hDY5CJw/f8hGvzXuApjHV/vUzy8otZPSASRTm2jFpGl/Pu5+w8LK1o6LDAln0zO3/6vy+XjaqBvuRmVtIgI8HAd4eLFx/AJdTR0rJqsU7ueb64mKWwaHlVzAKIbjnyf7cOLYbj975DRnHsjmyJYE7er3B7U9cy5KZm9BdOsKQNCupYzX+1R8p9HEhTbAk7sC/6rdyeVA5TJVTT0VRFKA4j6hx29qVBkurF+/i6TFfsnrxrtM6309f/MGo9i/y2ND3uL3zixzadwzDMDCZNG67twc+fh5EVfNn8sPf/Z+9846uovra8HNmbkvvoYSEFmpC71IEkaqIiIgKgmLBhh07KioqKopgQUERRCmCdBWQIj30kgQIIaGF9N5umznfHxcDgaBg+9TfPGvdxc2dMzNnDmvlvtln73czbvB7rF+wDQC/AC+atKlLlyFXgc2G9PFh4afr0HSdW9+dw1vfbWDou19TanfibTKjuCCnmZm8piYsZhMjO7aifZJKxsQ9LJi+gaBQPzS3J/HZqQomzF7zGzP/dca8u5DSQjtIj/hbPm/HH7rehaiKwjcv38H7j9zI3PEjMJlUelzXAj9/G4pbpyy/rLJv1nkknsjg7Te/Y/2KvVgtJmJbRuJlNVFaYif9VB4pCWlUrxaASRF0vKYJ9RpW91QYni5BcUqQMCjmjyfJGxj8FzEEk4GBwW9SWmxn4lNz2b35KBOfnEtpsf03z1mzcBfoOhLI1RUeHjmd5x+eA8DQu7qy6OfnqOGj4Chz4HK6SU2onOvTc2hHrP6+WL2tdOrdDKdbo7DMjsPlxuF0U+pw8nbfPphQQBU4/QXWQju31W9C4a5MigvK+HLyaiKjqxHesjZ6gA8y2J/a4YFVzPbyySgsobyaFV0FzILY1lEXjTmRnsfQZ77k9udmMXHxBhbGHeRK+nb6eFlo2zgSXy9PVC6idihtOtQHXefowdN8/NbyirEzP13PkP6TePujH3jozo9ZN3Mb74ydx6Rxi/hpxX7yi+0oPlYURbB4+noiawbw/IyRVO9ZjyMnsxBCMPb+XjTJ8+HeiFieG9jjD62Pwb+ff0oOkxDCJoTYIYTYL4RIEEJc5HorhLAKIeYLIZKFEHFCiDp/wZIAxpacgYHBZaCqCqqq4kJDMSmopnN/a6UkZ7Jq5X46dG5A6/Pygwbd0433nzwNUiLMKm6Xxt4dKbjdWkWe0shxgzmdlI7V28rAB3pXumebbo35bN2zuN06EXXDSCmcS/9u29m6si7qMY1tqxIZMKQdsdXC2Z+Rif9pF9VD/QgK88Nqs6CoCsFhfiDg5Jki8PXCjMJ9fTr8obUYf08/PljwM5H+ftzdux1NW1wsmGYs3s7xM3kAHMnPRYSY8baY6d+q8e++b3hEEGfT6lkfl8yjZQ5OpWQz7+N1AKyatwPVoYEOuiJB01EUgVAUelzXgm0Ld1BaUMb+rUlsKMylzN/MnB93s2LSfVzfqznX97q0UaaBwf8TDuAaKWWJEMIMbBZC/CCl3H7emLuBfClltBDiVmAiMPSvmIwhmAwMDCrIyy7GP9Abk7lyR3ubt4W3v7qPLavj6dw7tqKvm65LnnhgNqWlDlYsFFgUKAAAIABJREFU2cOsBQ8RejavpvfgdnTr3wJFCJ55aDaHDpzi2utaVIgl8FTpTYubcMn5VDvPF+pE0SJqq2ns+c6MrinMeWk+IVaVOXffwpFDZ0hJPEO3Ps3w9rEybfljHDlwiubt62E2m+jZJ5Z1q+Np2KgG9a6wpYqUEl3TUc/Ou3OzunRudk4YHj6ZxYL1++jSrC49WkUjhKBpvWps3JOMw6WhmyUqUOZ0XdF9AXafTEPTJe1qR3Dzfd2Zu3w3bl1HDbQhgePJWaBAWZgVZ7CK70kd6Sdo1bU+Y9+8he+/242Ukhtv60hOUjqH9xwHwGVVUAuclIXCgOc/5+sXhxEZHsjp1GySjqSjWEx06dao0v+Vwf8GUop/TA6T9IRlfymlNZ99XRiqHQi8cvb9QuBDIYSQVxLSvUzEb11TCGEDNgJWPAJroZTy5UuMHYxnwu2klLuEEMOAsecNaQ60llLuE0JsAGoA5WeP9ZZSZv3aXNq2bSt37dr1209lYGBwxUwdt4jVi3YRFObHJysex8fP65JjC3KLiVsTT+PWdXho9CwcDjcWi4mZ8x4gvAq/pV8azFovaJ1yJRwvWsR333zE2hcjcNsVhKpi87bQvm8Lnp/5wG+eX17mxOZlvqJ2KfZyJ08M/ZjjR9K57aGe3PFI74vG9Bg9BZGQj9tXkNnFh6HtWzK+1zUs+n4Ps2dtpqSGyrVXN2HswO6Y1csXIEv2J/Ly92sRwFM9uzK8fUu27Ezmyx92cn3XGAb2aE5JUTm3jfyE5GYgBShuSeTyfBZtfoG0U3nUqR9eseZOu4s9m45Qu2F15szbyrcHjqD5mFCAJ2/tTnCZZPK4RWh2DcWlEdujCe9MH3XZ8zX4axBC7JZS/m3+DhExgfLBBV3+lnu9GLvyN59NCKECu4Fo4CMp5TMXHI8H+kopT5/9+RjQQUqZc9HF/iCXE2G6nJAYQgg/4FEg7pfPpJRfA1+fPd4MWCKl3HfeacOklIYCMjD4f+TU0QxWzNrImsX7cLs0igvKOBqfRstO0Zc85/Eb3iMvswhFVXju01H8tCqertc0rVIsgady6/eKJZfu4GDBKrzUUEaPXIRjx1zitxylKL8Ue5mT1PjTl3UdL2/LFd/70N6TnDmRg5SweOamKgWTKbkIpdiNuQT8j9j5xnyADSsO0ajQQvnpYmyZKo2v8r0isQRw4EwGTpcbefY9wMcbd5JcmMOBlT/TplkUtUIDad6lHkeLUkAR6Cao1yGKR++aQXZmEdVqBDBt3oOoqoLFZqZjL4+BZotGEfy4IZ4Cm4LZDnsST7Ck9Bje7b2p/lM+SEjceOSK18vA4AoJFUKcrwE+k1J+dv4AKaUGtBRCBAKLhRCxUsr4v3WWZ/lNwXSZITGA1/DsHY6t4hjAbcC83zFHAwODv5Bnh0whL7MQxduGYjYRGOJLw2aV+8ilJJzG289G9ahQpJRkp+WjuXUsNjO1agTywCO9KC4qR0r5pzW8/YU16R9xqGgDAoV+NR/nuS8exFHuZMLIjzmVlMGY90f8qfc7n9PHs3G4dDCpNGldp8oxPTs34eeVB9ClRPc1odqhtNxFiWrCZjMjpaRu/SvbBgQY1akNO46fRtN17u/SnuysIo6cyMSFxMtiIiO/hFqhgYy9pzc7J87mjCwjQvUhw+Si9HgOAjh9IpeJY+eReiSDB14YQOurGgBw7Q2tcNhdrNp8hKScHHb8mIR3HYEjxOTpoiwEDZtH/ur8DP67aH/fllzO5UbPpJQFQoj1QF/gfMGUBkQCp4UQJiAAyP3TZ8pl5jBVERKLu+B4ayBSSrlSCHEpwTQUz17j+cwUQmjAIuD1v2LP0cDA4NdxuzQATLrGhNkP0qRN3UoNVxd+tJqv3lqKlPDGwseI7diAxycNY+7kH7mqX3PKXRpjbv4QgFtGdmH4fd3/lHlN3bGd6Xt3MaTdEVzpgtTPg9Ba76bxC92well4dcFjf8p9fo3Nqz0WCkJAk9a1qxzz1Lgbad2mLiabiXQfjWlT1mBLKaJxn2b0v68XQUE+RDeqXuW5v0atwABWPHBODE54cRE+R8sojrQSHRxA67NtX3Lt5ZywlQOC3JQ82F+GkCCFoHmbKHb+nIS93Mn7Lyziq/XPAqAoCgNu7UhSViGJqVkgweQEWc2HV7+7GXdGOc061r/iORsY/JkIIcIA11mx5AX0whOYOZ9lwEhgG3AzsO6v0hKXJSOllJqUsiVQC2gvhKhojCSEUID3gCcvdb4QogNQdkEYbZiUshnQ9ezrjkuce58QYpcQYld2dvblTNfAwOAKeP2bh+h6Q2seemsoJ9MKuHPQFD6dvLqiDD5u1QEc5S7cLo34bUcB6Dm4HTM2jWPU8wNJPHAK7WwrjrhNl7+N82u/01yaxvtxWyh2Ovh+UQ12jo4kZ7sPm6afYPf6i9u2FOeX8sboz3n9nukUXtBu5Y9ww7COKKqC2Wqma+9mVY4xmVV6D2zNNX2ac3vnlgQl5GMqcLBn6X7i41J4/fFveOLFOUxYs4H8svIqr/FrSCl5Z+x8ti/Zg0+mnYgkJ8NaxaIonkjentTTnpi/BHORp0oOCcGNQnhwbH+klFhtZiLqhgGguTXG3f05NzZ7gVAEZrsbpdhB+N5Cvu17E0EWb96asJxb+73Hji1HL5pPid1xRRYJBv8uJKAj/pbXZVADWC+EOADsBNZIKVcIIV4VQtxwdsznQIgQIhl4Anj2r1gXuMIquUuExPyAWGDD2VB8dWCZEOKG8/KTbgXmXnCttLP/FgshvgHaA7OruOdnwGfgSfq+kvkaGBhUTV5mIWeOZ9OkTV0atIji+U/vRtcl1131GromWbFwJ/0GtiKyTih+NUMRQVl4mwU9bvaU5B/ee4LP31pO41a1GTiqG8vmxZGfV8KI+6/5zXsXZBfxWI9XyTqVyxOf3M21t1edYBodHEL27pP4f5vryWgW4NZ0vHxtFWOK8ko4vDuF7avj2fr9PqSUBIT4MmbibX/KOiUcSocgLzQhiE84Te0G1X7zHL8AbwrzPKLt21mb0DVJeno+Z5QsMoqKmTp4QMXY+MxM1qek0LtBAxqFhlZ5vRPHsti06qAnEujSeHTCzfTse068dW5UF5/lKuXSjdvHjHeAQmi4H+PfGUbNyGDenXMfJ5KzuKpnUwCSDp7m4M5UHHYXC6etJ8jfi8K8UsxWEyah8N3S3ZSXuxDA8oW7aN+5QcW9Hv9mBWsSkmkeWZ3Z996CSf1nVFMZ/DeRUh4AWlXx+UvnvbcDQ/6O+fymYPqtkJiUshAIPW/8BuCpX8TS2QjULXiiSL+MMQGBUsqcs4nk1wM//SlPZGBg8Ktknc7jgatfQ9d12vaM5YUZ9wKebadq1QPJyy1BVRUCg33ZuCae7esPgRCUaRAU7mlm++aY2WSl5ZO07wQhYX7MXProZecu7fhxP3kZBWhuja/fWlpJMLk0jWFzv2XvyTRi551BOVkAFjOYPQnjrbs1Iaa9Z6uouKCUO1s/T1leMdJsQjGbkcCOH/bB7xBMx1OymfTmckLD/BhxVzdeun8W+bklaBYVxaKSl/PbkSshBO8teIifV+4npm1dXhs7n+LiclxSR7cINCmRUuJwazjcbobOm4/d5WbKxq183rE/3a6u7LJd6nDywPzlaOiYLSqRtUPp2bdZpbWuGeTPpnGjWbhsN6VR5dw6pSPB5/W3i24aQfR5vQFr1Q3DYjUhBDSIrcUDLw1k2VdbadapPk9NWU5ufgnUsOGb46L3gBYV5zlcblbFeyJOiWeyOJ1fSJ3Q326hY/BvQ/ydOUz/Ki4nwlQDmHU2j0kBFvwSEgN2SSmX/cb53YBTUsqU8z6zAqvOiiUVj1iafuXTNzAwuFJSE9PQdYm9zMnBrUkVnwshmPLlPezcmkzT5pGknczl7XGLkWd7sklJxRd1YKgfOWl5OMudTH91MXnp+Yx6cdBl3b9px2gUVWD1stB5QJtKx45k53AoKxvrmXJK04tQhEA6XaiqYPizA7n1kT4VY8+kZGMvObvF5XShax5bx6yUEtwuNybzldnMTZn0A4cTz2CxqDjyy8nJLEJKiZ+/jRZdGnDTrZdneFmtVjC3jO6BlJJXPrid5MPpHLKWUmrR6RxWi25jplLmdBKUZMfRzwtMAl3A7C82VhJMTrebccvWkH2iEKV5MLYcJ2Wh3uzff4K6UaEcSc9lwU/76NepCT3bN2T44I7MfO9H3nt6Afc+05/a0dVwudw47e6K5sYAfoHeTF81lgXr97IvL5t0nDz6+mCOpGaSP7cUl1sHm8qsxaMJDT9X9WgxqXSKjmJXahpRwYHUDPS/ovU1MPi3czlVcr8ZErvg8+4X/LwB6HjBZ6VA5d+UBgYGfwstuzaiXmwtkhPPENqiLrM+Wcfw+7qjqgr+gd707O9xfD6ckIZiNqHpEiEgonZIhaHlq1/cw+3tXgKpoEvJ9tUHL1sw1WpQgy/jJ1GQXUTtJhGVjkUFBBCcXIrYkoXiliAlvv5e9Lm9E9+8NI9t325l4qrn8fKxEd08ktpNa3lsBXy8IL/Qo+oUwdDIB5iy+TUioi8/2bpmRBBJh84AENumNvFxnia0w+/rzsDhV132dX7hw4krWbVsL94+Vj6b/yCBwb50v/MD3E43FgnZTayYyhTQdcKTNTp2a1Dp/C937GX99iRshYAUmIpdZKWm8szu6ZgcDvI7R+DWJdsPHKdFwwgSth9jyZytaE6NnKxCXp12Jw8Om0ZZqYPRT/Rl4NBzgs9lgmlxe3C6NbYfPcW2Nx6kfmQoNg0cUmLLLSduTQLXDTv33EII7urVlq7ZdRnarBmnswqIT0nn6pb1CfC9tGeXwb8LT/PdP7fS9b+C4fRtYPA/htXLwqTlT/HoXTM4En+ak6fyqRMdztW9YiuN69yjMds3JXHscDr9rmtOvyHtEEJQmFvCjPGLsKqCcrcOQjD00b6Xff/049ms+Hw9MR0bUKepx76g1F3C/oI9LLxvO95bTnh8S8wmT+RICBZO/gF0naQ9KYy5+lXGff0wh3Yc40xKFopZ9bQMCQrEpkrKM3IpL5VsXb6bIY9fd9nzenRsf/y9rWz8fj9njufw0aKHyS8u47S0czqvkLKsMrIyCunUpWGl1jCX4ufVCbicGg7VzeGENDp2bYTNasLhdCMFuPwVhAtAYeSIzozqWzmCpQgB5rNfXCq4fE2o5SbUUjeaS0d36yA8SdyKgF1ZGbg0HSEgV3Owa1syDrsLza2zbH5cJcFkUpWKaOEv702qSrfQILasjkdVlAo3919YfzyFB1YtRwDxGZnErUhGSsmcVbtZ8NrIy15nA4N/K4ZgMjD4H8XLy4KieL74L/xyBLBYTDz3+k0XfT5j/CLWL9qBUATte8QwfOz1NGjm8ezJTsvj24/XUD+mFn1u71zlfZ+/6T0yjuew4vP1vL/6eSIaVGfcnhcoNxWRutUKmu75M1cRSAHlTt2Tw+R0oGs6p1KymPrk1/iH+OCwe9qNKFLH7OtNv5vbsGzK95jMKu16X1lvNLNZ5ecV+8jNKmLzmnhEA18WrN2Pd4aGK0glMFNDEYJuPZvy1IueAp0VS/awYV0itw6/irbt61W63o23deDr6T8TFOJDregwkk5kMeGh6/h8/lZaNI/kk8S9OF2eFqSKr5mc7GKeHT2LrPQCnhp/IyOubYXd7SJhfxr7dp7CGe6FM8RG0O5sVFUhKD6H0iAbviVuMo9lE9IwhLwugaiFLhpf35jWHepjtpjQdUn/wW05XVhIbnk58ngJr42ZQwNvC7Gj2jD42lYVppqPTLiFWvWqERzuT48bW1d6ntTCAnRd4tQ1jmbmIKXE7nRzJqfwitbZ4J+PdnkF9P9zGILJwOB/lOfeGMySuXFERIVUqoS6kIK8Uo4mphHTqjbePlZs3lYURUEoglZdGlaIJc2tcX/viZSVOFAFhEeG0Krrxc1mnXbX2bJ0gcvhYvjMeRxQq1O7uoolvBD3ibPFsKoCLjeoLkxB/ii6htR1dKFw+kQuj43pw8GtR7HYzLwy52Ei6ofj7WtjyMN9sHpb8PH3vuI1iagdQklROVLC3MQE/NM0hARLtoZ+tr1LcpLHdftMWj6fTFmD0+nmUPxplv/0TEWpP8Dwe7sz5I7OZBWUcMdLc9B1iaVEQzlTzrFNx3nlxT58nhhPzUB/QvLgjgGTkU6PJ9bsT9bT5doYrvauQa9+dbhjx1wEIFWY/MOjRIYF8dywjzmVnAXC05j39pBaZJeUsW/FYZJnHWFBppW5Pz5FebmTn3Yc5oa3ZuCoYaLZTw7KSjwvU1IxjUeeM9X08ffijserjhYOaRLDppPHySwr4c1r+vC9NYGt8ak8MKhqYWxg8F/DEEwGBv8jnEnNwuZjJfhsIm9AoA8jH6jaBiA7vQCnw0VItQBGD56Kw+4mNNyP6Use4e6XbiK4mj9ePlYGjOpecU5y/GnKy5wgBBrSs2VUBePnPcLcd1fQomtjAhqFsTsuC12aSUkIJfpEHvJs/kT1iCCad2mE5tboPbI7EfWrMXbQ+2SeyqMwr4Txt39I+97NeOWbhytVjQVXD/zdazR+6nA2r0mgToPqPL/yB3Jcp5BWK17eFmKjwsg4U8iYJ/sBYLV6XLEVReDlZeX8IkGXpvHi5z8Sn5pOrxbR6BLsTjdOReKrS9Al819ewfJtnrac994+jYrVUsBc34+Hhk0j5XgObm8FdytfZKkOwSaqVQ/Ex9vGW988yLezN/P9tiTe/2I9Lz11Pfe1bcMtEzajaTorl+/ljju7sHP7MWa8s5ogTSOviYnscBVLsifda++htMteGz+LlZkDzkUcm94eDvT43Wtt8M9EIowcpktgCCYDg/8Bln6+gS9eW4xQBBMXPUajVnUqjm1ddYDPJyyjeadoxrx5CwfiUnj53pmA5PYxvSgrdeJyukk7mYfLpWHztnDb4/0vukfNumF4+3lhL3UQVjOQ1t2bXDQGILp5FONmPwiA3e3C32qlxOHA260iEBWmiK4yB09+cg8A6xbvYv2yvTRoEUVuRiEupxs0jR0/7mP3+kTaXhPzp6yTl7eVXgNbs23lHuwTt2HTJTUaRxAe4sue1Ey8/b0ICPMFICTUj7cnD2Pv7lS694ypJNp2HDrJ5vhUyh0ulsUdokaoP6cy8unTrB5bju1Fljow+5+rXLu2bzNmTt+A2wSZ7axQR0NszsZtU0jv5I1qglq1g3j1up4EeXsSrL19bfy4P5X0wlLy96SyOS6Zqzs2JDTMj8LCMpAw/vmF1IwIQrp1hFsSmKJx0/0dWXFiO0JVaHPVpSOLBgYGlTEEk4HBvxQpJakHTxIQ5k9IjV/3w9m4bA9OhxtFVdi/OamSYHr/yW8oKSwnL7OQawa1Zc/mJJxOF0hI2JVK9z6xrJu7FbMCcasP0vX6i4pmAY9h4xc/v8DJoxk0aln7V32ZpJQcyD9NoMWb1bfeyY7003SKiGJ3nV3MeGE+mktj1Gu3sP7b7ezbfow1i3cjdUlo9QDuHz+YDx+fhdR1VG8rPv5/foXW7p8O4rS7QFVJP5LOmaQMtGoBFNYJ56f1idw5zLMNFdOsFjEX9N0DiAwLxOXSEJrEnl7MxNduqjC9XN8wgt2bjuA2m/nknR+46+GeDB3RmWZd6nLvimU47GWErC0mX4KpTMdcrOEMBPfaTMZ9NZNO3Rrx8rtDEUJQNyqU3LwSpISIGkGoJoXPZt7L3K+2MH/5TraUZ1L7ZBl16oZxPDkTpURnw+e7mTFrNFlZRTRvZvSLM7gY3chhqhJDMBkY/EuZOW4e372/AqEIpmydQN1mVfc6Axj6SG9eHzUdH38vut5QOZm3Zp0wTiSlIyWE1Qyi101tWb1wJw67iyH3dqckv4TN87diL3My7eVFlxRMAP5BPsS2/+0eZB8cWsdXydsw7yvj6TZ9uem6bgD0Ht6N3sO7oes6I2LGkpte4Ik4BfghFE8113Uju9KmRxNWfrmJpu3r0aRtvUveJ3FnCnGrD9J9UFvqNo245LgLuf7enmxeuovSUicS4Sm1tphQzSqtW1Ze5xP5Bdz57SIcmpvpNw0iplo4UdWCaJopOZFViE+xxr7tyQSG+vLa2PmUFtup26Aam1YlgPBs7Y16pBdN69Vkxe3DeGjA++Q6NVAUrFYTMeFhpDiKMWWUeIw5txylsKCMgEBvxj3en627UqgVEUyj+h5B5uNjpU27unyQsg/NDEdwMGNoP157ZJ5HNAtBRM0gImoappMGBleCIZgMDP6lbF26E0e5E4vNTPyWI78qmNr3jGVJ6vsIISoiP5knsnllyHu4nG6GPdKLdtc2o3pUCABzt3ts1oQQHD14inKbDentTXBU8J8y921ZxzAvycP/+2I+F98Q/KGN7oPbVxx3u7RzYglA01B0jeAgL3LSC6geFcrdL/2671NxfinP3TIFp93F8i9/5ttD76Ca1MuaX52mtZiXMhWnw8Wyz9YhFEHr/i3x8fMiPNSv0tiv9+3ndGEhEvh4exwfDfS0PrlzVHfeeXoB0qSQmFNA0fwdJO7z9N0rL3MiFACB2XLu1/CBuGOeYw430s+G26IQcUpSvisXuwCTxUTd+uHYy13cf+skigvLePrVmyrE0i80b1UbZamKpuuYTCphNQJ4+qWB7Np+jEG3tMfA4FJICZqRw1QlRtzNwOBfyshXbsFsMxMaEUyXQRd/CR7cfJin+73JgvdXAJ4O9edvky2c/D3H409x6sgZUvemUKdxzYpj5wurkyfzMHtbQQgKnX+8naPm1rhZj8HnuIbikEiXzvHE05XGWKxmbnt6AEKAMCn4+9tAlxzde5yvJv5WcwEPLpe7wqXc7dRI3JHM6M4v89qIT3CUOwHIzy7iwWsmMLzlcxzalYLL6eb9R77kyX5vkRJ/CovVzM1j+jD4od7UrRt+kVgCaFcrAqvJhM1k4qqoc1tc3a9vic/VdSmMDmDtzmTKkZjMKjYvM517NqHvoDZ07R3DkBHnqsyatauHxWpGWFTKavpQ4m8iLiOHMrebsggTAd1qMnbSzWzfeJiS4nLcbp35szZfNKfZW/bgEBq6kARJE/XCgknad5L1i3Yy58Of0PWqE/INDAwujRFhMjD4l9J1cEe6Du54yePjb/2A4vxSDu88RqvusTQ4L28JILpVHcw2MyBo2LruJa/TMCYCRRFYbWbaXhUNgMPuQtd1vLytVzzvl0ZMI3FnCsEmC8GNA/Dx92Lg6J4XjRvx/I1cf3cPsk7lcHjvCb6csBSA6rWrblJ7IcHhATwxeThrF+5g4N3d+ejpuZw4dIaM4zlsWrqLa2+9ijXztnMyKQPNrTHzjaX0GdqRDQt34Ch38t7DM/lwQ5UNDSrRq0E0i4bfhlPTaFb9nLP4zyv3oSVmYvUxIa2Srtc2oX3rOpSWOKgWEchj932JUAT6xJU8N37Q2Tn789Wm51m1+iBvf74WhEAqUF43gOI6JhKchTz39Y9MGNATVVUQFnGR4SjAyZPZIECaoCS9BJfTzcKZmwDYuTmJ08dziKoXftF5BgYGl8YQTAYG/1F8A30oLSpHIvGuIjG6z4irqVEnHM2t0bLHpavMIuuE8sWSR8jOKqJRTARHE9IYe9d0NLfOi+/fToerL/Za+jUObkvG5XRj87bw2NS7aNK2arF2JiWLfRsT2fXzEQ7vSuGaIR2IaV+PHoN/e0uprLgcRVHoPqgd3Qe1A2DVnM2kp2YDUKOORyw0aBmFalIwWVRi29dn57oEXJpEtZgJrenZfkyMS0ZRBI3bncvNcrk0Jr2xnJRjWTw6th8xFyRP52UXM+npBZ7nNCm89PVomkTXqDj+5MOzcbjcCAk7d6dUOhchiN99AquPiSKTRnGEwE9asEiB061hMZuoG12N2csfo7TEQc1aF2+TPtyvC+s2JlCkuCmNtNFhyqfEtqlOUWIe3r5Wwv+A9YLBfx/DVqBqDMFkYPAf5e0fn2Pt3C007dCAiAtyXADKSuyERoayZfkeigvL6Xpj20tWtoWE+xMS7mm2umn1QezlHoftFfPjrlgwDX2kN3Mnr6Jhy9o0aBF10fEda+NZOn09BzceQtc1NDx5Rz98tZn1326nbtNa1Iu5uDLtF3atOcj426egKApvLnuKph08pfNjPx7F4mk/IQQ0bF0HgFZdGzP5h6cpzi9FCMHiT9ciAauPlWc+u4fvv1jPtGe/AQmPfDCSLoPaY7aY2LrxCFs2HsFudzHpjRW88e6t+PrZ8D0rTE0mj7EngNViok2zys959EQW9iAFtVxyvK4kp6SUUF8fz/quP8SWjUkURUjym1iRCkSEhdAwSSE+LoVWYZ5xAYE+BAT6VLkGIcF+rPv4CZ5a+gMrDyfhcjqpeVNTnnm0MXWiq2HzvtjZ3cDA4NcxBJOBwX+UgBA/CgvKWbswjrqxkfgH+1YcS0lM48kb38dR7gKXCxXJ1u/3cvfLNxNWRcTifK7qGcPSb7ajazp9bmp7xfMa9ng/hj3er+Jnl9PNa/fMIGnfCe56fiAfPTPX47MkQZa7EDYFRVXQ3BrlJXY2LIr7VcH041cbcTncAKz/No6mHRqQl1nImGteIzezGKEqbF65j84D2tCxdzPqnm0AfOpoBlJKTBYTNWqH4uVrIzEuGUeZEyEEK7/cyPvPfktgqC+PTR2JlNJjXqlL7r1+MiaTwpT5DxJZLwz/IB/e+PJetv+UQPcBrSqaFgOkFxTj2zSInCPZlNayIN2Cr1bt5vHBnkrBsHB/pFsjIMmBO9JCcJ0gnunShVc/nY2m6axesoeR93YnMLhqsfQLqqrQP6YhPyV7mgj3adKAmAaXLgwwMIBfjCuN9OaqMASTgcF/AJfTzdpv4/AL9OGq/i0QQrDks7Ws/PJndE1H13Se+mhUxfid6xJwOtxIKZFSorvc/PzdLo4SvZf4AAAgAElEQVQdOMX0uNd+9V6Nm0cyd8NzaG4Nv4Arbz9yIfu3JHFw21HsZU6+eH0JqlnF5XSjmlXCqofTd0Q3CgpKWT59PYpFpUOfFr96vT7DuxL3wz7PltzNnoazW1fuJT+7GM5GfY7Gp5F8KJ15U1Yx/+BbHNmdimpSmLDgUZL2HqfHTZ5tvFueuI6EbUkIRSE7uwRd0yktslOUXsBbk4dx+lQuiz7dgMvpRggT+3ekEFkvDICYNnWIaVMHKSUZWYUE+HuhCeg7dSaB+0rRg1WkACFh7Z6jBET5EuRl48aWTahdzZ+Uw+lErCpk9NOdaVYjHJMq0HXw9bPh42fjZGo2a1YfoEfPGOpFV69yLa5tGM3bbbvjtLu4un6dP/x/ZWDwv4whmAwM/gN89vIiVs/bhhCCx5zD6D6oLVYvi6faTVGwXtBct1Of5sz/cA3lJQ44W0kmpaS0qPyy7uftc+XJ3pciMtqzXWjzttCwZW1GPnM9G5fuplO/FjRpcy6/6eYHe2G2mCpFyqqiXe/mTF73ElMfn8Xcd1dQq34YO1cfBF1HKCpSSk9fNl1iL3Uwd9JKvvt4NUh4eNIwulzfqiLnK6pRTWYeeAeAr95dybcf/YTJrNKsUzThEcHENo9EdetMHrcYb18bHbpX3p4sK7Ezc942Fn+/Fy+bmfGvDsKl6+gWKKmpYioXoIMMVHj3580oQnAs4Qyph87wS68V/wBvNi7fB3nFoEmq1fRH6jqjb/0I3amzYMZG5q99hsAqeuet++EAn0xYjgAKTxQy4hKtcAwMzsfTEtrgQgzBZGDwHyDrdB4uhwuTWSUnowCAAaO6U5xfysmkDG55rF+l8VENqhPdojYH446BakOVOiYkwmYlNTHtikwez6c4vxRvfy9UtXJIf8+uVHZsS6bvdS2pczYC8wvVIkP4ZO1znDyaScsuDbFYzURX4UAdcgWJyt+8vYwju1JRFMGetTqa042Xr43737uDjYt3sGfDYTCpqJpG0u5jOMo9227zPljF+09+g83LwswdrxEQck6c3fHUdfS97Sp8A73xOk8w9hrYmu79mqOaFBTl3HPP/XANc97/EV1VcNUPRVUVCtJL6Nu0AWucSSglGs4AT3m/X7gX7sxCTIrChi2HcJkVHNVs1KkZTJfeMezZdAQFsKqCiDphOB1udKeOkCA1SdKZbNr7X7zddup4Dm6XhqbrnDyb8H4+GVmF5OSVENOo5q86sxsYGBg+TAYG/wnuf30IzTo1oGOfFvS/owvgqeRa/vV2dm1J5qnBU9G0c9479jKHRyzh8VwKrxOGC4W87GK+mvT975rDh09/w60xTzO6y3jspY6Kz7Ozihj31HwWzY3j8QdmnTOjPI/qUaG07xmDxWr+Xfe+kJr1wrHYzKhmFSEEZqvHr6rvsM4k7z0Buo50OImsH859b96Gf1gAwsuLMyfzkLqkvMTOog9XXXTdsIigSmLpF8wWUyWxBLB81iZ0TccEmMqcBPh50aZFbd4bch2fXt2LmsvTCN2aS/VVmUy8rg9d6kQRUCgoO1RCScMAHNW8OK642Lg3hUat6tCwY31qxEYy6L4e+Pp7Uf/GhjgCVGxdq9Myuuqcrhtv60hsq9o0bBrBXWOurXTs2PEsRjz8BY++soA7J3zDhvhjv3/BDf4zSDxVcn/H69+GEWEyMPgPUKN2KBMXPVbps9yMQspLHbhdGk6HC5fDhXrWN8nqZaFe05qkJJ4BAR2uieHHOVtACJq2u3SrkQtx2l1s/3E/kQ2qs2beNnRNJzejkOSDJ4nt6KlOc7u1ivEul3apS/2p3PnSYOrG1MLL10ZI9QAO70yh21lzT19/G4V5JQigfZ9m1KgdRkmpyyPkhEBqOuhaJQfu38M1g9qy7MuNePla+eiL0SQlppGWmk1AiyhiO9QjoF41OJlLzxtaUzPAj0ZewRw9mAQueXY3TuBwukmIP8WEacs4HSHxTnPz2L1fsnjt03z88nDsz7uxmtRLRocCg3x4+9M7L/q8ILeEhMNnkBLyAiU5WVk88+X3zHz0FppGVq6oPJaYxsmjmXTqHYvNy6iuM/jfxRBMBgb/AVxON3s2HKJWdDUi6oVzJjWbR697B82l4eNvY+hD12I7z2RSCMGHK58iYVcqAUE+REZXo8eNbXCUO2nWMfqy7/v6yI85sPkIUkKbXs3YuTaBgBBf6sWe21KrUTOIx57pz+YNhxl8a4e/ZetHVRWuuaVTxc8NW58TgWPeu4MXb5oEQFDNYMxWExH1wshJL8BsNVGWVYBblyyc+iM3PnAtfpco3f8t7nn+Bgbe1Q2nw8UnE7/n4O7jALw1fRTvfLSaHFUg6ofRuFM0N3Z9A8Wi4oi1oWguAsoExQ4XilOy7Yd4TjYBhEJJlBn/FCcul4bVZsZmvvxf4blZRfgFePHpWytZtWgXQdUCqNk4lFxZAAIQUGJ3VjrnRFIGT978IQj4adEuJsy+73ethcG/CaNK7lIYgsnA4D/AG/dMZ9+mI0gp+XDt8+zecBin3YXUdapFBDHkgWsvOkcIQex50aRGLa+85Dw1IQ17mRObt5WeQzrw8Nu34x/sW6mMHqBXv+b06tf8yh/sL8A7wBvdakPqOtNfWkizjg14Z/FjvHLbh+Sk5VByNgneUe4i+eApWnW9Mp+p8zmRks2rj87B6fRE1qw2M+mnczl+IgcJoOnM+XwjbreOKqFnjUia3B7N/Olb8TrmyUUzh5oxlTrQrApCl4SYLfj62a5oHtPfW8XiuduRqqAwyoqvkJTklzL+jsGYa/ry0cottKgbQbsLtvbST+UiFIG9zMnJ5MzfvQ4GBv8FDMFkYPAfIGnfCexlDmzeFk4lZdC2RxO+enclUsL1I7qgaTqfvbaEYwlpjH7pRhpUkVT9e3h08gimPjmH6OZRtO/d/HdtY+3fksSbD3xJYJgfb857iKAw/z9lbufjdLiY//6PlJfa8fazInUNXBo68MFjs+kzvAuHd6V4Oo8qiudlMXNo94k/JJjiNhzC4XRTGmHDYjNzVd0oulwbQ+yyPcSnZKG4NJp3bMDWnxJRFYV7bulK/UY1yD9WyGL7XiyKgq/JRM0NRTiCTNgKNEaM7c+I2fPZk3qKq7J8mfLOKDB5tu8CfC92dAdYs2IfmltH6p4clfLaPkTYzUTHRODtY+XD0VU3Mm7brTEdejbl6IHTPDj+15sdG/x30I0quSoxBJOBwb+UfRsSKMgqoutN7XnwzaF89Ow86sdG0uaaplisZr7e8zpOuwu/IB+2rjrI6vlx2MudvP3YHKavfe5PmUPba2OZtf+tKzonYWcKezcdocegNkTUDefLiSsozCuhtKScDUt2M+jeHn/K3M5n6Wfr+PbDVUhd0vn6Vnh5WSh3eSwUivNLzwk9IQCJ6uuDrksyjmf9ofv2u7kd3+5NpCjCgsmiEtKzLsnHs7nzoZ4snbaeNRmZLE8+Tote0bzzxED8z/paPTKiO4P7tCIowJvEvScY/+RcAlwW3v7qThJkAVuXpaH7K2zSi1m8KI7PtuzH4XTz9Iie3Ni92UXzuH5IO76ZsRHdJBAhNu4Z0InhvdugqAqrFuwgL6uIG0Z2weeCyJXJrPLsB8P/0BoYGPxXMASTgcG/kO0r9zBh2BQEgvitR3h48p10vq5VpTFWL0uF/1JQqB8SidliIqRawEXXS40/xYQRH+ET4M34+Y8RGP7nRHmyTuUy543F1GkSwaAxfcnLLOK52z7C5dJY8MlaZm9/mZadG5J66AxSShr+jm3BK8XL18bClMl8/tJCkvYe597XhhDdsg7rF+7g8O4UBj/cm3lTVoNLY938bdz78k34Bf2+PKZ6jWrQf3gn5m7Zh5QQf/QMS77YjgDcaQXoUX6gCPYfS8fb95xYEUJQ66yNQrurGrBsy4seTy0hKEqXKApIl8RapJHlduJ0uXFrOovW7b9IMG1ff4iSvFLe+3wUp11lFOWX06FJFKpJZf3SPXzyymI0TedEUgbPThnu8am6IM+s1Olk7bFjNA4Lo2Ho5TU/Nvh3IiVo/8IKtr8DQzAZGPzLyDyVx7efbcCtmtCKyziZePpXx2tujYYtoxj36ShOHs2k180XN6/9/OUFnEpKR1EVxvR8FRQTYz++i+adG/2hub454iMOxR3FZDHjG+RDbNemFfYGLpfGp68u5unJd9D2mqYEhPhSq174FV3fXuZg0r2fknUql8en3UudplWX1w+87xrspU7KS+0Me/p6VFWlXvMo9mw8zIFtR2nUph5vLX3SMy+nmx/nbKWsxI5vgDfev5Iv5HZrmEwqxeUOPlsTh6/Nwqie7TCrnhyuTavjqZbppmdMfUwmlcAiQaLTjZRg87GilrnRfM00r10Nk3rpRNvzLQta1qjB10NuYV1cIjdc1xjvED+WxB1CSjc396zsgp52Ioc3npyH0+Fm2ZKd5HUOJCjByedC4bkXbqC81IFEomk6+bnF3NltArkZRTzx7lB63NC64jqjFi8mIdOTw7RyxAhqBxrNew3+9zAEk4HBv4xX7pnBiaQMhL8fNWsF88CkEReNOX0si8N7UvEP9mXCQ7NQVYWJ8x5i0N1XV3nNhi3rcnDTEZwOFzmZJUhg2gsLGP/Nw6yev516MbUoKnYQViOA1lc1uOy5CkUgJbgcLj56fDazDr1H1+tasnHlfhRVYLF63MhjrsDK4HzWzNnE9pV7cNpdTB3zBZPWvlTlOIvVzB3PDqAot5hlH6/mzMlc1szfDsDsN5fSbWBbqkWGAB5PpU82juPQrhSatq+PaqqcwO6wu5j4xDfs2nmMvOreDL6pPfleblbuPoQiBD5WC8Ovbs2uLUd594WFuN0arTrW5/VP7uRMRgHxCWloms64R/qxa3U8tRrX5Jq+V5YQ3y6qFu2izonDH6fcj9Plxs+nsrjT3Oe8t3S3jpLpwu3SAZ2dO47xyKN9OHUsi5zMQho2i2TOB6twuzXmTv2pkmA6lptLuduNt9nM6cLCCsFUWFyO0+kmLMTviuZv8M/GqJKrGkMwGRj8y3C7NSQSi8VE50EdCAivvMWWn13EmH5vI3UdxWLGaXcBsGr+9ksme9/x4iCq1wvng2fmoaMg8GyPvTDsY9KOZYGXDdXLiqIIxk0ZRpsuDS9rrmMmj+TBTuPQNU/C8YlDaYydPJyGLWtTUljGzaMrt+pYPW8bK2Zt5roRnelz21VVXvP44TNMuGsa3n42BtzZDaEIrF4WalxGdOq126cSvy0JaTsnLFRVxdvPVmkryj/Ylw69qxYxG5bvZdfPR3A53Xg53CxavY/uN8Qg8SRUa2eNOYsLywCPaCkq8LyvWT2QOR/dXXGtppeIiF0pVosJ63kJ91kFJczdsJdGtcIZ8/JANqw5yCqvXHSzin++HV+rhRsHtcVsMTF63EAATiZn8s3UNZ7k9D6xgKddztfT1lM/XudUjDdX1atNkdPB5G1bSVuSyv6Nx3AHW3nqqevo3yP2T3kWA4N/KoZgMjD4F6C5tYpIx8uf3c3sSd+zdfluln36ExsXxjH74MSKL/u8zCJ0TcfpdCPcOormRispx8t86b8ahRC07dUc08uLcdpd2LytPPzuMEZ2eAVd9wgJl9ONxWoi80zBZc358I5knu77JiARFhNOCRPvm8Gn28Zz0z3dLxpfUljG1Gfn43ZpfPhcGlf1bVFl7tCsCYs5dTQDRVVIO57DS/MfJzctjx63df7NORXnlaC7NBQvgWq1oJoU7nttCHe0egGrl5l3lz5JZIOqG9n+QtKOozjPZILVggwOo0OLOjw98Gp8rGb8bDZu79ISgG69YzmakMbJlGxGP93/stbsj+J2a4yZ/B1xyadBAYtZpVbTUGr2CmVe5+spLLfTqlZNlCq8sKKiqzFzw3MkJaQx9dVl/LBkL3c/1Zd5X20mP8SEz0mFoZ9ez8jF3+HUNCxmN5FuiSnbzo8bEw3BZPCfxxBMBgb/cKY9OYtF76+gSccGTNownlr1wxn+aG+2LNyG26WRl1mArktU1fMlWC8mgrCoUNKO56CoAj2/AOnW+W7ySoaM6XPJ5rXB4f5M+OZBdv98iB43tsVkUnlpxj18Nel7ajWozqHEdKpFBNLzhlZVnn8hu3466PGCkhJMiqcBbG4Jh3am0L6K6I3FasZiM1/0/kIatKzDnp8PgYR6sZG07XXp7ayEbUkk7ztOj1s64R/ix7OzHmTG83MJrx1OdNt6tLm6KVOfnYuj3InD7mTN/O2MevHGS15P13W+n7EOdInuclLQx5+H7uuOv7eN526qHC1TTSr3jf17hNIvHDmVzcFj6UgkSIFL00lIzyShKJtGYaE8dFWHirEOu4tZn22g3O5i1P098PP3IjDUj/07UsnJLERKeO+5heS3DMLla8KOYEfiSQQCXUp0iwAB0qxw6/Vt/9bnNPjrkPw725b8HRiCycDgH86SqZ7ebqkHT5Ky/wSN2kWz+ccDYDIhNEmnG9oihOfLXFEUhBAVYkM1qWBSkbrEZFaxWM188fpils3YQMc+zXlm2qhKFVGx7esT275+xc+NWtXm9TkP/K55dxvcgblvL8PtdHt6tykKJrNKk/Oufz4Wm5kPVjzFjrUJtOvZtKLC70Jue6I/DVvWxsvXRkyHi13JnXYnp46kI4HnBryNruus+XozH25+lTpNa/H6krEVY4sLSjl5NBNUj/fSDwt2cNP9PQkMrTonR1EUohrV5ERKBlJIir1h9bFk7g++OJH+/4Pa1YLwsprRHRIvHwshNfw4ZM8FRaG6X2Wh/N28OJYu2onUJZpb44nnBwDQvH1dln7tEeN4usV4tj3NJpqEhnGvbxviszK5M7o5rg5ltO5Qn4BA7/+PxzUw+FsxBJOBwT+UX3Jq2vZpyd518fgG+lCrUU32bTpM8oFTCIsZ1WJGKAqDwu5DURWe/OxeqtUOY8wbQ5j8zHxq1QtnyD3d+P6L9XQZ2A6E4NsPV4OEn5fsovvg9nTsfbFvz59BVKOaRDSowYnE06Bp1KwbxsQVT+MX6IPL6UZz69i8K4uiWtHVqBV9rpeZrutknc4jrGZQxZakEIK2PStv/6yavZFZry2iZsNanEo8SVlxOUFnrRFcDje56fmVxu/bksSXb61AIslOLwShgAS3083+rUe5+ryE5wt5f83zTJ79A18XpGDytdA56q+3QrhcfL2tLH5jFMcz8sjOLeHlaT/gLyUD+sdwU2zTSmNNZhWBJ0pkPs+ZvcPVjXl75t28dN9M3E6NnqHVMbWuRr0awfRoGc014ryk/5i/68kM/k4M48qqMQSTgcE/jNLCUh7t8iKnDp/h4SmjuPmJATTp2JABD/Rm3bdxfP7qYqQO9WJrUS0qFHdhMfYyBwATRnyE2WLinglD+XT1MwBMun8GGxfvYMPCOKZseAWL9VwieGrC6b9MMAF4+VoRisBiNTP6rdsIjwzlxOEzPHH9uzgdLp6dNuoi/6hPXvyW72dvolPf5hRkFpC4M4Va0dX4cO0LmC7RO23q47Nw6YK8kuPIomIActLy6HdXdw7tSOaa27rgdLiwWD2Rtzcf/JKivFJUU+W8LovNTLMOVUfAfsHbz4vnH7qJEYWFeJnNhHj//dGVNVsO88XCbXRrF839t3WpFCX09bYSW68Gb/38Ew6XG4DSLPtF3kqDhrZH03TKSu3UaxdFRl4x1YM9kbWmrWoza/2zZKUVULtBeCVbAwOD/1UMwWRg8A9jz08HyUjNQtd0pjw0A9WkoppVUvYfx7taKM5yJwhBw2a1ePjt29m0eAc7f9yPpmlIXcdR7uTbD37gs1e+4+ob2xG/6RD2UgdWbwsp8Sd57P07eHfMl3j7enH1oN+Xe+K0u1g5ZwtevjZ639L+kl+oL3z1MHPfXkbtJhF06OtJhv4/9s47PIqqi8PvzLb0TgihJNTQewDpHQREBJQmVRFEFMWC2FAQRRFsiKiIICAd6b0jPbQQQgkEQkhCes+2mbnfHxuDCEH4FEHd93l42OzMnbkzu8n+9txzfmffhhOYC6wITbB69q4bBJOlwMraObsRQnBw8ynsBRaEECRcTCblagbB5W+shBNCcPbYJTxLeJOTaUaVJCSjAWGz0+KxRgwY/xjDH5rAwmkbObztNB8Xei35lvDCnGcFCeo1r0JSXBrD3niUhq2rFZs79XvKeN9sAPp3IIRg0lcbURSNpanH6Ni8GhXL3Wwm2bt9HXZGxKBpGv07OyJmVouNzNRcSpbxQ6/X0XdQM56btpwf5kQjSbBs0hBKFoomdw8XyofdPgHeyb8PAc4cpmJwCiYnTh4wwsIrohU2gAVHhZyqqCTEJPHOlIFcOBmHrJNp9Wh9Fn28mjKVSzH75EdkJGby0VPfYM63kJaSi0Bi96ojPPdhX757czFlKwfR5OG6uHm60uKR+sg66Q8jB2nm4+y/9ipGnRetgmfhoivBoU0nWT1nN1En4pF1Mpqm0aX/rS0AAsv4M+aLoTc816h9TZZ8vhnFrlD7d55OJlcjodWCSbqciqePOxWrV+Hg5kiq1A2l5O9EQUJsCi92nUpeRh6SLOHq6UJ4x9oodo0R7/WkRLAvUQdi0FSBpcBKzIm4orFTFj/HzlVHCasbQvWG5QFIjE1haP3xWApsvLdoNDUfujPrhL8bSZIo6e9JWmY+kiTh63Xr/nGVypZg81fX889yMvMZ0fEj8nMstOvZkBc+eJyDu88RGZOI2a7gajIQdy2zSDA5ceLkRpyCyYmTB4zAciWYtHocbz0yxZEwDSDBS989S3CFQL7e8w752QX0q/gCVrMNjAYadazDe4tGMy96GqqqMbL5u6QmZODm4ULylVS+2DWBwLL+ZKbmMKrdh+RlF/DODyNuEiy/JypjFlYtE5uWw+XcdSRsqupY/rIqaEYDBm8Pcgs9hu6UUqEBaIod1aaw7MtNPD66IyZXI4pdITM5m+lrX+Zi1FXKVy+Nm4cL+blm3DxcblpS2r3qKPmFXkdCE9htCuO+GnLDftXCK1CnRRhRB2IY/OajRc/7BHjy2O+sDbYs2k9Gcg5CCBZ/upH3H1DBdGB7NG4Xs6lVKYAXX+2Cn0/xbVsuJWewfeUxYk5exYggP8eC3aawd/0Jqj9UmRkfrMPkrUcLcaN+WBnqVSn9N16JkwcVp3HlrXEKJicPBMdOx3PxSiqdWlTHy6P4VhT/FRp0qMOs41P55uV5xEbGMXRSP8IaXs+tiTuXiF1I4OaKZDIRsf8iiz7fwoCXOqPTyXy5/U2O7YpmypCvWTJtAyu+3Ixd1lO6QklSEzPQVMFP0zdQu+mYW55f0zSmPjuHQ1skag0Jps7AdPxNNTkal4Ridyz9+ft7EP5IQx4d0uKurk1TxW8eawhNsHvNUT4ePQ/NrmCSBHa7xvPTn6TzwBa4e7pSkGtm5YxNePl50G14O2RZpl7LMBZ/sQm71Y6HpysvfjqgSCwlxqbw0cjvcXE3Mf674cVWvf2WOs3DWPnVFgCadLo75+2/k0/fWkFutpns5Byy+2fz9IFfiIhP4KWWTRkcfj1Zff2RM7z/3UY8j2cjaYAQyIqKJEl0H9ycpPgMFLuKPtlO/ZBApo7uXtTS5VdyLVaem7eaxMwcpvTpTMPyf43RphMn/0ScgsnJfedsbDIvT1mJEIIdB8/z9Xt97/eUHghCqpXhgw1v3nLbos82IRn0yJKMABCCn6auJf5sAmM/H4SLm4lylUvh2CSwWxVw1XPtSho6gw6DQSK8ffElTrtXHmH3kv2oQuLIl6UY+/rneJsq8OgzeZyLuEh+jplXvxlOqfJ31/sNwNPXnTdmP8OWRfvpOrglLu4mvnpjGUpuPtgVzDoZSZL56eO1dB7oEGMzX1nAzqUH0OlkDCYDDw9pTbWGFShTuRSXohPIy7Py4ZBZTNv4OpXqhvD5S/M5d/wyep2OVd/sYMhvokvFUbFWWb7Y9gZIEqHVHqxIi6JprD93DilfxSYEQgKr2c6V/BwOX0nAbLczbde+GwTT7uhYrEKjSCoKMHh78Oz4bjz8eDjZmfksXnEIs2xnW2Am/RcuZfmgfpw6dpnMjHyata7KxpPniLqajFVRmLJ2F8tfePK+XL+TvxHh9GEqDqdgcnLfSc9y5GJYbQqpGXn3ezoPPKqqcSU6Ac2uoDMZ0TQNoaooeQUc3BzJ7tURdOjzEGUqBzHyo/78sjqC5MQsriVmIZAQSIyY1JuHn2x+y+PbbQrTnp6FarEBULZGJbxNjl5vnn4eTFo+9q7nfGRbFPOnrKF6k0qEd6hFwsVkvH3dCQkL5uLJOHSKHWyOyj0UFdkgUbK0D6qqodPJmPMsaKqGLEtY8q1Fx/UozN8ROPrV7Vyyn4UfrebUntMIRQU3NzKupnH28AWqNrrZs+lXdq84yNSnv0Wn1/HJlluL1PvF5YxMpu/bx/YLFyi1MhudooGLAb0ssfnIBfSJCm6BOmqHlLph3MDWDdhzOpbM6hqeORr1fAKoWr00HR9ziCoPb1fSKrqQUcEFdBKRyckc2nuOyeOXA3CyWx2qtKrgMMF0k8jXK2SbLXi7OiPATv6bOAXTPUQIwWcjv+XIxuMMndyPDgNv3fj0v06TuqF0a1OTMxevMWZQ63t2nnNpaXgYjZT28rpn5/g7OLw5kqyUbNAE7m4GGrYM48D6Eyhe7oAoaiIL0GVoa8qFBfNGj0/QZB3o9Ch2ldMRl4oVTJqmYS8USwDPftDnruYnhOC7d5aRnJDJqA/64B/kw4fDZ2POsxBzJol18/aima0gBBdOxHHl9BVHLhaAJOHt50FeRi5nDpxnzddbeGx0Z0ZPH4TRpMfL35OuT1931H7jm2HMeO0n9q+JQNZJnD4Rz4Uj59EKm84qVhtbF+9n15L9TN/xNpXqht5yzhvm7MJuU7DbFQ6sP0blerfe7+/mRGIS/RcsRVE1hF1FtmrJlBQAACAASURBVAhAAgRqsBsnryYj2QRuVzTsu2M5WfkSOoPMuuURtO5Yk/LB/kSpySglZWp3rcfgVg2Kjq2TZV59vDWT9+/F7CZ4tkkjEq5koKkadrvKttXH2Tp/H77tA0kKlrmcm83UXb/w/sPt79v9cHLvETh9mIrDKZjuIfvWRLBh9jYQ8MmwmU7BVAw6WWbs0LZ/vOOf4OMde5hz6jiyLDH3sZ40KvPPzcXwC3KUsxtMBkKrlea1Oc9iNdvYvSqCoHIB1G56Y7LyL2siHL5LOg3Zw4DeoKN97xudqaMPX6Qgz0KDNtUxmgy4e7uRn12A3qinZLkAMlKy8Qu8szL6meMWsfa7HQBcjr7K9wcn4Rvohc2moILDQVrTkCUJVdWwF3oFAei8Pajdoir7fj6EBuRm5nH5TAJvPDadzORsZKHSqFMdGrR3eEf5BHjy1pwR5KT356s3l7F3w0kwmpA0h+9QYeoOkk4i5UpasYKp2/B2RO0/j8Ggo1n3B6fNx86TMdgVFaGTMJnB3Nwb/clcLOVM9OvflMWrj6OXJaQsO1mpeXw3fRNxV9KxWRX27ThD17faEpOUhiRJNK50c+PlxzvW5/GO15fx8vMsRBy4QMq1bJKir6LZVMxXc9CV9kUALnrnR4aT/y7Od/89JOlyetFjXTGGe07uPUei4vhhXwQ2D5A0OJKQ8I8TTOY8Cyd3R1OxTghh9cszcekLxEUn0qJHQ9bP3Y1/kA8d+926tL/tEw+xad4e7DYFrVogpeuFElZYSg+wb/1xPh75PUjw+OhOPPnaI3zxy0S2//QLleqX56VuU8nPMdPruQ4MGf/HuUBXzicVPU6OSycrPZepa15m5/JD7F5/givRCVSqH0JItWD6ju3K0+FvYsk1I7m70v3ptvR5rj0IDRd3F3q/2JWvX19MRnI2yBKq3pW5k1cVCaZf8fL3pGzlIIym02AyMGxKXw6uO8aZIxdxczFQt2VVGj1ct9g5t+gRToN2NdHpdcW2ZLkfNPQsgSFbRXGX8Tuez9qfX+ObgxGU9HRnUIN6NClXjoMRF9kycy8FZdw476YiuenA6hChfRrXpmuj6ri7GPHz+GODTXcPFz6YMRAhBBOGz+HIrrN0KFGGKD8Tl9KzqODje68v2ckDgDOH6dY4P8XvIW37NGH5jE1kJ2cx6tPBWM020pOyKFW+xE0l0k7uHcdOz8M9yRVbBR0mSebRqlXv95Tumlc6TOLq+SR0Opkfoj+lTvOq1GlelU9GzWHPqggkWeL1b4fzUJebRUGV+uVZevlLeoycQW6Oyvn4VPYfjaVdM8d9iI2Kd4gpVSPmpMOrKLhiSfItCrPeWkZBrgXFrrJ10YE7Ekyjp/bn2RbvodhUVFli+ui5PNS5Nj1GtsfDy4WvXp5PTMQF6jSvQonSfgx6qyffT/qZoHIBPDn2YTy83Xjrp+vVe3VahLFz+SEUV1ckSeLS1WyO7DjN7hWHaf5IfZp0rgNAvxc7ExxaAoNJT/Oudek+rPVd3WM3z1v7Gd1PQkr54x2jYPU3UVDSjU3zD9DzocpUrlWWDauO8s1nWylfpSTPvdeDDxfupMBqw6WsO50bV6ZR8yr4+nvw/0gcSZKY8O1QFJvCubQM1s5bhtmu8NHm3fQPr/OXX6cTJ/8EnILpHuIf5MPi85+iqRrmPCvD6r1OTkYezR9tyLjvnrnf0/vP0KLuerYfbkvORTcmjqpGgSWHM4m5hIWVRpYfHOFqtdjZte00QaV82PPjLrYu2Eu7fs0ZM2Mol6PiUewqJjcjKVfS8A7wZOP8X9iz+ig2ix2DyUBqYmaxx46zxSKXzUA674FdE1QOvV7d1nVIKyK2R5GXbaZMaAA/z9hE+TqhbFm4D0uBDUmS0Bn0dBvyx0vK507E8dnYBZSqHExqUhb2PDPHtpzk5I5T5GcXkJOei2JT0FRBfGEkqteoDnR/uo2jt9ktvki079uUMpVL8fITM9A0gdAEkwbPxGa2s2d1BHOOvE9AKV90Opm2vcIBSI5PZ9zjX1KQb2HCnGeoEV7hbl+OB4Lgcn7Y/E2gk/COymDhgY0sljcxfeUYvv1iG+YCG1GR8UgeOjRNw2TQ4+fpxt5t0ezaHMW8dYdI8NIY3qkxfVoVH2H7PStOnObtdVsp6eXBt317IEsSbgYDof4+9/BqnTwIOJ2+i8cpmO4xkiSh0+uIjYonP8eM3aqwf+2x+z2t/wxmJQcX/0fpOWI1GZobGzKS2Tf2DJIq0bxZVd6Z1Pt+T7GIqRNXcWhfDMKuokZeQFM1Ns/bzeB3ejJi6kAWvL+Chh1qU7FuCKqiMmPcIlRFRZIl6repRsdi3LYBZElHSPdrZF02UrqkL+VK+xVt8yvpzedb3mDexBUs/3Q9AF2Gt0MIR2+1spWD+Hj1K7gX4yj9W7545Scun0lE1sm06RVOwtlEzh2JAUUjMyWHx194mHMRsVgKbAydcP3eG4y3/1MUWrUUWnoGwtUVYbfDb9qXSLdIUN2y5CApiZkITbDo8828v+DZm/b5J6A36OlcqxIbT1/EUKCg2BT0bkaSrqTjEuhGXoEVya5wZmM0Hi56StYsRYirB4fsKgBXTyaRUdODj5bv4omWde44sv3NvsOoQpCRbyYyMZnVzw7kdFIKzSo+OI2GnTj5u3EKpr+JKvVDKVnOnytnk+j2dJv7PZ3/BHn2dH6MHY4irCB8kCU7SmIyqCURNomIw5fu9xQB2L32GAc3n+LitRysVgWjUYdngCfWPAveJbzw9POgTd+mbF16iKO/xHB81xnqt6mOf5B3UQPZV79+Chc3U7HnqOhRiUHlhxJb4iIdgjrfsG3b0oMs/XwTrkYZTXVUl+lkiWnrXyPmRBzNH6l/R2IJKGpmq6kaETuiseRbkFxdqde0En1f7oanrzsfrX/9ru+R0dVIYCkfslJzcHE18tbSF9m6aD/NutXHv9TNUY+ajSthMO5AAhq0/uctwf6WCSO7cPLhadjc3UDJp37LqjRuV4Nz19L5ak8Eulwb/qeskG/nWlQiZ6R8fCSwu+mxlXDF1SwRWMHnrtIAOlerwtxDR9HJEg3KBlPG15syvvend54TJw8KTsH0N+HiZmLWgUnYLPYHKqn030yaNRZNKKjC4e9jlFzwq2xCClQQiUYGDG52n2cISXFpTH9pITargsnLlUoNKlAmxJ9RY17g5O4zeJfwRNbJ7FkVQdzZRGwWO7MnLOPrtu/yxebXObLjNDUbV8LD+48Tehv7N6Wx/41RKFVR+WzMj6iKhsGgo3FXhzgaML4H7t5uVKpd7q6u5+FBLbj0xlKEEFgLrFjNdowuBlo98RCuHiYOrDtGyZAAQqqXIT/HjJdv8W09fossy8w8OJlT+85SNbwSPiW8qHWb1iX1WoQxc8s4zAVWKtW8uTrsH4VwWD0IkwGptD8vTOmDucBGsIcH9VJ0pKXYqNemOgf3nCW9ljeqp4G0el64ZAmMmXb01yyE+pa44ZBRp+I5eeIKbdpVJzjYkeW0/WQMB87F0ad5Xca2bcZjdarj6+aKj9N36T+Hc0nu1jgF09+IJEk3iKUlX25m47y9tHuiMQNfe+RPH18IgTnP8kAmr/6W/WuOMP+9ZQSWC6Dni12p06p4x+k/Q2m3WviZQki1XOShgIGU9ahNoEsYoxZqmGTDHX3jzkrLxWDQ4X4HguT/QdZd79lkkOCrecMdic3RV5k+Zh7gECFtejcGwMXNSK1mYQD4lPCiQ5+H/vT5PbzdyE7NwWZWCKlemkFv9fy/ixI69W2CalfJTMulZBkfPnvpJ2z5FmaO+YFFk1eSGp+OqqgINzeEXk/73o14bnLv20bHfsXd240mXer/4X6/UrrC3buQP4gYTXren9qXdauO0qFzbbx93Hj64WmkpeQgyzLfrH4J/xKeDOgyjVwLFLhqeEkGTO4SaoIFCYg6dJlL8WmULxtAakoOr72yCLtdZdXPESxbOYbLKZmMn78Jq11h+8mL7Jw8gtKenrz54gLOHrlMePPKvPlJP3Q6Z48xJ/9dnILpPrHuh1388N4KAH6avpF2TzQmOPTO/8BnJmcx6+V5uPu4M2LqQHR6HS+2eJvzERep17YWvcd2o2Gnug9cNZ4Qgsl9P8VmsXPh+CUiNp/gk53vUa3x7ZvA/j8YZBf6l//ypud/1y6rWHYuP8j05+Yi62Q+XvcqYfXL//Ggu6RkGT/e/GYYBzZFcn5PJD18BjNy+mAkoxGhCWwWO3tWH2X/+hPY8goILh/I0+/1+r/PZymwIjSBa2G/PkmSKBUaQFZKNgJY+ukG6rWuTu0W1f6v48uyTLfBjnYmG+fuRM3OASAfyM8qKDRFAhQFWa9n24oj7Fx9lDEf9aXD443QNI3oI7H4B3njG+CFi/sfC6n/AvUblqd+oRXEpQvJJMZnIDRHT74n+0zHa2Blajxflxrxdg6fvEJWZj6STkbWS6AKhEFC6Bx/C8xmG0KApgny860IIRDien8/VTiWZSeMW0zk3hgk4ODOs5w7FU/1us4cpn87AmdrlOJwCqb7xI7lh4oeC1UlMzn7rgTTzJfmsmfZAWSdjH+QD27ebsSejENogmPbIjm1J5rBk/rQ59Uef8l8P/58E1t3nqZT25q88kKn//s4kiThXcKL1Pj0X58gNT7tngimP8uWhfuw2xSQ4NCmk/dEMAE0alcDyW5j26z1WPKtfDduAfNiZrBq1naS4lLJzbU4esG5uJB6JY1rl9MoFxZ803GiLiYxcfZmDNHXkOOy6Plsex4bcd2V+cyRi7z+6DQ0TWPCgtE0bF8TgLKVgzh75KKjPEYILPm2m45dHEd3nWH/ppM8PKAZlWpdX/r68cM1LP50I5KLC8JiAQn0Rj0mFwMGo55s9bpqVRWNbyesoFX3enz7znK2LjuErcCGJMGTr3Sl/8td/4+7+u9k6bxf+PGbXUgeJvSKhr3ARnwbD5TsVE5mpuKVKiPpBCYBkiwzaGw7Nu49TcdWNagQ7HCALxcSwPARbVi95hh6bxOHjl+mSf3yTOjbnl+iLzOojSOKF3k0DqGXodA1PaiMX7HzcuLkv4Azvnqf6DWqY9FjV6NMaNW7a/aZciUVTdVQbAprZ21hzhs/oRR+uIOjH9iKwoqnP0tGZj6btkVhs6ls2HqKrOyCP3W8z/dNptOQNuj0MjazjeXT16Iq6l8y17+S7sPboTfqcHV3ocWj99b9OaRGWWRZxsXdRM3mVfH0dWfWvneZvul1dDoZSXLUggWGlODwttNcvXDtpmN8PH87Vy5eI21/LKlXM/h2wkq6lhvD6098gWJX2bXiMFazDbtVYcO83UXjRn8ygBrhFZA1BVXVeP/p7/hwyExGNBjHvtVHip1z+rVsJg77jg3z9/Fa78/RNK1o24Z5exBCIOtkvAN9eHhYGwa+1ZMlcV+x8MLnmNxMUBj9FEJQkJbNrqUHOLHvPLYCGwiHfcDq2TuLPX/8+STOHr5wQ3Tk30padj6bIs6x8OeDjhYuqkbFh8ojZJCv/9qjKBoaULqCH317NGRwjyYsnvYUw7o3QQjB6g0nmPz5euwl9FyxFHDuahrjP1qFomp0bViNDwc9TLWyJVmx5ihmTwM2P1ckDyNTvh+GX4Dn7abo5F+EhvS3/Pun4Yww3Seada3HspjpnD16icp1Qu46R0aWr2vdzORsNFXDxd1E1xEdWPHpOhCQn5V/1/MSQnBk0wmEplGxXnl+nLAEm1UhwNNEtkXB39cdD4+7TwIVQrBm5iYSLybTd1wPUhPSUQu/uZ4/GsuVM1cpX+vBCvc/1KUuyy99gU6v+8Oy97slLjaFt8cvxa5ovDu5N2FVg/n+zGckxCRRo2lY0X4Va5blhU8GELnvPM271WXK8O+Z98FqFk1bz8Koj3Fxu54TF2wwcW3bebCp6Nxd0HQ6NFXj7LE4LkbFU6NxJTb84BBKnZ50LJtZ8q1EHThP9P6zqDaHO7Q138Le5QdRFZWPhsxkTeYPt7wGTdMcjVkBTb1RtHTs35SVs7bj5evOzN1v4/O7D9uXpvblhynr0Kw2MuKuoQNKlPHnqbd68MnzP2LNtyDrZFr3dPgqLf10Pcs/30iLx8IZPX0QkXvP8naPT0CCfq89Sr9x3f/Eq/FgY1dUek6ch9lqRyklE5AEQi9x0WAhs7Yf3tdk3DGRlZiHkPVoOriSm8vSQ1EMf7xZ0bL8kWOX+Wr2DixWhQ0HopE1GQkwGfTIv1u6PxRxCVWA5KKnYXglDu05T1BpPwKDnJVyTv67OAXTfcTT14Pw37V4uFOefLs3b3T9AE3RHKXgEjTqUp/wTnVZ+dl6hBCUq14Wq9l2x1V5qQmZvN17OpePxiDrZFS7gqYJJBla9WlOt4m9qVyxJHqdjM1iQ5IlDEaHH06+ks++tF2Uci1NLe+bDfJ++fkw341biN3myF1SbNf7hxlMetbO2oLdplD9oSp0HNwaXWGiUUGehTnvr0KSYOibPXD7P8Tan+FOkpHvFqvZxgt9Z5BvMoIkMefbXXw0vT8BwX4EBN+87NG2VyPa9mpEXnYBVrPN0YtNCGwW2w2CKUyROF7ov1MmNACv0iWIiYzH5GogLSGDT576GgkI71Sbxp1qYzXbeKb5e+Sk5yK5uGKULdisCkgSmqphMBkIuM0yTIlgX8bNGMya73eRGpfK168v5tkpfZFlmWHv9OSxke1x93bFaDLcNLb1ow1o/WgDLAVWdizaR8mQEtRr40j+XxEzDUuBjez0XFS7QmZKDnMmLENogi3z99LzuU6cPXQBxa6gKhrHtp/6Vwumywnp5BZYi8JISc28kGWJ55vXYt7qI+hlGa+9Gci5dlR3PTk1PFFUjbwCK5oQ6ArFkKZpaIXROA2Bva6J4eXrkLT3An3qvEHPZ9rQ73lH5Htw/6acPZ+EQRWc3HWOCLvKsYOxfL3kn+ln5eQuEM4queJwCqZ/GFazjdzMPBp0qIPOzw8tJQ0AnV7HuHmjWTdrKzq9DsWmEBudwCs9P+ezdS/fUXXLzDeWEHsqDqGoNy6RCQlPH3fqFJZnH916kre7f4ROLzNt13uUrhLMrITPiM2PQZZ0hF/oyPklCWRnmbEKier1Q6lVvyx2qx1N1YjcHY0kS+gNOkpVCiL+TAJrv94CwNZ5u8lIymLAm47E5oWfrGPzwn2AI6o2/N2e6B/QvnwFuRZS4tMpV7XUDRHA35ORkoOSXQAlDCAEVauVuqPje3i7MXpqP9bO2U3XIS3x8vO4YXt4h9qs/HITAO36NaVqeCXSU3L4fNwSPnzmezRFRdMZOLTrHOeOXcbN04XstFxHY15g3PfPMmfyapLjM9D7eNG8a21GfNDvtnNq1qUuM8bOJzMlh4xrWTTtWo96rRwJ476BXn94TS5uJro8dXPjZRc3I8um72bptHXoDDpKBPuSk5mPwajHt6Q37fo3Y8uCveSk5zHonQfHfPReYNTpcC0Ai4twRPQ0Cb0F2jUKo3vLWriZDGxaeIC5n2wk2MeXVt2bsjsqlsGdwtH95n3YuGEFnhrYnB93HSVTy6VepJ2gsrBu22lsVoX5n2zk8ZHt0Bt01KgazJrFz3PicCwTxvzkKECw2u/jXXDi5P7zYH7yOLkl6deyGNn4TQpyLXQZ2hqhCSRPD4TFyugZwzC6GGk7oDnrvtvK1fPXkDw8uHAqnsE1xjLr4GQ8fG7veePl74HJxwubouAX6EVuRi52q0Kbvs0IrFKaGeMW0X9sFz5//gfsVjt2K3z92gLOx2RQ6ssc9GVUFLPKqgVbyN8rIbm5Iul0xMcks2/lQSRZgkIdJjSBiiA5Pv2GOWiqej0hHDCYDEiyI+KxZtZWdszfxVf7JxFYxv8vv79/hpyMPIY3ehtLgZXwjrV4a27x38SDyvnTplMt9mw+xUNd6zLk6dZ3fJ5OA5rTaUDzW26r2bQKc6M+Ie5MAhMHfw1ASLUy2LLzUBUVvYsJSZJRNfji1YV8sWU8tZtV4eiOaLoNa0XLXo2JPnaZtT/sQREQGXEFY2GELeHCNY5siSS8Ux1KVyx5w3kDy/qTn2NGCIF/0F/XOmPn0gMO3zJJotfznXH39WDj8gheH/A1r306gDaDWrNl8UF+2XyKms2qPHAVoX8VIWX8ebVva9btOc1hcwqSLGE3CUr4uJMWl8HyRQcJb12Vn09NxmDUI0kSQ7s1vuk4kiTRr2djHutcl9613+SKovLt8QRcXY3IOpkSwb5FxqO/Uie8PE+ObMO50wk8OaL133TFTu4nztYoxeMUTP8QLp1JZO+qCKwWO4pNYc/Ph3HRgd2gw+TpQ6fBrQFIT8zi4ac7EHnsChE7z6CZzeTZ4PTBGBp3Lr6X1LW4VGo3qkCpkAACSvlSoVoplk5bR+0WVfEs4cO0MT9it9m5dCaB5MSsonEJV7PQVI2Uj13xHZKHLVaiYH/hL5uqIWRHnkRuthm9QY+makXl0BgNqC5ukG91lJsDNVtWZ/B7TxQdv/9LXTC5GPn5q81kZ+ZgkTQitkbSZWjxbukrvtjI928vQZJlnv90EJ2HtCYvu4CE2BQq1iyL3nCHvgJ3waXTV7FabFjNNiK2Rt12X0mSeOWLwbzyl8/Csaz63qBZWM2OSrcrUVdQc/NBQLXW1blwJgmQKFelFDqdzKTFzyOEKBIbGam5/PryFOSaiT19lcq1yzG65bvYLXZ+nLySxbFfYjQZEELww4RlSKrCo8Pb0rx7A8qF3Vm07E7o83I3PntuDh4+brTo2Zi1C/Zx/uQVVE3j1R6fkpXhyNHb9NN+Hh7QlNCqN1cO/lsIquFPQ9eKRKxMQUOgVyRcjQbG9f+a3GwzW5Yf4dstr1LyN0uoNkUhKjGFyoH+eLpcX1o+deoqqur45qKpgs/WvMTV2FRqNqpwk+iUJInHHwCDVydOHgScgukfQOTBC7wz6BuQQOfmhmyx0+PZjrTu3ZhjO6Jo2KG2o1Q7LZeX2k5Etau4+7jRrc9DbJizA1dvD6qFVyz2+FmpOTzb5C00TRAUWoJvDk2mf8UXSE/MZP+aowx697qAQROgCSRXhzlm00casnnRQWyXdSS/dj2fRhIaIjcPycMdITQkofHid8/yxdj5WPKtGEwGR9K3xYbs44OEowy6eus6+Ja8HqUwuhjo99LDGGTHh7PBaKB+m5o3XYM5z8LUYV+Tfi2LC5FXChPKNb56dQEtejbm6RaTsBTYqFo/hClLX/jTr8nvqdqwAmUqBXExMo7ef8J24c+y8uttRWJJb9BRq2kljm6JBAHlq5Vm2MQnSL6STrNu9YrG5GWbyc3KJzi0BPvWHS/0SpLw9vfA5Goicv8FrGYbql1FCIHNbMNoMnBiVzSrv96KpcDKtStp7FwV4aiyW/w8Ff8Cd+1Og1vRrn8zdHpHU95ylUqiN+rQCR3ZKdkOQy1JQpLubPnvn8rRxESeXrUKoWmEmVwJsLgwakQ7Fs/YSn6uBShsRbPnLA/3bVK0HDxgzlIupGbgYTKy+YWhuBXmG2Zk5CGV8UfJyicorBTBoSUIDi1R7PkB8nItfD1jK5IkMeSplkTsOkdwiD+1G/0zmxo7uT3OCNOtcQqmfwAXo66iaRp2m0rV+iFMnj+yyM2762/yP8x5ZjRNoNhV8rMKGPlRf/q+0o3ti/YzuMYr1G1dnbcWPn9TPlNaYiaqomE124g/n8Soxm+SnZYLOMKz9VpXRTbqSbyUQs+R7Rha+zVH/qkk0anvQyRdTOF05BUkvTv2AgtIEmUrBZGZnEVethmDUUf/8b349NVFaCro3FyQEFCYEyEpCpLRIbbWzN1L7+c63FRV1XtMF9r3a46Lh6koEVsIwbRnZ/PL6qNUbVieU7tOY7cquHi7ORKjgYBgX67GpmApcER/og5dLDqmRTUTlR1JObdQAl1uXGa6W0yuRmbsehtN026bv5SfayHyQAxVapfD/x5UHDXpVJtDmyMBeHPOM9RoVJFZry1EaBqD3+mFh4871X8jnq/GpvBC12moisoTo9rT/okmbFt6EL8AD9z18GLnKRg83WnUPZzkmES6P9OuaGnXy98TTQj0Rh1C1pF+LRuA5TO3Mm7msL/oiiQmP/UtMcfjeHZKX557tyczxv4IioJQFIIrleLdBaPw/l0+17+Ja7m5SIAhxkJ+RDY2nY7tyyP4ZdlhNFVF0skIIZg9eR3X4jN4alw3VE3jVGIy4Pg9ScjKpry/H6diEqlZL4Sm7WuQEJ/B2Fe73NEc5s3ZzfbCyOnp3efIuJaNBLw/exg1G4Temwt34uQBwymY/gG06xXO7jXHSE/O4ek3Hy229UlQaCDDJj7BziUH6PNKN3R6Hf6lfJk3aQWKTeHo9ihijl+iasMbo00Va5ejbZ+mHN5yEm8/Dy6ejEPWSVSqG8oTL3elYu0QKta+XvL/yncjWPrZBjoNasm0kbO5diUN1ejiyDdydcFk0pOXlU9BrgVJkpD1Oo7vPY9qsYPJiCQE3v7uZF5NK2r2KnQ6JFlCNui4EnPtJsEE4PO7KELSpVR2rziC3WrnxJ6z6GUZk6uR0hWCiI2+6rgnIYFUrFGGag3Lc+rABfo836Fo/LRzU0iyJCEBk2p+hI/R965el/zsAlbP3ExguRK06+8o376dWBJC8NKj00lNzEJv0DN339t33NT2Tmn7eGPC6oei0+sICgng1C9nObL5JL6B3pw+dIH1P+zG08+Dtk80oUHr6pw6eBFN1bBZFXatOcZ3O99g6FuPMqD8aJKtjkpGVZIxW1S+3j/phnNVrF2OScvHEnPiMl6B3swcvwQJqN/q/3MJvxVHd57m6PbTWApsTBo8i7JhpRCaQNMEZSoHMfvQxFuOy88xk5KQSUhY0G1fk38CHStVYu/lyxxfexRUgaIqnI9OKirMEBIorkbUXAuXohMB0Mkyw5s1ZO7BYzStWI6KAf68NXM9RrFLzQAAIABJREFU+09eQpJgwfsDiToSx56dZygR6IXPbXr62VSV3XFx2DUNvU7GnGdx5Ja5GFg67xf27j7H4BGtcXO6sv8r+C84fUuS5A5YhBB3ZQDoFEz/ALx83flszdg72rfn853p+fyN3egr1wvlUlQ8eoOO4PKB5GXlk3Etm7JhpRyGiJLEizOGAvDjxBUkxiQhgMdf6kKr3k1uOkeHvg/Roa+jh9lPH/yMYteQjA6zTEmS+GjZ87z88Me/piUhNEG3oS05te+cw6xQknDxdmfce72I3HuWqg0rcGTbaQ7uOUdY3RCqNbgzR22/IG88fNww51koUcaPp9/rTVZqDuWql2V896kodpVHnnFU/Xy4ePRN45MsSdg0K0bZRLot/Y4FkxCCtMRMvhz9PRFbItEZdLi4m2jeI/y24zRNcPViKpqqopccCe8VapS5o3PeDb9Nyv7+rSVkJmeTl5nP5IEzsRV6X+1de5x35o2kUdtqzJ/mgt3uiDCBw+7CYDJgtypIsoRPgCeDX72123bd1tWp27o6AFUbVEBTNcpXv70J65ZF+/nhg9XUaR7GqzOG3LKC025TiD4Yg4e3m+N9JDnuX9LVTHR6HTq9So+R7W55/Kz0XJ5p/QE2s40mHWvx+swhf3TLHmgMOh1TOnVi4CcnSLE7bB/0Nhut+zZh2+rjqCYDXh4mAoK8eWr89Z6UL3dowcsdWhT9fOzsVcxWO64mAxs3RrJq3gEUu8r5M0l89PmAYs9/IPYKMQFW5IoG3E0GPn2mJ7PeX4tdCCKOXoaIOFRVZfQdRqucOPm7kSRJBvoCA4BwwAqYJElKA9YD3wghLvzRcZyC6T/AxxteJ2r/ecrXKIvVYmdEozex2+x0HNCC5z8bfMO+T771GJXqheLq4VLki3M7xv8wkh8mrkAYTaQl5/LEqHaE1Q1l9Mf9WfjJeirWLMPwib0pXbEkGRN7882EFSBLDHihI616NiK4fCAvt5uEQFCzaRgfLn3+jq/Lxc3Et4fe50LkFaqFV7yh79iSWIe79e0iOL1KPsnSs+uoH1qZ8u53loshhODd/jOI2HYKYbGiKio6vY6CnD92P9fpZJ58sSNzX5uLIkvMfH42n+x4947OeyfYrHZmv7eSzNQcnp7Qi7PHLuMZ4IXJzQgCXDxcsGX9Ok9BytUMDm05RW5qNl5erjRuV71onp/unMCORfto3LUeNZtVveV9mDthKacPnOep9/tSrXFlQu4w4XvmG0uxmm0c3BzJ+eOXqdbw+r3/fuIK1szeiatJjyXPgk4vM2nJi3z//moux1wDAVPXv0Zw+UDcPG/tyRV7OgG71Y7VYufIjmhS4tOZ8epCvP09eW5q/7vy1roQeYX964/TskdDQqs5hOAvG05weHs03Ye0uKEdzL3m4Ufrs+DTTUhCUKVaTYa81Jlr6fkUFNh4Y+JjlC57+8rR0X1aMG3+DiqXCySkpCNvUNM0LObbt8IJ8fNByKBWdqNy2WCq1w3hi+WjWThnD1fm/AIIHJ9HTv4tiH9fhGknsA0YD0QJ4WiYKEmSH9AG+EiSpJ+FEAtudxCnYPoPkJmcw9pZ2wgs60+1JpVRFRWb2c6+tUdvEkyyLNP0kQZFP2uahmJXbzIftFnt5GbkE96hNuEdat+w7diuaEDw/aGJGF2uj2v1WEO+n7Acu9nGl2Pn06pXI1Lj05BkCWu+jaTYlLu+Nk8/D+oVRjh+i8nViOk2q115Zivvf3WGdCWYhAAjQ16RiowBFUVlw+rj6A06OnWtc0MEZMvi/RzeEY2QZHQuLlSrH0q1xpVp2+/OKonqNa3EIhcDlnwrp/efu6tr/SM2LdjH5oX7UOwqsacTuJaQiWKxo0fi/eUvEhhSgh/e/5nowxepGl6Rtr0bM7DeGyg2BYvZxtljl6nZuBJz3luOEIJhE3oXKziP7zjNqq82Y8m3MnnAlyy48MUdzzO0WjBxZxORZImSv/mQt5ptLP9yC0IIrIUu9S7uJiRg6qqXOLIjmuDQgBuq4YQQxJ6Kx9PPvchqonp4BUqXDyQ2OoHeo9oxc9wiIraeQmfQEVq9NC0eqY/JzYT375Z9L51JJOpILM0618Yv0Iv8nAJe7PABik3hp6nrmHvsAzQkpr4wH5tV4cDmSJZFTSn2OjVN8P3mw8SnZvHcI00p6euJqmpIEv/XMmGfZ9vh7mGiIMfCY0+3wsXNxNSvBt3x+G4tatAmvDKbT52nZKA/vfs3If5yGk+NutkH67eE+vuy8ukBXEzLoGWl0KLnH3+yKaqiYbcp9B/W8q6vx4mTv5H2QoibjMSEEBnACmCFJEk3O+z+Dqdg+g/w6ajZnNgVjcFkIKh8CQJK+ZIQm0zfV7rddlxaQgajm75DTkYeY2YMpdPgVoDDc2hk0wnkZOTRZWgrRn3Uv2jMsV3RvDfgKwSC47vPMH72MwDkZuaTcCkVCltpqKoGQtC4Sz1a9mxEzPHLjP6deLuXxKVkkqaZsRkFMTkZLImIpF+jOgD8OHsPK5YcQgIK8qz07n99WTLuTBJIIAkwuBmZvPb1u8pDqtKgAjWaVSVydzT93+x5y31ybVbWXDxDZd8AGgVdX7I7vucscz5YQ52mlXnq7R43lYC7ebo48sB0MopdRTVbkRQVFYnje84Qf3E3BzeexGDUE3syDpOrgW5DW7L0y834BHhSo1FFfpq6lk0/7gXAaDIw4oO+N5yjIM/CS49M48q5JCTZgM6g4FPiem6ZEILkK+n4BXnf0uEbYMqyMRzfe5YK1cvgV/J64rvRxUC5sFIkx6cjuRlRCqy4erri5u2KwainaefajvfNb/hpymqWTFsHwNTNbxDWoAIurkZmbH6N2DMJjH9iBvnp2SBJ2K0KK2du5Yc3FyHrZKZufpOwwuhWRmoOY3t9gapp/PTFFmrVKkXjh+s6igckCYQgYstJ6ncs3prj9yzfcoylE9YhNEH8pRRe6tKct56di16v45N5w6lwlxYMOp3Mo0P+WJioisrB7afxC/SiWr3QG7Y9N3c1UfGOPoSLnu9H5aCAm8YLITgflYCbp4myhdVzFQL8qBDgx6HdZ1m75BCdHmtAiw41GfRM67u6BidO7ge/FUuSJPkCZfmN/hFCHLuVoPo9TsH0H8DDx72wNBv8S/ny/YmPUFXtD92/D208QX5OAaqisuyzDUWC6WxELAV5FhS7yo6lB6nVohoRO8/Q46lWpBSaTtrMdpIupwKQEJvC8w9PRVU0GnWphywE3Z9ui07v8EN6+dtn7uHV35oqZUrg5eFCmsWMLEvkmC1F2zIz81EUFVmSyMq6camt16j2nImIxWq28cbs4XedtK3T65iy6a3b7vPMtlUcTU5AQmL5I/2oFRAEwJTn5pKTkU/8hWSadKpFzcaVbhjXtncjVEUlMzWXJp1qM7rNJOx2h0BNupLO0e2nHY7NFjsp8eloqsbg17vzxPMdMbkakWWZy9FXiyoMLQXWm+YWuT+GhIvJoGkInY7G3cLp98r1/KYpw79j/8YT+JTw4pu9795y2czF3cRDnevc9LwkSbw9ZwRrv9tOmarBfD95LVm5NiYP/57Z+yYw8Zk5HNwaRatH6vH6l47IysENx7GabeiNek7vP09Yg+vLe5t/OkB2SjYiPx90MpLJhfSr6QibgizLHN0WWSSYcjML0ITAblXIsuSyZ+VVDqw/TqP2NTi85RRGvUzDDrUJCg3g1S8GFi3JFUfqtWx2/HgQXa4jcT7vWDKrMvdjsyrYrArrFh+iwUOVqNEgFB//v7bCb9akVWxbdgQhBBO+e4p6zasUbYtPz8JiV3A1GkjKzL2lYFo6Zy8/fbsLIQQTvxxI3caOe2QpsPH+2EXY7SonD8dSJ7wCXj531wPTyT+Df2Jj3DtBkqRJwBDgIr9+e3f8f/swayFOwfQfYOysp1kzayv+wX606NkI4I5apdRpVQ2dQYdBCNr/ZsmpeuNKePt7YLPYaflYOJ+8uACbxc7h7VHMO/gex3efIelyKiMm9+FC5BViTsWjaRo2q524mBRm7337nl3rb7GqFtYnLQega6nemHTXP7wNOh0rxwxk8vqdeJpMDHyoftG2YSPakJdrwWDQ0Xdg0xuO6R/kw6cbXrun807IzcGqqrjpDSTl5xYJpoAgH8yFJp8ursYbDCfBsczTqf/11+mN2c8wsd/nICAjIQMASSeh1+sYPvHxIsHq6n79vmReywZNQ9LJlLqFN0+VOuUQhdFBJInDO6M5tP4YTbvV440fn2PfhuMoNpXcjDwun0mgeqOKaJrGiT1n8Q/yIeQ25pKapvFK+0nk5xQ4ihG8PZFlCZOLgbRr2UTsOgPA3g0neG5SLzx93Bn0Vk/eHzgD30AvWvW+0d26QetqrJ6x0fGDqqHXSRj8PLFl5ODibqJlr+v7h1QJ4omRbfllYyTxkZdRcAi41759BqvZiruXKy6F96l5l7o071J8pCk/18LIHl9gNdscy296HY890oDg0n4c2XseSYJfNpxk58oIXN1MzNs9/i9t7hx7OgGL2YbBqOdKzLUbBNMHfTrx4epd1CoXRLOw65WvZ1NSGblqNa56A1X32bBa7MiyxKFDMUWCSdZJ6PQ67HYVWZZvcgV34uSvRpKkssCPQEkcwuZbIcTnv9unNbAauFT41EohxK3LZ+EJoKIQ4vaJe8XNR/xaylT8hF2APYAJh8BaLoSYUMy+vYDlQLgQIkKSpFDgDPBrssZBIcTIwn0bAHMBV2ADMEb8wWQaNmwoIiIi7ujCnPw15GcXkJdVQMmQG7+JqqqGJc9CRmouozt/jM1ix9vfg8UnP3CMyzEzvPHb5OeYqVwvhJSUPNISs3Bz1RNQyod35o4kuELgPZ376oRF7Exx9FZrE9gZX30dZp7fStMSVXg+rPMD20ojIjmBCfu3UyugJO8364C+MN8lOyOPnT9HsPmHnVyKjOOhLvWYsHjMTeOP7z3L9DHz8fZxJe7UZWxmO3qjnle+Gc70UXMQmsaLM4bRvl/Tm8ZuX3KAac/OQdJJqJqg+/C2jJpyYz+53mVGkWdRkJBQzQVgV5FkidGfDyH+chprv99FSFgwn28Zj8nVyFfjFrFt8QGEEHy48qUbkrx/xZxvJTergCFhY1AVFYPJwDPTBpGckMWjT7XGP8ibZztPJflqBmUrBvLF2rF3lAc0591lrPxyM5IEw6cMoFXPcNw9XZB1crHjow9fYPviA9RoUpkzxy5Rs0llWvVoeMt9LRY7M7/bQV6ehedGtMPfz4P4S6k812sGNquCBHSe0I6FsWepFhTI5Pat0Swqox75FFXR0Ot1zP/lzb80ynQ+Mp6pLy3AP8ibt78eekdR0OdWrWFzzAVkSaKXf0WiZ5+kQFPJqe/DVy/2pmFlx9LwhTOJ7Nl8iqZtq1O19t+X8P5fRpKko0KIW78B7wEeVYJE3Zl3nhv3Z9jXYeptr02SpFJAKSHEMUmSPIGjQA8hRPRv9mkNvCKEuH2OiWPfFcCzQoi7T5jlziJMVqCtECKvMCnqF0mSNgohDv5uIp7AGODQ78ZfFELc6uvY18Dwwv03AJ2BjXd7AU7uLe7ebrh73xx21+nkom1jp/XnyI5orp2N54kyI3nm4ycJqV6W/FwzVrON6IMXWJcyi15VXiXfbCc/JpkXOkxm2YXP7qlokZCLAssSMm+fXEqBaiPBnEG7oFrU8PnzJf0Xo66ybdkhmnSsRZ1mVf54wC3IzczH1cOlqGVLw5KlWf/YzX+wvP08aNKuBt+9Oh+hCfavP0ZuZh6evjd+2H79xlLSEjNJi09FsziWhFo/3phZry3EbrUBEutm77ilYGrX5yHKVinFK10/RrXYWfPtDka8/0RRNArAzcNEXmY+slEPOh2qXUWnd+RNjfqwH8Pe6onJzVj02p45EoulwIbRxUBs1NWbBFP8hWTG9PgUu1Wh9cCWXDwcQ5u+zej+9I1R8hnrXyHhUgplKgTecdL0sHcfp1Wvxrh7uRIUcns361+p3qgS1RtVYmj421yLT2Pr4gOUrljylhVxK9ccZeOWU46WP8CE8Y9SqpwfYS0qEBsRz4ARbZgeF0WOxcqphGucz8umbdWKPPFMazYuOUynx8P/UCzl5piZ+OJPpKfkMG7K44TVvP37tkrtsny3ffwdXeuvNChTmj2XLiOA1s2qkVFg5+C5K8gSHImJLxJMlaoFU6nav7cFjZMHCyFEEpBU+DhXkqQzQGkg+rYDi+dD4LgkSVE4tM2v5+l+J4P/UDAVRn3yCn80FP67VSRoEvAR8OofHbNQNXr9KrokSfoR6IFTMP2jsNkVPlv7Cxm5BXRoX5UvFuzEkm9l1ivzWRz3FWH1Qjm1P4ZeoztxLS4dq82RQCt0OgpyLTctKRWHqmqodgWji/GW2xf9uI+lC/bTpHkVXnu7e9ExO5d6DLnwccegHsy/mEiiORME+Jv+/Dd6VdV4tddnmPOsbJi/j7mH3uXw7nNcOptEr6daUqLUHzei/fHjdSz9ais+AZ7M3DoeL7/bN0guUcYPFw8X8jLykAz/Y++8w6uo1r59r9k1nSSUUEKH0HuRjvRelCICgoKIoIAFQQVBRRApYgEFFURBitJ7772F3gNJICEhve02M+v7Y8dASIJ4zvnOe9Tc15ULMrPWmtkzO3s/85TfY2TjTwcRQlCpTmlqNQ0BoGLtUty/m4At0QkGAxZPMwc3nsWRbkciEFLSqm+jPI9RMqQofgV9SIlPo3zNktmMJYB3fx7JOz3nIBRBtbplCArywSfAmy7D3DpO1kcEDId93IvPhi+kcIlAWvTM+TB5+sBVVKeK6tIID09k/qnpuZ6X2WKkzL/QL65c9ZK5bv+jPD5N07I+6fRHks13LT/MzhVHOJfhwCUMGA0K6JCR7mDhgVPs9UiBZn6o5X2obS7GoZvhIKBCYXcl3wtvdOCFNzo8eshc2bUhlCvnInG5NObP2MLsxS/nGBMZlYjDqVL+MS1OXC4N00N9FOPjUrlwPhJrKS/6VK9G9aAiWI1GqgcFESCsnLsdjZfVTJf6/zkh0nz+GvwvygpkRqxqk9MpA9BICHEWiMLtbbqYxzKLcdsp5wE9jzF58kSBcyGEAbcrrDwwV0p57JH9dYBgKeUmIcSjBlMZIcQZIAWYIKU8gNtCvPPQmDuZ2/L5C7HqyAV+PXgOVdNJKvugDLxinTIYTUY+2zA2yyiypTvw9vMgI9UOSMbNe/mJvAT3bt/n9eaTSE+x8faCl2nVJ7tXRNN0Fs13J6ge2HOZ5wY2plQZ95eGWTHTpdiDPngLGr7M7piLVCsQTJBHATJSbUzo/hk3zkZQu2Md3vv+ZSwPGWUJMcksmrKWwCJ+DBjXldTEdLYtPUi56sHUb1MdpERzZSqVIzl3PIxvPl6Hy6Fy6fRtvlz9xz3rNi85hKbqJMelMKTB+1RvVIF3f3glz5wWg9FA3c51ObD6OEhYs2AP6al2jCYDc7eNo0T5IrwxewDNutThwNoT7Fp+hMCgAu62JZmNkKs1KEvXl/POcbR6WvjuyEfcDYvJNefI6dAwmgzYM5xcPxfJ9DWfP/Y11mgSwpLzuRtBAA1aV2HJnK2oLjtGgyAhJjlb9dy/i5SSe7fu4x/kh9XTgurSePe5r7lw7CbdXmzOqx/3yjH+qzd+wp6cjoenGWe6jXc7TiWgeCB93+lGtYblmfP6j7gcLqQi0JqFYDUbOLYhlAF7rlCmfxWcqoYQgrsJyZQqXICd125QLgxmvfEro97vStmKQXmer65Lwq7fo3ARP3wLeFKyXGEUg4LVqFAhF+/OsTO3eO+zdQC8NqgFPTvUzrHehDd+4eSRm7RoU4X3p/YiI93By899y7WGAqePQlABHza8MABbprp7/QrBHJmRU+w1n3z+wxQUQjycZ7NASrng0UFCCG/c5f9jpJQpj+w+DZTKjIJ1AtYCFfI4XoaU8sk1UB7hiQymTPnwWkKIAsAaIUQ1KeUFyFLQnI078/xRooGSUsr4zJyltUKIP1ZDfAghxDBgGEDJkrk/Kebzf4OnxYQiBAZFEOjvzeRT04m8epeaLR/c4t+9PR5eFr7d9S5Xz4RTo1H5J64uO7zxFBmpdjSXxqovtuQwmAwGhdJlCxIdlYTZbKTgY5qw+lu8ebbkg0Tf/b8d4/KxG+iazrG1x9ncsio9h7bM2v/V20s5vuM8RpORwiUD2bx4H7cu3MFoNjJzw1gq1CrFx0teZc33e2jZoy7ema9JSonqyv3h5fq5CI5uP0/TTrUoU6U47fo+xerv9qCm2UjVdU7vuczpvZdo2K5GrvMB6jevxKHfjqKpOukp7v6BwmwkPdXmviZGAw3bVadhu+q8PmsABpOBT4cu4PTey3Qf1gpbuoNZry9m6KRnsiQB7kXEceXYDfYsP0SbAc1o1rNBnp6ZKg3KUbl+WS4dD6P1M/VIS0rHu4AX6ckZ/Dx1DV6+Hjw3ttsTJzIXLVmQ519ry4JpG7l26R5jen7BT4c/eKK5efH9h6tZv2gfDdtVx1OR7Fp2CC8/Dxac/oy4mGSun40AYMOP+xn+0bPZPJ2Xjt9g288H0XSJVNzbnak2UuNT+WLMz8zZMo6s4YqCxcsMF2PR0x3YYlNo6NmMpHIOzEYDLz5dj6e+mI9npAPn+QyuaIl8PnktX/0yPNfzVjWdcZNWcOnIbTx0wZvvd2XLqhO06VaL2g3L0ejpnN6eMxcjcbpUpISDR69zYc0ZkuLTeHNGP4qXKURcbAqhJ28DcGD3ZdJS7SQlpGN3ubD7WUBAfGo6XV+fi8vmolffJrzVPW/5gvS0RdjSl+DpPQRPr+fzHJfPX5X/amuUuD/Kz8pMBVoFLJVSrn50/8MGlJRysxBinhCioJQyLpflDgghpgHryR6SO/0kJ/unSjOklElCiD24840uZG72AaoBezM/dIKA9UKIblLKk7+flJTylBDiJlARuAs8HIgvkbktt2MuABaAO+n7z5xvPv9/6Vq/Ck6XSnyqjYFP18HLaiboMSGBgMK+NGpf/U8do06raiz+aBVCQNv+uZdxfzH/Rc6fjaBCSFG8/kQ/q9JVS7jFKgUoFhPeftmNOJPFhBAKQoDJbCQ1MR1N0zEJSE12e9R8/Dw4v/McZ7ac5uNVb/LC6HbcvBxF/9fa5DheRpqdd579ArvNyZoFe1h+bhovvd+dnsOeZsbwH7h0/CZSSkqUe3wj4ILF/DGajIBG6fKF8CnoR+3mIVSsVSrHWIuH22M24cdXAVg1bwer5u1EU3VUp8r4BUP5dtIqNizch67p6CmpnNp5nupNQihQOHcvz/EtoZQoGUB46C22/7SPIxtO8uP5GXw7/hd2LT+MwaDg6ePBs6M6/tEtyCI1KSOrbU7c/dQnnpcbTruL1fN3I6Xk2PbzKOlpuBwuMlLguwkreGFCT3wDvEhOSKdKvTJZxpKu63wycC6H1p8CRXFLEQiBlNL9u66jGBQCi/vz2tcvcevMLWq2r0lAyUDGdp6NM7OFy6Vjt5k3rTdx91PR7Br1gotzNS4CAZjNRgrnEapVdZ02U78jITUdUcVC0CU7n0xeTYaPGcLusX7DGbxL+zB99kAqFiuElJLzoRHUDinO9kAf7HYXZc0Wtu0+jkvV+GbyaoZP6ol/QR+Klwgg+m4iZcoXxsvbgpe3hQ4da5IQeYX4klAhyoB9XyQS2Jq2P0+DSdfiSU2eDLhISRqP1aMLipL3Q0o++fw7CPcf5w/AZSnl7DzGBAExUkophGgAKEB8Hkv+7n59uOfXf05WQAhRCHBlGkseQFvcMUD3kaRMBgo+NH4v7hjiycy5CVJKTQhRFrebLExKmSCESBFCPIU7HvkC8NWTnHA+/zsoiqB305x6Ov9JSlcpwdJrc7ClOyhUPCDXMR6eZho0Kp/rvsdRqUF5Zu+exJafD1KlcQhtejXItn/UrP4ULV0IR5qNW6FhDB7fne0rjlClfjlqN3c/6W/9aT9pyRlIKZnwzCw0VaP78LYUe6Sq8PLJMFZ+vR2XQwXp7pX2uwijfyFfJi99jRM7z1MypFi2XnC5UbtFZd6a9xKR16Jp068xnj4e+DyihxMTEcemhXuo3KA8jTo9CNFYPS3uJsEGgdXTQmpiOusX7kPqbpkAYTIh0DCYcv9oCDsfwfQXv8Fhd0Gm90V1qqQmuA3I3J5LpZSc2HsFs9VErVzuU1x0Eqd2nUdxONCtFpp3zrtk35bh5NMPVnPrRixFC/nQe1AT6jXNnmwfHRGHt78XtjQ7vv5etBrYmJUzN+ByauxedYJ7kQkMfKsj63/YS5teD/r/Rd+6z7GtZ90GkqZhMBvx9PXEYFRIjYrDPziQcYtf492xK4i4HUdwqUCGNquEwaAwbEJ3vvlwDaqicOx0OJMnrCL0bARCwPRZ/dBbNSOlWwLJsWm06Zr767scE0tCQgZCCqSQpPmCMc3oNiQV0AwK6deSGT11GVu+HsWi+XtZs/I4Ukqmzu5HjdqlOLAplB3GQ1gMCtHh8YzsPBtPHytzN71FWpqd4sGBWQbiqPGdGYVbQ2v+ZxtY4ROJKVklWMm95QyAEB44JSgoqBKSXDYCLPkG09+N/6EcpibAQOC8ECI0c9t7QEkAKeW3QC/gVSGECtiA5/KquJdSPv3vnMyTeJiKAosz85gUYKWUcqMQ4iPgpJRy/WPmNgc+EkK4cCdYDc+UIgcYwQNZgS3kJ3znkwfeBbzwLvD4ZOh/lcoNylO5Qe7GlrefJ8++2prny76O0+bEw8fK6pjvsiVBN2xfky0/7kNzqThsbqHY1V9vo92AppSq5E7Lk1Ly/nNfk5GSgQJUqFuWOs1D2PvbMVr3bYTZasJsNdGkS53cTiNXmveox80LkQxvOQXVpfH2ly9kK31//5nZRN2MwWQxMnXt2+xffxqjycDzb3dBdamkJWXwzKttUF3uXniq052EUYBpAAAgAElEQVS70rp3AzoOakFCTDJn9l6iQfsa2XqvuTJzXJDSbXwZFNo83wT/In4M//R5vHw98PL1oNvwtllzVi7Yy/J5u5ASXv/oGRq1rcqSubswmgz0f7UVv83dzo1zEUhd0rRlDcZ9nncj2J2bz3Hy6E1cTo17kQlcOn2LKXOeZ9qAL7F4Wvh007tMHPgtqck2TGYj784fQtUG5ShfpyyzXluEw+YiOS6VL9/+BdWlMeeNJTRoUx2fAp4UKu5PgULuZHezh5kOLz3NoPd60K/UCDSXRlpiGgkxSdy6GYum6dwOu09SYjoBgd507t+Y23FpbFp7GiEgPDwOp1NFUQTnz0byfP/GUDyI8+ci6ddnLl5eZmbNGUCRoAdevFL+BTAVMuGKdaEbBbF1PfC55cI7WiIAxam7e7plvv3OngnHbndhNBq4ejmaGrVL0bRTTUwWI6mJGcydvAanQ0UxOIm4fo9ajXNP61B1ndW+8dztVRSfNJ3vhuR9/YXiycKEJpQ0RXHbWYxB/skEWB5v4OeTz7+KlPIguT+HPTzma+Drx40RQgwAfvm9h1wu+8vhli84+Lh1nqRK7hwP3FgPb881yUBK2fKh/6/CHXvMbdxJ3KG8fPL5n0V1aUjd/TemOjV0XfJwzVidVlX54fQ0rp0K4+OB8wAQipIZMnsIKcHhRAeS7txnzVe3kVJy4cg1xn47NM/jp6fYUFUNv4AHVX2r5u9m48+HCAoOwGFzIqU7efxhg8me4UDX3TGi7yev4sqp2+7T0CXDPu6d7RiTf3yFPWtO0v65p6j+VHnu3LjHK40+QNd0gisWpXSFIjhsLkZ//SIh9cry8qf9OLvvMv3e6Ua5mg/CgF5+ngyf3p+k+DQ0VSMtKR2jycCty1HYM4UQb1+L5uqlKDavPI4QApPZSMHi/hjNJoSAkDqlszwgLpfKzvVn8PbxoGnbqgghKBbs746iJqYinC50Lyu/zd5IYkwyQhFsXrjb7S0DhCKyKvaadq/L9bMRhF2I5IX3ujO+1xeoNgcSt/I5gNlqZsGJqYRfvku5GiWzqjKrNa3E6V3ncThU5s7cip+/NwlJGZQvW5DRnWeSnJjOe18P4qVhLbFajJhMRsqFBDHlozVYzUYqV3hgUCz6bi9p8WmkJwq2bT3LCw+1OvG1Wtn95lBuxMVz+k4UM3YfJK2cCVtRnadiPLmlOtELmPnmNXdLnaGvtuLjCavwD/CiTQd3qFsIwVNt3B+rURHxrJi3i6DgQCrVzhmu/Z2Y1DSi7iViSlNJDTTiX8I/z7EAnUu8zpq7K6nsV5UyXn/es5vP/zYS/ps5TP8tAnHLCZzCXcB2H7DiLmRrAcQB4/9okXyl73zyeQwBQQUYu/BVdi09SI/XOuSayFyoeACFigfw0crRbPv5IG37N8kWVouJiKNZl1rsXHLAnaidbEMDVB0irsfkeeyrZyMY99zX6JrkrVn9aNG1DqlJGSyavhFN1bkflYjZw4ymanQZlD2/a/KyUSydvp6yNUqy/oe9WdWKkdfv5ThO3RaVqNuiEuAOFe5dfRxNdRuJEVejuHMpEqlLFk5cwdvfvUKzZxpi8vLAmIvMw5ZlR5j3wSoURaClpKEAz4zqiI+XGf8ifvQc3IyVCw9kPTJev3CH0H1XwNOTl97uQLcXHxgQ38/cytbVJwCB06EScz2KQ5tC6dAqhK1LjqBJkOl26ratxtm9F5FAtSYhtB7QnFXzd1OzcQXKVXWnSiqKwpDJz2at3WdkG5ZMW4d0uVjw3jLeXehOwvb08cjhcZy4bDQz3/6F3TsukZrmhNR4FOD+5WgyEtJRXRrL5+6kUbvqeGkav8zeQtV6ZZg2+RkmDV3I5EHfMWxCNzr3b0zy/VSELkGXoOWMGvhZrdQtUZwiupVCTc38dPIMpa1eTHm3G2azEcUgsqpLq9cqycqNb+T5/hn0Vkf6j2qHwag8Vr5DTbBTfGsKmq7jX6MgPtbH5wHWD2hE/YC8ZSnyyed/DSnlF0KIr3HnKjUBauAO310GBkopI55knXyDKZ9/FPHRSRzceJpqT1WgXC5ChLnRsncjWvb+4y+IBu1r0qB99pyu1MQ0RjT7EE3VsHpbKRVSjE5DW/H5OysQuiTsZhxvdp9NSkI6b8zuT9X6D0Qdj+68kBXm27D4IL9M30BacgZWTzOqS8dsNfLDvvdRDApePtkT1svXLEWft7sy/vl5qLpAKAKpamgOJ5qq5dBWAkhLzmB42+kk3k8FgwKajpe3BVe6AyklAUHuZOU3u84k/l4yiiJYePRD/B9qvrt12RFUl4YQoOuA08Xy2ZsQBgOp0fEkxCQzeFRbTGYDJpOBU3su43KqKALu3IjB5XBleXZio5NwOlQMRgNXQ2+zfuZ6pKoSdu42XoUKkB6TgpefJ636NqFs9VL4FfRBKArvdpqGpmr0GNw0z3vlW8ALg0FBdanudjOPwWA0ULdNdfbsueY2PAGTyYBPIW8yEtMwW4w07eiuavzli+24nCpXQsPZs+4ULqeK1CUHt56nc//GBAR4cSc8DpPZSPE8cvJCT91mwtjlIAQDBjfluYFNch2XF9cvR7H8xwOcOxNB+cpFmTy9LxZr3o3Yb1yOxmww4HDpeMRqf+pY+fwNkW6H+N+NzGr/HZk//xL5BlM+/yje6DSdxNhkFEVh4YkpBAb9sbjkv0NibAqqS8Npd+FyqszcOp5bl6MwGA3oThVd1bh80t0C6atxy/l293tZc5t3qsW6hftxuVQKFvTm8sHL6JqkWpMKtOvfjFpNK+LzSG5XxNUopJSUqlScC8dvoqkauiZRPK1oiSlcOnaDk7suUrRsYQqXCMDq8cBLdO1sJGnJGegOJyYfL0ZM6kHjLrU5tiUUp91Fh8Hu5sv3o5JQnSpmi4nlX+/gzo1YBr7dkUq1S+NtNYCUCEXBgMToacaZ6a1CwoWj1ylfPZghb7pFG8uUL8L0N5ai3rvP1gXbOb/rLG98M5Tf5u2kSp3S2DIc+Ph5UrZMIFJ1509Ju4OKFQtxOiKGjASV58uPRkrJ2O9f4cKBK8Rl9s37dfYmxi8emet9aTewGXdu3OPYtnPoEq6fjWDb8qMUKRnIs688nUMjrE2XWly/fo99Oy9Rr2FZvLwtrDx+BVE7iDohxek9vDXg1ri6fPo2JouRuk9XYdfuK0i7iz6vuHNNx07qwaJvdlO0uD8t2+ausHLpwh1UVUPTJKeO33pig0lKyZvrN7Hx0lX8YhwExDu4EBrBsUPXad66Sp7znmoWwqpSR4iKjOel11o/0bHyyeefSL7BlM8/isTYZFwOFbPVRGpiepbBtHvVcVZ+uY0WPevTb8yTKTA/CcEVi9L2+cbsWHkc/yJ+RIXdp1zVEnQd1JQ13+1BSB0pFMxWE2UeESUsU7kYy09PQdc0Lh69wdHNZwBBvZZVaNu7QY5j7V99nJnDvwfgjXkv0bJbHTb+fIiUxHSCCnkR5bAjdclv3+7i6rlIREYGfgFeFCxfjBGf9CWkdikUKUHXkS4XGRlODCYj7Qa6w2SqS+XErgs07lCD62fDqVS/HNuWHcVhd3HmwFU+XjiEUxtPIQFhNtKyfzMsHmZcTpXdvx7Hr6A3TR9JbG/WsQZlKhTmlfrv4bQ5uX3pDh/0n0tKQjrHt5+j36j2HNl6ls8X70UxKkhdElg8AL+CPhjNBnRdomVqEG1YsIser7Zl20/7EECd1jklLDJSbXzQZw7Rt+7TqGs94mJTib6bxOXQL7A53EZgoaIFaNmjLuCWGji6ORSz1czwMe15NVOde+v+S4gz17A7dCIT07PW/2jRMK6fi6REuUK8+sL3OIWCydeT9cuPYfW2ULlWKcZN7vnY90zbjjXYvuUcqSk2XhiSs7z/1JnbTP5kHQUKeDJnej8CM1urhCclse3mTaRRkFTFgv9FBxI450pg24YdvNKkPiUDcj4gePlYmZeHLlQ+/0z0x+dZ/2P5w+a7/0vkN9/N59/l8OYzLJ2xkcadatF/bFcAtxRA6dFoqo7JYuTbfRMp9hg9qT+Dpmq822Mm5w5dA5OJhu1q8OGSEQBcOHKdmxfuEBwSRGpiBo071nys2OOtS3fJSLVRpUG5XHNSPh+5kG0/HwCgZvNKjJw5kJKZSt32dAdHtpyhdOXijOw4Ez09A5me4Z5oNlOyfkW+2/UuU4d9z6FNZxAIdE3DZFCYvu4tipUpxLC677qTq61m/IMLMXXlKF7vNBPNpSE1nfLlAnDZnETfvo9mtqBLUAwKHQc0YeS0vnnm0UgpmfrCXA6tP0mb/s04uO08tjQHQlVRNA2XwwUWM4rFhHQ4kC4N/6L+NO5SG1uag0PrTqCpOm99O5RWfRsTfvkOmqpj9fEgPcVG+erBWcfe9vN+5r29FIfNScESgaSmOjP1k9z7jYqgZfc6vD6jH2aLiWUzN7J81kaQMHLWANr1d4f5HE4X/d/8kXt3EvGKc/DhlN481bJSttf1fJc5xMWmgJQoaXaMZgOjZ/SlfoNyFCiQsz/jw+i6TlxMCoGFfHKET0eM+ZlLV6IwGhWGvdiCPs82ICHDhqprdP9pKSk2OxY7jPSrQuH6xZiwZzcOl0r5QoFsHP7faaqaz3+O/3bzXa8KRWWlL1/6rxzrdKep/9XX9u+S72HK5x9F4061adwpe9GnYlDwC/QmLcmGYlTwyaXZ8L/KjqUHuXjoKtKpogDBFYM4ueM84VejKFGxGAazkZDapXPkIOVGYlwaoYeu4VfIlxJlC+fY32NEW45vP0daYjqXjt3gtWaT+HLfJEpXKYHVy8LTvdxabV0HNWPdNzvceU26RDEaKBDoA8DwKb1JS8rg8skwbEkOHMCRLaFUql2ajEwlcelwkp5io3RIUV4c24kfPlqNSdOo8lQFhnzUh9Xf7mLp51vApaFrOmarKZuxpGk6R/ddwdfPk+p13VVx7//sbsPx47R1uBwaCPD19yIx2h1eMygC34I+JN52G3lJMUnsXHUSxWCg11vd6PlKa3z83eHJUpVLcOHYDd7oMQchoN/o9vR9vT3g1vUCtx5V7ZaVKVqhGL98uT0ryV13udi3+jhe3haGT+3L7Ut3cNpcCEUQeTX6wb2w2Ym9HYN3pDv/af+OC1RuWJrLUbHUCC6Kp9nEJ3P6MXvmZq4eugG6TkaAD59/sR1fHyvLlo3Ifk1Una8/38qN6/d47Y0O/PzNbs4cD6NYcADzfhmO6aGqy/p1yxB2KxYJVKlcjE2XrzJ20zYUIZj/THcUBWoWdZ/DifA7j/UVnDwfzrylB6hbNZgRA5r/f22GnU8+/9cIId7MZXMycEpKGZrLvmzkG0z5/KWRUvLTjE0c3nqO58d0oEW3J9MycjpcnDt4jeCKQRQJDuSLreM5uu0cNRpXyPri/U9gMBowGBR0g0KFmiVp2KYaE3rOQtUl0mLBZDZyeMtZpi5/fN+uexHxfDj0e5wOF9tXHGXk1N64HCotutXJaiBbpmowy67PYWDlN4mNjMfqZSHyWjSlq5RASklGig1PXw9e/bgXL73fjeUzNhAVdp8ydcrSOTNPxtvPi8sX7mJzaGAxYzAoNO1WlyIlAvAu4IXLoRJYshAvT+uHlJJnX21DnWYhxN6Jo1rjECweZmo1q8RPs7eAEPgV9GbQuK7ZXssPc7az+bcTSAnjP+1No4c8MxmpdlS7E6lpJNnsoEtMFhOTVoyiylMVGN5wAnF34vEJ8CbFriNcOpuXHKLfm52yHePSiTA0VUNTdfauPUWvEW0xGBRC6pbli70fcD8ynjqt3eX3Ny7c5dS+y4TULMnlo9fQVJ2YyHiObT9H3zc7ExUWi8XDTIPnG3L4ejgNygZjNhiwl/XEGuVAIGjzbF26fP4jSWk2LC7B5jcGEX4rjhRfneRKXlhjnRgMCna7C6dTxeXSMD/kTdyw6QzbNp/F5dSY9uEaoq/Huu/73USi7yRSsswDj+fgAU1o1KAcPj5WihfzZ9bK1Tg1d7L2schI3mzeBE3TOXPwKkWL+fNeu5ZciI7h5cb12LjzPF/9sJsKZQoza1IvJs7ZRHKqjdt3E2havxw1Kz3cgCGffyKS/ynhyv809TJ/NmT+3gU4BwwXQvwqpfzscZPzDaZ8/tJEXLvH6gV7cNpdzBz9M8271n6ip+QPB87j4tEwhALzD06icIkAugzOu3/Wk/B7YvfDffJa92tMamIa8dFJ9H2rCxcOX0MIgaZpKOAul7+TkPeiv6/tcKFrOkhITkhjxpglIASRYbEMeiu7sfD6nEHMeW0hwZWKUS9Tk+eTAV9zcO0JKtUrx6xdE/h+8ip2/HIIKaHvW52zksel1NEyG8diMGAwCqa+MJcyVYoz/+RUdE0yb8JKZoz8kRVfbmP6qtFIYPrQ73DanIz97mXSM1TAPT89zZnVnuV3bl2PwW5zYTAqRN66n81gOrvzHFJ1AQKZKaZpMCikJ6bj5ePB4gsziI2Ix2A2MLj+B+i6xJ7h4PLJMGo0fqD4/fQz9dm4+AD3o5K4cy2a58qNxmlzUuWp8kxePprSlYtnXdeuAxrx2ie98PC2MnfcMlIS0jh78Cpn9l0ioGgB5u2ZyJ3UNPp+/QtCCFpVKctHPdow+dk2XG2fTKuKZRACkjJsaApkmHVmTVnHmTORSAHGwgbuP+1LfWcAjlvp9OndMJuxFB6VwBcr9mFwaSiKoHARP4oXK8DpA9cpXa4wxYOzV9MJIagUUjTr9wF1anIs4g5GRaFjJfc1+HL8CvZvCkVKyexVo+nT2Z3PNeKnJWTYnFwLi+HwyTDkfRuWDBfSD/x9/3Oe1Xzy+R+lBFBHSpkGIISYBGzCLbJ9CniswfTH7eLzyed/GK/M8JnJYiQwyO+JjKW7t2I5cyQMhy7RJLlqE/1ZIq7do1/18TxXbRxr5u/i9K4LrP52F6PaT8e3iD8vf/IcvgHe1G1TjXI1gylctACVapfC19+THkNaZFtLSsn3k37j9VZTOLPvMvci4klLtlGydEHQ3PlCLoeKy+5i+5KcwrQN2tekRpuaXAy9y6iOM0hNTufA6uNIXXLzXDhRYbGc3X8Fe4YTkFwLDc+aa7GamTh/CL4BXhhNBlxJaUTduMfxbefYvfwwPgFe7F93Gk3TibgaTb9q4xjTbhq2dAeqLlkzb8eDEnYps0Q/H2bYWx0oVa4w1WqXouMzdbPti42MQ6oaCIHRw4LRZMBoNlK1cQipieks+mAlRzaeJjCoALVbVMbqacZoMhJcISjbOoWK+TPonS5YTAquNBupiek4bE7OHbzKkU1nssZN6D6Dyb0/Z2itcdjTHbw990UGv98DTdWwZziJuhnLiI4zuHo3FgHYnC7O3I5iWJ95fPv+Bq4uucDEV39h3NCfCVatCFVSIMyBIhR3bbYuMafpNK9djjkT+7J82UieeSZ7ysatu/HgYcJWxIKhuBd+nYqxJjiOmL6BvPNlHzasOM78mVtISkgnN1qXL8ep0a9yYtRwKhd2e6IunryVeX8h7HJU1thaVYPx9hZ4W9KY+/WOrFY9/sJEyWK5yxzk80/D3Xz3v/Hzf0BhHmq6C7iAIlJK2yPbcyXfw5TPX5oFH/yKVFWEEHzwfd6K2Q+zb92ZTLF9gdXHgxpNKv7RlD/k2I7zOOxOVKfKgjd/xGQx4nRJhLcXc95cStPOtbF6mlk7dxvXToahS0l8Yga6Jvl+8ira9GmIh5e7h9fFo9fZ8MMeHBlOPnlpPqrRBAjqNQ8h8moUTqeK1DVAkBAem+NcpJTsX3caKSX37yZy77Y7/HTuwBWKli2MVwFPug59mh8mryKoVEGadMme01X/6cosOjyJvWtPcXTdcUL3XASgSOlC3Ll+D6Fr6EJBU91hIFXXERYLAkhItNGyR112rTrBtdBwhk7snuP8ylQowvxVuYcgx373Cosm/Uqd1tUYPv15YiLi8Av0wcPbypT+X3FkwykUg8LGnw8RXK0k7303lPLVg7NpQQFEXI3Gnm6nbJXi3Dx7G6fdha5qIKHkQ96ZqyfCsGc4sHpZuHP9Hv5F/ChevggBhX2JDo8Ds4nYu0nUKlKEqiWKcDM2gZcb1uGn9ZtxOVXCwmIxephRXRrlog18OLQzQihUqlmCF3t+RXKyjT5ta/Nq9855vncaVi9FCdXA/TSV195pz7Qbx3BoGopJYem2Exz56hiqS+NOeBwffzUw1zU8TNl1ll75oCez3/6FYmUK0fihhtcT32xC9L33GTu+G/cT3HPMZgN165TO8/zyyedvxFLgmBBiXebvXYFfhBBewKU/mpxvMOXzl+bM/iu47C6sXhbi7yVTtuof52DUbh7Cirk7kFIyaFyXbJVpifdTUQwiWyuSJ6FijWCQIKSOwWjAkeEEITCbjRitJhZMWUuH557Cnu5A6tItgPh7geojlaoFCvmClJgsRqy+nqSmu3Dandy9HcdvN2bRq9I7OO1OhACLX87zFELw9DP12Lf2FEWCAygVUpRJK8dw60IkqqbzYoMPcNpdGC0mkpLtWDKFIqWUnNx5HoPRQO2WVeg0oAlt+zRk78ojBAQVoG6b6pzZewld0wAdiUAYFHeFWaZnLy7a3aJk6rLc9Y8ehy3dQUJiBsNnD8pSHg8q9SB3x2FzoukSTde4GxbDvagkFCRvf5HdiIiLSmRU6ylICUVLF+KZMZ1ZOXcnaDoiPZV7t+9z5/o96rSqxktT+vLj5F+p8lQFHC6NxPupnNh+loQ78WA0IsxmWnarTbFi/ix+pQ/grmA7V+8SJw9fp3RQAe7cisPgZabX842o3ywk6zx+3fkOUkrsNhcpSRn45lEZd3jnJVIu30dxaRxdHcrQl+ryyd59FLBaqeThz5HMe6O5cm2DlSv1n67MslMf59iuaaEYDHaKFEkiOcULsPL68NZ07FDjidfO5+/PX6h4/k8hpfxYCLEVaJy5aXhmmzaAvJsoZpJvMOXzl0NKyYF1p0hOSKPfmI78OG0dpUOKUr1R7s1FH6VyndIsOvQBDpuToqUKZm0/tPUc01/7CSEEHy0eRs1HmpVePn2bGW8soXjpQrw3bzAeXg9aSKz4bD1aUgoGk4ESFYty73Ys1gLeSIORNKfGlqWH2bL0MB/9MIQOiek4HS4ada3H4S1nadPnqSzvEkCJ8kF8vHIMn7++iPioeHxLFMFuNvLiu10xW828M28wnw77AcWoEJLpGZBSMvv1nzi8+Qw9hrXi7a8GMezDXngX8CQjxcYrTSeTmphOcEgxnHYXUkpcdidpQGpSBoFBfqz+ehs/fbwKCYyYOYAOL7TAZDbSdsCDtis3zkciFCWzX5tEahomiwnfgj447Cq9R7ZFCMHqb3Zw8dgN+o/t+kRGLMBno3/m9IGrCCH4cOHLOa6/b0EfhMF9bKlq6HYnRzadYXJiGp+tftAiJP5eEhK3gRVxLZrwr9zCvhLQUJg6aC5Gs4lCwYG0fLYhOoKrF+4wZfgiTCYjr07qDgJMqosGTSrz9uzsn6OKojDlywGcPXqDSa/8iG53UdDPgzbtc+o+3b4Zy5iXFqKqGqPf60K7LrUecwUkSBhctw79atbAbDAQnpBIclUrWrKTZsPqP9F1fBwWc30UJYDRr23m7LlXqFypH1UqFfvjifnk8/fhNHCXTPtHCFEyvzVKPn9b9q05weejf0JKSaveDVkf/uWfXiOgsG+ObXvXnsLpcIGqsuu3Y9m+sHVd591+c3E4VKLD49m1+gRdBj5ovWE0GxFCoCiCvm934+DmUA79nitjNCKsFqTNzsTeX1C+ZklmbRmPyWLkqQ7uViqLZ23myPYL9B/Vjmada+GyO0m8l4TT5sIWm8CqiAfNuJt2qsXcXe9y+0o0DdtmNloNi2X/2pM4HS6Wzd5C3zc64pcpaHgt9DYZaXZcTpWosBgsnmbsyRmgu9urePm4jbWb5yJw2NzG1Fdjl5Gc7KDv6+2yXaPgCkGYzEacDhdCQvsBTanWqAJNu9YhPTmDM3svcWjjaRZPW4cjw8nNc5H8eHrqE92T+1HuVigWDxPxsSk59sdExKFrOopBcYdUFQFScvHYDVSXhtHk1iuqWLs07fs35ciWUOIT3K8TIRBSYrYY0FWBPcPJ3Rv3WPLpOqQucdic4O2N8PGgWPkgxs5/mZjIeDoOyrsQwLeAF1KCwajgF5B7ZeXxg9dxOlV0TWfLmtO5GkwtO9YgLiaZ+9HJ9H+1FQAWo/ujefO160RVNqJLA0uuXaBjnbwVu3ND1XUkEpPivjaK4kfRIkeQMoPyZX3+1Fr5/HP4u1bJCSFeByYBMYA7r8H9LPVELtb8pO98/nIkxqag6zouh4v46KQnmmNLszGu3ccMKDuC07vO5TqmywtNIS0NmZbG/mUHCN17kcMbTqGpGunJNhwZDrevWkp8H5EeeHvByzwzqgNDpjxHi94NKV3FXYUlpURoKrhc4HT3hbtzI4aVn2+ma+BQ+lccQ+jBq6z5fh/h1+7x2ZtLkVJSukpxFIOC1dNCtcY5PWelQorRontdrJ5uL1dgUAE8faxYvSwElQrkfmQ8O5YdZlTrKdy9cQ//wr4IBYqVDERxOSGzDN1pd3HtzG1cTpUB73aneIUghNGAphhY/NlG9EeStp/qUJOSFYIQEkxmA/XbVKNN30YYjAZebTSRL0f/yOzh37v1nRSB2SPvHmaP8ubMflSuW5oWXevQrFPNHPtHzhxIuRolKVqmMKbfG/8Kga5JUpMeJEQLIRgxvR/exQKRJiMYDaCqoKpIs4UWzzbEr5AvPUa0I6ReWaxeFqxeFjx9PajdLISMxFQWTljOpcNXMVlynr/N5WLMsrWM/341/d9px6A32jPlhyE4nSqzZm/h+a6fM/nNZaSm2GjUIgSr1YTRaKBr79w9RAaDQt8hLXhtQjf8Ax+EWK/djyMhPQOTomAxGmlfMef7YMPyo7zYeTY/fAnYZUAAACAASURBVLGN30WIpZTMCt1H19Xf0/z1j2n+3hSOxd5+6PoYUJR8YymffySjgRApZVUpZQ0pZXUp5RPHo/M9TPn85eg4sBnXz4aTdD+FkdOfz3PcrQsRbF24m/odahN3J57z+y/hcqqMbz+Fb0/PoGyNUtnG12xcAQV35Zzq1JjQYxYGo0KhSsHE3UvB19dKckI6VeuXo1lnt6fg0NazrJ6/h1bP1KPHax2wWE0oikL/sV1IS0xnx5L9BFcsRvSdJFIdTmSmh2TVl1tQXRopCWlcOXYDoQjMFhNmi5Hn635Am171+eHUVO7eiKFyg3I5XlvU7ftcOXWL+q2r4VPAE6uXhfmHJrFtyUF+mrSSV+q/h24woms6YecjWXJpBvtWneCHD1bitLsgs1eaLiXvPvs5JpOBIkX9SIxJwrNwAKqqUSDQB6fdlWWU/Y6Hp8XdL04INJfb8HJkOEhLynBrH5k0Rn89hMgb9+g6pGWu98aebsdkNWdpSAGUrVKc2atG53k/y1QLpsOLLZk7+kf3M6GHFcVspEylYjmSvqWURFyPAUlmjpo7BCmAeu1qcGDDaTYvPkCPV1oz9KM+lKpUDJ/MvLVBVd7k3q37xEcncXTjaZo9k70NzdLQUI4vPo1uECzcvIHFe95nzqbDnDoShuN8HCJDJeFuEr98t49X3urAiu1vo7o0PL2yX8f45HRUVadIYE7jJclmp/dPy1F1HS+zmV/696F8wcBsY+7dSWDulA1ICb9+t58GzStRvXYp1l+8yC8/ncTzcjresTrSAN8G7aDhmJfzvLb55PM77mfCv6eHCYjELVT5L5FvMOXzl8PqZeGdb4Y8doyUkrdaTiI1IY21X20BcOsYAVKXbP5uJyO+eJHUhDR8A32y5AiGfNSbpZ+up2iZQoRfiMRuc3Lndjxk2LADZauVYNZ6t1is6tL4dMRiVJfG1dBwvp34GwajgRmrRxNxPQazrxcLTkzlxXoTUFWJNBpRzAJ7ig3N6U4KVwwKT3WoSaOudTm57zKLpm1E13TW/rCPnkNaUK1xzgq+pLhUXmszDalLChbz57uDHwDgG+BNemKaO6woQfE0YDAZMFlMWD0tFC4RgFAERrMRr8IFSElxoEsJqoqaaiMyNR1N1Qnw9kQVCsmJ6UwbsZgPfxyGpmooBoWYiHgibsYgFIXmPerRtLtbFsC7gBcvTu7FhgW76PhiS9r1z7th7MpZG1j0wUoCggow79hUNn6/m5Wfb6b201WZuPS1bEbU7yTGpjB7zE+E7jiblWDu5WHk7fkv07BjzjCXEIKh73dj+Vc7qN+qCh2fe4ptSw9Ro3FFDm0KxeXS0FWdyydvMXjiM1w/G8HFk2HUb12NUpVLkBCTgoagUHBgjrXDo5NIruGHFALNz8SUxds5ePsu5lQNb8AACEXg5+9O8jabjdl0l65cuMPsTzdwwZaErYSFD59pR7cW1bIdI9XhQNN19BQXXkdSmLjzJz6c0ZeKD+UbqepDHb8kWcdYtSoUw32JKVUgDQpInWo+Rcknn3wIA/YKITbxkIyAlHL2k0zON5jy+dvicrhDYL8bSg+zcf4O9q44RGpiOpWfqsDsfR+hKArPvt6RZ1/vSEaqjQ/7fsG9W7GkSwNpGe62IPfvJmatoRgEHl4W0lPt6JmJyJqqMfv1H4m8EYMrJZ11X27GYDGhapo7YVlRwGpGmE0IlxNPXy/Gdf0MTddJS3FgLeCN4mnG6mHG288Te4aDBe+vIDE2hdKVilGrZRV8A33QdR2HzUV0+P3MprgXKVTMn9b9mrBy5gY0VUdRnXQc3IauL7fG6mnhqU61eGveEOKiEjFYLSyavhFd01B1DWk0oNndQpGFSxYkPDwRh83Jvch4fv12F4umbyK4fGGata1KWpINiSD04HUWfrSGAWO7YPWy0HtMJ3qP6cS5Q9eY994KWvduSEjt0jmu/Zqvt6JrOinxqZzZcyErj+jMnotcOnqDsKvRlK1SnOpPlUdKSWJsCounr+fEtrNIhzOzKg96jepA4y55K7v3fKkFPV96oHFVsWZJBtR6F3uGE2E0EljIkxcn9uTc4Wt80H8uUtMpHORLsx71OXP8FgZF4dd5O5m4KLuHr1KhQu57KSWap5Gom/cxpThw+pmxBXtQ3G6kQf2y9H4hd6Px43dWEhebgpcCtkIGFu0/mcNgCi7gx5jmjVm18BBauk58WipLf9jPhzOeY++VMNaeuUSf+tV5eVxnNq04RuvutQmp6g4De1ktWNJ0FASYDJQoWZDRL3TM8zrlk8+j/B9pJP03iMj8MWf+/CnyDaZ8/pYIIZi2dQK/zlrPpSPXsKfZsac/0CXTVI3kuFQArh6/QdydeAqXdJewpyams2/tSQZ/1IfK9cqSkpjG56N+4s71e7wypU/WGoqiMGf9mxzcHAoIFk1dh67p3Dx+zZ1krCg40u30Gvo0m5cfw65K95e9wYBwOJHCQGJssjspORN7SjoTfxpM1QblMFtNrJizmR3LDuNyqBzZHMrquduZvfM9QuqUIfxKFC++352vxi1n/9qTSF0y9ddRFC1TiDvXojEaTDRsX4NSmV4JIQTNe7rzaKSUFC9bGE3TqFgjmHe6zSLiahQmk4GWzzYg7FoM4VejGflJbyYOXoCUkti7iXj4emAyG1CdkHAviXXf7UFKSd9R7Tm29SwlQ4oxsf9cnHYX25cf4dcrM3M0FK5YvzxH15/E6VC5Gx5HpXpluXXxDhYPMz9MW0/Y5SgUIZi5dgw/TttA6MFreHqaQH9Q62z1tNDppaeJiYznxoU7BBbxI7CIH4WK++f5nrCnO0hPsaGpbumHefsnkZqQyty3fsaRmoFudxKRkMKKG/cweHngsDm5fPwGKfFp+D6UW9SrXjV+2XCcqMQUAs6lkxEXS4CAtBB/rBYvYl1Otp+8zsCENIIK+2U7h9W/HCE1xcbvriHdKChstpIbQxvWo6rTh08mrEIIQa16ZUjKsDFm2Uacmsbeq2EcfX8EzwxsnDVn1/kbnIyLxmIW6FbB/TpmHAGCJJeDgqZ8Je98/tlIKT/8d+bnG0z5/G2p1qQS1ZpUwpZu52bobT7o/impuagl+xX2I7D4A5XjCc9/za1Ld1EUwRdbx7t1jH4ekbU/LTmDRdM2YDIbGfxuV/qMbEvi/VR+/HQD2v14AITRgGJQMJoMNOtej67D2vBym09RXZo7SUBRwKAgNIF8yAFWq1kITTs/CDF5+Xo8UC+XEgT8MmsLV07dQgiBxcPMjbMR2DOcmK0mwq9GM3HZaBZ9sJKKdctSr23u+Yy6LqnbslLW2v3e6sSskYvwDfShSdfa9Cz+IBTVqF119q4/jcls5OlnGtCie11+mbmJncuPZo0Z3eJD4qMTEUKge7gNAKnJTPkBN+kpNmxpdopVCkbZdw0JhF+LYfqmcVw7dYtSlYrxWscZuOxuz+Cy2Zs5ve8yUkJamobJYkSaDBQvV5gPl41Cl/Bq2+k4HU40p4bJZGDs14No9ogQ5+/4+Hsx+N3ubFq8n04vNMMv0JvhdceREJPkzonKrEwTQMVapbi4/xKpMS5erPUOn++aSMmK7rCWxWRkev9OTJi4Ck2VqG6FBfxup6NV9saVuYp4pO3t3Yh4Fs3djdOpghDEVbNiTtS4ExrGnefiKVEqZ/ivUbMQvvx+CA6Hi8rVSpBis/8ekcQgHj0CXL17H5ui4vLXEWU8sBUCh+LgyyNH+Kh161yvSz75PMrfTYdJCDFHSjlGCLEB9197NqSU3Z5knXyDKZ+/PR5eVqo1qcTn+z/my5HfcePMbQxGA+nJGRhMBvqO7Y7BYMgaH3c3EZdDxeppJiE2mVIh2fM/fvx0A9uWH0VRBF5+Hgx8qxP+hXzoNbING77ZgZdFYcTMAfgE+hBQxI/i5d1tO979+gV2rz6Jf4AX25YdwQVYfT2wx6cgdZ2GnerwwZLsgo8dB7VACIWb5yMIvxhJnVbVuHr+Di6HC4PJSPy9JF6d2odZry8mqFRBWvSoh6e3lQ9XvZXn9di57BCzhn+PxceTDi+2YND4brTq/RQN29fknWfnMLj+JAaO7Uy/N9xhnDHT+9JzaEv8ArzwL+hOUH5lSh98/b1xqRqnD14j6mYMABYPM0Mm9ODiiVt0Htwcc2ablMhr0Yxq8wmqU6PX6A6UrFQMl0Ol/5udMFtMWblaA9/uyKwxS5ASDm85h/uzTbiNL5dKt+FtGPJhbwxGA1fO3EbXJZpTA13H5dD5bMQirB5m7DYndVtWxtM7u/em18i29BrZNut3h83hFhxVBAaLO0n+hQk9afVcYwZVG4vT7sJpdzG6/af8dGZqVs+9alVLsHb1aG5djmL8wG9JdmgUrRjEmI97snXXRZo0LE+RR6QrPDwtCEUgFIFqBGdBEzJNR1FceHlnTwh/mLIVimT939fDyneDnmHrhWt0rVUZiyn7R3ivRtVZsmAX3uFOEqtYMBbxAilRo3Nvq/JnkFJy7OgN7DYXzVtWRlH+tmGbfP5+/Jz578x/Z5F8gymfvx1pSel8/+5STBYTQ6Y+n1XlVapKMLP2fMSgiq8TfTMGg1Gh1xtd6Tayfbb54755ie8+XE3VhuWomUvbFJPVhKIIhCBbMu9L47vy0viueZ5X+SrF+HzoCdKTbdRsVQ2LnzfeXmb2rTqGEIIaTUNyJDwbDAqdX8zeay46PI4v3lqKX0FvOg1sioeXlUXHP0Z1aZw9fI0SZQtTJJdk5d9ZMnUNuqJgd+ms+34vqlPntenPcS00nKiw+0gp+XXejiyDKS3ZxuRB87l/N4HB47vSe0QbLB5mBk/owfVzEWxaegS8PMFmp9PQp+k+rDU9Xsn+ZXp67yVUl4bLqXJ0cyjzD0zK9dyKlCwIuK8tAqTdCeL/sXeegVFVXdu+9vR0QkJJKCGBAKH33otSBURQEBUEVBABFbGgUhQVRLEgRRCRphSR3ot0kBICJJCEkEp6L5Np5+zvx4QABhR93vLpm+sPTObsvU/ODJx19lrrvp3XRFEUNAK0uhK9paY16dSvKWcPXqUwu6A08Plg/Aq0Wg3VAiuzaP+bD7wOAB/88gYbPt1Bi16N8PDxJKhxDQIb1gBg8ITebP5qD+h0TumCnKLSgOk2gSH+dBvZkZ0/nyc1rYCLp2IorKVj+YHTfPrGRvz8vfl46bN4erlS0dedT5c+x77DV1gTdx2jXkOboCq89krne+QE7qbYYuP9j7aRmJTNm1P70rxJTVoFVqdV4P3FQCt5uuGeI9Eo4B1uxUNqsOeYCY9N4WJAPVrcpUT+Vzmw9wpfLtyLAOJiMxj9Ow/Ecv49/Nu65KSUF0r+PPqfzFMeMJXzr+O7d9azb+VhhEbgXsGV52Y9ec/7DpsDKSVavZZ2A1tyfPMZMhKz6P9ib1xLvOW+3v/WA+d/bvoA3DxcMBh1DBnf/Z73UuMzuBWTRtPO9dGVPP2bCy18NG45Ny/HUZhrRlVUEiMSWRv5BTaLnVr1/TGY9GUCowfhF+DL+PcG8/3szfyyaB8jpj+GEIK5L67k0olIABYfeOseFfO7CW5Zm5SkC84X8k5xfGCDahhMOlRVpXXPhqXHh52MIi+rAFWVbPn2CMMm9ip9r0ZwVSpW9iRTUWg9pDUvzR91z1oZt7JR7Art+jZj3fydqIqZxyf25tjW81iKbfQc1rY0AAJo0CqIdo80IuxkNAOe68TWxQew2xSEEAQ0qsnw1waUHqvRaHjh/cGMeWsgEediWPTWT3j5eJCWlIPFbCM+KsWpg/UHhswNO9Rjzi/1sJitWIttePl48NueUDKTc3juvccJaFSTjV/vo9vg1vgHVr7vHHa7o1QDKSwhmQPJGfgczMFQoJJgzeDEoQgeGdicuRNXEXEhjvEzHmPr02PILiqmUfUqZc7v4LlI5v38Kw1qVeWRoEDCriZitTpYuPgAq5f+cXeoEIJp7wzii7c2o6JCeC5uOTaEi5687MIHjpNSciJjOTEFJ2nrO4oQr95ljklKysJhV1BVlcQEZ+o5L7uI0BNRNGwVSCX/Cn94buWU87+FEOIK90nF3eZhtZjKA6Zy/nUYTHpn6kM4tY1+z4c73mL9x7/QpEsIuWl5LBi7BMWhcHb3RTx93Gn/WGt6P/Pg4MXkYmDUa2W7jpJvpjGh/XsAtOzVmPfXvQLA4U1nuXIqCkuBGRTVmSKxKaXn+sQrj5aZC5yyBVmpuVSq5o2mRDcp/totXD1cmDPyK1LjMrh8/BohberQvHtDrl+Mw2K2YXI1kBCd+sCA6fVvnichOo3EmHQatKnNuFlDObYzlBVzt9O0awOenNiTwBLhTYAGrQJLghpJXnIm5/aH0fqRpqXXYtmRd8hOz6fy7wquQ4+E8/6whQBM+XoM668vQLErHN50lkXTVwGQGJ3C2PeHlo7RajXM/P7F0tcGvZZNX+9HoxFMXzYez7s8/rYvO8iSN9Y61b9dTbyy8BmWzd6GrUQgVArBztUnGPjcHWuX+3ErJo1Xun+IzWLjkRHtOfDDr0gJV09GMmbOkyRGpVC9dmV2LD9MQWY+fcd2x7ukmFtKSVxeAVa9wM+vAm37N+DQgWPYKukxWexO6YdKHlz5LYZLp6KxmG0sm7OVTUPnUq2iV5lzyc0q5K1vd+Iwajhx5SYtqjnTuSaTnuDa9w/YbiOlRLXsY9neqyhWBxpVIr0N2EwaendtSud+D7ZlybbFczlnGw5p5WDKAup79ioTyA0d1pbr11IoLrYx9sXuqKrKKwMXkp9bhFQlo17rw+NjOt8TAP9VIq+nsGnjWeqE+DHs8db3lZgop5y/we0nrds1D7dTdKP4g0Dq95QHTOX86xjz4QjcvFwxmAwMfbWsS3xg4wBmrJ8KwN6Vh50BjN3BlePXUBWVs7tDCWlXl0rVfXhzwHxiriQw7oPhDHrxzs5KYW4Ru787gn/tKnQa7Ow8i4u4BTi7sa6djQYgPSGT6HM3UB0KBlcjdrsdrU5LUKMaf/g72KwOXn50HqmJWTTrWJcPVr/E5i9388OszQgh8PB1B1ViK7LhcDiDr/Ezh7D0vc3UaVyD5p3un3r57cAVwk5GMXrGIMJ+DcfLxwNXdyNfz9hEYV4xBXlm+o3qWBqgSSlZ/fE2LHkFyCILqsXKj/O2lgZM4BSGrFK9Ypm1zu0Pc4pkAkve+YkFk9fgV8ObVr0aOXcqFIW0kp2KBzFq+kA6P9YSD283Kla5N8DYufxQqWSEanfw08I9KA7VmcIToCgqUZfi4U8CpvOHrmK32XHYFc7suYRUJTaLndS4DN5/6mvirt9yzllSdH9442lWhM4DIDO7kLCIWzg8DSQVF+PIddCrSi14VCFqTTiKxcHHb27i46XPIoTA5GqgTuPqZKflcXDzOYKb1qR5pztp3/iYdPRFCg4tqELQvkUQHRrUIiUtjw53CZg6FJW45CyqVaqAS0mdmMO8BnveJ8RnjcKn5B7g6mZk7MdP8njLRtyMSqUov5jajaux5mQorgY9I9o3Q6fV4KKtgECDThhx01VECEFRgYUb11Oo16gaJhcDXhVcmf/5HaFYm9VOVnoequJca83XBzC6GHhsVAfiYzP4dM42Kvq6M3hIS5ITsujev1mpDc/9kFIy7bV1mM02jhyO4PTVWN57ayC+Lve3nSnnvweJ+Dem5OIBhBC9pZR3d4W8KYS4CDw4pXAX5QFTOf86TK5Gnp05/M8PBHqO6kzUxZukxaYTcSaKwpwikBKdXsvlE9eJu3YLu9XBmo+24unjTnzELQa91IsF45Zx6WgEWp0WV08XDCYDN68mUq12FeIikqhVvxqKQ+H1Xh+QlZyDRit48fPRVKrqRfLNdB599sEeZbdupDK938dkm50yBOePXENxKJzafgGbxRlw3X4mElpB3NVEWvduQo8hregxpNUD502ISmHu+BXYLHZ+XnwAWViEwajHvYIbAXX9iLmaBBL87qp/SonL4NCmMzisDtDr0bi6cuNmLuG/xSAdDuq1ql1GNuA2jzzThX1rTmAttmI2O8BmIyUmjRhfD3wruZN6M43o36KxmK1l1MTvJuAB5rADxvdk8bQ1zk48jYa2vRtzfO9VCvOcZsImFwNPTX7kvmPvpnXvxqz+aBuqKhk6pR+ntpzBYrYy9ZuxzHz6G6QqEVoJBj1Sq+VWpoWU+Ey2rPiV8HM38fN2IdVsxcPLxOItJ3BIiS7Lilux3fldUgXFxXaW7H2D+OhUmnUIZsrAz0m8kYZOp+XLHa+VNhaENKtJB30FzqZkI7Ra9u++wqTxPQiufafwO+zcTWbP/JlcvcQjwJuf5o/GxaRHKgkIYWPYY+FsNdenmtaNJV88T6UqFbh4+gazp6xDCKjcrjq/eRShEc5d2OGtGnNwRzRBPq9So7mNIPf22Kx2Xhi6iKICC5WqerLs50mlQfRtDEY9495+jB8+243VroDQYCl2BsjffL6XqOsp6ARc3BeOViv4dVcYC9a8yB9xuztLAufDE2m9ejEdNdVYPXZEeZF5Of8VCCFERynlyZIXHfgLFnHlAVM5/6fRG/RMXjQOgLjwRPasOEirR5tRtVZlwk5GYrMraI06qtfz49NJPyClc5dGoyg4bApanY7E68msnP0zDrsDFAeK1UH4qesc3XyGgpxCFIeCTm+gYZvaaA16AhrWwM3rwZo4P87bRmZKLkJowNUFdw8TWp2WkW8NYs6TX+Lu7UabR5uxb80xpATf6g8u8L4bm8VeWmsDgHQ+1TvsCh+sGs/5X68TGOJPlRoV+XnpYfb+dJq+T3fAzcMFi86GKrTY7QoOu4O3Bi1Aozio06wWn+2fUTrllqUHWfXBL4S0qc2HGyazNnIhz7V8h/yc4tJjLGYbWbecO0vZqbncuBRHow4PLkZOjc9Eo9VQ+Xe7WI+92ItuT7Tl1N5LuLq70K5PU5p0qkeVGj4c3PQbR7Ze4NDmczz7RtldxrvxD6zMj5GfYbfYmTH0c+IikhFC4ObtxvtrJ7Lmk+0U5hVz5WJCSZpXx/5Nv3Hw53NYzDa8fNzxcHXBlmrG6CKwBbvD7VSSEDRpGchVSy5jF++iQbXKrOhUl/xsp6q6Tq+jINdcei4Gg46pHz3B85NWYbM62LztPC+M7oKhpB5OUVTem7QWm9WBXkCeh57EtBzqBlRG7/YS0h7J1C4Opg8ah9De6e6MCr+Fw66gKCrZsdkYKoPQaCiyWJn7wS+cOnwNgNGv9KLhCC/S0nPJzy3CblO4FZ+F1WJ3WuL8jiHPd6bHkBasmL8bN3cTg0o0oarX8OHa1VuoVjsajaBQq7KnWgFH5izio6GP8GjDss0UQgjmfzaCd2ZtJrvYQn5tkBo4W5jMpetJtGjwx7uy5fzX8S9TFbibscBKIYQXTgWRHOD5hx1cHjCVU04JtRrWYMLCMYDzxvT1tPWoEnR6HT7+PsjLSSAEyYk5fLV3Okunr6NmPX9qhFTD5lCRKggV9EbnPyvvyl7M3PAqa+duoV3/FkSGJbB0xkYA3v/hJVp2u7/zvCq5Uz9SVERIu0AAWvVuwvbs7wD4+eu9CJ0W6VA5sukM3Ye1A5yimznpedSo61emBqVOk5qMfW8Iaz/ZTn5qNtXr+lG5VmW+/XAru9ad4ou9b+Lu5UpORj7ff7wNR7GV5bN+xuDuim+tKgx8phPL5/yCqqjYiopBUbl2NpoLh8PJSsmh86BWfDttDarNTuieC1w4HE5gg+oUF1pxmrrpQUoS4rNo0qUBl45H4urlSlDjmg/8TI7+co7PJ68G4L1VL9HqrmJ0cBakb/xqPy26hnB81yXOHwpHVSQKEsUh2fD1foZN7IWL24N3sIASHz89cVeTSne8UuMyaNgumPdXOzW49qw/xTfvbsavli9tezZgy4pfMRh1VPBxJ6XQjsOmYFA19GwRzONtGhAVmkj7rvUICq5K+5mLsTkUolIyuXAziRlLx/DDp7sIblaTlatPYl1+lBmzh+BfzZvKvh54eZiI97Birazh6SUbSIrPpkfTOnQMqOncYbQ6VdmDa1UmqLqzVk1ofTH6rLnv79d7UAuO7r1MQV4xIS1qk3/sOiDwzoKDN5JBBQRsPnOF85kZPN+vNV0fbczxA+H0H9b6vsHSbby83Xj942EAbFh9kh9XHqdZ60BeeaMv3hXd2L75DNusiUipwVJkZ9ra3TzyUTAS0PzuO9qgQTW2bpxCfF4OPX/8DlSJZ7Lmvn575ZTzVynplmtaEjAhpfxLvnLlAVM55dwHjUbg7uVKQa4ZrVZD1yGtOHvwKlJKug5uRc361fho+3QAfpj7i1PBW6Ohftv6dO7fDP/aVWjew2l3cfvPWc8sdtb0CDi16xLNu9Qvk+YA6D+uB8e3OZW7m3ZpyLQVL7LsnZ+4cDicoCYB9H22MxUqe6LTa1E1grzMAm5cTsDNw8TEtu/iKNErGv9xWWPi/s91QWfUkxiTxtGdYYRdvgUIstLyCDsZRcd+zXBxN6FarKCqSK22pFYlHxd3I50GtuDoz2cA4bQH0eqYMXgBWoOOfauPIe3OGzlSohFQuUZFeg1vx971p6CkGFgIiLiUgDAasDhw1h3dRV52IVGXEmjYJoiTuy6V1kH9duAyQsCa+Ttp+0hjRrzWj4VT11BcZOVg+lk8K3pgMdswuhgw6vWoRvCq6I7RRY+UkgObzxEflYJRA43a1cHT15ONX+2jeZd69H3GWec04dORfD/7Z5p2rk/91vdaovQd2YG+I++oan+ybgLfz99FUYGF6tXdiY/P5tkJ3Rk+uhMArVsGlR7btnYNTkbFodVoqOvnS6V67szbMInvlh0hfO9VpCpZuewI7855HKNRz9ApHXl//2GkVIi+no4Adp++xvFfI9H4G/EvNDJgWBtGPv/g1O7d+FTyYPGmSVw8H8vPG8+C6vwc8rLMDB3biaWf78PhqqXAeTA8TwAAIABJREFUaiHh8k0u30zh0MKXmPbB42Xmuno+lsz0fDr1boROf2+B96olR1AUlbPHI7l5IZbJMwfTbVx7Nm/OQBRIJBJVwmenjrM4+iy1PSuyZcAoFKny0rHNZFnNfNFhEA0rVuXc0xM5+FskjXv74V+5bIF8Of9N/LvNdxFC9AcaAqbbD5VSyjkPM7Y8YCqnnPsghOCLfW9zfPsFmnWpT3DTAPxqVSYvq4AW3ULuObZanarObjwBzbqE8Pjk+/t2DZ/8KFdOR2OxONi/4QzpyTl8sO5lcjMLUOwKPn7OtuyG7YJZduZD8rMLqdcqiJ0rjrBt6UFURSXhejIndoby9Bv9mfr1GBZO+YHoK4m83m8eL8waiqKo2Cx2jm05R5cnO3L9YhxdH2uBViOIuZLIuaPX2LHqOHYV5x1T4qxN0mqo36IW4Ox8C2kdxPXzN5FItFqwpOfwxUvL6ftMJ7R2Owqg1etQJKDRoGi0RFxKpPvIThzbeIqGHerRuFM9hBBM+XwU9VsFsu7zPeRlF6Gq0ikYCdhtCuYCCx7ezsJeS7GNl3p8hMVsw6eKF699NpIze8Kw2x1cvxDHgZ/OYCmyEheRRJvejfELrMStGGdAMfa9wXz/8XYC6voxad5TxF5LJqihP1kpuVy/lMDimT9jSc8BVcVgNOBSwZX87CJ+O3CZarWrsGTGRpJjM5i8YCQ9n2j7p9+R/FwzkWEJ2Cx2qlSvyM6z7z3w2M9G9Sc8KY3qFb2o6H4nHVuzpg86gw67K1SvdaerccHpk8iSxIjUSFAFQoK4VYTdVUt6oZ213x9n2DMdSU/N5diBcFq0rV3qJ3c/flpzivWrT2IXktymrti0kkpNKzO4QyPaNg0kJTOfaYt2IFQV0wPq0kJP3WD2pDUoDoUtK4+zYN1LGIx3jg0O8SMmMhUlp4j0vGJen7WBkEENGd+2FauOXkAqEhdVy/qYMFQpSczPo/vq71CkSpFLIQ6NytzQQ6zv+TS3knP5etVR8j0l7i4Gvp86jNr+vvd9yCinnIdBCLEUcAW6AyuAJ4DfHnZ8ecBUzj+S8FORrPtwM236NWfwpH7/LWtUDfBl2F0t/8FN75866jm8HZ4V3bEUWen0mNMM9rcjEZw7HEHfEe0JKmnRb9C6Np/vms7kPvOwWeycPxzBpePXeX/E16iq5Nm3BzG8ZD3/2lXwr12F7LS80h2W2yh2hbCTUaQFVsGuNSBxmv6GtAvGu7In6YlZ9BvXgzef+BJVkez4/iiFKVlYzDY0Oi12e0mFgk4LWi06nZb5W1/Dp+odHZ056yexf/0p/AIr89X0H8kpsiL1eg5tPEPTzvUJPxONVCV6kxGr2QolSukJCdk88c5Qos9EMdh3PB0HteK9HyfT+6n2nNx/lXOHI5zSCiW0e7QxVWreqcHKTsujqMCC3eogOT6TOk1q4l3Fk/TEbBKjUjC5GnHYnLtY7hVcmbflVc7uv0Jw05rUrOtH18GtSueRisKYpm/hsCu06Nu8pINOgN6AXYK9xCZHSrh+IY6UuExsFjur5+14qIAp7GRk6Wfj4mbErihsPxuBQaelf6t7lbC1Gg1NavqVmaPbIw35IP4saZYitrsk8VyJbpRRr0VqQSMFHTsFYk+1EbshAq3Z2REpXXQY3Q2AZOroFRQWWPhx5XFW75hKBe/7d5VdvBCLxWLHXEmLXevMwq06foFOjQIxW220Dwng0wkDuBCVxOBOjdh99hp5BcWYw9Kwmm08O+UREm6m47A7UBTJjfAk1n65l+en39HG+nTxs/z47a9sWHLYeV3SLFyJTWHS4E486leLlYv20b5LCBcCCvglJgLFLMmyO+vbhKpB7w5eFmf6b9v+MIqMzmJyR2weU3ovxOSiZ863Y2jUKvBPP59y/gP+vUVMHaSUTYQQl6WUs4UQnwF7HnZwecBUzj+S9wZ9QkFWIZePRtCoUwh1mv3v/QcqhKBN78aAs6vs52/2s2/zeRwSjmy7yKawuaX1RNWCKhMY4k9UWAJdB7Xk/KGrpTfd7+f8jE4jaNq5HvNHL0Zr0JGYWghC0GNEB+LCk0hPzkWr1zFial/efnopCIFGr2Pk5L4ENarBqojPUFVJdFgCG5b9it1mJzslF0eBpXQd4WoCBD6VPGjQrg7NO9bFr+a9mk1unq7UqF2ZHz/eilScgYaQEp8avlw6fQNPb3fmbppCQP1qzBy9jIvHIkFK4qNSSYxKxWG2AHB650UKcoo4sfcyoSejQaNBo9FQNcCHJu1qM+Gjp+5Z1y/Al55DW3N85yUGje2KwaR3GiBnFSGl5O0V44kOi6dh2zqlauY9h90b3MSGJ/Fq3/nYrXYcFjs4HFw8FA4ChF7v9IyTEmw2XD1d6DWsDfk5BQjhtHZp3ePeOqkHEX89BRwO0Gho3bUei3edZt3RUARQZLHxVJcH6x7dJr2oiDRrEXapcjktjRuJGcTcSOer3v1Ysu04UXEZhCrJjA9uQqL5Sum4GjV9mTitLxohMJttqKrTt89SbIMHBEyKooBNwTVZQV+gorpoadS0Mv0/+h5FVWlfryYv9m7H5KGd2X4qnHnrD+OwKxiTzXjFFHIxLJGEW9lonG41CEXFUmi9Zw2jSc+TY7twaMt5MtPzsfm7YDLqCahcgVfGLCTtVg4xJ2NZ8NNEmtWsxIKNR8gKBiR4RDrQK1qishM4UekG3dvXZde565iN4BFnRqqS4iIbM8at5Odzs8qkA8sp5yG43X1iFkL4A1lA2SeZB1AeMJXzj8TV3cUpAQCY3B6s7fI/zVuDPyM9MdvZjebmis1iJ+7aLU7sCKXNI42p17wWC3e9QUFuEQajgeTYdLZ9exi7zYF0qJzafYlTW88SF5GE0AgwuSBcTKDXs+jX90vXkVJSp3F1EqJT8fb15IlJzp0pIQRaraBe8wAGj+vKhV+v8+z0ARxce4yze8LoPaojR3Zcwmq2Mfrtxwg/GcVXk1fxzWtr+PrIDE7vuUxxoZVm3UKY9cTn2Ipt6FyNVAyoQmGOmczUPFRFxVJsIyc9n9qNayKE08pEaLWgOFBViZuXK1ZVoVbD6rhXcKW40IoQAo1G0LB1EPN+erk0iLwWGselk9F0Hdgc/wBfpswfwZT5I0p/1zcWj+HS8Uj8AnzxD6pMk/vY1dzN1TM3UFUVVZUInQ6p1cCdWoVSw1q12ILqomf7d0fRaqBDv2Y88UqfB+4k/p6nX+3LjcuJuHqY6P9MJxYePIPN7kCjEWTm3/Fus1jsFBZa8PUtW7jsahO0cHhxVmbTK7g2E95ajw0Vj2KBkl2MQVGxBOo5459O5RoVSU/KBq2GxLhMVnx9kMVrXuC9+cPZ9MNJuvVpTFV/7zJr3EYozrYgKUFf4EBaJIWRuUgkVofCrxGxnIlO5JOn+5KVV4SiqihSohiculYJqbngUJElKbiqVX155vWy6WcXNyOrDk4nO7uQ1CIztap44+Fqcuo1SbDZHMyYuo6gVgG43VQwJDkwZBaiunmgumko9oS39+wnyOjO6pkjMUuF45susHPVSQAUh8LhA1c5euQ6g4e2onW72mXOoZz/jH9xDdNOIUQF4FPgIs69tBUPO1jc02b8/zmtWrWS58+f/98+jXL+PyDlZhr7Vh2hcecQWvZu+ucD/ocYHvwq+VklFhQmAzqNBr1Og8VsxWgysPbKJxTkFDHl0U8wF1qZunAUDVvXZtqAeRTlFfP+2pc5ve0c+384iqKoCHd3tC5GPv5pEiF3pSGObzvPggkrqOhXkU+3T8O3WlnhSIDcjHwWTfkenV7HpC9H417BDbvNgcPuwMXNxICqE7Bb7QghCGpUg6SYdOw2B1qD1inomZOPzqhH5+mOtdgOQqLVavDy8WDp8Zl4eLuRmpDFohmbkA4HoUeuIhD0f7YTA8f1wD+oMlqdFqvFxoq52ynMM/PCe0PwruQMHrLT83m+61zsNgee3m6sPzf7D61MHobs1Dxe7TeP7NQ8FEVBVVSEXufUaxKA3oDMLwBAYzSU1HJJ2vRuxOx1k/72upNe+YFzhZkIh6R2joYKbiZeee8x3n5jAxaLnZHPduSZMXdENHMzCxjfaz4Oh0JIy1r0ndyDV7/ZDkhcU2yYCpxBn7mKDrfKLvww81lSErOZ9cZGbFY7QcFVWLL2j3WN7mbh0v3sXnXGmYvTCqRWg62CFmNrH9JzC1A1Ao0QPNe1BS/2asvH6w+TV1hMzRzQ2RQybQ4uno5BtdoxGHRMmz2Err0bPfT6cVGpfD17K9eiUnFoNXh4mrB5GlFVlbouJiKuJqHW8ia9qR6rRkXYVdqmGln1nfMz+XHxIY4fCKfPE61YuuIYdruCXq9l695p99RR/dsQQlyQUj5YYO2/GFPtarLGJxP+R9a6Mfy9/9Hf7W6EEEbA9Fc65f6937Jy/tX4BVVh9Jyn/vzAv4iUko0LtnP5aDjPznqSeq3+2tPr7PWT+PGzXYSdjEJVQacVTq82Caqi4rA5OLv/ChazDcWhsHXZIXoNb8e68Dsm2k071aNJ5/pUqORJ/bZ10Gg099hNqKrK/AkrsdslqYlZnDt4hb7P3d/K5YdZmzi1/TwIgW+1ioz7aAR6g65UbNLNzUCu1anP5OLuvHmBs07K4Gai9bAOxEalkZWYhfOXgGpBPnx9dGap7UzVmj58uOYlvp3xE6H7FBRF4UZYPDXq3tnpNpoMvPzBE2XOz2K2Oi09VElRoeVPvd8ehopVvRjz3hAWTFrF7f0krZQIqaA6JKqUSFUBBBKnHYtvVS8mzS/bVSilZOXcrZw7GM4z0wfQ8Q/sRTISctBpHRRX0nPTYqNCdB6LPt6JNb8YB7B/d9g9AVPCjTQcDgWL2ca1C3EMNOrQaTU4VBV9gAceMWbyCooxpNuQOQq7d4YxdnxXxk3qxY3IFEY+/8cK5r8ny12S3dAVbZFChVQFNCodxlzkxsYgiHNBraRD8dCzbucFjv4Ww1cTB7F70zm27z6DQ6+lRYsAFq4ay2cHj1Ok2Alq/dd0kWrVrcrEWYOZ/Px3YFcoyrfQtkF1Zn8xsvRaCyHot+A7YvPynGrteXdSfiMm9mTExJ7k5xezbOVxAHQ6LRrtv3Y35H+Nf9A+yl9CCOEKvA7UlFKOF0LUFEJ0llLufJjx5QFTOf+nURSF5W+s4eaVBCYsHE1Rnpk1szdhNVu5GRbPj4nL/tJ8Ia1rM+enyaTGZ3J6TxgtuoeQEpvBtuVH6D2iPRUqedKiWwirP9kOQO8RHcrModVpqde2LlOHfEFBThFvLXqWjo/e8YZMT8rGoaig1SKB5ITsB56PVyVPZ7AlBF73SQkJqYKqotFA9yEtqd24Jmf2XyEvz8yIKX1Y+8V+FIeCAHQC7FYbBdlFZTz6dv9wjF+WHnLe9LQaRr83tMxa98O/ViU6921C6LFInnmj31/qgMpOz2PLkkME1Pej1/B29wRaP37utEnRaATVgv1p1DqIQz+ewm614eXthtWgxZpvZsCznWnRsxFteje6JyjdtfYkW1YcpVmH2uxevA/VamPucwn8krAIo4vhvufz6vT+TFi3EwRYfQ2oqXbiotJQ7QpanYYhw9rcc3xIi1oENfDn2sV4jJU8qObhzlO9mhMamcSTHRqx+JWf0CsqeoCarjRuWgMhBIOGt37oa3Q3LT0rsksHqpeW4f3aklZnIVqrg4JkI8mdXKi+J5u8Nr5IICOnkOfeXYc+Mhf0zu/Puchb3Nx4gGv2bGxGydyDv7L0iUF/6RxqB1dl9PhurFp82FnYf9d3VwjB1bQ0Xunfid2/nEdJKuTNj+7Mfz3iFidvxFGpdkU++vwpzp2KoXuvhuj+A++6cv7P8T1wAWhf8voWsAkoD5jKKef33LgUy4LnF1Opug/vrJ/Cub2X2LX8IJYiKx+P+orJi8YiVRWhEbh6unDzahIHN5ymXZ8mNOl4fzXq+MgUivKLCWkVWHrTrhrgy5CXegIQUM+fdn3upA1r1vVj7eVPsBRZy/ij3ebknjAKcopw2BU2LDp4T8BUyd8bNy9XivItzqLvP7CMGDVjCC7uJk5sv8Ct+Ox7bEhUVaWgwIrQOGtU6rWuw4DxvZg4z1k/ZLM62Pztr9gsdnQGI30eb8H132J4fs6wMuuc2hXqfCoVAjSCKg8w/v090ZcTOLEzFKvFzsavD9DnqfZ/PqiEj8at4NqFm+gNeipW9qJl9ztCoMHNapIQlYKqSgwmI2NnPcHFI+GkxmZgVyRLTsyikr83uhIF7dT4TLRaQaXqPliKbSyeuQVVUUlLzEK120GvR7XamdLzA15eMAqBQG/UU6/lnTRpu47BBB2uSFJmHkh4tG8Tjm6/jMOuULeeH48Pvzdg0ht01OkQTHhSDjm5ZiY//jXBTWqQHp3GogNxVPLzIjejgErVvHlvyXMEBFZ66GtzP+JOx1L1UBoAuR4pNOzSkMSCUDT+CqrR+R0yZlgp9nPBqtgxJFixuenQ5VrRmu0UVfMkLy4LgwARqMHf8++JSQ4e0ZaYaynE30xn8oyBpT8/ER/Pi9u2IYTguc7NeKNzZyIvxTOp/wI8qnhxJj+bxNY6tJEahjRpyCcT/tz2ppy/juRfXcNUW0r5pBBiBICU0iz+wpZ2ecBUzv8pFr3yHTGX4ki8fov9PxylVsMaSCnRGXRIVeWNXnPQaDX0H9+LJ98czMTuczHnFPLLor28v3YS7fs3v2e+0GPXmf2cs1vtyVceYcSr99dg+j2u7iZc3R9crP7bvkvO2iJFJSc1h6y0PHxKgiutTss3h95h3sRVeHi7MXRCrwfOo9PriI1MJeZaCnFRafgF+vLkVKcMgxACD293CnIK0el1WM1WRjeeRl5WISOmP8bwqf34atc0zh2JoFW3+lQLrPzAdUa81p9LR6/hsCs07VSv1MakINfM2f2Xqde8FjWCq5YZd9u4FUlpOvBhsVrsTp834TSCNRdYWDjlBy7uv0TFqhXQG7TYbU6TXzcvVzwqe5OWWoBdkZzZe5khLzoD2uNbz/HpC8sBeHfNy7Ts1RhPbzeKCy1otBoUN1ek3gA2G3Hht3hr4KcIjUCr1fL6kufpMsQZCF29kULqzWwcGhWhwC+J1+jYpDoIwctv3d+eJbheVbQ6DYpNwaI6uHImBoe3CbO/nvp1avDBuF74B/j+l3SE1eoYiPjlAlqNoO+Idvj79WdS3Gr0z0oCktxJ6eqgYZ4JtUhPenoBAoFUVPSZhQgJFS5mktnVD6FC3auCjNCrDJh2GL/qFZm5fDQ5xRZCalUhpaAALxcTnqb7f7/1eh1vfVw2PRuRno5DVXGoKqEpKQB88eYG4iJT0CTlYGnqCRIcQhKVkfkfX49y/k9iE0K4UCKcIISoDVj/eMgdygOmcv4RFOUV8UbP2SRFp/Da8pfoNrzj35qnZkh1boTGARL/OlVp2q0hM358laTIZI5vOYPD5kCj1VCphi+VqvtgK7aBlEgJy975sUzAFBkah93uLCwOOxlFnUbV+Oa11dRtEcj0FS+W7mD8EdcvxrF+4R6ada7H4y/0oDDPTOjhcDAYQKMhMzmHZ5q8ybvfvUCHAU6dpyo1fPl8x7Q/nTsmLJ7ctFw0WoHQCNw874gmCiH44sDbHN96nqZdQlgybQ0pN9MB+H7WZnqP7Ih/LV8GjflzNemG7eqw9up8XDxMGE13UlbTB39OSnwmQsC3J97n4uEILGYrfZ/rgsGop17zAF6a8wRXz95g2MSygZ+qqqQlZpfsBt0bNLz97VhWz9tBrfr+tHu0CUtnbOD45jNIVcVcUEyzHo0xebgy5t3BAPQY2pr4yGS0Wg3NOtejINeMEHCyxNQY4MyeS7R5tCmLdr3O+V+vUbNOFd544iunhpPRiLTZS5XJVY3K9XM3SwOmo+ejsTtUNFpAgEMnMBp0zF70zAOvW6++TTm07yrnf4sFKdHmm0l8xA2Hq2CnJp23q7r/lwRLUko+OXGW4j5VMOp1uNeswKbYq4RmFmCXCp3qeDM0tyH2Ijv+TWqyZNlhpEY4fXpKEKrEkGvHkK+SZzZTmOU08E3LyOeZmWtxAK4eBpIqWkDAl4P706tR8EOf49CGDdkTHU2W2cybnZ31WX4BviTHZ4LVTguTL2cL83Gv5sGsXj3+42tSzgOQwL93h2kmsBeoIYRYB3QERj/s4PKAqZx/BGd2XiQxMhlLkZXv3l7/twOmyd+Mo1m3hvj4V6RpN6feTvuBrWAgeFf1IvpiLHqDjvYDW6LVaZnw8ZN88/paNFoNtUKql5mv95PtOLLlHAW5Zp57ayAfjPyKrOQcctLzOX/gCu36NSc1PpP467do3rUBBpO+zBxznv+WnIwCLp+OpmGb2vgF+IBGOK1JbrfD2x1sWLgbvVFH3RaBeD2Et1bs1URe7T4HhDPAGjq1P48+0+meY6oGVGLYFOeumF9gJSLORAPOdJHLQ8g1nN5ziQ1f7MXN3cilQ5dx83Rlydm5parlKfEZWIvtGF0MbPv2MDu+PYxUJWkJmbzw4ZMA9BnRnj4jnKm4mMvxCI0gqJGztf/dUUu4eiaGqjV9+Gb/m6XF6uCsf3pridM301Jk5eqJyFK9PSE0PPHKo7TscaeLa8iLPenQtxmuHiYiL8UzZeDnCGDcjEGc3XsJodHQb0w3AHyqePHok+2wFttwdTdhtzkwuhjw8HPHVmxHlRIXdxOPvXgnyOvZth6b9odisTvQ2hQ8ky0MmVa2Rs2hqOwOu467yUj3kCAiwpNL37NXMOFwc6ZIFSk5Fh3L0OYP34n2R5j0Oiw2O2gEBp2W6m4V0Gk0aNFgOlbIjp/CkIqkm9nGI70bsH/dWRR3A/aq7kjFjuJuwC3FGVhKAdaqrrimF+MwaXGoEouqYMlxYCyCIn94d+EWuix+/aE72HxcXfll5L2F99O/HMXRHaH4B/jSuG25fEA5f5+S1Nt14HGgHc6e2SlSyoferiwPmMr5RxBc4stlcjPSolfjvz2PTq+jx8j7dxf1GtWVNv1aoDfqS4OF/mO6UadJTZJupNHpsZZlxvhUrcCyo3csMQLqV6Mo1ymy5x9UhYykbCZ0eB8pJfVaBjFvxxtl5nBxN5GbVYiUYHI14OntzpSFz/DLkoMENqrBqe3nkVpBWnwGc59bgsnVwKrL80trkR5Eys00hEZgKbJiM1vpN/qPd4qmLnqeGvWqkXErmyde6YPpTwxrVVXlo3ErSpW3VYeK1WIj7FgE7fu34OrpKMbPGsrPSw7SqkdDDEYdikNBVSW5GQVl5ju4/gRfTl6Fw+bAP6gKszZOJfRYJABpidmkJmRRo06V+57LT5/vIv7aLYRG4F/Hj9cWjaFRB2fNWfSleGIux9N5UKtSVfFDm89hLzGwjY1MYcutJYBz1y0tMYu5Y5YiNBre/f5FFu9/kytnbtCkQzA7vjtC3LVkQp5pycJroUw7cYTl/oNx0eupH1iFvUsnoqoSk8EpY6C9T0HyF/tO8OOZMKSUzBzUi6FPtWXNd8dAlZhruGLIApu3RF8gcU1z/OFn8LAIIVg1aTjbzoXTrm4Aft6e+Hk3wFVnINdm5trxy8RJUWKJKDi29RIau4rIsSA8jaS1qYjGJjFctaBRJcKuorgZeP2jJ2jSrjZvLNlJeLyzPkpjB22xivvZbH5e8SsjXn5wyvjPMLkYeHT4n6uul1POnyGllEKI3VLKxsCuvzNHecBUzj+CCpU98arkRXpCBvVa1flvW6cwp4is5BwadaqPEAIpJaf2X+Xa+ViqBftRr3kAW5ceIDo0nqfffIxqte+9gc/8aTJndoVSM8SfmvX9uXT0GlJKLEVWboTF33fNj36axL71p2jQOoiAklb8vqM603eUM7Ar+Pgp8nOKGNfqHaQqURwKuen5VK31x0XArfs0o02fptwIjWPSV6MBiLt2i61LD9KiWwN8/b25ERZH16Ft8fLxwGAyMOKNgX84593kZRc5jW3VEqt7rQaTq5FmXRvwau+PSI3PwGDU833YPNw8XTAXWEiLz8JSZGXcfQrHQ3+NKE2NJd1IZe7oxXQb3JKj2y5Su3F1/GuVLSSPuZJIcZEFnUFb4nqio32/5qXBUtKNVKb1+RjFobBu3naWnpqDm5crj45sz6m9YQgh6PlEm3s67NZ/tovoywkI4Kcv9vDKp0/TfUgrTu6+xNblR7CabZy+fIOsp2pgTkhl9YmLvNDNOYfJcNcO4gMa/hKz87DYHCAlS1YeYseXE2nfvjZvPrscsyqpmATGo3kYcu18/ctGunYOwfVPgteHIbBKRaYOuPOwIKWkss2DOq6+fLf/J8CpzdS6T2NyLQ7OHooAoFv3EKLUIkJ98lHirGiznPYsuiKnKfPscd9hsNnpPSCE89G38LVIcrbEohGCbfvD8GlSjUc63+u/GJ2eyZh1W1ClZOXIx6lf9eEL2h0OhezMQipV8UQIQUpyLtGRKbRqG4TrnzxElPNw/FtlBYCLQojWUspzf2dwecBUzj+C83svkZeRh1Ql6+b+TL/xf/+p9UFEX7zJq13eQwhBn+d78PKXz3PpRBTbVx7FYrbx0UsrGflyL759ewNSSm5ciuPb3+beM4fJ1Ui3Ye1KXzfqEEzzbg2IOHuDcR8Ov++6VapX5NnpA9i0cBcfj/yK1n2aMv27F9FoNCTHprN37UkadwhmwPie7Ft/ivZ9GnP6YDgbFx2g84DmTPhg6H21i/QGHTPWvnLPz2YMXUhWSi6HNpxGOhwoOgNLZv7CO8vH0rmkPuphcNgVXu7/OQ69Ab2Hjo/WT6R67cqY3IxotBrir90q0VdSyUzOxs2zGq4eJroObkVUaKxTRPJ3DJvSjzN7LpUquMdHpeEottOpRz1eXzq2zG7N2X2X+WjcMkAw4rV+jJw+EMWuMmzqncL7zFs5pfpXGYlZzBv/LXM2TqVZx7psuPoJAsrIBAQ2qOYXyUJ8AAAgAElEQVRMnUrn329TXFJkrtVpcPF0wVXRornlYFXyWex5diYNvjfd+SCm9u7IsVORCIeEWDvJt3IIblCNTWfe40ZsOp98sZuU3IxSRfKk2AzqNiqbDv4zju8OY++GM/R/ugMdHnHuykanZ/LL5Qi61glk6eaThEWnoNUI/Ew6pEMBJF/9dIKxg9py/mI8NodCxJVb1PRxp0nzIDwmVuTQolPkZRXiapbsXHeK9Djnuer1WvbvnEZRgYXln+xg55Gr5Ookc7/ZS4cWQbjfFfStOXeJjELn57zyzAXmD+5T5vwvRyTx7boTNG5QjSKTSkFcHud2hCNtCkhJ6w7BTH5nAC+OXo6Ukho1fVj83di/fJ3K+T9FW+BpIUQ8UMRt8Xspm/zxMCflAVM5/whC2tVFaDQYXQx0HNzmzwf8DaLOx6A4nDfXi4ecvl2e3m5IVaLTa6ng48GOpftRVRUhBLduppMcm05uRgE16lbFo0JZDy+dXsfM9a+U+fndKIpKUZ6Z797dgFQlp7adJ+61/gQ1rslbQ78gMzmHbSuOoNHrwaDn4qkYft14GhSVncsyGDi68wNTVb+nNFCRIIVTx8m5k7KPzgNakBiVwtuDFuCwK3yw+VWCmwXcd57s9Hzys4tQFBWdTotfLV887vIwe+79x9n0xR7a9W3Kd+9v4sLBK3Qe3IZT289hsyus/3w33Z9oy+vfjCnVXqrVsDpPTO3H6nk7nXWnFiuJ12+RFp/O4W4N6FtSX3Sb6xdjsVkdSFVy7dxNZq8vq9LdpHM9GravQ9jR60gpyU3PL30v6UYa4b/F0Kl/s3uMhweN70G1oMoIIWhZ4it37mwMC785DJUq0KpZTSZ/NIylRy+wPeUKVrvC6Yj4hw6YAqtUZKhvEMd/vU6den5UL+ko1Oq0/LjqJMkRaWjcDFBkI7hhNQLrlu0uvB8Oh8LFywlU9/fGw8XAp6+uxW5TOFyYimfkeV7o1JpPDhwj32Jl5YkLGDMkWgQORSUr0ANtrgHFVYfe7iCoThWEUYfRqCM3Jo3sqFT0F+NY+Msk+v/UCEeWhVvxmcx6fT0anHXCJbXwuHmYePG9wWyOTkCXZ0djtxF2JZ6O7epiLrJy4nAEQcINk855++lU+/7fsRnzt5ObZ+ZK5C2KK2rwjDKjsSiIks7K08ciGT6ms9NDz2InNiYDRVHRah9ey6ucB/Dv3WF69M8PeTDlAVM5/wj8gqqw9uY3ZKfmEtDgrz9tPwzu3m4odme64XZ9UO1G1Zn5/QvEhCfRa1hb1szeTExUGjgUFLvC2FbvgCIxeZhYG7EANw+Xv7SmuaCYiR3eJy0hE4+K7liLbSgGIwteW8f0RaOxFttKt8ftdjuKQ6I4VISUSEAxW0ptRh6GDzdPZcs3+2nWLYTz+y9zbM8VtDotnQY4u/+2f3uIzOQcADZ/tYe3V75UZo4Vszez5ZsDuFWugM7VnT5PtqVCiShm+Okolry+mrotg9gY+xW3bqQyqfMsFIfKr5vPYDBokRotqiI5seMig17oSd3mtUrnXvvJdqQi0boYqeLvRUZ8BgJxX+uXfs925tSuUMwFxYx6804q0W5zoNU5TX41Gg1zt7zOsrd/JCk6lZfmjURVVZa9v5kd3x9Dq9Hwy7LDrPptTul4IQStf1cnF3Yx3un3ZzKi+njiU9mLCY+2IzQikYy8oocOlgDCzsWSHpPOoH5NeGl6P4QQqFKiEQKjSY/NVYu1igdN6vizcM6IP9TZupvZ83fwW2gcSFj08VMo7jpyK7uQ08iD7Jxc3t15AIPW+V++lBJVI51ZQwHCpMXu44KQ8O6kvgTX8+Pr5WNITc7li9d+JD/PjN3m4MnP1iHd9bikOTAm21G9XdALARLGvz+49FxcTHpUjYJrVjHCpjBnwlo2HHmLuW9uJDI8yXmOXwznwsnrfDt0JctdjHyw/HmatQkqncPLw0RBifq7FAK7lw4Xh0Qqzn+jgcFVqN/An8ZNqnPudAxqQTELpm/gzc9GUE4590NKGS+EaAF0whkWnpRSXnzY8eUBUzn/GDx9PPB8iO6wv4tiVzC4GLCarU7j2xKad6lP8y71AZjw+TOcOxFF+s00p9xASYBVnGcmOjSOZl1C7jv3g4i6EEtOutPQ1mq10/2ZrhzcfI7Y8Fu80vtjZq56gV2rjtOyewMUVbLvx9P0fboDG+ZtJTslh7Z9m+Pu5frnC5UQ1KgG05Y40xa9nuzAS5kFFOaaqV6yQ9Wsawj71hxHSklSWiEnD0fQsUeDe+bYtfIoqiqxF5h5+5vnaNH1zvvzxywmNS6DxMhk2vRpRrPuDfH0cacgp4haDarT5pHGbF58EMXh3Am4rdd0m+DmtYiLuIXeoGX+7rc4s+silWv40PqRsjvmlapVZNmJWff8bP/a43w5eRVePh58fWwmPn7eaHVaJn46qvSYsweusHfdKaQqcagK2el5XDlxnRr1/KlQyfO+163PgGYc3H8Vm8XOiGc6kJmai7XYzuaZzz30tQdIyyrglc9+xmFzELsjnRrtajDz8glsisLKJx5n+DMd2BEZgyol15MzuBabSsPaf26mnpWWz9XQeCwWOyajnriUbNIHVMNstSM1EqFIvFxMLHxyAO+t2YMtKh9juh1TS19eGtoJXxdXdh69yoCujWjbpBYAgUGVCQyqjP/6lxj37BIKqxqxGTSgqCgeYFQkqosekw2GjGpPq3b31ha2aRzAtYgrzpyHojJ1wvfkpOZjtTgwueiRuTb2f/UrUpVIm4PlC/fx1doXS3eIvpg9nL1HwqlRoyInYuKp4OZCQzcv5s/cisOuEBubjsOhoBUSbVYBQsKxQ1d58y99IuWURfxrhSuFEO8Dw4AtJT/6XgixSUr54cOMLw+YyimnhK7DOxB18SaJ15OZ8Pn9b4Q6vY7lp2bz5dTVRF+MJflmGkqJ9UXwXTslD0tw81p4eLvjsDno+WQHWvVuzP6NvyEB1aFQmF3EzNV3jDAHje0GQJ+nO5KTnkelB5juPiwVfD1Kd4cAOg5sycKDM5gy6ltibuXzyVubWLN3GhUquhF1LZn42Aw6PtaSoz//hpuHC8FN702nVKrhS3ZqLopD4YvJq6hYtQKf7JhOUa6ZoCY10Rt0PD6pD6FHr1Gnac0yAcr87W9w7VwMASHVqPD/2Dvv8CjKtu3/7plt6SEhCQRIIBB671V6kS5IESwgiGJDsKCiKKAiggiiAjZEEZBepffeO6GG0EJ6374z9/fHxgASBN/n/b7veXxyHkcO2Nm575mdndk557rO67yKB9D1ubZ/6/MsnuZtiZKXbePA+hMFNgF3wi/QByFAKAKTxUhEiA/v9ZyCwWRgzqnJhZLy0mVCWLj8VQBOH4xn6CMfI6Vk2NjH6PLUw1lc3LiZwYDRc7H6CYSPkRRflY03r5Dj9PrmfbljL7fWJSLxRps0TRJWzP+B8148fYM3B85G03T8w/yoVCua2MolcG/SkQooTgi55GRo57o0KRfFhnefY/+ei4SXCCQwMoC3ft+AS8+iR6c4ikf4AWXvml8zq9hKByBVCnRVPikaUkBwZAAr171Y6H6982JnXt2eQFZyLgi4fj0DR5iRAIw0f6QqjVtUwi/AQl62Helj5tLVdPp2/hxDgzBUXyNTnu/Gk729FXItG3r9nOw2F37+FpxON8XDAjEaVQJji6ObDQi3hj3qwcerCP/VGAjUklI6AIQQnwLHgSLCVIQi/B2oBpUXpjw4YmD2MfHW7KEAJMancHDjCW7GpzBxyLcMfv8xyteIQtd1ls/cTGpiJv1Hdr6LlNwJvyBf5pz8jJyMvAIdzSOda7J71RF8LEaqN61Y6DijyUB46dD/4Sf9a0RVjsTga8ZjdyMlTJu4mqaPVGLa+0vQFYWoKpH8cHACwcUD7/GVGrdkFFsX7mHDvN1cOnGN3Ewru1ccpv8bXQvW8fG30PRPBqAAmkdj+7KDqAaV2DrRaB6t0LL8PyP1RgaJ8clUb1qR1n0bs2DyGlSDSs3mlQtdv3qjCoz+ZjBXz9+i08BmPFlhBG6nGwtw42ISVR8QxTyx9wIul1c7tev343R5qhmJWTmcS0qlcUwUvqZ7vbYAduy+QG6AjqO4AB3MGSpx55IxBAtAEK34c1OX6AreqJBRsOPYZfq0Lbzhr8etMWfBHpbP3Q35+xMbEsjU/OKCQc3rsuzwGQISHFQPLUmffPKhGhQaNavA0f2XmX7iEPuuXQc0dKOdqxWncjglgeLmQD5r3JUAo5mgIB9UKZEeCLziISDZgdMgEAFGvp30ZKH7dvFWGk9OW4Cs7UPkORVrug2BwBFiIC/aTGJNEyaLkVkbR7Nu0QGWrjqONc9JXp4T24kkHBFm5mw4yJgB7XB7NMbN28ilxHTGPNGWb+cP5+K5RKrXikIIwXNPPcL6M5fIzXPQtFgIb/b7igGvdKBO88KvnSI8BP65GqZEwAI48l+b8faTeygUEaYiFOFfQGRMOGUqRvLTRytw2Fwkxqfw4+GP2bbkID9/ugqPy8OthFTG/XqvIPkPGE0GQksEk5dlZd/aYwwY1ZmhH/YmoJjfPV5L545d5cdJa6hWvxxPv/4ol05e473+M1BUlU+XjCC6cuT/6HMkXU/n9/n7qFqvHI3bVeOz759lzaKDbNl4hr07LrB/50X0XAcUDyThciqX4tNoWghh8wvypdvz7cnOtHHjYhK6lFSoHU1GcjYLp6+nVEwY3Ye0LrSqb/7na1ny1QY0DaaOnIdfkC8zNowmosz9iWHS1VReqP8uUkrqtavB2IUjaNO3Cf7BfvgH352qzEjJ4a3Hp5OZmsu7swbTf4S3MuuZD3rzy0fLiKlfjiXJ12hxXqV1pZjCNgdA6571WDN3Nzarkz4vtGXxTzuYvmkv9or+lC8RyqLnBxQ6rn7dsriP7fX22xMS3QdyfTyoqopEElshgoSIZK5kZqHlu4XbHK5C59q4+ADT31mMJsARHYJFEZgMCgNeuu2APaJDM0omSo5ev8zTz7fB/w593WfvL2Xf9nOkVjJhrOGLjpsgPxtbblQkPucWBiWFhZeP0SeqNj2m/4LicOKX5sGiCVy6jsGhIXJdJJxJJKLl3VFCm83F0cs30aXE6dFw1yuGcWkGOVF+KE6N4AQbB0tfB7wGoVdy7Fg9+V5eukTxCHxSPJQLLwbA1uOX2HTkIi5N48UZy2jSNIbnWjQosFoI9vNh4/ThnD99nXf6fYPT4ebFr5fC2kCGtm3AkHb/d4pEivAfiWzgjBBiE15a2B44KIT4EkBK+epfDS4iTEUowr8Iv0AfpPQ+uf+hJ5L5Sm2J14U6KyWH4PDC9TF/4K3On3LjUhICwXdHJxZqTPnJS3NJvZXFxZPXqdU0lg2/7CQnw1ueveqH7bwyufCb9YMw5unZ3LqWjsm0iy+Wj6BitVI8+WIbtm6JA033fhJfMygKSMmJo1dp+kjhzYgBBo7uTo1mlfAP8qV8zShG9/qC0/svoqoqV+MSGfhG1wI38D+QejPTK6wW3tyPNdvG8JYTGDymB92GtC50OwlnbhT4XB3ZfIq4g5eo0rBwn64dq46QfD0Dj1vj58lrqdfSqzfrM7ILfUZ2ocWk2aQdPsmy42dZ+fJTRIcGFzpPZNkw5h+dAMCy73fwy9T1+Hs8aDlOLjQo/NFc1yWrtp0iKt3MzQAn5lALbWLLkubnZEfCFYQQpDhs/DptMJk5Nr5YuB1/HzP92t8biQNYMnsbmpTovhZMDg8+dUux4PthWMy3o1vnz9zk1+934HS4uXJpAYs231b3HNx+Hleek6CjTto1rUL1xsHElAhh6RV/blqvIhBE+gZyOTkNm9OFs6oPpgwPZU7ZwC0LWqZ8OnoRy/ePLZh37m97+Wn+HkwWA4bSBjRFwXMhB3N4IIGpTrQkFxJJwysG3ntqFsPG9sRud6GbVFSzAY8iQVUwKApdGnq/n1B/X1xuL6HK9jhZfeIcRxJusuWNoQXbVRWF4qHe60srZsIWbkY6XcxYt5dn2zYolKAX4T6Q/+jmu8vz//7A9r8zuIgwFaEI/yIq14/hnR+GEX/qOo8+43XTbv14I1JvZnB8Zxynd8XxVLXX+XjZ69RsUXiaCODWlRScNhdmXzNpNzMpHlmMz1/9mcNbTlOydBCZiVnk6iqKKnC7PaiqQrHigQUuc9sX7ka32Xl5+qCHSmXdCafd5bUcEOC0e80jwyOC+GByX/bvukCtmqX4ctSv5Gbn4RsZSvfe97qe3wkhBLVaVEbXdTSPVuDwrdntbPxlF/t/P8avZ6cUmIPqms6gMT3JTM0hNTGTG/FpaB4NW7aVmW8vpOuzrQq96dVsURlLgA8OmxOHy8PrHT7m1a+H0mlgM3Iz8ji06RSVG5QnMiacKnXLoagKZoNK/dZV75nLrd1u/uvJr8T6q88HXvNOXdMRUuCrKbz2aKtC1z8Rd4P1O87icLop6bawdsoLqIrCjexsRq1dh8VoYEh97zEtFujL+GGd/3L7rXrUZe7cPV5yIVReH9r2LrKUl2Nn8axteHIdKGaVgMC7qzctJhUHXk2SejSD5GtulG51ybp1jV5KVVI33CQtLYl2Q2MJCrCQnJmHtbSK/ZSCUGSBlimo2O0HhNkzNrNsySGkWeCy61gyXYQHWLCm2rAB5cqHoTs1atcsxZYF+3HaXXw2Yh4f/vw8s7/dRkioH+UrlmD1hpN071SLoPy+h7UrRBKeCjlGjexyqneflXutA+IT0iheqywhwRb2+dnx6Dplw4sVkaUiFEBKORdACGEEqgM3pZQpDzu+iDAVoQj/C2jcqRaNO9UqeK2qCk+M6kLcvgt4nF4CsuTrjQQUD6BcldtmiEnX0ji2/Sw1mlSkTGwJLp+6Tv221ancIIaLJ66xZ80xnHYXWTfTQddRTEbwsaAYDfz6+e80aF4B4XajOV3k5eisn7ud8Ogwnnir+9/a/w++G8L8GRupWq8slw5fIi81i/odatGgSQUaNKnAtqUH8eQ5MGk6moDJ41fy8bSB+P2FA/X1S0mM6j4Vp91N6fLhCFVF4sbj1shKz2P0418SXqoYR3eeIyfTyqgvnmTCAq9n1dXzibzWYSLSYCaiTOh9b3qnD8bjVAxIo5cseFxuvn5nITcvJLLtt31kp+d624Kc+ozKdcvy7bZ3yc6wEluzzD1zfff0Y/yw+zAtK5WjfHgoUkq+fHcx21cdpWO/Rgx9rwefb97FlbRMRndsSbnQYvQd3obUpCw8Lo2XxvciOLRw0XFYaAAgMZsMlIoIKrjhlw4KYtGA/n/nqwKg88BmrFh7kqwsG6qq4PMnLdnP0zdycFscQkKVmmV4+/O7t/Hiu1354v3l+PubOb77Ih6PTu7hk9xsH0z0mjyMuTq34tKoVjuKH5/rQ9+FC3DaPQijilQEQlXo3qsefQd7ncOvJaSxevkRpEdHlQLdR0FRBP7+Ftw5XrlI32ea075TTY7tOs+WBfvyvc38KV48gDHv3j5fO7Sudte+Ggwq3059mt27zmMPUzl7PZmTv52lzZqP6fpyM0b1agXAhDFLcbk8JCUbGDG8Fct/P0yzsGJIKYtI09/FP0zDJISYBcyQUp4RQgQB+wANCBFCvCGlXPAw8xQRpiIU4f8iHnuxA0e3nkE3Gjmx7zIjO0/m6y3vUiomHKfdxQtNxuJ0uDGaDEiHA4/dReLFRBRFIaJ0CKrh9pO08PUBgwEk6G6NqxeTeOPLpzi86RRn9p7DaXWie3TmT15D31Fd/laUKbZGGT74dggT+k/jwLpjCCEYv+wN6uQ3r02/lYWmaXhcGnqeg8sXkti19SyduhWeMgLYvuII1hw7UsKVuERAoPqYCAsPRJpMnNp/CYNRRUqvt9SirzbRplcDAKIrRTJ7z4dcOJpAnVb3RoMA0hIzOb79LI70bLDnazhNJjx5dpZO/x39dsCI799bxFvfDSOiTOh9NVE1SpdgWv/b4vSMlBw2Lz2Ex62x+ufdhLWPYcHhkzjcHjJsdhYNfQL/QB9GfzHwL49tRmouFw4n8HK/FnhUaN7gX2/tM3rw99iSc1ENCr37N6Juwxhyrd5jEOBnwS/AglAVhK4TJ3P5/rcdPNu7BRGlvLqgq3G30PLs5NqcIL2yKqnmkwqzgmrzmpxuPngBzymFV8o3JM/hROtjZdPqE7RuV5Xh+R5SAMVC/FBVBbPFiK+fiZqNY/D1t/DUgCY4HR40TSc6v7VNnRaVGDn5CZKup9PlyYerMIyOLk50dHHSUnOI23kF6dRRgJXzDxQQpuBivqSn56Hpkvkzt2HLcbDxUhaPtK5Kjbpl/+VjXoT/aLSQUv5hKjcYuCCl7CmEKAGsA4oIUxGK8CAkJaSwf/UR6nWoSZlKpR484G+iTutqrEyezcBa75CdnofF10TStTRKxYSTGJ+Cw+YV9bocbgyA2ddEmUpe4XZwWCAzt7/P7tVHOLHlFIf3J6D/4WKpKGRl2hjz1CxmbRzNzcvJPN9gDB5NRzU93GXtcrjYveoIkeXCqdygfP7xSMVld2OyGLlw9Ap12lRnw4K9rJ2/l8iYcHKtLnJ9vFGlmNgIcjLy+Oyln3DYnLw5Y1BBc1uA+q2qsnTmFnQpqVgzirOHrxBbJ4Ypy0cyfsh3ZKbmem/UCFRVoWXPu9N84aVD76oEtOc5+P6DxdjyHLjtLnavPOzVVOk6iqqgqAolKpUkLz2X7NQcFFUteFDOTr+32e+DEFjMj2JhAeRm2SgWFkDxEG/1nEFRCPKxPNQcOZlWhnaaTK7FBEKg+anMKLmLiSO606zO/YXlD0Jacg4elwezaqRRkwocPH2VN6euBGDqG48x4MW2CLPKN7v2E3A2k+0n93P41+PM2zoaHz8zW5Yfwe3SMPsoNGlXjfDIYkR3iWVfyk06dCvHpV0JnEtOZ+mxc+gKcMT7HbWtU4FVm95k1ck46k78isBgC71N5Ui8nM4bY7pxNSGV+Qv2s2fnBapVK0VQoC+btxwmKMSfqGhvpHDz0kNMe/s3/AJ8aNWj3kP7iM35aQfzv9+Fx6wUuIs7jTDo24WM7dORKTOfpu8HP2INEgQfycViMuDUJWdO3ywiTH8b/7iI3J3VE+2BxQBSyqS/E30sIkxF+K+F5tF4qcFo7HlOjO8ZWHBjNr5/06n7YaAaVF774km+HbuEKg1iqJ2vYyoWHohiUNA9OgazgSfe6Enq9XSGfdyvYGx46RB6DW9Pr+Ht6RMzglyHty0L+caa1y+n4HS4KV2hBB8ueo3dq47w6DOPFBpdklKSl2XDP9gXIQSfPfctBzecAAmT1o5m39qjXDx5DaPFiAfBvC/WEVU9ii/fXICWawUpeeaD3lRsXoWwiCCiyhbnp4krOb7rHLoumfPxCt6efbuXV5X65fjp4DhcDjfhpUJw2F2YLUaEEIz++hk2LtxPZNkwqtYvR262jcgHNBNePGMDG+btQUN4W6cYjQhdgkGhfK1ofAJ8eO+Xl0m5msLU4T+QlpSNMKpERBbjhUleMXxWag66phNSonBB950wGFU6DG7J0d0XeG5UR6pUimJijw5cy8iif/1aDxwPkHQjA7tL8xYvC1BsGi63xpodp/8lwvTO5H7Mmb6Ruk0rULlmGT6ctQ5Xvonqxn3nqF8tit5DHmFa+jnUEzaEBLfTTW62HR8/Mz0Ht+C7iWvwC/Ch/iOVcNhdNC0XRd0SJUHAGfdlruTkt5HxGnmjS4nN6cbh9vDerxvQdJ30DDeLLh1FSDh2/Bpj3umOoio4HG6SU3KYNWEFm1ccRfNVGeXuRdsudVj2ww48Hh2b1cH6lYfxxAazY/1ZpFNnwts9KHtHBPDOdNqqlUdBB6kIXCFGNKMkpb5KijWRPr8tYNezQ8koo6K5dfTa/pQ9rWHNdTJvzi7q1C9Hpar/swrSIvwjkCWE6IrXQqAZMARACGEAHvpHv4gwFeEfgZ1L9nFqVxw9Xn6U0rEluXwigbfajUfqkkmb3ie27r03J5fTjTXHnt8ORWLPc/yPCJPL4cJoNv6lTqJxh5o0/pNbdXBYIBOXv86+348RWDyQRTM2gpT4BvsxbNzj98zRaWBTVny1AWE2El0rlmvxKXR5shmW/OaxDdrXoEH7GveM0zSv8Pr93lM5tfs8tVtV5ePlr3M17ma+yNxEYnwyS79c7xVhm0yAwO3ycHL3eSwWA9Ycb6xmw9ydPPF6V5Kvp/P5q3Nx2JyoBhWDEETGhN+z7eA7PI0sdzS59QvwodMTTZj5+s9s+Xkbw6c8xZrvt5B2M5Perz56V1+6P+DjZ87PHeWLrlUVdG/11I1kK3qSlW/GLuXdr5+hdNUyJMSnoigK4eUiyMuyc2zracb2moKuS16Z8Sydnml53+8L4MTRBBbN24vD4WbS+JX8tOQVHq3mrQyUUuLWNIzq3cQ0JTOXrUcuUrdSGSqWCaN81VKoQSY8bg2Eiu5vwGhQ6dHmoXp93oWES8ns2nSGhi0qUb9FReq3uO0z1L1ldbYdvIhA0LmFVwPkZzKxaNgTzGEzV7cm0PGxuoRHeoliz0Et6NSvEUd3X+CzUfORuuTnLzdhdetYQnyx2d1IXwPGaAseKaleKoLcbBsDG9UoEMQLr4e3V9Okef2jGjcuT7v21bh4MZmXX2nP/CnruFXDl9zyvow+vJtNrSrTumc94m9k4RaCn1cfIr2qH1LTCbyh8f28XXz0Tk+klIz/ZBU7dp6jXZuqvDu6G40ercLmuYdR3DoxtUqSkJCGwGugaXO7sRiNjOvclknfb0aRCnkuxz8vTvL/Cv8wDRPwPPAlUAJ4TUqZlL+8LbD2YScpIkxF+I/HofXHmDhwOppHY++qwzR8tA7HNp8kJz8Ns+zL3xn9070+SD5+FkbOfp6l09bQ6dk2hJYsxvlDlzi88QQt+zaldOyDW1L89OFiFk5eQ0BYAO/PezuIgEoAACAASURBVIWaze9fal8YajWvRK3mlVgwbV1BNVnytfRC1x0yoR+dBrUioJgvR7acQTWotOhZH4Cr52/xbt8v0TWdCQtepkINr6j5RnwKI7tPxW51oVmtSF1yYmcc2em5vPbVs0x76UfKVCrJvu3n0QMCUTUPPqpEGI2YLEY6P/MIj3Svx1tdJ4GUtOnbmOuXk3m161QcVgcmBXo+15pyVUvRovtfV86lJWaye/VRajSNpXyNKJZOX8uWBXvQdZ30xCwunryGx6Nx7XwiY+ffa4fy2PB2OJ1uFs3YhNvlJUooCqqPGYlA0zSsOXYAylQsidnHhMepcWjzaY5uO0udJuVxObwC/C9fm0vlRrGUvY9vlabp/DJnFw6HGwRYLLfJnsPtof8PCzmflMqwFg0Z2darw5FSMuiTBWTm2lEVwcqJQ7ielU1iy2I43RrFVBPrxgxBNSj43jHfw8Dj1hj1zPfYbE6WzN3DrxvfwP+Oyrd6VaPYOOtF777mG2cePnmV0R8vw2g28M1PzxITdXcEz2wxkpWWi9TB5fTg8tiQFhO5OXaEqmBySyb2b0/NOtE83eULXE4Pn+xfyJLtb/P5wC58v/0QdUuXZH96HLpH5/0RXTCZDIwc9WjBNl78oCcrv/sFVHBInS4vzSTWFIDJx4TL6cGQ7ITyFgLP52KyCyqW85LujAwru/dcQErYsi2Ol4a34+1hnWjZpgq6kDSNiUYIwYJTJ1l74QLP12+AIgRdqlXiM30zHl3HVs6HTqWjadgwpii69F8OKeUFoFMhyzcAGx52niLCVIT/aGiaxicDpnuf4IGc9FzW/7i1oImuEIIrJ6+SeiOdsEKMFjsOak3HQV6Pn+y0HEa1HIvb6WbR5JUsz/gJpZDy5Tux/OsNSKOB3GwHb3WbzFPv9mTgm13/ckxh6PhEU1Z8tZ48m52IkoH0inwBk8XIG98Ow2FzUb9tdSx+ZkqVj2DB5NUs/HwtCMhMyabH8+1Y/eN2MpKzAVg6czOjvxkMwO61x7HlOtF1HUuQP24tm4p1yxEY4k9w40C+OzKRvGwb/WqNAUAxm/hi/VtEVSxx1/4tuDCNnPRcIstHMObpWV4ioShoSKo1LE/D/MiWNdfOe32nk3ozg7dnP0f1JrEFc4zsOJGstFwURWHO0U/wC/bzao+EKHAMl5rMdwc/RM1HqhAYcrvqzGA00HVQS5ZMXettGmswYPA14xfoQ0hkMeLP3kSVOrqu89TobpSrWoqfPlrBrYQ0dEUnPTUXoQivfYLFwozJqxkzaQAhhbiwx19O4dz5W+gGBUVKxt9RZXbixi2upWchgbn7jxYQJoDMHBtuTUcYVL5cvpuYqOIoQoCAwBBfAvwfTvv0Z2iajsvl8Qr+NR23+17bA4NB9W4Lr63A+GE/YbC6cIZaWLftDC8904rUPCunkpLRbjiY8ulagoN8qNEohoyUHHSTgesJ6ZSKCOLmrSykLomJCfc2v83Xznk8OhJJ+5qxtK+Z/932KtwjCyAyujhDWzdi9q6D6E4NJVsjXssk0t+M1CU+xX1xH83ClOElpklx3gf/4GBfSpYIJiU1h5IlgguOW5MKd7fieaJGTRooIbzX9wdmGRQmzx/O631b8evmo3RtUoVh3Zr8j453EYpQGP76blCEIvybQ3Nr2PLsBa8rN4pFUcRt40gpiT95lZmjfnrgXNZsGy6Htx2ILcdO98CneL72G+RlWe87pmnXetyZifv187UFUYxC91fT8eSb8O1cfoj5k1eTk5HH+cOXcVqdaG6N1d9txZptIzMlm7F9pzPlxTm8+/gXZKVkI6XkVkIqbqcbt8tDUkIaALVbVMZk8UaF6rW63QC4XssqGM0GjCYDz33QizknJjFlwzt3EUG/QB8q1CiDyWygVLkwSsXcqyXyD/Ylsry3QW/JqFAMRhVFVejQvzEN2lUvWG/B1HXEHYonLTGLz4b/ULBcSklWWi5up6dAS9XisUYMHt+XQeP7Mva3EfR8sQMtHmvA+cOX+WTwLIbVexs9v9TNmmNnWN236V/2ZVw2J5rNibTb+XzV68zaPobLx64gHS5O7DpHYnwKiqLwSI/6vDVrCGaLEd2jkRCXSOcXOyLCQ3EFmtlsyWHkiJ8K/Z5KlgzGbDZi8TNRqUYZwiOCCt6rXCIMX7MRs0GldcXbqV4hBB8P60KlqDAwCFYfOMusFXsZ8kh9utSuxFfP9LjvefEgmC1G3pvSj9oNY+j+VBPWrz5ORnpewfv7jsTTof90uj3zNdduZnD6aALSoyMAU5aTJnVjSMnM5dHZcxm58nfe2LkJT66DrBuZ3mN2OZmaNUoxb9Ob+PuYEFYX2Fwc2B5HSPEARn/cm2ZtqvDRjIEYjX/vOXtE26asfvEpAm9Ib6pHEUz6cQhRMcVxplux5Nwmf1t2xHHtRjqqqvDdzEF8OXUgs79+BkW5f3Jt9keryM6wkpGSyxfvLKZfm9qs+uTZIrL0r0D+P/r7D0NRhKkI/1G4cuoqc95bSJXGsfR/+zFMFhNPvvc4v4xbhJRwaudZhkwcwM8fLMLt8qC5NW/rkZLFHjh3aGQxhCqQmvdKdtpc3Lx0i32rDtP+6cL1Lm/9+AIVG27m+w+WoBhVQiNDMJoLv6wSzlxnZJsJuJ1unnyvFwumrMXj1ji56xyvfvE0SAqiSAlnriN1HcWgYrc6iNsdx4CYl6nRvApv/PACKdfTUQ0q/UZ1xu3ysGbeXnTFQOeBTWnXt3HBNmNrluGXAx/idLgpXrJwobMQgs+XjeDmlVQiyxZ/oB2BLccBmo6KpGW3undpt7LuqEbT73ALFkLwzvfDmD9lDc261uXk/kt8O245iipo1LEm1yesZMi73Yk/kcDOlUdACLIy7bjsLix+Fk7sOEvytTSkLjEYVCJiwuk3qisVapRh8bS1eD0EBAaDivGOXm6V65WjbsvKHNx4EiEE9VpVY5m/lTSbHeGRZLidd322+IwMhq9ehclgYMqsJ7Gn2KharfRd6wT5WNj46rMkZedSNvTu86pNvVha161A85Ffg+bVxnWtU4UyYQ8WmT8IjVtWJrREEKOe/wmPR2fbptP069OAOs0q8vOS/bg9GppVZ+ue8/RsWwNfXzNWXdKqSy1cdjcDnp6Nn66TWkvFHaBgTM9D6CCFwGl3cWLvJV4c15tOj9cn/twtDEaV+vn92Fq0q0aLdl5t1K5tcVy+kES3XvUJDQtASsnydce5eDmJ6pFhqEDbbrUx3lGtWT48lA/e7MrS7cd54pG6RJUJIf7cLaQEk48Jj0XFqemoQRaM+eef2WykYuztSOeN6+ns2X2BBg3LE1Pem7qzW53kZlkLzFutWbZ/+TgXoQj3QxFhKsK/NfKyrJzceZYqjWIpFhHMuN5TuHkpiWNbT1GpQQXqtqtJy75N+fnDRQDoHo2GnepQpmIkKdfSCzq/d3y2zQO2BEJRGDrxSQ6sPYKuS07vjsNpc5F0JRlrtpXRHSZw48ItXv/hRVr08jYyFULw2PD2tOzVkLjD8dRsVvG+4u+tv+3Dlq+x2bn0IAhvpV5elo3I8hHM2j+Bm5eTyc2y8vlLcwAIKxWCLc9B9o1UNE3n5K44zBYjn656s2DeM4fiOX/8Kh6PxrqF+xg+ofdd2w0o5kdh7WR1XcdhdWL2NWPLtWPNzEOUK/7A43TjUjIep9d6IDEhjVrNbouP+7zcgT3rTuJ2uBjxxd2NWZt2qVPQdPfVzpO9OiRFsGPhHoQiEIqg3/C2KAYVXdMx+5mx+FlIvp7Oku+243ZpGM1G/IJ9iapSmvCyYZw+fIXFX21EtzkQfr44XR5e6TSJOfvHYcu183bfGbicbroNa0OFGlE07VKHj2NDeGvuWkx2D2UDg/jlx508ObgFQgim79vHxYwMFCFYdOks77dqxcXTN9i98TQtOtWgQlWv9YSvyUhMWEihx0cIwVcvP8a8zUdoXbtCAVk6diieSR+uoERkMB9/MQC/B6Tn1i09xPb1p+kzqDn1m3nTX3m5DoQQaJrO1cspzBi7DCXEl7Qw71yKKmhQuyzBof7M3fAGWRlWIiKDGTN+OZ78iFNwpkJwBkjd28cwKNiCI9fBgJEdOX4wnlZda9O4TVXMPqaCfm1/4MzJ63w2bgVut8ah/Zf5es5QDp+4yqyfduDOsLItxY5BVTiw4zzRVUtSOro4bTvVICUjD6Mdpg7pQaCfd1/7DnmEpXP3ULVeNMZgXzLsTp56qhklC6lg9Hg0Xn5+Dna7mx9mbSMmwMKbn/Vn3hfrSIxPAU3D7GPixQ8f+8tjWoSHgAT+Ya1RhBCj/up9KeXUh5mniDAV4d8Wu5btZ9LTM7xaB38Lv1z5Bp9AHxRVQUqJT4APUkre7jihYIwU8F73T8lIzEQ1qsw+PoWS5SIeuC0pJSOajeHG+UQCQvwZMKYX5w9exO30sOmXnZQsX4KEMzdw2px8N/qXAsL0B0IigmjW5f4mjgCNOtVmxVcb0HWdx17uwPWLyVyNu8nQ/O7y4VGhzP1sDXvXHEXz6OiaTsmyYUxYPILX24zn/OF4qjWrSEDI3W7SUbERGM1GpIRq9csVLLfm2MnNzKNE9L0ptoVfrGPuJytB1wkN9cXm0nA7Nao2iqHXC+04seMsXYa0oVSFEricbr5+eyFJV9N46dP+vDyxL1NH/UrJqFBaP3Zb6H1kexwn9lxgxvq3KBldnF+m/M6kl3+m9WP1efGjx+8iko8Na83nr81Dy8lD2uxIATfPXKdEVHEmLBrB0W1n6Phkc3KzbHw4+FsSziUiggIwmwQZGXns3Xaeg3suowuB9keQSAg0j47T7iLlZgaz319M4pVUAE7svcTzH3ntGppVKsueT17i6T5fc+7mLRLi06hWozR1G8RQo0QEm+MvA1AjIpz0jDwGTlmAM0BlzrtH2bTwTcx/ctUGsDldLNl9CpnlIsAuadG+Gp+/cLfb+sxpG8lIzyMvz8GOzWfp3LPufc+VpBuZfPPp77hdHs4ev8qK/WNRVYXa9cry+MAmHD98hfN7LuJ0uHGgowGoULd2NNUqeosVLD4mSpTyisu7dKzBoSNXUBTB16/2w51lY/LphYRHFuOFsT1wOd1MHL0Ym9VFYLAP0mwgrEQQ4yf3xz/gNrGz210IIdB1id12d2NgR4DElCxxuzX2bTvLvu1nMRTzB0UwcflONE0nJMiXpZOfRQjB4Fc7MPjVDrz18i8c2n0Ro0kl7lIii66eo23l8nSpfruNkNut4XC40TQdpCThUgozJ6zEkWPL95My8uonfaje0JsidXk03ljyO+dupdLcHM7BpWeoU78cH37yOKpapET5L0Rhz4x/G0WEqQj/lsjNzOPjJ6YViLelhKzkbCaseps1szZSoU45qjSKJScjl9Trd1SV6ZAU720NZFYEl48nULJcBJeOXyHpSgpVGsey6eedRFctTZNu9QuGuZ1uLh27AtJbkVSqQkmMZiMgaDOgObF1yyHwpsxqtqiCLdf+ty0IqjWtyC8XpuF2uile6t7oxKWT19m3/iROl4YQULVRBYZPegJFUfh861iyUnIoFhF0F/Fw2JzsWnOcUZP7EVQ8kNj86rika2m81GIcLqeb3i91ZND7dz95L57hLQyRQpCRbkUqXsftk3sucXb3OVxONzuWHeLX81+wfdlhdiw/jNPhZtqoeUxd8yaztrwDwInd5zm9/yI1msQyfvBs3E4325YeZPbO91n8zWZ0XbJ+wV76vtSOsEhv+sqaY2fp7O2YfMxEVwglbu95FEWh3iPeSFW9NtWo18ab/hnddwZXLybnNwSV2J0Sxcd73L2l+gJhMSNLhuMoZsKclEPFFrFEVyr5h1WV18unEMGEv78ZRfXq3fzyox5D6tajcvEwTKqKbtPp8OF3aL4KCEF2aQsej4aZewnTuF83se3QBYIPZmFQFJbN28e89a9jtzqZ9OZCUhKzKF25JEmJmV4xdextEp9ltbN8/2liSoTSsloM6Zl5jHhnPu78ljpSkyw/dZZtl+IZ2rg+jz/RmLMnrmGJCMTgdFG8eSpXr5QGXWVAjwaFnnvNGseybP5LSF1itbuIqFSSX3e/x4lDV3jr2R+QeEmJlOCwu9DNKhkZeWxZf5IefRoWzFOvYQz9n27G+bhEBj3vFXvXrxXNi4NbMXbrVqRUCIq35n9fkOsneXel17xUcUqcqTlousSg3j6HjSZDAQmbs2IvaRWMbDkfT43IEkSFeKNNPj4m3nq3O7/8uJPkC0mYzAaiKkTQ9YlGfPX+UsqUD0cr60ePr+bSsXpFKoQXZ/fFq9jdbhbZMiiVksOhbXFcuZxChT8VNBThXsj/QH3RX0FKOe5/Y54iwlSEf0t8MuA2WQLo8ExLSpQLRwjBoPG3K5Z0z/2bpEZVKU29DrU4f/gyr7cci1AEZl8z1iwrqlHl0w3vU72Z9ynW49ZQFIGuSTSPRsX6Mcy/OpOcjLyCCNX3Z77g1O5zfD3yZ7YtGc6ob5+jbf/7t3a4dPIaY3p/gaoqTFzxOtGVIwkqpCLrD0SU8YqpffwslImNYOr6293lFUUpMFt0WJ1cPXcToQjmTv6d0wcuI4BPFr6MwejVf5zeexGPR8Pt9LDmx+10e64NoSVuC5cbtq/BzpVH0D2at8dbvreRxdeEZtMg3+jQluvgwIbjeDwaiqpw40oqBzafxqgqhJQI4v3+X+JxezD7mHE5PYDAYXNh9jERXjqErPRcfPwsBN0RFdu/6TQ34lNw2l1kWn3oNKgV/sG+PPbK7XL0P5CZ4jWaFHj3TyhQrnJJcnKc5OU6yIy04LKomDwGHBX9qPlIYyb27oKiKLz51WBGdZpIYtx1Lu3N4us35vHSlNtpwo+m9Of3VceoULFEQdm5EILm0d5KrGFfLsbjPTAIXVKjZPh902gpt7IJOJ4NOmi6TkZ6HlJKtqw6xrG9l3A5PZjMRsZ+2pfw8ECiyt2O+o36cTUnrtzCoCrMHN6LIwevkJyYhcXuAlVBaBrjNmzF6dHYn3Cd8RUac+rENdwujaBQE1F9Myih3SLQEEq96lH3Pb9MJgNDXv2JpOQc6teJ5tOxvTl38joej46m6Yh8hqkYFXThrYgrUfpujZYQggH5/ePuXNbz0docvHqN9VmXsDp0/G7akUaFnCgLIEGRBAdaeK57Ywx/ivC8NbYH33+9hc3rTmC+rhGW5SGzhQFdSk7dSqJcSAj+ZhNt2lWjTbtqnDoUT3pyDs071sBgVJm69FVcTje1Pp2BZhSc27WPT7t2wKPrmFUVke30+jHZXfgWEh0swn8PhBAWvKaV1YCCi1lK+ezDjH8gYcrfwE68XrUGYImU8oP7rNsbWAI0kFIeFkK0Bz4FTHityd+UUm7NX3c7UBL4o8Spw9/pGlyEfy40TePwhhMFr9+ZP4I2/ZuTmZLN1KEzUVSFUd+9QFDxQG/Rjaqg53eaL1+nLMUjQ+j6fAcad/Wmi67F3QAhcFideNwaHreGwWQgN+N2lZGUEtVoQNfc+U+8Cr6BPvgF3TZQjIgOY9uifditTqQumfzcd1SqX4HSFbyEKulqGgHF/PDL98dZMmM92WleEfSq77byyud3a3r+jKBQf2Ztf4/4Mzeo2TS20HVcDhfD6r9D6s0MJCBMJqTJhMXXTGpiZsF69dtWw9ffgtPmwupwM7rPl3y/6/2C99+cOZg+r3bk6LazzPtsDU67C0VVeGvWs2TeyuTw5tP0e70LP45bwoF1J9AVBWE0kpvnYtzQHzBpbkJLBiME6JrEnmsHKREGA8M+eAxVVfhq/Vuc2HuRzb/tY2S3Kbw2ZSCxtaIKPKLMPibqta7KK594U5I5GXl89cav3LiUTHZaLo+90Jaeg1sw8815eDQdxWKmVvOqvP7Fk4REBPH52p3M2XkECZg9ApNTUMUcikFRuJqayYIDJ7CE3o4Crv52E+UaVeTRxxsghCAk1J8nB7fwpnnyoes6Ez9cxv69F8gKUAlAwVnGyJiB7enW4Hb14Z04cfUWqccTMdi98+iKwFrSwvvf/s7Ra9fQPBr4mrh8PQNjfr+1k0evUq1WGVRVITPPjkfXMRoUcmwOrrvy0HyN6CYV1eGm63Ot+coTj0RiEx5+yjyHQ9VRpSQv3YV2ugSG6jfoGNkHgMxMKwvm7SEyshg9etUviEjeSMwkJTUXt0dj36F4NE2nbdfabFp1jOxMK7lOFw4/BVOejjXcTE55A+/u28HyOmUItNxLFKWUnE9PYvTGrQT7WHg8tjw7tsVhL+2LGhlAnuJBKnjd2IHm5UrTr8Pdacg8u5NXPl/GtYspmDSJAIxWnUf1MN5Zu5GzySkEWixseH4Qvvli/hoN7jWhzct1IFwSVEDCt1sOYvB4o4ehx21IVQVNI6xk0D1ji1AI/k0iTEKIMsDPQATevfpWSjn9T+sIYDrQGbABg6SUR+8z5S/AOaAjMB4YCMQ97P48TITJCbSRUuYJIYzAbiHEOinl/j/tdAAwAjhwx+I0oJuUMlEIUR2vQdSdDbsGSikPP+zOFuG/A54/TAnxPr1WrBuDpmlMHTqTA+u87RH6/T6Myg1jeXRIG1TDbcJ05eQ1Zh2ZfNd8LXo3ZtuCPVw/f5Mn3nmMnYv3Ub5OORp1uf3j7Rfoy4SVo9nw03Y6DW5933Rbw061mfPBEsCbzpr9/mImLHiZeZ+tYdFXGzCaDMzY/C6RZcOo37Y6e9ccA6BOq8Jvtn9G8ZLB961mA0i9kUFGcnbB5zUaVSLKhVGlYXmada5dsF5wWCBjF7zK232+xOVwk30HOQRvxCqmWmlvWuuz1Zh9TdRtVZUmj3rn6PysN92yacFekBIFCSYDKgLN5cZhdZJ4OZkh4/twaPMpTmw/C5qO1HQQgn3rTtCwfXWs2VaObo/D6XAz/c1f+WrjO0RXLMG3W98h7VYWleve9tX59v3FbF20Dz2/SvGb0fPRne4Ciwiz2cgTr7QnJL/Ef/+Za6hWQIBulLg8Gj9vPUKv1jV57vtl3MrMwT9IEpg/vzSZ+fLDFZy4mMj6sDSsaTZiDmtkXUijUePyjJs9iKMHLrNj7UkUDcy5Ald0AMOa1KdlTBSTR8zD7Gdi6JjuBATc7n/29q/ryFDcBCsgJHhK+OAKMbLxwHk0i8BY1Y/AK25cLg/fTFnHrcRsEPBI26q8MbYHk57pzOcrdlKpVBhZ5zLwpNqxVjVjr1yCET1b8FSzulS5nMAXe/ZwJi2F45kpRDQMwG9zJrqqYSCaCTUmFxCjTyes5NixBIxGAyGh/jzyx7mnCpQQE1qGxqPNqqCqCsUjAvl+5QjcmkaTL74hS3fh71BwOSUeH0Gy08b6uIv0rXO3g3xaXg4f7JnK4URJalYQfrdcpK3YRwiC0LqluJ5nx+hnwKBKhA4Gt+SyIa1g/PlTN7ztUzxOrt7KwGGQEGDAlOHEkOXEfiKNIwbv74CUDq5nZVMp/P4FCSHFAxgaXpkVp+NoV6sii25cRkowCIFuVlE9OiWiQv+2JUIR/r/DA7wupTyazzGOCCE2SSnP3rHOo0Bs/l8jYGb+v4WhgpSyjxCih5RyrhBiPrDrYXfmgWeP9P5a/fFra8z/K4x/TgAmAQXlO1LKY3e8fwbwEUKYpZTOPw8uQhH+gMliolSFEqTfysTiZ6Z46VCmD/+OwxuOF5T8a26Ny8evoOs6RrMRt9ODalCp3ea2J5DL6eHgltOUjgnnk9/fLVjeeWi7Qrdbr30t6rX/6x5hMTWiqN62Jqd3n0MIQUBx7+1427KDuJ0eFEVwau9FIsuG0a5/UyrUikZVFcpUfLBr+MOgZEw4dVpX4+CG46CoxFQrTffnWrFuzk52LDtA235NC9atXCeafq904OiOOJ56o0uh81WsHc3EZSO5lZBK86510fJTb7ouUVWFZz943OvvZDZSrXkVEs4lErf/Ase2naXlY/XxON2MnP4M7z01i+SEFISi8NXoBSiKoEX3erTr1wQEmH2MlLqjdUp4qWKEl7o73WP2MSIUBTQN1aCgqgpOx21hcd3W1aiS3yQYIDPLhgAUITBoAjc6uWYPH6/dhtySRHG3hrVuMCOWj+T7MSuw2b3p2z37LpLYykDkdhuZuTr4Wzi06zzxcbeYPH6l1xxSAY+Pgo+PiUdbVWP2+OXsXHscHcnKsxf54dsXKV/Ca4QaEeRPSnQuuWYD7cvHcNVu5UJaBpouQYC7nA/KNQ2zQSW8RDCJidk47W5OHLmKR9fx8TUxc3gvdmw5y+SJa7AbJKWDffnwk17ULe+1NHikfFniszK4sNur12vVsgKn8rahlHRzMTqFAV//zM8vPAlScv7sTXSPjiY0NE0nL9fBqeNXmbR4B5lOJ+ZiJnr2qIuUOh7pxqiYScrLw2rQkZogz0/SukxZDiTfBKB6yXuLJvp+t5DkHD9wSNRAieWaC3sxX4QuCbqeg8muoRgEuiJxh/shhKBdc2/6e/fmM0x+bxkAXZ5pgkBgsZgIKWXBduUquknlitNFg4xiHCmWTf0ypahQvPCKxDsxakQXRtEFXZekvjuPC+vPYbAYQCooZgO9nrp/+rwIf8K/SZWclPIWcCv//7lCiDi8QZc7CVMP4Od8rrJfCBEshCiZP/bP+MMkLys/iJME3NvT6T54KLothFCBI0AF4Gsp5YE/vV8XKCOlXCuEeLOwOYDewNE/kaU5QggNWAp8JOU/TWpWhD8jIymT7NQcylaPum/5vRCCrw9P4vTuc1RuWAGLr5kze87jcWsIVRQ8JSqKwpLPV+OwOqnVuhrDpw6ibLUyBfNMHD6H43suIHXJtNWj7tsG4+9i3LwXmfbWQhRVLSjhf/zlDnz11gL8An1pkO9Xs3vlYX78cAl1WlflpSlPPtA1/GGgKAoTlo4qiLrY8xz0LfsKHgRnjl0j9VY2/V/zaoGEEAx4rRMDXrunIwDg7aX3XwHySgAAIABJREFUZudJXDgST7/XuzJt/XG2LNyLxd8Hl8PN4yM6MWRcH4Z91I+b8Sm81PZjXA4Pr0zuzwsf92Vow/dxuzws/WYTn654nVEdP8XtciJUBV3CpVPXGTX9acbPe4nkG+m0fEDrlOfG9SEkPAiX001YqRDKVS/N6K6T0VxuGnSszdhf725vM6hdPaau2EV4kD+Pd6jFjF37UBFkJmRiyHSj6JIqef78suAQecX8ADv4GGj5eG2uZMahaHf83GgaCQlpOPKcuIIN6CFGXh3ZmV5NaqIoAr8gH6TwimFdCvy65gBjBnVENah8+Wx3fly2j42HD7A34TxuHwUl3EzrJrE82b0hDjwUe95AVnoe2Sk5nLmYSF6ASr32len+wzyupGdQ2uBP78AYcgIU0CXZuQ4uHE8sIEyTR//GllXHqde1LN2ebkb3qpV4J3IfN/NycOWZuHE9m4tJaXiS7Wh5TtB0kNCkaUWe7DYNm92FR0pEjDdyatfymHnxTayeTFpHDKVuSE+alCnDjoQEulepzJRHH+XwtZtEBPgTHRLMrvUn+W3WNlp2rkXvoS1JzrZhuSEJOuci6REfMFvQi3mNKSOrlyFn9yWkw43q8mDIc2P0MRKueK/b82du4nJ5kLok+WIqiycPJik9h+yrGXyy92dcYf643R7cFzIZ268x/fs1eahrx+lwkZ1uZfueC1zcfAmhg2b30OupZnTq3YCoQgxZi/CfAyFEWaAOd2exwEugrt/x+kb+ssII07dCiGLAe8AqwB94v5D1CsVDESYppQbUFkIEA8uFENWllKfzP4QCTAUG3W+8EKIa3uhThzsWD5RS3swPsy0FnsKbq/zz2GHAMICoqPsLGovw74/4U1d5tcm7SCnpPbIbz370xH3X9Qv0pVHnuiReTiIvy0qTbvVIjE/C4/Tg0tyYfU2MXz2adx/9GF3TObHtDKd2nr2LMMXH3cRhc2HxNXEjPuV/jTD5B/ny3uy7NYKPPtmcdn0bYzCqnNl/ia9HL+DQuuO47C4ykrJp278pVRtW+F/ZPlBANg1GAwaz0euRKAS/TF5DrxfaFbQauR8un7zKipmbuHLqOlLC4mm/43G6QQicdicgWDx9HRVqRdOyV0Nmj/kNp80FQvDDuOVUqReD5tGRuiQ3w8rSbzYD3rYdioCAEH9e+MirqfHqse7WZFmzbUx4+htSEzN5a9YQhMHA3EmrqdoghkFvdkXkmymOW/gKFv//w957xldRbu3/35ndkp3eCAmEhBZ6DYTeQZReRERUmoINQQ92RY4FRRRRUYoICNJ7L4beew0tBEIK6b3tMjP3/8WEkAgonuc8v8/5nyfXG2XmnnvuPTPZ+5q1rnUtF+q1uF+38mzXCIZ0aILZaEAAAV7u2BUF93g7c8zxSIBruBcnouMx+huxyq68N6k3PXo2Zkh2C46Gx7Bo8hZEkZ2ufZrSOCIMg8GAu02jX/vmPNmuid7nLjWPMe/1JUso7IqOpaiKCweWn+b4jmu8PK4bfXo0prqLhx531wSyXcMiZEIMrvz2TRRDn29HWLNglmw6y5r5+7HbFajiwZpDF8lsakQRgjhHHqv2nEcY9ebCRoNMpZICgcICG3u3nEcCsncm0HFiFSwGE182/ojxy5Zx+lIOfu5uhAX44nBzYDYZkIFGzcJY8+sB8nKLQJKQZYkeLcJpHVED18AE7HcKEGicylxPC7+BLBg8CEXTMJaQk8hQnaypqsZXb65AUVQSYtNo+1hDpvTtxpxfd2GUNSpdLMbmbwaDhMlgoE6TEF55uRtJtzP5fe0pzh27AYogpISw9BvailOHYrAVO3j25a4E+LgT4OPOtO+ikJ0KslMFVxN2m5Ol07eScDyWid88w8xNB8kqKGLSgE4EeJW31sjJyOelnl9RlF9McIOqqGYDsl3BIMu07Vq/giz9TUj/70IX/pIklZXlzBNCzLtvPZLkjs4TJgoh8v6VE5VwlTwhRDa6Lvv+L5W/wN9K6AohciRJ2ovexO5SyWYPoCGwr+RLvDKwSZKkfiXC76rAeuB5IURsmbmSSv6bX5JHjOQBhKnk4s0DaNGiRUUE6j8Ymqbx3cQlnNkbzYgPB+rpGPTS90l9pnPjQjyaKiHsDg6sPvqnhAngyMaTfD7sWzRN6O1Eytx9IaBa3SolrtROJFni53eX4nQoDPmH7n8zfupQpk9cQnF+MYc3nqJNz8alLRYeFt36n8BkNqKqGu89+S1OuwJCYDQbEQgCgv86pfAoUFWNld/vJOV2Bs+/0xf/IG++3PwW7wyaCZKEl687RvOfO3XbCu282eNz7EV2XTBtdcGpaFD6Fq8X4UsCLh6JodOgSBwFNv3yCwGqQli9KtRqFsa107eQzUbMrmbcvFyxFzvQNIG90E5WSs5D17B75TGij8fitDuZ/d4KsnNtpCVmc/nkTRq1qkWDVjV5td1HpCVkUinEj7knvyg9tqjYwelL8YRXr0SgvyeJ6dn89O5akm6kMXHqEJr2b0iAvxdOp8IHW/ehWWQcJgnNLPj+k03UCAugIKeY3evOURDqgWzwxLdtDfwCPKhUJ5AbMSnEZ+ajqhr/GPQdN6ITadCiBl8uf4XWW84w6+P15FbxxOFUmDHndzq1CadL9/rs3Hae1JRcghoG0rBBVTb/chinXeHSuXg27n2Xm1fulLbNMTk1fFxdcXO1cLMwF2uyilEyoRhkJOCl4R3p0lFPYVndLNSqH8ztG2kEVPbivWs7OXQojpHhLZj9zAgSMnOo7O2BxWTEajGxcP0EEuMzqVUniMU/RiELgQZUC/Xnkwk6Gc1zBuAodOXcptoEeVSjeLwDVxdzKVkqC1mW8PCxkp9bhCzLuHm6MKhaAwY2qc1X37+GXKAQ08QT10utcXGYeLxnI6oEehNWK5BWHetwbO8VAoK8qNMoBFuxA5PZwOzVr6I/ToJvfoliz/EYwrKdSJKENSOf2g2rcu3kTdScYo7vvsyaIxdZc+Qiiqphd6rMfKG8x9XVc7exFztxOlRSrqeghPli9nLhiXZ1CK727/nbq8D/CjKEEC3+bECJdnotsFQIse4BQ5KAkDL/rlqyrRyEEJokSW8Dq/7VxT5KlVwA4CwhS65AD/Ro0d1F5AL+ZcbvAyaVkCVvYCvwrhDicJkxRsBbCJFRcjH6AFH/6oeowH8Grp+JY9+6E9iLHPzw5m90GRzJrt8OkhCTQmJsKgCSqwvCbifzThZTh3/HhJ9eKFeJVha/L9n/wL5sslHmiTFdmTJwOsX5NgCEJtBUrVzftxZd6uHMK8CRb+Po9vNsnBvFrx+vxtXdhW+iPqRKzb82tPy7kCTdN+duyiwozJ/qETXZvvwoz0x8vLTs/1/FgY2nWfXDLpx2J+lJ2Xyx+nXqRtRg/pEpRJ+IpVnHen+ZvlCcCopTKbUSeGf+WOZOWUdmSg7CaEQTINn1aFLlku7xXZ5qxYXD1xBC0PRxXQD84YJxfPnqIoxGmeff6cvr04fx/uBvuXDkOqDfk4ehWt0gZFm3MajZKIQrF5KQDbkITWD1dCE/s4A7samoisad2FTyMwvwrqTrxV6bspL4pGxkg0TbwfVYfe4SBChUOZbLrCnr+eX3t2nZXo9o1Th1kfNFd9AAc6YdSUj8vuUc69edRlM1rJKGWsuH0GBfkpNzuHU7Aw04tv8ac7/bSezlJFRF49KJWAryiunUvRG/rzjBybx8ZFnCYjZiNhuxmI389MsYADRNsHvnRSjRMFlc9Whfl8EtuXA6DndPFx4f15ke3Rvh5enC7Dm7yS0qoMvg+kz7YiNSoZOGIQGlpF6SJGYse5mEW+kUeQue2r8EY7LCukOHadO7Eu261sdcRszs6W1Fu5HKkIjJyLJM6051cPNw5aV3epXO6WmqhO3A0yRfjCFNdrA69DTPP/Xg3muSJPHdmtc4vOsS4c2qMe67tdy8k8nLA9pR1Lkf2xIvgR08b2agaYKXPlvFpu9fRJIkjCYD7R/TdYWJcRlMeOpHHHaFse/0pu8zrUlIzmbz3ks4nCq5QjBydEc8fdzo/Vw73npqFnHZhQwe2wU3ixlZkjDIEu6ulvvW2LBlTbz83HDYHOTV8aHQw0ihqrFxy0nO74lm/p737zumAg/Bf1Cft5IKuF+AK3/ixr0JeE2SpBXoYu/ch+iXAKIkSZoErARKfyyEEFmPsp5HiTAFAb+W6JhkYJUQYoskSZ8Ap4QQm/7k2NfQdU+TJUmaXLLtsZKF7iwhSwZ0svTzoyy4Av+5CKjqW+rlE1jNn/mTV7H1590IISG5mPUSdKdOgGyFdg6uOUpQjUqM+vT+SNOvU1ZyaN0fU9Vgsph4ecZIqtSpzNZ593Ns3z+0VahWJ5i4y4mA4PDGk9iK7NiKHUx/cS4zoj78H+uKjm49w5LP19O2T3OefX8gsizz8tSnmDVpKZIQeAT6cmT7BWTDJY5tPUOD5qG8+MUwzJZ/zQ/mLuGSJAlDGfIVUMWXzgMf7U3a3duNzk+2YfcK/R0matlhvtn0D/ZvOM2+bee5eTEBUXJdolYf58lXe9BjeHtyMgvYtuggubk2stJyCajiwzcb3gD0dil7157gmbf6ErTmOJVD/ek0qCW3LiUQf+0OrXs1w+JqLl1D0471mLZpElmpubR6vAm5GfnsWH6U2o1DqNUwBCEEDdrW4cKBK8hGA0UFxRhMBpbP2Eb8gesUV/HCxcXEluhrqEIgmWSKa3lRqZIfQggO7rmCw64w4+W+7D57A2dmMWt+2EtQLR/277+KcKhgkLC6Wvjgrf5ENg5DUVSqVfMj7loKkibYsukcAUHeZCRl07Rdbdw9XZEkia+XvkxCUhZHT9+kTUQNLObyX6Pz5+xh87rTCINMl671eG6M3odw5sxd5LuYsUky7duE4++np5VeH98TgAVfbUO9lYUQsHLOXqbMHVnuvlcPr0yR4sC72IzbknxkBb46uJoGzUL5euEL5dawefHh0pcNfx83XvtkEKqicmL/NSoFexFWuzJe7m4YDDKyJOHudj8JATi84wJXz94mo4qZtZeu0zAziTsZeQgBS3aeYvd3rzAotCkiD97Yth6HUyUrrwhNCAwl5CwuM5sjsfEo5zJxOhQUp8r21Sfo+0xr/LzdsJhNGGQZP283xrzfr5TU/bT9LVRVw1BShOBUVXIKixne6Z6j/vyoE2w8dZkBLRrgO7op4VZXtuy6BA4V73MZyHaNOzkPb4Zdgf94tEOX61yUJOlcybb3gWoAQog5wDZ0S4Eb6LYCo/5kvqEl/321zDbBI6bnHqVK7gK60OqP2yc/YDhCiM5l/v8z4LOHTP3nCtAK/P8KMWdusXzaRga/1I3LR69xesdZ4s7fRJJlhACTqiCKbYgSywBJljAYDfgEPriEfsUXGx643Wl3Env+Fk26NLivg7niUJj/7lL6v3rPAPGLNRM5GXWJGg1DOLfvEpcO69GP2AvxnN0bTUS38uXSfxdTR/yEo9hB4vVk2vaNoEajavQe3YXIx5owd/Iazh6+XuoefuvCbRIuxlE1PIj+L/X4l87Xvk8zcjLySb6dwVOv3ZME7lh+lNmT1xJaJ4hpK1/D9SE/gHfRtFM9Dm08haZpePq6E1DFlydf7UHXIa1Y8MUm9q89UXo+0MXmKYk5ZKTnk5GRz4rvdvLK57p/ksPmZMIT03DYnJgtJpZe+BIXq5lbl+J5td1kNFUgm42ENArji1Wvl9oC1C2jS/IN9ConTpck3URUMhjQNDi44RSxV5I5su0cLjKY3S207lgf9/qezD98CkkRmPIFOQEwf8E+Vs8/CEj0HxrJqxN7cvrgNdSMfPKFRla+QzcyVAWdHmtMZOMw8nKLsBU7mTN7JF99uokDey+DBI+N7kSffs1IT81l6ew9tO1Wn8CqvuzfeYmASp5UDb6/qfOVS0nYbE6MJgO161WhajW9ms5Q5nl9UEq4SZuabFx8CCSJyM51yUjJwWlXCAq9V05vNZqZGzGId6UFKOjO3Nej72Ufoq7eYMnJczRqVQnzbv3rvU0PvQjh+39u4MC2CwgB0xa9wMsjOlE5wBNXFzN9HmtcOkdhsYOlG45jyyhk9497cDoUHFYD9u7BXExKwd1gxGIy0rFJTWRJorlfNfCDEX0jiTp+jRH9WmEoIdxFDidD5izDoaq42ySCLCY0TdBvuB7NMkgSPSr7k5xbyKR3B9x3Xe62MZFliSHtGpfbl5yVx/xf9+AwSXyXlo0EmE1GPAQUFzqRnbrh6d2I7/9GGv6/E9J/UpXcIeBPF1NSLPbqn40pM7b6X496OCpMKSrwb8GHA74mJyOPI1vPoNkdCE1DFNuQXFxA03TBMHprkVdmjsJhd2JxtfDYiE4PnM/D353s5Ps1MLJBJiDEj5vn4xj7zfPMnrAQVdFK5nahZpPQcuNd3V3oOKAFhXlFXDp0FaubGbtdQZIkvAM875v/78I30IvMEsNIT797QtQbFxM4vTcaW5EDVy8rQVV9uHVWJ5BuntaHTfdo5/Rzw9vHileZ8/06fRsOu0LCjVTOHrpG256N/2QG6P5MOwQQc+42QTUrkZ9TiIe3G76VPHnxw/4cWXMUxamy8qtNbJm3mynLXiO4ekBJuxgILuNUvfCfa/SmwiVNYSf1/4bHhrZm289RpfdGtTtJuplG1Orj5Yjen6HDoJZcPxcHkkTV8CBiopNACAyygVee60Sv53XH6Uj3Skz9aD2SwUS1UH+ijl1BaIAQnL50G4AlM3dSXGjH4VDwDvEjP9+G0WTgxVe6svfIFaa9sRIEWBsEUKluAN17NcbT3ZVBQ1tx6EwsP0xYgdOhsObXQzTrUo/jh2MwGA1YXEx0LqmKvIuxr3bj84/X4+vnTtuudUjLL6CShztffTecTetP0yKyBlVD7o8GRnSow+ytb2K3OcnPKmBMx89BCF79fAiPPXXPVqZB/RCGju7A+qX6PWrUuCovdJ9Gv1EdeP/2SZyqxhmDgXVbJuBhNpOeXkBBvo1rFxKxFTuxuJiIi0mlTuMQnh4Yed86fli0l+37ozEUOHDTdGG/SZPwvZKPXNeHFZ+MpKDIRliQL5oQ/HLsFIk5ebz2WGvGDCqf1iu0O7ArCk5VI88ss3X3JEzIpY7pa+ft5cCakyiS4GN/eOHFx4isWvUvn42EjBzWfLsL7yO613FOh0Ac/hYQAhGbibVQRUgyoCG5mCrIUgUAkCTJCrwJVBNCjJUkqTZQRwix5VGOryBMFfi3QNU0QEIIkM1m1OJikMAkCxwlXjruPm4E1wzk8tFrtBvYmsgnmiJJEqd2ncfV3YUGbesAusYmJDyY3LQ8jCYDkxa+Sm5aHhf2R1O3VW3W/7CNrDvZaJrAM8CD7sM70rZfC4oL7OV8mMpi7cytHFx7HFXV8A/xx+Lvw/blx3i5Qcj/qBnnjKiPOLThBA3ahONfRtgdWM0PoQksrmbqNq3GRwvGsWluFAaTgdgrSUirjtLtIZqRP8PG2b+zYMpqAFJvZ/DkBD2a1rxDHQ7vuIAsS9Rs8Nc/OJIkUbtZGLPeWQ4CDm44zbc73gUg+VYamqLiKNbvW05GHgv+uYbHnu1Ax37NiOhcn4799QCxqqis+347mE3IJhPIBmIvJTL74mq0gkJdSF7iAG4wGqjbPOyRP2uTjvUQZguqqvHZi7/g5+tKh77NyHaTmJkbQ9xBM690aEX71uF8OX0YaWm5dOxcjx9W72f7hVSQJfo/qxONlp3rEXctBQG8/+kgVCRq1qmMh6cr3y6O0qNZAnJuZJJkUYjs15rRvVoxc+k+1v9+HheHoptSOlUKC+yl7uC52YVkZuTj6mrGWhLVc3O3UCM8EM8AK0Nf+wmhQIdnm7HlRgwuBiM3EpxUSvXD4pSY8uUmXF3MfPrBAHx93AguiSYt/HJzaUpt/5az5QiTJEk890o3nnulG6mJWbz42HScDoW5n2zE8nxVFDRkWSKwsjfvvLSYpIQsrFYLb77dix+mbCAoxJcOj9+LrGblFuHp7lLasiQpPxtFVVGtBlr3agSZxVw6cxtuFuBbKBPg7UaAt6473Bp9jR8OHcOpqMTn5LBw2GBS8gswyTJ+blYCPNz4R4/2rD0TzXOtm+HtXv5lwcVqRpIk7nT34YZXLofWr2PRwEFEVq3K+mVHWTgrirqNqvL5rOdK7UTm7DzG/KgT+OxMwqgKkCXGNGmEaOiHn7sr289sI7UwC8XHHZCY8F6fR37mKvBfj4XoFkl3DeuSgNVABWGqwP8baJpG+0GR7Fi4D6FqCKHR4cnWPP/xU2QmZ/Nhny8QmoZPoBcxZ25x/dRNfl9ygMFv9MHq4cqKL9cjhOCdX8fTYXBrdi3ax5XjMQghqNmsOl2G6oZzA8Y/wauR75KReE+fl5eez9HNp3h5xsg/XaOXvydIEkITpKfmIReoZKWdILJ7QyK7NXjocUIIFn+2notHrzP64yep36q8NYBfkDf9X74/YlKjQVWmrX+T+OvJtO/bDFc3F4b+ow+vd/+cGxfjMZlN+Af70qR9nUe+zk6Hwspvt5WU90PSjZTSff/49hn6jepApSq++AQ8WmPurNRcZFnv/ZYYm8ozjd8lvGko784dQ0T3RpzefQlbsQNkmehTt7h2IREhBCazkead65F8K52ajavh5uNOUb5Nbz9xVywqSUhGI5LRqCvhJfh+xztY3S283vmfFOUW0bZPc54Y1ZmgGuXF9w67k5vRiRzfdUFvKyLpLS4yknNQHE7WVymGHIkf9x9lYOP6BHl50LjpPcuR/KN3MBWpSLLELzOiyE4rZMRr3WnVpR4ePm4E/sEw0yPUi6JzmciKwBGkE4dqgfqYmPh0bKoKYR6EyRbGvNwd30AvJr0UB0Jj1cKDzJuxE5PJwHeLXiC0RiU+++d6bt5I00XtRQ5QBFvOXMFulbA7VX6/HsuVpHTaKn7E3kpHliXWbjrNiyM6lq6py6AWrF0chXAIrreKx6GqmA33FwycjE5ALanG9PRy5ZsxT/P7tRt0rl0dq8lE7HW92EJTBZWr+bFkzzvljp86Zyfb9kejGATejXxY9urTxDWKR811YHSR6DSyKcFZXrz99GwAbPYHFGHYBS6pKgXmIrZcvso7W3chSbDgqUFEVqvKiLYRdAwMobDAdl9qbMCojkiSxDf5l8nDhhFIyM0lsmpVfp29B7td4Vp0EtHnEmjasjrJiVls+n4vFlnFVsULqy0LYTbQoVdT6tYJ5tj1eM43d8PS0pNfxz9FzeCHu4NX4E/wHyL6/l9ATSHEUEmShgEIIYqkvxF+rCBMFfhbyMnI59qZWzRsXas0tbRx7m72rj2FZDSiKXaE3UFWcg5hDUIIaxDC2vQFrPp6I8unri+tnFKdKgfXHCOsYQi2Qt3LdMbYOVQND8LsakaWJQwGGd9ALzRNKxVnC027b013K+XuQgjB2tlRxF9P4dlJvVEUjdWLjiBcLEiyAeHigiTr5Mm/8p/3lrp05DrrftqFvcjBZ8//xLJrDyvUgPjryWz/7TARnevRomsDwpuFUucPERWHQ0G76wD9gB+fB0FVVBRF5frZ2xQV6tVrkiQx/L3+pWNkWaZO09A/mUUnWIpTJbSe3p2oVpNQug1tw/Uzt0hOyCI7LY/zh65x4dA1PlryKkIIege+pK8X3dJAUzXSErMY3fJDHHYnzTrWo1H7upzYHa0To7vrcTVTs3EIBdmFpN7OoMuQVoTWCWL220u5fvoWmt1BwuVEts6LYtWduaVRPiEEk/rPID4mBavVUrrtbnsWo6sFg60QzSShCfBwuV+rZTQakCUJRdUoLrDx66pj9O/ZlFoNq5KdW8SR0zdpUq8KbiXzh8XaifPUMBaqdKxbjX5Pt6F1ff1aTnimM5Nnb8WnnpXnWtdn6dfb8a/iixmBzamRnpavCyyE4OSRG1SrHoCb1XLv86BfFr9iAylWDQ2QVDDKEjWrB3D81C0EAqOPmZjUDGoH+hOdG8Mxw376rD6Dt8lGgepCmi2fqm7l9X5ZOYXMmL8bJcwLs01l3m+vEFTZl7qVA0qJydDn2rJ+5QlatatdqqUqi50HL6NpenQtPT2f3ZdjqRsYTF7nG2hCUNM7kDMZ6WS39saUUExyPTdmLtvHxGc6A9Crfjizf9xDdpaT9JwsVnqcx6HqjurL1x1l7tE0wmpW4tjhGGRZ5unn2zG8TPNeg9HAoBc6UyulLu9H/U6Yjw996ugvEQ2bhXLxTBwGg4HQEh+l6e+vQUsoxCpDcR0fbM2r4O3ugtnFRGpGHt8s3Yuj2InDqLDz/HVeqSBMFSgPR0m1vwCQJKkmevu3R0IFYarAI8NWZOel9lOwFzvwruTJghOfIUkS6UnZepm6JJd6+STGptLH41kGvPYETbs04OT2c6Wl9neRejuN95dN4NKhq+RnFVCQXciiySv5eO0kivKL2blwD0c2nWJsk0n8eOILLK4WPljxBiPDXy+dQ5Ik6rSsSX52AR4+uqbn2M4LLJ62Gadd4dqZW7TtG6H3XzO74GIFD28r3Ye1o0XXBtT4i/SVh4+bbiRoMuDt/+eRm7cHzSQ3I59tiw/SsmcTjuy4QJuejflw7qjSt+oPF7zEkmmbqNW4GhFdHx7Zuov4q0m83nEKNoeGZDSA0YjRzUqzjuVTgH+FY9vO8vnzP4IkMX7mCIqKFX75bAOubhZ+2PkOs95ezqVjMQigau3Kpcf1GtmRfetP0a53M1RVUJBTSJdBLbl46Br2IgfnDlzl17NTmfvBSg5sv6hrlgwyJpOR1795lhr1gykusJc2JK7esCpGs4zDrhOhgtwiVKeCLJvISsnB1cOFGxfiEUI3wez9TGu2L9iLwWhg4pwXsFTz5feXFlIcbAEh42YuX22YmJjF6egEFIsByduK0dcVi4sJN6uZYpuTZ99chN2h4O/jxvLvRiNJEi3ahhN9+AYeuqfjAAAgAElEQVQCGNClMZH17xHP8NAAVnw5EoBnW00hMzWX2KvJ2MP9sOTLaE5Vtw+QJabvOcbcCxf5adIAjuy5SkiIH/G30lh08DRpJgVsEianxJMtGzK6U0uq+XpRq0Ygh5MS+OHsSX44e5IPBrdhVf5vOHIELtSnT82zFGf68vH4ueRmF/HhrOdo2kaPcppKiKGwGDF4WwkoEdO/P3kNR07eJLJ5GNM+G8KYV7o98JmY/etuCl00TAUgjCC5yNQJ9Kfoah2qmYPp1aI+NT0qY68sUVTXHVsNF8y5glVR5xj+RAsCfNyRJQkXgwn0S0DP2rU4eyoVk8HAtbXXUZwqd5Ky0YRAaCoXzsQxfFQH1BJtlNFo4Nr5eK4eieGXPr0JLKPtmvLNMK5eSqRqqB/evu4kZ+eRabOBpJdrm+wqrlnF2ApyGDtyHrZKLiCBVQKlipFW4RVGx/8y/nsjTFOAHUCIJElL0avw/qyqrhwqCFMFHhk56fkU5hfjtCvYb2dgL3bgYrUw9I0nSLqZSlJMCrfP3gAgv9CJZldYOW0DK6eVVLxJEFDNj6zkbAxGI0azkYUfLce7khdFeUXIBgN2m53xbd5n4Ou9uHUxXm+fEJdGzJlbNGxXlyq1ghjyj76smbEFIQQCwamd55j95iLeXqi3znDYlVLjyITrKQSH+iMZZIxGmZ7D23Lz8h2sHq40eEDX8z8irH5VPlk1getn4+g+TE97a5rGgo9WcfXEDV6YOoy6Jf3N7jYNFgKO7LyIEHBidzQZyTkElFRTVa0VyHs/v/jI13zHov0UFzvBYACDQe+dZjLw4qdDy43LuJPNtLE/I8sSb897Eb8/2Cuc3n2xVBNzcud5LhyPxZGehZJn5tSeaD5aOJYz+69QrXZlgsP0t/n9G04RteoEIHBxs/Dy5/o5HTYnG3/ew7WzcTzzj154+Xnw9pwXGJdVQEZyNoX5dvyDvEv1OHfJEkDP5zqSnZrL4k/WoNoVJJORF5u/R3CtQC4cvIpfkA+PP9ueXcuO0KJLfV75+lmeeqM37t5WrB6uOBWVwP71iYlNofdjTcqld/Jyi5j80iKKk3KQAP9a/ox4uRvNGoZgNhlJzMyhqNiBw6mSmJKLw6liMRsZOLoT9ZuH4WK1EBp+jyz+EYFVfcjKyEcIgdNkoFn7UK4cvonV3UJebVecTgf5RXbOxCUzYrRezHDidiLZaZcQxboGSlYFw5s0JtRPvz/tWtVi1bKr2JwKEnA+KQFbioXstV4YiwTqa83wT6lGatIBVEVjyXe7SgmTh7sLX70/kBPnb9O9Uz2MRgO349I5ciIWJIkTZ+JITcujcmD5KOraPefZvvci5xOSKK5sxuaj0aNJOO8P6MpnC3/n+JV4ZBmuFUfTsl5Vhof24/2OHflx7UGkLBVjppPJH69j+NDWpKbk8sGLPVi96xyN6gQzrHNzhnZsiixJvHD0J9LT8pAkiYBAT4qLHIwc14WY+HTGfbYSp6IyZWQPfhi3CMWpsmHBAZaemFLGxd5Aw2b3yOuoH1aTVlnBI9MFYZaRFQUtOQdJknF4y6gIJCEhC5g1vA8RNf9ay1eB/1sQQuySJOk00Bq9+m6CECLjLw4rRQVhqsAjI7CaH48Na8f+DScZMLYbLiUpDS8/D/65bDwAT9V8ndysErHvH19TBKTH681DXd1N2AptnPn9YuluVdU4vfMCANNHzqL9wFYc3XwKTz8PbIU29q8+SvuBkYyd/jwbZu3QU1p6YBVDGX2H2SQhHA6QZEyuZrYuO4IADAYD2xcfxOFQibkQT7MOdajVqKxB7D04HXojXYPRQJOO9WjSsV7pvu0L97Fu1g5Uh8oXz//Ir1f0NN2ny15lzU9RtOrRiI2/HiTpVjr+lb3xeUg13tqf93F4+3meHt+DyC71HzjG088DNE0nTAKQdOGx2VL+T3fpV5uJPhoDksSKb7by0pfDkGWp9MenzwvdOLjhFKpTZcjEXhzu+gkAmsOBl7cVs8VE68fKV9alJ2WXpgNP773Mqh92MnBcN8wuJmZsK6+FAfDydcfL1/2+7WUhSRL9xnZnx6L9pMZnIBtkUm6nk3I7HSSJ3Mx8uvRrxutf3fPmqhRyL5VkMhr4bcpz2BwKrmW8rFKTc3jp6Z+wZRQgCb0quk5oJXqUuW9VAr14olN99hyN4alezfh+6hauRSfxyqQnaN7qr8nzPxeMZd73O9h88jomNzO1awQy5PGmfDp+ESQIDBEBSF5GWobfe6YaBFUi0NuD1NQsZKeghXcgNULLp4nGdW7J2fgkLEYjT4RHsPpsHEorgcdthRsn/XhqYD3gAEgSyfGZFBbYcHN3IWrDab57bw0Wq4m+nfTnx2nTe+hpMkgaeHu6smbuHgryihnyUjeyioqZsWIfzgIH7rcK0IQVeyULgyMbEuDhRkZ6Hm7nMpE0wfVwO6neV9l/KJ5zF0A2SDT08iLhThrXryfzz4/XYTDIBAV7s3Dh2NLPszv5OjsTr/DUx13Qbtg4VpTGnrQERka2ol7Dqvyw/ACFJQUF63adRWigKhrZDjubz16hXXgYfu73V5LmFdtQDBK2Ou742o0YjibqEU1JI7e2AdVNwi1FYE0s4PNnf2bi1CF07d/8L+9rBR6A/9IIkyRJu4UQ3dANtf+47S9RQZgq8MiQJInxXw9n/NfDHzrGx9tCTnI2qCoo9+uN7qIgu/D+jWX+SDVNMGmRXh0XdymBKQOnIxCsmFaVzDvZWFxNyAZdDNx1eAcUh8InT33Dq9+NZtqI2YhiO7JBpsfozmxbfRIAJb8Qze4AAarZiNXD9f41ACeiLvHpqDmYLSZmbHmL0LrBpCZksuzb7YTVDWbxlFWoqgCDjNXr3hd7vRY1+GiB/sPReVBL4q8nE1I78IHu3omxaSz+ehsOu5PPXlrIxqtfPbD0udeYLmyZv4eMO1lIJv1cJhdTaZUWQE56Hk6bQy/5l8BuczIgbAIePm58t/1tAqr4ElqvCitivy89pkqNQOKv3QFxtxHK/eg1ogNXT9/i+tk4kuPSWfjpelZ+vZnJS8dTu2ko1pLS8LK4cS6OHycuIrhWZVJT8kmMTeHN70cQ2eMeGXPzsrLw4nRizsbxVs+pmExGPHzdyEzJxbeyN7WahpWO3Twviq0L9qEh8fQ/etN1SGskSSpHlgCuXExEUzU0swGTJohoH847nwwq3Z9XYGPhyiME+LizZf5LnD4Wy9RZ+7AVO/nmk40s3frGA69BWbh7ufLmRwMZnJjJ+BcXsmXtKTbdzkQ4nBgAz+s5fDRvNDWC7xE8ySmYWK0Jldp6E9Gs+gPvcf3gQA68Ow6ANecvYTQYMGTa8D2TxzXXGFLbhePh7UZOZgHFhQ7OHLpO0651+PaHTWiKilYkOL7nCoNGB1CzThDD+0dwaP81Ro3tQtSaEyz5dgeaqpGVlsfzH/RFdmi4x+ZhzrFT+YSTkR/2oX0d3Z6mudGDHcIACIxHVbQWGolZqThVf1AlVKuEyWxAqAI0FadTJSvz3t9yUmEOk45vxK4pbFEv0z49nJMFKThUlW/2HuLZlk1o37wGq3/XU/T9ekVQVL0q+7af5UgdA5+s242Hq4Xd7714n8/azNH9mLPzGJ0aVOfktwe56dRfJIwyKD4mbP4S1sR8XJKLcAK/rztVQZgqAIAkSS6AFb13nQ/3vJ080Rv1PhIqCFMFHhlZKdkU5BRRre7Dn69B43vx9eif7ttuMMn4BHiTnZ6L6lTv7ZCgSeeGBNWoxI5f9tzbLuCDXlP5YvsHHNt8GqdTQVM0bpy5BYDJYuSpt/rj6efBnDd/1UWust5g1Orhgr3IjtFs4MIpfbwkS1jMBoptYDAZGDi6I8FhDxaEbpi7G8WhojhVDmw8zXN1g/n8hfncuJSAjIazhOzJZiMTfxz9wDnMFuNDo1cAe9Yc0+0WJKnUQfpBSL6ZhmSQ8Qv2pdPQthzbc4X2vZtRpYbessTpUHipxbsU5dswuZqZMGsMq376HcWpUpBTyKGt5xg4tut981atFUj8Fd3wcPfyo1w5c5seT7chtEyDYjcPVz5aOI6f3lvBpoUHEAIK7RrvPz0LVzczz73dlz4jOpT089Mb+n7x/CwSrydz/cwthMWCJiQ+HTGX1Te+xcV6z+lblmXqRNTgu30flzqB24sduHlZSwXTNy/FM+/9FaWpxBmvLaL1402xetxP1CJa18S/kid3ErJ46e3e9BnSstz+mfN3s+fwNWSDjKe7CxF1quq2Dy4mqvzNXmOuZhP2fBvCriAjSr95a9YOolOj8pGqKe+u4srFRH0NP4+iZu3yKb+s9Hz2bz1P3aYh/Lb1DPtP3UCOtOB9phBTkUZeUQEzPlpPRItQLhyLRZIlwhtWZUfCNVKbGPBLAmEQRHS4V22pVffA5AjEs7o3mbfT9dS1EDjtCnEXkvA+lYHi0KOzJrMBL8s94XxSRgGai/6zYDKaqGVNQ45IZ1ucH6osES3nEtkphOGtmxJzNZnTp28xavQ9LzVZkhCI0vYaZ68n4RpqwSjLeLu6YDEaaRpehcnDuiIbJbq2rQtt69JqUDN6f70Ih1PFrqg4VRWLXP7nKbJ2CJG1Qziw8yIrrtwpfcFSnCqVThZR2M2fEc92YU9MFA67Qv/n2/+t+1qBEgj+Y4wr/40YB0wEgtFtBe5+wDxg1qNOUkGYKvBIiDlzkzc6TkYIwZBJfclOzcPT35PnJz+JqUxriJ4ju9xHmDz9PRg3/XmadWvEsqnrOLj2KLnp+fpOAW36RjB4Yh+eeX8Qz9d6rfSL8PKRa+xbeYR2AyP5ceKCcnM6HQpNuzZk5rh5pWJyWZbx8PXgm90fsXvZYRp3rMvVS0ksnbkT2SDzyuQn+e2LjQTXqMSwN3s99LN2HdKKS8dvIMsSDdvWJj4mBUVREKqqNwEGJJMRSZb5fMw8CgsdvDVrJK3/wiyyLNbP2QN2B0YXM+M+6P/QcTNeW0B6iY3Cxh930rh7E25eSiA3swBvfw8KcwrJzypAcaooDoXwiOoYZRkJgSTLNGkX/sB5+7/yGCd3XUAyyJw8cBUlKpodvx1idcyM+8jbiPf6s2lOFDidCEC1ulKoavzyyXrysgp47q0+bJ2/hzlvL0WxOTCaDMiyhIKeEtQ0wdXTN2naoe5966jeMITqDXViWbZ1CoDFpcy/JTC7mDFZHvyV5eHpyi/rXi9XUflnCKtZiW9+HkXczXTad6n3l+PLYv1vR8Cma45wc6F2owBCa1TijS+HYLMrCATWkrUnJ2Zjtyu4uJpIS8m7jzC98/w8UhKykA0S+cEeGIwyvsedDH28FZsWHUYTAtko031IJM+N70FAkDfefu7Uy3JQ0MKKrZ4rj9eqS2ht3Zrhwq1kFu48ic2hMGnuFrZ9OoastHwKcosY+XZv5n+1HcWpAhKevlYi2ofTuW/T0vXUrFOZ6Kt3ABjweCdcrIGcuCwT5GElRRRhU1US5WI6tAunQ7twRo8pbzwbZPXih9aD+XDHdopjVVrWDuGTkT05m5hM67AQZEli2a+HWL74sP4s2VV6PN6YYB9PRnWMYPOZK4zoGIHF9OD7vHThQVYtPozmakEqsiMJDYTAHFeA+zUfMmo5+OH3Sfi5W7G4/Gvthyrw3wchxHfAd5IkjRdC/PCvzlNBmCrwSLiw/zKqoqA4VDbNjqKowIbRaMA/2If+r/QsN9bN20phThEAwbUCAQk3Lysf9fuS2HNx98295J+rGTyxD0HVAzFZjDhtOilRFY09yw5hMBowmoylompJlpAkeP+Jz2nRsylpCbpmb9CEXjw3eQgWVwvPfjAQgMYd6tGhd1PcPFzx9HGjx9Nt7zv/H9H9qdY061iX4kI7kwZ9T3GRHU8PCxI6URJWF4SiommC9NsZYDGzaOrGv0WYGrcL58LhaxjNBgKCvXnjsS/wDvBg0uwx5UTSVWsHcftyUun1OH/kOpIks/y7nbz86ZN4V/Ji0IRe7Px1P71f6MrGeXu4ceE2EtBjSORDqwBP7jyPYnfiHeBJTpHufF5cYH9gCwk3T1fcPSzkZ5XYIGgaGA2laR6Ak7vOlxpdNulQjyFv9GbjwgOc3XcFdy8rNRs+PNr2MFSpVZkpKydwYN1JPP09eezZ9pjMRlJScoi+fIfIljXw+EO0qSxZyi4s5lZGFo2qVmbiC93w8nDF08OF/o81IfpiAlMnr8fP34NWHcKJT0zjH99vpDjPzrTX+9GifvkKq5Pn4sjOKSS0kjebS1K8AF7+Hny78lUMBpmd+6L5Ys5OhEli+lsDiWwcxlsf9WfWjB2E1w0isk15Dy+A7PR8FKeKxWAipLI3SVkFBPh6MOr1HlQLC2DbBr3/YLsu9coZrDb0rczW3qNIzMuhfZV73R48XC0Ih4bRCZ5WC2aLkTHv9S3d//iQlhzcfgEBvDPzGZq3qV1uPS+O7YKvrzsWixE1xMLUVTEAvPlEc/ZE3yQuI5v3+3YuHR+bk8XehJt0DalBDW89Ute1SjgHR9UiI6+IAE83ZFmifU0zZxLv0CioMjdvpGKzOzHIEnE300vner1nO17v2e6hz8OxIzH8tkAXv2M1AxoU6lVzRdXcuOMniDt6iV3nYjg89ZWHzlOBv4b0X6phEkL8IElSQ6A+4FJm++JHOb6CMFXgkdDhydasmbGZ3Ix8ajSqxuVjMXo3cvP9j9Cw9wby6+SVCKG7UatOlemjf8Rpu993yGg2Elq/KvnZBVzYfxl3Lzeybbml+89EXeDSoSu8OW8cRzedou2ASC4cuMyOBXtw2hWK8oqZf3EGnn4euJe4D/8RQdX+vheLX2VvTu+/it3mxGFzkmN3YDQbkSSJTk+1Yt/KowhNoAJmq5lmnR4cpbibDvlj1GPyonHEnI8nuHoAX77wM1dOxmIyG9mx+ACDX7tHQN/9ZRxvpeVx9VQsmMx6Xz6zgcpl0khjPnuaMZ89DcCvUzfohJISwfhDsG3+HjRVoyCnEIOrFQ1w9bKWW6cQAlXRMJoMfLjkNWa8Mp/qDaoyfuZI5kxeg6pojHhH/zEe9nZ/Lh+NwexiYvwPo6lSM5Bm3RqSFJuGf5A3rg/QO+3fdIZZ762kWnhlPl/6SmkRQVlEdGtERLdGFNmd3E7LIjO7gBdeXICmCfz93Fm8eNwDP192YTFPzFxIUbEDj1yV75/sxYQxemoyJi2D199bipylkJVVwNL1x5lz4zxOg4bZKJi39kgpYYpPzmLs5OXk5ttwUUEuUDE6VWSDhNVqYdaSsRgMMlt3XmD6zO26HYJZYvO+S0Q2DqNx81Dm/fbgNQK8N/MZFs/cRUSHcBp1qM3b764i604u077ayuSPBtCrTGrxbiWd2Whg58pjbNt8nqsxadSuF8S380ZhthjJzy3GnCcQApoGBN53vgYRYbz+87N8NGc7ExduZ1aAGzsPXeFybAoTn+tMk/AqDHtGd6D/eFMU9pKI6tWUDBa+8CR21UGaPQdNaNhVlf4blmBXFb47fZiTz76Ki1H/PpCQsJqMyLKEJgQDFy0jvaAQV5OJZaMHkpiQhcViYvDQVvet8UGw2518/tlGFEUDCTSjTE6EH4qvwJriRFWU0sh0XpEdu1N5aJSqAv93IUnSx0BndMK0DXgCOARUEKYK/PtQKcSf5QlzEUJQlFfMiq824uXvweOjutw3duhbA2jUvh5zJy3m8lG92W1AVT8iejRh7be6A72bl5XWfSLwD/EjNS6NIZVf0NM4JVGkP6Ko0MbxbWe4fSWJN+ePY//KIxTlFxN99Bpx0Qm07dfygcfdhRCCFV9v4cqJG4ycPJgajf7ao6VBy+oEhvgSfz2Fp15/DKubBau7Cz2Ht6VpuzrMeHUBBgn6PteO0VMG33d84o0U3uw1HVuRnY+XvEJEmUo4g9FA3Qg9MhBcI4DoY3oKJ7AMuSsqsPH+U99z82oKktmCkCREYRH2PI1bZ289cM3D/tEbF6sFSZYYMO7hhR/dnmnPtl/24O7thmuVSqQmZTN0wr3mt0UFNsZ1+pT0+AyGTHyCMR8MYHH0N6X7P5x/zxpBcSpUbxTCqgQ9FZuVmkt2Wi4+lbwIKZOCUpwqX01Ywo2Libz62WC+f3s5RQV2rp6J43hUNJ36lRfo3opN4503lgGQE24hF4Uanl6oqobdrnAnOQdNE/eJgwFupmdhdygoCHLc4MvXFrP64hcALD5xlgJPcM8FVQiK3HUjUWRQrRIR9UO4HJ9K7Sr+LN98itwCPYphR2CSBZKrkcqVvZkxewR+/h4IIfh29u+Iu9Mogt6dHtyi54+IaB9ORHs9bfr80G9RFQ1VEpw7F1s65vypW0z9aSuXQhRMRgNvNWrO6n9uosjdCpLE7Zvp7DlwhV+OnMVRkhJUFI1bCZnlznWn+A6FSiGbD1/GqWk4HRrLtp/i2Lnb2OxOPv5pGxtm3ruvY9q34PTtJISAFzu2pEixMebkNHIc+XgZLQwO6oNdVXBqGm7XCpn6+hL6P92GBq1qMuKfS7mdkk3/jg2ZOLwzCTm5aELgUFWSKWbOonvnOXnkOqtXHKFvr2Z0eLzJA6+T3a7gUFRUiwHFXabYz4jwM1A7PADL8Ruc7O6OJU+AJhFZo0oFWfqf4r80wgQ8CTQBzgohRkmSFAj89qgHVzxVFfhbkCQ9vTbm82F/Oq5+mzrcidXbMpgsRp55fxBdnm5PZK9m3Dh7C78gX74dOwd7SRoHQP3DHL7BPjTp3IBOQ9owb9ISHDYnqbfTSLqewqjPhzHvrcU47QqLPlrxl4Tp/IErrPhmC/YiBwnXk1l4/qu//KwuVgtzot5FVdRSYfNd3IpOQHWqCCGIv3qnXBprxQ87ObDxDMHVfCnIKUQIWDNrVznCVBYvffE0dSKq4+XnQWSZ0v5Te6KJu5qM8y6J1DQoqY7b9dshJnw/8r51mS0mhk584oHnUZwqmxfsQ1FUxk4bzrB3+uPh547JbCyNJN1F1MpjpF1LAAFrvt7EmA8GPHDOGxfieavvdBRFZcpvr6I4FD5/7ieQYPLS12jR/V7PslN7r3Byz2VsRQ5mvr2Swqx8MJnQFMGhdcdY9dVGRk4eRMvH9B/NFUsOk52WB5KEXbJhC7NwOT2DEd0bcOLkTYYPb/tAsgTQqGplGgQGcDYhGd9LeeV8qdpWr8amhlfQAhVe6tGGPm0bsvzkBZySoJVrAKuizrJo3ymqyS5kX8iASjoB9TGZUJJ17V3fQS3wK2Nk6upm1r2/gNde7kbrJmEPXNefQah5oJlAhi6dU7kYn4IQgukfrycmyImKGVVROHAnSdft2Z1gMeG0K2w8f43YO5kYZJmgyh4YbYK6EcEMmv4ramg6pipp+FiykSWZWo06Yoo2YJAlOkXU4ujZOMwmA4G+5e0v/KxWvh70BLUq+2M0yFzJu02BswhFqGQ5C8iyv8OEiM/YuiMaNSqZE4VXORl1hXcXjSY5Mw9NE2w+GM17I3vwcttI5h09iSYE41ZvZMVzQ2kYFEheQTHjZ21Ck+HwvO1saBJKQJD3fdfG09OV18b3YPOms/QfEEHjtmFEJ6fRvmYYkzZ9jzBJ2AIkDBpMGd6Dq1fvEBrqj+sfdHEV+D+PYiGEJkmSIkmSJ5AGPLJeoIIwVeCRkXgjhcNbztKiWwNqPkKEZuz05/hxwgJqNa1O2/46oWnerTHNuzXmo/5fliNLD0JuWi4HVx9l77JD1G1Vi8xkC5IEdVvVJi8rH+Hjh9FgwLfGX1eFurq76G7EBvmhdgIPwx9JCcDjz3dkz8pj2IsdDH2zd+n2O7fSWf7tDhx2hdtX7+il/gI6Doh46PxGk5Eew+7XbtRsGKJX0gmBJDR6j+jE0U0nyc8qoEHr2g9c159h3ewoln6zFSEE+VmFjP5oYOm+bb/s4ecPVmAwG+kzpgv1WtVGj5cIzGXSrulJWaiKRuUSL6E9a45TXNLaZvP8vbi5W3CUtHw5uP5kOcIUFHqvIXG12pVxNygk3sxAluDo1rM4ix1MHTGb9clzALh9PRVZ1cutDJreHsU9Q6HJE1V4880Hk0KnqvLdrsOk5hXwzfC+5MZlcb1ePO173xM2P9GgDjX8fVE0jbqBAdy8mkyV3dkU25zEBtrRTDJmCVLteVjyFNyKFXoOaEbW7RzOiCwkCYpKNHqgv0TMmvYMX/+2mwM5SUy9eozmbWpQ0//vVd+990kL5s/aQFitDCo1G8Lon/Qmyw08zPik2SmurPfxG/V4ay7muLBu4UGEquLr50H9mpU5fzsZgDee60x4tQD6TF2IqglEskxITxseZgUPuRhjlZV8MWUwkQHP4GIxEeTryY2EDHq2vSfKzysopufH87GpCk3Cglg08WlqulchxBpATEEi9d2Tcf//2DvPwCrKdW1fM6um904oIYQuvXekCAgIqBRpimIHFLGXbQUFRUFEUBEQrDSRLr33UENNIb2SnlWmvN+PFUoMIG5xn/Ptk+sPZDHzzqxZQ9Y9T7kfg4O7grxIuWDmeIkdSRcIIPNUBv5e7uRoJXRv6YqeTezYjo2xZ7lYUoDJZOBsTi6ph9LZsukkskNH9zSieJoqTQO4gqrplAiddr3q0/3uBrhZzUT6uYTV+18/hm3mTxw2FGNSDUx4YjGOEgU/P3cWLnoc0w1sPar4P8thSZJ8ga9wdcuVAPtud+cqwVTFbaGpGpN6TqWs1M4PM9aw5PR0PH0qm8tdT89RXeg5qkul10sLSzm4LvbqzyaLCf8wXy5nFqA61fLZYa4i5yucP5zA5wem4uHrwQcPzyP+bDpGD3dUVScpMQ/FqZJ0OoXImHCsHpVrYeq2iOLlBY9z4dgl+j3S9d++DleIiA5l6Q3mynn4uCEbZCSHHd3hZPgbQ+g6tP1VgQEug849q4+Qm3YZq5uJLg+0q1DonZtRwMVTKTRpHwN2O7qmY7YY6T2iHePfvXouEGcAACAASURBVJ8D64+x5IOVvDNiFi9980Sl7rKbUVpsQ9d0hHCl3K7gtDuZM2mha3iuU2P57I08X78aI14awPGdZxg/1RVNPLzlFO+MngsSPD97DF0HtaZ936asWbAdIQR3D21HQIgPu389AhLcM7YLWZdyeWPwxxTkFfPEtBF8smoSyRezaNerEUIXnN53nh9n/c6p/ReQPYz4Bl+L2pjNhvI/jTQOD+P8MVcreVTMtdocp+JKU12J8K06GsfSfcdRNI0im4N5YwcR06SiuE/Iucyob3+hxOFEMeu0iYjAbDWhCYHTKLuMLwFhMWA0CdxMBgYPakXc8RROxV4CoOkfXOJrVAsgOdCJTQOTprE7IekvC6YGDfrx0exWgMZb3x/DevoSpmIdc/tIXmjdjsDqfsTUD8fHzUrbV6vTrFM9YvddpM8DrQivEchdUWF4ulloEVONglIbmhBXMyslub7UDnLQyvMMrdxSQByhWA3GaulD03rVaFqvYnPA8lUHKVMUhEHiaJJLiJllI3NaTGZT6hvk25OwGJuxcNIeLp5KRdJ0hCRhNMo0aFqDZY90Jq+ojGA/T3Rd59WxXyMdSKBGdSsBo+rR0OLLlOmLcDpUvE0yhdEmejetTXD4tcHI6386wBfv/Er12sG0G9OOb5a76gazc4u5r2MDkhNyWPndXrr1a0LbTo2J23gQXdEpyrMBkJdXQl5eMaGhlSNWVfzfRAhxpRvgS0mSNuDyYapy+q7izqKpOvYyB7qqo8k6jjLnnwqmm2H6g+mgqqgUZBcx4pXBmCwmdvy8l4uxCQgBmEyu1nSnk9pNazLvtZ9JjEtFaAJV1bC4mWnRtT7P3/0ul86m4Rvozdex0zBbK4uIdv2a067f3zeyE0JwdNc5vHzdibmr4pexj78nr335MG8O/Ahd1Vj09i8MnlgxGvLtv5axet5mnHYFgwxbf9rHjE2vAVCcX8oTd09FU3XCagbw3OcPs/i9FTTt0pDF09dSUlBGUUYeqeczyEjMYfsv++k9ujO3Q/+HO7Plp/3Yyhx06n/tOhiMBmSzCV12CRQhgclsZMwbFeuyDmw6cTV6tGdNLF0HtaZR2zosPfkRqqLhF+xK6czb/w7nDsUTWSeUWRO+5dLZNJAkpj/+FT8lziaqwbWIYPPujXhj5FyQJGSDxFOfjAZAUTUuhUBpkZlLrS3k+Np5aWgfWtepQUT5vLHZK3ezcOMhosIDWPzycNzMJuxFdpwOBSGBrciBpmouAXtdynRj3AVKHA50AZICsWkZ+NZxw6BYiQjyI/NUNrJNxUOFl98bggDOnkql490NiGoUTnxWHjXqVx6hMqZVM15ftxk3k4ludf7cOfxGGA3B7Nl0koOf7MLi6YEkIHFfKu3eeBBft2uF83t2nuPCuQwGPdKJwPLUYJcmta/+u6+HG6O6Nee7nbF4eJgZ2tSXHP081U0FGMpboBTHTvCoeG9mpeeTmZpPrUA/LMUqdh8jdbRrYl6SJHpHvge8B8Avl97G6VBBllBCPVED3YmsG4oEhPi7zis3q5DTR5IQQmBJdfBV//6UlEclkcDH250Niyobh343y+Unln4pj8QLmQhdoAvBtg0n2PvtPhw2Bc0ksf+gjcBafoT4eFJUbKdBhzDO7kuibdtoQkJuPVy7ihvz39oldz1CiCQASZKSgdsaPFglmKq4LcxWEy/Nf5SVczfTc0R7Am5QZ3Azsi7lkJmYTaNO9TAYDJitZsZNHcE3r3zvinjoAl3XCa4eSK8xXVn9xQaEAKO7FWF1QwhBdKto4g4msOH7va7Ik64jCoupVrsWT749iPsjnkQIV8FxTlo+EbUrdwjdKRbNWMevC3YihOD1Lx+mZdeKHXL1W0VhdTdjtznRNZ2X+k1j/IcPUb+F60v00IZYHEWlUO5VdCE26Wo7f3a6a5Cxw6Zw6VwmJ/ZdxDvUD9lqJva3WFfdlKZhMLq62cJqBd/2ef+2cCd5BTaEqjHv9Z8Y99YQmnWpj8FoYPhLA/nhk3UIXVAtOoTOQ1pX2r/PqE5sXXYQTdUY9HgPAE7sOcep/Rfp/kAbls3awIbFO8iOz0SSJQLD/ej8QDsoFytXjEWvJ+lMOpJBRqg6ui5o0tFlwJhxuZhMu43CxhYUE+SUlbHbkcmgyGZX9/1hWywCSM8r4lRiJq3qRiIn2/CNd6KaQErKZeDc1/D0cWfQuM7kZhexdd1JanWuidnDiENTMRgkAvc5QREIA6QF2Hj/xf4s/HwLwcFevDthKcIgIVuNfDVzI7bLJdjD3ZjdJpR17zyK6bqRPIObNKR3/TqYDYYKr/9Vlny5GUOhA83NDSFLODxlnnpnEQveGIvV3cKO3Wd596PVSCUqB/bFM3fBuBuuM+XeLjzRoy1Wk5HPL05CcTg5a69GqPEcsmTCar2PbHshwVYfypwK87bsY8XsrXhcKCM43Jf3J/UmMy2f+0ZVThefyszi7c3bCB0Wg/u6ZBKLS7GFeWA0Ghhx7yeYhMT0+WOJaRCBf5A3teqGkXgug5jGkXj5uuPt58GbHz7A0QOJ9B1U8SFGCMHZk6k0aFaDw7vOIRBEB/ni3r0R+QVlxP5yFEe59Yitlht2PwNpecW4FUoIXXBM5LJr88v/9vWv4v8ct+3SWSWYqrhtOg1sSaeBLSu8VnS5hKmPfU1ZsY0X5z5yVagc23aKmY/PI6RGEHH7ziFJEu0HtsJoMrJl6U7a9GtB38fuZsO321AdKlZ3C91HuJx5n5w5ls+enI/J24O81HwQ4O7jARJIsgxmI9hcT6jJp1PITS+g77jurFuwjRZ3NyKsVtA/eh3Oxl7CbnNiMMoknEmvJJg8vN354uBUHmk8GaEL4vacZUr/GQSFeBNeM4iUcodt15R7Gd1kJj0xh4ioYGrVD6djv2Yc2nyK+s2qs3PVIRw2hbysIkR5jQiajsVq4t0VL9Co/Y2NKW/E3t/jXOJFlkiMS+PdMV/Se2QH6javRX5eKd2GtMFWaueJqcORZZk8eylLEw5RxzuYPtUaENUokmUXZwKuSEPc6WReHDIToems/GoLtrwSFLsTFFcUKi0+C8liwuBuQVdUnpoxiu2/HuX7metp1b0hE2cMxz/EB4vFhF1z4BPohbk8+hgR6E3T2uHsTk1G95GQBByaf5gZO0qYPPV+JEmia5PabDt2EQ+LGVHoZObUNYRG+eOTL5BUgWosRVN1CovtLP58i0toGyQubI1n0ddjCIz0IznjMm/uX4YiNFDhyf7t6HR3Qzr1aMiILlNd10sH3alj05zIio41tZSs+sVsO5tAr4YVfYw8zH+/yLhdv6YkHktGzimkuKE/eU1NGHemsP77fXQb2oY3v9mEw9uA5CFTdiVScxO8rBYuXcyiekIPCsN/wiFXJyJkKZl2B4P2LEAVa5gQ04cDJwpZH3cOrZ0XIYpOTlIBzdtHE3CTCM2UdRu5kJuHm8nItM/vQ85W+X71YUwlCmnnC9CAuZ9uwhTiyejh7Zn5y9NcOJnK5mUHWLNoN/eO6Ujr9nVo3b5OpbWXzN3KskV70HWdAaM7sHr5YX5YsIsWHepwuI6NkmAZr1SJup2iyfOGElMRBgPIko5sNBDgfWN7kSr+Av99Tt+34rbjaVWCqYq/xeqvt3Ny73k0TefDx79m4scPUbtJTWaMm0t2WgGZKfnI6KgOlePbT1OQXYSm6uz99RBG8zUzyuDqgRjLW4H9wvx58rNx7PvtCDtTDrpe83WnUZtoxrzcn/3rYim5XELKuXT8QnwIqxnEhM/G8uynY246YuROMu6V/nzw1CK8/T3o9cC1SMzF45dY8/VW2vZtRts+TanZoBrxJ5JBCFS7k4yEbHLT8vEN8aG0oBSHTcEa4o/F3YJ/iCudJcsyk6YPY3zLVzn02yFURUMyGalZN4ySyyVciE0CVSWmff2/JJYAIqKCyUjJQwgdySBjL3MQu+MMG5fsxWF3ElYjiAWH3r26/bMHfubY5TRMsgF/izttgmpWuL7v/LgJHYEsoLCoFA+L0RVMMsl4eFkZ/tJAtq46iq6DbDazceluEuNz0VSdHauP0v+RzkQ3iqR6dDDnY5MoKyjhyLbTtOjWEIMsM2/C/SiqxqnUTF4YNQ9znsqOhBOMfa4XgSE+vPfwPSRlXCbAy52RAz7jsh9cLrVg6eLBpwP6kHUglaWzf8cpJDRVd/mGWYyusTU1Q/DwslJgtyFVtyCn2KlTPYh9a+JoHhlOTEwodRtXY9+2swAIWUKyu1J9+U28sPsZeGHFej5CcE/Dv/Y5/Bmjx3WjeoNwMi8Xs3FnLEk7k/FJc+Af7E1eQWm5d4FL+L7x5uAbrvHr8sN8v3A3DRpGcGT9CQySRJd7hzDhPVea9VD6HlRdQxEaK1IOci5Vu+rMrlllAkJ88A24+SDlMC8vkvMLEAJCPD1pWS+CPp0bsnfbGT44/gu6Ljh9KRtnSg4n4lLp/lQLUmcfIf5YMiaLEadDYcDDnStMCbjC0f3xOOwKeBpZfigOoWqgQ0JiNumhEmWdvSmxyTjPFaBkadSp6cvjD3chxOrOyYRMera8s59HFf//I0nSbG4sjCTgttMlVYKpir9FRO1gjCYjQleIj03kua5vM3PHvzCYTUgGGYxGTBY3LG5Oxs8YxZK3l5GVnIvT7rwqlmSDTNRdNQA4tfccrw6YDhJENa6O2c0MCDoPaY2u6yz7+DdKCsowmGSmr3+Zmg2qXS16/k+IJYA6jSP5dtfrFV4TQvDSvR9SWmhj60/7+OrwB8zY/AbLZm9g59rjSJpO9qVsEPDMp2MRuk61uuFkpeUT06QGbh7X6lPyMgrISs4tH2EBMoLB47sTXjuE90fPwWI18fKCv+5kPOXTkWz8aT8+/h6s+WoLuen53Df+bua/scxVZK9pnC3cxcmCjTTzv5dixYEmdMwYKFUrRzK8w3250CEIj4QSPHtF8fn4ocRui6N177sIjnQNoI2oV413Rn+B065w4VgyFh8PTO5mJEli6XsruJyRj0111aYIAbNe/pl6rWszecYIzBYjJqOBuyLDiPL2JbesCB9/D3z9PSnML2XCiC/JySxk/JQ+rjl34UaQJZyqxom8HJ5+tAvhtYPJSi9g5ff7aNykOt3vbUpMg3A8yh3C3/x1E2JvBgbZwEW7hhDwwbTVLFwwnk79mrDzUDyqtxlJE3jqbgRH+pAWYgdJ4FQ1LuXl/+XP4Xbo2q4u3647wIViG2p0AGPHNqVzf1c6clD3u9h55CIP39eW6JhQMlMv4+HlhpePq9ZI1wVfzNyIrgv2772AUZKw25yciU2+un7HwHosOLeVUsmBzenAElmIkuKFj9GTBVPHEVUn9JZdmLMG9GPl6Thq+fvRstq1mrT23epTvV44Scl5OCWXI3+pprLgwFFqZbtqax2KztfT17NpxWHmbXyx0tpjn+3J+y/8yGVvMJxxXV+PYC8mvd6fp3dvQtN1GiruJNvzEbKEwSbo0cDlot44KrzSelVUARz+N/+tAlWCqYq/RbchrfH28+CjR+dRkF6Ewd1M7NZTDH1xILOn/ICQJDSDzKfb3iKqUTXaD2hN4slkfp6+ij0rDyGEQNd0LhxNACA9PhsAR5kTR5mTOfveRZIkImPCcNicXM4qRNd0TBYjfsE+t90h9k+RGp9FekI2TTvXQ+jXHmCELnD3cmP0q4MY9cp9aKrG3jWx+If60KjdtSfgGjcYZBwcGUCrXnexb81RZIOM0WggIjqUiOhQ5u5777bOa+uKQ3z5xjKiG0fyr4WPY7aa8PCyMvjRrqQnZPNtWj72Mgc1G0TwxAdDObX3PP2f7sia9MloQiG57DjTW33JrLjdRHsGUdccWmlsykej+vGOmwWnUJk6rC9ebhbcPCzMeGweRqOBpz8bw5JZv6ObzEhCAk0nONSLPmO74SwpY8nUlagGM0armYbtYkhJyCYrq4jCLafZvf443cutGAwGmdnLniH+TAZRdUMxmgwc3nOBgvxSNAQLVu1l4r/6s2rbcXbKuVhMRu5pFMO0t1ayf/d5HHYFs8XIodgknn9nMObr5tEF24yUqIAs0HSB0WTAq9x2wu5QcIR7uNJyQvD5rIcpKHPw1CfLKDLrBHt7MrTljY0Wb4Sm6pw5dom42GS69W9KUOitC5L3nkzC7lQxyBIiyP3qtZ80siuTRnYF4Id52/j+y+0YjTKzfn6KyFpByLJERKQ/OdlFyLJErXqh5KQV8MRr9wKQnpTD5IEzsZY4eP3zkSwxHiXXfBnv2gXU0kOod5MxNkIIHE4Vi9mIp8XMqOZNb7hdYpJL7LvJJhp0qMVWPR1d6GgDq1NvdykX4lyz6pIvZt9wFE+j5jVYsukFHhk6m1xRigD8PS28N+or7ukYw6h37uedIV9gsjvA28qgAVURpTtK+eDk/yaEEIvuxDpVgqmKv02L7g15+evxfPbMApw2hcXvrMDqaXHVHEkSuqqTfDaNqEbVsLpbqN+mDuePJJT/sgSLBzz24QMAdLm/DfvWHiEtPouJsx+met1rT4wWNzOPvT+MFZ9v4O5h7a9GMf6nSLmQybM9pyJJ0LxrA6aunsLqeVto168ZoTVddVTnjibyyiDXQNtpv06mTpMat1xT13Xijyfz3BfjeH7uOPasPkJ0k5pERFfsyko+m46bl5WgiBu3rs//1wqKC8o4cySRY7vP0brHNefpDUt2kZeRjxDw08z1vP39M/QY2oa9Gw5Roptwq6MgYyTaK4j3Gw/g/vcW86PtFIPaNeKVYd2vruPjYcV80U7swQSe2ZVLrU6RnFm0m8IDSUgSfP6imUvnM9CcKiAhm4xkpBWwaOoqImPC0I1mJIMRTRMUFtho3LE+R3acRQgIq17xs7W6mWnY/Nq1i6gbAiaZ3Lu80fwNvLJtO6ufG80Lusr41b8ybvVKAg7k4yhzggROh4qu6ZSWOioIpg/HDeSpjSnkXconIMCTghI7ZxKzWHMwjl59m/DBip04ZB1PxUhwoDc13cwsfn0EuQWltG5Y44bGmbqu893MjVyMS2PcS/dSMyaURfO28/3X2zGUKUiyxIZlh1iw8YVb3guP9mvDc7NWYUKmde0bzwTctvYEilNFkoycOJhAZK0glm8/jr2OB90612bkoDYEh/pQXGTDvdxuY/fa45QWuewqVn+1k49/eJwJ23/GluVgTFgLFEXF9AenbCEEL3+wkn2HE2jdvBbTXx98w4ju8fh0ug9swp4Np2neshavvnIfiw7Fciw9kwmd20I/OxMHz0LoOtXrhFRY4+ieC6Qk5PD97N8pLbHTf0wHVicfxGAykH4yDaELDm89Q9K5TNf9V+xEFDpo1ap2pfOooop/girBVMUdoVn3RiyM+4QBAeNw2JxIsoRRgKLpyBI07lDxKbBRx/rsydmFEBoTVp3BFrOdUrUpHm5uvPXjpKvbqYpGakI24TWDMFuMDH6mN4Of6c3/BpLPZyBJYC9zcv7YJeq2iGLK/Irt5L99vY2yYpfn0ZoF23nuszG3XHPGE9+wZ/URDCYD8/a/S5+xXStts3z2Bha+vcwlwta8RIM2rnSEEIItP+wl5Xw6tRtGEHfYNT6lesw1sXWm6AK7QvYhmSRMBiOtejaipKCMdx6azbkjCeiaH8OXdOLuzvdilM2cSkrA7lRQVI0NR85WEEylZU4OHHRFBpNT8ojbmo9Bc+AtgcVsJKp+GKdOpCEZZCQJDLKMYnegyQbi4zIwWCxoqgZCUJBdyJxNL7Fz7XHCawRSv3lNSops7Fh3gqi6odRvdk0s/Xz0JO+s34qpry9Gu8DuUDEIQVJuPrszk0kqKECyaXgWlCI7dSyeFryDvek7sDl+/hULgr293Fmy/kU0TWfg0NkoukAgePvHTdh1FSXAiKKoWHw9cb+S+i12MmvctxiNBv618FH8q/nj634tpXpw21lWLdyN3eYkJ72AL9e/wPLv9yH08tmCmqDoOuNLIQQFJTa8PawYrpvlV3DxMoEnilEUjSUzN/PB3NEVzv3QjrNYTDKyLOHhZaVN13rkF5fxybebsSbaWCeS6dauLj8u3M26VUcJj/RnzuLHaNapLt/P2oSu63S7rwXeFivTGvbnibc+5wtWs6vFCd6dM6rCsQqKbBw4mogAjsQmkZiYQ1RUxQ7N3ScTeXHeGiQJHhzfhomDOwEwrt11jSJB8OW6yWSl5dO8w7WC792bTjHjpZ9RFRVddXXOntwXz8r9b2IwyDw3ZDYpF7OwlznJiM8EWWLIY93oeX8ratSpbPFQxd/kvyzCdKeoEkxV3FEeeK4fS6euwjfYh9CYcAIDPeg9ugsBYX4Vtntx4dPsuD8Jc+Ba5kkdKUnKxjN1Gt+0fgOz7LotdV3nucGfknwhi9BIf75YP+Uvu1v/VcqKbXz61DeUFJQyac44gm8xuLfV3Y1o0DqaxLhUnvzgwRtu0/aeJuxceRgk19//jCNbTuGwObHKFi4ev3TDCNLe3464PJyMMid3n70qmA7/fpJZE79Fdao0bBfDG988RkRUMCHVrq2xMPFnyu4qwXeOif6BvejXsQvjmr9CRmI2uuqqmdr8cgZDD7uEX9PaEfh5umN3FjGsS8UUjIe7GQ+riVKbEwRIQlDaKgyDr5WXhvem27D23PtYD1ITstE1HTcPC9Me/4bc7GJEueu6pOmoioJQDFisZnoOuTbi5q0nFnExLg1Jkvj0p6eoWS78fjl6EqXcgDMIK3ZFQSpSqObmRbOwMMwGA9YCDVmS0AAjEt+tnHB1XadD5eju80TWDiKiPBJoMMiMfqg9XyzYjtMNNG+ZvBLbtX7j64Ipy+ZtJT+nGNXdwP2LfkGVYWLP9ozr7Dp3Dy8rQggMBhnPckPSth1j2LvzHAaTgahagYyd1AsAVdV44pPlHE9Mp2aoP0tfHYG5PLpjsZpAkpBkCYubiezMQvwDPTEaDZSV2Hn3qcUoThWj2cBXv03E09sdm0PBXKAhaa5TXrP8MPu3nUXXBbnZRcSfy6RR0+os2vcm9jLn1XsjJSkHALvNyfnTqZXuOR8vN+pEhRB/IRNLSjEThs7lsed7M3B426vbXEzLRdV1VE3nzKWsq68XFpZhsymElqcgq0eHUD36mu2HpulsW3kEpcyOjuT6rpZAr+511WV++o9PsXfTST6aWD72Sxc0aR9TJZaq+I9SJZiquKOMen0wXR5sy7M9p5G97yIe3m5M+fqJStsZDAa6DphKRmF9Lp84hY6OqhRTqJQQZHE1LZQW20k4nYauC9ISc1i3ZA/htYJo0aV+pfXuFKvn/s6e1YfRVJ0vX1zKmz9OvOm2ZquJ93969pbrdRzQgugm1UGSCL2F+LrCyFcGMu/lH4iIDqFh2zp88+bPnDueTHh0GPc81IEPH5tPTkouJrMRrwBP9q+P5bsPVjHqtfsIj3J9CWmaTlp+AoEtVEI8Kgqu2p41yLBnIcIFzRs0RFU00uIz4brIRnZyLhkJ2UREhzD/442wM4vR9zbhyXvbk5aRz4Kle6hdK4jhg1sz9/PRzJy+nrBwX3alJ1OQW8orbz/E3c1dYzaCwv0Ius69efGR9zl/PJkfPttI044x5KXmcXT7GR5+vfKsuuz0ApwOFaubmbzsIlbnJfLNkSPU9wnEJEn4JCiIlDIChYTVw0xq6mV6to3m52HDKCgqY9GF1aQk5jJkTEUfofefWcyJA/EIIZjz23NE1AxiT2wCn6/eiwgwE1bflygvLx5q14Rgd3cOnU/lkV7XhFyzjjHs3XQKW7gVp9DRdfjx4Imrgqlx6yimfDKc5AtZ9BnmEhQvvzuYlKRcgkN9cHO/Vnf31qy1HL2YBhKkZBeQmHmZupGuyE2X3o0oK3WQm1XEhQuZPDzkc4JCfZi39HFkWb6aDjTIMoZy3yfV5qRdtWCOXE5DNsq071QXq9HIto2n8PXzIKqO6x7x8ffE57pbo2mbKBq3qMn506k8/mLfSp+FLEvMnTaCHxbs5OevdqI4VdYvP1xBMA3s2IgdJxIoKLExaYjLTPX8hUwmTv4eTdd5cnx3Bg2obBy7fP5WDm89jVBUPPw9yWrgg00SOIzXGg0sVhNd+zdj12+x7Nt8iuad6tGqS91Ka1VxZ/hvNa6UJKkW8CxQk+v0jxBiwO3sXyWYqrjjmMwmdKMB3ceMbDag6ArTzs4kviSRByMH0TfM9XQtSxYifB9jYMRK1mfspUtwCwLN1wphPb3d6NSvKdtXHkIrsjPn+cWYvT2ZMnsMnfo3u9nh/xb+Yb4u52uD4ab1QX+V0Bq37wvV/9Hu9H/UlfZaOWcjK77YhKbonNh2mp2rDqGWOVFVQc36kTwzfQSv3TcDxaHw3furWJ0zn1PH2rH36BZqPFXAz8nv8kL9nyqs/2jUCFr6N8Hf7EdND1ddjCQEwmRy+ULpOt7+XoTUCCQvp5gtG0+iKhrrVxxh3OPdeemNZaSlXWaXu4makYG0b12bj2eNZN/vp9izaBcBkkTCylPQvF6l93aFmCbVeWvBtWn1j7x54+2mfPQg86etoX7TGjRqU4uhs9cggBN5mfRM9uTckSQ0sxGDu5kG9cNp2bwmAA2DgyEY2q94ttJQYYALp1KxlzmxWE188c5qWnWtx+GifJzlXYl67GUuHI/jmR/imL/5Je5r1wj9uhlnvR5oQ60GEYye/iNX6vz7NIxhQ9x5Zu/cz90xtXmuZ3s69Lo2R0+WJWpEVb4PzsRnISsC3STh5+FGzVB/DhxOYM2GE/Tr3Zi+Q1oihOCetu8iBOTlFHMpMYeY+uFMXTyeHWuO0eXepriV1yfNmPwDx3eexV7HH8XLzLGUTF54cwAPP9kNX3+XseSNMJmMldJwf8RokOnZtwmrFu9FUVTKvI1cLijF39eV5vTzdOPbF4dW2OfI0SQUVUXTBFu2xd1QMBXklaBpGrIs0aFHQ7abykjLKeShUIhnTgAAIABJREFUHhW3lSSJN78ad8NC8SqquE1WAd8AvwH6n2xbiSrBVMUdxzvQC1EjFKFqqB4WzhZdJLE0GUWoLE9dfVUwXWF87UGMrz2o0jpCOcFzr8/FlhXEgd9dT91KmZ20xOx/7Nx7juyE2WKitMhGr9scOfJP4bJrcA2dBXAUlmK0mLG4mWnbpwnh0SHYnarLDdpq5tTJVIa92peii2vRhMBiqDy6RpZkmvtd+yK/GJeOh58XpSV2hNWCbJDpPnUITy1ZjUmW8Qp0pzTfRmCQN6fj0shMyEXSBboOJqOMpmo8P3o+548mITlVhC64eDqVtT8fJDDYmzZdby6c/oy7Wkfx+QpXKk0IQZ2AAFKLinAvg/ijKSDA4FCJqBfKx9OGVdh3x/Yz7Np5jkFDWtKwYcWC6SffvI+576zC6VQ5eiCe08eTuX9yL3aaXDPpSo+nY7Qr5OcUEX8hkymrN5OcW8BjHVvw7GDXPRHdIAKrnwfKZTtGk4E6ZVY+eWgxqoeBxT3z6dewLr6KjBAQGnlz4T35ke5Mnb+JyDA/Zrw0CE3ReO3dlSiKxr5D8az6/hk8PSz06NeEzetOYDEbmDDkc5q3j+bdeWMr1HaBK6Wmmg0oHq4o1vJNx5k4phuB5WNr/i6hEX40HNiArfvOU+woY/Hqg0wa3e2m23fuVJcflx2krMzBsAcqu8cDDH+2F5ezitA0nUde7MckPw8UVbuamvwjVWLpP8B/aYQJsAshZv27O1cJpiruOKUlDkrdJRxuZsoUnQARiEEyYJHN1Pe+eRh91/rjHN11noFjOlKzbhhq8YegZ9Gxl86R7YFoqkztJjXoN6rjP3bukiTR9cF2/9j6NyIhLo1v319FzXrhjH6p/1Uzv76PdGXbsv3E7b8IQK+HOjLy5YEU5hVTq2E17DYFtVEtcCoIdyvbtsbhnxnAhdQOtG1u4P46w25xVBdTxszH5uaBZDIhd65BlkHjyy1HcHoJJJOMW0sLzkIdYTHxyfS1SLhqY8KCvPEMdOfZGctIOpOOMBoQikq1WoG4B3gzb9paJEni1Y+H/S3RdAVJklg+YgRH0tKI9vHn+Q1fUFJsA1Wn4FwW638+SLd7m3LpYhYefu5M++A3nE6Vffsu8MvKiUiShFu5i3inPnfRqc9dPD/iS86dSAGgTngA37wylF+W7CVXtXBm1zkatKxFqmojJbsAIcM3Ww4xvH0TFAk8PSwsfHkYGw+do12DGnz8zPfIGhhLNazpDs7vT2DulGUIIRj2dA/GTLpxo0KHFrVZM+/Jqz/b7crVVJssSVxpwpvy5kDGP9uDoR3eRwJOH0kiIzmPan9wtZ88fThfTfuNHQX5KEBMreCbRpVuhd3m5OKZdGrFhOLhea2g/cTBBI4uOoSnpqPU9iEi5NaefxHhfqz86dmrNV03Oo6bu4WXZ1csaL9eLDkdKlt/P0VwqA/NW9b6y++liiqu4zNJkt4CNgFXc75CiKO3s3OVYKrijhMc6oPqaQRdYHA3kpft5JMm75FpzybKs+YN90mJz2bG5B9x2hX2bz7NDwf/hWxqjuqMpWPfHALv2ouX7/NEx4z/z76ZP3D2UDyvDfoYg8nAR2tfomaDG7d73y752UVM6DUVTRMc2RZHYLgfA8d1BVxDcZPPu1qoze5mqrWvjleI59U5fm7uZrr3aMSWXecwqhpb527GYVcoaBHIsZPePPThjW0XdF3w09K9pKVcpszpRJZldDcreoAborgMWZIwyjLIUKQ5UHwlfDfnYddd8+AiqvnxxluDeHbearIuFxNokTEDTTs25v0vxzJ51HycDhWzxUhudlGl46dlFfDB/E14e1p5/fHeeLhbbutauZtMdKpZE4D5qyawYflhvp+zhbISB19NX893s36ntNhGYIQ/QtNB01HMcPcL8xBC8NkzA2lT/1pE5pVPhvPTvO3UiA6mdZe6jL3/c9LTC7BaTXy0chKNm1Ynu7AENB2EhHuOg7dnreXk2XTMZiNfzRjF+HtdNTytOsawcdVRdKEzffx9rP1s21VfrlWLd99UMP0Rq9XEzKnD2Lwtjru71Mf9umvj7etOw2bViT+TgV+gJxZvC6VljgrXLzjCj9dmj+Z5u0JyxmVqR/553dwf0XWdicPnkpmWj8EoM+GdIXTt2RAhBCsW7Xa5pgMNvX24v1dThBAc2H4Wg0GmZaeYShEglwCsHBXas+EE0yYuxWwx8cnyZ64WcGdnFDBl/LcUF9l56+NhrFkdy77d5wF456OhVaLpP8F/b4SpMTAK6M61lJwo//lPqRJMVfwjtG1Wi8Mnk/FwM1OzWgBeJiteJq+bbi+uqxG58neD12RkS1t0zDQKjsRkDPvHz/vPWDlnE6VFNgDWLtjO0zNG/q31Mi/lut6vEAgkEk+l8MMna+nyYCa7d22g1BAOsoxDaExTfuerLcf57e5n+enDNSybtZ42fZqyds1zrJi3jaUzNyAJ8EgqQYkJwGis/EQPsHL5IRbM3w4CRKgnZWYVR3ULsx/vw2+7TtO4Vhi/HYnjXHIOkaHeJIgiRIAZQ7GGSch8+tko/AM8cbOYkA0yxS38aeTwIN3u5OLFLCb+6z5mvb2KoDBfegyoXGv26eJtxJ5JwWiQWbn5OCMH3DhVcyu8fNzp1q8JP87dhtXNjKqo5Jc6QAjSk3OR/TwwOzTc3I3k2hUwSKzcdaqCYAoK9eGZtwZe/Tnf5kRzN2ETXI3yBHi682rzlixbupvgeqEcO5sGOjicKkdPJFOjmkuUPvXKvfQc2JyAYG8CgrzQh9s4vs8VGYxpemvvrT/SsF44DetVdKxOyLsMwIcLHyMlIZvz2fkMeW4BBlni89cfpGF0xf8bblYTdWv9ewOoHXaFlMQc9HLBN+OdVYSE+ZB4LpMjB11WFbJB5pFneyFJEssW7GTJnC0g4PGX+9Hnwdv7PH9duBtV0dA0nb0bT10VTFvWnyA7sxBdFyyZv50yTcfhULFYjGRlFPxb76mKKsp5AIgSQjj/nZ2rBFMV/wjTpgwkMSWPsGAfPG7Djbt6dAiTpj3AkR1nGTSuC+BKw0iWjtz4a/9/hqjGkexZcxRZlmjZo/Ett3U6FBS7godP5VqiK8Q0r0mbHo05sj2OqEaRbFt2AFVRObAlm2odBXqwL8LXB0cjHeGvk6vkkFGcz9JpqxAC9q09yogX+9O+d2OWzd2Comh0GdKKsY/3wGS4cSpmx65zV8qiMCoynQY1p3/vZqTtT2FAdBSeEd58tGwbOpCTVkTLyGCSIi4jhGDuowPxL58xNufpwSzbfYLSxCK2rz2JqurMnbOFj2eOYMbiipFAp0Ph9LFk/AK9CAvywWwyIgFBATcX0QD5ZTb2JiXTolo4od4Vtw0M8eHTX57i1NEkZr+x0vWiJFG9fjjJyXmIrHzsOYX4B1goaRNG//YNbnocTdMpcbiGBssmGXcvK4pTZcIDc0hNyKZ5xxjq9WvEicXbETYdg0GmQ+voq/tLkkRMw2uu7V36NKH62hDSU/Jo3fn2urniz2Xyy5K9tGgTRdO2tSkqtlG7VjDrzp7nxXUbEcD0vr3oW68us1buRVE1FGDnkYuVBNPfwc3dQv9hbfn1h30IWUYyyJSVOUm9lIcqQFjNdOrTiKZtXYaRly5k4bSrSBJcir/9+sKeD7TizLFLGAwGWl2Xtq3fOBKjyYCEROuOdWjWNpqZH64lLMKP7r0a3WLFKu4Ekvjv7ZIDTuGaHfdvFcJWCaYq/hEMskz0X+gOA+g2oDndbtBF87+FYzviWDp1FZIQ9HqoC21u4auUkZDNM+1fx1Zq59nPxtLnkRtHfA0GmTcXuWwXdv56mI+fXYim6pQVWbm7XyzedYrwCXOwIrcR8fhjNRgJNHkRUC2QopxC3Dxcbt/uXm78EPseilPDy/fmAg2gQ6cYzsSloasaTl1n348nEafyObr3IpIk0bxLDDh1JIOEj9nMxbQcVF1gNRsxe19L/4QHeDNhYEcO7L/Irg2nMRoN1I4OrnQ8Xdd56v45JOYXo1sMdGpXh8lju+PlaaVLy+hK219BCMGgBUvJL7NjMsise3Q0uTnF1KkZjMloICOrgCde/gGHU6Vhuygy4jLp2vcuhj3ZncljvyIzqwCh6QSoMiunj8frOnPJG30OTZtWJy4uHX9/D8LDfclIuUxaUg6qU+XgljjGPN+LlF5NuFxQxnOjuxF8C7F3/OgljsUm0fOeuyq5Zl/Bqags3HwYp6oxrldrXpuwhPzLpezeGofTzwImAw890JY4v2Lsqmvu4o6EJPrWq8vgnk05EpeC0SjTvc2dHw3y5Cv3cs8Drfh2/nbq1Q+neataRNUOJv5sBoqi8fAzPa9uO/KZHiTH52Awyjww7vYbJXoOaUXLzvUwW4x4lPtVHdhxlnef/wGrm5nJ7w0msoYrpTjnm3F39g1W8X8VX+CsJEmHqFjDVGUrUMX/DEJNQZR9j2RuhmTt9ec7/C+ipKCMXasOEd2kBp6+7vzy2QbqtqxF75GduHA0EU3VUBWNxNMpt1zn4MZjOGwONEXj1y823VQwXWHnioOkXsyk9/AOZKbk8vAbnZGDl1Hbew26sDMu/AzHyiYzomYHPnx1OQUeniCbeG7WKNzLZ59Z3S1Yb62VAHjw/tZczi/llx8PAKABednFOB0qFqsJs8FA+OlSnFaZoYMbY20YwLx1+2lbrwb1IisLojZto/lo+nAKCsto184lgHRdoOs6RqMBW5mT5LTLaEHuIEnsPJzAS68MwMPj1rVLiqaRWVSCLgSKKjHwyS8xaBIxUSHMfGkQT479mhJZB1kiRVFYsffaQOR5y55h+KAPKUq4jMd9UXi6/Xmd1PSPhvHLjmN8ufMQzyz8lU9G3ktgiA8ZSa6hsZ++tIxZK27su7V/SxxJ5zO558HW2J0qr0750eVVtOY4P15nmnk9i7Yc4euNBxEIyuxO5PKiaF0X6BoousrOnWeJrOGDh8mIxWJibEvXA0WnFrXZOP9pZFnCYv5nfo3Xig7hnY+u2QT4BXjy4fyxlbYLifDjs5//+jBoAL+ga6Lz2NlUXn/lZyRJQiuxs2PdCfatOw6SxOQPH6Rz39uf21fF30T813YivvV3dq4STFXccUT+ONCSEWVLIeBHJNPNUyH/23ht0AwS41KRkAiI8CcjIZstP+0lonYIPUZ0ZMsPe0hPzMHs5U5hXgk+5empP9Ky510sfOtnhC7o99jdN9xGVTR2rj5KdnIOP3z4K6qi0aRjPT741TVjrMhhJGnzDjSHD817RPFiLddDUFZ6AYqiY/F0p8yu/OX3KEkS6YXFrjpcAVYfK0pxGQFBnjRpU5sxE3rSslMMqqrRa0AzDEYDI7rdOvLXqPG14veMtHyeHfs1ZaUOXn1/CB271adL9wb8fjIJhMBkMt6wY+qPGGUDA2PqsiUhAXGmCBQTugxnE7I4digRrdQJHgaQJIYOallh3wLFwem7PVG7uZMsFZFvs+Pv7nbL4+2NT+b99TtAQEmig13nk3jytf68/+wSFKeKweD6EhFCMGf6eg7sPs+oR7sQGenPtElLURWNA1vjmFQuMoQAW6njpsfT9PKaUwGqrjP181H8+vNBatcLZfGvh8kvKMWUV8bBA4nUNBmZ8sH91A++FrV1s5r+9Br+/8Rnn6x3fVEbZXQJ7MV2nA5XZO3wjrNVgqmKv40QYockSSHAFSfag0KI207PVQmmKu48wsHVBoR/r7buf4zMS7k4bQpWdwuqQ0GUt4sIXeAX4kOb+9qw4sstnDyQwMKpq5k4Y0SF/TVNZ+vygwAsiZ+N6lDxCbxx6mbeW8v4/ecDaHYnaDqaolGQV8yuNbE0bF2bI1sKWf1CQwQCz9x7aPm8a7/Jb9/H7A/WUD0qiE49/poYXbT9CN/tOko1oyeqvwmcOoXFxagX8zFajOzZYmfn76d48NlujBjTpcJss9tl19YzlJY60FSdf01fxUj3Ml6bMYywuVv5adEewiI8SUvK5YNJ36OqGr0HtSC8RgBd+jVBkiTsdgWLxch3mw+za9dFTLrAmK2DUNA8TXRrHk2TFjVxt5rQ8m0MGtGWofe1qnAOAe7u1PTzJbWwiBq+vvi63Twdd4Wl+2LRJVf9hqoLokMDqdM0gDHP38ORvRcY+UwPABIuZLHpt2M47AqfvLuaakEu0axpOsUFZdSoFcTjT9/N3l3nGT66w02PN7ZHK8ocCk5F5Zn+HfB0szDh5X4A9LuvBQBTHv76asfSla67/02oqkZiYg7Vqvnjdhu1irciItCHVCkTIUm06Fmf0SM6EXsoEQWo3iDiT/ev4g7yv+9WuyNIkvQgMB3YjuuRcbYkSVOEEMtuZ/8qwVTF38KpaTy9dTXHczL5V7vu9K1VF8nvS0TJHDC3RjI3/fNF/gK7fz3M2UPxDHi8B8GRN26b/ztMmf8YX732E3d1rMuAJ3rwy6frCa0RxOn9FzEYDXj5uiMbZIQs8PKrnP/6Zc7v/PjpesBlGdD1vpb8+vU2mnSoS836FTufUuNzcNgUjCYD9ZvFYLEYOXs6nRkTFmP1sNCtfzMUp46u6yTH5VzdLyomlHv6NUHTdKTydu1LFzJZvmAXTdpGcffAFjd8b2UOhZnrdqHpgstyGYP63sXpw5fI33weAahIGDQdVdVZuGA7K5V0lj06/C+LphZtolj81XZUXSc/TObDLbt4oFljfv/tOEIXXM4t5ttPN5GRkocQsHTOFkwGidIiG2n5ZSz78QCR1QOo3rsWiuIaitawTS3KdqfhTCrFp7odLx93vlvzHKXFdvzKo3yFBWXEHk2i0V2RBAZ6sXLkQyQVFBDl74csSZQU2Xh51Dwyki/z/LQH6NC7YtH+fc0bsO9iMpIO79/fm5gwV/3Mhg0nyUwv4NWJS1m4cgIBgV7IsoTBIKMpGmmX8oisEUBAoBe9xnUk9nwq/Qe1YMDglpWuzfXYCm3IBzIJD/HG7SZ1Ti9Ne5AlX24lokYAHf6iOP5P8NykpcRfzMbX141vF43neFIGSZn59G1d77bSoNcT5OGGJARIEOnpicXDgm4xojlUvp27jUEj299WZLKKKm7Ba0CrK1ElSZKCgM1AlWCq4p9nT/oldqddokxVeGPPZpdgMtVH8vv8jh/r3JEEPnp0HopD5eCm48w/+MEdP0bLHo0rdL89P+cRRtSfTEFOMSazgfkH3sXqYUF1avQb06nS/rnp+ShODUmCnPR8Jvb5kNJCG7qmExTkzlMfjaRVr7sAePK9+/l40nf4BXkzZfZozh1O4LWH5oIkoSgaPYa349zRRJx2J6Nfvdb+vmLBLpbM/h1F0Vjx3R5mfDee1x9dQG5GITvXHqdmnTBqNwivdG4Wk4EAT3cKSmxoTg3v+AKeHdeVN/PzcU8qZfioziz/bi9KiZ3COlaysnPJLSkjxNuTpItZvPX8D5hMBt6bNZLQCNd8uLXf7+PgtjMMfbI7DcpHk9SOCeXr5U8zYO5iVCv4m80smLERoamYzUZkWaJV5xhOHUxAcaroqoYqICejgN/Wn0QIQXpeIT39/UgOCCBr9VlK3Itw2lVsZU72bY7j9JEk7modhTnAk/1bTvPVB7+RU2xH83XHbDLiazaSmZbP0y/2pf79rjTW/i1xpCa6ROqC6esrCaZ7GtelVa1IdFVnx2/HWX3hAH0HtSAlKRdN07FYTeRkF1E7JpQvlj7Ozwt2sXV1LFhMZKTmk3S5gO1LN2Ewyozp04rH+t/aAHXW68s4uDUOo8lIUJgvbfvdxXNjvyIv6TL3PdSecc/3JjDEm0lvVZ6z978BRdGIO50GQH6+4OsN+1nw+xFkSWL7iXi+eHbwX1rP4SljCzPillhM8ulU3NxNyLKEyWTAy8ftqtVDFVX8DeQ/pODy4PYbsasEUxV/i1refggE7kYTDQKuFQQX5Bbz4tDPycsu4uVZo2nV7e8PzHXanK4p5rqOo+w/k+oTQlBSWIau6QhhwGlTuHfMzTuBRr7Qj9yMAiRg2ITerP9uN5qiufyBLmYx/bF5/HxpDgDV64Ty2dopV/fNSMhG0lR02YC3txvRjaszc8PLlY5RVFCKomgIXZCRns/9Hy8hu40V77MaIUkObjY5wiDLvPVgTyZ+8hPu8SVszs5kQXAWejs3Au8OYPgj3Rkwsj2PLVzBpfxs2tWoRrCXa07Y99/sIDMtH0mSWPXjfp6Y3IdL5zP56oPfcNgV4o4k8cvRd64eKzTIh18njeXgpVTk5DK+fnsNdrtCQJgPs79/An9/T2w+BpxFds5tOofFambIo13Isjn5fc9ZsiNNfLZhHw2NHmg2lUKbik+Ah8uzSoKw68aNzHz5F4rySxESaLKEZjai6QJdF/ywYBf33u9K19Vp5ErrWN3MNGt/4+68AE935n2ygeXrDlMcYeJs4WWenHwPS7/ZQeuOMVeH14ZX82fiGwNo37UeO9cdZ/PGWNI7+KJbddyydf4fe+cdHUXVxuHnzpbsppNKEhKSAAm9S0dQulQRRFBERFFERVFRVGxYsGDBLlJEBBGV3kF6Dy3UAElo6Qnp2Tpzvz82lEgx9k/d55ycw87MvTN3dtl5997f+3v3Hj932ftVxuSJLo3a2Al9CSwXOuvLS7EIQK/XMXTclziOZSOA+dM3cfuIG/Hxu77u6u/EYNDRt19TFi/aS8NGkXy6PwG9pmHMdnLi9EmSuqQTX/vKwP1qZBYUMz8zBWu0ieJgPUc3nuTg9mTemz6CAwmnaHtTHXdJlL+Qf7GtwEohxCpgbvnrQcDyyjZ2B0xufhfRflVYfuswTuTn0aHaJQfeTcv2k3n2PA67k6/eWfaHBEz128Zz9/P9ObL9BHc999f86hZC8OLsh/l28jLa9GpCZNz1/W78g3x4qdwmAOCpj4bxzTvLSDuWhsFkICzmyiyzC3Qc0JJ1c7eSdTaXcZ9fO4160AM3sX9XCsnHMnBW9SQfOwhBaR1vHr2vJ7F1rv2QenzuUmxBHtj9DBh2nschNWxOlXNFRThUlafGzKH4bB71vQ18/GSviw+peo2qs31DElJKatd3CbxtqoqqSRw+RnJDvXj+1QW89Eyfi6U4wnx96NugDgdtqRcDnUyHhcHvzMWhaRTq7WAQvPp4V25p6PIqGvdcH0zzqzB7/V5sDpV8H4HRwwAC7n+6J0aTkdjaYQSHXSrJEREdhM1qx+nU8An0pu1Nddi09AB4QOuOlzyQqteqyhcrnyQ3s5Aa9SPYfvg0kSF+lJwrJOnAaTr0bop/oDenigo409oTFJiVlsSa29vRe+ANruXByxBC0OLGeEKr+vGNJZmyCJe3lK/ByOhbL5XvmffVVnZvPYmUkikfrSIrVCEi0JeHXr6VqtUCMPqZWHAylWyrAz+jgmJ3ZReaPX+fJuiv4NEx3Xjk0a5IYPUHH0G6FXOOEynhiUdns3T1uEr1U2q1IwFjvp3grXnYNThx5BwtO9UjttzQ0o2b34uU8ikhRH/gwn/QL6SUCyrbXlzusPz/TvPmzWVCQsLffRluKsHxxDOMu/0jEIJ+w9tzz7hef/cl/a2c3H+K5AOnadfvhusaWeZnF6HolGtm311A0zQ+fHM5y1cdILOZJzqTjlY1o/hk+PUDyRte/IhSmx1TLjg9wRzigRKs597GTQk8buezd1cinBrCqOez7x8murxW2c7Nx3nlqW8RAoaN6kSKtZQlPx1CWBwIm0ToFEwmA69P6E+zqzhbfz7jJ+Yu2U1hsB4upM/rJOZ8DY9iSZ9ujXjiIZcFRXpeEfe+PY+iUiuTR/Uh3GhC4DI3Bdiy4wRvf7Ka2OrBvPH8rWgOle1rDhNbN5yYeFdAW1RYxvncEqrHBl91ZuLpz5ey9eApKLUTsC0DJETEBPPpqnG0ffsz8kpdbu6ehSp3V41H52Fg4dL9REYG8snHd18sWZJ5vphNiSmsyUthU9pp1yxex5sYVP/Sct/CeTuZ/pHLCVttH0RaWSlGg55nbutI/9YNeG/OBr5buw9NSvRSElmm4803hlC9xrWD67+bC8+Ny+/t8ZxcHp84H+uB8yBBEbBm43OV7nPmhgS+fWMFIrm8nI5Bh3egD598P5rgqtevWfdvRgixR0p5fUHcH4ipWqSMHD32LznXyWfH/mVjE0LogLVSymtXi/4F3DNMbv4U4hpG8fmaZyjIKyauUdTffTl/OzUbR1OzcfR1j9m6bB9vPjANIQSvzH2YRu0qOkR/On8La3cmcXfvFvTt0IDtW08gbRrBO4rx8jMy5ZXev3gdX4+8nfGfLiEpsBDNA+w2O5+278ZH323gmCWfauV1whSnCk7tYrs9O0/ikBKckgMJqWzKzUGTEgwKhjI7mkngMEJE2NUfbEMHt2NrThZHz2bjUMv7FWAskUgJy77byY5pW4iOD2PitBGsnHT/NcfwwdSfyC8o47AlnZnTN6IrttNrcKsKy3S+fp74XhaYOhwqzz78NYcPnOWO4e1JTMnAYnfgbXfNGjnsTvKyC5k+ZQ2lRVbQu4QNgfvKWFmwCykEsoqZjMwCDh48R6MG1di2+hBvLNtKiQEUvWDEwKaE+vgwoG69CtfbZ2ALfHzN5JaWsaMgm+yjpxBAFW/X9UVW9cdQPis3vHdLhvdu+Yvv41+Npkm+XLeL1KzzdGxcg2eWrcao0zH77oHUCnGJ46UGpf5QVt2IMV+lVdNfV/Ota52azDTo8VBAaICiUFxmZfa0TWxZd5TQCH/enzYC45/kO+Xm342UUhVCaEIIPyll4W/pw51y4OYPRyv3lwmNDCC+cfX/hPagtMjCliV7yDqT95v72PDDbhw2J3arg8VfrmdE6xd56e5PsVnsnMnMZ87KPZzLLmTSjLU4VY3ouqGoBlBUsJ8qRKq/PFtcOyKEH165F5PJAAh0iiCttIRDHsXYAvTYAnToDTr8A71JshTwxdbd5BbA5HyFAAAgAElEQVSVsmbJfnBoSKOOXgNvoFPreBQBwqEhikopqm6guJqOjxds4kyKS1O5aN8R7vpiHssPJOFpMjJr3GAebNUM1Sxxeko0L0FIoA8mDwPm3DJKCi2cPHiO3RuOXXcMtWqEYDTq0TSNpdO3sOCrLTx/33SgYk3Cyzl5LIPjR9NRVY15X22hpX8gwqFhMBnpcWcbIuJCqdm5Lovm7CBgfQFBaSpP3dAKc5l0pVhLiRSuZcgaNUOZcM9Upoz/Dt26U6hFVjSn5K46jRjWuMkVWYWKItip5fH6wV3syk7nvm4tePWubnSsH+saj58fPtl2qpYq9Gn1/5cJB7D24Am+XLeL5fuOMfG7tZTZHRRYrHy//zAAxVYbAz7/hkxhpThaT1zLKF56+tctm3uajVgjTJxvEYCziidSp6ABq5btp6TIQvLRDKZ/su5PGJ2bCshL5VH+7L+/gRLgoBBimhBiyoW/yjZ2h+pu/lDmTlrIjAnfElM/ive3vILZ65f9b/5oNi7czZcv/kDDtnGM/fCevyQV+clb3uTcySycDic3DWzFk58MR/mV6fi97u3ArjUHUXQKyYfOknUun7zMQrYu30/z7g3R63QoQuDnbWZnyhlWeebiaO9NZKKFEfd1x1CJX94bj6fy2HfL8PE20jQknFY1org5LpY3Nm5COlSKuwTxQdeelPgKHlqwDFXTWDlvF5bcUpeBgZTsyM1kwuju7P1+P7aMQkpqeIEQ2Jwqq3YdI3HaHkY+04MP3l2CJcjA+LMZdKgdg5eHkT7dG/HTruNkahaeHdyFomM5LJ6zE6+aoaSl5ICEmNrX1olZ7A42yyxsUQre3h7oUgpQNYnd5uDtF39k3bJE2neuy7NvDKwQqIeE++PUXOtE4dUDSPgxkSCbE5PZQL2hXZh75ixJZzPwsjsxOwWe+8uYv3c18fXDMXro2V6Si2o24OvnRWCAF2dPZmGz2DF46Knm6Umf3i0JD/K75nUv2XYI/4RCMCpU7+5Hl8aXypnM+Gw9jswySvQ21q8+xIA7r59d93dg1OvKl9kEgd5eFKlOhAOqlhgoKixj3MrV2FXX7KRQBO883g9vz6vbCpSV2vjgvZUkns6iR9cGDB3QCiEE/r6evD6yJy9MWoA0G3GaJPaqBvwLJbbzVgTg5fPXf5+4+VfxY/nfb8IdMLn5Q5n31iKkJklPyeLQlmPc0O2P9WGqDFPGzqa0yMLWpfvodmdbGratXPHT38PZ4xk4y0XBW5bspdudbWnUvvYvtKpIo3bxfJ/8HkII3ho9g8LzpWiaJCI2BF8vE7Mm3sn+pDTaNo7lg5+24Sh1YiiBoJujGXBfhyv6czicpBzPIjI6CM/yMiQfrt+OxeHAqWm0j4thWGuXg/f8oXewNy2DHvG1CPTyZF1SMkKAQ9Mos9gROoFUJQ5vhTJPiRCu19LTA698DZ8qvmTlFuJ1vAQhBDNeX4ZHoQ1Drh0ivDGUB63BgT5888G9ABQXljH4vq9xOjV0OsFzkwdTo044odUCrhgLQHZ6AWPun8r5BjqkWVCmWRk9titHd5+iz9A2PD16FlJKNm84xvtvLueue9sTHOILQMKRs1iivNCyy0jNLkTxM+FRbMPoYcAr0AsB2IwKxng/+jSOZ+XCfTgcDpIOpRM+IB71tAcGvY6pz7gCsTGTbueLiQup0yyaJ94Zgq58SS1h6wlW/rCbbrc244b2lz53XgdLUPJUQOXAumPERH6MzXmOGoFv0Lh5DMknskBK4utVLqvsr6ZD3Vie7teR07n5DOvYnCKbjQkjv2bhhs0s/3I7h1sqoLiW5RpVC2XAqE+wOZw8+XQvlqWcoNhm5+0e3Yjy92faR2tZses4UieYMW87jetH0bCOK4Px5mZx1Jw8gpef/wGL08m9j3eiblgwk15eSERUIE3b1yK/sIwq19EBuvkD+OdImyuFEGKdlLITUFdK+fRv7ccdMLn5Q2nZsylbF+zC6KGnZpNfp2H4o4iKDyPl0FkcdgdvPTiNoc/0odud7X654e9g1JuD+eTpuRezwYKv8dD/JS7MEj310T3sWJlIWHQQNRu6NGCRoVWIDHX5H93atC7LFicigJNHs8nILSIsyLdCX0/dP4OUE1l4+5qY/uOjmMxGboqP5WSOa9mwadSlh3Pd0BDqhl4SGd8UF8uQ5o05mpnN2GFtWDtrJ5sOJRPeKZIH2rVACMFLkwczb+YW2t5cmz4DW7BrUxJTji4kpmFV9m9OAkDRJC/0uxmjvuJXzdQpa1jyQwIIgcGox2jU0/zGeFdG3DVYt2gvhafz8fLzwlrdkxE330Cnpo04ezKH/TuSiYwOJu1cPg5g5dL9nDyeycfTXdmGEaF+SEWgSIGUoFM1VIsDo4+JGuGB3N3rBrYdSGXkbW1pVCOMhG3JZKbn07FbA+afPOV6fgiwlJeiad21Aa27VvRxspTZePnRr7FJycbdycTcGEvXrg0Y0KEh0nHpCXTo2BFaFazGYHSSnDeBYSPnc0OrGvj6e14sNvv/hhCC21pfGq+nXk9uVhGaJnE6VcyaFyV6Db1ewS/ZTl5SKXoJb85dQ36oQNU03tiwiU/79UFqEqFJpAJI11Lc5URFBTFt1gMXXy/9MYETRzI4mp3P6sOn0OsVvnrvHqoGV/y8u3FzHcKEEG2APkKIb4EKOhEp5d7KdOIOmNz8oTz91WhOP92XkMig62aD/RE47E7ef/pbTh3L4OFXB1KnWTQAr89/jGUzNjJr0mJyMwqY8sQ3dB3S9ldpqbLO5LJi1hbqtqhBi589GK9Gz+Ed6TigJduW7aNGgyjCr2MfUBkMRj3t+1y7flvDamH4eHpQUmZDJxQMBl2F/aqqcfSgywtISklmegHRNUIY3bEVnWrXwM9sIszvUskWKSUFeSX4BXghJdisDsZ1vmTM2eD5fjz+s2to2jKWpi1jL7Y/k15Aw451uPOedoy47RRSCPRmI7VrXCproWoaHyzezLe79+GjOTF6GBg6vD0dezS4brAEUK9ZNAaDjvCjNu7q1I4BXdry8iOz2bnxGHqDnvuf7I6m1zH105+w2RzY7c6LbevHhTPlhYEsXbSXTeuOoGUUoTg1cjMKWbEwgREjOjKi36WlsKk/jCYnq5DnRn+Np7RTFmykSa0IYiOu7S4vEAhFwenrAYrgxK6zHM7LpW71EJq3rkXCuuMIRWBxliIl2O16rI4ghBDU+4clRpjNRu64uy2Lvt9Nx8716DasBeuOJ9MprgZL5uwkhVMgINzkTbFiQa8oVK/iSggY8UgXnEBqbgG3D2xJzehgrBY7er1LP/dzvp+zA1XVsAqJtDtRFAPHU7LcAdOfyb9shgl4AZgAVAPe/dk+CVy/Ono57oDJzR+KoijE1P9rvvy3rz7ItpUHsVrsvDtuLlPXjQfA7G2i8+A2fDN5GSadIDgi4KrBUkFuMW8/NB2HzcFTn9xLcMSlWaFnB3xAxulcDEY9H6x+hug6v1zLysvHTJc72vyqMRxNSOGLF76nVqMoHnj19iv0Vkl7UlgzezPt+t1A4w6XBMGKIpg2/g5W7jxK6/rRBPl5VWin0yn0v7M1C7/dQaNmMURGX5q5qF31UgHX3EKXNuntMXM4tOcUNeqGc77MQU52EXpPIzq9jjfeHUzdy4rrXo3dO5L56suN2GwOUlOyGT2uJ3NmbqbNjfFEx7rOJ6Xk+XcXsfLcKdRAPVKvIyJPcOvdbTCbftlzqGGLWD5dOIayEhs160VcHOcF80cPk4Eu/Zpidzg5fiyDYT9bpmwQF06Dp8IZO6Y73bq/jinb6tLlXOUhbZcaL81dSZJajFeGE89zFj768rbrXp/J08j4yXcw4dWFaBIQrgK8ep2OCWN782WVTZg8DBw+mc53M3riV6WUsSP+eLf6v4p7HriJex64lKF94XMV+3B3fM0mrDY7DzzQmS1pZymx2+hV27VE7eXtwdjxl2xG1i47wLsvLkCoGm071+Xxl/vz4aKt7Dl+jkf6t6VO3XCyMwrwskms3jqqhVWhecMrrSvcuLkW5bXivhdCTJBSTvyt/bgDJjf/WEIiAtBUDaOHnvCfLWX4B/nw8frnSdqTSvPO9a/a/vsPV7F/41GklMx8bSFPfXLvxX3WMrtr6UAIbOXLMH8Gbz00g8zTuZw6mkazm+rR8rLZLKfDybgeb2AttbFq1iZmJ71foZBvyplc9h84S7UqfjSJqxjQpJzMonPvxjwwtvs1z71+30menbocJHidOI/BqXHyWAY6X09UQLU5weZk/pztvPjGwOuOQ6dXkLiWbnQ6hd63Naf3bRXtVfbsSGbHluOo1Q145DnxSXNSpBO888UaJjzas1L36+fv85iX+hEa4U9AsA+d+jRBCMHAIdcXTesVBQ+hpyzME71VY/ZHP+Gh19PvsnZPr1jFBpmF2saMzymJqViQci6X2GoVz19wvoTHhn9JblYRo57szlfzdyIMOtAkjdvH0rt7I+IiXYHEY4+4fKZsdieJh9oQHRVEcODVCzP/kzEa9XRoVYvJT3zDcwdOU3xzKGYPIzfFxOJ3lSLIMz9eh2p3IqRk65rD+IT5sjglBYvdwQtPf4dngROdELz68gCatoj9G0b03+Pf6vT9e4IlcAdMbv7BFOUUoZWUAXDbiCvLlYTHhFxcGrOW2di95hDRdSOILHcOrhodjL5cMxQWHVyh7YuzH2LOO8tofGM88U2i/7QxBIX5k5dZgKZJAkIrLjFICVq5Z5GU8mK1+tVfb+Lbd5eRqgNrrRCOpWTRrkksAf6uWab1aw7x7mtLAHj06Z506dHwYh/5+aX4+3uhKILVu5OwO1QkoLbzp0w6iD0j0GerGFQNVRHoDTpat/9l0XzT5jGMHtOVlOQsbr9GwOLp5YGuTGLKk+hUBWuIEWOunX17Tv+mewfg4+/J/U/dcvF1aYn1oibqAna7E2upDd8qrvuj0yu8/fYQpryxjHPJLl+oXZuS6DekNbklpYz9bjkHCjJxIlF0AtUkUC0wb/U+xt/bpcL5t204Rl5OMQ67k49eWYyGBA89hiqePDqkAzE/+1wBeBj13PArPYr+aXz60g+cPZXD+QiN4hQrQsKZnHxe79+NOmGXlqudTpWcvBLAtS6i6AShoX7IFIlOCJQiOw6HBCl59t5pdO7ZiCffvP1vGpWb/zrugMnNP5YVX2++mJm2Y2UiNRpG8d2U1Xj5mbntwU4XM5cAJgyawol9LvHuZ1teIiw6mJ733Ih/sA8Om5Mb+1WcDYlrXJ2XZj908XVO2nm2LtlLWamNE4ln6f9gJxq0rvW7x/DirFGsm7+TmDoRBIT4suizNdRvG0+NBlEYjHom/vgES6auo9OgNviH+Lp0W4/MQHVqGBSBs5o/On8vPC4LEA7sOY3N5tLv7NudSpceDZFSMm7ctxzYf4ZacVWZMmUot3dsxMb9KTjMkrIgsKl6jps1aqY7ee71AcTGhaI6NapFXVu3cwEhBD16X5kRabc5STt3nsjqgdRtGMmjD3dl0pz1SEUgFYlq0jFs0PVnhPZsTiI1KYMu/W/AL8DrmsctX7iXD99Zjtls5KMZ9xFeLYDz2UU81PcDSoos3PlwZwaPckkVGjaN5tX3hvDUiGmUldoYMrIjANO37GHv6TRUoREY4ElN3yqcOZGJMAhaXGWpuW6jKBRFoNcpoEmkKlFsTnRFNlKPZlw1YPovoNb0JyMSVJMEh0QCSRm5DJ/2PdufG3VxidxmcRAY6kt+QRnYnIx8vCu9BrWkftsaTPloNam2AtAATQOHyrqFe3ns1duuqnVy4+bPxh0wuflHsX3ZXr4YP5eSQgvdh3fEYNSj6ATt+zbj8wnfs/7H3QCs+3Ybdz/Th7a9XMLp00fTsZbZMXl5kJGaQ1i0q2RGu/L9KYfOsnr2Flp0a0jTmyo6NUspebzrG+TnFqMJl8Zo36ZjLEh573ebcnr7edL3PpcOZGidseRnF6LoFGYkvk1gVX8ad6hbQbuk0yv4BflQUlCGqmq0jwpj+Nhb8LrM86b/HS3Yvd1Vu2zgkFYAlJba2Lf3NFJKTp7IIjenmCZx1dg45SFO5p3n1unfIFSJvkRFOjSEIggLd2XkbVx3hA/fWUFMzVBefWcQHr8gzr6Aw6Ey8u7PyckpJrZGCFO+GE6fPk3JtVuZ9uN2NAldm0TTp8e1rSeOHzzLxFFfoaoaW1cd4r35D1/z2MU/7EZ1athsDnZtO0m/21uwf0cyNosD1akx/8tNJJ3JY+ToToRXC6BqtSp8verJCn3EBgW4PIfQMbxhEx7s2JLkzrkIISoIvlPyzuNQNeJrhDBj4RhSU7OZ8uICstMKkIoACed+h4npP520KgpkCxSLxCPXjiXcCApYbZeWt7POnWd0n/exWuxg0KP39CAjrQAhBLWjQunaoR4LUvMpTcnFUuZq5+tvRqd3+y27+W0IIWoA56SUNiFER6AhMEtKWVCZ9u5Pnpt/DGeS0nn1ro9IT86iKLeINV9vZu7Rt5l75G3qNI/F6VSRUuK0Ozl9LINJI76guKAUgEffvYvgagG07NaQRj9bYpJS8lSPSSz8dA0v3TGFvIz8K85dmFuMandyIX2kMiaRPz/HzpX7ObDp6DX352cX4rC5CpcWny8hJy2fUZ1e584mzzH3/RVYy2woisJHm18mvE4kwtubIysPk300o0JfUdHBfLNoDHMWP0ZMef01Ly8PmjWLRqdTqBUXSlCwSztj0OuoExrMzTm+BO0rI3xzKfUbRtKy7aXZs08/WENhoYVjR9JI2JFS6THnZBWSnVWE3eogac8plszagsPu5N4BbegbF03giSJ2Lj/M/OmbrtlH0flSpBA4NMn5nKLrni881BekRHVoNGrqEgU3blUDD7MBRSewKrB1cxJvTlx8zT5ua1aPd2/vyaTbujPyxhbkZBWye9URitMvnXv9yRT6TvuGgTPnMm9fImftxYw8spQddzup+WoD4hpE0qBpdfoOalHpe/Vvo1lYKLoyJ4oqqXKolIB9JZgzHFQ94rj4I+Pg7lScDhXVqSGtdhxWB2dScgCYv3QPn87eRM7hdCyFFowK3HJHC6avffo/UTngb0f+RX9/PT8AqhCiJvAFEAnMqWxj9wyTm38MtjI7ilL+ZSkgrmk0Xr7mi/sffGUARg8Da+ZsRVVVFKMRnc41dd+uTzPa9Wl21X6llBeX9pBc+nc5QgjGT3+Aue8sJbZhFN4B3nQd1Pq6X9zH9qZyPquIxu3jsZXZWTFjPd++49IV9XmwK2UWOz2HdaBGg8hL55gxim8mLaJNn2ZE163GzElLOJWUAarG7LeXkbjtBG989yiBYVXwqxrA2TP5gKyUKF0IwaQ3B1FQUIafn+el+1jOy+Nu47O3lhPQ3If7n+heIVuvTv1wEnamgITqsZVfYqoaXoXGzaLZse0oHoUlfPn6Ys6l5PDQy/2x5ZVh1ykgBF/N3ELPQS3x8r5SEGz0M+PQ6xA6BSsKmqZd00H9wMYklFIbJrOR/KwiYmqGEhDiy9cbx7N5/VHefWs5OqeKl/fVHagv3KeO8ZeExU/fP4PMtHwUReHNqcOp1ziKbcmnsTudSGDRhkQmlGWjKYDewLroUxyZ9Zt98f7xSCmRUuJxvJjQba4fHi071WHbjmQ8s0rAZKCk2Iq3j4lm7ePwMBtcn18hEJrGyCdcSQo5ecU4nBpCL9A7BUIIug9o4Xb6dvN70aSUTiHErcCHUsoPhRD7KtvYHTC5+cdQq0k09716B1uXJNCiexP6PNCpwn7fAG8em3wnt9zVlk0LdtO2d1NO7j/FCwPfw+xt4p1VzxJRI/SKfhVF4dUfHmfBJ2to3685oVFXmge26dmENj2b/OI1fvfeMn78dA0lFhW9QYfm1JBOlbDqga6AT6fww8erkIqOjQsS+P7kpWW9tn2a07bPJS1VXOMo9HoFp6qhaZJzJ7Mu7nvy/Tv56Nn5HN93ikVT19OodS0Cq167NAe4goEqVa6uAQqu6seEdwdfdd9zr/QnYXcKH+7bQ99p3/BY17YMbXOlR5TqVFF0CotWHeCDqeuoHhnIA/d2YEfiCWSmxGFzkpPueoje+0QPNt/xycW2RUUWvLxNSCnZuslletmmfRwTnpyHqkkELmdwh13Fw3T1gKlJ65okbDmO5m3gRFERdWwOzB4GDEY9N3WtjwTS0vLpN+AGAKwWO8vm78bP35NOvRtfNQAuLrSgqRJNVXn6/hnc2L8pP606SHignrI23hjTHeDn8mCSThgU2+ia9//fTuH5Uh4b+DHZGQUo5QG3yWygacsa7Fx+AAAjnpjLjSqrBPnwxconGXnTG9gsdpq1iiWqPCAfelsrzqXnY4sPp3FIFeo3jaHWL1hbuHFTCRxCiMHAMOBCtfLKaQxwB0xu/mH0HdWFvqO6XPeYuCbRxJVntj3b7x0sJVasZTbWztnCsAlX99Jp0DaeBtcpoXLmWBpHdyezcs42GraNp1HbON4dPZ1qNavy4pxHMHubOHMsnRkvfY+m6FA8jKhODSFAOlTKSuzE1KuGotdx9lQuDruK6lSxltmuWW+vTfdGvPXj43z95hJy0s4z6rVL2UEhEQEYjXoK80ooLihl0bQN3Ptc31+4e78NvV6HCDVxLCcXi8PJlDXbrgiYVn6/m7c+Wone14TBywOnqnH6TB4ff74Oe5QvFFoxC4WzxTYG9f2A51+5lcee6cV3s7dxc7f6F/VSP87byYwvNmBXNSI7R6LqBNKoA1XD2D6Ed7dvY0yr1nz8zgpys4u4pXdjWt1YGw+TgfHvDWHt+kO8Om8DHy/YytYjp5nyRH/AFSx26lbRgPSTN5ayfvkBFEXhXHIWZpOBBbN3YPYyMmnGfYRGVGHC5DsYd98MwKXJWrXqIADmEviy722kpOZw6MeVlAUpjGjZlCeadfxT3oN/AgmbksjPK0ZTNUxmA5pNEhjqh04IjB4G7FYHwVU8UXSC0mIrnt4e+AV4M33LBLLPnad6fNWLffn5mpn0XP+/cTT/Yf6+wrh/BcOBB4HXpJSpQogY4OvKNnYHTG7+1bTu2YSDW44B0OjG31YJftuSBN64+yPsVgcYjKQePsf6b7eRm5ZP8flSti7ZQ7Ob6/NouwloqoYiJTrFg6DIQErPl2ApsXLrg51o0C4eLx8TyYln2Lp0L2dSc7ktfhw39W/OU1PuvuK8xfmlfPjMPLLO5vHE+3fRtEOdCvtrNYwkYcMRkBBb/8/99V0jJAC9omA2GmgafaWJ57SvNmENNIMCXpqK3iZxKk7OnsghKi6YasNiqWHyYeHsnTgdKl9+up4PPhvGLf0qBl5nT+dhs7mWuw6fSKfnI83QJRSzIiCHZGsph3bsYcusA5BcgsOhcmB3KtXD/Pn0h4fR6RSM/mYURWCxOTibeaUW7XIK80tRnRqaIvl+6gakBpqikG+x8uLbi7nrrna0a16DiJhA0lLzUHQKMdFBpKUX4F/Fi4hqAdSoGUqjRq6ZwIAA7z/ylv/jqNusOkIIDEYdPW5vwZCHO2MyG7CW2dmwZB/pp3J56KX+vPbQV2xbfZA6TaJ5a95ovHxMxNT5/6yh5+ZfRxcp5aMXXpQHTdbKNnYHTG7+1fS+vxON2tfBw9N41aW2yrBv3SEcUocwG0B1IKUktkEURedLkJpG9doRnD2ejsPmQNqd4GFgZsJEgsIDcDpUbBY7S2dtZtyAD9A0SYMWsWiqRlpqDlJKfvphN49PvvOKVOltqxJJT83BZnUwc9JS2nRrWGH/7Q93oUb9aniYjTRoVfM336PKEOTtxeIxd/P1nv3EhlZBkxKlfAkrO7MQA+CblI+mgLOKJ6qPnsJaBqSAMJPCW6P7kLj/DEvm7ELnocfX14OdW0/Qok3NCkthNVtVR9t6CLtQKanvQc3qIQzu1ZnEOd+RcaYUBBRZ7fgCSInm1DiTkkNxkQU/fy/aN46lY9OaJJ3JZtzdna46lgs8/FxvnnvwK9JP5eC02NG8Teg0KK3uS2J6LhPeX8rMt4by9tR7mT11A6HhVeg/pBUZ6QWEVvW7mC0YEvLfLtFRVmLlszeXs2/7Cew2JwKoWS/iYsFnT28Tb3/rsuiwWuw8P+wzpIQTB8+SdTaP8HLrBU2TV2jr3PxN/HtnmIYBH/xs2z1X2XZV3AGTm389UbXDST1yju8/WUPLLg1QFEFoVCB6Q+U+/mFxEQiD6+HoE+TDC1+Nos4NsSSsPUhoVBDRdauRcSoHp8tjEqno8CsvhKs36NDpTSybvhFbYSkoCvs3H0NKMJWLnOu3rHlVX5m4RtVBCDzMRppcxTxSCEHzm66cNVNVjbXztuOwq3S/s+0f5lkz93Ai0w/vRRyGEruduxu7NF1P3D+D/JQ8V5kRKRCqhsNTIAWgCDIVG1NeX8KtQ1rz8Zf38vW0jezcepL9u08x9tle3NTF5cRusTmYOP8n7BEGHIFGHr+5PYPqu5bRPr21N3d/+C1ZZwvxDTDzyJ2dWTR3O8dPZSN0esbcN4Mv5jyI0ajn5Qd6VGo8Jk8P0s6eR1XBGeSD5mtGSInB04CtXPjvdKoEhAfw6HiX3GHeZz/x/ZcbaX5jPE++fccVpWz+a+w7e5zxvWaAKkCVUK43WzZ3Bx17uewiigvK0DSJX4AXHiYDDVvX5HBCKhExwYREBCCl5OkPl7Bh70m6tarNxAdvuf5J3bj5lZTrloYAMUKIy9NkfYDzle3HHTC5+ddTUljG2F6TcdidzHhtIULVqB4fxpSfnq/UAy++WQweZgNSQp3mNahfbljZsvsl/yAvXzMmfx8cNgeePuaLoleAU0fTKcgqdP1qUzX0ZiNSSjrfdgP9Rt5M1WsYQ8bUCeeL9ePJyyykdtPoSo930dSf+GqSKyMvL6OAYeP7AK5ixSvmbEOnU+g+uHUFY8/KkFZchF1VUYQgo7j44lYwiREAACAASURBVPbiIgtSUUDVEJrEI9+Ch0Ggq+VNsd2OPJjPsrOZ7N5ygvZd63H8SDo2qwO9XiEz/ZL9iaZq6IRASIF3gQ7HmnQGj1yA6lCZOPMBvh1zJ6nn8qgREYTJQ8+0TfsoEd4ITaJPKyIro4DI6lfOIq5Ysp91aw4xcHArWra+NBNnMhvw9jFjtdgRngacOgUUQefGNSlw2mnfohbR1QLZefg0YYG+HNmRwvTP1oNTY9OKRPoMbUudJv/dmmY78/bxzrppYDeDzgAKCM1V57DHHS0BOLAjmRdGzkBKeP7Du2jRsTavf/0gOekFBFX1Q6fXkXW+mC0HXHYVa3Yl8dTQm/G9hq7PzV/Ev2+GaRuQAQQBky/bXgwkVrYTd8Dk5h9Nbno+qYfP0bBdPB7lgYjd6sDDfKmYq7XMjup0iayREulwcvpYOvlZhQSVi42vR72WNXl5zsOkpWRz821X99bxDfDmrSVPsuenw7Tv04zl32wjLTWH20d1wi/QG51eQSgGAkL9uOOJW7CW2ugxtB3GXzCBDIkIIOSyosCVoSC3BFXVkJokv9y7KGnvKWa8vpAje08jdDrKSmwMHHX9Jauf82SbdmRmFWDZkEWIwY7aRkOnU3jhrUHMnrqBiPAqbFqQgN3mxJRv46OeXXj+wZk4FB0IQUmRhcXzdqEBAYFe1IwPo3d/V1agpmk8PXImPulF+IR7wskcFq04DeWlYaa9v5wNMSqqJpkytDetakRxNisfFIEEYuqGEV6t4n1SVY1xUxez+ngyXtlODk74njsndSM6oAo3xkZjMOj55LuH2L8rhZp1I1i4dB/ZmYVsWXkIIQRDujbl1emrWZdwArui4bO/EMWgB71EK9OoGvnr3pd/GwcLj6KLsuPj46SkyBtzgJ3m/dvTvlFd8vJK+GHzAd5ctAHZwIvAPYX8tGgfLTrWZurCHazYdoQh3Ztxe+cmBPp5US3En4y8IqpXrYK3+dq2D27c/BaklKeB08D1ywr8Au6Ayc0/loKcIka2fgFN1YitX403Fz/Fk73e5sT+03Qf2p5HJ98JuOq1jXxlAGvmbUdzqJzcl0qjG2sTGOZf6XM1ahdPo3YVl8VKiyy89ejXFOQV8+R7dxHfNIb4pjFsXZnItDeW4LA7OZWUwaQ5D/Heyqc5sisZTy8PLCUWetzV9mKwZC2zkXEmj6haVf+QJZ7bH+lK9rnzOOwO7hnfl7zMAsb1fQe71YFEYvDxpuh8ya/uN9Tbm+gddhL25rIgcSsR4VXo2rcZTVvG0rRlLPm5xWz8MQFwWQwc3X8GHCqg4R/iS5uu9VmzbD+KhM5d69O5VxPWrjxImxvjMJuNJCdlgCbRlTjQCu2AS89iNBlwVvfG4nA5Z8/bmUj7+Bjuv7UN05fsxOYjCesdc8W9e/HFH9i/5TjBCmQ1M2GrJnhzw2aEEEwd0I/W1SMJDPGlU/nS0ZhHu/LCs/NxlC/Hrdl6mG2ZaZTZHDiqCDwNAuGQIATDHu9GlaB/X+HcX0P3qh05kJ9Az69XYsk34BlsZ8mmprz98kI0KbF4KVgamhHBHqhVzfQY1ILMvCJmLd+Nw6ny3pwN9LmxPiajga9fvoszWflEhwW4dUx/M4J/b5acEKI/8CYQQvlQASmlrJQQ8RcDJiGECdgEeJQf/72U8sVrHHsb8D1wg5QyoXzbeGAEoAKPSilXlW/vjktopQO+lFJOqswFu3FzgfTUHDSnirXMTnLiWU4fTef0sQykhJVfb+aRd4ZcFBT3uudGet3jKtBrs9grzEBVFiklezcdw2Fz0rJLfVbM2c7eTcdwOlQ+e/EHXvvGJWwtzCtGK5/NUp2uh290nQhyzuUx8c4PQULi5mM8Pe1BykqsjOw8iZJCC/VbxPLqVw/87vvi7efJM5/de/H12ROZFw0FhSJo17MxdzzSlXMnMvhxygrqt43n5jvaVqpvoShgdeJQ7Xz19koio4LYuGQfLTvVo0nbWoydNJC1C/bQ9+62xMSHsfrHPeQUW+nQpzEjRnemSpA3mqrRc0Bz7h3yGapTY86sLcxb/BjxtapybOdJTL5mrIpA6nT4Bvowee4ocvVONk/7AU1K+jd3la7p07kB75zYiUOTzNq7n9FtWuFvvrSUc2jfGYQGODUCj1iw31iFYtWOSa9nxU+JeDZSafSzpc7bbm/Bnt0p2KvomGk5ifATGBU9VYWZ/OYKHuk2Hh1yEwN73/C736d/OtU8w/mw2btsP1uNEu0bViU3oKV/HGdFOg6bE5NJh9loACN8Oe8RqocGUGqx42HUo1ME3p4eGPWuR5CHUU+tyP9m3T03fylvAb2llFcvufALVGaGyQbcLKUsEUIYgC1CiBVSyh2XHySE8AHGADsv21YXuAOoB4QDa4UQceW7Pwa6AOeA3UKIxVLKI79lEG7+m8Q3i6FZp/oc2HyMYc/dSrVaVfEP9iEvs4DIWlU5tP0EDdrEVWiTm36e9ORs6rWuhU6vo7TYwntjZlGSX8Zj7w+l6lU0MBdYO38XHz83H4DOtzUnvmkMOr2CTq8QEeuqwG63OZg54Ts0u4pOr2fsOy4zyEWfrubbtxbjsNrRNMg85SoBcTY5m5IiKzarg31bjv8Zt4nIWlW5+5m+bFm6l8Fjb6FlV1e23ehWz5KRms3a2ZuJjAunVtOYX+xr7Mu3Mni1y4uotNjC+KGfu5zM5+5kxqbxdOzV+KLYNzstn2IBdp3C8qUHqBEfhq+PmZp1wnA6NVRVw+FQKSq0oKoamcczEBI0uxMfXzMlhRaGje1OtRohBFnsvNO+I5E1QqgZG4qqavh4GAn08qTIaqOK2YS3R8UguEePRsz/dgc6ixOdBQzLcgkYFoPtVAkJSxLZRyKTPx1G3GUp7Y0aV2f6vIfo9dp0nE4NqUBAqDfP3dABc7CZYF9vooN/eRn3v0TryLE4tcfoF++amSg6WcCJoxmMGNOZPL2TmlWDqBboMlX1Mhv55pWh7E06R6v61d2zSf+v/EtnmICs3xosQSUCJimlBC7M3xvK/652Oyfimup66rJtfYFvpZQ2IFUIcRK4IAI5KaVMARBCfFt+rDtgclNpdDqFCbMeqrDti20v8eo9n3FgSxLPD5rCxG8foWG5IWXm6RwebPk8KgLMZkKqBeCph5Sj6UhN8vmE+bw4a9TFvjRN46d5O7Bb7XS9qx2nkzJw2B1oqmT5jI2sn7GOxz57AE1KWnapT+rRdPwDvSgtKkN1qOgMOry8TRSdL+GLcbNxOlSEENRqVoOH3hnKqw9M59SxDMIiAzh1PJNbR3T40+7VgIe7MuDhrhW2aap0/U8WrrFWBv8ALzr2aszmFYkEh/mTdToXAImrhtsFzheXcd9r31BitaGTLj3RnM83kJddhBCCZz8ajK5LKJasUp7s0QG9Xkdcw0gO7nKJf9+f/zAh4f4XhenPPDiL1BOZCCEYN/FWJo3/Hp1e4cNPh1LsLWkSEcb+hFPsSzhFj16NqBYVyIBBLVkwZzuaa4joyjQm9+zOpIe/I8PmRG8ykJfrEq9brQ4c5YFaZl4RHhaBsEswCpwHS5i4ZTntWtbkxbG9ft8b8S9Ff1m5mtFPXT/LLSzIl55Bv80TzY2b30mCEGIesBDXZBAAUsofK9O4UhomIYQO2APUBD6WUu782f6mQKSUcpkQ4vKAKQK4fCbqXPk2gLM/296yMtfixs31MHoYyMsqKF92M5B5OvdiwHTq8DmklDiEHuHUyDiVi2axIBDojXpCfiYaXvrlT0ybMB8pJVmnc+k/qgtH96RydNdJnEXFOEwGfH09qNsmnpE3vUHR+RLim1Tnrmf6sHzGRm4Z3gHfAG/sVjseXh4oVgdGk4F31z7H9tWH2LPhGFaLHS8fEzM3PUdo5NWz5S4gpeTw9hM4HE6SdidTt2UtGrav/Zvv1cSFT/Ld5KXUb1ub+OY1Kt1u3Dt38MCzvfHx9+RwQiqLZm6hQ69GBIdf0oS9Pv8nzugdiNpmAg+VULt6CJmZRTjsKkaTnsdnLaLIR8Hor2PdoSRykjJ46r3BJO0/y2G1gJmphxgR0IwQb5cZZOqJTKwWByazgQXf7MBuc4INti8/xEPP9CQ9LZ8Xx8/HbneybvVBvl04hsBgH8xVfShJLwSnRBflQ52qITzzUj8+eW8VteLDaNGmFutWHuT915egOjXGPt+Hm7rX56ZGNdl97Cwda8ewNvEwVpuDEylZ17olbtz8e/g/cvoWQkwHegHZUsr6V9nfEVgEpJZv+lFK+cp1uvQFyoDLfz1K4I8LmKSUKtBYCOEPLBBC1JdSHiq/YAV4F5f50x+OEGIkMBIgKirqzziFm38ZYyYP5f3HZxEeE0KHWy9pTZrcVI+ajauTdDANYdC59EVWO4pBofPANtz3UsWyKeczC3E6VaSmkZueT0CoH5MXPs78d5cyY8I8outFUq9NPOmncik6X4LN6iBx+0nemPsQg5/sfbEfo8nIx9teI2FtIs07N8RoMhIeHYyqqoCktLCU1+6bypRVz1x3XF+/sYgfPl6NzWIHTcVg0PHZjteuWh/vlygtspCXVcRD7w6rUMC4Mggh8A90BTINW9agYcsrgy2jXodOp2Cw2vEotHEq8RyN2tbifFU/snwd5AdYURyuQscJKw5xLM1KUX4ZjYY35e1Fq7GrKjvPnKVxmg8+3ibuH9uNaR+uJd9DY7tvKb7eBvQOSauOroDRbnMipWvGLKewlGM5OdQODuaG5rGsW3sIKeG+4a4ZvDr1q/HhtBEALF++nw/eXIGmaqBqLPshgc63NGTiA65ZEovVTk5GIWfSzvP4yM6/+j67cePmdzET+AiYdZ1jNkspKzX1K6Uc/nsu5ldlyUkpC4QQ64HuwKHyzT5AfWBDucC2KrBYCNEHSAMiL+uiWvk2rrP95+f8AvgCoHnz5v8nca+b/2fimkTzyYYXrtjuYTYyedVzSClJ2n8ap9XB6pnrCYsNZdBTvVGUillWAx7tQVpyFjaLnXtfGXhx+8CxvRhYvjSz6uvNfPj4LHRGA1JnoO/wG8k4lcv8T9dRt3kMXQe1AiAsNoTelz1wazWMZMT43nz5ygKcTufFunJ6g/6aRpOJW5KwldkBkJqr4GtpYdmvvj9Oh8qoDhMpzi/Fp4oX03dN/MPMLS8wfuDNhPr7kLsnjcT9iVgtds5nFjLlx0f4aPsODu3aCWWSG0p9yU3LQtNcdhA21SWS16TkXFYBhVsz0CmC0vhqlDXzp8BuRa9p3PnUzdzepiEBQd6s3pNEdmEpAR2qknIwg4I4PXMTE3m5Uyd6DmpGamkRbRvFcHvv5hWu8f3vNvLNqj2IKAO+pzQUnULv8sK8cz5ey5ypG6hbL5w3Zz7wh98fN27+r/k/edJKKTcJIaL/qP7KNdSfAqFSyvpCiIZAHynlq5VpX5ksuWDAUR4smXEJtd+8sF9KWYjLDOrC8RuAJ6WUCUIICzBHCPEuLtF3LWAXLklBrfLCd2m4hOFDKnPBbtz8XoQQ1C4vznvBhPJqePt78txXD11zP8A3by7G6VDRG3SMm3wHN9/emvtunEhaag4bFiYQWTOUOs2uLqbuc28HNKdKyuFzRMaHM6D+eDy9TXy47ImrLs8Nf6E/r93zGXabqzxL50GtiauEUPvnlBSWcT6zANWp4bA5KCksw/83psg7HSqZZ3IJqx5UwQjTx+zBmD7tKL3JwsSUQrLS83nwedes2+hWLakTEoxJb6B5aBgzjMuxWe3c+3RPvH3NjG7ViqScHHySVbbrTqAUWdm9dD/WCDNKnC96ncLNzeIIDPZh/YGTvDh7NaomiY8JpqC9F0hJx5gYHKrKiHfnoyJJWJ9N/dgwmjePvXiNP2xIdEm4DAp+kb689nx/ateNQFU1Zs7ehjQb2ZeSS+LOZJq2i/v50N24cfP/QWshxAEgHVfscfg6x07FpbP+HEBKmSiEmAP8MQETEAZ8Va5jUoDvpJRLhRCvAAlSysXXaiilPCyE+A6XmNsJjC5f3kMI8TCwCpetwPRfGKQbN7+Z0sIynuz2GudOZDLmw+F0HtLuV7Vf/8NOkhJS6fdgJ6pWd6U+L5/2EwmrE4lrHE1hbjFCUajdvAYZp3IozCxAOlVc+RHXRgjBrQ+4zCMf6vYWqlPDarGzc90R+tzT/orj67WqxdiPhzPx7k+wldnZs/635Uj4B/nQc3gH1szdTpfBrX9zsKSqGmN6v8u55Cyi4qrywZKxV8zSefmYmfT1yArbhBB0qnFpGe/BF/pW2D+qhSsvpLjYyhcYsWQWkbB4P16nS2kUFsLLb95DFW/XMmJ+iQUpXSVMPNCz/O6h6BWFan5+JCSeRtU0KM/EOn447WLAVFpipcsNcazYcQx/bxMT7+9NVloB1WOCkZp0OZcDSIlf8H/bb8nNf5C/boYpSAiRcNnrL8pXlSrLXqB6eRb/LbjE3Nf+FQyeUspdl9evxBWbVIrKZMklAk2usv3KNQ/X9o4/e/0a8NpVjlsOLK/shbpx81vZteoA6cnZ2K0OZr78w68KmJL2pPL+o7Ow2xzs3XCEL7a/QnLiaT576htsFjt+QT68t+ZZAsL88Q/yZVjjZyjJK0ZRBINGd77m7NLP6TaoJV++thi9QUfT9teezfD0NrlqtukU179/I6NeH8So1wf95vYAhbnFnD6egerUSD2SzvmcYnasP4pOp6Nr/2ZknskjLTWHJu3iMBh/nUeutczGyBFTySmyYPTQ02dwKwpzi7n3qZ74e5mwOpyYDHp6tajDgeR00nMLmTCkC1FVLgnPC4rK8MlyYjNIjDZoUl4W5bPJK1j44x68qngy/b078DQYGHX/dBQN4uv8j73zjq6i6vrwc+a29JBKgNAJvfcmTZo0QVBEBEEUG9Isr4ogYgNFQUWKCAqIqIAUBZFeBekQekkgBdJ7uW3mfH/cGIy0hBKVb561srh35uwzZ2aRm3332fu3S/HxjMEMebotK37cS4dOtalcrdRtPScdHZ3rkiSlbHzzYddGSpnxl9drhRAzhRCBUsqk611PCFGZPJdQCNEPV8uUQqErfevc81RtVAkEWDwsNMnTILJbHaQnZRJYxo+/fdsogMPh+vIhNcmli0k8WON/PPpMe9dWjhCY3UxUqnOlGMGWY0dKidlsokmHWoVe44NPtuW+Hg1w97Tg7nn91hA1m1XhldnDOB8eRY9h7Qs9/93AL9iHhm2qs2/zCZrcX5O1P+xl+dc7QEBsRCK/LHSpajdoVZUJc4YUet7MXBvvTv6JuJRsUIRLKLR7PRrUL4/DqTLg0yWciI2nb7M6DGpQlwPfHUV1auwrf4bYsCCqlg8mwNeT3Gw7oCAEGDNtjB6ziCHdG7JqzlaQEisQdTaRA7mJnG1vwmCXqDujebDVu1SqGsKSVaMwFbJBs46OTvEjhAjBpa0khRBNce2CJd/A5AVcOdHVhRCxuKrrHi/s9fRPA517njKVS/L10Y9IupRCWIOKZKZk8UyL8WSkZNN5YCtGTn/iura1m4cxbOJDbF1xgPPnXFGqX77fw7hvR3B0x0m6D+tQYPzbS15kyce/0LBDLarUveJIHdt9hr3rjrBj9QECQkrw1uIRePt7FbD1Dy6UOj+tezWida9GRXgCd4bdO04z48NfqVIthHHv98NsNjLpm+HY8+QSPpu4EtWpIQTEXkgEIcg2G9kZHs2yJXvoN6B5oa7z/PTlnE5MQAlUcE/SCPL3pHatUADOxiVxPj4ZKWH5nnD2TtuN3WhAAnPnbyOpsglpECx5+TEyMq0YERgScjFlqshMJwtnbAIpEYDiVGnQsAJTVhxw9aQzCdJ9wDvNyYmj0Wxbf5yO3evdvQeqo/Mv5V8kK7AEaIdr6y4GeIu8XAcp5WygH/CcEMIJ5AKP5mlHXpM87ceOQghPQJFSZl5v7LXQHSadewKnQ+XryT+THJdGmx71mTdxOaUqBDH+m2exuJvxDymBf4hru+bMoQvkZFpx2p1sXfYHI6c/wfLZG9m36QSPv9SN2s2rFJi719P3U7Z6GSYMnoPZbKB+yzBysu006dqAMlVCCoyt1qgiE797scCx80ejGNf747xkbZfK9/Pt3mHsF0NpcBs6SsXN51PWkpSQSWZGLvt+P0ervJJ+s5srV+uJUZ3ISMvBaFR4+tVuvDPyW45HJYMQzJuzpdAOU1RCGk4pMfmZ6VKvHGPG9CQ1KZMd649RtX4oAd4eJGZkY4jLxZllQ/q6YzAaSPORWE0aCMH4pev5+pmHiYpOZvfmk9iyspASNJMBoyYJLl2Cd+YPA0VgPJeLCAB3ixGvC1ZXEycBJ6IS0IUEdHT+OaSUA25yfgYu2YFCkSeNNBioABj/3F2QUo4sjL3uMOncE2z48Q9+WbADp93JrlX7cVjtxJ6PZ9GUn6/SV6repDJ+JX2Jv5hE92HtORcezaIPf8GW6+B8eDRLT31UYHxOppWJA2egOVRMmDCoKtNGL0QIwbj5w2nWuS5ZadnkZFoJvkZ1W/LlVIQQSM3VuFVq0tVXbshsfjo//a4+l6IwY/se5u7aR4uK5fjikZ4Y/pbAXblqCFmZVqSEsuWvvk9fP0/enH6l2HXSnCE80X8mTqdK5SqF14p6a3AnPv1pJ42rhfLqYx0RAsY8Ppv0lGwMRgNfrx6FwyT49OUfOW+xojg1Ro57kKW7jrItOw4hQNUki3ceYsSz9zPmuU589dkG1i7fj9HLQucBzRnxmksWYs6sTXAwg9JmSeOaZTkuE5FIpATVTZcS0Pl/yr8kwnQXWItLTDscKFx7g7+gO0w69wSZqVnYs3NdCdHGKzlJMefirhrr6ePOvAPvY8224eHtzqXIBKQExSDw8r1axPH0gch8/aMcp8r+jeE47S69oL3rwwkpG8Co9pNwOpwMeasf/UY+gMPu5Ni+CMpVKUmjjnXo+FhLTu2PoGT5IHatOQyKwJqVy8td3iciPIrnPxlEx0I2wL0bSCn5YvseNCnZcyGK0/FJ1CwVXGDM+A8eZu/v5yhXIYByFW/eKNXH14P53z1LZEQi3kGevDxjFWGhQTzdq8UNe4h1aBBGhwauQpc94Rd4d+560nwFnkkailRwWp2UKxXEB3OGcuzgRS7HpDLtrRUgoE+nauRU8WB7eASzLu3hZEwCnwztyYhXu9FvYAsSEzKoVe+KBFz16qUxmQyYEDRoUJHoQzFkZFpx87YwtG/hImI6Ojr/GdyklGNv1Vh3mHTuCaLPxuV/K6rToipHd55CMSgMGHulr1XkyUvERiTQtGMtzBYTHt4u56h0xWAmffs8J/aep0O/plfNnRCbjMHoUgb3C/LBL9iHlPgMFEVQqkIgh7eewOlw4rA52bRkF/1GPsDEYV9x4kAkiiL4ctPrjPhkMABRZy6zd/NxpCYJKRvA2cMXsGbb+GrcD3R8tBV2mwMhRJGrym4XIQR1S5fkTEIyFpORsn6+V40xW4y0bl9wC1FKyZrDp8ixO+jTuBYmQ8GojJ+/F37+Xgx4ayFnY5LYc/wi1SuUpG39wrVi+XjhFhJTszD6mrE2DcI72AdTCbe89Zho2KIKC77YiMPuRNMkpiyV1tUqsONYJKqqkpGT3y6KkDJ+hJQp2Di3bfsaBAX7YLc7qVe/HL0ebEjk2Xiq1Q7F4nZjWQgdnXsSyb0cYVokhHga+IWCveRSCmOsO0w69wQN2lRn+6oDAHQe2IpJ372AECJfTDHy5CXG9Jzqqtq6rxoT5hfUBqrXqir1Wl27nL9l9was/moLcVFJjPzkcUqGBvDRc/MJKuNHtyfakpmaxeIpq8hSc+g36gEATh26iDXHjpuHmejzCQSUdDkg5aqWYvq614k8GUPlWqGM7vAObp4WaresysEtx3mr/6cYjAY+WvM/wvLENYuLRYMf5uilOKoEBeLtdv1Kvb+ybG84k3/ZhpRwMSmNV7q3ueY4d4sJk10FkwHPIjgitSqHkJiaRRYOss2S9Ix0Ji/dwvThvfLH9OzfjMN7I8nNtjH0xY6ElPPn7OUkLqdk8nLva6/nr9SsVSb/tbevB3UbF10MVEdH5z+BHfgIGMcVt1ACla5r8Rd0h0nnX0NOZi5AfuSnKHTo2xRPbzcij8fSqG0NjHnl4Id3nGLZrE1oqoamajjsKif2RRRpbu8SnnyxZXyBY7N2vJX/2sPbje8jPsPpUDFbXM7Ak6/3ZP7kn6nRsAK1/vYHuHKdslSu49oWmnvgAy5HJFC7ZVXefWIWDpsrUrXx+9+L3WEyG400LhdaJJuEjGycmoamSRIyrl1wIqXE73ASfgfjCCoXQIMqZa457lq8+XQX6lYIYfpXG8kINoAm8f/b/w//QG+mLXi6wLFXe7cr9DWsDifhMXFUDQnE1/3Wta10dO4V/i1VcneBl4AqN9BpuiG6w6RTrKQnZTC69ZvEX0zilW9eoH1/V97O4S3HGNf9fQDeW/MG9dtf1Zj6hqTEpTN5+DykJtmyfC9zdr5FbEQ8rz04FYzGfK0lqShkpWQSdeYy5apeLUi4b8NR5r7xPXVaV+O5jwZiNBbuV0RRFMyWK0nS3Qe2pPvAlje1Cw4NIDjUlUB9f/8W7N9wFCHEPyIbUFR27T/PthXHqGjxoGSdAF7u1rbAeU2TKIogJ8vGyQMXkJokJTaVJTM2En0+gcde7ET5qiHXmR1iIxOZ8ORcNFVSzt+T6HNZKGiUreS45vgcuwM3o/GG+VHXYuCX33MmPRmT0cDmEcMo4VF0h11HR+c/wTmg6A0481BuPkRH586xe/V+EqOTcdgcLJjwA+Byoib0noLd6sBudbBh4bYiz5scn4aqaljtTi6eiKFriSd5ufuHV+/FOxwoAq6lVXnhZCxvDZhB1PlE1izYSY+gZ5g3cXmh1/DFmAU8VPJp5o1bUuT1g0tfadHxqXx78mPqtKp2S3MUJx/MWMeluHSy4nN4JME+4gAAIABJREFUqlEjSvpe0ZUaP+9XmjwznZdmrsbd00yTdjVQFEFopWCWfrmF7WuOMHH4/BvOv3zuVi5dTCIuOplaZf3xiszA7VwGP325jdTEgtGs2Zv/oOnbX9Bl6nzSc60AZKTl8N3XO9i+6fotZJyqSoTvOTwaxOEsk8Lk7dtv44no6NwjyGL6KX6ygcNCiDlCiM/+/Cmsse4w6RQrNVpURSgCi4eZlr0ak5maxeYlO/OrzhDQcZAr7yQjOZOx7SbwVO0xRBy9eMN5y4aFoCIQBgO4WUBCaly6yzNSVQyKwMOiEFSqBCHlAji6/RQJ0QUFYSf0/wxNy/stVgRSUVgxa0Oh7iv5Uipr520mOz2HZZ+uJSstu2gPJo8SQT74/E3Q8t9KuTL+uFmMICUhQVdENzOyrazbexqAXUcjSUjLZuJXw/j+4DuM+uARBAKhiJuqaNdsXAGLxYTF3US9FlXw9ffEzcOMh7cbnj4Ft86+3X0ITUpSc3LZFxkDwLtvLGPR3G189PYqDu299jZsoj0DS6AdoYB7QC6ZqvV2HomOjs6/m5W4WrX9Dhz4y0+h0LfkdIqV8jVCWXD2c1Li0nDanQwo+wyqU0VRFExuJro9dT8NOtQBYO1Xmzjx+xlUp8qXryxk8m/jrzuvwWjA7G7Gmn2lKgqjAZG3pebIzsFht5OVkgUSPh/5NRZ3M899PIg2DzXFw9ud1KS/RC2EwGQ20LBNjULdl3eAFz4BXuRkWvEN8ML9FvKwrseB/ZFMHLcUb293ps0YTMmQqyvY/gmmvtmXHXvPUbl8EGVLX6k+83K3EFYmkIvxqZT08ybAxwMhBN6+HlSvX54xH/bnxIELXLqURv/W7zN0dCe69mty1fwdH2pC2UrBaFJSo0EFWnauw5E95wmtFMTa73ZTq3FFwvJywbrXq84PfxzFYjRSv6xrqzUr04rq1DAZDWRlXfl/cepYDAf2nKdtp1oEhfoSaPEixZaNUZp5475/tt2Mjs6/gXs1h0lKuUAI4Q6Uk1KeLqq9uIGK+L+Oxo0by/379998oM5/ggUTf+Dbd5aBhNqtqzNq1nDK1wzNzzeaMXIeq2asA6Ddo60Y993oG8537lg0W1fsJyDYB9XuZNe6o5w9Go3qVJGqiszIBLMZNA1Ul2aZ2c1EmSohzN73Pp+N/ZbfFu9EKAovfDiA6o0qUq5aaQyG6wdi4y4mEr7zNI071sFgMnB63zlqNAvDq4TnHXpKMObFhYQficZgEDwxrC2PPX57ek2RMcnExKfSvF5FTMa7I87ocKpEXEqmQil/LNeIJB0/eJFxw7/BmmvHzd3Eyv0TCz330LbvkRSXhkFRmLvpNYJK+yGl5FJaJv6e7kScjmf+l1uoWCGIuJhUKlQOYuhzHTAYFNJSshjcczp2uxMvb3eWbnqVbKeN05mXqOkTirvRfAefgo7O7SOEOHA7DWqLintIWVnl8VuWKioSxz4eW6z3JoToCUwFzFLKikKI+sAkKWWvm5gCeoRJ5x+k7cMt+Wn6GuxWB4+88iDlapQh6mQMweUCcfdy5/DmY/lj1bwmuDeiSu2yVKl9RZSwWdd6jHrgQ+xIVKmBpyd+oQHUrF2aAxuOYs2yYrc6uHA8BmuOjRc/HsiDz3TAv6Qv3oVweMJ3nea17pMRisDH35sZu95GKEq+lMGdomWrqpw55WqoXbdeuZuMvjHno5MYNn4xihA0r1eB90cX6nOiyJiMBqqVC77u+ZCyfiiKwM3DTKUbJH5fi9TETJx2FcUiOLTnHJ36NEYIQRk/17bgpHHLSEnJ5szJy3zw8QBq1yvL5ZgUvp21maAQX1TNpeRtzbWjqRpeJjca+ReqqlhH5/8H/504SlGZCDQFtgJIKQ8LIQr9y687TDr/GBVqlWV54nw0VcPsZubd/p+w+5cDeHi7M+/ENHwCvfPHWjyu1gU6tvsMuVlWGnesw/5Nx3hnyGx8/L34ZO2rBIcGUDYshIUH3uXnBTv4/rP1aKpGg7Y1ePWzwRzcfopxPaeg2RxITWPaM3N5fdEIylcrXai1SykZ328aTocr9yo1Po3hDV/HYXMQUj6ISStexquEB78t3M6P09fSumcjXvhkUH70rCg8/GhzGjethIenhZIlb2877kJsMkIIcm0OTkXG39Zct0NAkA+zV44k8kwc9ZoVzVl5Y8Zg5n6wmkuX0vjig1+4cD6R4a9cESj1KeFBWloOdruT9yauYNiz7Vk5fwfnT13C7GaiYq3SXL6UxhPPtL/jzq2Ojs6/GoeUMv1vn8OFbpGiO0w6/xgOu4PUuDSCygYCsGfNQey5dhSDQmR4FE+83Z+3ek/B4uHGY288VMB256r9fPTMVwgB/UY9wIFtJ7FbHaQmpLNtxX4efrELAF6+HjzyfEeMRgMZqdk8+mJnAEwmA8LNAjYHSEnchYQir18xKHnldpIewzuy7ust2HMdXDwfz9OtJmI0G8lNTkdqkvWLd/Lg850oG3a1lEFhqFjJFa2Jz8ziVFwiTSuE4m4quhJ1q4aVqF+9DBHRSbwy9J9tLRtcugTBpUsU2a5ph5rEJ2Qw96NfsVmdHPlbQvfkTwawZOHvrP35EEmJmXwyZQ1VS5UAIdBUjTNxqVjNgmUbj9KrT7HtBujo/De4t5W+jwshHgMMQogwYCSuBPBCoTtMOv8IuVm5DKs1huRLqTTuUo/3fnmDfmN78N17PxEaVoqqjSsxvO7L2O0aDtVG+O4z+If4Ybc58Av2JeJYNA6HE82pce7wRVp2b8D58GhXi4+/KXYbjAYefr6gc/DZK99hsJhRLWYsRkHf0d2LtH4hBE17NGLX2iM061Sb56c+Tk5aNrvXHMJUwouM1BwQ4BvsizUzF6PJgH/w7UWHUnJy6T5zIaqmUTnIn2VPPXZzo7/hZjYx7X99bz7wDpGRloObuxmz5eqPGlXVsObY8fQuulhkmy51+HXZPpLiM3hyTJf842cSksi22xkwuCW//XoExaBQMsSXNz8ewLJvdmDwMPPjtnAMTg1Pz8Kpmevo6NwzvIhL5dsGfAf8BrxbWGPdYdL5R4g4GkVSTApSSvauPUT8xUSGTHqUQRMexmA0kBKXRlxkAsLNDaFKvhiziNmvfY9UJSOmDaLHUx04uPk42Zm5DHmrL+6ebmxetheT2Uhgab+bXj8uOgVHthXsDmx2WPLhatr0bVbo9SfHpbFzzWFUp8audeEc3xvBK/OeBWDdtzv59KXFOOwqljIBPD/lMWo2q4Knr8ctPy+A2LR0nJpKrsPJqfjEm45XVQ2b1YHHHXIMpJRoqlbobaxVP+5lzvT1uLmb+WLh05T6Sx+3rIxcRvSaTmJcOg8/3ZYhLz1Q6HWkZeTwwfwNeDUvy3vDO+Pn43qu285F8uKyXxACRrZpwax5wzh54hLNW1bB28edZ//ncorDGpUj8mISvR+oX4S719HR+a8jpczB5TCNuxV7XYdJp9hxOpxEnYzJf28wKiTGuDSRLkfEM/q+N3n/sWkohjx1bimRgNOu4rA7+W3RTvxL+jJ905vM3fseW5fvZXjLCUQej+H8sWiWzlh/0zWM+WQgAaX8XHIEbiaC8tS2C4u3nycWd3O+AubUUQvzz7V4oD64W8BsIiUpi2pNKhfKibsZNUOCaR9WCV83C692vO+GY9NSsxnU61Me6vghPyzYddvXTknMZNB97/Ng7XGsX7a3UDa//HQAp1PDbnOyf/f5AudOHLhAemo2mqqxZsmeIq1l/k972LX/PHt2nmbO4itCk4djL2NXXQ7l7gvRhJYLoFPXOnj7FJR4aNeyGkMHtMLvDlYy6ujcK4hi/CluhBAbhBAl/vLeTwjxW2HtdYdJp9iZ8/JCZoycz5+SFmWqlqZmC9c22oyR8zm+6zTHfz+DpkmkzYbZrNDzqfbgdILTSZs+jdm+Yh+bf9xDXFQSy2esx5ZjRzqcSJsdoboSsc8fuUjsubhrrqFD36YsPjaFd1a8xPDJj/H6gueLdA9mi4kSXibXVr+UJMdnMPe91ezdfILRPaYiVA00SaO21Qku48f+LSd4qc80fvpyc4F5pJT8umgH8yatIC3p2r3Y/sSgKEzr1529rz7P4GYNbzj2yP4LZGVZ0VTJyh/+KNK9XYt9W0+SlZ6Dqmr8OGdroWx69WuM0ahgthhp3KJygXPV6pXD3cOC0WSgQ68GRVpLoJ8XHqdT8DiexK4vtpEUnw7AI/XrUMbXB4MmOHwgml3HLxRpXh0dnXueQCll2p9vpJSpwPXLef+GviWnU+zEnovDnmvPf58Wn872pbvRVI2QisFYPMxoqsRoNuK0ObFl5LB6xjqE0ehyMOZtIS7W9X++74jOWDzMGIwK1rQsNLtkzZyNmE0GVsz4DSklk356iUp1y2N2M+LuWTBfplHHOjTqWOeW7qNSjdLERR1FNbthz7Xx09wt/Lxwp8tx0yRGk4HXPhuE0+Hknae+wm51cO5oNI3b16RcmKuUfvevR5gzfhlOu5Pzx6IZP384s15bQnZGLi98NBD/W6yKq12/HGazEdWp0bFbvVuao8B8TSqiGFzOT9vuhZuvZ78mtOtcG4ubCbPZ9VGjSQ1FKPj6e/LN1tfISM0hsIhCnI/1aMSSl5YC4LA5Gf/SEmYueoZSvt4MqlaHGat3oWoqc9ftoVWtCkWaW0dHh3s56VsTQpSTUkYBCCHKU4S71R0mnWLn+WlDmJyUwYXj0dhy7dRoHsbUYbMAeOSVXoz4/Ck8fd35afoaju86jZQSIQRCUbCYjZjczDgdTqSEpMtpzNr+Fsf2nGXGi/PJSnP1VTyy/SS2XDtCEayet5X9O05jNBr5ePVYKtUKvSP38fJXz/LLlxuZ8+piRAkfJKA6VTy93Mh2qtRqVJ5+FUdh8bDg4e2O6lQRAjy8rjhtdpurkawmJQ6bgxWzN7Jl6R+oqobJbOS1r4YXaU2qU8Xp1AgI8ubbn0eTmZ5LUEmfmxvehDIVgliw7XUy03IoXT6w0HZ/bodJKXnvxEK2JR7mvsC6jK81BLPFVGRnCcBoMNDo/poc2HQCaTRwLiqZr7/dyZOD7qNRlVBMBgNGA3SoV6XIc+vo6NzTjAN2CiG24doVvA8o9Ies7jDp3FWSYpPx8vPC7S86SqFVSzPjj8lIKXHYnXz12rfs++0wSElidDKD33oEgPseas6J3aeZNnwOodVK03FQW+xWJ/Xa1eSTEV9jy7VTqkIQ8dHJtO/XDB8/T6YOn4tXoDcPj+3BtGfn4uHjTnJSFk67iqZK9m48dsccJou7ma5D2zFv3Pc4M7NQTCaq1CvH+DlDsbiZefPh6TgdKjLbRo8n2+Hp70XdFmEElrpSSt/mwUbEnI/nUkQCT7z+IPs2HHXlbgkF37/oUBWG+NhURj70GdmZVka/148WHWuye/0xyoeVpF7zyjef4CZ4+3rgfYuJ6+mObHYmHQXg9+RjpNoz8bfcuiM38YvBvDRqMcePxeB0M3D0WCwAdSqWYtXEoWTm2qhcqmh5aTo6Oi7u4dYo64QQDYHmeYdGSymTCmuvO0w6d435by5h6dTVeHi7M+fIVAJL+xc4L4TAbDEx4PWHiDl9CbvVwX39muN0OFk98zfmj/uOqo0r07xPU/ZtPsnl6FT6vtAJgD4vdGbuhGUsnroGoaxl+rrXOHsshiybSnpUCltWHmDZpdmcORjJkmlriTAqWNzMtOh6+9tTf8XTx4O3l7/Euq+30HVoe5p0uTJ/nVbVOBcejdGo0K5vEyrWvOKonQ+PZuoLX5OVnkt6ciYdHm5GcKg/3Ya0xWgyYs220W1I2yKt5Y/NJ8nJtWEzKyybv40NP+3n5KEohCL48NtnqFa37M0nuUv4mDwo71GS2NwkQtwC8DXfXoNho9HAW+/25dXxS0lPz2X40Db554JLeBFc4r/RwFhHR6fYUYEEwA2oKYRASrn9JjaA7jDp3EXWL9iK0+7EbrVzbMdJ2vW/ugdabrYVN08L474fw5PVR/FOv4+p2qQy4TtOIjVJ+PaThG8/CUIQeTSKryf8SMsHG7N/2ymsOfa8nnCSrcv2ULZ6GQxGA4pBIaCUL9ZsG690/QBrjg2Lh4Vvjk7G2+/WK6Pio5N5Z+gcNE0yfv5wSlUIAqBJl3oFHCWAE/vO8/M32zG6mal/X7UCzhLArDd+4MLJS/nvN/6wh8Gv9cK/pC9dBxWsgLPbHOz8+RBBZfyo0yIMKSU//biXmKhkBg5pTWCQK1JTq2lFkmv6IZ1wPiEXQ0oOOFXcLSZSE6+dUG6zOzl0IprK5QIJ8i9aROv0kSiWzt5Co7bVeODR5jccqwiFzxuNJSYngVCPYAzi9utN/P08+WrGkNueR0dH52/coxEmIcRTwCggFDiMK9K0G+hQGHvdYdK5a/R58QHmj1uCp68n9TvUzj9+/sgF4i8m4e5t4c0ek0FKnp8+lMzUbBw2B0e3nbh6MilB01CdsG/dYWzS9QdXkxpCVfHwstDp0RaYzEayM3PpPKAl9lw7qtNVMac5VRTlSiGrqmp8+eaPRByP4dn3+lO5zs2jL8u+WE/E8RiQkiWfrGXsZ09cd2xclKsFiS3XTtzFZC6eiSMlIZ16LcNQFAW/YF8URaBpEpPFhH+wDz7+146KfPrSYnatPQJIJi58jixV8s2XW7HbnURdSOLjLwYDYPJ1w+BhxhCVDU6JJiCwXACtWlahSbvq15x79HvLOBOZgKIIfpj+JP5FKLWfMGweGSnZ7N92iur1y1Ox+o1VzM2KkUpehWs9o6Ojo3MXGAU0AfZIKdsLIaoD7xfWWHeYdO4a/V/tTc/nuriq2AwuscMTu08zps14NFVi8bTkV8sd23kKo9mAIy8J+k/K1Qwl/kIiIZVDiL+UDpqk9YONOXM8lpzkDOJPR2E0G2nWtR5CCNr3bZpva7aYeP2b51j79Va6P9keT18PVFXj8LaTRJ25zLrFO7Hl2PnwuXnM2TnxpvdTqXZZzBZXO5LKda80wc1My2b32iOE1S9PxZplAGjdowF7N4QTdSaOnk+1Z1T3qQhF0Ll/c56b1Jczpy+jmUyY3Iw88UoPHhjYEqPp2oKQ0efiseXaMbuZuHwhCe+yAflfAOVfvgmGBpegSe1y7Es6g8UORoPC6Lf70LRFweTno+HR/LzmMB3a1eB0ZDxWmxM3i4mYuLQiOUxmsxGE68uoyaz3ZNPRuWe4RyNMgFVKaRVCIISwSClPCSGqFdZYd5h07jgn9pzhk6dmEVqtNK9/OzLfWQLY+sPvaKrrt9GWbcs/Hnk8itxMa/57g9nAMx8NptOgtnj6epCdnsOQaiPJzswhMyGFL3e8xXONXiE+r+/R4U3HqFSn/FVradWrMa16XekXNuPlb9mydC9OpwoChCKu2dh364p9xJyLp+eT7fANcEV+Hni8NaXKB6JpkgZtrkRsXus9jZiIeASCObveomTZAMwWE6/NHgbAmkU7kVJiy3FwfK9LwNGnhCfJbukIo4G6LcMKVM79nRenDGDa2G8JKRdA+4eaYHE3MfTptkRHpfD40Nb54xRF8MnYPsgxkjMnL+PmbqJ8xaACczkcKq++/iM2u5NtO04z9Ok2fLt6Hw1qhlKziH3u3pr7JD/O3sx9D9QltFKhpUwKoEnJp9t+JyI5hfGd21PC7AaCfBkCHR0dnTtITJ5w5UpggxAiFbhYWGP9U0nnjjP9mTlcPBFD3IUEti/dQ6fBruTlqFOxrJm78Zo2kUejXC8ElKkcQoU65di1ci+zxy6gfvva9H+1FxlJGUgJu1fvB6DjoLZcPBGLwajQ4CZaSsmX03hv2BzOHY3CnmPHbDHhlBKJIPpcAlnpOXzw/DckXUqjxxOtmTdxOU6Hk/DdZ5ny05j8eerf53KU1n2zle8+WMl9fZpy+WIi9lwHbh5mki+nUbLsleosKSU1G1WgQvXSJF5O46nxvQGY9PVwfvtxD5VrhhJ2k+3AsHrlmLnpjQLH+l4nZ2hrwi52Je2le+lOVCtR+6rzIs9JdL0W9GxXm0G9m1417nocSY5l6+VzdC5VjcljvyM9NYfzkYm07FIHg0Fh7c+HOHEilkcfa0Fo2QA0TRJ5Lp6gkr74+LpfNd83ew/y+UGXsOaRqRfx2ZqJUARTPnucmnXuTDWjjo5OEZD3dJVcn7yXE4UQWwBfYF1h7XWHSeeOU65GKJfOx4OUlK4Skn88KTalQB5RPgL8QkqQFp+GpkoSY5IZNOFhPnpyJpqqcWTrcfqN7eEaiERqkpysXO5/rA33PdQMd293vP1uXBW1dMZvnDoQ4RKUNBtQVAdOh4bBzQ1Nanw16SeO7DiFU5Wsnr8NKSWqUyM7I/equTRNY/pzX6GpGqtmrefpDwfxyzfbadCmOjWaVCowdtLgmfyx8Rg+JTx5acYQVn+zg49Gfcvwt3rzaF7F350iyZbM/MjFOKSTU5ln+abp5xhEwa0yo9HAx1Me5dd1R2nbpholShReJiDdnsvArYuwqU4W7N9N6YRsnE6NyzGp5GRZiYpK4YvPN2C1OdgYGUGHHnVxHkhh9/qTmMwGZi5+Blu2jVLlAvOb8UZl5InuClBPZWK3OwHYsPaI7jDp6OjcEYQQ/tc4HJ73rxeQUph5dIdJ547z6oIR7Fi2h1KVgqnZ4sr2cP32tSgTFsL5w64IqMFoQFVVBDD0nf7sWrmP3av3Y7c6OLQlnKqNK3H2YCRhDStSpmopKtYpR+SxKEIql6JfxVHgdDJoXB86DWzNzeq7KtQojclsAgH2jBzsOa7tPw0oXSWUjUt+x6m5oi5+wd5cOhWDEFDC9+qtMiEEwWUDSE1IRzEoVGlQntRPc/n1hz+o26YGrbu7mrpqmsbuDcdBMZCebuXtQbNQ3Mw4nJKZ45fTtueN25sUFZNiQghXUpFZMSOu062pZo3S1KxRuOTrzZdPMPXkrzT0L8+Iap3R8vr65XpqtO1ejx3rwuncu1GePlMKSMgNNpCbbGflgv043DX8s2zYFfjfE1+SFp1MybIBzFz7MkaTgdGtW/Lr+bMk5+YgXPn5GI0G2nSoeWceio6OTtG59yJMB3Dd1bU+FCVQ6RrHr0J3mHTuOGaLifsHXt0cVlEUIo9F57/XNA2k63/r6pnreeGzJzm0Kdy1VfRsF6o0rEhybAoXT8QwrOZonHaVgNL+JKdZXX+4hcKiD9ewZNpvDHy1B/1HdS1wvYyULDLTcihTKZguA1sTWMqP9ORMpg6dmT/GhORSVApOp4ZQXJV36QkZGIXEmm0j4ujV29tCCD7//R32/nqYWi2rsXbx72SnZgMw5bn5NDk9FYu7GUVRMLtbcNidkOdoSFXDzcNC5bzk8DuJr8mHcTXGciTtGC0Dm6LcgdL9t8NXku7IJTUum16hDXmvcXdWXDjKkKrN6PBwGK+82y9/bK06obw4ujOzf9tDwuUsAIzZEjQVnJL4qBSE3cnli0kkx6dTMtSfEu7uLGjalVdGfosVgVQE3fo0pEGTire9dh0dHR0AKeUd+UDRHSadYkNVVTSnlv9eaq6vMQaTgaqNKlGzeVVWpS8EXM5VUmwyGxZt5+yB8zjtrvBDSlwqRh8vUIwIQDEacNidbFjyewGHKepMHKO6fYjmVHlkZBcGju1G4/tr83Sj11AloAgatKuJFQOnD0fh2rh3CWl26NeM/WtNRB6P5pnJj13zXnwDfeg0yCWWWKdFFZbPcuVmaZokMy0Hi7sZgKcm9GbOhOUYjAZqNqjAU5P6knQpnYZtrl2YsXThTr6bt51Gzavw+vv9MBiK5vRU9a5MVe/bV/X+k4peQZzOuIwESnuUoGlgJfpUqHvd8V271+fIpURWxR8FKfGKyYW8BO7K5UOIOHSB+q2qElzGD4Bdvxzig+Ff4TAoUDYYpOTS/rNoWmcURe8NrqPzT3Cv5jABCCEeAlrj+q6+Q0q5srC2usOkU2wYDAbMbibs1oLSAY+98RAD3+yLlJLjf5ynRKA3ZSoH82rHScSei8sXo9RUDalJGrSrScOOdanTsipvDfiCjLRsej9zf4E5V3+1GbvVgaZq7Fh9kIFju5GRnEnUqUuubSuDAU0xUsLPE4ubGSklj43pSrPOdalYswz9R3Yp9H0161SHh0d0YsP3e+jyWIsCrU96DW1LzyFtXNfMo0rt6yd5z5+x0dXCZecZIs7EEVbIrbO7xcymg1l/PpyLq6IJTz9LmUeaFriXP7E6nGw4cobyQX44HE4UIZCAIoWrGhEY+nI36jepWEA+4cCW46gOFWG1o5yJBk1y+Gw0v/98kNYPNr7qOjo6Ojq3ihBiJlAFWJJ36FkhRCcp5QuFsdcdJp1iZW74J3w/eQXnD18g5uxl+o3tyaAJDwMw/92VrP56G3arA4nAkJ6KpmoYTQYen/AI33+yBqdD5cKJS7z308sANOxYm80r9rNl1UEeGNQag9HAtpX7+XnGWoS3N0JReGRkZwA8fNwxWYw4bK7E4pMHIjAYXM6Y6nSyZPJKmna8urKsMDw5rjdPjut9zXPXcjCuR1j10lyMSMRoMhCSF4X5J/EwWjj2+Un2bD7BFqMBd08L7XrUv2rcK4vWsOeMq9JxQtd2bN58AtWhMej5DhzceZZ6jcrTqEXlq55Fz2Ht2bXmMBnpuQgpkVKioKIUMbKmo6OjUwg6ADWkdCnYCSEWAMcLa6w7TDrFSunKIYyd+xwAdqudHcv/4PS+c1RrUoWjv591aTOpGhJwGC0Is4ZmNFGyUkk8S3iRk5VLp4Eu7SGH3cnmn1wSA+eORhMbmUjZKiU5uPUEaBKZnoEwGenwkKts3mgy8uX+ySyZ+jPBZQNZPuM3rDl2hBBIpxOLu5nzRy5S6QYRoLvNR18O5djhKCqFlcTb5+oy/LvFpdhUtm0/RaNGFalaNaTAuZTkLFSnhpSQ/RetrL9yISEVq8OJu9nIwT8iMCfaUFUKC7n+AAAgAElEQVTJgb0RTPvqyetet2LNMkxb9z+ebfcuDpsTIQTDxvehRfcGd/T+dHR0isC9uyV3DijHFe2lsnnHCoXuMOn8Y7w3YDr7fjuCpklKhZXGo4QninBVriElOFUQCpjMXIpMZNGJqWSlZRNQyhV5SU/KdI3XJEaTwruDviD6fDzVm1bB7OeDIyuXIZMeKXDN0pWCeWnmMKSUZKRkcXDLCVr2qM+6r7dRqmIwLXvc2cq1omJxM9Go+e3lIJ08Gk3sxWRad6yJW14u1Y3QNMkLLywgO8vKooW7WPL98/j6XpEbyDUZ0CxGMBnA49rzvf1IJyYt20iVUoE8VL8O+9afwmCA+9rVuOn1S5UPpHP/5mz/+RB9hnegz/OdC3+zOjo6OoXHGzgphNib974JsF8IsRpAStnrRsa6w6Tzj3HuUCQOh4YQgtjTlxCKILByGdKSM9GcEk1VUYDQKiF0e6INFndzfjI1wKn9ERikhmpzkG2zYcvIQSoGTh24QFi98kxb++p1k6aFELzw0cD898MmPny3b/euM23tDlavP4zHrmSMBgM7Nhzn7c8G3tROSklOtisipCga1lwHvr5XzpcpH0BUdAo4VRIiE8nOyMXzb9GvhpXKMO2RblyMSqZq1VIs+OF5cnPshJYL4GYIIRgxZQAjpgwo8j3r6Ojcee7hpO8Jt2OsJwro/GP0frFbQSFLRSElNQcVgXTY8fJx45X5zzH3j3cILnv1H956bapjdjO5olFCcVW/CQFSkpmaXeQKs387Ul7/UywhPYuF2w+SlZyDQ9OwWR3EXEgq1LwGg8KbEx6kYqg/3e6vxaj+X/BY+8lcOBcPwMvjevHEk/ehJGSw7ItNjOg57ao5LlxM4rmRC5ny8VomTFpJQKD3DZ0lTdM4uS+C5Li0Qq1RR0dH5w6wH1dl3DbgMi6l79+llNvyjt0QPcKkU+wkRCdxOSKePiMfICs9l72/HSY1JQevAG9io9MQRiN4efFT7Oc3nMe7hCdvLxnB6w9/BhIcTjX/m9GDQ9sUw50UDwkZWfT/8nuSs7L5+OFudKoVln8ux+4gITOLkt5eeLlZsIYqkCopZ/Fk5Js3jC4X4Oj2MySevsy68Bg01SX9sHrxbka+1ZtMm419Z6NwOlzSDnHRKcReTKJM+cB8+5jYVIQQWK0OIi8k3vR608d8y47VB0AIvtj0BqUr3lovOh0dnTtMXn/Oe5TtwH1CCD9gPbAP6A/cPBSP7jDpFDPRp2N5tuGrSE2jYae6vLv6dYbm5RnZcu0MbTqB1KRM2vduVKj5ajWtwjf73iE1MZOXe0/DmmPH4mak+7B2d/EuipcNJ86RkpWDQ9WYtm4n7atWwmgykJZrpfusBWTabHSpEcaKsYM4eCGWJm+Wxc+zaAnjB3efx5brwGgyIISCwWCgQYsqALwx71eOXozBD4mQIIVk+tsr+Wj+U/n2zZpUomnjipw5G8/oF2/e8uXQ9pNYc+y4eZg5dzRad5h0dHSKAyGlzBFCDANmSik/FEIcKayx7jDpFCvv9J+GPdcOwB+/HOTiyRjK13D1DLO4m/kufDKqqhVpO80/2Bf/YF/mbB3HiX0RNGxTw9UG5R6hcYUyKIpA2CUZu2J4Y98cRs4ZyMB5P5CcnYMENp4+z0e9H6Bz3aq3dI0nx3Tm43HLCQn144U3e+Ht4065Si4nRpMaqqcJWzU/3CIzMbiZ8fXzLGBvMhl4e3yfa019TYa80ZsZr35H2bAQAkr6MLDqKMxuZt5f9QqldOdJR+ef5d6NMAkhRAtcEaVheccK/cdGd5h0ig0pJRfCo/LfG4wKF8Kj8h2m/OO3mHsUXMaf4DLX6rH436aivx+zunTh7ZELIdHKMZHB5O82IjekYKhnwumpMLhp4cvwpZRsOx5BZo6Nro2qYTIYaHV/LVrdX+ua498b2o1Pl25j7/E9KDYb5SsHMXbSQ7d1T/c/3Iz7H24GwNuPfkpSQhYCyc9zNjL8OurqOjo6OrfJaOB1YIWU8rgQohKwpbDG91ZWrM6/GiEEvUc+ALga79ZoUY2m3f/ZMv5/O8eORtOn61QmvbacsNJBKIqg79NtMSQ4MDgh+ICDlmklGNO+VaHnXHfoDP/7Zi3v/riJaat23HR8ST8vwhIceJxNRU3LIul0DB6eFsDlfM19bxWDW03i50U7AUiJT+elblN4scO7XIpIuO68manZOOxOYqNTEYqCVBT2/naEMwciCn0vOjo6dxaBq0quOH6Km7zk7l5Syil57yOklCMLa69HmHSKleenDeXZj5/Q+4QVknW/HMaep0xepmEFPlsxCoDIyERGHvkWVdV49ekbt3FRnSpSkt+S5FJyOqqm4VQ1opNuXqX289fbWP31NlRAsZgY/PqDACTEpjK6+4ekptsAmD1xBd0GtGDFrA2c3BeBpmkseG8lr88bDkDsuTg2ff87DTvUIvyPCBZP/QXvEp5kp7oa9SIh+mwcb/T6kGWxs4v8rHR0dHSuhRBiupRytBDiZ66x4Xgz/aU/0R0mnWLn/5OztH3VPha8v4rG99fm2ff6F6lNCkC7+2uyZcNxJJIOna60balYMYiVS0fxwVNzGffAFPqPfqBA8+E/OX8shlf6TsfpUHn7m2eo17oaBqEQ4uuNm0FhbC9XNaGUkoTYVEoEemFxKyhOGReVjNOuIoSgbd9mbF57lMWztlDC10Lq5TRwd0MIQVAZPxSDQrlqpTFZXM2RK9Qokz//mPvfISMli6XT1uBdOhCnQyU325r/TAQuhQiD0YCOjs4/yL2Xw7Qo79+ptzOJ7jDp6NxFPh6xAFuunaRLO+nQrznVGlYokn3jZpVZsnIkUoJvCY8C5yKPx7B/03FsuXYWfrCKR0Z2cbV5kZKIo1H4BHizeflecrNcEaBV87cRZVGZufZ3bHYnHtEZLD6zhDcXvsBnr//Ixp/24+Xjzuz1r+Lr75V/nUdGdObQ9lPER6fgcKpEnLiEzerAmpHjGmC1EVwhmM9WjUEIQcdHW+Bf0he71UGzrnUBuHjqEtlZVqTm+iSuXjeUXctjsGYJfEoHYssrBBCKoFaLMHR0dHTuFFLKA3n/bhNCBOW9vrn+yd/4//NVX0fnHyCkfCAWdzNCQEAp35sbXAMfX4+rnKU/5za7mXDztBBWr3x+pGbx+ysY034Sw+q+QmgF1xiTxUj7hxpjsztR83SWVCHYtz4cp8PJbz/+gdOhkp6SxenDUQWuY7IYiTkXT26Wld1rjyA1iZuHmQrVQkBTwemkQuVAfPIq54QQNOpQixbd6qMoCoveX8Gzzd5E08CnlB/PfjgQe1YuAFKTNGhVlRJB3gipodnsxBdCx0lHR+fuIaQslp9ivSchJgohkoDTwBkhRKIQokjK33qESUfnLjL151fY/ethqjWqSGBeD7w7hZevB1/+PpELJ2Op0bhS/vHdvxzClmvHZDFiy8plwd63UR0aASG+OJwqa1fv5eSJaHwOJmDxdif2fAIy14q0WEDVKB9WssB1TGYjZjcTEjCbjQx5uSvbl//BpTOxSKeGVFWO7TjJ8d1nqNWioKxBclwa33+8BgCpaqgOlTqtq2NxM3F46wmEIujxdAdGfj6ESY9MI/5iEi9Mf+KOPicdHZ3/3wghxgKtgCZSysi8Y5WAWUKIMVLKq9sXXGueG7Vb+LfRuHFjuX///n96GTo6/wpiIxJIT86iRuOKBXKj/vj1MO89PgP/EF8+3jiegFIlSLqcxkt9ppOWlEXfp9rw4ydrcDpUFHc32vZtSnZcMn/8epj2jzTntfnPXXWtmHPx7NkQTtU6ZRnXcwp2qwNMJlAEOF1J6V4lPFkeM5P05EzeHjST9KRMnE6N+Ig4yNuKM5gNGBWF+UemoDpUTBYTfiVvLfKmo/P/ASHEASll4+K6nmdgWVnjwTHFcq0D818qlnsTQhwCOkkpk/52PAhYL6UslC6LHmHS0fkPcmJfBG88OgOEoM/T7Xjifz3zzzV7oD6rk78qMH7n2sOkJGbgtKvs236Gh1/qwbJZm9EEWHPtTFo65oaCoaFVStKvSkkSY1KuHNQ0hNGUnx/q7uWSGli/eBdnDl3A6VBdCdyKgmIQSKcTp9WBwcNMYmwK1RtXvqPPBOBoxGUA6lYqdcfn1tHR+c9i+ruzBK48JiFEoVWOdYdJR+c/yOnDF1E1idPu4NCO0wUcpmtRu2llDAYFxU2hZdc69Hv2fuwOjbTETIa94bItjGBoUKg///v6ObYt20NgaAA+gT4YjAZyMrLpMshVcVe+RhkMRgNGk4HmXetz9mAEcREJoCi4e5jpOKAV1Rq5thCjTl8iMjyaZg/Uw83T7baeyarfjzHle5cG3f8ebc+DLWvfxEJHR+f/CfZbPFcA3WHS0fkP0q53I35bspvUhAyGvHZjZwmgSp2yzNs+nsy0bCpULw3A028+eEvXbt27Ca17N2HehKUs/mAlPv5ezNrzDktn/MavC3Zw/yPNmbxiLBkpWTTpWJufv9zMvPE/4nSqNOpQmxGfDAbgcmQCI1pOQAgIa1CRqRvG3dJ6/uTI+cvY7M7817rDpKNza/wTopJ3mXpCiIxrHBdAob+p6Q6Tjk4hiI1MJCsjl6p1yxZZS+lu4Bfkw+zNbxR6vC3XzqbvduDp40HZsJBbbj/zV35btB2nQyUny8qBTcf4aeZGNFVj7YLt9B/9QH4i+gND2xJ3MZH0pEyeerd/vv3lyASEAGu2jQsnYm57Pa0rhLLn2AXMFiNPdC62lA8dHZ1/OVLKOyLupjtMOv8osecus+LTNdRuXYN2/Qvf3qM4Cf/jPG8Omo0Q0P+FTgwY2bnAeafDycyXv+XiyVie/3gQleuU+4dWen3mvr6Edd9sRSgKmqrR85mOtz1nt6HtWDr9Vzx93GnYrhZBpf1IT8nC09sdn7/oOJktJp75YMBV9vXa1KB59wac2HOWZ6YMvK21rF1xgFnT1mOQkpHjelK+5J2tSNTR+X/FvRdhuiPoDpNOsWO3OXi3/yec2R+BpqmkxWewbv4WyoSVIqxhpWvaSCmZ+8b37F1/lMFv9qFNn6bFtt6TByJRnSqqU+Pg9lNXOUw7V+5n45Jd2HLsfPT0l8ze826xra2wZKVmozo1DAbITs8psr01186Sz9cjFMGAEZ2wuJkZMqEvD73QBQ8fN4wmIzO3jefkvgiqNayIyXzzjxaD0cDrC164ldu5ivDD0disDoSA40ej6dC1zh2ZV0dHR+dPdIdJp9g5sP4IhzaFY822oRgUpJQgXD3Prse5wxdZ8/VWl1My/CuyM23c92AjvHyvFnS803R4qDHrf/iDjNRsBr3c7arz/iElQLoEHgNL/zsjG898OBBNk3j4utN7xI17z12LxdN/Y9U323Ft+cOQl7sD4BNwJZLk6eNB4/uvnTckpeTz135gz/pwBozqQs8hbfLPpSVm8Hr3D0i+nMYbi0ZQv12tIq/v0SdacfxwFIpR8NCjzYpsr6Ojc4V7MIfpjqA7TDrFTmjVUkiJS6G6YSWCygZQp01Nqje9fksMv5K+CAQmNxNOu5NZry1h7YJtTF//BqpDxex288pQm9XOnvXHKFc1hIp5ic+FITCkBF9tu35Cct37qjP+uxe5dC6eTo+3LvS8xYlfSV/eWHTr0RxNk0gJQshbCtdfPH2ZTcv2Yrc6mD1+GT2euC8/F2zLD78TdTIWp0Nl3pvf8/nOd4o8f/lKQSxcVeim4zo6OjpFRneYdIqdstXKMOvAFKJPXaJx1/qYLTd3dgL/r737DpOi2Po4/j0zG1mi5AySgyJBQBQDiIAB8GJAucYrqK85Y8Zw9V5zQlFUzCLqVVHBAAoIBgTJUYJkkCjsLhtmpt4/ZsAFZtnAhF34fZ6nH2e6q7pPDbvj2erqqlqVeOb7exn//lQ+f3Ui2Vm5LJ+7hgsa38DOrRn0ubI7V/7ngv0W9s3KyCa5TBJmxoNXvM6CX5fjcDz3xS3Ua1IjYm06tsfR0CNipytxLrqpJ+YBwxhwbf4N3b5pJ39t2Um9ZjX3GhxfuXoFEhK9eDzBRXrzHktKTcKXG+xd9Hi18K5I3KmHKSwlTBIXdZvVpm6z2kWq06BFbS4feg6/z13DnCmL8Rvs2JKOCwT47KVvSUj0MujfA/aUf+Hmt/ny9Ykc2boOT0+4h5VL1pO1K4eUMkms+2PzARMm5xyzJi+iTLkUmrVrWOx2lhS5OT6++/hX0sqncvzpbYr8pJ/f70jfloELOPy5fhYvXsno4d/R8ZQW9Dy/MxDsRbqx938JBBytOzWiYqU0Lrj1DOo0rkG5Smk8/O7VzPt5Gb3/uffg/twcPwlpKfhy/AQ8Wt5SREomJUxSqng8Hs4c1I3FizaQuyuHQFY2jmCCs3jG8r3KjntzEs451i7byIp5q7nhv+fz4r0f0/ioOnQ4ucUBrzPqyS8Z9fRYXMBx47OXcMq5nQ6YZORk5/L0dW+wesl6rn/6Ypq2bRCB1kbOqw99ylfv/4SZkZOVS7f+xxap/nvPfMWEj34FoEy5VCZ8Mp2d2zOZPnEhzdvWp37Tmiz4dRmBgCMnK5ffJi3C5eSwZOYfjPjlIX6ftZIh/Z4EjMy/Mrjkrn57zn3yOZ346q0f2LpxO/8aem4kmy0iReU0hik/SpikxFu/YiOjH/uMxu0acsagHpzQuw270rP5c902juveiqevfpX0vzIZ/MgF/Pr9An4cN4e2JzQl7Yhy7NyWQbkjylKvWS1Sy6YwckrLQl1zwbRlZGVkQyDAY/96ibGvfcdj44bsd8tvtx8+nc6PoUVvn772DV6aOjSCn8DB+3PtNnKzc/EmeNm8YXuR66eWScY8FnqdFHwKLpQ/JiQGv0Y69zya0c99zaZ128AXwG+GNyH4ee1OpnKzc5k2fh6X3NWP7z/+hc9enkCvf57A8J8ejExDRUSiRAmTlHhDz36cFfNWkZSSRJ0mtWhzcitOO+/vJ6FemPIAvlwfs6cs4eFBr5GT7ePrtyYR8PmD42YSvHz03Ff8886+hb4Vdem9Z7Ny0To2Lt+AAxZOW8rmtduoVrdy2PLVQ/uTU5OodWS1g25zpF059B/sysiibIUynHFx0Qemn39dD1LLJuOco+/lJ9HtH8cy9r0fOeaEptRuWBUITqY5ctpDOOcY//6PLJn5B/2vCz6Rd2LfDox59Xu2btzOJXf2JSsjm8cHj8DvcyyZvZrWxzejTqPqEW2ziBSTepjCMucO/MmYWQowGUgmmGB95Jy7f58yVwHXAH4gHRjsnFtgZgOB2/IUPRpo55ybZWYTgZrArtCx05xzfx4olg4dOrjp06cXtm1Simxet5V1SzfQqkuz4IKteQw6+hZWzl9NUkoid7x1HV37d95zLCszm7sufJFFUxZiQCA1FQDz5+JxLjiY2OfHcAx5/SpO+kfh529yznFbr0dZOG0pDVvX5dmJ9x9whuzZUxaxfsUmTu7fkZQyyUX7AA4zqxatY1D7IViligA0aFaT4RPujHNUIiWPmc1wzsVs6vq0ynVd69Nvism1pr1zS0zbdrAK08OUDXRzzqWHVvWdYmbjnHM/5ynznnNuOICZ9QGeAno5594F3g3tPwr41Dk3K0+9gc45ZUCHuT9XbeKKo27GBRztT2vD0I9v2+v4A5/cxsh73ufnL2bwyMBnGbhwDf+85xwAXnvwf8yfOA98PszjwQw6ndGBrZt2sGLeashKB+dwwFPXjqTNiS2oWKVcoeIyMx4bN4TNa7dRuValApcTaXNCc9qc0Jxsv4/f/9pEg3JHkOjRU1/h7NyWTmJqMj6Cn/OG1VvjHZKIELzTrjFM4RX4SIoLSg+9TQxtbp8yeRe1S9v3eMgFwKhiximHsBXzVuMCwSkA5v6wcL/jtRrVoPOZwT9CfDk+xr06Yc+xr0d+D1lZ4PPhAgHI9TPovr5s3vAXPmd4Uv9eVzE7I5uxIycWKTaPx0O1upX3JEtbN/7FZ69PYunc1WHL5wb8nPX1q/T99nXOn/AWBfXgHq5adm5CnytOoXzZJI6oWo6bntx/6RQRkZKkUM/wmpnXzGYBfwLfOud+CVPmGjNbBjwGhJtB7nzg/X32jTSzWWZ2r5WEFU0lLo45pRWN2zXEm+Bh184sXr3z3f3KtO3empS0FLwJXvr8398zVael5bn1FQjg8XqY+OkMBt3Xj8o1KtDmpJZ4khLBDEvwUr9F+KkMRj09jrMb3MBDlw7nj4VrWDrrD3y5fr55/0cmfzZjT+Jzy9nP8tq/x3Br/2fZtH7/wdMbd+1kdcZ2sv0+5m5dT7ov5yA/neib/+MSPh32NTu27IzqdXZuy2DxrJX4fX7MjMH/uZDRi57g3d8e5qSz2kX12iJSBM7FZitlChzDtFdhs4rAJ8B1zrl5+ZS5EOjpnLskz75OwKvOuaPy7KvtnFtrZuWAj4F3nHNvhTnfYGAwQL169dqvXLmy0PFK6bF+xUYua34D/lw/GHy+8539xgH5cn1kZWRTtmLann0Lpy3ltp7/JjfHB8nJwUHdZjRoeyTDvx0CwOqlG/j+o2kcfXxTjunafL9rb9+8kwta3Y7LzsGb4MUCPjweDy2Pb86iWavAjKv/fR49Bx5Pv6a3kr0rl+SURJ4ecxMN90nAAs5xxeQPmLRhGWfVa8kzx53997FAgPk/LuGImpWoXUIGOK+Yt4r/63wvAX+AI2pV4v1lz0XlOn9tTWfQiQ+Tk+2jzfFNeOCNK6NyHZFDTazHMJWtXNe17nVjTK71y3u3HnJjmPZwzm03s++BXkDYhIngbbeX9tk3gH16l5xza0P/3Wlm7wEdgf0SJufcK8ArEBz0XZR4pfSY+d28YLIEVKhcnuTUpP3KJCQmULbi3j+yLTo25vOtr7NwxgruPPtJsnflArBuxaY9Zeo2rsHFQ/qEvW5OVi5X9/gvgaxscAF8WT6M4DIgKxeuISfHh8frCT4qD9z54qW88+Q4Op/WmgZhllfxmPH6SQPIDfj3G7/04i1v8+1bP+Cc48kJ99KkBMzVtGDaMgL+AABbw/SYRcrKxevJzfGRvSuH2VN/j9p1ROTQYWavA2cCfzrn9luoMnRn6lngdCATuNQ591u04inwlpyZVQ31LGFmqQQXgFi0T5m8i4CdAfye55gHOI8845fMLMHMqoReJxL8QPJLwOQQt23jdl68/vU971uf0AwzIzcnl7cf+pDX7nqXXem7wtZdt3IzV/X4D7ec9ST+9F2klEkipUIaVz10Dl++PYVp380/4LV3bs8k/a/M4C27smWxsmkkpiRRoUo5rnv6Ytqc0IxOPY6i3+BuAHQ6tTXPj7uNgTf1PuAUBeEGe8+ZvIiszGwcjt9nrijMRxN1J/XvRHK5MliCl4btjozadZq3a0Cj1nXwJni58MaiL/4rIrFjLjZbIbxBsIMmP72BJqFtMPt31kRUYXqYagJvmpmXYII12jn3hZk9CEx3zo0BrjWzU4FcYBtwSZ76JwKrnXN5p2FOBr4OJUteYDww4uCbI6XRnEkL9rz2eD1c9nBwAPDHT3/JqEc/IRBwZO7YxXUvXLFf3eFD/8eqpX/ikhLx5eRy/uBuXHTPP3j0/97gx6/m4PEYXXoeRa36lTkvNCfQ9k072Lx2KxWqlKNOk5r0uexEvnh9Ijk5fvB6qXdUY4Z9O4QPXxrPmlXbOO28TpStUOag2znokQE8dvlwqtevQtezCz+9QTSVrVCGdxc/xaol6yM+O/mcqYt56Y73ada+Idc9dRFP/C823fwicmhwzk02swYHKNIXeMsFxxb9bGYVzaymc259NOIpMGFyzs0B2obZf1+e1zccoP5EoPM++zKA9kUJVA5dR5/UkjLlU/Hl+hl4T3/qt6wLgN/nD44LdA6/z79XHb/Pz7RxM0lNTSQh0Ysvx4c30cNxZ7Zj+fw1TP1yFv7QraZJn/yK1+CvTTuYPGoqO7dlYF4PCYleHv3iDgbd24+BN/XihtOfYP3KzTRr34DM9CzefGwsfn+A0S+O5/SBXahco8JBtfPYnm34cG1U/wAqlnKV0mjVqXHEz/v4la+xae1W1q/YxHGnt6VTz6Mjfg0RiTBHaZq4sjaQ95HlNaF98UmYRKKtUvWKvLvyJXbtzKJ85b/nSDr3lrPI3LmL7MxsLntowF51Hr98GFM/mYY/EKDeMY3xeIw7X7uNuk1rc2vfp/Dn5OI8HvD7cbuyCABfvDweIDj9gHN4PMbi6cto1bkJHo+xfvUW/AHHtx9O4/xrelChclky07NITEqgbMXUWH4kUfHbd/P57OXxdDv/uCJN4FlcNRpUYceWnTgXoGrtSlG/noiUOlXMLO9cjK+Exi2XSEqYpERITEoksXLiXvuSUpIY9J9/7rVv9qT5fPDYZyyduYKsjGy8CV7++HUxLgAj7x7FfR/eQp3G1VkyayW5OT4sN4cA7P0Iq9dLQoKH2o1r0O28LsHrJydSrmIZdqVnk5DopfwRZRn21W3MmrqE1p0akZyy/yD00iQ3x8f9A54lN9vHb9/P56jjm3FE9QP3mKVvz+CxK15m57YMbn1lcJGf7Bv63nVM/vRXGrSozZGt6x5M+CISQxaI2aU2H+RTcmuBvF8udUL7okIJk5QazjnuOfNRsjKySUxKoFKNipSrlMbGPzbhnKNitfIAXPufARzdpQmVa1Tkz5WbeO7Gt/AmeMjOzMYFHOYxel92Ctc+ddGec3u9Hl4YdzvTJy6gTZempKYlk5qWzMl9D407xx6PkZCYQG62DzMjIbHgGcg/HzGBGePn4vP5eXnIuzz44c1FumZa+VR6X3xicUMWESnI7jHUo4BOwF/RGr8ESpiklElJSyErMxvzenjh50eoWrcK49+eTPr2DM4YfCoACYleuvUP3XI6vik9Ljwevz/AL+Nm8uKt7+JN9NLv6h77nbtyjQr0HHBcLJsTM94EL0+MG9gy3wAAACAASURBVMJ3o3/iuNPbUv6IsgXWqVG/Kt5EL94EL7Ub1Sj2tXOychn3/k9sWbeNlDJJ9Di/M1VrVWLLhu188dpEjmxdl66HSGIqckgoIWOYzOx94GSCt+7WAPcTXG2E0HJsYwlOKbCU4LQCl0UzHiVMUmqYGU9PfpBv3ppIu+5HU61eVQB6XHxSwZWdo3WXpryz6KkoR1lyNTq6Ho2Orlfo8ief25nUcilkbM/k5HM7F1whHy8/8AnfjP4ZX05wEeTvP5nOiMn38sA/h7F09ioSkxI4onoFWnWO/MBzESm9nHMHXDMp9HTcNTEKRwmTlHxzJi/gwyfHcHy/jvS6rBuXP3xhkerv2LqTK4+5jW0btnPurWfxr0cGRinSwlvw6zIeuHg4aeVTePSjG6let3K8Q9qPmdG5934PyBbZtk078OcGB0W4gCP9r+CcWrvSs4KTZlrwtYiUDFp8N7xCrSUnEi/OOe4+4xF+/nwGz1/zKmuX7n97evmclaxalP84v/lTF5OxPQO/z8/YEeOjGW6hvfvEl+zYms6GVVsY/8HP8Q4nqq5+sD8du7ekces6HN2lCfe9NgiAu0dexXGnH8P5N/amffdWxTr3L1/NYtQTX7B9046CC4uIHAT1MEmJl5yaRFZGNpiRmBx8ki5jRyaJyYlMeGcyw65/HQfc/f6NdOlz7H71W3VpRmq5VHKzc+l56Skxjj68die3ZP4vS3EOWh4bvRm2S4KqtSoxdOTg/fY3aFGb+98pfm/6ounLeOTS4fhyffw0dibPfnfvwYQpIhCah0ldTOEoYZISzcx4ctKDfPvmRNr1aEO1ulX49u1JPHXFcJJSk2jRuQnZu3LAYNb388ImTOUrl+OdFcNI35ZBpeoV49CK/fW/+lSO7tKE1LRk6jQu/oDqw1n69kzMDL8vwM5tGfEOR0QOcUqYpMSr36IOV+SZj+mzYV/hy/XhcJStlEZaxTKkpKVw1lWn5XuOxKTEEpMs7dakTf0DHt+yYTsPXPIyWZnZ3P3qFdRvtv9ivyWJL9fPsvlrqNOoOmnlUqJ+vfbdW3P2Naex5LflXD703KhfT+RwoTFM4SlhklLnjMGnsmzWH3g8xo+f/orX66Hv7b2o26x2vEMLa+e2DJJSEklOLfzkl+Pfn8pLd31AZrYfHLz13y+49/X9b2uVJHcOeIHf564hrVwKr06+h9S05Khez8y45J6zo3oNEZHdNOhbSp3el3dn1JqX6Xdtb/w+H1mZ2Sz8aUm8wwpr7BuTuKD5LVzY4lbWLttY6HrPXPMa6VvTIeBISk6kSZv6OOdwMR5b4JwjJyunwHKBQID5vy4ne1cOGTt3sX7l5hhEJyJR4WK0lTJKmKRUqlClPGffcDoNW9enZqPqXLrPWnMlxRcjJ+HL9ZOTlcuv4+cVul7NhtVITvKQEPBx89P/pEP3lpzbagj9m9/OwhkrohKrc46Nq7aQk50LBJdTueHkB+lTdRDP3fDGAet6PB76X9Udr9dD646NqN+sZlRiFBGJF92Sk1KrSu3KDJ/5eLzDOKAzLz+ZF29/j6SURDr2OKrQ9Z4afy/TvppF82MbUbtxDZ6/8wMydgTnLxrz+mRatG8Y8Vj/c8UIfvziN46oUYHhUx9g7bKN/LFgDc7B2Ne/57pnLsHM8q3/r7v68K+7+kQ8LhGRkkAJk0gUnX7JiXTt257klCSSUhILrhBSrlIa3S84fs/7Tqe2ZvzoaQAc16vwiVdRTP18Br5cP39t3smKBWs5snUdKlYrz7aNf3HMSS0PmCyJyKHB0KDv/ChhEomychXTDvocHbu3YsTkuwn4HTXq7T8reObOLCZ88BO1G1en3ckti3WNXhd35cuRk6herwqNjqpLcmoSr854lE1rtlLzyGqFOsf2TTsoVykNb0LBi/uKiJQmSphESolqtY/I99gjlw9nzg+LMY/xyP9uolXnJkU+/7VP/JPL7z+HlLQkPJ7g8MaklCRqF3KeqGdvfodv3/+RanWOYNj395BaNvpTC4hIhDmniSvzoUHfIoeATWu2BgdrG2xZv73Y5ylTLmVPslRU40f9hC87lz9Xb2HpnFXFjkFEpCRSwiRSAqVnZjP4oQ/oc+MIZi5eU2D5W1+6nObHHskp53Siy5kHv2BucSQmBr9OfLk+0rdr5m2R0spcbLbSRrfkROLM73yMW3Mf63fNp0u1wbSqeAbf/LSIhSs2kJPr55l3J/DEzavJ8a2gasX7SErYf4bwJsc04Jlv7opD9H8rWzGNzJ1ZADinAeIicmhRD5NIlDnn+PqLWXzw9lR2Ze4/CeT6zHmsyZxFdmAnU/98CYBGdatgZqQkJ3LacSvZlj6S9F1fsWHL9bEOv9ASK5aFpEQSyqexfXtmvMMRkeLSxJVhqYdJJMomfDWXF54Yi9/vWLl8E7ff32+v4xWT6mDmIZEUqqU0A6BN09q8dv8FbNqWTuvGi9mw7U3Ai8dTPg4tKJw+l57Iq/8eQ0paEu1ObBbvcEREIkoJk0iUZaRn4QIQ8AfYGZp8Mq+yiVUY2HAkW7L/oE6ZNnv2N6lXlSb1quJcAxyPketbSaVyl8cy9CLpe9mJnNKvPSmpRZtzSkRKltI4vigWlDCJRFnvPu1Y9cdmtm3N4OqbeoYtUzaxKmUTq4Y9ZmZUSOsfzRAjpnylg59zSkSkJFLCJBJlSckJXHfb6fEOQ0SkYA4IqIspHA36FikFMv7K4O4zHuGajnewcmHB0wwAZObMY+OOEeT41kY5OhGRQ58SJpFSYOyICfw2YS5Lpi/npRtH7nUs4AI8veAbrvhxJAu2rwMg17+JJRv7s277f1i8oS9OM/eKSGHpKbmwlDCJlAI1G1XHm+AhuUwydZvX3uvY1D+XMuqPX5i2ZQW3/zYaAH9gJ84FcOTiC2ynVH47iYiUIBrDJBJDC35egtfrodmxjYtU74SzOzH0f7ezY/MOTjqvy17HKiSl4hwkmJdKScFB1ymJR1Kz4i1sz/yS6uWvxUx/G4lI4egpufCUMInEyJcjvuWlm94ABzePuIpuF3YtUv0Op7UJu//oSnV5ssP5/L5zI2fXbbdnf43yV1Gj/FUHE7KIiIToz06RGJk3ZRHZmTnkZOUy78fFET131+pNubxxVyol67F+EZFoUA+TSIwMuKMf86Yswpvgpf+NZ8Q7HBGR8PSQSFhKmERipH7Lury9bFi8wxARkWJQwiQiIiJ7aNB3eBrDJFJCBAIBxr8zmS9e/pbcnNx4hyMiInmoh0mkhBg7YgLDb3kD52Dt0vVc+fjF8Q5JRA43pXRSyVhQwiRSQmzdsA1/boCAP8CWtVvjHY6IiOShhEmkhOh/05msWrSWXTuzGPz4RXGLwznHs1N/4pvff+fa4zpzevNmcYtFRGLLANNTcmEpYRKJs3XLNvBA/yfwJngY+r/bqFavatxiycrK5ffNm3n11+lk+Xzc8uU4ejdripnFLSYRkZJAg75F4uydhz5ixdxVLJv1Bx88/lm+5fw+P7//tpyMHZlRiWPerFWc0/Nxbrt0JC7gSPZ6qVa2rJIlkcNNIEZbKaMeJpE4a9LuSH74+Gecg8ZtG+Zb7p6zHmXuDwtJLZvKG4ufJa1CZGf1/nbcHHKyfZANp++sTtt+LejRuGhr3omIHKqUMInEWb/relO3eW28CR7adjsq33KzvpuHL9ePmbFq0TpadGoS0Ti6ndaaCePm4HCc36sDHY5RsiRyONIYpvCUMInEmZnlu7BuXufd3pf3H/2EJu2OpHHbBhGPo037Bnww9macg7LlUiJ+fhGR0kwJk0gpcdlDF3DpgwOiOqYorawSJZHDmuZhypcGfYuUIvsmS3N/WMiD5z7BxNFT4xSRiMjhQT1MIlGwatFaFv+6lOPO6kDZipEdnL2b3+/nzl4Pk70rh1++/I2WxzWjWt0qUbmWiBwuHGgMU1jqYRKJsM1rt3DNsXfw7NUjuOXk+6N2HTPDm+jd/Q5vQvB1TnYut3YbyplpA/n4mS+idn0RkcOJEiaRCNu0JrisSXZmNuuWbYjadTweD09OfIB+15/OQ2PuoHLNSgAs+HExi6cvI3tXDm/e/0HUri8ihyZzsdlKG92SEynA8jkreeCcJ0gtl8LDn99JlVpHHLB8846NOfWik5jxzWwu+/cFUY2t8TENafzM3nM31W9Zh4QELylpyRzVtUVUry8icrhQwiRSgJH3vM+6pRvweD188fI3XPrAgP3KOOdwzuHxeDAzbnhxUBwiDapUvSIjFz/LmiXrad5RcymJiESCbsmJFKDlcU1JSUsmMSmBJm2P3O/4yoVr6F/1cs4qexEzv5sbhwj3V7FqBVof35yERP1NJCJF5FxstlJG36YiBRgw5GyadWxCmXIpNO+4/+za49+ezM6t6QB8+MSYA87WLSIipZN6mEQKYGa0635U2GQJoEPPNiSlJpGUkshJ53WJcXQiIhHkwAKx2Uob9TCJHKQ2J7XiraUvkJOVQ82G1eMdjoiIRIESJpEI2P1If3EEAgHGvPg12zZu57xb+5BWIToTXYqIFEopHF8UC0qYRA6S3+dnzZJ11GxUg6TkxCLX//atSbw65B38uX7WL/+Tu969IQpRiojIwVDCJHIQnHPcdOK9LJu9kmr1qvDK7CdITCpa0pSzKwfnHIGAIzszu8DrTf10GmZGl77HRnUhXhE5TKmDKSwN+hbJh3OO4be+yfm1BzP6ic/ClsnKyGLRL0vJ2ZXDxj82sTk0y/dufr+f1+95j6H9H2ft0vVhz9HrX93od21vug/syg0vHXj+pv898yX/veh5Hv3nc3z6/NjiNUxERIpMPUwi+di4chNjhn1NbnYurw15j77X9CI5NXmvMqllU+k28AQmvPMDbU5uSfUGVfc6PuXjX/jfM2PJ3pXN5rVbeeHnR/e7TmJSIoP+e1GhYlq9eC05WblgjlWL1hW/cSIi+TCNYQpLCZNIPipUKUdKWjLeBA/lK5cjMZ/xSUPeup5bX/u/sJNEppZLBcDr9ZJWvsxBxzTwnnNYuWANZsbAu/9x0OcTEZHCUcIkko/Usqm8MudJ5k9dTNvurfF48r+Dnd+M2sf2OoabXr6SNb+v4+zrTj/omKrWqczTkx8qVt3Mnbv46KnPKV+5HH3+r+cB2yMihzH1MIWlhEnkAKrUOoKTzj2u2PXNjO4Du0YwouJ7/rrXmDhqKl6vh+TUJHr/q3u8QxIRKTWUMIkcJrLSs3D+AAGPkZVx4KfxROQw5YBSOAt3LBTYJ29mKWY2zcxmm9l8M3sgTJmrzGyumc0ysylm1jK0v4GZ7Qrtn2Vmw/PUaR+qs9TMnjM9Hy0l3HejpnBZ8xsYccc7uFLYZX39sCs45cIT6HP1aZxxZY94hyMiUqoUpocpG+jmnEs3s0RgipmNc879nKfMe8654QBm1gd4CugVOrbMOXdMmPO+BAwCfgHGhsqPK2Y7RKLuiUuHkZvj47MXxtF9YFeOPLp+vmXTt2fww8c/0+iYBjRt3yiGUeavUvWK3PHmdfEOQ0RKMMPpKbl8FJgwueCf0umht4mhze1TZkeet2n7Ht+XmdUEyu9OuszsLaAfSpikBKtarwpb1m7FPEal6hUOWPbO3v9mxZyVAAyf+Th1mtaKRYgiIhIlhRrDZGZeYAbQGBjmnPslTJlrgJuBJKBbnkMNzWwmsAO4xzn3A1AbWJOnzJrQPpES69mpD/PTmOm07NKMStUrHrDshhV/kr0rh5S0ZDat2aKESUSklCvUc8XOOX/otlodoKOZtQ5TZphzrhFwB3BPaPd6oJ5zri3BZOo9MytflADNbLCZTTez6Zs2bSpKVZGIqli1Ar3/1Z36LeoUWPb2N6+lQau6nHrRSbQ5uVUMohMRiRDnYrOVMkV6Ss45t93Mvic43mhePsVGERyfhHMum+AYKJxzM8xsGdAUWEsw+dqtTmhfuGu+ArwC0KFDh9L3Ccth6diex3Bsz3BD90REpDQqzFNyVc2sYuh1KtADWLRPmSZ53p4B/J6nrjf0+kigCbDcObce2GFmnUNPx10MhF+sS0RERGKnBPUwmVkvM1sceqJ+SJjjl5rZpjxP418R8c8jpDA9TDWBN0OJjwcY7Zz7wsweBKY758YA15rZqUAusA24JFT3ROBBM8slOLPDVc653auT/h/wBpBKcLC3BnyLiIgIsGf89DCCHTVrgF/NbIxzbsE+RT9wzl0b7XgK85TcHKBtmP335Xl9Qz51PwY+zufYdGC/sVAipV3mzl1k78qhUrUDP0knIlLilKyJKzsCS51zywHMbBTQF9g3YYoJLSYlEkEr5q3i/NqDGVjvKsa+Oj7e4YiIlGa1gdV53uf3RH1/M5tjZh+ZWd1oBaOESSSCfh03k9zsXHJzfIx77bt4hyMiUmTmXEw2oMrup+BD2+BihPs50MA5dzTwLfBmJD+LvJQwiURQl77HklImmYREL2df3zve4ezFOUfGjsx4hyEisttm51yHPNsr+xxfC+TtMdrviXrn3JbQE/kArwLtoxWsFt8ViaA6TWvx4cZX8eX6SU1LiXc4e/h9fm466T4W/fI7J57TmXtG3RzvkESkpCo5cyT9CjQxs4YEE6UBwIV5C5hZzdCT9wB9gIXRCkY9TCIRlpiUeMBkad7URbz/6CdsXBm7iVjXLdvAspkrcAHHpNE/kZOdG7Nri4gUh3POB1wLfE0wERrtnJtvZg+G1q0FuN7M5pvZbOB64NJoxaMeJpEY+nPVJoac9hC+HB+fD/+G91a+FJPr1mhYjZpHVmft0g20OaklScmJMbmuiJQ2JWsWbufcWGDsPvvyPqV/J3BnLGJRwiQSQxk7dgHg9wdI35ZeQOnISUxKZPjMx9m8divV6lU5YNmtG//isevewjnH7c9fQuUamh5BRES35ERiqGHrelz60ACOOrEFQ/93W0yvnZCYQI0G1fB4Dvxr/96zXzH359+Z98tS3ntG88mKHFYcJWqm75JEPUwiMXbOzWdxzs1nxTuMfNVqUJXEpMQ9r0VERAmTiOzj7EGnULVWJQCOP71NnKMRkZgrOTN9lyhKmERkL2ZG1zP3Ww1JROSwpjFMIiIiIgVQD5OIiIjsYaVwQHYsqIdJREREpADqYRIREZG/qYcpLPUwiYiIiBRACZNIBH3/wVT+fcEzLPh5SbHPsXrxWq5ufzu3nHI/2zf9FcHoREQK4ICAi81WyihhEomQ9cs38sRlw5j4wVSG9HwIV8xu7dfufJelM1cwf+oiPnvhqwhHKSIixaGESeQgrJi7km/fmkTGjkw83r9/nbwJ3mKfs+FR9UlJSyYhKYF6LepEIkwRkUKK0bIopXCclAZ9ixTT+uUbue64uwEY8+JXPP/zo9z30a38MvY3zhh0KmZWrPNedP+5NDqmAWXKpdLu1KMjGbKIiBSTEiaRYvpz9WbMICsjm7VLN/Dnqk28cttbpG/PYPrXs6hQuRxDP7mdyjUrFem8Ho+HE87ulO/xNb+vJ61CGSpVq3CwTRAR2V8p7P2JBd2SEymmo7q24JQBx1O7SU2ueWEQHz43ljWL17F1/XbWL9vIkhnL+fT5sRG95ugnPuPKNrdw0ZHXsHTmioieW0RE8qceJpFi8ng83DziaubPWc0d172N3xfAU7UStuUvzBMcx9SoTYOIXnPS6B/JycolISmB2RPn07htw0LXdc6RmZlDmTJJxb5dKCKHAfUwhaWESeQg/Th5MTnZPgBan9GRyy7tQuaOXaSWTeHoE1tG9FoX3PkP/n3BM5SvXJau/fO/bbcv5xx33zKK6dOW07Z9A/7zzIVKmkREikAJk8hBOqVHK774eDo+n58LrziJozo3jtq1Tji7E19mvouZFSnh+Wt7Jr/9ugIXcMyeuZKtW9KpXKVc1OIUkVJq9zxMsh8lTCIHqXGzmnz0zW24gCMpOfq/Uh5P0Ycelq9QhqbNa7J0yQaObFydSkeUjUJkIiKHLiVMIhGQmFj8eZdiweMxnh5+CZv+3EHVauXxeHQ7TkTCceAC8Q6iRNJTciKHuA+e/Yorugxl3NtTqFGzIl6vfu1FRIpK35wih7AtG7bzzpNfsnb5nwy/ZzRZGdkHLL9pzRaG3/Y23777Q4wiFBEpHXRLTqQQFk9fxtjXvuOEfh05tmebeIdTaGXKpZCckoTX4yO1bAqJBYyxeuC8p1k66w+SUhKpWvsIjjm5VYwiFZESQ9MKhKWESaQAfn+A23o8TFZGNhPencKbi58p8uzd8ZKalsIL397J7KmLaX9KqwLXuPPl+HDOYRi+XH+MohQRKfmUMIkUgsv7F1cp++OrRv0q1KhfpVBl7x11I28/9DGN2zak/alHRTkyESlxNK1AvpQwiRTA6/Xwn3F38fnwb+n6j45UrlU6epcKwznHa0M/YsqY3xhwy+n0+mdXhrx5TbzDEhEpcZQwiRRCq+Oa0uq4pvEOI+JWL9nAmBHfk5OVy3M3vcNpFx5frHmeROQQojFMYSlhEjmMVaxaDm+Cl+QyRqWq5ZUsiYjkQwmTSAkw/+ff+X70T5xybueY9mSVP6Iswybdy4Jpyzj21NYxu66IlGDqYQpLCZNInPhyfZgZudk+7jzrMbJ35fDN2z/wwYrnSS2bErM4ajWsRq2G1WJ2PRGR0kgJk0iM+HL9/Pz1HKrUqkhWehb3nf8cXq+HB0ffQCAQXIogEAgQ0BMqIhI3Tj1M+VDCJBIjz9/xPpM/m4FzjsYtapGTlQvAlDEzGPrBjYx7YxK9LjmRtPKpcY5URET2pYRJJEZWLFhLVmYOSSmJ1G1Wk8UzlmNmdDmzLW1OaE4HzXskIvHmgIAW3w1HCZNIjPzfI+fx5PVvUa1uZQY9eC4X3dEHj9dDxSrl4h2aiIgUQAmTSITtnhXczPba37xdQ0ZMuX/P+zIxHNgtIlJoGsMUliZdEYmgX7+eTZ8j/sWFja5nw8pN8Q5HREQiRAmTSAS9/9gYcrJy+WvTTiZ9+Eu8wxERKTrnYrOVMkqYRCLo+L4dSEpJJCHRS5sTm8c7HBERiRCNYRKJoP7X9+bYnm1IK5d6SC3SKyJyuFPCJBJh9ZrVincIIiLF5ECT54alW3IiIiIiBVAPk4iIiAQ5cE4TV4ajHiYRERGRAqiHSURERP6mMUxhqYdJREREpADqYRIREZG/lcJJJWNBPUwiIiIiBVAPk4iIiAQ5BwE9JReOephERERECqAeJhEREfmbxjCFpR4mERERkQKoh0lERET2cBrDFJZ6mEREREQKoB4mERERCXEaw5QP9TCJiIiIFKDAhMnMUsxsmpnNNrP5ZvZAmDJXmdlcM5tlZlPMrGVofw8zmxE6NsPMuuWpM9HMFofqzDKzapFtmoiIiEhkFOaWXDbQzTmXbmaJwBQzG+ec+zlPmfecc8MBzKwP8BTQC9gMnOWcW2dmrYGvgdp56g10zk2PSEtERETk4Di0+G4+CkyYnHMOSA+9TQxtbp8yO/K8Tdt93Dk3M8/++UCqmSU757IPJmgRERGRWCrUoG8z8wIzgMbAMOfcL2HKXAPcDCQB3fY9DvQHftsnWRppZn7gY+DhUHImIiIi8eI0rUA4hRr07ZzzO+eOAeoAHUO31/YtM8w51wi4A7gn7zEzawX8F7gyz+6BzrmjgK6h7aJw1zazwWY23cymb9q0qTDhioiIiERUkZ6Sc85tB74nOD4pP6OAfrvfmFkd4BPgYufcsjznWhv6707gPaBjPtd8xTnXwTnXoWrVqkUJV0RERIrAAS7gYrKVNoV5Sq6qmVUMvU4FegCL9inTJM/bM4DfQ/srAl8CQ5xzU/OUTzCzKqHXicCZwLyDa4qIiIhIdBRmDFNN4M3QOCYPMNo594WZPQhMd86NAa41s1OBXGAbcEmo7rUExz3dZ2b3hfadBmQAX4eSJS8wHhgRqUaJiIhIMTinMUz5KMxTcnOAtmH235fn9Q351H0YeDifU7cvZIwiIiIicaWZvkVERGSPkjSGycx6hSa5XmpmQ8IcTzazD0LHfzGzBhH+OPZQwiQiIiIlTmgo0DCgN9ASuGD3SiJ5/AvY5pxrDDxN8In8qFDCJCIiIn9zgdhsBesILHXOLXfO5RB8Cr/vPmX6Am+GXn8EdDczi9hnkYcSJhERESmJagOr87xfw97Lq+1VxjnnA/4CKkcjmELN9F1SzJgxY7OZrQy9rUJwrbpD3eHQTrXx0HE4tFNtPHSUhnbWj+XFdrLt6/HuoyoxulyKmeVdT/YV59wrMbp2kZWqhMk5t2fmSjOb7pzrEM94YuFwaKfaeOg4HNqpNh46Dpd2FoVz7kATU8faWqBunvd1QvvClVljZglABWBLNILRLTkREREpiX4FmphZQzNLAgYAY/YpM4a/5348B/guWuvSlqoeJhERETk8OOd8ZnYt8DXBSa5fd87N32fi7NeAt81sKbCVYFIVFaU5YSqx9zkj7HBop9p46Dgc2qk2HjoOl3aWWs65scDYffblnTg7Czg3FrFYlHquRERERA4ZGsMkIiIiUoASlzCFpjifFdr+MLNZeY4dbWY/mdl8M5trZin5nOM6M1sUKvdYnv13hqZPX2xmPWPRnnziO6g2mtlQM1ub5xynh/YnmtmboXoLzezOWLZrnxij0sbC1o+VaLYzdLyemaWb2a2xaE84Ufx57WFmM0L1ZphZt1i2K0yc0fyZPSS+e/KUvcXMnJlVCb2vYGafm9nsUP3LYtGefGKLShtD+04OnXe+mU2KdlukhHHOldgNeBK4L/Q6AZgDtAm9rwx4w9Q5BRgPJIfeVwv9tyUwG0gGGgLLwtUvJW0cCtwaZv+FwKjQ6zLAH0CDQ6yNhapf2tuZ5/hHwIcHKlNa20hwUe9aodetgbXxbl+U2nnIfPeEjtUlOAh3JVAltO8u4L+h11UJDr5NOsTaWBFYANQLva8W7/Zpi+1WYgd9m5kBKrCOfAAABEdJREFU5wG7/+o8DZjjnJsN4JzLb56Fq4H/OOeyQ+X+DO3vSzCZyAZWWHBEfUfgpyg1oUAH0cb8OCDNgnNRpAI5wI4IhVssUWjjwdaPiii0EzPrB6wAMiIV58GIdBudczPzvJ0PpJpZ8u7f3XiJwr/lofbd8zRwO/BZnn0OKBc6b1mCCZMv0nEXRRTaeCHwP+fcqlD9P8NVlENXibsll0dXYKNz7vfQ+6aAM7Ovzew3M7s9n3pNga4WXLV4kpkdG9pfmCnWY624bQS41szmmNnrZlYptO8jgv9zXQ+sAp5wzm2NWvSFE+k2FqV+LEW0nWZWFrgDeCC6YRdJpP8t8+oP/BbvZCkk0u08ZL57zKwvwZ7A2fscegFoAawD5gI3OFe4xcKiKNJtbApUMrOJFryFfHH0QpeSKC49TGY2HqgR5tDdzrndGf0FwPt5jiUAJwDHApnABDOb4ZybsM85EoAjgM6hsqPN7MhIxl8YUW7jS8BDBP+qe4hgt/PlBP9q9QO1gErAD2Y23jm3PDKt2luc2ljY+hETp3YOBZ52zqVbdNaR3Euc2rj72q0IrjB+WgSackDxbGesRKuNZlaG4K23cP9OPYFZBHtzGgHfmtkPzrmo9HDHqY0JQHugO8Ee/J/M7Gfn3JKDbY+UDnFJmJxzpx7oeOiW0j8I/nDutgaY7JzbHCozFmgH7PultYZgt6kDpplZgOB6QYWZYj1iotlG59zGPOcZAXwRensh8JVzLhf408ymAh2AqCRMcWpjYX8OIiZO7ewEnGPBhxYqAgEzy3LOvXCQzQkrTm3EzOoAnwAXO+eWHWQzChSndh4q3z2NCI7Bmh1K4usAv5lZR+AygkMhHLDUzFYAzYFpEWnUPuLUxjXAFudcBpBhZpOBNoASpsNESb0ldyqwyDm3Js++r4GjzKxM6JfhJIID8Pb1KcGB35hZUyCJ4OKKY4ABZpZsZg2BJkTpl7mQit1GM6uZ5+3ZwLzQ61WE7tebWRrBXrZFUYi9sKLRxsL+HMRSxNvpnOvqnGvgnGsAPAM8Eq1kqZAi3kYzqwh8CQxxzk2NWuRFE42f2UPiu8c5N9c5Vy3Pz+UaoJ1zbgPB757uAGZWHWhGlP5QK6RotPEz4AQzSwj1RHUCFsaiMVIylNSEaQB7d6XinNsGPEVwbZlZBMc7fAlgZq+a2e4FFF8HjjSzecAo4BIXNB8YTfAX5CvgGuecPyatCe9g2viYBR+JnUMwObwptH8YUNbM5ofOMdI5Nyf6TclXxNt4oPpxFI1/y5ImGm28FmgM3Gd/PwZeLQZtOZBo/MweSt89+XkI6GJmcwn22NyxuycnTiLeRufcQoL/fnMIJryvOufmHaiOHFo007eIiIhIAUpqD5OIiIhIiaGESURERKQASphERERECqCESURERKQASphERERECqCESURERKQASphERERECqCESURERKQA/w89l6kAsswohAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5, \n",
+ " c=hazus_displacements,\n",
+ " )\n",
+ "\n",
+ "plt.colorbar(label='Displacements from Lateral Spreading (m)')\n",
+ "\n",
+ "plt.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/_sources/contents/sep_docs/tutorials/sep_tutorials.rst.txt b/_sources/contents/sep_docs/tutorials/sep_tutorials.rst.txt
new file mode 100644
index 000000000..45d443d56
--- /dev/null
+++ b/_sources/contents/sep_docs/tutorials/sep_tutorials.rst.txt
@@ -0,0 +1,15 @@
+Tutorials for using the OQ-MBTK for analysis of secondary perils
+################################################################
+
+Several tutorials are available for preparing data and performing calculations
+relating to secondary perils (coseismic landslides and liquefaction).
+
+These tutorials are given as Jupyter Notebooks, which are included in the
+tutorials_ directory in the main repository_.
+
+.. _tutorials: https://github.com/GEMScienceTools/oq-mbtk/tree/master/tutorials/sep
+.. _repository: https://github.com/GEMScienceTools/oq-mbtk/
+
+.. toctree::
+ liq_site_prep
+ liquefaction_analysis
diff --git a/_sources/contents/smt.rst.txt b/_sources/contents/smt.rst.txt
new file mode 100644
index 000000000..b14ca5f57
--- /dev/null
+++ b/_sources/contents/smt.rst.txt
@@ -0,0 +1,667 @@
+Strong-Motion Tools (smt) module
+################################
+
+The :index:`Strong-Motion Tools` module contains code for the selection of ground-motion prediction equations (GMPEs) and the subsequent development of a ground-motion characterisation (GMC).
+
+The main components of the Strong-Motion Tools (smt) comprise of (1) parsing capabilities to generate metadata (2) capabilities for computation and plotting of ground-motion residual distributions (3) comparison of potentially viable GMPEs and (4) development of the GMC with the final selection(s) of GMPEs.
+
+Here, we will demonstrate how each of these components can be implemented, in the context of aiming to develop a GMPE logic-tree approach GMC for Albania.
+
+Please note that this documentation assumes an elementary knowledge of GMPEs, residual analysis and ground-motion characterisation. Therefore, this documentation's purpose is to facilitate the application of the smt by user who is already familiar with the underlying theory. References are provided throughout for useful overviews of such theory!
+
+Performing a Residual Analysis
+*********************************************
+The smt provides capabilities (parsers) for the parsing of an inputted dataset into metadata for the performing of a residual analysis, so as to evaluate GMPE performance against the inputted dataset.
+
+The inputted dataset usually comprises of a ground-motion record flatfile. Many seismological institutions provide flatfiles of processed ground-motion records. These flatfiles often slightly differ in format, but generally follow a template of a .csv file in which each row represents a single ground-motion record, that is, a recording of the observed ground-motion at a single station. Each record contains information for (1) the associated earthquake (e.g. moment magnitude, hypocentral location, focal depth), (2) the associated site parameters (e.g. shear-wave velocity in the upper 30m of a site (Vs30)), (3) source-to-site distance metrics (e.g. epicentral distance, Joyner-Boore distance) and (4) ground-motion intensity values for various intensity measures (e.g. peak-ground acceleration (PGA), peak-ground velocity (PGV), spectral acceleration (SA) for various spectral ordinates).
+
+Within a residual analysis, the information provided in each ground-motion record is used to evaluate how closely a selection of GMPEs predict the expected (observed) ground-motion. The ground-motion records within a flatfile will usually comprise of earthquakes from the same region and of the same tectonic region type. This is because, if for example, we are trying to identify the best performing GMPEs for Albania, we will only want to examine how well the considered GMPEs predict the (observed) ground-motion for earthquakes originating from Albania and potentially the surrounding (tectonically similar) regions if we need supplementary ground-motion records to improve the dataset's coverage with respect to magnitude, distance etc.
+Parsers are provided in the smt for the most widely used flatfile formats (e.g. ESM, NGAWest2).
+
+In this example, we will consider the ESM 2018 format parser for the parsing of a ESM 2018 flatfile comprising of earthquakes from Albania and the surrounding regions. We will then evaluate appropriate GMPEs using the parsed metadata in the explanations of the subsequent smt components.
+
+Parsing a Ground-Motion Flatfile into Metadata
+**********************************************
+
+Herein we provide a brief description of the various steps for the parsing of an ESM 2018 flatfile. Note that we use the symbol ``>`` as the prompt in a terminal, hence every time you find some code starting with this symbol this indicate a command you must type in your terminal.
+
+Following the geographical filtering of the ESM 2018 flatfile for only earthquakes from Albania and the surrounding regions in this example, we can parse the flatfile using the ``ESM_flatfile_parser``. The currently available parsers within the smt module can be found in ``oq-mbtk.openquake.smt.parsers``.
+
+1. First we must import the ``ESMFlatfileParser`` and the required python modules for managing the output directories:
+
+ .. code-block:: ini
+
+ > # Import required python modules
+ > import os
+ > import shutil
+ > from openquake.smt.parsers.esm_flatfile_parser import ESMFlatfileParser
+
+2. Next we need to specify the base path, the flatfile location and the output location:
+
+ .. code-block:: ini
+
+ > # Specify base path
+ > DATA = os.path.abspath('')
+ >
+ > # Specify flatfile location
+ > flatfile_directory = os.path.join(DATA, 'ESM_flatfile_SA_geographically_filtered.csv')
+ >
+ > # Specify metadata output location
+ > output_database = os.path.join(DATA, 'metadata')
+ >
+ > # If the metadata already exists first remove
+ > if os.path.exists(output_database):
+ > shutil.rmtree(output_database)
+
+3. Now we can parse the metadata from the ESM 2018 flatfile using the ``ESMFlatfileParser`` with the autobuild class method:
+
+ .. code-block:: ini
+
+ > # Specify metadata database ID and metadata database name:
+ > DB_ID = '000'
+ > DB_NAME = 'ESM18_Albania'
+ >
+ > # Parse flatfile
+ > parser = ESMFlatfileParser.autobuild(DB_ID, DB_NAME, output_database, flatfile_directory)
+
+4. The flatfile will now be parsed by the ``ESMFlatfileParser``, and a pickle (``.pkl``) file of the metadata will be outputted in the specified output location. We can now use this metadata to perform a GMPE residual analysis.
+
+Computing the Ground-Motion Residuals
+*************************************
+
+Following the parsing of a flatfile into useable metadata, we can now specify the inputs for the performing of a residual analysis. Residual analysis compares the predicted and expected (i.e. observed) ground-motion for a combination of source, site and path parameters to evaluate the performance of GMPEs. Residuals are computed using the mixed effects methodology of Abrahamson and Youngs (1992), in which the total residual is split into an inter-event component and an intra-event component. Abrahamson and Youngs (1992) should be consulted for a detailed overview of ground-motion residuals.
+
+We can specify the inputs to perform a residual analysis with as follows:
+
+1. Specify the base path, the path to the metadata we parsed in the previous stage and an output folder:
+
+ .. code-block:: ini
+
+ > # Specify absolute path
+ > DATA = os.path.abspath('')
+ >
+ > # Specify metadata directory
+ > metadata_directory = os.path.join(DATA, 'metadata')
+ >
+ > # Specify output folder
+ > run_folder = os.path.join(DATA, results_preliminary)
+
+2. We can specify the GMPEs we want to evaluate, and the intensity measures we want to evaluate each GMPE for as a ``gmpe_list`` and an ``imt_list`` within the command line:
+
+ .. code-block:: ini
+
+ > # Specify some GMPEs and intensity measures within command line
+ > gmpe_list = ['AkkarEtAlRjb2014', 'BooreEtAl2014', 'BooreEtAl2020', 'CauzziEtAl2014', 'KothaEtAl2020regional', 'LanzanoEtAl2019_RJB_OMO']
+ > imt_list = ['PGA','SA(0.1)', 'SA(0.2)', 'SA(0.5)', 'SA(1.0)']
+
+3. We can also specify the GMPEs and intensity measures within a ``.toml`` file. The ``.toml`` file method is required for specifying the inputs of GMPEs with user-specifiable input parameters e.g. regionalisation parameter or logic tree branch parameters. Note that here the GMPEs listed in the first ``.toml`` file are not appropriate for our target region, but have been selected to demonstrate how GMPEs with additional inputs can be specified within a ``.toml`` file. The second ``.toml`` file provides the GMPEs and intensity measures we use for running this demonstration analysis.
+
+ The additional input parameters which are specifiable for certain GMPEs are available within their corresponding GSIM files (found in ``oq-engine.openquake.hazardlib.gsim``, or for ModifiableGMPE features in ``oq-engine.openquake.hazardlib.gsim.mgmpe.modifiable_gmpe``). Note also that a GMPE sigma model must be provided by the GMPE for the computation of residuals. If a sigma model is not provided by the GMPE, it can be specified as demonstrated below.
+
+ The ``.toml`` file for specifying GMPEs and intensity measures to consider within a residual analysis should be specified as follows:
+
+ .. code-block:: ini
+
+ [models]
+
+ [models.1-AbrahamsonGulerce2020SInter]
+ region = "GLO"
+
+ [models.2-AbrahamsonGulerce2020SInter]
+ region = "CAS"
+
+ [models.AbrahamsonEtAl2014]
+
+ [models.AbrahamsonEtAl2014RegJPN]
+ region = "JPN" # nb currently a bug for specifically this gmm in the SMT where the user must still specify the region param despite the class name differentiating as regionalised variant (will be fixed!)
+
+ [models.BooreEtAl2014]
+
+ [models.BooreEtAl2014LowQ]
+
+ [models.YenierAtkinson2015BSSA]
+ sigma_model = 'al_atik_2015_sigma' # use Al Atik (2015) sigma model
+
+ [models.1-CampbellBozorgnia2014]
+ fix_total_sigma = "{'PGA': 0.750, 'SA(0.1)': 0.800, 'SA(0.5)': 0.850}" # fix total sigma per imt
+
+ [models.2-CampbellBozorgnia2014]
+ with_betw_ratio = 1.7 # add between-event and within-event sigma using ratio of 1.7 to partition total sigma
+
+ [models.3-CampbellBozorgnia2014]
+ set_between_epsilon = 0.5 # Shift the mean with formula mean --> mean + epsilon_tau * between event
+
+ [models.1-ChiouYoungs2014]
+ median_scaling_scalar = 1.4 # scale median by factor of 1.4 over all imts
+
+ [models.2-ChiouYoungs2014]
+ median_scaling_vector = "{'PGA': 1.10, 'SA(0.1)': 1.15, 'SA(0.5)': 1.20}" # scale median by imt-dependent factor
+
+ [models.1-KothaEtAl2020]
+ sigma_scaling_scalar = 1.05 # scale sigma by factor of 1.05 over all imts
+
+ [models.2-KothaEtAl2020]
+ sigma_scaling_vector = "{'PGA': 1.20, 'SA(0.1)': 1.15, 'SA(0.5)': 1.10}" # scale sigma by imt-dependent factor
+
+ [models.1-BooreEtAl2014]
+ site_term = 'CY14SiteTerm' # use CY14 site term
+
+ [models.2-BooreEtAl2014]
+ site_term = 'NRCan15SiteTerm' # use NRCan15 non-linear site term
+
+ [models.3-BooreEtAl2014]
+ site_term = 'NRCan15SiteTermLinear' # use NRCan15 linear site term
+
+ [models.NGAEastGMPE]
+ gmpe_table = 'NGAEast_FRANKEL_J15.hdf5' # use a gmpe table
+
+ [models.HassaniAtkinson2018]
+ d_sigma = 100 # gmpe specific param
+ kappa0 = 0.04
+
+ [models.KothaEtAl2020ESHM20] # ESHM20 model
+ sigma_mu_epsilon = 2.85697
+ c3_epsilon = 1.72
+ region = 4 # Note that within the residuals toml we specify the region here, whereas in the comparison module toml (below) we specify the region for all ESHM20 GMMs uniformly using the eshm20_region param
+
+ [imts]
+ imt_list = ['PGA', 'SA(0.2)', 'SA(0.5)', 'SA(1.0']
+
+ Adhering to this formatting, we here provide the GMPEs and intensity measures we consider within the subsequent analysis:
+
+ .. code-block:: ini
+
+ [models]
+
+ [models.AbrahamsonEtAl2014]
+
+ [models.AkkarEtAlRjb2014]
+
+ [models.AmeriEtAl2017Rjb]
+
+ [models.BindiEtAl2014Rjb]
+
+ [models.BooreEtAl2014]
+
+ [models.BooreEtAl2020]
+
+ [models.CauzziEtAl2014]
+
+ [models.CampbellBozorgnia2014]
+
+ [models.ChiouYoungs2014]
+
+ [models.HassaniAtkinson2020Asc]
+
+ [models.KaleEtAl2015Turkey]
+
+ [models.KothaEtAl2020regional]
+
+ [models.LanzanoEtAl2019_RJB_OMO]
+
+ [imts]
+ imt_list = ["PGA","SA(0.1)","SA(0.2)","SA(0.5)","SA(1.0)","SA(2.0)"]
+
+4. Following specification of the GMPEs and intensity measures, we can now compute the ground-motion residuals using the Residuals module.
+
+ We first need to get the metadata from the parsed ``.pkl`` file (stored within the metadata folder):
+
+ .. code-block:: ini
+
+ > # Import required python modules
+ > import pickle
+ > import openquake.smt.residuals.gmpe_residuals as res
+ > import openquake.smt.residuals.residual_plotter as rspl
+ >
+ > # Create path to metadata file
+ > metadata = os.path.join(metadata_directory, 'metadatafile.pkl')
+ >
+ > # Load metadata
+ > sm_database = pickle.load(open(metadata, "rb"))
+ >
+ > # If the output folder already exists delete, then create output folder
+ > if os.path.exists(run_folder):
+ > shutil.rmtree(run_folder)
+ > os.mkdir(run_folder)
+
+5. Now we compute the residuals using the specified GMPEs and intensity measures for the metadata we have parsed from the flatfile:
+
+ Note that here ``resid1`` is the residuals object which stores (1) the observed ground-motions and associated metadata from the parsed flatfile, (2) the corresponding predicted ground-motion per GMPE and (3) the computed residual components per GMPE per intensity measure. The residuals object also stores the gmpe_list (e.g. resid1.gmpe_list) and the imt_list (resid1.imts) if these inputs are specified within a ``.toml`` file.
+
+ .. code-block:: ini
+
+ > # Compute residuals using GMPEs and intensity measures specified in command line
+ > resid1 = res.Residuals(gmpe_list, imt_list)
+ > resid1.get_residuals(sm_database)
+ >
+ > # OR compute residuals using GMPEs and intensity measures specified in .toml file
+ > filename = os.path.join(DATA,'gmpes_and_imts_to_test.toml') # path to .toml file
+ > resid1 = res.Residuals.from_toml(filename)
+ > resid1.get_residuals(sm_database)
+
+Plotting of Residuals
+*********************
+
+1. Now we have computed the residuals, we can generate various basic plots describing the residual distribution.
+
+ We can generate plots of the probability density function plots (for total, inter- and intra-event residuals), which compare the computed residual distribution to a standard normal distribution.
+
+ Note that ``filename`` (position 3 argument in rspl.ResidualPlot) should specify the output directory and filename for the generated figure in each instance.
+
+ Probability density function plots can be generated as follows:
+
+ .. code-block:: ini
+
+ > # If using .toml for inputs we first create equivalent gmpe_list and imt_list using residuals object attributes
+ > gmpe_list = {}
+ > for idx, gmpe in enumerate(resid1.gmpe_list):
+ > gmpe_list[idx] = resid1.gmpe_list[gmpe]
+ > gmpe_list = list[gmpe_list]
+ >
+ > imt_list = {}
+ > for idx, imt in enumerate(resid1.imts):
+ > imt_list[idx] = resid1.imt_list[imt]
+ > imt_list = list(imt_list)
+ >
+ > # Plot residual probability density function for a specified GMPE from gmpe_list and intensity measure from imt_list
+ > rspl.ResidualPlot(resid1, gmpe_list[5], imt_list[0], filename, filetype = 'jpg') # Plot for gmpe in position 5 in gmpe_list and intensity measure in position 0 in imt_list
+
+Residual distribution plot for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_bias+sigma.jpeg
+
+2. We can also plot the probability density functions over all considered spectral periods at once, so as to better examine how the residual distributions vary per GMPE over each spectral period:
+
+ .. code-block:: ini
+
+ > # Plot residual probability density functions over spectral periods:
+ > rspl.PlotResidualPDFWithSpectralPeriod(resid1, filename)
+ >
+ > # Generate .csv of residual probability density function per imt per GMPE
+ > rspl.PDFTable(resid1, filename)
+
+Plot of residual distributions versus spectral acceleration:
+ .. image:: /contents/smt_images/all_gmpes_PDF_vs_imt_plot.jpg
+
+3. Plots for residual trends (again for total, inter- and intra-event components) with respect to the most important GMPE inputs can also be generated in a similar manner. Here we will demonstrate for magnitude:
+
+ .. code-block:: ini
+
+ > # Plot residuals w.r.t. magnitude from gmpe_list and imt_list
+ > rspl.ResidualWithMagnitude(resid1, gmpe_list[5], imt_list[0], filename, filetype = 'jpg')
+
+ Residuals w.r.t. magnitude for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_wrt_mag.jpeg
+
+4. The functions for plotting of residuals w.r.t. distance, focal depth and Vs30 are called in a similar manner:
+
+ .. code-block:: ini
+
+ > # From gmpe_list and imt_list:
+ > rspl.ResidualWithDistance(resid1, gmpe_list[5], imt_list[0], filename, filetype = 'jpg')
+ > rspl.ResidualWithDepth(resid1, gmpe_list[5], imt_list[0], filename, filetype = 'jpg')
+ > rspl.ResidualWithVs30(resid1, gmpe_list[5], imt_list[0], filename, filetype = 'jpg')
+
+ Residuals w.r.t. distance for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_wrt_dist.jpeg
+
+ Residuals w.r.t. depth for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_wrt_depth.jpeg
+
+ Residuals w.r.t. Vs30 for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_wrt_vs30.jpeg
+
+Single Station Residual Analysis
+********************************
+
+1. The smt's residual module also offers capabilities for performing single station residual analysis (SSA).
+
+ We can first specify a threshold for the minimum number of records each site must have to be considered in the SSA:
+
+ .. code-block:: ini
+
+ > # Import SMT functions required for SSA
+ > from openquake.smt.strong_motion_selector import rank_sites_by_record_count
+ >
+ > # Specify threshold for min. num. records
+ > threshold = 20
+ >
+ > # Get the sites meeting threshold (for same parsed database as above!)
+ > top_sites = rank_sites_by_record_count(sm_database, threshold)
+
+2. Following selection of sites using a threshold value, we can perform the SSA.
+
+ We can compute the non-normalised intra-event residual per record associated with the selected sites :math:`\delta W_{es}`, the mean average (again non-normalised) intra-event residual per site :math:`\delta S2S_S` and a residual variability :math:`\delta W_{o,es}` (which is computed per record by subtracting the site-average intra-event residual from the corresponding inter-event residual). For more details on these intra-event residual components please consult Rodriguez-Marek et al. (2011), which is referenced repeatedly throughout the following section.
+
+ The standard deviation of all :math:`\delta W_{es}` values should in theory exactly equal the standard deviation of the GMPE's intra-event standard deviation.
+
+ The :math:`\delta S2S_S` term is characteristic of each site, and should equal 0 with a standard deviation of :math:`\phi_{S2S}`. A non-zero value for :math:`\delta S2S_S` is indicative of a bias in the prediction of the observed ground-motions at the considered site.
+
+ Finally, the standard deviation of the :math:`\delta W_{o,es}` term (:math:`\phi_{SS}`) is representative of the single-station standard deviation of the GMPE, and is an estimate of the non-ergodic standard deviation of the model.
+
+ As previously, we can specify the GMPEs and intensity measures to compute the residuals per site for using either a GMPE list and intensity measure list, or from a ``.toml`` file.
+
+ .. code-block:: ini
+
+ > # Create SingleStationAnalysis object from gmpe_list and imt_list
+ > ssa1 = res.SingleStationAnalysis(top_sites.keys(), gmpe_list, imt_list)
+ >
+ > # OR create SingleStationAnalysis object from .toml
+ > filename = os.path.join(DATA, 'SSA_inputs.toml') # path to input .toml
+ > ssa1 = res.SingleStationAnalysis.from_toml(top_sites.keys(), filename)
+ >
+ > Get the total, inter-event and intra-event residuals for each site
+ > ssa1.get_site_residuals(sm_database)
+ >
+ > Get single station residual statistics for each site and export to .csv
+ > csv_output = os.path.join(DATA, 'SSA_statistics.csv')
+ > ssa1.residual_statistics(True, csv_output)
+
+3. We can plot the computed residual statistics as follows:
+
+ .. code-block:: ini
+
+ > # First plot (normalised) total, inter-event and intra-event residuals for each site
+ > rspl.ResidualWithSite(ssa1, gmpe_list[0], imt_list[2], filename, filetype = 'jpg')
+ >
+ > # Then plot non-normalised intra-event per site, average intra-event per site and residual variability per site
+ > rspl.IntraEventResidualWithSite(ssa1, gmpe_list[0], imt_list[2], filename, filetype = 'jpg')
+
+ Normalised residuals per considered site for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_AllResPerSite.jpg
+
+ Intra-event residuals components per considered site for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_IntraResCompPerSite.jpg
+
+GMPE Performance Ranking Metrics
+********************************
+
+ The smt contains implementations of several published GMPE ranking methodologies, which allow additional inferences to be drawn from the computed residual distributions. Brief summaries of each ranking metric are provided here, but the corresponding publications should be consulted for more information.
+
+The Likelihood Method (Scherbaum et al. 2004)
+=============================================
+
+ The Likelihood method is used to assess the overall goodness of fit for a model (GMPE) to the dataset (observed) ground-motions. This method considers the probability that the absolute value of a random sample from a normalised residual distribution falls into the interval between the modulus of a particular observation and infinity. The likelihood value should equal 1 for an observation of 0 (i.e. the mean of the normalised residual distribution) and should approach zero for observations further away from the mean. Consequently, if the GMPE exactly matches the observed ground-motions, then the likelihood of a particular observation should be distributed evenly between 0 and 1, with a median value of 0.5
+
+ Histograms of the likelihood values per GMPE per intensity measure can be plotted as follows:
+
+ .. code-block:: ini
+
+ > # From gmpe_list and imt_list:
+ > rspl.LikelihoodPlot(resid1, gmpe_list[5], imt_list[0], filename, filetype = 'jpg')
+
+ Likelihood plot for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_likelihood.jpeg
+
+The Loglikelihood Method (Scherbaum et al. 2009)
+================================================
+
+ The loglikelihood method is used to assess information loss between GMPEs compared to the unknown "true" model. The comparison of information loss per GMPE compared to this true model is represented by the corresponding ground-motion residuals. A GMPE with a lower LLH value provides a better fit to the observed ground-motions (less information loss occurs when using the GMPE). It should be noted that LLH is a comparative measure (i.e. the LLH values have no physical meaning), and therefore LLH is only of use to evaluate two or more GMPEs.
+
+ LLH values per GMPE aggregated over all (specified) intensity measures, LLH-based model weights and LLH per intensity measure can be computed as follows:
+
+ .. code-block:: ini
+
+ > # From gmpe_list and imt_list
+ > llh, model_weights, model_weights_with_imt = res.get_loglikelihood_values(resid1, imt_list)
+ >
+ > # OR from .toml:
+ > llh, model_weights, model_weights_with_imt = res.get_loglikelihood_values(resid1, resid1.imts)
+ >
+ > # Generate a .csv table of LLH values
+ > rspl.loglikelihood_table(resid1, filename)
+ >
+ > # Generate a .csv table of LLH-based model weights for GMPE logic tree
+ > rspl.llh_weights_table(resid1, filename)
+ >
+ > # Plot LLH vs imt
+ > rspl.plot_loglikelihood_with_spectral_period(resid1, filename)
+
+ Loglikelihood versus spectral acceleration plot for considered GMPEs:
+ .. image:: /contents/smt_images/all_gmpes_LLH_plot.jpg
+
+Euclidean Distance Based Ranking (Kale and Akkar, 2013)
+=======================================================
+
+ The Euclidean distance based ranking (EDR) method considers the probability that the absolute difference between an observed ground-motion and a predicted ground-motion is less than a specific estimate, and is repeated over a discrete set of such estimates (one set per observed ground-motion per GMPE per the specified intensity measure). The total occurrence probability for such a set is the modified Euclidean distance (MDE). The corresponding EDR value is computed by summing the MDE (one per observation), normalising by the number of observations and then introducing an additional parameter (Kappa) to penalise models displaying a larger predictive bias (here kappa is equal to the ratio of the Euclidean distance between obs. and pred. median ground-motion to the Euclidean distance between the obs. and pred. median ground-motion corrected by a predictive model derived from a linear regression of the observed data - the parameter kappa^0.5 therefore provides the performance of the median prediction per GMPE).
+
+ EDR score, the normal distribution of modified Euclidean distance (MDE Norm) and k^0.5 (k is used henceforth to represent the median predicted ground-motion correction factor "Kappa" within the original methodology) per GMPE aggregated over all considered intensity measures, or per intensity measure can be computed as follows:
+
+ .. code-block:: ini
+
+ > # Get EDR, MDE Norm and MDE per GMPE aggregated over all imts
+ > res.get_edr_values(resid1)
+ >
+ > # Get EDR, MDE Norm and MDE for each considered imt
+ > res.get_edr_values_wrt_spectral_period(resid1)
+ >
+ > # Generate a .csv table of EDR values for each GMPE
+ > rspl.edr_table(resid1, filename=EDR_table_output)
+ >
+ > # Generate a .csv table of EDR-based model weights for GMPE logic tree
+ > rspl.edr_weights_table(resid1, filename)
+ >
+ > # Plot EDR score, MDE norm and k^0.5 vs imt
+ > rspl.plot_plot_edr_metrics_with_spectral_period(resid1, filename)
+
+ EDR rank versus spectral acceleration plot for considered GMPEs:
+ .. image:: /contents/smt_images/all_gmpes_EDR_plot_EDR_value.jpg
+
+ EDR correction factor versus spectral acceleration for considered GMPEs:
+ .. image:: /contents/smt_images/all_gmpes_EDR_plot_EDR_correction_factor.jpg
+
+ MDE versus spectral acceleration for considered GMPEs:
+ .. image:: /contents/smt_images/all_gmpes_EDR_plot_MDE.jpg
+
+Comparing GMPEs
+***************
+
+1. Alongside the smt's capabilities for evaluating GMPEs in terms of residuals (within the residual module as demonstrated above), we can also evaluate GMPEs with respect to the predicted ground-motion for a given earthquake scenario. The tools for comparing GMPEs are found within the Comparison module.
+
+ .. code-block:: ini
+
+ > # Import GMPE comparison tools
+ > from openquake.smt.comparison import compare_gmpes as comp
+
+2. The tools within the Comparison module include Sammon's Maps, hierarchical clustering plots and matrix plots of Euclidean distance for the median (and 16th and 84th percentiles) of predicted ground-motion per GMPE per intensity measure. Plotting capabilities for response spectra and attenuation curves (trellis plots) are also provided in this module.
+
+ The inputs for these comparitive tools must be specified within a single ``.toml`` file as specified below. GMPE parameters can be specified as within the example ``.toml`` file provided above for us in residual analysis. In the ``.toml`` file we have specified the source parameters for earthquakes characteristic of Albania (compressional thrust faulting with magnitudes of interest w.r.t. seismic hazard in the range of Mw 5 to Mw 7), and we have specified some GMPEs which were found to perform well in the residual analysis against Albania ground-motion data. To plot a GMPE logic tree we must assign model weights using ``lt_weight_gmc1`` or '``lt_weight_gmc2`` in each GMPE depending on if we want to plot the GMPE within GMC logic tree #1 or #2 (up to 2 GMC logic trees can currently be plotted within one trellis or response spectra plot at a time). To plot only the final logic tree and not the individual GMPEs comprising it, we use ``lt_weight_gmc1_plot_lt_only`` or ``lt_weight_gmc2_plot_lt_only`` instead (depending on which GMC we wish to not plot the individual GMPEs for - see the .toml file below for an example of these potential configurations).
+
+ .. code-block:: ini
+
+ ### Input file for comparison of GMPEs using plotting functions in openquake.smt.comparison.compare_gmpes
+ [general]
+ imt_list = ['PGA', 'SA(0.1)', 'SA(0.5)', 'SA(1.0)']
+ max_period = 2 # max period for spectra plots
+ minR = 0 # min dist. used in trellis, Sammon's, clusters and matrix plots
+ maxR = 300 # max dist. used in trellis, Sammon's, clusters and matrix plots
+ dist_type = 'repi' # or rjb, rrup or rhypo (dist type used in trellis plots)
+ dist_list = [10, 100, 250] # distance intervals for use in spectra plots
+ eshm20_region = 2 # for ESHM20 GMPE regionalisation
+ Nstd = 1 # num. of sigma to sample from sigma distribution
+
+ # Specify site properties
+ [site_properties]
+ vs30 = 800
+ Z1 = -999
+ Z25 = -999
+ up_or_down_dip = 1 # 1 = up-dip, 0 = down-dip
+ region = 'Global' # get region specific z1pt0 and zpt50 ('Global' or 'Japan')
+
+ # Characterise earthquake for the region of interest as finite rupture
+ [source_properties]
+ trt = 'None' # Either string of 'None' to use user-provided aratio OR specify a TRT string from ASCR, InSlab, Interface, Stable, Upper_Mantle, Volcanic, Induced, Induced_Geothermal to assign a trt-dependent proxy aratio
+ ztor = 'None' # Set to string of 'None' to NOT consider otherwise specify as array matching number of mag and depth values
+ strike = -999
+ dip = 60
+ rake = 90 # Must be provided. Strike and dip can be approximated if either set to -999
+ aratio = 2 # If set to -999 the user-provided trt string will be used to assign a trt-dependent aratio
+ trellis_and_rs_mag_list = [5, 6, 7] # mags used only for trellis and response spectra
+ trellis_and_rs_depths = [20, 20, 20] # depth per magnitude for trellis and response spectra
+
+ # Specify magnitude array for Sammons, Euclidean dist and clustering
+ [mag_values_non_trellis_or_spectra_functions]
+ mmin = 5
+ mmax = 7
+ spacing = 0.1
+ non_trellis_or_spectra_depths = [[5, 20], [6, 20], [7, 20]] # [[mag, depth], [mag, depth], [mag, depth]]
+
+ # Specify label for gmpes
+ [gmpe_labels]
+ gmpes_label = ['CA15', 'AK14', 'B20', 'L19', 'K1', 'K2', 'K3', 'K4', 'K5']
+
+ # Specify gmpes
+
+ # Plot logic tree and individual GMPEs within first GMC logic tree config (gmc1)
+ [models.BooreEtAl2020]
+ lt_weight_gmc1 = 0.30
+
+ [models.LanzanoEtAl2019_RJB_OMO]
+ lt_weight_gmc1 = 0.40
+
+ # Default ESHM20 logic tree branches considered in gmc1
+ [models.1-KothaEtAl2020ESHM20]
+ lt_weight_gmc1 = 0.000862
+ sigma_mu_epsilon = 2.85697
+ c3_epsilon = 1.72
+ [models.2-KothaEtAl2020ESHM20]
+ lt_weight_gmc1 = 0.067767
+ sigma_mu_epsilon = 1.35563
+ c3_epsilon = 0
+ [models.3-KothaEtAl2020ESHM20]
+ lt_weight_gmc1 = 0.162742
+ sigma_mu_epsilon = 0
+ c3_epsilon = 0
+ [models.4-KothaEtAl2020ESHM20]
+ lt_weight_gmc1 = 0.067767
+ sigma_mu_epsilon = -1.35563
+ c3_epsilon = 0
+ [models.5-KothaEtAl2020ESHM20]
+ lt_weight_gmc1 = 0.000862
+ sigma_mu_epsilon = -2.85697
+ c3_epsilon = -1.72
+
+ # Plot logic tree only for second GMC logic tree config (gmc2)
+ # Note this additional GMC logic tree config is simply for demonstrative
+ # purposes of how multiple logic trees can be plotted at once!
+ [models.CauzziEtAl2014]
+ lt_weight_gmc2_plot_lt_only = 0.50
+
+ [models.AkkarEtAlRjb2014]
+ lt_weight_gmc2_plot_lt_only = 0.50
+
+ [custom_colors]
+ custom_colors_flag = 'False' #(set to "True" for custom colours in plots)
+ custom_colors_list = ['lime', 'dodgerblue', 'gold', '0.8']
+
+
+3. Trellis Plots
+
+ Now that we have defined our inputs for GMPE comparison, we can use each tool within the Comparison module to evaluate how similar the GMPEs predict ground-motion for a given ground-shaking scenario.
+
+ We can generate trellis plots (predicted ground-motion by each considered GMPE versus distance) for different magnitudes and intensity measures (specified in the ``.toml`` file).
+
+ Note that ``filename`` (both for trellis plotting and in the subsequently demonstrated comparison module plotting functions) is the path to the input ``.toml`` file.
+
+ .. code-block:: ini
+
+ > # Generate trellis plots
+ > comp.plot_trellis(filename, output_directory)
+
+ Trellis plots for input parameters specified in toml file:
+ .. image:: /contents/smt_images/TrellisPlots.png
+
+4. Spectra Plots
+
+ We can also plot response spectra:
+
+ .. code-block:: ini
+
+ > # Generate spectra plots
+ > comp.plot_spectra(filename, output_directory)
+
+ Response spectra plots for input parameters specified in toml file:
+ .. image:: /contents/smt_images/ResponseSpectra.png
+
+5. Plot of Spectra from a Record
+
+ The spectra of a processed record can also be plotted along with predictions by the selected GMMs for the same ground-shaking scenario. An example of the input for the record spectra is provided in the demo files:
+
+ .. code-block:: ini
+
+ > # Generate plot of observed spectra and predictions by GMMs
+ > # Note we use spectra from a record for the 1991 Chamoli EQ in this
+ > # example rather than from a record from an earthquake in/near Albania
+ > comp.plot_spectra(filename, output_directory, obs_spectra = 'spectra_chamoli_1991_station_UKHI.csv')
+
+ Response spectra plots for input parameters specified in toml file:
+ .. image:: /contents/smt_images/ObsSpectra.png
+
+
+6. Sammon's Maps
+
+ We can plot Sammon's Maps to examine how similar the medians (and 16th and 84th percentiles) of predicted ground-motion of each GMPE are (see Sammon, 1969 and Scherbaum et al. 2010 for more details on the Sammon's mapping procedure).
+
+ A larger distance between two plotted GMPEs represents a greater difference in the predicted ground-motion. It should be noted that: (1) more than one 2D configuration can exist for a given set of GMPEs and (2) that the absolute numbers on the axes do not have a physical meaning.
+
+ Sammon's Maps can be generated as follows:
+
+ .. code-block:: ini
+
+ > # Generate Sammon's Maps
+ > comp.plot_sammons(filename, output_directory)
+
+ Sammon's Maps (median predicted ground-motion) for input parameters specified in toml file:
+ .. image:: /contents/smt_images/Median_SammonMaps.png
+
+7. Hierarchical Clustering
+
+ Dendrograms can be plotted as an alternative tool to evaluate how similarly the predicted ground-motion is by each GMPE.
+
+ Within the dendrograms the GMPEs are clustered hierarchically (i.e. the GMPEs which are clustered together at shorter Euclidean distances are more similar than those clustered together at larger Euclidean distances).
+
+ Hierarchical clustering plots can be generated as follows:
+
+ .. code-block:: ini
+
+ > # Generate dendrograms
+ > comp.plot_cluster(filename, output_directory)
+
+ Dendrograms (median predicted ground-motion) for input parameters specified in toml file:
+ .. image:: /contents/smt_images/Median_Clustering.png
+
+8. Matrix Plots of Euclidean Distance
+
+ In addition to Sammon's Maps and hierarchical clustering, we can also plot the Euclidean distance between the predicted ground-motions by each GMPE in a matrix plot.
+
+ Within the matrix plots the darker cells represent a smaller Euclidean distance (and therefore greater similarity) between each GMPE for the given intensity measure.
+
+ Matrix plots of Euclidean distance can be generated as follows:
+
+ .. code-block:: ini
+
+ > # Generate matrix plots of Euclidean distance
+ > comp.plot_euclidean(filename, output_directory)
+
+ Matrix plots of Euclidean distance between GMPEs (median predicted ground-motion) for input parameters specified in toml file:
+ .. image:: /contents/smt_images/Median_Euclidean.png
+
+References
+==========
+
+Abrahamson, N. A. and R. R. Youngs (1992). “A Stable Algorithm for Regression Analysis Using the Random Effects Model”. In: Bulletin of the Seismological Society of America 82(1), pages 505 – 510.
+
+Kale, O and S. Akkar (2013). “A New Procedure for Selecting and Ranking Ground-Motion Prediction Equations (GMPES): The Euclidean Distance-Based Ranking (EDR) Method”. In: Bulletin of the Seismological Society of America 103(2A), pages 1069 – 1084.
+
+Kotha, S. -R., G. Weatherill, and F. Cotton (2020). "A Regionally Adaptable Ground-Motion Model for Shallow Crustal Earthquakes in Europe." In: Bulletin of Earthquake Engineering 18, pages 4091 – 4125.
+
+Rodriguez-Marek, A., G. A. Montalva, F. Cotton, and F. Bonilla (2011). “Analysis of Single-Station Standard Deviation using the KiK-Net data”. In: Bulletin of the Seismological Society of America 101(3), pages 1242 –1258.
+
+Sammon, J. W. (1969). "A Nonlinear Mapping for Data Structure Analysis." In: IEEE Transactions on Computers C-18 (no. 5), pages 401 - 409.
+
+Scherbaum, F., F. Cotton, and P. Smit (2004). “On the Use of Response Spectral-Reference Data for the Selection and Ranking of Ground Motion Models for Seismic Hazard Analysis in Regions of Moderate Seismicity: The Case of Rock Motion”. In: Bulletin of the Seismological Society of America 94(6), pages 2164 – 2184.
+
+Scherbaum, F., E. Delavaud, and C. Riggelsen (2009). “Model Selection in Seismic Hazard Analysis: An Information-Theoretic Perspective”. In: Bulletin of the Seismological Society of America 99(6), pages 3234 – 3247.
+
+Scherbaum, F., N. M., Kuehn, M. Ohrnberger and A. Koehler (2010). "Exploring the proximity of ground-motion models using high-dimensional visualization techniques." In: Earthquake Spectra 26(4), pages 1117 – 1138.
+
+Weatherill G., S. -R. Kotha and F. Cotton. (2020). "A Regionally Adaptable “Scaled Backbone” Ground Motion Logic Tree for Shallow Seismicity in Europe: Application to the 2020 European Seismic Hazard Model." In: Bulletin of Earthquake Engineering 18, pages 5087 – 5117.
\ No newline at end of file
diff --git a/_sources/contents/sub.rst.txt b/_sources/contents/sub.rst.txt
new file mode 100644
index 000000000..60989f27e
--- /dev/null
+++ b/_sources/contents/sub.rst.txt
@@ -0,0 +1,272 @@
+SUBduction (sub) module
+#######################
+
+The :index:`Subduction` module contains software for the construction of subduction earthquake sources for the *oq-engine*. The components of this model can be used either independently or within a workflow similarly to what is described in this section.
+
+Defining the geometry of the top of the slab
+********************************************
+
+The modeling of earthquake subduction sources starts with the definition of the geometry of the slab. The mbtk subduction module contains tools for the definition of the top of the slab. Two are the approaches available. The first one, the most comprehensive, requires a tedious process of digititazion of the profiles describing the position of the top of the slab versus depth along each cross section (see `Pagani et al. (2020) `__ for a description of the methodology). The second one uses the geometries of the slab proposed by `Hayes et al. (2018) `__ (`dataset `__).
+
+The result of these two procedures is a folder containing a set of .csv files each one describing a profile. In this context a profile is a curve that lays on top of the slab and, generally, has a direction parallel to the dip.
+
+.. _first approach:
+
+First approach
+==============
+
+Herein we provide a brief description of the various steps. Note that we use the symbol ``>`` as the prompt in a terminal, hence every time you find some code starting with this symbol this indicate a command you must type in your terminal.
+
+1. The first step entails the definition of a configuration file. An example is provided herein
+
+.. code-block:: ini
+
+ [data]
+
+ # Path to the text file with the coordinates of the trench axis
+ trench_axis_filename = /Users/kjohnson/GEM/Regions/paisl18/data/subduction/trenches/kerton_trench.xy
+
+ # Path to the pickled file (an instance of the hazard modeller's toolkit Catalogue)
+ catalogue_pickle_filename = /Users/kjohnson/GEM/Regions/paisl18/data/catalogues/locations/PI_cat_filt.p
+
+ # Path to the Slab 1.0 text file with the coordinates of the top of the slab
+ slab1pt0_filename = /Users/kjohnson/GEM/Regions/paisl18/data/subduction/slab1pt0/ker_slab1.0_clip.xyz
+
+ # Path to the Crust 1.0 text file (see)
+ crust1pt0_filename = /Users/kjohnson/GEM/Regions/paisl18/data/crustal_models/crust1pt0/crsthk.xyz
+
+ # Path to the Litho 1.0 text file (see)
+ litho_filename = /Users/kjohnson/GEM/Regions/paisl18/data/crustal_models/litho1pt0/litho_moho.xyz
+
+ # Path to the file containing the focal mechanisms from the Global Centroid Moment Tensor project
+ gcmt_filename = /Users/kjohnson/GEM/Regions/paisl18/data/catalogues/focal_mechanisms/GCMT_20151231.ndk
+
+ # Path to the file with volcanoes
+ volc_filename = /Users/kjohnson/GEM/Regions/paisl18/data/volcanoes/volcano_list.xy
+
+ # Path to the text topography file
+ topo_filename = /Users/kjohnson/GEM/Regions/paisl18/data/topography/GEBCO_2014/pacisl_topobath_nf.xyz
+
+ [section]
+
+ # Length of each profile [km]
+ lenght = 700
+
+ # Spacing [km] between the profiles along the axis subduction trench
+ # specified in the ariable `trench_axis_filename`
+ interdistance = 100
+
+ # Azimuth parameter. When equal to a real number in the range [0, 360] all
+ # the profiles will follow that direction. Ortherwise, if `None` the
+ # profiles will have a direction perpendicular to the trench axis
+ azimuth = None
+
+ # Maximum depth of each profile [km]
+ dep_max = 700
+
+
+2. Create a pickled version of your hmtk formatted catalog::
+
+ > pickle_catalogue.py ./catalogues/cac.cat`
+
+3. Create a set of cross-sections from the subduction trench axis::
+
+ > create_multiple_cross_sections.py ./ini/central_america.ini
+
+Check the traces of the cross-sections in the map created. It's possible to edit the traces or add new traces in the file ``cs_traces.cs``
+
+4. Check the new set of traces in a map with the command::
+
+ > plot_multiple_cross_sections_map.py ./ini/central_america.ini cs_traces.cs
+
+5. Create one .pdf file for each cross-section with the available information: e.g., earthquake hypocentres, focal mechanism, slab 1.0 geometry, CRUST 1.0 Moho::
+
+ > plot_multiple_cross_sections.py cs_traces.cs
+
+This command will produce as many ``.pdf`` files as the number of cross-sections specified in the ``.cs`` file
+
+6. Digitize the contact between the overriding plate and the subducted plate in each cross-section. The information in the command below corresponds to the longitude and the latitude of the origin of the cross-section, the length [km], the azimuth [decimal degrees], the cross-section ID and the name of the ``.ini`` file. For example::
+
+ plot_cross_section.py -106.479700 21.250800 600.000000 89.098531 0 ./ini/central_america.ini
+
+Once launched, by clicking on the image it is possible to digitize a sequence of points. Once completed the digitization, the points can be saved to a file whose name corresponds to ``cs_.csv`` by pressing the ``f`` key on the keyboard. The points can be deleted with the key ``d``.
+
+.. _second approach:
+
+Second approach
+===============
+
+The second approach proposed is simpler than the first one. At the beginning, it requires to complete point 1 and point 3 described in the `first approach`_ section. Once we have a configuration file and a set of cross sections ready we can complete the construction of the set of profiles with the following command::
+
+ > sub_create_sections_from_slab.py
+
+Where:
+
+- ```` is the name of the file
+- ```` is the name of the folder where to write the profiles
+- ```` is the name of the file (produced by ``create_multiple_cross_sections.py``) with information aboout the traces of the cross-sections.
+
+Building the top of the slab geometry
+*************************************
+
+Now that we have a set of profiles available, we will build the surface of subduction . The output of this procedure will be a new set of profiles and edges that can be used to define the surface of a complex fault modelling the subduction interface earthquakes and to create inslab sources.
+
+This part of the procedure can be completed by running the
+
+1. Build the surface of the subduction interface using ``create_2pt5_model.py``. The input information in this case is:
+
+ - The name of the folder ```` containing the ``cs_`` files created using either the procedure described in the `first approach`_ or `first approach`_ section;
+ - The maximum sampling distance along a trace [km];
+ - The output folder ````;
+
+Example::
+
+ > create_2pt5_model.py
+
+The output is a set of interpolated profiles and edges that can be used to create a complex fault source for the OpenQuake engine. The results of the code ``create_2pt5_model.py`` can be plotted using ``plot_2pt5_model.py``. Example::
+
+ > plot_2pt5_model.py
+
+where ```` is the configuration file used to build the cross-sections.
+
+
+Classifying an earthquake catalog using the top of the slab surface [incomplete]
+********************************************************************************
+
+The ``create_2pt5_model.py`` code produces a set of profiles and edges (i.e. .csv files with the 3D coordinates) describing the geometry of the top of the slab. With this information we can separate the seismicity in an earthquake catalog into a few subsets, each one representing a specific tectonic environment (e.g. `Abrahamson and Shedlock, 1997 `__ or `Chen et al., 2017 `__ ). The procedure required to complete this task includes the following steps.
+
+1. Create a configuration file that describes the tectonic environments
+
+The configuration file specifies the geometry of surfaces, along with buffer regions, that are used as references for each tectonic environment, and the catalogue to be classified. Additionally, the configuration includes a ``priority list`` that indicates how hypocenters that can occur in overlapping buffer regions should be labeled. An example configuration file is shown below. The format of the configuration is as follows.
+
+The ``[general]`` section, which includes:
+ - the directory ``distance_folder`` where the Euclidean distance between each hypocenter and surface will be stored (NB: this folder must be manually created by the user)
+ - an .hdf5 file ``treg_filename`` that will store the results of the classfication
+ - the .pkl file ``catalogue_filename``, which is the pickeled catalogue in HMTK format to be classified.
+ - an array ``priority`` lists the tectonic regions, sorting the labels in the order of increasing priority, and a later label overrides classification of a hypocenter to a previous label. For example, in the configuration file shown below, an earthquake that could be classified as both ``crustal`` and ``int_prt`` will be labeled as ``int_prt``.
+
+A geometry section for each labelled tectonic environment in the ``priority`` list in ``[general]``. The labels should each contain one of the following four strings, which indicate the way that the surface will be used for classification.
+
+
+ - ``int`` or ``slab``: These strings indicate a surface related to subduction or similar. They require at least four configurations: (1) ``label``, which will be used by ``treg_filename`` to indicate which earthquakes correspond to the given tectonic environment; (2) ``folder``, which gives the relative path to the directory (see Step 2) with the geometry .csv files created by ``create_2pt5_model`` for the given surface; and (3) ``distance_buffer_above`` and (4) ``distance_buffer_below``, which are the upper limits of Euclidean distances used to classify hypocenters above or below the surface to the respective tectonic environment. A user can additionally specify ``lower depth`` to bound the surface and buffer region, and ``low_year``, ``upp_year``, ``low_mag``, and ``upp_mag`` to to select only from a given time period or magnitude range. These latter options are useful when hypocenters from a given bracket are known to include major assumptions, such as when historical earthquake are assigned a depth of 0 km.
+ - ``crustal`` or ``volcanic``: These strings indicate a surface against which the classification compares the relative position of a hypocenter laterally and vertically, for example to isolate crustal or volcanic earthquakes. They require two configurations: (1) ``crust_filename``, which is a tab-delimited .xyz file listing longitude, latitude, and depth (as a negative value), which indicates the lateral extent of the tectonic environment and the depths above which all earthquakes should be classified to the respective tectonic environment; and (2) ``distance_delta``, which specifies the vertical depth below a surface to be used as a buffer region.
+
+
+.. code-block:: ini
+
+ [general]
+
+ distance_folder = ./model/catalogue/classification/distances/
+ treg_filename = ./model/catalogue/classification/classified.hdf5
+ catalogue_filename = ./model/catalogue/csv/catalogue.pkl
+
+ priority=[slab_A, slab_B, crustal, int_A]
+
+
+ [crustal]
+
+ label = crustal
+ distance_delta = 20.
+ crust_filename = ./model/litho1pt0/litho_crust3bottom.xyz
+
+
+ [int_A]
+
+ label = int_A
+ folder = ./model/surfaces/edges_A-int
+ lower_depth = 60.
+ distance_buffer_above = 10.
+ distance_buffer_below = 10.
+
+ [slab_A]
+
+ label = slab_A
+ folder = ./model/surfaces/edges_A-slab
+ distance_buffer_above = 30.
+ distance_buffer_below = 30.
+
+ [slab_B]
+
+ label = slab_B
+ folder = ./model/surfaces/edges_B-slab
+ distance_buffer_above = 30.
+ distance_buffer_below = 30.
+
+2. Run the classification
+
+The classification algorithm is run using the following command::
+
+ > cat_classify.py
+
+Where:
+ - ``configuration_file`` is the name of the .ini configuration file
+ - ``distance_flag`` is a flag indicating whether or not the distances to surfaces must be computed (i.e. *True* is used the first time a classification is run for a set of surfaces and tectonic environments, but *False* when only the buffer and delta distances are changed)
+ - ``root_folder`` is the root directory for all paths specified in the ``configuration_file``
+
+3. Separate the classified events into subcatalogues
+
+The user must decide the exact way in which they would like to separate the classified events into subcatalogues for each tectonic environment. For example, one may want to decluster the entire catalogue before separating the events, or to decluster each tectonic environment separately. View the following link for an example of the latter case:
+
+.. toctree::
+ sub_tutorials/make_trts
+
+
+Creating inslab sources for the OpenQuake Engine [incomplete]
+*************************************************************
+
+The construction of subduction inslab sources involves the creation of `virtual faults` elongated along the stike of the slab surface and constrained within the slab volume.
+
+1. Create a configuration file
+
+.. code-block:: ini
+
+ [main]
+
+ reference_folder = /Users/kjohnson/GEM/Regions/paisl18u/
+
+ profile_sd_topsl = 40.
+ edge_sd_topsl = 40.
+
+ sampling = 10.
+
+ float_strike = -0.5
+ float_dip = -1.0
+
+ slab_thickness = 70.
+ hspa = 20.
+ vspa = 20.
+
+ #profile_folder contains: resampled profiles and edges
+ profile_folder = ./model/subduction/cs_profiles/kerton/edges_zone1_slab
+
+ # the pickled catalogue has the hmtk format
+ catalogue_pickle_fname = ./data/catalogues/locations/PI_cat.p
+
+ # the file with labels identifying earthquakes belonging to a given class
+ treg_fname = ./model/catalogue/PI_class_segments.hdf5
+ label = slab_kerton1
+
+ # output folder
+ out_hdf5_fname = ./tmp/ruptures/ruptures_inslab_kerton_1.hdf5
+
+ # output smoothing folder
+ out_hdf5_smoothing_fname = ./tmp/smoothing/smoothing_kerton_1.hdf5
+
+ # this is a lists
+ dips = [45, 135]
+
+ # this is a dictionary
+ aspect_ratios = {2.0: 0.4, 3.0: 0.3, 6.0: 0.2, 8.0: 0.1}
+
+ # this is a dictionary
+ uniform_fraction = 1.0
+
+ # magnitude scaling relationship
+ mag_scaling_relation = StrasserIntraslab
+
+ # MFD
+ agr = 5.945
+ bgr = 1.057
+ mmin = 6.5
+ mmax = 7.80
+
diff --git a/_sources/contents/sub_tutorials/make_trts.ipynb.txt b/_sources/contents/sub_tutorials/make_trts.ipynb.txt
new file mode 100644
index 000000000..c1a30f44d
--- /dev/null
+++ b/_sources/contents/sub_tutorials/make_trts.ipynb.txt
@@ -0,0 +1,177 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Jupyter Notebook example for preparing subcatalogues"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import h5py\n",
+ "import pickle\n",
+ "\n",
+ "# Load OQ tools\n",
+ "from openquake.hmtk.parsers.catalogue import CsvCatalogueParser\n",
+ "from openquake.hmtk.seismicity.selector import CatalogueSelector\n",
+ "from openquake.hmtk.parsers.catalogue.csv_catalogue_parser import CsvCatalogueWriter "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Configuration files\n",
+ "cat_pickle_filename = '~/model/catalogue/csv/catalogue.pkl'\n",
+ "treg = '~/model/catalogue/classification/classified.hdf5'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "crustal\n",
+ "crustal_deep\n",
+ "int_prt\n",
+ "slab_nht\n",
+ "slab_prt\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Reading TR hdf5 file and creating the list of tectonic regions\n",
+ "aaa = []\n",
+ "f = h5py.File(treg, \"r\")\n",
+ "for key in f.keys():\n",
+ " aaa.append(key)\n",
+ " alen = len(f[key])\n",
+ " print(key)\n",
+ "f.close()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "# earthquakes in the catalogue: 16553\n",
+ "# earthquakes in this TR : 10999\n",
+ "Catalogue successfully written to cat_TR_crustal.csv\n",
+ "# earthquakes in the catalogue: 16553\n",
+ "# earthquakes in this TR : 1212\n",
+ "Catalogue successfully written to cat_TR_crustal_deep.csv\n",
+ "# earthquakes in the catalogue: 16553\n",
+ "# earthquakes in this TR : 1933\n",
+ "Catalogue successfully written to cat_TR_int_prt.csv\n",
+ "# earthquakes in the catalogue: 16553\n",
+ "# earthquakes in this TR : 626\n",
+ "Catalogue successfully written to cat_TR_slab_nht.csv\n",
+ "# earthquakes in the catalogue: 16553\n",
+ "# earthquakes in this TR : 296\n",
+ "Catalogue successfully written to cat_TR_slab_prt.csv\n"
+ ]
+ }
+ ],
+ "source": [
+ "# for each label, create the subcatalogue\n",
+ "tot_lab = np.zeros(alen)\n",
+ "for label in (aaa):\n",
+ " csv_filename = \"cat_TR_%s.csv\"%(label)\n",
+ " f = h5py.File(treg,'r')\n",
+ " tr = f[label][:]\n",
+ " f.close()\n",
+ " if sum(tr) > 0:\n",
+ " tmp_lab = tr*1\n",
+ " tot_lab = tot_lab+tmp_lab\n",
+ " catalogue = pickle.load(open(cat_pickle_filename, 'rb'))\n",
+ " for lab in ['month', 'day', 'hour', 'minute', 'second']:\n",
+ " idx = np.isnan(catalogue.data[lab])\n",
+ " if lab == 'day' or lab == 'month':\n",
+ " catalogue.data[lab][idx] = 1\n",
+ " elif lab == 'second':\n",
+ " catalogue.data[lab][idx] = 0.0\n",
+ " else:\n",
+ " catalogue.data[lab][idx] = 0\n",
+ " selector = CatalogueSelector(catalogue, create_copy=False)\n",
+ " print('# earthquakes in the catalogue: {:d}'.format(len(catalogue.data['longitude'])))\n",
+ " catalogue = selector.select_catalogue(tr)\n",
+ " \n",
+ " print('# earthquakes in this TR : {:d}'.format(len(catalogue.data['longitude'])))\n",
+ " # Sub-catalogue\n",
+ " csvcat = CsvCatalogueWriter(csv_filename) \n",
+ " # Write the purged catalogue\n",
+ " csvcat.write_file(catalogue)\n",
+ " print(\"Catalogue successfully written to %s\" % csv_filename)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "# earthquakes: 16553\n",
+ "# earthquakes: 1487\n",
+ "Catalogue successfully written to cat_TR_unclassified.csv\n"
+ ]
+ }
+ ],
+ "source": [
+ "# also make a catalogue of unclassified earthquakes\n",
+ "tr_undef = abs(tot_lab-1)\n",
+ "catalogue = pickle.load(open(cat_pickle_filename, 'rb'))\n",
+ "selector = CatalogueSelector(catalogue, create_copy=False)\n",
+ "print('# earthquakes: {:d}'.format(len(catalogue.data['longitude'])))\n",
+ "catalogue = selector.select_catalogue(tr_undef)\n",
+ "print('# earthquakes: {:d}'.format(len(catalogue.data['longitude'])))\n",
+ "# Sub-catalogue\n",
+ "csv_filename = \"cat_TR_unclassified.csv\"\n",
+ "csvcat = CsvCatalogueWriter(csv_filename) \n",
+ "# Write the purged catalogue\n",
+ "csvcat.write_file(catalogue)\n",
+ "print(\"Catalogue successfully written to %s\" % csv_filename)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/_sources/index.rst.txt b/_sources/index.rst.txt
new file mode 100644
index 000000000..1cba9fd28
--- /dev/null
+++ b/_sources/index.rst.txt
@@ -0,0 +1,63 @@
+.. mbt documentation master file, created by
+ sphinx-quickstart on Thu Jan 24 16:06:36 2019.
+ You can adapt this file completely to your liking, but it should at least
+ contain the root `toctree` directive.
+
+Welcome to the OpenQuake Model Building Toolkit's documentation!
+################################################################
+
+The OpenQuake Model Building Toolkit (*oq-mbt*) is a suite of tools for the
+construction of components of a Probabilistic Seismic Hazard (PSH) model.
+The main contributors to this suite of tools are GEM Hazard Team members.
+Contribution from extena users are very welcome!
+
+*oq-mbt* code is hosted on github at the following link
+https://github.com/GEMScienceTools/oq-mbtk. It is developed in close
+connection with the
+`OpenQuake engine `_, the
+open-source hazard and risk calculation engine developed primarily by the
+GEM Foundation.
+
+The *oq-mbt* relies on several functionalities included in the Hazard Modeller's
+Toolkit library (*oq-hmtk*). The oq-hmtk code is accessible on github at the
+following link https://github.com/gem/oq-engine/tree/master/openquake/hmtk,
+while documentation for the oq-hmtk can be downloaded
+at https://github.com/GEMScienceTools/hmtk_docs/blob/master/hmtk_tutorial.pdf.
+
+Currently the oq-mbt includes six sub-modules:
+
+* *CATalogue Toolkit (cat)* contains code used for creating a homogenised
+ catalogue;
+* *Global Hazard Map (ghm)* contains code used to produce homogenised hazard
+ maps using results obtained using a collection of PSHA input models;
+* *Model ANalysis (man)* contains code for analysing oq-engine formattted PSHA
+ input models;
+* *Model Building tool (mbt)* contains code for seismic source
+ characterisation;
+* *SUBduction modelling (sub)* contains code for building subduction
+ earthquake sources;
+* *Strong-Motion Tools (smt)* contains code for ground-motion characterisation
+ activities;
+* *SEcondary Perils (sep)* contains code for calculating secondary earthquake
+ perils such as liquefaction and coseismic landslides
+
+.. toctree::
+ :maxdepth: 2
+ :caption: Contents:
+
+ contents/installation
+ contents/cat
+ contents/ghm
+ contents/man
+ contents/mbt
+ contents/sub
+ contents/smt
+ contents/sep
+
+
+Indices and tables
+==================
+
+* :ref:`genindex`
+* :ref:`modindex`
+* :ref:`search`
diff --git a/_static/_sphinx_javascript_frameworks_compat.js b/_static/_sphinx_javascript_frameworks_compat.js
new file mode 100644
index 000000000..81415803e
--- /dev/null
+++ b/_static/_sphinx_javascript_frameworks_compat.js
@@ -0,0 +1,123 @@
+/* Compatability shim for jQuery and underscores.js.
+ *
+ * Copyright Sphinx contributors
+ * Released under the two clause BSD licence
+ */
+
+/**
+ * small helper function to urldecode strings
+ *
+ * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL
+ */
+jQuery.urldecode = function(x) {
+ if (!x) {
+ return x
+ }
+ return decodeURIComponent(x.replace(/\+/g, ' '));
+};
+
+/**
+ * small helper function to urlencode strings
+ */
+jQuery.urlencode = encodeURIComponent;
+
+/**
+ * This function returns the parsed url parameters of the
+ * current request. Multiple values per key are supported,
+ * it will always return arrays of strings for the value parts.
+ */
+jQuery.getQueryParameters = function(s) {
+ if (typeof s === 'undefined')
+ s = document.location.search;
+ var parts = s.substr(s.indexOf('?') + 1).split('&');
+ var result = {};
+ for (var i = 0; i < parts.length; i++) {
+ var tmp = parts[i].split('=', 2);
+ var key = jQuery.urldecode(tmp[0]);
+ var value = jQuery.urldecode(tmp[1]);
+ if (key in result)
+ result[key].push(value);
+ else
+ result[key] = [value];
+ }
+ return result;
+};
+
+/**
+ * highlight a given string on a jquery object by wrapping it in
+ * span elements with the given class name.
+ */
+jQuery.fn.highlightText = function(text, className) {
+ function highlight(node, addItems) {
+ if (node.nodeType === 3) {
+ var val = node.nodeValue;
+ var pos = val.toLowerCase().indexOf(text);
+ if (pos >= 0 &&
+ !jQuery(node.parentNode).hasClass(className) &&
+ !jQuery(node.parentNode).hasClass("nohighlight")) {
+ var span;
+ var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg");
+ if (isInSVG) {
+ span = document.createElementNS("http://www.w3.org/2000/svg", "tspan");
+ } else {
+ span = document.createElement("span");
+ span.className = className;
+ }
+ span.appendChild(document.createTextNode(val.substr(pos, text.length)));
+ node.parentNode.insertBefore(span, node.parentNode.insertBefore(
+ document.createTextNode(val.substr(pos + text.length)),
+ node.nextSibling));
+ node.nodeValue = val.substr(0, pos);
+ if (isInSVG) {
+ var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect");
+ var bbox = node.parentElement.getBBox();
+ rect.x.baseVal.value = bbox.x;
+ rect.y.baseVal.value = bbox.y;
+ rect.width.baseVal.value = bbox.width;
+ rect.height.baseVal.value = bbox.height;
+ rect.setAttribute('class', className);
+ addItems.push({
+ "parent": node.parentNode,
+ "target": rect});
+ }
+ }
+ }
+ else if (!jQuery(node).is("button, select, textarea")) {
+ jQuery.each(node.childNodes, function() {
+ highlight(this, addItems);
+ });
+ }
+ }
+ var addItems = [];
+ var result = this.each(function() {
+ highlight(this, addItems);
+ });
+ for (var i = 0; i < addItems.length; ++i) {
+ jQuery(addItems[i].parent).before(addItems[i].target);
+ }
+ return result;
+};
+
+/*
+ * backward compatibility for jQuery.browser
+ * This will be supported until firefox bug is fixed.
+ */
+if (!jQuery.browser) {
+ jQuery.uaMatch = function(ua) {
+ ua = ua.toLowerCase();
+
+ var match = /(chrome)[ \/]([\w.]+)/.exec(ua) ||
+ /(webkit)[ \/]([\w.]+)/.exec(ua) ||
+ /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) ||
+ /(msie) ([\w.]+)/.exec(ua) ||
+ ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) ||
+ [];
+
+ return {
+ browser: match[ 1 ] || "",
+ version: match[ 2 ] || "0"
+ };
+ };
+ jQuery.browser = {};
+ jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true;
+}
diff --git a/_static/basic.css b/_static/basic.css
new file mode 100644
index 000000000..30fee9d0f
--- /dev/null
+++ b/_static/basic.css
@@ -0,0 +1,925 @@
+/*
+ * basic.css
+ * ~~~~~~~~~
+ *
+ * Sphinx stylesheet -- basic theme.
+ *
+ * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS.
+ * :license: BSD, see LICENSE for details.
+ *
+ */
+
+/* -- main layout ----------------------------------------------------------- */
+
+div.clearer {
+ clear: both;
+}
+
+div.section::after {
+ display: block;
+ content: '';
+ clear: left;
+}
+
+/* -- relbar ---------------------------------------------------------------- */
+
+div.related {
+ width: 100%;
+ font-size: 90%;
+}
+
+div.related h3 {
+ display: none;
+}
+
+div.related ul {
+ margin: 0;
+ padding: 0 0 0 10px;
+ list-style: none;
+}
+
+div.related li {
+ display: inline;
+}
+
+div.related li.right {
+ float: right;
+ margin-right: 5px;
+}
+
+/* -- sidebar --------------------------------------------------------------- */
+
+div.sphinxsidebarwrapper {
+ padding: 10px 5px 0 10px;
+}
+
+div.sphinxsidebar {
+ float: left;
+ width: 230px;
+ margin-left: -100%;
+ font-size: 90%;
+ word-wrap: break-word;
+ overflow-wrap : break-word;
+}
+
+div.sphinxsidebar ul {
+ list-style: none;
+}
+
+div.sphinxsidebar ul ul,
+div.sphinxsidebar ul.want-points {
+ margin-left: 20px;
+ list-style: square;
+}
+
+div.sphinxsidebar ul ul {
+ margin-top: 0;
+ margin-bottom: 0;
+}
+
+div.sphinxsidebar form {
+ margin-top: 10px;
+}
+
+div.sphinxsidebar input {
+ border: 1px solid #98dbcc;
+ font-family: sans-serif;
+ font-size: 1em;
+}
+
+div.sphinxsidebar #searchbox form.search {
+ overflow: hidden;
+}
+
+div.sphinxsidebar #searchbox input[type="text"] {
+ float: left;
+ width: 80%;
+ padding: 0.25em;
+ box-sizing: border-box;
+}
+
+div.sphinxsidebar #searchbox input[type="submit"] {
+ float: left;
+ width: 20%;
+ border-left: none;
+ padding: 0.25em;
+ box-sizing: border-box;
+}
+
+
+img {
+ border: 0;
+ max-width: 100%;
+}
+
+/* -- search page ----------------------------------------------------------- */
+
+ul.search {
+ margin: 10px 0 0 20px;
+ padding: 0;
+}
+
+ul.search li {
+ padding: 5px 0 5px 20px;
+ background-image: url(file.png);
+ background-repeat: no-repeat;
+ background-position: 0 7px;
+}
+
+ul.search li a {
+ font-weight: bold;
+}
+
+ul.search li p.context {
+ color: #888;
+ margin: 2px 0 0 30px;
+ text-align: left;
+}
+
+ul.keywordmatches li.goodmatch a {
+ font-weight: bold;
+}
+
+/* -- index page ------------------------------------------------------------ */
+
+table.contentstable {
+ width: 90%;
+ margin-left: auto;
+ margin-right: auto;
+}
+
+table.contentstable p.biglink {
+ line-height: 150%;
+}
+
+a.biglink {
+ font-size: 1.3em;
+}
+
+span.linkdescr {
+ font-style: italic;
+ padding-top: 5px;
+ font-size: 90%;
+}
+
+/* -- general index --------------------------------------------------------- */
+
+table.indextable {
+ width: 100%;
+}
+
+table.indextable td {
+ text-align: left;
+ vertical-align: top;
+}
+
+table.indextable ul {
+ margin-top: 0;
+ margin-bottom: 0;
+ list-style-type: none;
+}
+
+table.indextable > tbody > tr > td > ul {
+ padding-left: 0em;
+}
+
+table.indextable tr.pcap {
+ height: 10px;
+}
+
+table.indextable tr.cap {
+ margin-top: 10px;
+ background-color: #f2f2f2;
+}
+
+img.toggler {
+ margin-right: 3px;
+ margin-top: 3px;
+ cursor: pointer;
+}
+
+div.modindex-jumpbox {
+ border-top: 1px solid #ddd;
+ border-bottom: 1px solid #ddd;
+ margin: 1em 0 1em 0;
+ padding: 0.4em;
+}
+
+div.genindex-jumpbox {
+ border-top: 1px solid #ddd;
+ border-bottom: 1px solid #ddd;
+ margin: 1em 0 1em 0;
+ padding: 0.4em;
+}
+
+/* -- domain module index --------------------------------------------------- */
+
+table.modindextable td {
+ padding: 2px;
+ border-collapse: collapse;
+}
+
+/* -- general body styles --------------------------------------------------- */
+
+div.body {
+ min-width: 360px;
+ max-width: 800px;
+}
+
+div.body p, div.body dd, div.body li, div.body blockquote {
+ -moz-hyphens: auto;
+ -ms-hyphens: auto;
+ -webkit-hyphens: auto;
+ hyphens: auto;
+}
+
+a.headerlink {
+ visibility: hidden;
+}
+
+a:visited {
+ color: #551A8B;
+}
+
+h1:hover > a.headerlink,
+h2:hover > a.headerlink,
+h3:hover > a.headerlink,
+h4:hover > a.headerlink,
+h5:hover > a.headerlink,
+h6:hover > a.headerlink,
+dt:hover > a.headerlink,
+caption:hover > a.headerlink,
+p.caption:hover > a.headerlink,
+div.code-block-caption:hover > a.headerlink {
+ visibility: visible;
+}
+
+div.body p.caption {
+ text-align: inherit;
+}
+
+div.body td {
+ text-align: left;
+}
+
+.first {
+ margin-top: 0 !important;
+}
+
+p.rubric {
+ margin-top: 30px;
+ font-weight: bold;
+}
+
+img.align-left, figure.align-left, .figure.align-left, object.align-left {
+ clear: left;
+ float: left;
+ margin-right: 1em;
+}
+
+img.align-right, figure.align-right, .figure.align-right, object.align-right {
+ clear: right;
+ float: right;
+ margin-left: 1em;
+}
+
+img.align-center, figure.align-center, .figure.align-center, object.align-center {
+ display: block;
+ margin-left: auto;
+ margin-right: auto;
+}
+
+img.align-default, figure.align-default, .figure.align-default {
+ display: block;
+ margin-left: auto;
+ margin-right: auto;
+}
+
+.align-left {
+ text-align: left;
+}
+
+.align-center {
+ text-align: center;
+}
+
+.align-default {
+ text-align: center;
+}
+
+.align-right {
+ text-align: right;
+}
+
+/* -- sidebars -------------------------------------------------------------- */
+
+div.sidebar,
+aside.sidebar {
+ margin: 0 0 0.5em 1em;
+ border: 1px solid #ddb;
+ padding: 7px;
+ background-color: #ffe;
+ width: 40%;
+ float: right;
+ clear: right;
+ overflow-x: auto;
+}
+
+p.sidebar-title {
+ font-weight: bold;
+}
+
+nav.contents,
+aside.topic,
+div.admonition, div.topic, blockquote {
+ clear: left;
+}
+
+/* -- topics ---------------------------------------------------------------- */
+
+nav.contents,
+aside.topic,
+div.topic {
+ border: 1px solid #ccc;
+ padding: 7px;
+ margin: 10px 0 10px 0;
+}
+
+p.topic-title {
+ font-size: 1.1em;
+ font-weight: bold;
+ margin-top: 10px;
+}
+
+/* -- admonitions ----------------------------------------------------------- */
+
+div.admonition {
+ margin-top: 10px;
+ margin-bottom: 10px;
+ padding: 7px;
+}
+
+div.admonition dt {
+ font-weight: bold;
+}
+
+p.admonition-title {
+ margin: 0px 10px 5px 0px;
+ font-weight: bold;
+}
+
+div.body p.centered {
+ text-align: center;
+ margin-top: 25px;
+}
+
+/* -- content of sidebars/topics/admonitions -------------------------------- */
+
+div.sidebar > :last-child,
+aside.sidebar > :last-child,
+nav.contents > :last-child,
+aside.topic > :last-child,
+div.topic > :last-child,
+div.admonition > :last-child {
+ margin-bottom: 0;
+}
+
+div.sidebar::after,
+aside.sidebar::after,
+nav.contents::after,
+aside.topic::after,
+div.topic::after,
+div.admonition::after,
+blockquote::after {
+ display: block;
+ content: '';
+ clear: both;
+}
+
+/* -- tables ---------------------------------------------------------------- */
+
+table.docutils {
+ margin-top: 10px;
+ margin-bottom: 10px;
+ border: 0;
+ border-collapse: collapse;
+}
+
+table.align-center {
+ margin-left: auto;
+ margin-right: auto;
+}
+
+table.align-default {
+ margin-left: auto;
+ margin-right: auto;
+}
+
+table caption span.caption-number {
+ font-style: italic;
+}
+
+table caption span.caption-text {
+}
+
+table.docutils td, table.docutils th {
+ padding: 1px 8px 1px 5px;
+ border-top: 0;
+ border-left: 0;
+ border-right: 0;
+ border-bottom: 1px solid #aaa;
+}
+
+th {
+ text-align: left;
+ padding-right: 5px;
+}
+
+table.citation {
+ border-left: solid 1px gray;
+ margin-left: 1px;
+}
+
+table.citation td {
+ border-bottom: none;
+}
+
+th > :first-child,
+td > :first-child {
+ margin-top: 0px;
+}
+
+th > :last-child,
+td > :last-child {
+ margin-bottom: 0px;
+}
+
+/* -- figures --------------------------------------------------------------- */
+
+div.figure, figure {
+ margin: 0.5em;
+ padding: 0.5em;
+}
+
+div.figure p.caption, figcaption {
+ padding: 0.3em;
+}
+
+div.figure p.caption span.caption-number,
+figcaption span.caption-number {
+ font-style: italic;
+}
+
+div.figure p.caption span.caption-text,
+figcaption span.caption-text {
+}
+
+/* -- field list styles ----------------------------------------------------- */
+
+table.field-list td, table.field-list th {
+ border: 0 !important;
+}
+
+.field-list ul {
+ margin: 0;
+ padding-left: 1em;
+}
+
+.field-list p {
+ margin: 0;
+}
+
+.field-name {
+ -moz-hyphens: manual;
+ -ms-hyphens: manual;
+ -webkit-hyphens: manual;
+ hyphens: manual;
+}
+
+/* -- hlist styles ---------------------------------------------------------- */
+
+table.hlist {
+ margin: 1em 0;
+}
+
+table.hlist td {
+ vertical-align: top;
+}
+
+/* -- object description styles --------------------------------------------- */
+
+.sig {
+ font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace;
+}
+
+.sig-name, code.descname {
+ background-color: transparent;
+ font-weight: bold;
+}
+
+.sig-name {
+ font-size: 1.1em;
+}
+
+code.descname {
+ font-size: 1.2em;
+}
+
+.sig-prename, code.descclassname {
+ background-color: transparent;
+}
+
+.optional {
+ font-size: 1.3em;
+}
+
+.sig-paren {
+ font-size: larger;
+}
+
+.sig-param.n {
+ font-style: italic;
+}
+
+/* C++ specific styling */
+
+.sig-inline.c-texpr,
+.sig-inline.cpp-texpr {
+ font-family: unset;
+}
+
+.sig.c .k, .sig.c .kt,
+.sig.cpp .k, .sig.cpp .kt {
+ color: #0033B3;
+}
+
+.sig.c .m,
+.sig.cpp .m {
+ color: #1750EB;
+}
+
+.sig.c .s, .sig.c .sc,
+.sig.cpp .s, .sig.cpp .sc {
+ color: #067D17;
+}
+
+
+/* -- other body styles ----------------------------------------------------- */
+
+ol.arabic {
+ list-style: decimal;
+}
+
+ol.loweralpha {
+ list-style: lower-alpha;
+}
+
+ol.upperalpha {
+ list-style: upper-alpha;
+}
+
+ol.lowerroman {
+ list-style: lower-roman;
+}
+
+ol.upperroman {
+ list-style: upper-roman;
+}
+
+:not(li) > ol > li:first-child > :first-child,
+:not(li) > ul > li:first-child > :first-child {
+ margin-top: 0px;
+}
+
+:not(li) > ol > li:last-child > :last-child,
+:not(li) > ul > li:last-child > :last-child {
+ margin-bottom: 0px;
+}
+
+ol.simple ol p,
+ol.simple ul p,
+ul.simple ol p,
+ul.simple ul p {
+ margin-top: 0;
+}
+
+ol.simple > li:not(:first-child) > p,
+ul.simple > li:not(:first-child) > p {
+ margin-top: 0;
+}
+
+ol.simple p,
+ul.simple p {
+ margin-bottom: 0;
+}
+
+aside.footnote > span,
+div.citation > span {
+ float: left;
+}
+aside.footnote > span:last-of-type,
+div.citation > span:last-of-type {
+ padding-right: 0.5em;
+}
+aside.footnote > p {
+ margin-left: 2em;
+}
+div.citation > p {
+ margin-left: 4em;
+}
+aside.footnote > p:last-of-type,
+div.citation > p:last-of-type {
+ margin-bottom: 0em;
+}
+aside.footnote > p:last-of-type:after,
+div.citation > p:last-of-type:after {
+ content: "";
+ clear: both;
+}
+
+dl.field-list {
+ display: grid;
+ grid-template-columns: fit-content(30%) auto;
+}
+
+dl.field-list > dt {
+ font-weight: bold;
+ word-break: break-word;
+ padding-left: 0.5em;
+ padding-right: 5px;
+}
+
+dl.field-list > dd {
+ padding-left: 0.5em;
+ margin-top: 0em;
+ margin-left: 0em;
+ margin-bottom: 0em;
+}
+
+dl {
+ margin-bottom: 15px;
+}
+
+dd > :first-child {
+ margin-top: 0px;
+}
+
+dd ul, dd table {
+ margin-bottom: 10px;
+}
+
+dd {
+ margin-top: 3px;
+ margin-bottom: 10px;
+ margin-left: 30px;
+}
+
+.sig dd {
+ margin-top: 0px;
+ margin-bottom: 0px;
+}
+
+.sig dl {
+ margin-top: 0px;
+ margin-bottom: 0px;
+}
+
+dl > dd:last-child,
+dl > dd:last-child > :last-child {
+ margin-bottom: 0;
+}
+
+dt:target, span.highlighted {
+ background-color: #fbe54e;
+}
+
+rect.highlighted {
+ fill: #fbe54e;
+}
+
+dl.glossary dt {
+ font-weight: bold;
+ font-size: 1.1em;
+}
+
+.versionmodified {
+ font-style: italic;
+}
+
+.system-message {
+ background-color: #fda;
+ padding: 5px;
+ border: 3px solid red;
+}
+
+.footnote:target {
+ background-color: #ffa;
+}
+
+.line-block {
+ display: block;
+ margin-top: 1em;
+ margin-bottom: 1em;
+}
+
+.line-block .line-block {
+ margin-top: 0;
+ margin-bottom: 0;
+ margin-left: 1.5em;
+}
+
+.guilabel, .menuselection {
+ font-family: sans-serif;
+}
+
+.accelerator {
+ text-decoration: underline;
+}
+
+.classifier {
+ font-style: oblique;
+}
+
+.classifier:before {
+ font-style: normal;
+ margin: 0 0.5em;
+ content: ":";
+ display: inline-block;
+}
+
+abbr, acronym {
+ border-bottom: dotted 1px;
+ cursor: help;
+}
+
+.translated {
+ background-color: rgba(207, 255, 207, 0.2)
+}
+
+.untranslated {
+ background-color: rgba(255, 207, 207, 0.2)
+}
+
+/* -- code displays --------------------------------------------------------- */
+
+pre {
+ overflow: auto;
+ overflow-y: hidden; /* fixes display issues on Chrome browsers */
+}
+
+pre, div[class*="highlight-"] {
+ clear: both;
+}
+
+span.pre {
+ -moz-hyphens: none;
+ -ms-hyphens: none;
+ -webkit-hyphens: none;
+ hyphens: none;
+ white-space: nowrap;
+}
+
+div[class*="highlight-"] {
+ margin: 1em 0;
+}
+
+td.linenos pre {
+ border: 0;
+ background-color: transparent;
+ color: #aaa;
+}
+
+table.highlighttable {
+ display: block;
+}
+
+table.highlighttable tbody {
+ display: block;
+}
+
+table.highlighttable tr {
+ display: flex;
+}
+
+table.highlighttable td {
+ margin: 0;
+ padding: 0;
+}
+
+table.highlighttable td.linenos {
+ padding-right: 0.5em;
+}
+
+table.highlighttable td.code {
+ flex: 1;
+ overflow: hidden;
+}
+
+.highlight .hll {
+ display: block;
+}
+
+div.highlight pre,
+table.highlighttable pre {
+ margin: 0;
+}
+
+div.code-block-caption + div {
+ margin-top: 0;
+}
+
+div.code-block-caption {
+ margin-top: 1em;
+ padding: 2px 5px;
+ font-size: small;
+}
+
+div.code-block-caption code {
+ background-color: transparent;
+}
+
+table.highlighttable td.linenos,
+span.linenos,
+div.highlight span.gp { /* gp: Generic.Prompt */
+ user-select: none;
+ -webkit-user-select: text; /* Safari fallback only */
+ -webkit-user-select: none; /* Chrome/Safari */
+ -moz-user-select: none; /* Firefox */
+ -ms-user-select: none; /* IE10+ */
+}
+
+div.code-block-caption span.caption-number {
+ padding: 0.1em 0.3em;
+ font-style: italic;
+}
+
+div.code-block-caption span.caption-text {
+}
+
+div.literal-block-wrapper {
+ margin: 1em 0;
+}
+
+code.xref, a code {
+ background-color: transparent;
+ font-weight: bold;
+}
+
+h1 code, h2 code, h3 code, h4 code, h5 code, h6 code {
+ background-color: transparent;
+}
+
+.viewcode-link {
+ float: right;
+}
+
+.viewcode-back {
+ float: right;
+ font-family: sans-serif;
+}
+
+div.viewcode-block:target {
+ margin: -1px -10px;
+ padding: 0 10px;
+}
+
+/* -- math display ---------------------------------------------------------- */
+
+img.math {
+ vertical-align: middle;
+}
+
+div.body div.math p {
+ text-align: center;
+}
+
+span.eqno {
+ float: right;
+}
+
+span.eqno a.headerlink {
+ position: absolute;
+ z-index: 1;
+}
+
+div.math:hover a.headerlink {
+ visibility: visible;
+}
+
+/* -- printout stylesheet --------------------------------------------------- */
+
+@media print {
+ div.document,
+ div.documentwrapper,
+ div.bodywrapper {
+ margin: 0 !important;
+ width: 100%;
+ }
+
+ div.sphinxsidebar,
+ div.related,
+ div.footer,
+ #top-link {
+ display: none;
+ }
+}
\ No newline at end of file
diff --git a/_static/css/badge_only.css b/_static/css/badge_only.css
new file mode 100644
index 000000000..c718cee44
--- /dev/null
+++ b/_static/css/badge_only.css
@@ -0,0 +1 @@
+.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}
\ No newline at end of file
diff --git a/_static/css/fonts/Roboto-Slab-Bold.woff b/_static/css/fonts/Roboto-Slab-Bold.woff
new file mode 100644
index 000000000..6cb600001
Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Bold.woff differ
diff --git a/_static/css/fonts/Roboto-Slab-Bold.woff2 b/_static/css/fonts/Roboto-Slab-Bold.woff2
new file mode 100644
index 000000000..7059e2314
Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Bold.woff2 differ
diff --git a/_static/css/fonts/Roboto-Slab-Regular.woff b/_static/css/fonts/Roboto-Slab-Regular.woff
new file mode 100644
index 000000000..f815f63f9
Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Regular.woff differ
diff --git a/_static/css/fonts/Roboto-Slab-Regular.woff2 b/_static/css/fonts/Roboto-Slab-Regular.woff2
new file mode 100644
index 000000000..f2c76e5bd
Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Regular.woff2 differ
diff --git a/_static/css/fonts/fontawesome-webfont.eot b/_static/css/fonts/fontawesome-webfont.eot
new file mode 100644
index 000000000..e9f60ca95
Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.eot differ
diff --git a/_static/css/fonts/fontawesome-webfont.svg b/_static/css/fonts/fontawesome-webfont.svg
new file mode 100644
index 000000000..855c845e5
--- /dev/null
+++ b/_static/css/fonts/fontawesome-webfont.svg
@@ -0,0 +1,2671 @@
+
+
+
diff --git a/_static/css/fonts/fontawesome-webfont.ttf b/_static/css/fonts/fontawesome-webfont.ttf
new file mode 100644
index 000000000..35acda2fa
Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.ttf differ
diff --git a/_static/css/fonts/fontawesome-webfont.woff b/_static/css/fonts/fontawesome-webfont.woff
new file mode 100644
index 000000000..400014a4b
Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.woff differ
diff --git a/_static/css/fonts/fontawesome-webfont.woff2 b/_static/css/fonts/fontawesome-webfont.woff2
new file mode 100644
index 000000000..4d13fc604
Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.woff2 differ
diff --git a/_static/css/fonts/lato-bold-italic.woff b/_static/css/fonts/lato-bold-italic.woff
new file mode 100644
index 000000000..88ad05b9f
Binary files /dev/null and b/_static/css/fonts/lato-bold-italic.woff differ
diff --git a/_static/css/fonts/lato-bold-italic.woff2 b/_static/css/fonts/lato-bold-italic.woff2
new file mode 100644
index 000000000..c4e3d804b
Binary files /dev/null and b/_static/css/fonts/lato-bold-italic.woff2 differ
diff --git a/_static/css/fonts/lato-bold.woff b/_static/css/fonts/lato-bold.woff
new file mode 100644
index 000000000..c6dff51f0
Binary files /dev/null and b/_static/css/fonts/lato-bold.woff differ
diff --git a/_static/css/fonts/lato-bold.woff2 b/_static/css/fonts/lato-bold.woff2
new file mode 100644
index 000000000..bb195043c
Binary files /dev/null and b/_static/css/fonts/lato-bold.woff2 differ
diff --git a/_static/css/fonts/lato-normal-italic.woff b/_static/css/fonts/lato-normal-italic.woff
new file mode 100644
index 000000000..76114bc03
Binary files /dev/null and b/_static/css/fonts/lato-normal-italic.woff differ
diff --git a/_static/css/fonts/lato-normal-italic.woff2 b/_static/css/fonts/lato-normal-italic.woff2
new file mode 100644
index 000000000..3404f37e2
Binary files /dev/null and b/_static/css/fonts/lato-normal-italic.woff2 differ
diff --git a/_static/css/fonts/lato-normal.woff b/_static/css/fonts/lato-normal.woff
new file mode 100644
index 000000000..ae1307ff5
Binary files /dev/null and b/_static/css/fonts/lato-normal.woff differ
diff --git a/_static/css/fonts/lato-normal.woff2 b/_static/css/fonts/lato-normal.woff2
new file mode 100644
index 000000000..3bf984332
Binary files /dev/null and b/_static/css/fonts/lato-normal.woff2 differ
diff --git a/_static/css/theme.css b/_static/css/theme.css
new file mode 100644
index 000000000..19a446a0e
--- /dev/null
+++ b/_static/css/theme.css
@@ -0,0 +1,4 @@
+html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*!
+ * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome
+ * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License)
+ */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search>a:hover{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block}
\ No newline at end of file
diff --git a/_static/doctools.js b/_static/doctools.js
new file mode 100644
index 000000000..d06a71d75
--- /dev/null
+++ b/_static/doctools.js
@@ -0,0 +1,156 @@
+/*
+ * doctools.js
+ * ~~~~~~~~~~~
+ *
+ * Base JavaScript utilities for all Sphinx HTML documentation.
+ *
+ * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS.
+ * :license: BSD, see LICENSE for details.
+ *
+ */
+"use strict";
+
+const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([
+ "TEXTAREA",
+ "INPUT",
+ "SELECT",
+ "BUTTON",
+]);
+
+const _ready = (callback) => {
+ if (document.readyState !== "loading") {
+ callback();
+ } else {
+ document.addEventListener("DOMContentLoaded", callback);
+ }
+};
+
+/**
+ * Small JavaScript module for the documentation.
+ */
+const Documentation = {
+ init: () => {
+ Documentation.initDomainIndexTable();
+ Documentation.initOnKeyListeners();
+ },
+
+ /**
+ * i18n support
+ */
+ TRANSLATIONS: {},
+ PLURAL_EXPR: (n) => (n === 1 ? 0 : 1),
+ LOCALE: "unknown",
+
+ // gettext and ngettext don't access this so that the functions
+ // can safely bound to a different name (_ = Documentation.gettext)
+ gettext: (string) => {
+ const translated = Documentation.TRANSLATIONS[string];
+ switch (typeof translated) {
+ case "undefined":
+ return string; // no translation
+ case "string":
+ return translated; // translation exists
+ default:
+ return translated[0]; // (singular, plural) translation tuple exists
+ }
+ },
+
+ ngettext: (singular, plural, n) => {
+ const translated = Documentation.TRANSLATIONS[singular];
+ if (typeof translated !== "undefined")
+ return translated[Documentation.PLURAL_EXPR(n)];
+ return n === 1 ? singular : plural;
+ },
+
+ addTranslations: (catalog) => {
+ Object.assign(Documentation.TRANSLATIONS, catalog.messages);
+ Documentation.PLURAL_EXPR = new Function(
+ "n",
+ `return (${catalog.plural_expr})`
+ );
+ Documentation.LOCALE = catalog.locale;
+ },
+
+ /**
+ * helper function to focus on search bar
+ */
+ focusSearchBar: () => {
+ document.querySelectorAll("input[name=q]")[0]?.focus();
+ },
+
+ /**
+ * Initialise the domain index toggle buttons
+ */
+ initDomainIndexTable: () => {
+ const toggler = (el) => {
+ const idNumber = el.id.substr(7);
+ const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`);
+ if (el.src.substr(-9) === "minus.png") {
+ el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`;
+ toggledRows.forEach((el) => (el.style.display = "none"));
+ } else {
+ el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`;
+ toggledRows.forEach((el) => (el.style.display = ""));
+ }
+ };
+
+ const togglerElements = document.querySelectorAll("img.toggler");
+ togglerElements.forEach((el) =>
+ el.addEventListener("click", (event) => toggler(event.currentTarget))
+ );
+ togglerElements.forEach((el) => (el.style.display = ""));
+ if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler);
+ },
+
+ initOnKeyListeners: () => {
+ // only install a listener if it is really needed
+ if (
+ !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS &&
+ !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS
+ )
+ return;
+
+ document.addEventListener("keydown", (event) => {
+ // bail for input elements
+ if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return;
+ // bail with special keys
+ if (event.altKey || event.ctrlKey || event.metaKey) return;
+
+ if (!event.shiftKey) {
+ switch (event.key) {
+ case "ArrowLeft":
+ if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break;
+
+ const prevLink = document.querySelector('link[rel="prev"]');
+ if (prevLink && prevLink.href) {
+ window.location.href = prevLink.href;
+ event.preventDefault();
+ }
+ break;
+ case "ArrowRight":
+ if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break;
+
+ const nextLink = document.querySelector('link[rel="next"]');
+ if (nextLink && nextLink.href) {
+ window.location.href = nextLink.href;
+ event.preventDefault();
+ }
+ break;
+ }
+ }
+
+ // some keyboard layouts may need Shift to get /
+ switch (event.key) {
+ case "/":
+ if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break;
+ Documentation.focusSearchBar();
+ event.preventDefault();
+ }
+ });
+ },
+};
+
+// quick alias for translations
+const _ = Documentation.gettext;
+
+_ready(Documentation.init);
diff --git a/_static/documentation_options.js b/_static/documentation_options.js
new file mode 100644
index 000000000..7e4c114f2
--- /dev/null
+++ b/_static/documentation_options.js
@@ -0,0 +1,13 @@
+const DOCUMENTATION_OPTIONS = {
+ VERSION: '',
+ LANGUAGE: 'en',
+ COLLAPSE_INDEX: false,
+ BUILDER: 'html',
+ FILE_SUFFIX: '.html',
+ LINK_SUFFIX: '.html',
+ HAS_SOURCE: true,
+ SOURCELINK_SUFFIX: '.txt',
+ NAVIGATION_WITH_KEYS: false,
+ SHOW_SEARCH_SUMMARY: true,
+ ENABLE_SEARCH_SHORTCUTS: true,
+};
\ No newline at end of file
diff --git a/_static/file.png b/_static/file.png
new file mode 100644
index 000000000..a858a410e
Binary files /dev/null and b/_static/file.png differ
diff --git a/_static/jquery.js b/_static/jquery.js
new file mode 100644
index 000000000..c4c6022f2
--- /dev/null
+++ b/_static/jquery.js
@@ -0,0 +1,2 @@
+/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */
+!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"
","
"],col:[2,"
","
"],tr:[2,"
","
"],td:[3,"
","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 0",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=y.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=y.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),y.elements=c+" "+a,j(b)}function f(a){var b=x[a[v]];return b||(b={},w++,a[v]=w,x[w]=b),b}function g(a,c,d){if(c||(c=b),q)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():u.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||t.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),q)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return y.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(y,b.frag)}function j(a){a||(a=b);var d=f(a);return!y.shivCSS||p||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),q||i(a,d),a}function k(a){for(var b,c=a.getElementsByTagName("*"),e=c.length,f=RegExp("^(?:"+d().join("|")+")$","i"),g=[];e--;)b=c[e],f.test(b.nodeName)&&g.push(b.applyElement(l(b)));return g}function l(a){for(var b,c=a.attributes,d=c.length,e=a.ownerDocument.createElement(A+":"+a.nodeName);d--;)b=c[d],b.specified&&e.setAttribute(b.nodeName,b.nodeValue);return e.style.cssText=a.style.cssText,e}function m(a){for(var b,c=a.split("{"),e=c.length,f=RegExp("(^|[\\s,>+~])("+d().join("|")+")(?=[[\\s,>+~#.:]|$)","gi"),g="$1"+A+"\\:$2";e--;)b=c[e]=c[e].split("}"),b[b.length-1]=b[b.length-1].replace(f,g),c[e]=b.join("}");return c.join("{")}function n(a){for(var b=a.length;b--;)a[b].removeNode()}function o(a){function b(){clearTimeout(g._removeSheetTimer),d&&d.removeNode(!0),d=null}var d,e,g=f(a),h=a.namespaces,i=a.parentWindow;return!B||a.printShived?a:("undefined"==typeof h[A]&&h.add(A),i.attachEvent("onbeforeprint",function(){b();for(var f,g,h,i=a.styleSheets,j=[],l=i.length,n=Array(l);l--;)n[l]=i[l];for(;h=n.pop();)if(!h.disabled&&z.test(h.media)){try{f=h.imports,g=f.length}catch(o){g=0}for(l=0;g>l;l++)n.push(f[l]);try{j.push(h.cssText)}catch(o){}}j=m(j.reverse().join("")),e=k(a),d=c(a,j)}),i.attachEvent("onafterprint",function(){n(e),clearTimeout(g._removeSheetTimer),g._removeSheetTimer=setTimeout(b,500)}),a.printShived=!0,a)}var p,q,r="3.7.3",s=a.html5||{},t=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,u=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,v="_html5shiv",w=0,x={};!function(){try{var a=b.createElement("a");a.innerHTML="",p="hidden"in a,q=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){p=!0,q=!0}}();var y={elements:s.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:r,shivCSS:s.shivCSS!==!1,supportsUnknownElements:q,shivMethods:s.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=y,j(b);var z=/^$|\b(?:all|print)\b/,A="html5shiv",B=!q&&function(){var c=b.documentElement;return!("undefined"==typeof b.namespaces||"undefined"==typeof b.parentWindow||"undefined"==typeof c.applyElement||"undefined"==typeof c.removeNode||"undefined"==typeof a.attachEvent)}();y.type+=" print",y.shivPrint=o,o(b),"object"==typeof module&&module.exports&&(module.exports=y)}("undefined"!=typeof window?window:this,document);
\ No newline at end of file
diff --git a/_static/js/html5shiv.min.js b/_static/js/html5shiv.min.js
new file mode 100644
index 000000000..cd1c674f5
--- /dev/null
+++ b/_static/js/html5shiv.min.js
@@ -0,0 +1,4 @@
+/**
+* @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed
+*/
+!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3-pre",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document);
\ No newline at end of file
diff --git a/_static/js/theme.js b/_static/js/theme.js
new file mode 100644
index 000000000..1fddb6ee4
--- /dev/null
+++ b/_static/js/theme.js
@@ -0,0 +1 @@
+!function(n){var e={};function t(i){if(e[i])return e[i].exports;var o=e[i]={i:i,l:!1,exports:{}};return n[i].call(o.exports,o,o.exports,t),o.l=!0,o.exports}t.m=n,t.c=e,t.d=function(n,e,i){t.o(n,e)||Object.defineProperty(n,e,{enumerable:!0,get:i})},t.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},t.t=function(n,e){if(1&e&&(n=t(n)),8&e)return n;if(4&e&&"object"==typeof n&&n&&n.__esModule)return n;var i=Object.create(null);if(t.r(i),Object.defineProperty(i,"default",{enumerable:!0,value:n}),2&e&&"string"!=typeof n)for(var o in n)t.d(i,o,function(e){return n[e]}.bind(null,o));return i},t.n=function(n){var e=n&&n.__esModule?function(){return n.default}:function(){return n};return t.d(e,"a",e),e},t.o=function(n,e){return Object.prototype.hasOwnProperty.call(n,e)},t.p="",t(t.s=0)}([function(n,e,t){t(1),n.exports=t(3)},function(n,e,t){(function(){var e="undefined"!=typeof window?window.jQuery:t(2);n.exports.ThemeNav={navBar:null,win:null,winScroll:!1,winResize:!1,linkScroll:!1,winPosition:0,winHeight:null,docHeight:null,isRunning:!1,enable:function(n){var t=this;void 0===n&&(n=!0),t.isRunning||(t.isRunning=!0,e((function(e){t.init(e),t.reset(),t.win.on("hashchange",t.reset),n&&t.win.on("scroll",(function(){t.linkScroll||t.winScroll||(t.winScroll=!0,requestAnimationFrame((function(){t.onScroll()})))})),t.win.on("resize",(function(){t.winResize||(t.winResize=!0,requestAnimationFrame((function(){t.onResize()})))})),t.onResize()})))},enableSticky:function(){this.enable(!0)},init:function(n){n(document);var e=this;this.navBar=n("div.wy-side-scroll:first"),this.win=n(window),n(document).on("click","[data-toggle='wy-nav-top']",(function(){n("[data-toggle='wy-nav-shift']").toggleClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift")})).on("click",".wy-menu-vertical .current ul li a",(function(){var t=n(this);n("[data-toggle='wy-nav-shift']").removeClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift"),e.toggleCurrent(t),e.hashChange()})).on("click","[data-toggle='rst-current-version']",(function(){n("[data-toggle='rst-versions']").toggleClass("shift-up")})),n("table.docutils:not(.field-list,.footnote,.citation)").wrap(""),n("table.docutils.footnote").wrap(""),n("table.docutils.citation").wrap(""),n(".wy-menu-vertical ul").not(".simple").siblings("a").each((function(){var t=n(this);expand=n(''),expand.on("click",(function(n){return e.toggleCurrent(t),n.stopPropagation(),!1})),t.prepend(expand)}))},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),t=e.find('[href="'+n+'"]');if(0===t.length){var i=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(t=e.find('[href="#'+i.attr("id")+'"]')).length&&(t=e.find('[href="#"]'))}if(t.length>0){$(".wy-menu-vertical .current").removeClass("current").attr("aria-expanded","false"),t.addClass("current").attr("aria-expanded","true"),t.closest("li.toctree-l1").parent().addClass("current").attr("aria-expanded","true");for(let n=1;n<=10;n++)t.closest("li.toctree-l"+n).addClass("current").attr("aria-expanded","true");t[0].scrollIntoView()}}catch(n){console.log("Error expanding nav for anchor",n)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,t=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(t),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",(function(){this.linkScroll=!1}))},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current").attr("aria-expanded","false"),e.siblings().find("li.current").removeClass("current").attr("aria-expanded","false");var t=e.find("> ul li");t.length&&(t.removeClass("current").attr("aria-expanded","false"),e.toggleClass("current").attr("aria-expanded",(function(n,e){return"true"==e?"false":"true"})))}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:n.exports.ThemeNav,StickyNav:n.exports.ThemeNav}),function(){for(var n=0,e=["ms","moz","webkit","o"],t=0;t0
+ var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1
+ var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1
+ var s_v = "^(" + C + ")?" + v; // vowel in stem
+
+ this.stemWord = function (w) {
+ var stem;
+ var suffix;
+ var firstch;
+ var origword = w;
+
+ if (w.length < 3)
+ return w;
+
+ var re;
+ var re2;
+ var re3;
+ var re4;
+
+ firstch = w.substr(0,1);
+ if (firstch == "y")
+ w = firstch.toUpperCase() + w.substr(1);
+
+ // Step 1a
+ re = /^(.+?)(ss|i)es$/;
+ re2 = /^(.+?)([^s])s$/;
+
+ if (re.test(w))
+ w = w.replace(re,"$1$2");
+ else if (re2.test(w))
+ w = w.replace(re2,"$1$2");
+
+ // Step 1b
+ re = /^(.+?)eed$/;
+ re2 = /^(.+?)(ed|ing)$/;
+ if (re.test(w)) {
+ var fp = re.exec(w);
+ re = new RegExp(mgr0);
+ if (re.test(fp[1])) {
+ re = /.$/;
+ w = w.replace(re,"");
+ }
+ }
+ else if (re2.test(w)) {
+ var fp = re2.exec(w);
+ stem = fp[1];
+ re2 = new RegExp(s_v);
+ if (re2.test(stem)) {
+ w = stem;
+ re2 = /(at|bl|iz)$/;
+ re3 = new RegExp("([^aeiouylsz])\\1$");
+ re4 = new RegExp("^" + C + v + "[^aeiouwxy]$");
+ if (re2.test(w))
+ w = w + "e";
+ else if (re3.test(w)) {
+ re = /.$/;
+ w = w.replace(re,"");
+ }
+ else if (re4.test(w))
+ w = w + "e";
+ }
+ }
+
+ // Step 1c
+ re = /^(.+?)y$/;
+ if (re.test(w)) {
+ var fp = re.exec(w);
+ stem = fp[1];
+ re = new RegExp(s_v);
+ if (re.test(stem))
+ w = stem + "i";
+ }
+
+ // Step 2
+ re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/;
+ if (re.test(w)) {
+ var fp = re.exec(w);
+ stem = fp[1];
+ suffix = fp[2];
+ re = new RegExp(mgr0);
+ if (re.test(stem))
+ w = stem + step2list[suffix];
+ }
+
+ // Step 3
+ re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/;
+ if (re.test(w)) {
+ var fp = re.exec(w);
+ stem = fp[1];
+ suffix = fp[2];
+ re = new RegExp(mgr0);
+ if (re.test(stem))
+ w = stem + step3list[suffix];
+ }
+
+ // Step 4
+ re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/;
+ re2 = /^(.+?)(s|t)(ion)$/;
+ if (re.test(w)) {
+ var fp = re.exec(w);
+ stem = fp[1];
+ re = new RegExp(mgr1);
+ if (re.test(stem))
+ w = stem;
+ }
+ else if (re2.test(w)) {
+ var fp = re2.exec(w);
+ stem = fp[1] + fp[2];
+ re2 = new RegExp(mgr1);
+ if (re2.test(stem))
+ w = stem;
+ }
+
+ // Step 5
+ re = /^(.+?)e$/;
+ if (re.test(w)) {
+ var fp = re.exec(w);
+ stem = fp[1];
+ re = new RegExp(mgr1);
+ re2 = new RegExp(meq1);
+ re3 = new RegExp("^" + C + v + "[^aeiouwxy]$");
+ if (re.test(stem) || (re2.test(stem) && !(re3.test(stem))))
+ w = stem;
+ }
+ re = /ll$/;
+ re2 = new RegExp(mgr1);
+ if (re.test(w) && re2.test(w)) {
+ re = /.$/;
+ w = w.replace(re,"");
+ }
+
+ // and turn initial Y back to y
+ if (firstch == "y")
+ w = firstch.toLowerCase() + w.substr(1);
+ return w;
+ }
+}
+
diff --git a/_static/minus.png b/_static/minus.png
new file mode 100644
index 000000000..d96755fda
Binary files /dev/null and b/_static/minus.png differ
diff --git a/_static/nbsphinx-broken-thumbnail.svg b/_static/nbsphinx-broken-thumbnail.svg
new file mode 100644
index 000000000..4919ca882
--- /dev/null
+++ b/_static/nbsphinx-broken-thumbnail.svg
@@ -0,0 +1,9 @@
+
diff --git a/_static/nbsphinx-code-cells.css b/_static/nbsphinx-code-cells.css
new file mode 100644
index 000000000..a3fb27c30
--- /dev/null
+++ b/_static/nbsphinx-code-cells.css
@@ -0,0 +1,259 @@
+/* remove conflicting styling from Sphinx themes */
+div.nbinput.container div.prompt *,
+div.nboutput.container div.prompt *,
+div.nbinput.container div.input_area pre,
+div.nboutput.container div.output_area pre,
+div.nbinput.container div.input_area .highlight,
+div.nboutput.container div.output_area .highlight {
+ border: none;
+ padding: 0;
+ margin: 0;
+ box-shadow: none;
+}
+
+div.nbinput.container > div[class*=highlight],
+div.nboutput.container > div[class*=highlight] {
+ margin: 0;
+}
+
+div.nbinput.container div.prompt *,
+div.nboutput.container div.prompt * {
+ background: none;
+}
+
+div.nboutput.container div.output_area .highlight,
+div.nboutput.container div.output_area pre {
+ background: unset;
+}
+
+div.nboutput.container div.output_area div.highlight {
+ color: unset; /* override Pygments text color */
+}
+
+/* avoid gaps between output lines */
+div.nboutput.container div[class*=highlight] pre {
+ line-height: normal;
+}
+
+/* input/output containers */
+div.nbinput.container,
+div.nboutput.container {
+ display: -webkit-flex;
+ display: flex;
+ align-items: flex-start;
+ margin: 0;
+ width: 100%;
+}
+@media (max-width: 540px) {
+ div.nbinput.container,
+ div.nboutput.container {
+ flex-direction: column;
+ }
+}
+
+/* input container */
+div.nbinput.container {
+ padding-top: 5px;
+}
+
+/* last container */
+div.nblast.container {
+ padding-bottom: 5px;
+}
+
+/* input prompt */
+div.nbinput.container div.prompt pre,
+/* for sphinx_immaterial theme: */
+div.nbinput.container div.prompt pre > code {
+ color: #307FC1;
+}
+
+/* output prompt */
+div.nboutput.container div.prompt pre,
+/* for sphinx_immaterial theme: */
+div.nboutput.container div.prompt pre > code {
+ color: #BF5B3D;
+}
+
+/* all prompts */
+div.nbinput.container div.prompt,
+div.nboutput.container div.prompt {
+ width: 4.5ex;
+ padding-top: 5px;
+ position: relative;
+ user-select: none;
+}
+
+div.nbinput.container div.prompt > div,
+div.nboutput.container div.prompt > div {
+ position: absolute;
+ right: 0;
+ margin-right: 0.3ex;
+}
+
+@media (max-width: 540px) {
+ div.nbinput.container div.prompt,
+ div.nboutput.container div.prompt {
+ width: unset;
+ text-align: left;
+ padding: 0.4em;
+ }
+ div.nboutput.container div.prompt.empty {
+ padding: 0;
+ }
+
+ div.nbinput.container div.prompt > div,
+ div.nboutput.container div.prompt > div {
+ position: unset;
+ }
+}
+
+/* disable scrollbars and line breaks on prompts */
+div.nbinput.container div.prompt pre,
+div.nboutput.container div.prompt pre {
+ overflow: hidden;
+ white-space: pre;
+}
+
+/* input/output area */
+div.nbinput.container div.input_area,
+div.nboutput.container div.output_area {
+ -webkit-flex: 1;
+ flex: 1;
+ overflow: auto;
+}
+@media (max-width: 540px) {
+ div.nbinput.container div.input_area,
+ div.nboutput.container div.output_area {
+ width: 100%;
+ }
+}
+
+/* input area */
+div.nbinput.container div.input_area {
+ border: 1px solid #e0e0e0;
+ border-radius: 2px;
+ /*background: #f5f5f5;*/
+}
+
+/* override MathJax center alignment in output cells */
+div.nboutput.container div[class*=MathJax] {
+ text-align: left !important;
+}
+
+/* override sphinx.ext.imgmath center alignment in output cells */
+div.nboutput.container div.math p {
+ text-align: left;
+}
+
+/* standard error */
+div.nboutput.container div.output_area.stderr {
+ background: #fdd;
+}
+
+/* ANSI colors */
+.ansi-black-fg { color: #3E424D; }
+.ansi-black-bg { background-color: #3E424D; }
+.ansi-black-intense-fg { color: #282C36; }
+.ansi-black-intense-bg { background-color: #282C36; }
+.ansi-red-fg { color: #E75C58; }
+.ansi-red-bg { background-color: #E75C58; }
+.ansi-red-intense-fg { color: #B22B31; }
+.ansi-red-intense-bg { background-color: #B22B31; }
+.ansi-green-fg { color: #00A250; }
+.ansi-green-bg { background-color: #00A250; }
+.ansi-green-intense-fg { color: #007427; }
+.ansi-green-intense-bg { background-color: #007427; }
+.ansi-yellow-fg { color: #DDB62B; }
+.ansi-yellow-bg { background-color: #DDB62B; }
+.ansi-yellow-intense-fg { color: #B27D12; }
+.ansi-yellow-intense-bg { background-color: #B27D12; }
+.ansi-blue-fg { color: #208FFB; }
+.ansi-blue-bg { background-color: #208FFB; }
+.ansi-blue-intense-fg { color: #0065CA; }
+.ansi-blue-intense-bg { background-color: #0065CA; }
+.ansi-magenta-fg { color: #D160C4; }
+.ansi-magenta-bg { background-color: #D160C4; }
+.ansi-magenta-intense-fg { color: #A03196; }
+.ansi-magenta-intense-bg { background-color: #A03196; }
+.ansi-cyan-fg { color: #60C6C8; }
+.ansi-cyan-bg { background-color: #60C6C8; }
+.ansi-cyan-intense-fg { color: #258F8F; }
+.ansi-cyan-intense-bg { background-color: #258F8F; }
+.ansi-white-fg { color: #C5C1B4; }
+.ansi-white-bg { background-color: #C5C1B4; }
+.ansi-white-intense-fg { color: #A1A6B2; }
+.ansi-white-intense-bg { background-color: #A1A6B2; }
+
+.ansi-default-inverse-fg { color: #FFFFFF; }
+.ansi-default-inverse-bg { background-color: #000000; }
+
+.ansi-bold { font-weight: bold; }
+.ansi-underline { text-decoration: underline; }
+
+
+div.nbinput.container div.input_area div[class*=highlight] > pre,
+div.nboutput.container div.output_area div[class*=highlight] > pre,
+div.nboutput.container div.output_area div[class*=highlight].math,
+div.nboutput.container div.output_area.rendered_html,
+div.nboutput.container div.output_area > div.output_javascript,
+div.nboutput.container div.output_area:not(.rendered_html) > img{
+ padding: 5px;
+ margin: 0;
+}
+
+/* fix copybtn overflow problem in chromium (needed for 'sphinx_copybutton') */
+div.nbinput.container div.input_area > div[class^='highlight'],
+div.nboutput.container div.output_area > div[class^='highlight']{
+ overflow-y: hidden;
+}
+
+/* hide copy button on prompts for 'sphinx_copybutton' extension ... */
+.prompt .copybtn,
+/* ... and 'sphinx_immaterial' theme */
+.prompt .md-clipboard.md-icon {
+ display: none;
+}
+
+/* Some additional styling taken form the Jupyter notebook CSS */
+.jp-RenderedHTMLCommon table,
+div.rendered_html table {
+ border: none;
+ border-collapse: collapse;
+ border-spacing: 0;
+ color: black;
+ font-size: 12px;
+ table-layout: fixed;
+}
+.jp-RenderedHTMLCommon thead,
+div.rendered_html thead {
+ border-bottom: 1px solid black;
+ vertical-align: bottom;
+}
+.jp-RenderedHTMLCommon tr,
+.jp-RenderedHTMLCommon th,
+.jp-RenderedHTMLCommon td,
+div.rendered_html tr,
+div.rendered_html th,
+div.rendered_html td {
+ text-align: right;
+ vertical-align: middle;
+ padding: 0.5em 0.5em;
+ line-height: normal;
+ white-space: normal;
+ max-width: none;
+ border: none;
+}
+.jp-RenderedHTMLCommon th,
+div.rendered_html th {
+ font-weight: bold;
+}
+.jp-RenderedHTMLCommon tbody tr:nth-child(odd),
+div.rendered_html tbody tr:nth-child(odd) {
+ background: #f5f5f5;
+}
+.jp-RenderedHTMLCommon tbody tr:hover,
+div.rendered_html tbody tr:hover {
+ background: rgba(66, 165, 245, 0.2);
+}
+
diff --git a/_static/nbsphinx-gallery.css b/_static/nbsphinx-gallery.css
new file mode 100644
index 000000000..365c27a96
--- /dev/null
+++ b/_static/nbsphinx-gallery.css
@@ -0,0 +1,31 @@
+.nbsphinx-gallery {
+ display: grid;
+ grid-template-columns: repeat(auto-fill, minmax(160px, 1fr));
+ gap: 5px;
+ margin-top: 1em;
+ margin-bottom: 1em;
+}
+
+.nbsphinx-gallery > a {
+ padding: 5px;
+ border: 1px dotted currentColor;
+ border-radius: 2px;
+ text-align: center;
+}
+
+.nbsphinx-gallery > a:hover {
+ border-style: solid;
+}
+
+.nbsphinx-gallery img {
+ max-width: 100%;
+ max-height: 100%;
+}
+
+.nbsphinx-gallery > a > div:first-child {
+ display: flex;
+ align-items: start;
+ justify-content: center;
+ height: 120px;
+ margin-bottom: 5px;
+}
diff --git a/_static/nbsphinx-no-thumbnail.svg b/_static/nbsphinx-no-thumbnail.svg
new file mode 100644
index 000000000..9dca7588f
--- /dev/null
+++ b/_static/nbsphinx-no-thumbnail.svg
@@ -0,0 +1,9 @@
+
diff --git a/_static/plus.png b/_static/plus.png
new file mode 100644
index 000000000..7107cec93
Binary files /dev/null and b/_static/plus.png differ
diff --git a/_static/pygments.css b/_static/pygments.css
new file mode 100644
index 000000000..84ab3030a
--- /dev/null
+++ b/_static/pygments.css
@@ -0,0 +1,75 @@
+pre { line-height: 125%; }
+td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
+span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
+td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
+span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
+.highlight .hll { background-color: #ffffcc }
+.highlight { background: #f8f8f8; }
+.highlight .c { color: #3D7B7B; font-style: italic } /* Comment */
+.highlight .err { border: 1px solid #FF0000 } /* Error */
+.highlight .k { color: #008000; font-weight: bold } /* Keyword */
+.highlight .o { color: #666666 } /* Operator */
+.highlight .ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */
+.highlight .cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */
+.highlight .cp { color: #9C6500 } /* Comment.Preproc */
+.highlight .cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */
+.highlight .c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */
+.highlight .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */
+.highlight .gd { color: #A00000 } /* Generic.Deleted */
+.highlight .ge { font-style: italic } /* Generic.Emph */
+.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
+.highlight .gr { color: #E40000 } /* Generic.Error */
+.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
+.highlight .gi { color: #008400 } /* Generic.Inserted */
+.highlight .go { color: #717171 } /* Generic.Output */
+.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
+.highlight .gs { font-weight: bold } /* Generic.Strong */
+.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
+.highlight .gt { color: #0044DD } /* Generic.Traceback */
+.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
+.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
+.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
+.highlight .kp { color: #008000 } /* Keyword.Pseudo */
+.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
+.highlight .kt { color: #B00040 } /* Keyword.Type */
+.highlight .m { color: #666666 } /* Literal.Number */
+.highlight .s { color: #BA2121 } /* Literal.String */
+.highlight .na { color: #687822 } /* Name.Attribute */
+.highlight .nb { color: #008000 } /* Name.Builtin */
+.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
+.highlight .no { color: #880000 } /* Name.Constant */
+.highlight .nd { color: #AA22FF } /* Name.Decorator */
+.highlight .ni { color: #717171; font-weight: bold } /* Name.Entity */
+.highlight .ne { color: #CB3F38; font-weight: bold } /* Name.Exception */
+.highlight .nf { color: #0000FF } /* Name.Function */
+.highlight .nl { color: #767600 } /* Name.Label */
+.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
+.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
+.highlight .nv { color: #19177C } /* Name.Variable */
+.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
+.highlight .w { color: #bbbbbb } /* Text.Whitespace */
+.highlight .mb { color: #666666 } /* Literal.Number.Bin */
+.highlight .mf { color: #666666 } /* Literal.Number.Float */
+.highlight .mh { color: #666666 } /* Literal.Number.Hex */
+.highlight .mi { color: #666666 } /* Literal.Number.Integer */
+.highlight .mo { color: #666666 } /* Literal.Number.Oct */
+.highlight .sa { color: #BA2121 } /* Literal.String.Affix */
+.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
+.highlight .sc { color: #BA2121 } /* Literal.String.Char */
+.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */
+.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
+.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
+.highlight .se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */
+.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
+.highlight .si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */
+.highlight .sx { color: #008000 } /* Literal.String.Other */
+.highlight .sr { color: #A45A77 } /* Literal.String.Regex */
+.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
+.highlight .ss { color: #19177C } /* Literal.String.Symbol */
+.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
+.highlight .fm { color: #0000FF } /* Name.Function.Magic */
+.highlight .vc { color: #19177C } /* Name.Variable.Class */
+.highlight .vg { color: #19177C } /* Name.Variable.Global */
+.highlight .vi { color: #19177C } /* Name.Variable.Instance */
+.highlight .vm { color: #19177C } /* Name.Variable.Magic */
+.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */
\ No newline at end of file
diff --git a/_static/searchtools.js b/_static/searchtools.js
new file mode 100644
index 000000000..7918c3fab
--- /dev/null
+++ b/_static/searchtools.js
@@ -0,0 +1,574 @@
+/*
+ * searchtools.js
+ * ~~~~~~~~~~~~~~~~
+ *
+ * Sphinx JavaScript utilities for the full-text search.
+ *
+ * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS.
+ * :license: BSD, see LICENSE for details.
+ *
+ */
+"use strict";
+
+/**
+ * Simple result scoring code.
+ */
+if (typeof Scorer === "undefined") {
+ var Scorer = {
+ // Implement the following function to further tweak the score for each result
+ // The function takes a result array [docname, title, anchor, descr, score, filename]
+ // and returns the new score.
+ /*
+ score: result => {
+ const [docname, title, anchor, descr, score, filename] = result
+ return score
+ },
+ */
+
+ // query matches the full name of an object
+ objNameMatch: 11,
+ // or matches in the last dotted part of the object name
+ objPartialMatch: 6,
+ // Additive scores depending on the priority of the object
+ objPrio: {
+ 0: 15, // used to be importantResults
+ 1: 5, // used to be objectResults
+ 2: -5, // used to be unimportantResults
+ },
+ // Used when the priority is not in the mapping.
+ objPrioDefault: 0,
+
+ // query found in title
+ title: 15,
+ partialTitle: 7,
+ // query found in terms
+ term: 5,
+ partialTerm: 2,
+ };
+}
+
+const _removeChildren = (element) => {
+ while (element && element.lastChild) element.removeChild(element.lastChild);
+};
+
+/**
+ * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping
+ */
+const _escapeRegExp = (string) =>
+ string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string
+
+const _displayItem = (item, searchTerms, highlightTerms) => {
+ const docBuilder = DOCUMENTATION_OPTIONS.BUILDER;
+ const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX;
+ const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX;
+ const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY;
+ const contentRoot = document.documentElement.dataset.content_root;
+
+ const [docName, title, anchor, descr, score, _filename] = item;
+
+ let listItem = document.createElement("li");
+ let requestUrl;
+ let linkUrl;
+ if (docBuilder === "dirhtml") {
+ // dirhtml builder
+ let dirname = docName + "/";
+ if (dirname.match(/\/index\/$/))
+ dirname = dirname.substring(0, dirname.length - 6);
+ else if (dirname === "index/") dirname = "";
+ requestUrl = contentRoot + dirname;
+ linkUrl = requestUrl;
+ } else {
+ // normal html builders
+ requestUrl = contentRoot + docName + docFileSuffix;
+ linkUrl = docName + docLinkSuffix;
+ }
+ let linkEl = listItem.appendChild(document.createElement("a"));
+ linkEl.href = linkUrl + anchor;
+ linkEl.dataset.score = score;
+ linkEl.innerHTML = title;
+ if (descr) {
+ listItem.appendChild(document.createElement("span")).innerHTML =
+ " (" + descr + ")";
+ // highlight search terms in the description
+ if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js
+ highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted"));
+ }
+ else if (showSearchSummary)
+ fetch(requestUrl)
+ .then((responseData) => responseData.text())
+ .then((data) => {
+ if (data)
+ listItem.appendChild(
+ Search.makeSearchSummary(data, searchTerms)
+ );
+ // highlight search terms in the summary
+ if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js
+ highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted"));
+ });
+ Search.output.appendChild(listItem);
+};
+const _finishSearch = (resultCount) => {
+ Search.stopPulse();
+ Search.title.innerText = _("Search Results");
+ if (!resultCount)
+ Search.status.innerText = Documentation.gettext(
+ "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories."
+ );
+ else
+ Search.status.innerText = _(
+ `Search finished, found ${resultCount} page(s) matching the search query.`
+ );
+};
+const _displayNextItem = (
+ results,
+ resultCount,
+ searchTerms,
+ highlightTerms,
+) => {
+ // results left, load the summary and display it
+ // this is intended to be dynamic (don't sub resultsCount)
+ if (results.length) {
+ _displayItem(results.pop(), searchTerms, highlightTerms);
+ setTimeout(
+ () => _displayNextItem(results, resultCount, searchTerms, highlightTerms),
+ 5
+ );
+ }
+ // search finished, update title and status message
+ else _finishSearch(resultCount);
+};
+
+/**
+ * Default splitQuery function. Can be overridden in ``sphinx.search`` with a
+ * custom function per language.
+ *
+ * The regular expression works by splitting the string on consecutive characters
+ * that are not Unicode letters, numbers, underscores, or emoji characters.
+ * This is the same as ``\W+`` in Python, preserving the surrogate pair area.
+ */
+if (typeof splitQuery === "undefined") {
+ var splitQuery = (query) => query
+ .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu)
+ .filter(term => term) // remove remaining empty strings
+}
+
+/**
+ * Search Module
+ */
+const Search = {
+ _index: null,
+ _queued_query: null,
+ _pulse_status: -1,
+
+ htmlToText: (htmlString) => {
+ const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html');
+ htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() });
+ const docContent = htmlElement.querySelector('[role="main"]');
+ if (docContent !== undefined) return docContent.textContent;
+ console.warn(
+ "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template."
+ );
+ return "";
+ },
+
+ init: () => {
+ const query = new URLSearchParams(window.location.search).get("q");
+ document
+ .querySelectorAll('input[name="q"]')
+ .forEach((el) => (el.value = query));
+ if (query) Search.performSearch(query);
+ },
+
+ loadIndex: (url) =>
+ (document.body.appendChild(document.createElement("script")).src = url),
+
+ setIndex: (index) => {
+ Search._index = index;
+ if (Search._queued_query !== null) {
+ const query = Search._queued_query;
+ Search._queued_query = null;
+ Search.query(query);
+ }
+ },
+
+ hasIndex: () => Search._index !== null,
+
+ deferQuery: (query) => (Search._queued_query = query),
+
+ stopPulse: () => (Search._pulse_status = -1),
+
+ startPulse: () => {
+ if (Search._pulse_status >= 0) return;
+
+ const pulse = () => {
+ Search._pulse_status = (Search._pulse_status + 1) % 4;
+ Search.dots.innerText = ".".repeat(Search._pulse_status);
+ if (Search._pulse_status >= 0) window.setTimeout(pulse, 500);
+ };
+ pulse();
+ },
+
+ /**
+ * perform a search for something (or wait until index is loaded)
+ */
+ performSearch: (query) => {
+ // create the required interface elements
+ const searchText = document.createElement("h2");
+ searchText.textContent = _("Searching");
+ const searchSummary = document.createElement("p");
+ searchSummary.classList.add("search-summary");
+ searchSummary.innerText = "";
+ const searchList = document.createElement("ul");
+ searchList.classList.add("search");
+
+ const out = document.getElementById("search-results");
+ Search.title = out.appendChild(searchText);
+ Search.dots = Search.title.appendChild(document.createElement("span"));
+ Search.status = out.appendChild(searchSummary);
+ Search.output = out.appendChild(searchList);
+
+ const searchProgress = document.getElementById("search-progress");
+ // Some themes don't use the search progress node
+ if (searchProgress) {
+ searchProgress.innerText = _("Preparing search...");
+ }
+ Search.startPulse();
+
+ // index already loaded, the browser was quick!
+ if (Search.hasIndex()) Search.query(query);
+ else Search.deferQuery(query);
+ },
+
+ /**
+ * execute search (requires search index to be loaded)
+ */
+ query: (query) => {
+ const filenames = Search._index.filenames;
+ const docNames = Search._index.docnames;
+ const titles = Search._index.titles;
+ const allTitles = Search._index.alltitles;
+ const indexEntries = Search._index.indexentries;
+
+ // stem the search terms and add them to the correct list
+ const stemmer = new Stemmer();
+ const searchTerms = new Set();
+ const excludedTerms = new Set();
+ const highlightTerms = new Set();
+ const objectTerms = new Set(splitQuery(query.toLowerCase().trim()));
+ splitQuery(query.trim()).forEach((queryTerm) => {
+ const queryTermLower = queryTerm.toLowerCase();
+
+ // maybe skip this "word"
+ // stopwords array is from language_data.js
+ if (
+ stopwords.indexOf(queryTermLower) !== -1 ||
+ queryTerm.match(/^\d+$/)
+ )
+ return;
+
+ // stem the word
+ let word = stemmer.stemWord(queryTermLower);
+ // select the correct list
+ if (word[0] === "-") excludedTerms.add(word.substr(1));
+ else {
+ searchTerms.add(word);
+ highlightTerms.add(queryTermLower);
+ }
+ });
+
+ if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js
+ localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" "))
+ }
+
+ // console.debug("SEARCH: searching for:");
+ // console.info("required: ", [...searchTerms]);
+ // console.info("excluded: ", [...excludedTerms]);
+
+ // array of [docname, title, anchor, descr, score, filename]
+ let results = [];
+ _removeChildren(document.getElementById("search-progress"));
+
+ const queryLower = query.toLowerCase();
+ for (const [title, foundTitles] of Object.entries(allTitles)) {
+ if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) {
+ for (const [file, id] of foundTitles) {
+ let score = Math.round(100 * queryLower.length / title.length)
+ results.push([
+ docNames[file],
+ titles[file] !== title ? `${titles[file]} > ${title}` : title,
+ id !== null ? "#" + id : "",
+ null,
+ score,
+ filenames[file],
+ ]);
+ }
+ }
+ }
+
+ // search for explicit entries in index directives
+ for (const [entry, foundEntries] of Object.entries(indexEntries)) {
+ if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) {
+ for (const [file, id] of foundEntries) {
+ let score = Math.round(100 * queryLower.length / entry.length)
+ results.push([
+ docNames[file],
+ titles[file],
+ id ? "#" + id : "",
+ null,
+ score,
+ filenames[file],
+ ]);
+ }
+ }
+ }
+
+ // lookup as object
+ objectTerms.forEach((term) =>
+ results.push(...Search.performObjectSearch(term, objectTerms))
+ );
+
+ // lookup as search terms in fulltext
+ results.push(...Search.performTermsSearch(searchTerms, excludedTerms));
+
+ // let the scorer override scores with a custom scoring function
+ if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item)));
+
+ // now sort the results by score (in opposite order of appearance, since the
+ // display function below uses pop() to retrieve items) and then
+ // alphabetically
+ results.sort((a, b) => {
+ const leftScore = a[4];
+ const rightScore = b[4];
+ if (leftScore === rightScore) {
+ // same score: sort alphabetically
+ const leftTitle = a[1].toLowerCase();
+ const rightTitle = b[1].toLowerCase();
+ if (leftTitle === rightTitle) return 0;
+ return leftTitle > rightTitle ? -1 : 1; // inverted is intentional
+ }
+ return leftScore > rightScore ? 1 : -1;
+ });
+
+ // remove duplicate search results
+ // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept
+ let seen = new Set();
+ results = results.reverse().reduce((acc, result) => {
+ let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(',');
+ if (!seen.has(resultStr)) {
+ acc.push(result);
+ seen.add(resultStr);
+ }
+ return acc;
+ }, []);
+
+ results = results.reverse();
+
+ // for debugging
+ //Search.lastresults = results.slice(); // a copy
+ // console.info("search results:", Search.lastresults);
+
+ // print the results
+ _displayNextItem(results, results.length, searchTerms, highlightTerms);
+ },
+
+ /**
+ * search for object names
+ */
+ performObjectSearch: (object, objectTerms) => {
+ const filenames = Search._index.filenames;
+ const docNames = Search._index.docnames;
+ const objects = Search._index.objects;
+ const objNames = Search._index.objnames;
+ const titles = Search._index.titles;
+
+ const results = [];
+
+ const objectSearchCallback = (prefix, match) => {
+ const name = match[4]
+ const fullname = (prefix ? prefix + "." : "") + name;
+ const fullnameLower = fullname.toLowerCase();
+ if (fullnameLower.indexOf(object) < 0) return;
+
+ let score = 0;
+ const parts = fullnameLower.split(".");
+
+ // check for different match types: exact matches of full name or
+ // "last name" (i.e. last dotted part)
+ if (fullnameLower === object || parts.slice(-1)[0] === object)
+ score += Scorer.objNameMatch;
+ else if (parts.slice(-1)[0].indexOf(object) > -1)
+ score += Scorer.objPartialMatch; // matches in last name
+
+ const objName = objNames[match[1]][2];
+ const title = titles[match[0]];
+
+ // If more than one term searched for, we require other words to be
+ // found in the name/title/description
+ const otherTerms = new Set(objectTerms);
+ otherTerms.delete(object);
+ if (otherTerms.size > 0) {
+ const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase();
+ if (
+ [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0)
+ )
+ return;
+ }
+
+ let anchor = match[3];
+ if (anchor === "") anchor = fullname;
+ else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname;
+
+ const descr = objName + _(", in ") + title;
+
+ // add custom score for some objects according to scorer
+ if (Scorer.objPrio.hasOwnProperty(match[2]))
+ score += Scorer.objPrio[match[2]];
+ else score += Scorer.objPrioDefault;
+
+ results.push([
+ docNames[match[0]],
+ fullname,
+ "#" + anchor,
+ descr,
+ score,
+ filenames[match[0]],
+ ]);
+ };
+ Object.keys(objects).forEach((prefix) =>
+ objects[prefix].forEach((array) =>
+ objectSearchCallback(prefix, array)
+ )
+ );
+ return results;
+ },
+
+ /**
+ * search for full-text terms in the index
+ */
+ performTermsSearch: (searchTerms, excludedTerms) => {
+ // prepare search
+ const terms = Search._index.terms;
+ const titleTerms = Search._index.titleterms;
+ const filenames = Search._index.filenames;
+ const docNames = Search._index.docnames;
+ const titles = Search._index.titles;
+
+ const scoreMap = new Map();
+ const fileMap = new Map();
+
+ // perform the search on the required terms
+ searchTerms.forEach((word) => {
+ const files = [];
+ const arr = [
+ { files: terms[word], score: Scorer.term },
+ { files: titleTerms[word], score: Scorer.title },
+ ];
+ // add support for partial matches
+ if (word.length > 2) {
+ const escapedWord = _escapeRegExp(word);
+ Object.keys(terms).forEach((term) => {
+ if (term.match(escapedWord) && !terms[word])
+ arr.push({ files: terms[term], score: Scorer.partialTerm });
+ });
+ Object.keys(titleTerms).forEach((term) => {
+ if (term.match(escapedWord) && !titleTerms[word])
+ arr.push({ files: titleTerms[word], score: Scorer.partialTitle });
+ });
+ }
+
+ // no match but word was a required one
+ if (arr.every((record) => record.files === undefined)) return;
+
+ // found search word in contents
+ arr.forEach((record) => {
+ if (record.files === undefined) return;
+
+ let recordFiles = record.files;
+ if (recordFiles.length === undefined) recordFiles = [recordFiles];
+ files.push(...recordFiles);
+
+ // set score for the word in each file
+ recordFiles.forEach((file) => {
+ if (!scoreMap.has(file)) scoreMap.set(file, {});
+ scoreMap.get(file)[word] = record.score;
+ });
+ });
+
+ // create the mapping
+ files.forEach((file) => {
+ if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1)
+ fileMap.get(file).push(word);
+ else fileMap.set(file, [word]);
+ });
+ });
+
+ // now check if the files don't contain excluded terms
+ const results = [];
+ for (const [file, wordList] of fileMap) {
+ // check if all requirements are matched
+
+ // as search terms with length < 3 are discarded
+ const filteredTermCount = [...searchTerms].filter(
+ (term) => term.length > 2
+ ).length;
+ if (
+ wordList.length !== searchTerms.size &&
+ wordList.length !== filteredTermCount
+ )
+ continue;
+
+ // ensure that none of the excluded terms is in the search result
+ if (
+ [...excludedTerms].some(
+ (term) =>
+ terms[term] === file ||
+ titleTerms[term] === file ||
+ (terms[term] || []).includes(file) ||
+ (titleTerms[term] || []).includes(file)
+ )
+ )
+ break;
+
+ // select one (max) score for the file.
+ const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w]));
+ // add result to the result list
+ results.push([
+ docNames[file],
+ titles[file],
+ "",
+ null,
+ score,
+ filenames[file],
+ ]);
+ }
+ return results;
+ },
+
+ /**
+ * helper function to return a node containing the
+ * search summary for a given text. keywords is a list
+ * of stemmed words.
+ */
+ makeSearchSummary: (htmlText, keywords) => {
+ const text = Search.htmlToText(htmlText);
+ if (text === "") return null;
+
+ const textLower = text.toLowerCase();
+ const actualStartPosition = [...keywords]
+ .map((k) => textLower.indexOf(k.toLowerCase()))
+ .filter((i) => i > -1)
+ .slice(-1)[0];
+ const startWithContext = Math.max(actualStartPosition - 120, 0);
+
+ const top = startWithContext === 0 ? "" : "...";
+ const tail = startWithContext + 240 < text.length ? "..." : "";
+
+ let summary = document.createElement("p");
+ summary.classList.add("context");
+ summary.textContent = top + text.substr(startWithContext, 240).trim() + tail;
+
+ return summary;
+ },
+};
+
+_ready(Search.init);
diff --git a/_static/sphinx_highlight.js b/_static/sphinx_highlight.js
new file mode 100644
index 000000000..8a96c69a1
--- /dev/null
+++ b/_static/sphinx_highlight.js
@@ -0,0 +1,154 @@
+/* Highlighting utilities for Sphinx HTML documentation. */
+"use strict";
+
+const SPHINX_HIGHLIGHT_ENABLED = true
+
+/**
+ * highlight a given string on a node by wrapping it in
+ * span elements with the given class name.
+ */
+const _highlight = (node, addItems, text, className) => {
+ if (node.nodeType === Node.TEXT_NODE) {
+ const val = node.nodeValue;
+ const parent = node.parentNode;
+ const pos = val.toLowerCase().indexOf(text);
+ if (
+ pos >= 0 &&
+ !parent.classList.contains(className) &&
+ !parent.classList.contains("nohighlight")
+ ) {
+ let span;
+
+ const closestNode = parent.closest("body, svg, foreignObject");
+ const isInSVG = closestNode && closestNode.matches("svg");
+ if (isInSVG) {
+ span = document.createElementNS("http://www.w3.org/2000/svg", "tspan");
+ } else {
+ span = document.createElement("span");
+ span.classList.add(className);
+ }
+
+ span.appendChild(document.createTextNode(val.substr(pos, text.length)));
+ const rest = document.createTextNode(val.substr(pos + text.length));
+ parent.insertBefore(
+ span,
+ parent.insertBefore(
+ rest,
+ node.nextSibling
+ )
+ );
+ node.nodeValue = val.substr(0, pos);
+ /* There may be more occurrences of search term in this node. So call this
+ * function recursively on the remaining fragment.
+ */
+ _highlight(rest, addItems, text, className);
+
+ if (isInSVG) {
+ const rect = document.createElementNS(
+ "http://www.w3.org/2000/svg",
+ "rect"
+ );
+ const bbox = parent.getBBox();
+ rect.x.baseVal.value = bbox.x;
+ rect.y.baseVal.value = bbox.y;
+ rect.width.baseVal.value = bbox.width;
+ rect.height.baseVal.value = bbox.height;
+ rect.setAttribute("class", className);
+ addItems.push({ parent: parent, target: rect });
+ }
+ }
+ } else if (node.matches && !node.matches("button, select, textarea")) {
+ node.childNodes.forEach((el) => _highlight(el, addItems, text, className));
+ }
+};
+const _highlightText = (thisNode, text, className) => {
+ let addItems = [];
+ _highlight(thisNode, addItems, text, className);
+ addItems.forEach((obj) =>
+ obj.parent.insertAdjacentElement("beforebegin", obj.target)
+ );
+};
+
+/**
+ * Small JavaScript module for the documentation.
+ */
+const SphinxHighlight = {
+
+ /**
+ * highlight the search words provided in localstorage in the text
+ */
+ highlightSearchWords: () => {
+ if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight
+
+ // get and clear terms from localstorage
+ const url = new URL(window.location);
+ const highlight =
+ localStorage.getItem("sphinx_highlight_terms")
+ || url.searchParams.get("highlight")
+ || "";
+ localStorage.removeItem("sphinx_highlight_terms")
+ url.searchParams.delete("highlight");
+ window.history.replaceState({}, "", url);
+
+ // get individual terms from highlight string
+ const terms = highlight.toLowerCase().split(/\s+/).filter(x => x);
+ if (terms.length === 0) return; // nothing to do
+
+ // There should never be more than one element matching "div.body"
+ const divBody = document.querySelectorAll("div.body");
+ const body = divBody.length ? divBody[0] : document.querySelector("body");
+ window.setTimeout(() => {
+ terms.forEach((term) => _highlightText(body, term, "highlighted"));
+ }, 10);
+
+ const searchBox = document.getElementById("searchbox");
+ if (searchBox === null) return;
+ searchBox.appendChild(
+ document
+ .createRange()
+ .createContextualFragment(
+ '
The Catalogue Toolkit module provides functionalities for the compilation of a homogenised catalogue starting from a collection of catalogues with different origins and magnitudes.
+
The formats of the original catalogues supported are:
The module contains tools to transform between these different catalogue types, retaining the most neccessary information. The easiest way to build a homogenised catalogue within this framework is to run a bash script which includes the required inputs for each stage of the model and to specify the parameters with a toml file. We demonstrate below how to set this up, but individual steps can also be called directly in python if preffered.
The bash script specifies all file locations and steps for generating a homogenised model. At each step, we provide a different .toml file specifying the necessary parameters. If you have all the neccessary files set out as below (and named run_all.sh) you should have no problems in running the script with ./run_all.sh
The first step in compiling a catalogue is merging information from different sources. This might include a global catalogue (e.g. ISC-GEM or GCMT), and various local catalogues that are more likely to have recorded smaller magnitude events, or contain more accurate locations. The merge tools are designed to allow multiple catalogues to be combined into one, regardless of original catalogue formats, and to retain only unique events across the catalogues.
+
As we see in the bash script above, we run the merge with oqmcatmergemerge.toml where merge.toml contains all the necessary information for the merge. The merge function takes the toml file as its single argument. An example of merge .toml file might look like this:
+
[general]
+## Set these or your output files will have bad names and be in very confusing places!
+output_path="./../h5/"
+output_prefix="homogenisedcat_"
+
+[[catalogues]]
+code="ISCGEM"
+name="ISC GEM Version 10.0"
+filename="./iscgem10pt0.csv"
+type="csv"
+
+[[catalogues]]
+code="local"
+name="local version 0.0"
+filename="./local_00_cat.csv"
+type="csv"
+delta_ll=30
+delta_t=10
+buff_ll=0.0
+buff_t=5.0
+use_kms=true
+#use_ids = true
+
+
+
This contains some general settings for the output, namely the path where the output should be saved and a prefix that will be used to name the file. If you are running the merge function as part of a homogenisation bash script, it is strongly recommended to make this consistent with the CASE argument (as in the example)! The toml file should also be named merge_$CASE. A minimumn magnitude can also be specified here, which will filter the catalogue to events above the specified minimum, and a polygon describing a geographic area of interest can also be added to filter the catalogue to that region.
+The rest of the merge toml should contain the details of the catalogues to be merged. For each catalogue, it is necessary to specify a code, name, file location and catalogue type. The code and name are for the user to choose, but the code should be short as it will feature in the final catalogue to indicate which catalogue the event came from. The type argument will be used to process the catalogue, so should be one of “csv”, “isf” or “gcmt”.
+
To ensure events are not duplicated, the user can specify space-time windows over which events are considered to be the same. These are specified using delta_t for time and delta_ll for distance, where delta_ll can be specified in degrees or kms by specifying use_km=True. For both parameters, these can be specified as a single value, as a year-value pair to allow for changes in location/temporal accuracy in different time periods, or as a function of magnitude m, which is particularly useful when using the GCMT catalogue, which has some significant differences in location/time compared to other catalogues due to the moment tensor inversion considering these as model parameters. This can result in significant differences for large events, some of which may be so large that they are better removed manually (for example, the 3.5 minute time difference between ISC_GEM and GCMT for the 2004 Sumatra-Andaman earthquake). For the window parameters, we can also specify a buffer (buff_ll or buff_t) which highlights events which fall within some space/time of the window parameter and flags these as potential duplicates. The units for buff_ll should be consistent with those used in delta_ll and specified using the use_kms argument (i.e. set use_kms = True to use km units or use_kms = False to use lat/lon). In the case where catalogues to be merged might come from the same source or otherwise have matching event ids, the use_ids argument will remove duplicated event ids directly.
+
The output of the merge function will be two h5 files specifying information on the origin _otab.h5 and the magnitudes _mtab.h5. The origin file will contain the event locations, depths, agency information and focal mechanism parameters where available, while the magnitudes file will include information on the event magnitude and uncertainties.
The next step in creating a catalogue is the homogenisation of magnitudes to moment magnitude M_w. The catalogue toolkit provides different tools to help with this. Homogenising magnitudes is normally done by using a regression to map from one magnitude to a desired magnitude. This requires that an event would need to be recorded in both magnitudes, and ideally a good number of matching events to ensure a significant result. In the toolkit, we use odr regression with scipy to find the best fit model, with options to fit a simple linear regression, an exponential regression, a polynomial regression, or a bilinear regression with a fixed point of change in slope. The function outputs parameters for the chosen fit, plus uncertainty that should be passed on to the next stage.
+
from openquake.cat.catalogue_query_tools import CatalogueRegressor
+from openquake.cat.hmg.hmg import get_mag_selection_condition
+import pandas as pd
+import numpy as np
+
+def build_magnitude_query(mag_agencies, logic_connector):
+"""
+Creates a string for querying a DataFrame with magnitude data.
+
+:param mag_agency:
+A dictionary with magnitude type as key and a list of magnitude agencies as values
+:param logic_connector"
+A string. Can be either "and" or "or"
+:return:
+A string defining a query for an instance of:class:`pandas.DataFrame`
+"""
+query=""
+i=0
+for mag_type in mag_agencies:
+logic="\" if logic_connector == 'or' else "&"
+for agency in mag_agencies[mag_type]:
+cnd=get_mag_selection_condition(agency, mag_type, df_name="mdf")
+query +=" {:s} ({:s})".format(logic, cnd) if i > 0 else "({:s})".format(cnd)
+i +=1
+return query
+
+
+def get_data(res):
+"""
+From a DataFrame obtained by merging two magnitude DataFrames it creates the input needed
+for performing orthogonal regression.
+
+:param res:
+:class:`pandas.DataFrame`
+"""
+data=np.zeros((len(res), 4))
+data[:, 0] = res["value_x"].values
+data[:, 1] = res["sigma_x"].values
+data[:, 2] = res["value_y"].values
+data[:, 3] = res["sigma_y"].values
+return data
+
+def getd(mdf, agenciesA, agenciesB):
+queryA=build_magnitude_query(agenciesA, "or")
+queryB=build_magnitude_query(agenciesB, "or")
+
+selA=mdf.loc[eval(queryA), :]
+selB=mdf.loc[eval(queryB), :]
+
+res=selA.merge(selB, on=["eventID"], how="inner")
+print("Number of values:{:d}".format(len(res)))
+
+data=get_data(res)
+return data
+
+def print_mbt_conversion(results, agency, magtype, **kwargs):
+print("\n")
+print("[magnitude.{:s}.{:s}]".format(agency, magtype))
+print("# This is an ad-hoc conversion equation")
+
+if "corner" in kwargs:
+print("low_mags=[0.0, {:.1f}]".format(float(kwargs["corner"])))
+fmt="conv_eqs = [\"{:.4f} + {:.4f} * m\"]"
+print(fmt.format(results.beta[0], results.beta[1]))
+else:
+print("low_mags=[0.0]")
+fmt="conv_eqs = [\"{:.4f} + {:.4f} * m\"]"
+print(fmt.format(results.beta[0], results.beta[1]))
+
+fmt="std_devs = [{:.4f}, {:.4f}]"
+print(fmt.format(results.sd_beta[0], results.sd_beta[1]))
+print("\n")
+
+
+
Using the above functions, we can query our catalogues to identify events that are present in both catalogues in both magnitude types. We can then use these to build a regression model and identify a relationship between different magnitude types. In the example below, we select mw magnitudes from our local catalogue and Mw magnitudes from ISCGEM. We specify a polynomial fit to the data, with starting parameter estimates for the regression of 1.2 and 0.7
+
agency="local"
+magtype="mw"
+amA={magtype: [agency]}
+amB={"Mw": ["ISCGEM"]}
+datambi=getd(gm, amA, amB)
+
+regress=CatalogueRegressor.from_array(datambi, keys="({:s}, {:s}) | (Mw)".format(agency, magtype))
+# Regression type to fit and starting parameters
+results=regress.run_regression("polynomial", [1.2, 0.7])
+# Results
+# Print resulting best fit
+print_mbt_conversion(results, agency, magtype)
+# plot the regression
+regress.plot_model_density(overlay=False, sample=0)
+
+
+
Alternatively, if we wanted an example with a bilinear fit with a break in slope at M5.8, we could say
This would give us a different fit to our data and a different equation to supply to the homogenisation toml.
+
Where there are not enough events to allow for a direct regression or we are unhappy with the fit for our data, there are many conversions in the literature which may be useful. This process may take some revising and iterating - it is sometimes very difficult to identify a best fit, especially where we have few datapoints or highly uncertain data. Once we are happy with the fits to our data, we can add the regression equation to the homogenisation .toml file. This process should be repeated for every magnitude we wish to convert to Mw.
+
The final homogenisation step itself is also controlled by a toml file, where each observed magnitude is specified individually and the regression coefficients and uncertainty are included. It is also necessary to specify a hierarchy of catalogues so that a preferred catalogue is used for the magnitude where the event has multiple entries. In the example below, we merge the ISCGEM and a local catalogue, preferring ISCGEM magnitudes where available as specified in the ranking. Because the ISCGEM already provides magnitudes in Mw, we simply retain all Mw magnitudes from ISCGEM. In this example, our local catalogue has two different magnitude types for which we have derived a regression. We specify how to convert to the standardised Mw from the local.mw and the standard deviations, which are outputs of the fitting we carried out above.
+
# This file contains a set of rules for the selection of origins and
+# the homogenisation of magnitudes. Used for the construction of the global catalogue
+# This version uses ad-hoc conversion parameters for ms and mb magnitudes, and that all Mw magnitudes are consistent
+#
+# Origin selection
+#
+
+[origin]
+# Specify preferred origin when multiple are available.
+ranking=["ISCGEM", "local"]
+
+#
+# Magnitude-conversion: Mw
+#
+# These are magnitudes we are happy with: don't convert
+# Homogenise all catalogues to iscgem Mw
+[magnitude.ISCGEM.Mw]
+low_mags=[0.0]
+conv_eqs=["m"]
+
+[magnitude.local.mw]
+low_mags=[0.0]
+conv_eqs=["0.1079 + 0.9806 * m"]
+std_devs=[0.0063, 0.0011]
+
+
+[magnitude.local.mww]
+low_mags=[0.0]
+conv_eqs=["0.1928 + 0.9757 * m"]
+std_devs=[0.0091, 0.0016]
+
+
+
The actual homogenisation step is carried out by calling
+oqmcathomogenise$ARG1$ARG2$ARG3
+as in the bash script example, where $ARG1 is the homogenisation toml file and and $ARG2 and $ARG3 are the hdf5 file outputs from the merge step, describing the origins and magnitude information for the merged catalogue respectively.
A common issue when merging catalogues is that there are differences in earthquake metadata in different catalogues. To avoid creating a catalogue with duplicate events, we specify the time and space criteria in the merge stage, so that events that are very close in time and space will not be added to the catalogue.
+We can check how well we have achieved this by looking at events that are retained in the final catalogue but fall within a certain time and space window. We can use the check_duplicates function to do this, which takes in a check.toml file and the homogenised catalogue h5 file. A check.toml file might look like this:
where delta_ll and dela_t specify the time and space windows (in seconds and degrees respctively) to test for duplicate events. Again, we can specify different time limits and write the limits as functions of magnitudes i.e.:
The check_duplicates output is a geojson file that draws lines between events that meet the criteria in the check.toml file. Each line segment contains the details of the two events, including their original magnitudes, the agencies that the events are taken from and the time and spatial distance between the two events, so that a user can check if they are happy for these events to be retained or would prefer to iterate on the parameters.
+
The process of building a reliable homogenised catalogue is iterative: at any step we may identify changes that should be made to merge criteria or regression parameters. It is also important to look at the resulting frequency-magnitude distribution to idenitfy any obvious changes in slope, which may indicate that our regressions are not performing as well as we would like.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/ghm.html b/contents/ghm.html
new file mode 100644
index 000000000..80bbf676e
--- /dev/null
+++ b/contents/ghm.html
@@ -0,0 +1,143 @@
+
+
+
+
+
+
+ Global Hazard Map (ghm) module — OpenQuake Model Building Toolkit Suite documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
The Global Hazard Map module contains code used to produce homogenised hazard maps using results obtained using a collection of PSHA input models. For the most part this is internal code used by GEM personnel for building various versions of the global seismic hazard maps.
Given a model, an almost equally spaced grid of points can be created using the get_sites.py tool. Note that this is atool added in 2022. The grids used for the maps created before the end of 2022 were obtained with an inhouse code that we abandoned in favour of the H3 library (see https://h3geo.org/).
+
+
To learn about the information required by get_sites.py, you can run the following:
+
>pythonget_sites.py
+
+
+
+
For example, for the construction of grid of points covering Europe you can use:
The oq-mbt is installed with the procedure described in the following.
+Note that this procedure implies the installation of the OpenQuake engine.
+It was tested on Mac OS and Linux systems.
+
+
Open a terminal and move to the folder where to intend to install the tools;
+
Create a virtual environment with python3-mvenvvenv
+
Activate the virtual environment sourcevenv/bin/activate
+
Update pip pipinstall-Upip
+
Enter the virtual environment cdvenv and create a directory for storing source code mkdirsrc;cdsrc
+
Clone the OpenQuake engine gitclonegit@github.com:gem/oq-engine.git
+
Complete a development installation with cd.. then pipinstall-r./src/oq-engine/requirements-py36-macos.txt and finally pipinstall-e./src/oq-engine/
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/man.html b/contents/man.html
new file mode 100644
index 000000000..bd1483312
--- /dev/null
+++ b/contents/man.html
@@ -0,0 +1,143 @@
+
+
+
+
+
+
+ Model ANalysis (man) module — OpenQuake Model Building Toolkit Suite documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
The Model Analysis module contains a number of tools for analyzing various characteristics of hazard input models. Below we provide a description of the main functionalities available. We start with a brief description of the structure of a Probabilistic Seismic Hazard Analysis (PSHA) Input Model for the OpenQuake Engine.
+
+
The structure of a PSHA input model for the OpenQuake engine
+
A PSHA Input Model contains two main components: The seismic source characterization and the ground-motion characterization.
The Seismic Source Characterisation (SSC) contains the information necessary to describe the location of the earthquake sources, their geometries, the process with which they generate earthquakes and the associated (epistemic) uncertainties.
+
In its simplest form, the Seismic Source Characterisation contains a Seismic Source Model (i.e. a list of earthquake sources) and the Seismic Source Logic Tree with one Branch Set containing one Branch.
The Ground-Motion Characterisation contains the information necessary to describe the models used to compute shaking at the investigated sites for all ruptures admitted by the SSC and the associated epistemic uncertainties.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/mbt.html b/contents/mbt.html
new file mode 100644
index 000000000..c063a163f
--- /dev/null
+++ b/contents/mbt.html
@@ -0,0 +1,135 @@
+
+
+
+
+
+
+ Model Building Toolkit (mbt) module — OpenQuake Model Building Toolkit Suite documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Landslides and liquefaction are well-known perils that accompany earthquakes.
+Basic models to describe their occurrence have been around for decades and are
+constantly improving. However, these models have rarely been incorporated into
+PSHA.
+
The tools presented here are implementations of some of the more common and
+appropriate secondary perils models. The intention is seamless incorporation of
+these models into PSH(R)A calculations done through the OpenQuake Engine, though
+the incorporation is a work in progress.
+
Tools for preparing the data for these models are also presented. This can be a
+non-trivial challenge, and consistent and correct data preparation is necessary
+for accurate secondary peril hazard and risk calculations.
Site characterization for probabilistic liquefaction analysis
+
There are many methods to calculate the probabilities and displacements that
+result from liquefaction. In OpenQuake, we have implemented two of these, the
+methods developed by the US Federal Emergency Management Agency through their
+HAZUS project, and a statistical method developed by Zhu et al (2015).
+
These methods require different input datasets. The HAZUS methods are
+simplified from older, more comprehensive liquefaction evaluations that would be
+made at a single site following in-depth geotechnical analysis; the HAZUS
+methods retain their reliance upon geotechnical parameters that may be measured
+or inferred at the study sites. The methods by Zhu et al (2015) were developed
+to only use data that can be derived from a digital elevation model (DEM), but
+in practice, the datasets must be chosen carefully for the statistical relations
+to hold. Furthermore, Zhu’s methods do not predict displacements from
+liquefaction, so the HAZUS site characterizations must be used for displacement
+calculations regardless of the methods used to calculate the probabilities of
+liquefaction.
Spatial resolution and accuracy of data and site characterization
+
Much like traditional seismic hazard analysis, liquefaction analysis may range
+from low-resolution analysis over broad regions to very high resolution analysis
+of smaller areas. With advances in computing power, it is possible to run
+calculations for tens or hundreds of thousands of earthquakes at tens or
+hundreds of thousands of sites in a short amount of time on a personal computer,
+giving us the ability to work at a high resolution over a broad area, and
+considering a very comprehensive suite of earthquake sources. In principle,
+the methods should be reasonably scale-independent but in practice this isn’t
+always the case.
+
Two of the major issues that can arise are the limited spatial resolutions of
+key datasets and the spatial misalignments of different datasets.
+
Some datasets, particularly those derived from digital elevation models, must be
+of a specific resolution or source to be used accurately in these calculations.
+For example, if Vs30 is calculated from slope following methods developed by
+Wald and Allen (2007), the slope should be calculated from a DEM with a
+resolution of around 1 km. Higher resolution DEMs tend to have higher slopes at
+a given point because the slope is averaged over smaller areas. The
+mathematical correspondance between slope and Vs30 was developed for DEMs of
+about 1 km resolution, so if modern DEMs with resolutions of 90 m or less are
+used, the resulting Vs30 values will be too high.
+
In and of itself, this is not necessarily a problem. The issues can arise when
+the average spacing of the sites is much lower than the resolution of the data,
+or the characteristics of the sites vary over spatial distances much less than
+the data, so that important variability between sites is lost.
+
The misalignment of datasets is another issue. Datasets derived from geologic
+mapping or other vector-type geospatial data may be made at spatial resolutions
+much higher or lower than those derived from digital elevation data or other
+raster geospatial datasets (particularly for 1 km raster data as discussed
+above). This can cause a situation where irregular geographic or geologic
+features such as rivers may be in different locations in two datasets, which can
The HAZUS methods require several variables to characterize the ground shaking
+and the site response:
+
+
Earthquake magnitude
+
Peak Ground Acceleration (PGA)
+
Liquefaction susceptibility category
+
Groundwater depth
+
+
The magnitude of the earthquake and the resulting PGA may be calculated by
+OpenQuake during a scenario or event-based PSHA, or alternatively from ShakeMap
+data or similar for real earthquakes, or through other methods. The earthquake
+magnitude should be given as the moment magnitude or work magnitude (M or
+MW). PGA should be provided for each site in units of g (i.e.,
+9.81 m/s2).
The HAZUS methods require that each site be assigned into a liquefaction
+susceptibility category. These categories are ordinal variables ranging from ‘no
+susceptibility’ to ‘very high susceptibility’. The categorization is based on
+geologic and geotechnical characteristics of the site, including the age, grain
+size and strength of the deposits or rock units.
+
For a regional probabilistic liquefaction analysis, the categorization will be
+based on a geologic map focusing on Quaternary geologic units. The analyst will
+typically associate each geologic unit with a liquefaction susceptibility class,
+based on the description or characteristics of the unit. (Please note that there
+will typically be far fewer geologic units than individual unit polygons or
+contiguous regions on a geologic map; the associations described here should
+generally work for each unit rather than each polygon.)
+
Please see the HAZUS manual, Section 4-21, for more information on
+associating geologic units with susceptibility classes. The descriptions of the
+susceptibility classes may not align perfectly with the descriptions of the
+geologic units, and therefore the association may have some uncertainty.
+Consulting a local or regional geotechnical engineer or geologist may be
+helpful. Furthermore, may be prudent to run analyses multiple times, changing
+the associations to quantify the effects on the final results, and perhaps
+creating a final weighted average of the results.
+
Once each geologic map unit has been associated with a liquefaction
+susceptibility class, each site must be associated with a geologic unit. This is
+most readily done through a spatial join operation in a GIS program.
The groundwater depth parameter is the mean depth from the surface of the soil
+to the water table, in meters. Estimation of this parameter from remote sensing
+data is quite challenging. It may range from less than a meter near major water
+bodies in humid regions to tens of meters in dry, rugged areas. Furthermore,
+this value may fluctuate with recent or seasonal rainfall. Sensitivity testing
+of this parameter throughout reasonable ranges of uncertainty for each site is
+recommended.
The horizontal displacements from lateral spreading may be calculated through
+HAZUS methods as well. These calculations do not require additional data or site
+characterization. However, if methods are used for calculating liquefaction
+probabilities that do not use the HAZUS site classifications (such as Zhu et al
+2015), then these classifications will have to be done in order to calculate the
+displacements.
The liquefaction model by Zhu et al. (2015) calculates the probability of
+liquefaction via logistic regression of a few variables that are, in principle,
+easily derived from digital elevation data. In practice, there are strict
+requirements on the spatial resolution and sources of these data derivations,
+and deviations from this will yield values at each site that may be quite
+discrepant from those calculated ‘correctly’. This may produce very inaccurate
+liquefaction probabilities, as the logistic coefficients will no longer be
+calibrated correctly.
Digital elevation data and its derivatives are often given as rasters. However,
+in the case of probabilistic analysis of secondary perils (particularly for risk
+analysis) the analyist may need to deal with sites that are not distributed
+according to a raster grid.
+
Raster values may be extracted at sites using a GIS program to perform a spatial
+join, but following inconvenient historical precedent, this operation often
+produces new data files instead of simply appending the raster values to the
+point data file.
+
Therefore we have implemented a simple function,
+[openquake.sep.utils.sample_raster_at_points][srap], to get the raster values.
+This function requires the filename of the raster, and the longitudes and
+latitudes of the sites, and returns a Numpy array with the raster values at each
+point. This function can be easily incorporated into a Python script or workflow
+in this manner.
Zhu et al (2015) calibrated their model on Vs30 data derived from DEMs using the
+methods of Wald and Allen (2007).
+
This method is implemented in the OQ-MBTK here. It requires
+that the slope is calculated as the gradient (dy/dx) rather than an angular
+unit, and the study area is categorized as tectonically active or stable.
+
A more general wrapper function has also been written [here]. This function can
+calculate gradient from the slope in degrees (a more common formulation), and
+will be able to use different formulas or relations between slope and Vs30 if
+and when those are implemented (we have no current plans for doing so).
Zhu et al. (2015) do not present a model for calculating lateral spreading.
+Therefore, if one requires displacements produced by liquefaction, another model
+must be used here, with attendant site characterization. Currently the
+OQ-MBTK only contains the HAZUS model, described above.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/sep_docs/sep_models.html b/contents/sep_docs/sep_models.html
new file mode 100644
index 000000000..59fb855d2
--- /dev/null
+++ b/contents/sep_docs/sep_models.html
@@ -0,0 +1,262 @@
+
+
+
+
+
+
+ Liquefaction and Landslide models — OpenQuake Model Building Toolkit Suite documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Two liquefaction models were are implemented in the OQ-MBTK. The first
+is the method developed for the HAZUS software by the US Federal
+Emergency Management Agency. This model involves categorization of sites
+into liquefaction susceptibility classes based on geotechnical
+characteristics, and a quanitative probability model for each
+susceptibility class. The second model is an academic model developed by
+Zhu and others (2015). It is statistical model incorporating only
+DEM-derived quantities for site characterization.
The HAZUS model classifies each site into a liquefaction susceptibility
+class (LSC) based on the geologic and geotechnical characteristics of
+the site, such as the sedimentological type and the deposition age of
+the unit. In addition to the LSC and the local ground acceleration at
+each site, the depth to groundwater at the site and the magnitude of the
+causative earthquake will affect the probability that a given site will
+experience liquefaction.
\(P(L|PGA=a)\) is the conditional probability that a site will fail
+based on the PGA and the LSC. \(P_{ml}\) is the fraction of the
+total mapped area that will experience liquefaction if
+\(P(L|PGA=a)\) reaches 1. These terms both have LSC-specific
+coefficients; these are shown in Table 1.
+
\(K_m\) is a magnitude-correction factor that scales \(P(L)\)
+for earthquake magnitudes other than M=7.5, potentially to account
+for the duration of shaking (longer shaking increases liquefaction
+probability). \(K_w\) is a groundwater depth correction factor
+(shallower groundwater increases liquefaction probability).
+
+
+
LSC
+
PGA min
+
PGA slope
+
PGA int
+
\(P_{ml}\)
+
+
+
+
very high
+
0.09
+
9.09
+
0.82
+
0.25
+
+
high
+
0.12
+
7.67
+
0.92
+
0.2
+
+
med
+
0.15
+
6.67
+
1.0
+
0.1
+
+
low
+
0.21
+
5.57
+
1.18
+
0.05
+
+
very low
+
0.26
+
4.16
+
1.08
+
0.02
+
+
none
+
\(\infty\)
+
0.0
+
0.0
+
0.0
+
+
+
+
Table 1: Liquefaction values for different liquefaction susceptibility
+categories (LSC). PGA min is the minimum ground acceleration required to
+initiate liquefaction. PGA slope is the slope of the liquefaction probability
+curve as a function of PGA, and PGA int is the y-intercept of that curve.
+\(P_{ml}\) is the Map Area Proportion, which gives the area of liquefaction
+within each map unit conditional on liquefaction occurring in the map unit.
The model by Zhu et al. (2015) is a logistic regression model requiring
+specification of the Vs30, the Compound Topographic Index (CTI), a proxy
+for soil wetness or groundwater depth, the PGA experienced at a site,
+and the magnitude of the causative earthquake.
+
The model is quite simple. An explanatory variable \(X\) is
+calculated as:
and the final probability is the logistic function
+
+\[P(L) = \frac{1}{1+e^X} \; .\]
+
The term \(PGA_{M,SM}\) is the PGA times a nonlinear scaling factor
+for the magnitude.
+
Both the CTI and the Vs30 may be derived from digital elevation data.
+The Vs30 may be estimated from the topographic slope through the
+equations of Wald and Allen (2007), which uses a very low resolution DEM
+compared to modern offerings. As topographic slope tends to increase
+with increased DEM resolution, the estimated Vs30 does too; therefore a
+low-resolution DEM (i.e., a 1 km resolution) must be used to calculate
+Vs30, rather than the 30 m DEM that is the current standard. This
+results in a more accurate Vs30 for a given slope measurement, but it
+also means that in an urban setting, sub-km-scale variations in slope
+are not accounted for.
+
The CTI (Moore et al., 1991) is a proxy for soil wetness that relates
+the topographic slope of a point to the upstream drainage area of that
+point, through the relation
+
+\[CTI = \ln (d_a / \tan \delta)\]
+
where \(d_a\) is the upstream drainage area per unit width through
+the flow direction (i.e. relating to the DEM resolution). It was
+developed for hillslopes, and is not meaningful in certain very flat
+areas such as the valley floors of major low-gradient rivers, where the
+upstream drainage areas are very large. Unfortunately, this is exactly
+where liquefaction is most expected away from coastal settings.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/sep_docs/tutorials/liq_site_prep.html b/contents/sep_docs/tutorials/liq_site_prep.html
new file mode 100644
index 000000000..7a8008fe0
--- /dev/null
+++ b/contents/sep_docs/tutorials/liq_site_prep.html
@@ -0,0 +1,900 @@
+
+
+
+
+
+
+ Tutorial: Preparing site data for liquefaction analysis with the OQ-MBTK — OpenQuake Model Building Toolkit Suite documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Tutorial: Preparing site data for liquefaction analysis with the OQ-MBTK
+
This tutorial for preparing site data for liquefaction analysis with the OQ-MBTK is a Jupyter notebook, which containts text as well as exectuable Python code. The notebook can be downloaded along with the sample data from here.
+
First, we need to import the Python modules that we’ll use.
+
+
[1]:
+
+
+
import pandas as pd
+import matplotlib.pyplot as plt
+import numpy as np
+
+from openquake.sep.utils import(
+ sample_raster_at_points,
+ vs30_from_slope
+)
+
+
+
+
We will be working with two different liquefaction models in this analysis, the HAZUS model by the US Federal Emergency Management Agency (FEMA), and a statistical model by Zhu et al (2015) that we’ll call the Zhu model.
+
These models require different parameters to characterize the liquefaction susceptibility and probabilities at each site. The HAZUS model relies on a classification of each site into a liquefaction susceptibility category, based on geotechnical parameters at the site. The Zhu model relies on quantitative parameters that may, in principle, be estimated through processing of a digital elevation model.
We’ll start with a basic CSV file with the longitude and latitude of the sites for our analysis as well as the geologic unit at that site. The geologic unit at each site has been added through a spatial join of the site locations with a geologic map layer in QGIS.
The HAZUS model requires that we have liquefaction susceptibility categories and groundwater depths for all sites. We’ll get these by mapping the geologic unit to these parameters, and the assigning the parameters to each site based on the geologic unit through a database join.
+
+
[2]:
+
+
+
# Read in the sites CSV with pandas
+sites = pd.read_csv('./tutorial_data/cali_sites_w_units.csv')
+
+sites.head()
+
Now, we’ll load another file that has the geologic descriptions for each unit as well as the HAZUS liquefaction susceptibility category for each unit. (The file also has the geotechnical parameters that are used for landslide analysis but are not used here.)
+
The liquefaction susceptibility category has been estimated based on the geologic description for that unit, as well as the location of the unit with respect to water bodies (rivers and creeks) from inspection of the geologic map. The guidelines for this assignment can be found in the HAZUS Manual, Section 4-21. If you are uncertain of how to proceed, please contact your local geologist or geotechnical engineer.
Let’s make a new table with just the information that we need, which is the liquefaction susceptibility category (called susc_cat in this table).
+
+
[5]:
+
+
+
liq_susc_cat = unit_table[['unit', 'susc_cat']]
+
+# set the index to be the unit, for the join below.
+liq_susc_cat = liq_susc_cat.set_index('unit')
+
+
+
+
We’ll do a database join on the two tables using Pandas, which will let us take the attributes for each geologic unit and append them to each site based on the geologic unit for that site.
We also need groundwater depths at each point. A high-quality analysis would use measured data or at least values interpolated from a map of the water table depth, but we don’t have that information available. Instead, we’ll just estimate values based on the geologic unit. These units are somewhat spatially arranged so that the groundwater depth probably correlates with the unit, but in the absence of any real data, it’s impossible to know how good of an approximation this is.
+
We’ll use a simply Python dictionary with the unit as the key and estimates for groundwater depth in meters as the value.
The Zhu model was developed to use parameters that can be derived from a digital elevation model.
+
One of these, the Vs30 value, can be calculated from a DEM quite easily, as long as the DEM has a resolution around 1 km. First, the slope should be calculated (which is very easy to do in a GIS program), and then the Vs30 can be calculated from the slope using Wald and Allen’s methods (2007).
+
The openquake.sep.utils module has some functions to calculate Vs30 from slope, and to get the values of a raster at any point. We’ll use these functions to get the Vs30 values from a slope raster for each of our sites.
Next, we need to get values for the Compound Topographic Index (CTI). The process is the same, using a raster of CTI values. (Though it is possible to calculate the CTI from a DEM using algorithms implemented in many GIS packages, in practice the range of the resulting CTI values is incompatible with the CTI values that Zhu et al. used in their calibration. Therefore it is strongly advised to obtain CTI data from a dataset that has a global range of 0-20; we recommend Marthews et al.,
+2015).
## Saving and cleaning up
+
+That's basically it. We just need to save the file and then proceed to the [liquefaction analysis][liq_anal].
+
+[liq_anal]: ./liquefaction_analysis.ipynb
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/sep_docs/tutorials/liq_site_prep.ipynb b/contents/sep_docs/tutorials/liq_site_prep.ipynb
new file mode 100644
index 000000000..33f555f76
--- /dev/null
+++ b/contents/sep_docs/tutorials/liq_site_prep.ipynb
@@ -0,0 +1,1018 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Tutorial: Preparing site data for liquefaction analysis with the OQ-MBTK"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This tutorial for preparing site data for liquefaction analysis with the OQ-MBTK is a Jupyter notebook, which containts text as well as exectuable Python code. The notebook can be downloaded along with the sample data from [here][tut].\n",
+ "\n",
+ "[tut]: https://github.com/GEMScienceTools/oq-mbtk/tree/master/tutorials/sep\n",
+ "\n",
+ "First, we need to import the Python modules that we'll use."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "\n",
+ "from openquake.sep.utils import(\n",
+ " sample_raster_at_points,\n",
+ " vs30_from_slope\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We will be working with two different liquefaction models in this analysis, the [HAZUS model][oq_haz] by the US Federal Emergency Management Agency (FEMA), and a statistical model by Zhu et al (2015) that we'll call the [Zhu model][oq_zhu]. \n",
+ "\n",
+ "These models require different parameters to characterize the liquefaction susceptibility and probabilities at each site. The HAZUS model relies on a classification of each site into a liquefaction susceptibility category, based on geotechnical parameters at the site. The Zhu model relies on quantitative parameters that may, in principle, be estimated through processing of a digital elevation model.\n",
+ "\n",
+ "\n",
+ "[oq_haz]: https://gemsciencetools.github.io/oq-mbtk/contents/sep_docs/sep_models.html#hazus\n",
+ "[oq_zhu]: https://gemsciencetools.github.io/oq-mbtk/contents/sep_docs/sep_models.html#zhu-et-al-2015\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Joining site information to site locations"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We'll start with a basic CSV file with the longitude and latitude of the sites for our analysis as well as the geologic unit at that site. The geologic unit at each site has been added through a [spatial join][qgis_join] of the site locations with a geologic map layer in QGIS.\n",
+ "\n",
+ "[qgis_join]: https://www.qgistutorials.com/en/docs/performing_spatial_joins.html"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### HAZUS site parameters\n",
+ "\n",
+ "The HAZUS model requires that we have liquefaction susceptibility categories and groundwater depths for all sites. We'll get these by mapping the geologic unit to these parameters, and the assigning the parameters to each site based on the geologic unit through a database join."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5)\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, we'll load another file that has the geologic descriptions for each unit as well as the HAZUS liquefaction susceptibility category for each unit. (The file also has the geotechnical parameters that are used for [landslide analysis](./landslide_site_prep.ipynb) but are not used here.)\n",
+ "\n",
+ "The liquefaction susceptibility category has been estimated based on the geologic description for that unit, as well as the location of the unit with respect to water bodies (rivers and creeks) from inspection of the geologic map. The guidelines for this assignment can be found in the [HAZUS Manual][hzm], Section 4-21. If you are uncertain of how to proceed, please contact your local geologist or geotechnical engineer.\n",
+ "\n",
+ "[hzm]: https://www.hsdl.org/?view&did=1276\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
unit
\n",
+ "
friction_mid
\n",
+ "
friction_unc
\n",
+ "
cohesion_mid
\n",
+ "
cohesion_unc
\n",
+ "
saturation
\n",
+ "
dry_density
\n",
+ "
uscs
\n",
+ "
type
\n",
+ "
description
\n",
+ "
susc_cat
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
Q1
\n",
+ "
33.5
\n",
+ "
1.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.20
\n",
+ "
2091
\n",
+ "
SM
\n",
+ "
silty sands
\n",
+ "
old wetlands
\n",
+ "
m
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
Q2
\n",
+ "
27.0
\n",
+ "
5.0
\n",
+ "
50000
\n",
+ "
0
\n",
+ "
0.40
\n",
+ "
1734
\n",
+ "
OL
\n",
+ "
organic silts
\n",
+ "
swamp deposits
\n",
+ "
h
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
Q3
\n",
+ "
33.5
\n",
+ "
1.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.30
\n",
+ "
2091
\n",
+ "
SM
\n",
+ "
silty sands
\n",
+ "
river channel deposits
\n",
+ "
vh
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
Q4
\n",
+ "
33.5
\n",
+ "
1.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.20
\n",
+ "
2091
\n",
+ "
SM
\n",
+ "
silty sands
\n",
+ "
levee deposits
\n",
+ "
h
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
Q5
\n",
+ "
27.0
\n",
+ "
5.0
\n",
+ "
50000
\n",
+ "
0
\n",
+ "
0.25
\n",
+ "
1734
\n",
+ "
OL
\n",
+ "
organic silts
\n",
+ "
floodplain deposits
\n",
+ "
h
\n",
+ "
\n",
+ "
\n",
+ "
5
\n",
+ "
Q6
\n",
+ "
38.0
\n",
+ "
6.0
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.30
\n",
+ "
2091
\n",
+ "
GP
\n",
+ "
poorly graded gravel w/ sand, no fines
\n",
+ "
active alluvial fill
\n",
+ "
vh
\n",
+ "
\n",
+ "
\n",
+ "
6
\n",
+ "
Q7
\n",
+ "
32.5
\n",
+ "
1.5
\n",
+ "
62500
\n",
+ "
1250
\n",
+ "
0.25
\n",
+ "
1887
\n",
+ "
SM
\n",
+ "
loamy sand
\n",
+ "
point bar deposits
\n",
+ "
vh
\n",
+ "
\n",
+ "
\n",
+ "
7
\n",
+ "
Cono
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.15
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
alluvial fan
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
8
\n",
+ "
Qt
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
terrace deposits
\n",
+ "
m
\n",
+ "
\n",
+ "
\n",
+ "
9
\n",
+ "
Qc
\n",
+ "
31.5
\n",
+ "
3.5
\n",
+ "
20000
\n",
+ "
0
\n",
+ "
0.15
\n",
+ "
1887
\n",
+ "
CG
\n",
+ "
clayey sandy gravels
\n",
+ "
colluvium
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
10
\n",
+ "
Qd
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
old alluvium, terraces
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
11
\n",
+ "
QvT
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
T-derived Quaternary (terrace/coll./fan)
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
12
\n",
+ "
QvK
\n",
+ "
31.5
\n",
+ "
3.5
\n",
+ "
20000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
1887
\n",
+ "
CG
\n",
+ "
clayey sandy gravels
\n",
+ "
K (diabase) derived Quaternary
\n",
+ "
m
\n",
+ "
\n",
+ "
\n",
+ "
13
\n",
+ "
Q/Kv
\n",
+ "
25.0
\n",
+ "
7.0
\n",
+ "
85000
\n",
+ "
15000
\n",
+ "
0.25
\n",
+ "
2091
\n",
+ "
CH
\n",
+ "
silty clay loam
\n",
+ "
K-derived saprolite
\n",
+ "
vl
\n",
+ "
\n",
+ "
\n",
+ "
14
\n",
+ "
TQplp
\n",
+ "
36.5
\n",
+ "
5.0
\n",
+ "
100000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2244
\n",
+ "
NaN
\n",
+ "
volcanic-sedimentary rocks
\n",
+ "
Popayán Fm.
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
15
\n",
+ "
Kv
\n",
+ "
33.5
\n",
+ "
5.0
\n",
+ "
1000000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
3000
\n",
+ "
NaN
\n",
+ "
diabase
\n",
+ "
Cretaceous diabase
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
16
\n",
+ "
T
\n",
+ "
33.5
\n",
+ "
5.0
\n",
+ "
100000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2600
\n",
+ "
NaN
\n",
+ "
sedimentary rocks
\n",
+ "
coal-bearing sedimentary rocks
\n",
+ "
n
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " unit friction_mid friction_unc cohesion_mid cohesion_unc saturation \\\n",
+ "0 Q1 33.5 1.5 0 0 0.20 \n",
+ "1 Q2 27.0 5.0 50000 0 0.40 \n",
+ "2 Q3 33.5 1.5 0 0 0.30 \n",
+ "3 Q4 33.5 1.5 0 0 0.20 \n",
+ "4 Q5 27.0 5.0 50000 0 0.25 \n",
+ "5 Q6 38.0 6.0 0 0 0.30 \n",
+ "6 Q7 32.5 1.5 62500 1250 0.25 \n",
+ "7 Cono 36.5 3.5 0 0 0.15 \n",
+ "8 Qt 36.5 3.5 0 0 0.10 \n",
+ "9 Qc 31.5 3.5 20000 0 0.15 \n",
+ "10 Qd 36.5 3.5 0 0 0.10 \n",
+ "11 QvT 36.5 3.5 0 0 0.10 \n",
+ "12 QvK 31.5 3.5 20000 0 0.10 \n",
+ "13 Q/Kv 25.0 7.0 85000 15000 0.25 \n",
+ "14 TQplp 36.5 5.0 100000 0 0.10 \n",
+ "15 Kv 33.5 5.0 1000000 0 0.10 \n",
+ "16 T 33.5 5.0 100000 0 0.10 \n",
+ "\n",
+ " dry_density uscs type \\\n",
+ "0 2091 SM silty sands \n",
+ "1 1734 OL organic silts \n",
+ "2 2091 SM silty sands \n",
+ "3 2091 SM silty sands \n",
+ "4 1734 OL organic silts \n",
+ "5 2091 GP poorly graded gravel w/ sand, no fines \n",
+ "6 1887 SM loamy sand \n",
+ "7 2142 GW well graded gravel w/ sand, no fines \n",
+ "8 2142 GW well graded gravel w/ sand, no fines \n",
+ "9 1887 CG clayey sandy gravels \n",
+ "10 2142 GW well graded gravel w/ sand, no fines \n",
+ "11 2142 GW well graded gravel w/ sand, no fines \n",
+ "12 1887 CG clayey sandy gravels \n",
+ "13 2091 CH silty clay loam \n",
+ "14 2244 NaN volcanic-sedimentary rocks \n",
+ "15 3000 NaN diabase \n",
+ "16 2600 NaN sedimentary rocks \n",
+ "\n",
+ " description susc_cat \n",
+ "0 old wetlands m \n",
+ "1 swamp deposits h \n",
+ "2 river channel deposits vh \n",
+ "3 levee deposits h \n",
+ "4 floodplain deposits h \n",
+ "5 active alluvial fill vh \n",
+ "6 point bar deposits vh \n",
+ "7 alluvial fan l \n",
+ "8 terrace deposits m \n",
+ "9 colluvium l \n",
+ "10 old alluvium, terraces l \n",
+ "11 T-derived Quaternary (terrace/coll./fan) l \n",
+ "12 K (diabase) derived Quaternary m \n",
+ "13 K-derived saprolite vl \n",
+ "14 Popayán Fm. n \n",
+ "15 Cretaceous diabase n \n",
+ "16 coal-bearing sedimentary rocks n "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "unit_table = pd.read_csv('./tutorial_data/cali_units.csv')\n",
+ "\n",
+ "unit_table"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's make a new table with just the information that we need, which is the liquefaction susceptibility category (called `susc_cat` in this table)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "liq_susc_cat = unit_table[['unit', 'susc_cat']]\n",
+ "\n",
+ "# set the index to be the unit, for the join below.\n",
+ "liq_susc_cat = liq_susc_cat.set_index('unit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We'll do a database join on the two tables using Pandas, which will let us take the attributes for each geologic unit and append them to each site based on the geologic unit for that site."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
lon
\n",
+ "
lat
\n",
+ "
unit
\n",
+ "
susc_cat
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
-76.540896
\n",
+ "
3.350158
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
-76.544763
\n",
+ "
3.350644
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
-76.528079
\n",
+ "
3.346550
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
-76.529860
\n",
+ "
3.356627
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
-76.527918
\n",
+ "
3.351601
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " lon lat unit susc_cat\n",
+ "0 -76.540896 3.350158 TQplp n\n",
+ "1 -76.544763 3.350644 TQplp n\n",
+ "2 -76.528079 3.346550 TQplp n\n",
+ "3 -76.529860 3.356627 TQplp n\n",
+ "4 -76.527918 3.351601 TQplp n"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "sites = sites.join(liq_susc_cat, on='unit')\n",
+ "\n",
+ "sites.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We also need groundwater depths at each point. A high-quality analysis would use measured data or at least values interpolated from a map of the water table depth, but we don't have that information available. Instead, we'll just estimate values based on the geologic unit. These units are somewhat spatially arranged so that the groundwater depth probably correlates with the unit, but in the absence of any real data, it's impossible to know how good of an approximation this is.\n",
+ "\n",
+ "We'll use a simply Python dictionary with the unit as the key and estimates for groundwater depth in meters as the value."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "gwd_map = {'Q1': 0.65,\n",
+ " 'Q2': 0.3,\n",
+ " 'Q3': 0.2,\n",
+ " 'Q4': 0.3,\n",
+ " 'Q5': 0.2,\n",
+ " 'Q6': 0.1,\n",
+ " 'Q7': 0.15,\n",
+ " 'Cono': 1.75,\n",
+ " 'Qt': 1.,\n",
+ " 'Qc': 2.,\n",
+ " 'Qd': 1.25,\n",
+ " 'QvT': 1.2,\n",
+ " 'QvK': 1.2,\n",
+ " 'Q/Kv': 2.5,\n",
+ " 'T': 3.,\n",
+ " 'TQplp': 3.,\n",
+ " 'Kv': 4.\n",
+ " }\n",
+ "\n",
+ "sites['gwd'] = sites.apply(lambda x: gwd_map[x.unit], axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5, c=sites.gwd)\n",
+ "\n",
+ "plt.colorbar(label='groundwater depth (m)')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Zhu site parameters\n",
+ "\n",
+ "The Zhu model was developed to use parameters that can be derived from a digital elevation model. \n",
+ "\n",
+ "One of these, the Vs30 value, can be calculated from a DEM quite easily, as long as the DEM has a resolution around 1 km. First, the slope should be calculated (which is very easy to do in a GIS program), and then the Vs30 can be calculated from the slope using Wald and Allen's methods [(2007)][wa_2007].\n",
+ "\n",
+ "The `openquake.sep.utils` module has some functions to calculate Vs30 from slope, and to get the values of a raster at any point. We'll use these functions to get the Vs30 values from a slope raster for each of our sites.\n",
+ "\n",
+ "[wa_2007]: https://pubs.geoscienceworld.org/ssa/bssa/article/97/5/1379/146527"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "slo = sample_raster_at_points('./tutorial_data/cali_slope_srtm_1km.tif', sites.lon, sites.lat)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAI/CAYAAACbG7YfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3hN9x/A8fe5M0NkSCIRIvbeau9Rs1RVUUrVaosqqmqUorRVq+2vqtRoS1uq9ihq1Kq9xQoJkhCJ7OTmrvP9/XHjkiZWKSrf1/Pkee4994zvOR43n3zH56MIIZAkSZIkScqNNE+6AZIkSZIkSU+KDIQkSZIkScq1ZCAkSZIkSVKuJQMhSZIkSZJyLRkISZIkSZKUa8lASJIkSZKkXEv3pBvwIHx9fUVISMiTboYkSZIkPRaHDh2KE0L4Pa7rtWjsLm7E2x/LtQ4dN28UQrR8LBe7i/9UIBQSEsLBgwefdDMkSZIk6bFQFOXS47zejXg7+zcGP5ZraQPP+z6WC92DHBqTJEmSJCnX+k/1CEmSJEmS9O8RgIr6pJvxWMkeIUmSJEmSci3ZIyRJkiRJUiaBXcgeIUmSJEmSpFxB9ghJkiRJkgTcnCMknnQzHivZIyRJkiRJUq4le4QkSZIkSXKSq8YkSZIkSZJyCdkjJEmSJEkSAAKBXcg5QpIkSZIkSbmC7BGSJEmSJMlJrhqTJEmSJEnKJWQgJEmSJElSriWHxiRJkiRJAhwJFe1yaEySJEmSJCl3kD1CkiRJkiQ5ycnSkiRJkiRJuYTsEZIkSZIkCcicIyQTKkqSJEmSJOUOskdIkiRJkiSn3FVyVfYISZIkSZKUi8keIUmSJEmSgMyiq3LVmCRJkiRJUu4ge4QkSZIkSXIQYM9dHUKyR0iSJEmSpNxL9ghJkiRJkgQ48gjJVWOSJEnSv8aUmsH5w+HYrLYn3RRJkriPQEhRFBdFUfYrinJMUZRTiqKMz2Gf1xVFiVUU5WjmT5/bPuupKMr5zJ+et22vpijKCUVRwhRF+VJRFOXR3ZYkSdLTx5SWQe/yQxnaeBwjWnz8pJsjSTlQsD+mn6fF/QyNmYEmQohURVH0wC5FUTYIIfb+bb8lQoiBt29QFMUHGAdUx9HjdkhRlNVCiATgG6AvsA9YD7QENjzc7UiSJD2dVFVlwivTiYuKB+DErjOoqopGIzvmJelJuuf/QOGQmvlWn/lzv3PKWwCbhRDxmcHPZqCloiiBQF4hxF4hhAB+AF588OZLkiT9NyyZsopDm44733cY1EoGQZL0FLiv/4WKomgVRTkKXMcR2OzLYbeOiqIcVxRlmaIohTK3BQFXbtsnMnNbUObrv2+XJEl65ggh+HXaGud7/8K+9JrY5Qm2SJJyJgBVPJ6fp8V9BUJCCLsQojJQEKihKEr5v+2yBggRQlTE0evz/aNqoKIo/RRFOagoysHY2NhHdVpJkqTHZtuSPaQlm5zvr1+Oo51nT5ZOXU38tURuRMc/wdZJUu72QP2yQohEYBuO+Ty3b78hhDBnvv0OqJb5OgoodNuuBTO3RWW+/vv2nK45RwhRXQhR3c/P70GaK0mS9MRdCr3Cpz2+QmT+Cax30TknF/z86Up6lBhEj1KD2bP6wBNspSTdktsmS9/PqjE/RVG8Ml+7As2BM3/bJ/C2t+2A05mvNwLPK4rirSiKN/A8sFEIcRVIVhSlVuZqsR7Aqoe+G0mSpKfMX2sOZZlV2aZvM+dr7/yeWDKsWDOs7PwtpxkHkiT92+6nRygQ2KYoynHgAI45QmsVRZmgKEq7zH3eyVxafwx4B3gdQAgRD0zMPO4AMCFzG8DbOHqPwoALyBVjkiQ9g5p2r4/e6FigW6p6Md6e/jpf7v6Ydm+35PrlOBSNgtHVQNv+zZ9wSyXJEbPnth4hxbFo67+hevXq4uDBg0+6GZIkSQ9ECIHZZMHFzQhAamIaHf17c/Prd+SiQTTuXPcJtlB6WimKckgIUf1xXa9cRYP4ZZ3/Y7lWxeCox3pvdyLXbkqSJP0Lju04TY/SQxjZ9jPM6WZnEGQxWxnR4mNu/xu0cNlCdziLJD1+qlAey8/TQtYakyRJ+hd8PeR7Yi7FkXg9mcWfrMBmsdGsWwPSktO5cjbasZMCfT7pRtEKwc7jFk9ezu4V++k2piN12z/3hFovSbmHDIQkSZL+BSUqhxBzKQ671c7Sz1cjVMH677aw8MwXGFwNCCGo0qQ8ASF+vODZk4AQP96d1YefP12JxWRhcrcvWZvyAzerD6mqiqIoyGpE0r/p5hyh3EQOjUmSJP0Lhszuw4j5b+Ll6+ZcOm9Ot5DXJw8LT89k+rbxjFv2HgvHLsGcbuZa+HVO7w9DUUBv1JHH05WwIxEAbF+6h7Z5XqN7sYHcuJrwBO9Kkp49MhCSJEm6gyvnrrJo8gpO7wt7oOOO7TjNoHrj+P37P7l++YZze/5gX3qXH8bxHaGUqFqEQ5uO4embF4OrHkWjUP35Ssz8cwI1WlUhLSWDoY3GsWvFfhZPWo7NaicpNpm/VjsWjJhNFv5YtJOzBx6sbZJ0NwIFO5rH8vO0kENjkiRlYbXaiYlOJDDIG63u6fmyetxUVWVIo/GkJqWzdOpafjgzHVUIEq4nU7R8obsOUU3p9Q1x0QlcPHYJFAWEwOhmICEmiYx0M9P6fovR1chHL09DqILgMkFMWvMBvkE+ACiKgsVkQaNROPXXWYpVDiH6wjU0Wg2lnivGuu+2smH+ViJOXAIB0/8cT8lqRR/Xo5GkZ4oMhCRJcrLZ7LzdfQ7RUQmUKB3AjLm9cu2cFKEKMtLNCFWgqoKLJyMZ3/ULhCp4oV9T+k66c62w/IX9SIxLwWa2cnN5WM3W1di9cj8GVwP5g32Z2m8ONosNgOQbKYxs+xkh5Qry/vy36D6mI+cPX8TgYuD0/oucPXQRjaJj7K9DWfXNH/y5bC8WsxXVYsXFzcDVCzEUrRjMhWOXKFSqAG4ero/lGUnPpqdpRdfjkHv/3JOkXMhksnAjNuWOn8fGJBMdGY/VYuP0iShM6ZbH2Lqni1anZdySd6nUsAz9P+3K8q82YMmwYjZZ2Lv+yF2PnbhiGK+NeQmjmxGtXod3oA+71xwGRYPNpnLpXAw3riWCoqBoNVgsKpfPRLN/wzH2rD5E0YqF+THsfzTqWo/T+8JQbSo2m524qHiuR97AkmFFp9fhHeBFzdZVqd2+Ou83m8CwRuN4o8xgTKmmu7ZPkqRbZI+QJOUS16ITeav7HCxmK937NKBrr/rZ9skf6EX5ysEcORBOg6ZlcHM3PoGWPjnpKSbGd/2SmEtxDJ/bj+daVOK5FpVY/Okqjv55GtWuomgUuo960XlMRpoZU2oGyfGpnD10kVqtq3Dx+GW0ei3/2zOB0L1hfDFwPqpdzTxCwWax4erugtHNiJefB5dCHaUWLWYrKQmpRIRGElK2IKu/2ey8jkajUKNVFRKvJ5MSn0rhMkG8O6s3Lm5GVFXl5K4zOBLkCqIvxFCsUsjje3DSMyM3rhqTgZAk5RLHDkVgs9mwWu1sXHM0x0BIo1H47OvXsJhtGIzP5teDEIJfZ64nIjSKHqM7EBByq5jztqV7Cd17HkuGlVnv/cjXuyYAoGgUUBT0Bh2t32hE4061AYgKu8bABh9hNplRFA1anYafpqziRnQidpudbb/upfuIduiNOszpFtw9XVFVgSklg4w0M3qjzhkEAbjkMfLVOwtRFIUPFr6FX0EfUhPTEULQf0o3Zg35gf2/HwXgrandnUkaNRoN7Qa0YM2sjZSvW5qQcoVQVRWNRnb6S9K9PJvfdJIkZVO9VjFcXY3YrCodutS8677PahAEsHf9ERZ/sgqzycKVc9F89edHzs+CSxdAURRc3IwUrxzi3P7y4FbYbXasZhtdh7/g3H5oy0msZht2q4qiCGwWG1cvxjo/vxEdz6xhPyJUQYkqIQyZ3QedXsvAumOxZFizzb/KSDUDjmDtm/d+JPG2Ycx5Y5dSqEQAZpMFo5uBmEtxkBnLhh0JZ+OCbWj1Omq0qUqfCkOJOneVnhM7021Ux0f49CTp2fPsfttJkpRFPj8Pfl43BIvFhqubwbldCMHyn/dx5mQk3fs0pHBRv7uc5b9Pp9ciECgaBZ0+61dghbqlmLpxFHFR8dRsVdm53WDU89qoDtnOVblRWefrcrVLcDUilhvRt/L8BBXLT+ie8wgh8AnwoljFwgCMXjSI43+G0rhrHT5+9SuuhcdS/6UaHN5ygrQkk6MQq7sL3BYIWU0WBn/9Bl8OWkjBEoE0fPlWMHtw41GsZit2m8qabzYReS4aBHw/dgmdhrXDYNQ//IOTcgkFu8hdPYm5624lKZfT6jRZgiCA44cvsXD2Nv78I5SP3l/yhFr2+FRvXpG3pnSj/ZvNGPPjgCyfXTl3FYNRT+GyBdmxfD9pSel3Pdfu1YcQQkWj1RBY1J8v/xyHRnvra/XcoXB0Bh1GVwPPtajo3F6rdRX6fdaNEpWLsPDUNNYlL+DqxRjSkkzoXXQMnNmTCcuGYLzt38qvUD4CCvszY9tY3praHYPLrc+ea1UFo5sRRVG4Fh7jmOiBY+XbpdDIh3lckvTMkz1CkpTLGQw6EAKNRkGvf/a/EhRFodXrjbJt37v+CJN6fA04cghpdVo8fT1w93ClcqOy9P/01WxDWUZXPRqNBgWB0cWAb6A33+ydyKD6H2HJsKLRaRm54E38g32dvUE5tUen1+FXMB+Xz0SjKArpKSa2Ld3LxJXv8f34ZSTHpXAtPJbuJQZjcNGTkWam83sv0GNsRxJjkxje9CPM6RZ0Rh3WDGuW8y8Y8zOT1416NA9PeuYJQM1lfSTP/reeJEl3VaZCQYZ+2I5zodH3nDv0LDuyPRSL2QrCMWncZrE7s0JfDY+l/ovPUa52ySzHtH+zOaoqyEjL4OV3WgMQUqYgE38bxqJPVlCzZWVqt612X9f/YOFbbFq0E42i8O0HP2M1W9n6yx5+PDuDEa0+4crZq6CA3a5it9rZsGA7PcZ2ZN+6w6TEpwFgt9lxcTdiNlmcZT08vPM8qkckSc8kGQhJkkTj58sTHOLLzq2nqd+kDP4Bnk+6SY/d1fDrIBzDhzVbVibs2CWEECTFpTjn+NzObldZM3cLqYnpdHq3NS63pRqo3LAMlRuWeaDrm01Wlk5bR+yVG2i0GoQqMKVmANBxcCtO7jmH0cVRiiM1KZ2S1R2ZpP0L+95MXo3OoOOTDaNx83Tjm6EL8fByZ8ic/g/5ZKTcRi6flyQp10mIT+PdPguw21V+/XEPP68fkqsyStusNvZtcCxL1+q0vPj286QlpVO0fCEObT1FyWpFCCziDzgCphO7z5KSkMb3E37DZrWx7rstPPd8RaIuXKdszeL0ndzlgZeuv9f8Y2KvOHqghFCp0bIyXUe0A6BGy8qsipuLotHwZvWRpCWlc2TrSU7uPkvlRuXpMLgNB34/Qu/J3ShfzxGAfb553KN6PJL0TJOBkCQ9ZU4mRjLp5BqK5fFnXMX26DX//n/T9NQMhCqwWe0kJ5kQwlEiK7fQ6XVUb16BY3+exi/IhwmvfonNaidfoBfzjnzmDArTktJ5u85Y7HY7Or0OVVWx21SS49PYsuQvEBARGkm1ZhWo3qzCA7Uh5lKc87VQIeF6EsUr35pXdHOFmxDOudCZ/04Kb01/nbemv/5Qz0CSAISQq8YkSXrCxh1bwemkaP64dorNV089lmsGBeejZ/9GlCgdyOjJL6HRPJtRUFpSOgf/OEFKQlq2z975oifBZYIwuBowmyxkpJmJvnAdu83u3Cc5PhWrxYY53UJ6ign3vK5otBo0Og0KCjqDFqEKvP3zPnDbBs7siXd+T+ezv3I2mrMHL2bbb/yyITz/Wn36f/oqFeqVAsBut5MUl5yZWVqSpAche4Qk6SlT0M2HyPR4hIBAV697H/CIdHqtDp1eq/PIzzt//G9sWrSL1r0aUr99db4b+yvFKgbz+ocdHmvmY7td5a06H5Icl4JbXlcWnpyaJb/OL5+vJfzEZQAKlixAUlwyrwxpjU6vIyPNzOn9YRSrVJiXB7di+6978fB259yRcDQahfJ1SlOqWggHN5+kZc8GWVaI2aw2zh64SFDx/OTxdker0+Y47Ph8jwY836MBE7p8wYFNx3FxNxJSrlC2/YKKBzDs237O95YMC29VG0HU+Wgad63HiO8HPcrHJuVCqpwjJEnS47Iu6hgTjq+koJsPC+r0Ia/elU+rdmJD1HEKueejik9hrpoSyaNzwUPv8qSb+8ASriex/OtN2Kx2lsxYz44VB4gMi+HU3vOUea4YtVtXzvG4xZ+tYd3CP2nVoz6vjWz/SNpiSjERGxmPalexWmykxKeSL9Db+Xlw6QLoXfSAQts+jWn/ZnPAkXBycOPxXLsUh4u7ke9PTOX1sR355fM1XD4TjUBQs2Ulvp/wG5YMK3NH/YLRxUCLng3QaDSM7/wFx3c46pTZrHZ8Ajz5ateEbJOvbxrz0yAun47CP9j3vqrIh5+8QsylWOw2lS2Ld8pASJIekAyEJOkJmnV2C2bVRpQpgR0xZ2lbsDKuWgMvBVcHYMGFnXxzbgs6Rcu4Ci+CAk0CyjyWeUOPgrunG3m83MlIN+Pm4YJnPg+uRsQhBHh4uzv3E0Jw8eQV8gV6o9Eo/DR1LXabnV+mr6ddvyZ45vN46Lbk8XLnpYEtWL9gO0271MkSBAG8+PbzBBbNj6JAjRaVnNttVjsRN4uiZliIjYqnUMlAOr/XlpByBVE0CrtWHcRqsTn3nzV8EXa7nXrtn+P4jtNkpJlRFAUhBCnxaez//Sgtc8hlBI66YTn1BN0uNTGNdxtNIPpCDP2ndMWvYD6uhsfQ4OXaD/GEJOlm0dXcNWvmv/FtKknPqPr+JVkZeRgFhQpeBbN8lmBJY8GFnVhUO0KB0ceWoddo2RFzlklVXn5CLX4wBqOe2bs/4uTe81So48jBs+H7nRQuHUj52iWc+301bBFbfvkLrU7Dl1tHk8fLjZSENDQaJcscnYfVd1IX+k7qkuNniqJQq1X2Hiq9QYfBVY/FZAUUwo5dQm/QERDiR63WVVg3bxvbl+0FITC6GbBkWFFVwfnD4cx5/yesFhs6vRbv/J4kxqag0WmoUP/+ltZbLTam9vmWQ1tOUKJKEUb+MIC8PnnYt+EokeeiEQJmD/+J5THfYkox4Z3/8Q2lStKzIneFfZL0lBlRrg3za/dmTaN3KZzHN8tnH59YTYrV5HyvQcFkt3I+NeZxN/OhePnlpd4L1fDM54FnPg+6DG1N7dZVsuyzf+NxzCYLql3l4olIajSvgBDCsZz/i41PqOW3BBULQG/Uo9FqmNZ/Ln2rj2Tv+iMAuOd1RUFBo9Vgs9hw83ClXvvq6Aw65z3Z7SoJ15N5Y+IrLDo3k6Bi+e/run8u28uO5ftJiU/j8JaT/PTpSgCKlC+EuG3pWFJsMj4B3rkq5YH0b3GsGnscP0+Lp6clkpQLKYpCWc8gfF2yD/1oFAVN5qRFu7CjIgh282F0+Rey7ftf123EC+j0WvIH+1KtSTnyB/uiN+jQ6bV4+T/8sNjD+mztCPpO6kzF+qWxWmxYMqzs33gMgIYv12TQFz1x93TDblOxWWyUr1OSHb/tdx4vVEdl+r/WHiKPl3uO1xBCsPWXPXTI34+3ao4mOT4V3wLezjQGGo2Cl58j0WXRCsG0eL0hWr2W+i/VIH/hZ7tQriT9m+TQmCQ9pcaUb8fZpKtcTo9HBQyKlnEVO1DJO/hJN+2Ra9WjAa16NAAcZSJK1yjGq++1xdPXg+e713vCrYPwU5Esnb4Oj3x5cPNwQavT0qZPE8ARzDZ/tR5nDlzgj8W7EQhUu4opzew8Xqt3rBRr27dpjucXQjCi1Scc+/M04Fg6v2vlAVq/0Zg3p77GhvnbqN2mCp2GtnEeM/SbPgz9ps+/eNdSbiRrjUmS9NQwavVcSY93vi/m4Z9tHtHTxmyyEBEaSeEyQbi4Ge99QA4+6T2Hg1tOAjBr5zi02nt/KdvtKpHnrhIQ4ofR1XDP/R/Utx8sJi46geT4VN6a0o3WbzTOts+Aaa/R5JXa+Ab5oNVp+H7iclShEljYl0krh+PhnQd3T7ccz58Qk8SJXWdvbVCgVLWipKeYmDf6F6wWG9cvx/HqyBeJiYxnZNvPMKVmMH7ZEEpWK/rI71eScpPcFfZJ0n+IUaOjRr6i6BUtxT38WVinLwbt0/u3i92uMqDhBN5vN5WBDSfc1yTng3+cpG/ND5n5zvfY7SoAofvCyMjsTbm5WuteRr4whYH1x9HvuVGYTZZ/fhN3UKZGcVzcjSiKQtEKOffIaTQaytUuSf5gX3wL+PC/nR+BTRB59hq9yg/H8req8Lfz8s+Lb1DmKjYFytUuyfkj4STHp2Kz2rFb7ZhSMxjSaAIjWk0m+mIM8dcSWTR5BeDoUQrde47wk5eznPfHCb/S2rUrH7T8+JFOOpekZ8nT+60qSbmcoih8U7Mn10zJpNky6Lzza4waPTOf60Z+lwfPXPxvSElIJfridYpXKkxKYjpXw69jt6lcjYgjOT4Vb/+7F2+d+vY8EmNTiI2Mp8FLz1G1UVn6fvwKs97/icAi/nj63nt+kN1m59gOx5BSfEwiVy9eJ6Tco+05GzC9B7XbVsWvgM99n9uUmuEMPlS7So/SQ6jZujIjfxiYpZfrz9/28dMnKwkI8Sf+WhKqXeX4jjOc3htGzdaVGTD9NVb8byOXz0Zz7nA44CgMq3PRU7lROQCWTV/Dgg9/QdhVPlg8mIaZy+gXf/wbdpudk7vOcP7wRUrXKIEk3Ytd5K5J97JHSJKeYhpFQwE3L+ac387F1FjOJl/l5/C//vXrCiE4sDWUg9tC71i2ITEuhV5VRzGi3VQmvDYLz3x5aNSxJhqthoYvPYeX372DtQJF/DG6GhBC4F/QB4DGL9dk5Lx+RIRGMqrDdJZ/vemu7dTqtLTKzMlTqloxCpUKfPAbvgetVsNzzSs+UIBVpHwhila81XtkybCye9UhzmcGM+Bo/5Q3ZhNxKpIzB8Jo0LEmZWuVQKfXYjZZuBoeS+veTWjRs6FzRZiiUXjpnVZM2TCSlwa1BGDP6oNYM6zYrHa+Hfa98/zl65bCxd2Ii7uRgiULPOxjkKRnkuwRkqT/gLKeQeyKPYcASns++l/0f7dm4Q7mT14DQJlqIVw+H8OLvRvS6e1mzn0unYnCZrWTkW7h2I4zRIZdY9D07gyf3fue57948grfT1xOpfqlaNGjPsUrBlOweIDz89B9YVgtNoQqOLTtFC8NeD7bOXauPMCnb8zG29+TL7Z9yMAZrzkLkz4qN64lEheVQMmqIQ+8NP3c4XDQaSlVszjn9l9ACIEQgoCQWyu8FEUhX6AXCTFJaDQa+n3SFXdPV6b1/47oC9d492vHs2zcuQ7r520lLjqRlwa1oMfYjlnKk9R/qSYnd50G4SjpcdMnG8dw/tBFCpUOuuNqNUm6nUCRCRUlSXr6vF6sHqU9A3HR6qniU/jeB+Qg5soNRnf7BrPJwrgFfSle/s7Ziy+eisKcYQEBx/ecR1UFCz9bwwu9GuCSORm5zHPFKF4xmDOHwgkI8WVAvY/I4+XGnH2TyOOV86TgmyZ2/5qr4dc5tuM0435+h2J/m3fT/NV6bFmyl7QUE92G55wu4KfPVmGz2EiKTWb36kO0698sx/0exOJPV7NuwTZa9mhA0y51GFD/I4QQ1GpVmSJlC1K1STlKVi1yX+eaOWghEaFRGFz1FCpdgMTrSbw97bVsPWUzt49jz5pDlK9TEu/8jqHEkd+/nWWffIFezD8x1fn+2I7TnN4fRtOudfEL8qH9wJZcCr3C6b3neXtmL+d+eoOesrVL/dPHIUm5ggyEJOk/QFEUavsVf6hzrP1hF9ERsQhV8NOM3xk7r++dr6d1VFNHAb1Rj6JAHk83DMZbXxkGo56p60cA0M6/PxazlfSUDCJCIymfmUX6Ttw8XNBoNQjheP13+YPz8cmKoUx7ex5LZ6znvdl9sgVXddtVJ/L8NRSNQvm62a+3fdleFn+yijovVOX1cS/fs0cnJT6Vnz5fg91mZ+mM9fgEeiGEwJxuYcfyA+xceZCfp63lx1NTyeuT567nAkdx1KvhsQC8O6s35WrlPD/HJ8Drjsvql325gV2rDtJxYEtqtalCxKkrHNx8gsVTVmG3qWz8cScLjk1Bq9Uy5Ns3sxwbG3mDSa9+iaoKxvz0Dv7BvjleQ5L+Tn2Kkh0+DjIQkqRcomz1IqxZoANFoWLtu0+ajY2Mz5x/o6F974YUKxdEpbol71gtvt2bzfjtyw0UKOpPiSohdz232WShevPyePl50KpnQ0rdYfn33DFLOLnnPBqdhtVz/qBtnyYoiuKsUdZ95Is06FADD293PP082LRoJ2aThZY9G6LTa/m83xxsFjsxl+No3Kn2Pef3uHq4kNcnD6a0DFzcDNR9oRpr524jKuwaNpsd1a6i2gUZaeb7CoTen9OXHSsOEFjE745B0N1cOXfVWcj1433/w8XdgGp3DK/ZrHaEKkhNSMtyzPkj4Sybvo7qLSpxZn8YZ/ZfAASLJi1n6G0V6yXpv0JRlCFAHxwpjk4AvYQQGY/yGjIQkqRnxNrIY4w/tobC7vlYULdXtmr1tVtUZPrqoZhNFspUu/vwTt+xHYh7eyHpKSZUu53aLSqiN9z566LPhE70HNMBXWbiwLuZP24Z6xduR1EUqjevcMf98hf2w+CiByA1KZ1XSwxGURQm/jaMyg0dtbqCSzsmAK+avZl5Hy5FCEHM5Tj6TOyMX1A+blxLQNEoWVaf/TBpOX8u20fnYW15vnt953adXsc3e8ZzfNdZKtQtibdfXnwCPLl2KRYBFC5TAL8gH07+dY7GBWvd8z6Nrgaav1r3rvvcjVteV8c1FECAJcOGRqNgs9pxcTdSqmoRXhvdIcsxo9p8SlJcCrtW7KfT0LboM59f4bJPd/4p6enxNBVdVRQlCHgHKCuEMCmKshToAix8lNeRgZAkPSO+Or2VDLuVy2k32BFzjjYFK2K3q3z+zo+c3BvGG2Pa06RD9SzHnDt2mc1L92J00VqIP1wAACAASURBVHNk51lCShegbc/6lKlWhDLVQvjj1/2smr+DvD4edHor5+Gbm/QGHSf3nGPsKzMxuhmZuuGDHGtqpaWko9pVFI2G9OQ7/2HXe/zLFC1fEDcPV/78bR9Ws2MS8Ce9ZtF95Iu80LcpURdimP7md9yIScBqtYGAhGtJAMzc8iF71h2mXK0Szrk3URdi+HXGeiwZVmYOnE/TLnXQ6rQAJFxP4uAfJ6lQp6Rz2f/5IxFkpJlxcTdiMOo5uPkER7aH4uJmpE7bqs62Rl2I4eKJKzzXvAIu7v8skeTf5Qvw4vPfR7J0xjr2rjuCVq+lZsvKXDoTRf9PulKtafYg0mJ25CqyWmzoXfSM+ekdVFWlVpuq2faVpP8IHeCqKIoVcAOi/40LSJL0DKjjV4x1UcdRUCjvFQTAqf0X2Lf5BBnpFmaNWpolELLb7Izo9CUZ6bcSEF4MjWbHmiN89ftwAFRVIGx2zh6O4Pie8wSG+OJXwPuObVgyfR3pKRmYUs1sXryb18e+lG2fvh93Rtgdldo7DmwBwJalf/HVkB/x9vXgk9XvEVDYD61OS7Oujh4VNw9Xdq8+iNVsI/F6Mt9+8BM1W1Zm9vuLOfnXOee5tXotJaqGAI4kha17Ncpy7bw+edDqtBhdHUNsmsx8PqqqMrDBeEfFe62Ghcen4OXrQb9PujB39BJKVy9KWrIJm9WOzWpn/kfLqN68AgajnutXbjCg3kcAFK1QiOmbRt3PP9d9KVWtKB8uGkTi9WTiouM5sj2UbiPa33GYr1qzCuxacQCAmMuxdBvVIcf9JOlOBMpTk0dICBGlKMpU4DJgAjYJIe6cT+MfkoGQJD0jPqzUlpcKVyW/a178MxMuBhZ2TJB1cTNQuHTWZfdC4MzmfDub1c5v326jz+j2bPplL0LAnt+Pc3B7KIpGw6xNI5zn/btarStzbOcZhBAY3Q3YbXZnj8tNnvk8GD4n60TtOaOWkJGawdXUDIY0m8TP52dm+bxywzL8evlrupceiinFhEarwcXdSGARR8B0M3Gh3WpnzshfaP9m8xyHrjy83fnfzvGc2H2Gmq0qO/exWe3ExyQhVEfOpNEdpvH1zo9o3rUuzTODsavh1+ldbRSqXSU2Kp7QvWFUbliGa5fiAMhIN3Pp9P1lwn5Q7l5uvF5xOKbUDOaNXcq3+yZRuExQtv16f9yF8JNXUFDoPMyx2u7Hj39j6dS1VH++AgYXA/t/P0qX99vT+b1nr3iv9J/jqyjKwdvezxFCzLn5RlEUb6A9UARIBH5VFKW7EGLRo2yEDIQk6RmhUTRU8M7aU+BXwJuvN44g/HQ01RqVzvKZTq/Fw9ud+MyhpOCSAVw+dw2A5Bsp5PFywzWPC+mpGQhVYDZZcXEzEHEm+o6BUJs3GpPXx4PP+81lybR1RJ2/xnuz710YNCA4H0mxyYAjUWNOXN1d+HL7OHatOki1puXJ65OHfp90xTvAi5+nrMacbkFn0OFX0CdLECSE4NcZ6zh94AI9x3QkpFxBCpYIyHJug1HPq8NfYPGU1SDgwvHL2Kw2VFVw7lA4hUsXILCIP9WbV+D4jjNo9Rrn/KRytUtQu20VTuw6S++Jne55r3eSlpRO2LFLlKxaBNc8Wed32Sw2Z9kRoQqWfbWBmi0qEVw6iOBStxIlBpUIZMGp6c73qqqy6OPlCFWwf8NRBGAz25g3+mdeGdb2gXMjSbnDYyy6GieEqH6Xz5sB4UKIWABFUZYDdQAZCEmSdGenEqN57+BSPPWu/K9mNwoU8cPFzcDQ9jNISUxnzNzelKrsyEWUdFvQUbFOCQwGHWmpGfQc8QJarYbpq4awY81hhAor522naNkgqjQofadLA46eEUWjkJFm5uyh8Bz3SY5PZfYHP2EwGug3uTOvDGvDpNdmodrVu2akDiqWn85D2/DdmCWM6zSDju+0pOt7L/DKkDZEnovm3OEIarSolOWYY3+eZtGnqzCnW4gIjWLBsSk5nrvbB+04dySCg3+c4IW+TdDpdQxpPonwU5EYXQ3MP/wJ4xYP5MzBi2h1Wr794GdCyhWky7A2jJj7cCuyLGYr/WqMJjUxDd8C3sw99EmWFXrmdAvBpQs4e5w2/bCTTT/sRKvX0mlQS1Z8tYFydUoxceV7WZJKajQaSlQJ4fKZaAxGPWkpJgAUFI7vOE2lhmUfqt2S9C+7DNRSFMUNx9BYU+Dg3Q95cDIQkqRnzIzQzUSmJ3BVSWLllcP0KdGAjUv2cuncNVS7yg9T1jLppwEAlKlahFMHLqDRaihduTBe+TwILJyPImUcvQymVDNhJyKp1rA0v53OHkDYbXbmjF7CpTNRvPnpq4SUCaJeu2ps/mkXUWExvPXZq1n3t6ucPxLOqtlb2LFiP4pGwSfAk+4j29O+f1POHYmg36Qud72/a5diWfnNJqxmG3NHL6FN7yYYXQ0ULlOQwmVu9YjFXI7j/JEI3D1dQYBGq9xxIrPdZufMwYsM+V8vvP3zoigKQgjOHrroXLJ+NSKW4pUKU65WCQY1HE/Yscvs+/0oIWWCqN2mygP9G/1dYmwyibHJ2Cw2oi9ex5Rqxj2vq/Pzya/P4sq5q9mOU212ls1Yh9Vs5dSes5zeF0aFelkD1enbxnF6XxhFyhfivWYTiTgVid6oI+Zy3EO1WXo2CQH2pySPkBBin6Ioy4DDgA04Asy5+1EPTgZCkvSMqeRdkOMJVxBAqbyOeUElKhRCp9eiMerwLeDN280/xWa1EXkxFqOrgWYv1+CP3/Zz4q8L6PRaDC56XFwNTBn0AymJ6RzZeYbjf4VhdNVTploRChb1p1LdkuxadYjff9iBOd3C5/3m8vXOj3DN48KUtSNybNvn/efy17oj2Mw2hCLQarS45XVFo9HQ/5OuWfa9eOIyBldDltIb4JhjZHQ1oNVq8fBxR2/M/jWWeD2Z/jVGoaqCoGL5GT63H2FHI3ihX84r3yb3ms2hP06i0SqMXPAWIKjWtDxdhr3AL9PWYjDqSYpNQVVVNBoNBlcDikZBgHOJf04y0s3ojfosRVZz4hfkQ5NXavPnb/to/UajLEEQgNlkRqjZ53MFFs2PX4AnZ/aHodVpCSqefZWewcXg7PkZNrc/QxtPwJJh5edPVtK8e305PCY91YQQ44Bx/+Y1lDsVVHwaVa9eXRw8+Mh7xSTpmSKE4K/Yi3gaXCnndWv+yMXQKCIvxPDZwB9Q/zZJWm/QodEqmDOsGF30+Bf0ITYqgQyTo8wGOCqeq3aBolHQ67V8OK8PGiH4qMuX2G12KjUow6TlQ8lIM2N0M+T4C7ZzscHO4TiNVkOzrnUY/EXPbBOq1363lTljloCAsYsHUr1Z1qXisVHxnNpzjiqNy+VYof7c4XAGNxqPqgpQYF38vLvWIesUMoiUhDQMLnpUVUWn09HitfqUrFaELwd/j9nkWFlXtUk5Jq8YRnxMEitmbcInwMu5tH/0wrcocFu6gJXfbGbO6CV4+eXl653jnEvy/4mr4ddZ8NGvXD4TTfipSEpWLcLgr17HwzsPnr4eTOw8k4ObjxNStiBf7ZmIwcVwx/P0LPWu8/1nv4+kSpM753KSnjxFUQ7dYx7NIxVS3kOMWV75sVyrb6ldj/Xe7uTp6P+SJOmRURSFOv7FsgRBAEXLBnH6UESWIEijcQQrVosNq9lG7ecr8MLrDYi7mkhGugXFec6bRwhUu4o5w8qcj5ZTqUFpPpjXn9fHdmTk/DeZPmA+HYLe5t1mk7IU/7yp55gOzgBJIAgs4p8tCAI4sPkEFpMVS4aVLwZ/T3xMUpbP/YJ8aNSpVo5BEEBwmQKOIAjQarXOUhe3s9tVTu8PIzE2mV7jOmJ00QMCm8VORrqZ0/vD8PbPy+1/LB7ZdgqzyYJPfk96j+9EXFQC5w5HcOHEZX6YvDLL+VfM2oRqV0lLTufQ1lM5tvN+BRbxZ9T3A5i9bxLTNo1m4IwezB/7K29Uep/BjSZwcPNxhCqIvnidiFORjvuz2bl8JsqZWyj+WiKevlkzYl+Tw2OSJAMhScpN1i/a7Xxdqkph5v81liYvPYeXbx76j+/I2Hl96T26Pf3GdsDDy42Awr4YXPToDTra9WpIy1frOI+PjojjemQCtdtU4eV3WuKW14VNi3YhhCDiVCSXz2af09Ls1boY3Ry9FQoKzbrUzrZPSkIanYe2RpeZyfrG1QSWzlz/QPfp4mqkVusqaHVaQsoVJLCIX7Z9Jvf8mg/afsYblUdQs2UlSlYrgiXjVvBWtWl5qjYux8gFb+JfKB+KAnXaVsXoequ3JaRsEHqjDhdXA0X+ltunaZc66I06dHodbnlc6F56CAPqjSXhb0Hd3YQdu8TyrzdyPfIGAGvm/MGoFz/nvZaTObTlJDarnYjQSEpWK4rOoCNfoBfBZYIQQjCs6QTerjGKt6qPZMmUVXQv/g7dir6DRn/ra9/b3+u+2yJJzyo5R0iScpEyVUI49td5wFFhXq/T8eb4l3DL65plHkvLV+vQ8tU6CCE4d+wyXr4e5C/ogxCCi6eiCD8TjX+QN76Bt36RajQaqjevwLEdp/EJ9Moxq7TNYsNmcQQbGq0Go1vWycv/G/oj6xf+SWARP7oMa8OvX2wAyDZP6H58tGQwideT8fTzyLFG2tHtoWSkW3BxV7h48gou7i7OSdI6g5barR3DA7VbV6FWq8qkJqZnK/za/NW65AvwwmqxZlut1mN0B1r1bEgeLzfGvTKD2Mh44mOS2LR4F52Htrln++NjEhna/GPsNjvLvtjAT+dmcmrveczpFhSNgrunK2mJ6QghyOPpxsLTM/AJ8ESn12FKzeD0vjCEKrgWEcu677Zis9jQaBXKPFeC84cv4urhQpkaxR74uUrPNsHTM1n6cZGBkCTlAgmxyZw+FEHL1+o6AyEUmDNhBTvXHqVgMX++XPdelt4OcAyz3Vxqf/P91BXvEnXxOoEhvuj0WYe1JiwdzLWIOHyDvDEYs08idvNwZdg3vVk9ZwutXm+YrXjppkW7UO0qN6ITqVivFCFlC6LTa6nZ8laQkZqYxsj2nxMTEcfw7/rxXPOKOd6zoijO0ho56THmJeaOXkKR8oWoWK80pasVZdn/fic9OYMWr9WneKWs932z2OvfVW1S7o7X8CvoA0DZWiU5e/AiQkDx257n3aQmpiNUx1BdclwKQgi6Dm/Hmf2OVX6vDG3DV4PmAwp1X6yOf6F8zmNd87jQ+JU6bP1lNxXqlaJu++rMGvojLm5GPvhhAHarHe8AT1zdXe7cAEnKJeRkaUl6xmWYLPSsOQ6L2YrN4igRodEqtH+jIavm70C1qxhdDXy2dBClqtzfL2mAdT/s4vef/6J974Y0e7nGI2nrtLfmse3XveQL9OKbPRNw83DNts+GhduZNXwxFpOFwmWCmHNg8iO59v0SQhC6Lwz3vK6E3GcxUyEEx/48jYePO8UqZn3GJ3ad4cbVROq9WD3bhO5fpq1l96qDdH2/nbO22YqvN/LdmCW45nHhoyWDyeudh+AcskwDpKdmgBC4ebiSnmJyrLbLYU6W9PR63JOlC5f3ECN+ezyXG1B6+1MxWVr2CEnSMy7pRiqmVDNWiw0UMLrqQUDVhqU5ufcCF0OjyBfgmaUEx/G/zrNm4U4atq9KvdbZV5AkxCYz+6PfsFnsfDH8Z+q2qoTrIyg2OnTWG/T88CU8fT3uWO2+eOUQFMDF3UiFeqUe+poP6pdp6/hl2lqEEIxbPIhqTcvf8xhFUajcKHvywkNbTzK+8xegwOo5WyhcpgDl65aiYPEASlUrSpdhbekyrG2WY9Z8txWb1Y45w8Lls1fxL+jDd6N+pln3ejToWMu539WLMQyoPQZTagbvfPUGibHJHNh4lJ7jOslEipJ0GxkISdIzzj/Im9av1WX7ykO0e6MBJSoEY7PZGNfzW1S7QKfXMm5eX1wyh8XsNjsfdp+NxWxl3x8nKVO1CPkCsg4xubgZ0et1IMBg0DKsxWRSEtIY88PblKpWNFsb1i/YTui+MDoPbUOhkoHZPr9JURR8/1bUVQiB2WTBJXM+UYnKIXzz10TiohOeSCB0fOcZzOkWNFoNZw+H31cgdCfRYTEIIbCYrITuO8+pv86xYcGfGFz0jFz4FrVzqBrftncT5n24BIPRQMX6pelfZQRWs5VDfxynQr0yzuHAfRuOYk63YLfaWTptDXFR8ZjTLYx/ZQbLY+YCjozWa2ZvxuhmpNUbje+Z70h69gkU1Kek6OrjIgMhSXrGKYrCm+M78ub4js5t8yevRrU7hsVVu0pSfOrtB6DVacDsWNml0Wb/UnR1NzJz7TAObT/NruX7OLXHUQF+av/vmHsw61BV6L4wvh35C2aThdB9Ycw/8mm28yVcT2LGwAVoNBqGfN0Lz3yOZfFmk4XBjScQcSqS9m81560p3QAIKh5A0D+YQP1PWcxWfpy0kpSENDq+04JLZ6LI4+XO893qPdR5m3atw/6Nx7h8Npob1xKwZtgQQmC12Ag7GpFjIPTSwBY061oXF3cDGq0GnV6L1WxF0WjQ3jZnq3rziiwcuxTVrpKakIYlw4pGq8kyL2vBmCWsnr0ZRaNgNVvpMLDlQ92PJP0XyUBIknKhqg1Ls2LuNmw2O5XqlaR8zVurh7RaDVOWvcOmJXup3bIi3neo/RVcIoDgEgFsXrjduc3NM+uqqv2bjvPdh0uw2ewoioLmDj0OP0xaycE/TqIo8PPna3nzU0eW6bMHLxJ90dFrsva7rbz52av3lQnZarGh02sfWdbkdfO2sWr2H9jtdkxpGfx0dsYjOa+bhysTfxvqvL9DW04SdjSCvPny0Lp3kzselzffrWBm2paxbF2ymzovVMPoaiA5PpW8PnkoWDKQny9/zfBmEzl3KBxFgSpNyjN0zq26aPt/P4rVbAUFkuKSH8k9Sf999lyWWUcGQpKUC1WuW5L5u8ditdgoEJI9x07xCoUoXqHQfZ3rnS968FHXr3BxM/LhogFZPpvUYxZmkwWtXku9F6vTa2zHHM/hF+TjnBPkF+QYGrsafp2Pusx0Lhe3WWz0rT6SL7ePyzaJWghB8o1UPHzc+e2r35n/4VLyFfDmfzvH37WI6/3SG/SgOHrXcirp8bAUReGFvk15oW/OJUDuxGa1UaRCIfpV6UbU+at0CX4bc7qZATNfp03fpri6uzgTaAoBlgwrfgXzZb4XXDkXDThSH1SoV4YzB8LwDfLht5nr8fb3pOOQNnK4THrmyUBIknIpvwLexF9L4v3207DbVT74tjd+QT73dWx4aBSjXv4CgMm/vsMv52cSduwSP3++ltqtKztLYnj6ehB/LRGtTku/SZ3veP7Ow9rgG+SNRquh0cs1sFps7N94DEuGIyuyyMwSHRsZz8k957Lk7BFCMPblGRz84wQhZYMIP3kFISAhJonDW0/SpHOdHK/5IFq93oAMk5nUhDQ6vdv6vo65eOIKdlWlRKX7X4n3II5uP8WYdlPQ6rRM3fIhJ3efxWKyYLPaWfHVBoxuRmq2ruyYJJ/JfltWcUVReK5FZY5tP4WnX16+fnchcZHxKBoFi9mKTqfFwycPrd5o/K+0X3o6CUCVeYQkScotfpm5gVP7whACpg5YyIUTVyhUMoDJvw7GNc+dc8ys/HYLibGOoZQVs7fw7hev8X6bz0hPyWDz4l3MP/IpvgW8mbZxJDtWHKB87ZJ3DbK0Wg3Pd6tHzOU4upUaRmpSOr3Hv4zOoMNqvvWLXGfQUrJKkSzHmlIzOJBZYiIiNMpRD0QI7HaVcrVLPuQTymyfTsvLg+5//syOFQeYNmABAG9NeZWW3R9uLlFOVs3alBkoWtn84w7av92CH8YvQxWOUhtfDPiOfIHeBJUI4PKZaDQahXK1S9A1ZAD5g32ZuGo4E1e+R+S5q7i4G+lZ6l3sNhUUR7JLgWPivCQ963JX2CdJUhaFSuRHb9RjMOq5cPIKackmIkKj2L/55F2Pq9akLAYXPQYXPVUblwHIMgRzswfHL8iHjgNbUKpa9uBl/6bjJFzPWm5iz9rDpCWbsFvt/PrF7wQWy+9M2qgz6Phy2zi8/LMOdbnmcaFyw7Lo9FoKlQp0JHJUoPeETuQP9v3nD+chHN99DnOGBbPJwrEdpx/4+P8N/YF2vn2YOXC+c1tcdDxRYdec75t0rev4t3PRU7f9cwQVD2DJlVl8umEkWp0Gc7qF6AsxHN9xmqpNyzNsTn8Obj7OjegEQveep3uxd4i9coPg0kH4F/Klwcu1UDQKdds9R8vXG/HKsLa07NXoUTwO6T9Fwf6Yfp4WskdIknKxtm80wi/IB7td5a/1x9i99jAAxSrcPVFgg/bVCcmsaVW4lKO466QVw1j97R/Ua1/dmVH5ToY0m8S1y3HoDToWHvsM98xJ1lUaOQIahCD5RgoJMUnojTrqtqpM41dqZVspdvTP0yyZvhYPb3f8CuajYPFAoi/EoNFqCDt2GQBVVZk76hdC94fRb3JXytUq8U8eVRapSemc2htG6epFnCvcbvfim005sPk4dpvKK4NbPdC5k2+ksH7eVuw2lc2LdtJjzEtEXYhhVLspALw5pRttejehfocalD1XAq1O65wHZXAxULF+GVr0bMS2X3aTmpyOOd2CKTWDZt3rc3znacJPXAHAlJbBrpUH6Di4NZHnotm79rCjLpqHC+/O6vOQT0iS/jtkICRJuZiiKNTKLF9Rq2UlWnSrS/7gfPjfI5ABCP5bPqBytUpkCzJiLsUSc+UGJSqHOIfa7HaVS2eiEUKgqirblu2jUMlAKtUvTUjZgvx4aiqR568you3n2G0qNoudlwe3pmzN4sRFx3Ng03EqNShDYBF/xnWaQUa6+db1Lseh1WlQuNVDdWTbKdbP305GupnhLSfz+e+jHioYSryRQu+qo0hLMaHVallwZDL+BfNl2adg8QC+P/bZPzq/u5c7/oV8SbieRN58ecibLw/r5m3FarEhVMHOFQdok7miLF+gd7bjFUVh4Bev0/WD9gxv/jE3ohOIOBVJr3JD6fdpNzb94MgmjoAqjR05kN5vORlTagYAu1cfZPg/arn0LMiNc4Ry191KknRHWq2GCnVK3DEI2r3uCGM6f8nudUfu63y/fb2RnpVG8H6bKbxR9QPCT11BVVW0Wg29xnUkj5cbhUoGMnf0EsZ2msm2ZXsB8PB2p0yN4tRtXw1wTIZe9uXv2O0qA+qOY9bwRQyoN85RMsI9a200g4ueDgOep2DxQI5sD2XJ9LV4+XtiszrmGdltKl/cNtz0T4x6aQZpySYQjjk0a77b/lDn+zutVsOsvyYyYdlQZu+bjE6vo0nnOnh4uaNoFNKS00mKS8nx2POHw5nebw5bf9mD0dVAhXqlcM1jJD3ZxNXw64QdjSCgiB86vZbaL1SlaMVghBDEX010nqN59/qP9H4k6WknAyFJku4pLdnEZ/3mcWhrKJ/1m+cIBO5h84+7HH9eAgkxyQxqNJHRHaYD8MqQ1iy79D8KFPHHbLJgtdgIPxmZ5fhmXeo45yHVblMFq9lKSnwqFpMVi8lCekoG783umyU3kUaj0LJHQ65GXCclPpUFHy0juFQBAov6O/cJKvFwiRjjIuOdrxWNQvna2XuXrpy/Rt+aH/Jm3XHMHrGY9Qu28SB1Hd08XKnUoAzueR1pAoKKB1CtWQUQcP5wBLPe+9G578KxS3klqD8z3v6OQXXG8PvC7UzpNYupfWazedFOEq4no9Fp0Gg0LP9qA8Glgxj36xCKVSrMhaMRKIrCu7N64x+cj7b9m/H2jJ4P8XSkZ4GcIyRJkvQ3Wq0GrU6D1eJYUXR74c6LJ6+wadEuarasRJXb6mm9NKgF0wfMB4EzD9CR7aHYrDZncdEeYzpw5fw1XFwNtH+zWZZrVmtanjn7J2G32Qkqlp9Vszejqo7hLrtNZc+aQ7Tt25QSVUI4e/AiikbBv5Av3vk9MboZ0Go1eAd4AYIrZ68CoNNr6fZB+4d6FsNn92buh0sJCPGjy9A2lK1RLNs+i6es5so5xzUjTl3BoNfg6u5C41dq/+Pr+gfncwZTO1fsZ/BXvbhyJpqfPl0JwIbvtnLzd4tqVxHCkR9I0Wto0rUOu5bvJy0xnaPbTnHojxNYzVZ+nb6OxRe/omWvxrTsJZfJS7mTDIQkSXKKj0kir08e50qtm1zcjUxZPYzda49Qt20VXNwcQ1KqqvJeq09JTzaxfsF2Fhz91Dlv5flu9WjQ4Tk0GoUP2k/l9L4wmnWtm6XCeqESgczeM+GO7QkofGvV1/oF27nZqSKEYNEnK/HJ78W0TaM5e+j/7J13eBRVF4ff2ZYeEkIKvYbee+9FESkiXRAFBEFQijQRBKnSRIqAVGkiRXrvPUAogRBISEIIgRBSSM+2ud8fGxbWJBQ/C+i8z5MHdvbO3DsTyJ6ce87vF0bo1QgadayFo4sDSy9M5eaFMCo1KI1Wp6Vplzoc/fUcvlWKULTcywlFPkEIgWyWrcFfjRYVqNGigvX92wF32fnTEWq0rEC9NlWRJImSVYpyds8VDBlGhFEgBDa1TC9L4NlgzCaZCvVL0XlYGzZ/vxezyYxKpUIICL8R+bvFWv6o3qoio1YPYvdPh0BA+8/eIuZuLEF+t4HMtngB+jQDvXy/YNH5qeQr7s294AcE+4eh1qip1766zfdK4b+BENJ/rkZIelG6VpIke+AEYIclcNoshJiQw9iOwGaghhDioiRJPcCm7q4iUFUIcUWSpGNAXuBJjr2lECLmeWupXr26uHjx4ovvSkFB4ZWZP2IdB9afwd07Fz8e/9q6LZMdj2OT8dsfQOnqxRjc6BsM6UZ09lqWXZyKV0GPLOOFEBgyjNg56LK52suxd+Uxfvh8FXJmaz4S2DvYUevtSoxdPej5J2Np2bd3snsl242MND3DWk0jPPAe3b98l55jsmaTOhYaTGry063Cdz5uChtLWgAAIABJREFUxGezPmDnT0dY991OzAYjTd6vRf8Z3V8psDi0/hQ/DFkFEvSd3IW2/Vtwbu9lNs7aRcueDXi7d2NSHqfSq9TnpCSk2Zy7NeYnom5HU6RcQeszN2QY8D90jSJlC7Bhxnb2rTwGWLJ1n87uhZObI7P7LUE2WbJulRqVZebBcS+9XoW/BkmS/IUQ1f+u+fKXcxMDf/3zda+yY1z53X/rveXEy/yv1ANNhRApkiRpgVOSJO0VQpx7dpAkSS7A54Dfk2NCiHXAusz3KwDbhBBXnjmthxBCiWwUFP5BIkOi2bXiGAd/OYvJaCY5IZWQqxFUblA6x3OGvj2D+IeJqFQqRi8fwKENp2nQvnq2QRBYOpn+aBCkTzewb/VxcuVxZX3oD/z45VoCzwSTGJdMRpqesGuRL74IPFcgMieCLoQRFRqDELB10YFsA6GMDNtMz+4Vxzm6yQ+vgh4kxqWg1WnI55v3lbMrty6GYdAbEUJw80IYbfvD+unbuXPjHj9+GUHlRmXJW9SLyo3Lc+q389bzSlYvypD643l0Lx7vQnlYcnkGarUKnb2OOm0sBejl6pbk4JqTlsyQBFeP3+D09gvWjBLA9dO3Xmm9CgpvKi/8nyksKaMn1tTazK/s0kjfAjMgx87LbsAvf2CNCgoKfyGj35tLfHQiKrXFFNUtjwslqxSxGRMeeA9HF3u8C+VBCMGjewmYTWZ09lryF/dmwLRuJCekIoT404xOn7Bg6M8c23QOSS0xbFFfxq4aiD7dwJSeC4kMvs+Qeb3/1Pme5V7IA/TpBgDKZFMLBNCwQ02ObzmPbJaRVBJCFqQlZ5CRZsDe0Q4hBEXLPV+XKTs6fv42V08GYTbJdBvZlkdR8dy+EoHZZMbOUceje/HkLerFkAUfE+QXQtz9BPLkd+fxwyRiIuMy13+faT3nExZwl0Hf97YUXAMtejZEn27gyPrT3L5yhzPbL9r8VJckiZLVi2a3LIX/AOb/2NbYS/2KIkmSGvAHSgALhRB+v3u/KlBQCLFbkqScAqEuwO9/nVopSZIZ2AJMFq/SVqGgoPCnYDJabBQ0Wg1TNg2hTI3iNkabWxYeZM2MHQgBUzZ9TvnaJRj6Qy82zNpN3Xcqk56awZDGljqfzl+0psfotn/KutZ/t5Mt8/ehs9di0BuRVBKH1p+iUcea2DnomLR56J8yz/M4tcMfsAQGZWuWyHbM8AW9qdKoDFqdhqT4FJZ+tRHZLPCtXJhWH9THzdOVEhULvfLcPoU9WXphmvX11A8XWi0vCpbMR/l6FvuQxNgk4u4nABAblWBzjYoNynJ+7xUyUvXM7reE9eELAEsRddsBLQkLuMvNC6EIBEjg6OzA+I1fkJ6aQcWGZV55zQoKbyIvFfYJIcxCiMpAAaCmJEnln7wnSZIKmAMMz+l8SZJqAWlCiGd1+3sIISoADTK/euZw7ieSJF2UJOnio0ePXma5CgoKr8DkjYNp0K4ag77rRmRwNB/XGMfS8ZutHUp+BwLQpxsxGc1cPxsCQLNOtVjmN4mPx79HkN9tzGYZfboBv/1XnjeVDc/7vcdkNLFm6jZSk9JJjLN4mglZcOX4DS4eupZlfFJ8ClN6LeTbD+bnqLHzR2jbrykqtQqtvYb6batlO0aj1dCyez2avF/LOl4Igd++q1w7GcS33eYx5t0Z/DhyLUlxr742IQTf9VnM6e0XUWlU2DnqaNOvKSqV5cf3tVPZb2F5F87DwLkfImSBnaOOApkCmGaTma/encG7uXrj5uWKSiWBsHTUzTw4DhcPZ2b0XkTXggM5vzerZlRqUtorSQEovFkIQEb6W75eF14p/yWEeAwcBZ51H3QBygPHJEm6A9QGdkiS9GwBVFdgw++uFZX5ZzKwHqiZw5xLhRDVhRDVPT09X2W5CgoKORAfncj1c7cxm8z4VirM2GX9aN6lNgtGbiAmMp7dK48TGRKNEAJnN4v9hYOTHU3et/w3vekfzpdtZ7N80lYatK9Onnzu2DvZ0XNs+xfO/Tg2iY8qj6JNnk849MuZHMcVKpUXjU6N2fDU+NNkMOP4TK1PUlwKfvuusPKbTZze4c+ZnZdY/e2WP/pYsnDjfChqjQoE3MjsuHoRLu5OlnOAX+fsJvrOIy4dCWTH4kPMG7zSZmzI5TusnbaNO4H3srsUAHdvRnHitwuYjGZkk8yQeb1568NG1vdrtKyIzl5rfe3o4kDhsvmZsW8sRcoVYM6xCXy+oA8Tt1h+Vw32D+PayZvo0w38OmsXzm5OgCVLpNGq2bn4IBmpeowGEzsXH7RZy7dd5tAhd28+rz9OMWRV+Nfwwq0xSZI8AaMQ4rEkSQ5ACyy1QAAIIRKBPM+MPwaMeFIEnZkx6owl6/NkjAZwE0LEZhZgtwEO/Sl3pKCg8Fxi7sXzaYNJyLJM9ebl+Wr5J4Bl+8e7YG7iY5IsGjyerpzc4c+5vQEApCWn457paTWt70/E3Isn+PIdPHxysfLK9JeuDTq/P4D46ETMJjPrv9tB8651re+ZjCa+fGcGQX6huLg7YTLYfthWbVbO6iifnJDKh+WGk5ZpDfH0+lf/0HO5ExTF3MGryJPPnZ6j2/F153kkxFjWqdaoiX+Y+MJrSJLEnP1jOLH1AuVql2BSt3mkPE7NvA+LpciTDjqD3sjwFpPRpxtYM3kr49YPpkG7GjbXS0/J4Ov352DUG1FrVBTwzUuzbvVsnrV3YU9+jVrMtgX7SIpPocuItrh757K+71ulKL5Vntb75PfNi9beYkxbsloxBs39kG2L9lOpUVnGvzeLuAePkVQSGq2alr0bW88zZBg4seksALcvh/Mg7CEFSub7Q89a4XVGUmqEsiEvsDqzTkgF/CqE2CVJ0iTgohBixwvObwhECiHCnjlmB+zPDILUWIKgn159+QoKCq9K+I17yEKQkWbg2ulg63FJkvh+/2guHg6kTI1i3At9yMyBK63bICJTGBHAzdOV2PsJGDKM/DR+C/EPE/n46/deav6ytUqgUknYOWip26aq7dqu37N2gSUlpCAhgUqFWgU9xrSn+8in9UdRodFkpGfV5nl0L95GtPFlWThiHbf8wwm/fo+MVAOxDxIQssA1tzOVGpSiw+8EH3PCp1AeOn/xNkIIJm4ayu3Ld4gKfYghw0ClhmVp7/0JGal6VGoJ2fx0i2nN5K02gZBBb2TuoOU8jIgFLCKSJqOJgJM3KVK2AKEBEexYcohmXevSoENNuoxsx/KvNjCzz2L6f9eDwmULYDSYMKQbrKa2AK65nVlxfRY7Fh/k1oVQ4qIfM/THfty+fIeEmCRMBosdyaqbc/HM/7QLUGunpWrzilw7cYN8xX3wLqJk6BX+HbxM11gAUCWb4+NzGN/4d6+PYdkue/ZYKpD9hruCgsJfSuUGpSlWvgC3AyLxzJ+bn6ftoMfINqjVKlxzO9O0Uy0Abl26k2lfYcnK5C/uZRVanLThM7qXGwlYxAbP7Q146UCoQAkfVgbM4PGjZAqXts0o5C3mhVarQY/BEgQBzm6OvNWzARtn7eL8vqvM2DUKeyc7fCsXoVDp/NluK3UpMpgfjk/I4lb/PPIW8yL48h0AytcpwbUzt0CCHqPepd0nzV76Ok9Y+OU69q89haOLA0vOTMTN05W2efpau9CeDYI0OjW13rb9Mfvbwv2c3Gbb0h51+yEj356GSi0hSSrMJjMXDwZQrk5Jrp26ybb5+zAZzcRGxTF5+0g+rTmWtOR0BszsSbuBLa3XMZtkfpmxHaPexOUjgfwWu4wi5QugtdNgSDegUkv47b5Mm0+eBn+SJNFlVHtqv1uN1n2bcf92NEF+t6nbrjquuV1e+fkovJ5YTFdfn/qdv4P/Vv5LQUEBOwcds3d9SbFy+Qm9dpetiw9xeuelLOPqvlOZOm9XoqCvD/0mvs8Ph8YiSRKJcSksm7AZO8enukBdhr790vM/CI9h09y93A99aN3iSY5P4cDak4zrOIeURFtxQLPJzOZ5e9GnGwi+FM5nDSYQERTFgbUneRAWg0r99Ie2vZMdAOlpes7sznpPz2Pw7A9o06cxLrmdiAp9yMIT45m6ZSi5PFyIjnhEyJU7nN516aVrY45vvYBRb0KfbuCWfzhAjlpKPb/qwMcTO9kcU6kkVE+2wH73uSSbBbLZsg6zydK2H3gm2NoBmBSXwoUDV9Gn6zEbzWxftN/mfI1WjZRZbK3RqlGpJDRaDdVbVEStUaHVabF3tLM5x2/PJca3m87yMeuZ238pn9Uaw4LByxjWKNvfiRUU3hgU/XQFhf8oDk52loyPIMuHHoDOTsvoJX2zHF82YTNHt5xHUknUbFGBD0a1wbdSYcCyLbVp3l6KVSzIWz0bZjvv2A5ziL7ziF3LjzD30DjyF/fmk1rjSIpPwZypavws6c8YvMpmmcjgB/zw+SpyebhYsyuSSkKr09D6o8bsWHoYjVZNjeYVX+l5aHUajm05T9yDx5zacQmnXI5sX3IYsPirPQkYGravwbCFHwGwe+UxTvx2kc5fvE21puVsrte+f3PWfbcDdy9XCvh6E3o1grFrP2Pt5K1UaFCKLfP2YcgwggQanZbYBwmMfmcGMXdjGbG0H+0HtkKfbuTG2WAuHwu0ySCpNCpUSJhMZjQaNQ/CY/AunAe1Vo1slilbx5eqzSqgs9MimwXv9GtG9J1HJMYmkZaczsROc3FydaB5j/q8+0lz6zbiF4v6UrBUPnL7uNG0ez2b+4kKeYBsFhj1BiJuRCIyLTqiw5Vu3n8b5v9YjkQJhBQU/qOMWtKX7T8dIX8xL2q0KJ/juMexyYRciaBc7RI4Ottj72RnMfNUSVRpVNoaBJlNZvrX/pq05HTUGhXeBfPYmLA+wZBhzKw7kjDqjYx4axoJMUk5L1SSkCQy28UFZrPMvZBoOg1tTcDpW+jstUzc+AX5S3jj6OJAp6GtsXOwe65FSE7kL+5NyuM0hJDZu/qE9bhslpHVEoYMM7cD7gJwPzyGJWM3YsgwcuN8KNvvL7S2tINlS+39Ia2IvR/PoLrjkWUZSZIs4/1u89n3vdi28ADehfJg56CjZ6mhiEz7kJ+/3Ur99jWp3LA0NVtVxL/BU+WRBacnkq+YD6NaT7OYyUrgXSgPJSoXISH6Mef2XObigQDcvd3YELGI9JQMTmw+x8cVhqNSSbjmdiEtKZ20pHT0aQaKVy5ivbZTLkd6jX8/22fT6qMm+B+4StyDBEYsH8i+FUe4sO8KH03u+srPWUHhdUIJhBQU/iPcD4vB3smO3JkdRbk8nOmVg/jho6h4DBlGPHzcGFB/IvrMv/909hv6TOhIbu9cODjZ8W6fxtZzbl+NID2zg8tskrPN7gBM3DiEDbN2UalBaTzyulsDi9/jUyQPFeuXxmw206JbPfKX8GFEq6lE33nE40dJTOj0PbXersTEX4fadFHl9nb7I4/HsrYNgzm1058iZQvw/ZBVhAZYCrftnewoXb0o0RGxDJrZHXi6zaVSSTg623qYmYwmZnyyjFv+YdRvUwVZFujTDDZzrZm8lV/CLAKHn1QfYw2CAFxyOzOo7teEX7fMr9aoMZvMaHUavAvmwcnVge/2jmHT97s5tOYkCz9fxeg1n9FpeBu2zLMYs+5ZfoQPvnqPCweusnjEGuu2WUbq0y67K8cCX/rZOLk6MmX3WOvrQfM+fulzFd4cBNJ/rkZICYQUFP4DbP/pKCsmbkVSSczYNpRSVZ+2U5/Zc4XlE7dSsV5JBs/qTsDpYCZ0XwhA92GtSUvJwKg3cT8sBqPBhL2jjm7DWmeZI18xb5xcHUhPzcCrgAfVmpXLMgagRKXCfL3GYpKqTzfgnMuR1KR0NFq1RSvHbAmgDHojwxZaPmwP/3KaIxvP4lu5CLH3E6ydTef3BXDx0DVqtHi1bbCccHC2p0W3epzdc4XI4GjUGhU+hT3xKuhB4LlgHF0ccfeySAh4+LgxfdtwLp8IovF7NW0CocvHgrhw8BoZqXoObjyHT+E8RN2OpkGHmhzbdA4hBBrdU+2fZt3qsXrSZmvwmPgoifthz3pQCwqU8GHID71x9bAUJju6OHB0/Wke3nlEYkwSZ3f4U79DDfLkz01irCXDNqnzXPKW8EaWM4NSCdp80pwtP+xBklRUb/nnPDcFhTcZJRBSUHhDEUIQ8iAWd2cHPF2dnzv2xPaLGPRGVGoVV0/esgmE5g75mZTENOKjH9P0/VpcOhaEQW8EAYHnQ2n0Xg2O/OqHVqfBb38ADXJQWHZxd2LFlencvXmfUtWLPVdXSAjBzYth5PJwZvG5bwk8E0zFhqU5vz+A5eM3YTbL9JnQiaObznH5WCAH1pxEyII8+d0ZOPMD5n+xCiEstTtOro45zvNH8T8SaKnfAe6HPSQq7CEIMBmSObLJjw9GWTJpZWuVoGytrNYb+Yp5WYO1lMdpzNw1kiJl8gNQ8+1K+B+6jtlo5seRa/loQie6DG9D5cZl+abz9zx+lGSxFJEskgVgybA9jIxlZOvp1GlTlQm/fI4kSRQpV4C4B48RQpCvhDdqjZrF/tP4ZcYOtv6wl8CzwTy6H0+RcoUIv3YXIQR7Vx7jp8sziYmMpUIDxUZDISuyUiOkoKDwJjB/zxnWnriEJMGaId0omS9PjmO7fP4Wkz9agpOLAw3a2QYy+Yp5EnHzAUKAZ353WnStw4F1p9GnG+k0uBUpiamc2u5PRpqBxWN/zTEQAotGTfm6JV+49tVTtrF10QFks+CTyZ1p268pAC171Kdlj/rIskyvcl8S9yABWRaQuW0kSRLv9GlCtWbl2bX8CGVr+WYbiDwh8FwIfnsv07hTbYqVf3m/rzZ9GnN6pz8pSWkIs0AIS/Cm1amp/DsPrvthMXzVfhYGvZGJv35BiUqFyV/cG5/Cebh3+yFqjYqrJ2/i7uXK5J4LSX2cRpGy+S2t8YCdvY6PJ3WmVLViLDr7LQPrjrd6hukcdBQs6cP9sEfoM7e0zu+7QmJsMrnyuDBq1UDO7b5MgZJ5raKJTq6OVG1egY0zLRJvsZFxDP2xLxM6zsaQbkSlkshX3Jt8xb1f+nkoKPybUQIhBYU3lKOBoWQYTdhp1Fy5E/XcQKhmiwpsu/sDkiRZMzUP78Uz6eOlGPVmeoxsQ41m5fApbLnGhqCZgCXwCLkSgd4kQKcld373P2Xtl44GYki3ZFyWfrUR19zONO741GXHZDRnZjqenqNSS3jkdSf2fjw+RTzp+22X586RFJ/C6HdnYEg3smPJYbbcW4Rao36p9RUpk58Nt+Zg0BvZsfQwkkqiWtNyOLk64pk/t83YXcuOEB0RixCCX2btZNyazwDoMbotM/svR8iC25fvkByXzI1zIZhNMmnJaVi+DRJau6c/hgNO3iQ9VQ8qFZKwBGDO7s4I8QgBaHQaipYrgD5dT/eS40mOT+HLn/rZKEcDVGxYBo1OjclgRqPT4FnAg5ErB3LxwFU6DHoLBYWcEALM/7Eaof9W/ktB4V/EwFZ10GnUeOVyplmFrFmRi6H36LNoEyuPWDIPKpXKZrtqy+LDhAfdJzL0IREh0datG8AmYIoMjbFYMgDJien8v5hNZpp1qWP145JlwZ0btqKIOjst3Ua2wSIsLeHq4QxIBPuH8/O3v73UPCajyVqAbDKYuHEuhE9qjmVSj/nWtvuEmEQG1h1Pj1JDueF3G6PBxNzPVjK81VTCrkeis9Py/uC36DioFUXKFMgSBAFUqFcSnb0WOwcdlRs97ZJr0rEWXvncMOuNnPztAvoMIxqtBntHHfXb1eDt3o1p+F5NOn3xtN6qfL1S2NlrLc9GpcJkNBNw8hb6dAOSRk3BUvkYvfJTzu6+YrHuMJr5dc6eLGvaOm+P1Z7E2d2RQqXzc+tCKIfXneLnb7c8rRlSUFBQMkIKCm8qLSr50qKSb47vD125k8S0DK5FRFOrZCHKFrDdCilRoSA6O0uA41sx522jkpUKZVpi6Kie2Q6vTzcgywIHp6z6Qy/i6y4/cONcCA7O9nj4uOHk6kC7/lmVm3uN7UCbPk2IuRtH0IVQVn6zCQCfoi9n7ZDb243hi/tyeMMZ2n3agoXD1xBxI4ro8Eec+O08LbrX5+C6U0Tcuo/ZaGbVxM206tWQY5vPoU8zMOfT5Sw4+c0L56nzTlW+PzIOo95EyWdqr45v9SMlMQ211uJGX79tNao1LUdqUjrehTwY1mIqkkpCFjB6eX/AUoC9JmgOB9efZP4Xa2wnEhARFMV3/X5i6MKPUGvUSJJEo45Z/arvBd+3/j0xNgWjwcim2bsAuLD/CvduPaDQM4GvgsJ/GSUQUlD4l+LiYEdKhh4BONtlDVhadqmNTyEPzCaZyvVzruspUMKbZSfHE/sggZKVCxMScJeRHedhNpn5amlfaj1Hgyg7rp26Zek+Az6f9yFlaxbPdtz98BiunAjiwr6rBJ0PoVm3epSr7UvTLnVeOEdacjoqlYomnerQpJNl/IE1J7kfHgMC8hX1AiyGpGqNCq1WTbk6JblwIABDuhG1Vk2ezG3AG363UakkStd4uk6jwcScQSu4ExjJ4Lm9KFvLNiCNf5jIrP7LMOpNqNQqvl43iFLVilnf/7L1dGsx9qXD123ORYLrZ0Kwd9KRkWrJXD1R8TbqTejstRQtV5DV12eSmphOvmJeWe7/w286c2zTOdKTM0AIOuUdQMHS+XgUGYejqwOehTyynKOg8ASlfV5BQeFfwYqBndjpH0TlInkp5JlVWyctJYM8ed04s/cqyQmpNHi3So6dXh4+ufDwsegPndx1mYxMTZzdP5985UCo67B3WD97FyWrFqVklcJZ3j9/IIBtiw9x/WwwslnGmK4HAXuWH+XoxrMUq1DwuYXPFw4GMLHrPFQqFdN2jqRcbUuQ8uXSfvy28IDVdR2gSuOyzDvyNckJqUiSxNcd9yOEQKfTMGpZf/asPMaS0RsAGPx9L+q3q47WTsvZXZc4s9PfkjkauILJW4fjnMsRZzdLB5smM1sDYOegtdkyAwi79lQ7KTkhhYSYRNy9LM/31LaLnNl1yUZ3qFCpfOTK48LVEzcplOnPlsvDhVwe2Xt85fZxY2vMMmZ8uJBjv54lLTmd+jVrMGxxP4qUK4iDk/1zvkMKCv8tlEBIQeFfipuTA/Epaey8GIRv3jy4OT1VWg4LvMfw9nPRp2daPGhUnNkXQJ+v2uH5goLoum9VYseKE8hmmVbdXpyd+T09Rr1Lj1HvWl8bDSa+7bmQW/7hfDzxfRYMW4sxs/VcCAECq1N7ekoGR38999xAaN/qExj1lvOPbTpLudq+xD98zGcNJhB3/zGSBKe2X6Deu9Wp3boKRcsVBCAy2NI5p9Vp8CniiYOzPTf8blvqcySJ3SuOMWfgCtw8XRm64CMQmaKKkkS/6mPQaNX8cGwCBUvmxdXDmWk7vuTs7ss06VTbamEBEHMvnjz5cpOaGJV5j7B53l76TbEoNHsWyI0wC5Asa/Es4EGfiZ346r3ZmE0yB9acpNdXHXDzdH3uc1arVTR6vzZndlwEoH6HmpSrW+pVv10K/zEsgor/rfJhJRBSUPgXYDSZ2XHxBrkc7WlWoQSSJLHu5CU2nQnALAvMssyU7k+7hS4cuYFBb7IGGkaDmRM7/AkLvMfS4+OeO1fpqkVYf2UKZqMZF3en/3vtV0/cJOB0MBmpepaP34xaq8ZoMKHWqPAq4EGrnvV4HJPEzqWHUKlU1H678nOv91avBvjtvYxKpaLx+7UBOL3Dn4Roi8igEBDsf4eQyxFsmLmTTRELuOUfjlqjYur2EQT7h9Oks+W8LsPe4ca5ECSVipi7cchmmdSkNBLjUpi6fQRRt6PZNG8PRr0JSZK4eiKIgiXzAlCuti/lavsihODh3VhyebggyzJ9q462bos94dR2fzzyuuPq4UKzrnUoUNKHsGuRgMR7g1riW7UoGq0GWTbi5OaIUy5H7gbf58iGMzTsWDPHwLBuu+p8vtDieF/zBc9NQeG/ihIIKSj8C/hu+3G2nQ9EAr7p0oLWVUtjr9VaPLokcHhGxRigzlsV2bjgAOkpeusxISA16eW6whyd/7ytlQIlfQCLjUXJqkXo/fV7nNh6njrvVKHMM3U5nb5ojVaryewgy5kaLSsx79gEfvh8FRtm7qSArw8XDgZYemSfaZYSsiAjVc+GWTvZuuAACPhsbk/qt6uGY6ZPWcGSeVlxZQYAP0/5jU3f70Gj1VCxfim8CnpQrrYvkkrF95+twNHVgVq/CzbSktNZO3U7O5cdxt7RjvHrB1uFFp9Fo1OzcuJmVCoVoQERhAc+6aITuOZ25sTW88iyjJAF3gU9ELLg09pfYzbJbJyzh19C55ErT9ZtssPrT/PD4OVISMQ9iOfDCZ2yjFFQ+D1mlBohBQWFN4wHCUkYjCY0ahUxiSkAdKlXiaTEVCLCYuhbv6rN+EK+PpQoX5Br524DoNZY3NWRIPxGFEXL/rGOouSEFBxdHVGrbVPrl49bLCda9qhn06YP4FMoD4tPf8PdWw+o3KgMOjstJbLpYvPweXkPsfXTt3PrQhgqtcSlI9cxm2QcnO0ZMKM7x7f6cemwxWNLrVET7B9u3f76ZeYu5gxcgb2jHSuvfYfbMzU4vb7qwNsfNsTZzQmHZwLBFt3r0fj9Wqg1KhvT1Q0zd7Jm6jaEEAhZoNaoiX+YSP32NTi57YKNt1iuPC48CIsBLTbv+RT2pH776lw6HIhKpUJnryVfcR8MGQarHYcQgvDAyCx1SGDpHjMZTJjNMneDorK8/zDiEXEPEihTy/e5SuAKCv9m/lsbgQoK/1JGd2hM9RIFaFK+BJ3qWPyjTAYTR8fs5NaC03zZZg5m89N0SEaa3hoEAXjmc8egNxH/MIk1s7Pq0rwM84evoYvvMD6p9TUZqU8zTY+i4pnQ9Qe2LjzAiNYzMp3nbfEp7EnNlhWt7fz/L/mKeaPS/YdHAAAgAElEQVRz0FpazFUSWjstefK789aHjbh9OcI6rlDpfHwyvZt1iy8q9CFCttQibf1hX5brehbwsAmCnqDVaWyCIIAdSw4hm2XUGhWSSsI1txNVGpVl7KpPGZfptfaE4Yv7UrVpebR2WmLvJ1iPP7wby7k9VyhVvRilqhclfwlv3hvUEmc3JyrWt9T7eBXyoFyd7Lv+2n/2FuXrl6ZUtWJ8/DuX+LCAu/St9CUjW05lSP2vObvL/3mPVOE/gsDSNfZ3fL0uKBkhBYV/AQU83Fg+0HbbIzYmkfQUPSajGYPeiFFvRO1oaaO3c9BRrFx+wgKjQIJaLcqzb/0ZQKJs9aLZzJA9hgwj5/ZdpaCvDwfXnUE2y8RFP+b21Qir1YbZZLaOf1LE/FfT+5v3KVq+gEWrKK8bNy+E0bCDRW/HJbcTSfGWrFnNVpXIW9iLlIS0LAHas4rPf4RmXeuyffEhHFzsmbV3DMGXw7l3O5qyHiWoULcU7l6uJMQk0bRLHbwKeFCoVF4uHr5m+STKxJBh5Ma5EOZ+toLk+FQAhrWYwpZ7i/huz2j06QZ09tocszlunq7MPJC15ishJpGg8yEgwJBh4NaFMKb2mM/so+MpWbWYzdjQK3eICLpH3XY1sHd8dd0oBYXXHSUQUlD4F2A0mTlzK4IiXu4U9nTn7qPHdF3yKxpfFzwfGOj6aXObDzFJkliwfxSBF8LI5e5EQV8fmrxXA326gQq1c/bu+j2TP1xEwKlbCAHVm5Xn/MEAcnk4U6zC060tn8KeDJnbi9M7/XlvYMu/ZQtGrVbRtEtd6+tnP9wHz/2QcR3nAODu7YrWTkP+Et7E3k9Aa6chPTkDk9HM5nn7aP9pyz9cEN53chfafdoCQ7qBH0eu59qZWyBg+s6RzBuyksexyag1KsrUKkGHvANQa9RoNGrMJhk7B61VouDU9ovWIAgs9iNGvQk7B52la+0libufgEtuJ34cvoZ9q47h4eNG3mJeRNyIsgSBkkTa72rE7gRG8kXD8SBJHPj5BNP3jv1Dz0LhTULpGlNQUHgDGb56F34hkQgEvw77gNM376A3mkipkBvvVp50GtQiyzmSJFH+GTHDUpWzavq8iPDAKDLSDNg72tGsWx0Gze5BLg9nm3ZxgOZd69C866u32v8VOLo6WAuWl4zeQIW6pZh1YCzfdPqe2AfxpD5OAyzq2bev3qFK43J/eK6IoCgmdZ+PQW+0tNs76ngQHkPEzfsIWWCWBetnbMdkNCME1GhVkUoNSrNh5i5rIKR1sN0udPVwsuoVvSxLR61j24J9CDIzdMLixfblik9xcnVk1YRfKVe3JJV+V2f0IDwGSSWRkarnbtC97C+uoPCG898K+xQU/qUERj4k3WBEQiI8Jp76ZYpgp9WgVavoUq8iZrPMj+M2M6LD94QE3H3xBV+Sz7/vhXehPFRrWo6aLSvi4eOWJQh6EVdP3qRLiS8YUHcCCTGJf9ransWgN/Lz5K0sGb2e8/uvWo8LWfD94JWc+u0iNy+GERv12OJ2n8kNv9D/a16/vVcsrfICtHZaqjUvT/121Sldw5KhklRQsYHFIFWjU9NzTHs6DGxJs6510Og0ODjb4ej8VP8JCXqOfY9RbWbwjkdfBjeeSEaqHn26wbrdlx0H157EZDRjNlqCICRw88qFb9WilKhShMk7RtJtdPss2boarSpRp0018pXwYdjS/v/Xs1B4c5CR/pav1wUlEFJQeEM5HxLJvsu3MJllxrzXhDwujlQrlp96pQtT2NOdI9/058g3/Xm/TkX8Dl7jwMazBJ4P5bvBP/9pa6jevDyrr07n6zUD0epeLgAKPBfC2unbiQp9CMDKSVtJjEshKvQhRzf7/Wlre5Ztiw7w69w97FhyiMjgBzg4P90mTE5IRat7xpU+0+gVLF1V/w9v925krTUSQlC0bEHCrt3lw687UuutSggZjm/2o2TVYqy9MZvimd1yn0ztytLzU1h3ay49x7RHa6fBJbcTi05NxMXdiYCTtzAbzdy+fIftiw/SpeCndC34KXuWH8l2He/2b46kkkACnYOOPlO6sjJwNg7O9uxbdYx1034jNSkty3karYYxa4ewKuh7qres9H89CwWF1xVla0xB4Q3keGAYX/68Gwm4HB7FmPea0ryird+VvU6DfWZw4p7HFSEEWp0GD+9cWa4XHnSfaQNW4OTqwISVn+CWjSbNH+HRvXjWfreDwqXz0eHTFsRHJzK6/WyMehMbv9/LmuvfUblRGcJv3EPIglJVX75Q+1WRJEsyxNHZni1RP7Js3EaCL4XTb0pXfKsU5eimc9y8EErHwW+xYfYukAWHfzlLv8ldcMn9fO2inChWoRBt+jZl59LDCCG4cT6EzfP2goSNhcaNcyFW7SLLWiWrh1j1FhXY/nAJkiQhSRKGDCOSSkKYBZIkkRD9GEOGEZPRzK6lh2jdp6nNGs7u8ic5PoW5xyYQExlHUmwyVZtVQK1Rc2TDaRZ+sQqz0UxE4D3Grh2MECJLZig9JYOzOy9SrGJhimQqcSv8OxECzK9RR9ffgRIIKSi8YUTFJ7LiyAUMJjOyEIRGxz13vNlkpmSVwny9vB93g6Np0blWljErp24n8vZDVGoVQ96ZCQJGzOtJxTo5u9u/DFP7LOHmhVA0Og0u7k6Uq+1r1b8x6k0sHvMLo5b2o0bz8uTK40KBEj6vdP2MND2zBywjJjKOoQs/pkjZAtmOaz+wJRmpetJTMvhgbAfUajXFKxbm0pFArp26RenqxZm+c6RlXQYTe1efIC05HWc3R5sA5feYjCY0Wg2piWmsn7kTRxcHugxrbd0ePLntAg7O9tRtUxW1Vo3OTsuVjCBLUGqnsXbRlalZHLVGneM8z7bml65RnBm7R3Jq20WadK6Ns6sj+1YeBSFoO8C2Fiwq5AFTeszHkG5g19LDqDSWAEqlVjFq9SDSUjIQQiCbZRJiEulZ8nPiouIZsXwATbvWs17nqzbTCLl8B4All2aQr/irfZ8UFF5nlEBIQeENY/Cy7YQ+jENCoqBHLka2b5JlzJ2YBAIiHuCVCtP6LEOtVjFj8xA69Ms6FsC3YiGunbuNQW/i0T2Ljs2SCVv4ZlV/DvxylmLlCpCUkIpnPneqNiz90mtVqSSEsAQ9C0esZ9XV6TRoX40Tv11EpVJhZ69DkiSrMeqrcnDdKc7tuYwhw8j8L1Yz+8BX2Y7T2WnpNe49kuJS2LH4IFGhDzm47hQAq7/dQsP3auJdKA9g0QRafPZbgs7fpmxt3ywBij7dwPQ+S7h0+Dr6dAPtBjQnPSWDIxvPolKrcHSxp8PAllw8dI1ZA5ZhMpqp0qgsk7cO40F4DDf8bmM2mRn50yf47b9KoTL5adIxa3D6PCrULUWFZ3zDfr33I4YMI85uth1ulqBTZP7djPmJeoHRzIX9Vxj8w8dE3ooiLiqBktWL8fOkLZiMZtZN+c0mELp78z76ND32TnZE33lkDYSS4pIxZBjJkz/3K61f4fVG6RpTUFB4rTHJsqX4VquiSYXi5Ha2zVjEJafSdc46ZCHI4/cIkelrtX/DWXyzUWwG+GBEa7wLefDDlxusx3wrFuKr7guJCosBAWqtGpVK4utl/ajWuMxLrfWzWR8wqNFEZLNACJm7N+8zcnFfSlYpSmpiGu8Pfstm/P61p9i1/BjvfNyIt3o2yPaad27cY/IHC3B0caDtp82RJAk7Bx15i3q9cD3ffjDf4mpveiouqdaocXSxt9kScvVwzmKX8YSjm85x8WCANZuz86fDT1v1BciZwpXJCZaWd7PRbC1kzlvUi58uTrVeq/QzFiL/Dzp7HTr7p630cfcT+G3BPopXKsznC/twbONZrh6/YVmiEDg4O9Du01ZodRo+ndULgLtBUaydvBWdg476HWpYx66dvAUXdyc0WjVVm1cgJTGNnydt4sa5EC4dDEClVjFsaX9a9mr0p9yLgsLfjRIIKSi8AZjMMppM24p5H7dl4d4zHL0Wyi+nrnLgSgj7v+5j/RB/lJSKWZbRm8zEFnTAMzwRYZZxdMl5i0eSJKo3KYtaq8ZslrF31PHZ9C58WHMCcmYtilFvQmev5eG9+Jda882LYYxqOytzAtCnG5nedylLzk6k46CWWcanJKYxf9gaTEYzC4ZHUq9NFVzcs9bmrJq4mcjgB6jUKqKCoxm/YQhx9xNo0uXF7fnJCanWIEitVaHWqOk/vTsflB6OnYOO2QfGWk1TcyLk8h0bYchqzSrQf1o3HF3sccrlSNv+zQFo2KEGIZfvcPfWffpP7/bCtf0ZmIwmxraZwZWjgUiSpVOtSLmC+BT1ZOH5KaTEp1Kmtm8WFWyAQmXys/rW94T4hzFv0Ar2LDtC32nd2DhzO4Z0Izp7La37NGNM66kYDSZk2fIcZbPMobUnlEBI4Y1FCYQUFF5zZm4/xprjl6lY2IeVgzpT1Cs3n7aqw5FroRhNZh4lpSALgTozECqVzxMfdxfuPnqM7GGxgxACfvvpCJ0+bZajQGBuL1embBiE/7EgmnSojkajZvzyvqyZtYcCxb0J8g/Du6AHzTrWeKl1+x8JxJBh4FnB5sS4FIIuhFGzZcUs43V22syshkUt+dkMx7OUrFqUS0cDQViKkas3r5DjGgLPBnP7SgRNOtfB1cOZ0SsGsGzcRrwKeVC8YmGqNSvPgqFr0Kcb0KcbOLjuFB9PzNmYVJZl9qw8Zn3t4GxP/0yLjoEzP7AZq9ao+WRqV/5OQq9GEORnsU4RwiK+GHwpjLCACIpVKET3MR2sY/XpBlZ/s4n01Aw+/rYLLu7OuHvl4sqxG8RGxSOEYHa/pSCe1nRdOnINSSUhm2UkSUJkbrt1/OKdv/U+Ff46BK+X/cXfgRIIKSi85qw/eQWAkAex3Lr/iPKFfDh8LQSBQAKalC+OhIQsC1QqS2eRnUaDAFQaFWqtGiELNBo1WjsNK6ZuZ8eKE9RuWYFRCz+06RAqX7O4rchilSJMXjfwD627YfvqbJi9C5PhqcWGRqumTM3st4N09lrmHf6K8wcCqNmiQo6qyd1GtsW3alEcne2z9dgyZBiIDH6AEDCm7UxkWebg+lMsODmRImULMHnrcOvY5PgUIm4+NSPdu+o4733WCjdP12znVqlUFCqVj7u3LIKI+nQ9Z3b603no6xEIFPDNi4OTHUKWcXBxwDO/O3duRKHWqLLU8Wydt4ftiw4gZBmz0cywJZ8AUKlRWbYt3G8VnZRUEkIIdPZailcszPtD2xByKZx3B7QgNSmdqs3KkytP9s9LQeFNQAmEFBReU57UrNQrXQS/kEhcHOwp4unO5Ut3uBX2EJBQqyQkoM7YBagkFVPbtyC/uytfd2rONxsPUMQrN5980J59a05Rv3VlkCQ2LToEAo5v96fxe9Wo/ZyMyv9DwZJ5yV/cm4ig+wDkLeLJjB0jcHFzwmgwYTZZtuBszvH1oaDv044kWZaJiYzDM39ua9GyJEnUaGGbUdr/8wlWf7uFvEW9uBcSTVpKBu5elg9no95E3IMEm/FXjt1gxTebAMGjZ7b6jAYTV08E0eg5xctzD33FsnEbObDuFGqN+v9Snv6zccrlyMobc4gMvk9sVDzTey0EIXird2Na9GxoM1aj0yBJgCTZaEDVal2FWQfH8VW77zDpTVRqXJZceVwoXCY/ddvVoF77mn/zXSn83bxOYod/B0ogpKDwmpGSksGQIWuIvBvH4MEt6VutCjXcvOjwVhUO7b/OT0uPYlJB2fp58cmbC5NZJt1gQpdoZuq439BqVHzSvwm/jfoQgDnD13Ny1xWO77zC9zuHodNpLZYPQHjg/b8sEAJwcLJHUkno7LQMmNYVr4IeRNy8z7A2szDojYxe/DH13qlic86P435lz88nqfNWJRIiH3HD7zYFfX1YcGpijqrV84euzgx4HluPxUbF83bvxgSdv02TrnUx6I1Wd/spHy4kKS4Ftda2I0xnr6V8vVI8D0cXB4bM603nYW2wd9Lh9g9kQ45tPsfaqb9Rt001PprYySar55TLkdI1SjBv1XKLqjUWO43fawN1GPwWZpOZtKR0StUoTkxkHF4FPQAoW6cka2//QExELIXLFci2pkhB4d+CEggpKLxmXLp0h+gHFquHefP2o1ar0GhU3Al8iIO9Fr3eiCRJ1LTPw+cftuLg1WBO37yDfZoJIcvo9TIbN/rx46LDNG5SlltnQ8hIM2DnoCP8RhRfzO7OrM/X4OhsT6N2Vf/QGg0ZRnavOYWDsz0tu9TK8YPyq5UD2DB7N4VL56VmK0sW5/SeK6Sn6RGyYPuyYzaBUEaqnp3LjyOE4Ny+AAyPkxGyzL3b0cRExpGvmLfN9YUQ3LwQirObI0lxKVaNIoAGHWrSY3Q7+lQdzdopv3F+zxVm7hsDQG7vXKQnZyCpJKo2LcuDsBj6fNuZ6s0roLO39fbKCZ/CeV7pmf1ZCCGY2W8pJoOJbXcP0LRLXYqUy6qf1HZAC079dh7ZLNPx89aApS4oPvoxPkU80Wg1dB3ZjtGtp7Ft4X4kSWJZwEw8C1iCISdXR4pWyL7LUOHfiwClRkhBQeGfpVSpvDZ+V2azjNksE3UvngnfdCA4OBqVSqJJkzKsW3uaAgU92DGqN7GPkpkxaTvpGUYexSQhBBw7eoMvPm/F8knbKFDci1otyuPobE+DNlVQqaUX/qZ//Xwokz9ZgYubI9M2DMLDJxd+hwLZvvI418+FolKrkGVB6x51sz3fs0BuhsztaXOsZvPybJy3H5PRRMW6tvpBdo46ipTJx4M7j3Bxc6JYnWKc23uFklWL4V3Y02Zs1O1oPm8yieSEVCSVhKOzPTVaVcRkMDPgu+545vfg2ulbyGaZjFQ9wZfCrefO2DWaI5vOUqpaMauGUVToQ3pXGEFGqp6Jm4ZS4QWZoX8KSZLwzJ+b+OjHSCqJXDmogBetUIhN95dYXyfFJdO30khSE9No/kF9vljUl3O7LhF4JtiqEXQv+IE1EFJQ+K+gBEIKCq8Z3t65mDz5fb76ahOmZzIcw0e0Jn/+3Cxb3peUlAw6d5qPPrONu2atYkyZ0pl16wdiNsv07bOMmJgkXFQSDyNi+X7nMLzyuZMQm8zAFjNISUpn/LK+VKxT4rlrWTNrD4lxKSQ/TuPQ5vN45nNn/phfMRqMyGaBRpJIfpz6SveXt4gnAoEsCzYvOkSnz1pi56DDZDSTEJPInF0jCL1+j6Jl8+PobE9qUjqOLvZZtnaObfYjJdMpXsgCg97E6BWf2owrW6sElRuV4drpYD6a8L71uJuXK+8NamVzvYPrThEfnYgQgl9m7XxtA6Ezu/yRZUGJKkUYMq837tlYpjwh8tZ9Dvx8nOCLYWjsLArYRr2RE5v9KFenFPOHrMBkNKOz11KxYRnK1395sUyFfy+KoKKCwj/Apet3Cb0bS6uGZXF1tv+nl/OPU71GMZb+1IfFPx4mNDSGj/s0olSpp/o2dyNirUEQwHm/MNatPU3PXvVRq1X8uPgj/M/d5rt+y/k14C5blhzBZDCTr0geHt1PQJYF67/fR8U6n2U7vyzLzPpiHTcvR6DWWPR2SlctwvXzYZiMZoQsyO3tSo0mZWn3UcNsr5ETsll+InaMbJYRsuD49ot8N3AVQpbROegwGUwM/q4brbrXw8nVgbTkdLYu2I9rbmfa9GuKSqWiSpNy/DJzJwa9EWc3R4Yu+tgaBEWFPmT6xz/i4GTP2NUDc+wCe5ZKDUqzZf5eJCRqt67ywvH/FHMGLCM5IZXER0kkPEzkp9HruX7qJr0ndabDZ08FKg+vP8Xs/ksw6Z927SFZMkrtBrbkQdhDTJlF6yWrFWPCpmFZjHNTE9MY//4cHkbEMmrFACoogZLCvxAlEFL4x7kZGs2IqVuRheDo2Vss+vbvEZ973SlcOA/TpnfJ9r01a05bTESF7bGIiFhGjmqDvb2WwoU8QGTqyWS2sEdHxqHWqtFKEjWa5dztdHLnZY7v8LeIKaokFu0ZQSFfH4qXzc+ty3dIS85gxPcfkPcP1Mm4uDsxZmkfDv5yjta96mPvZMfC0b9YFZmfmJGun7OXVt0tNg+LvlzL0V/PoVar0NppeLt3Y8rWKkGBkj6EXYsk5XEa03ovZs5BD0pUKsy8ISsJ9g9HrVHx26IDNtmgnCheqTDzj30DEjl6lv1TmE1mjm/2wyzLGDPb2jPS9DwIf8i1k0FkpOpZMe4Xm0Do3O5LtkEQlmLwgbN70bpvMxJjk9g0Zxdmk0zQuRCGN53ED6cmEXAyiMcPE6nXvgbHNp0j+GIYhgwjP45Yy6Jzk//W+1b4BxCKjpCCwt9O/ONUi3KxwURMXMo/vZzXHrNZJiIiDiGeeHkJi2O0WebMmRCOHr1Bq1YVKVDMiwETO3Bqz1Wi78YRfS8eYZYRQtB/Ukfe7p59XY/RYGL2sPXIZkuUVaiEN4UyW9pd3J349ucBr7zmC4cDWTNjJ2VrFqdG83LcD39ELg9nCpfKS+j1yCzdYGqNCu9CHpjNMmq1ivSUDGSzjEolkZH61LXdKZcjSIAAk8HE0V/Psm76dq6fCbaOiY9+zM0Loc+1szi+xY+Z/Zai1qiZdWDsK9/fX0nU7WhWTdrC2d3+GDOeZgE1dmqObTyLIcOi+lympu02Z8cvWuO3+zIZaXq0dhpK1yhOqRolaNW7MQDO7s7WoArg1sVQ/PZcYnL3HwCJq8dvUKFBGQSW74chw0ByQmqOgpwKCm8qSiD0FyKEYMyxgxyPCOfL2vV5r/TrozfyOlGrclHaNC1PUGg0Q3pnbwr6Z3Ar4RFOWh0FnHOuqXgT8DsXyuPMuhxnZ3tq1izGmTMhGI2WDzUfHzfr2Ld71KNgCR+++uDHzCDIkh0KvBCWYyAky8LmA3LAtx1faX1CCH76Zgsx9+L5dEpnPHzcmNZ/GekpekIC7rJ79QnLlhhw+9pdIkOi0acbrefn8nAmNSmdW5fusHPFMdr3a8pns3uhs9PimtuFd/o+/Tcy7ufPmD90NWd2+aPWqLl2Opiwa3et2SWzWebQulMc3+zHnEPjKFGpcLZr3rPyGEaDCaPRxNndl/CtXOSV7vmv4uaFUIa3nILJaLJuJz5Bo1ET5BeCbJaRVRIRQVFcPX4DtUbFriWHadS5NoXK5if4YhhCFtRpW533n1GAVqtVDJzTi6Wj1mM2mek2uj33QqKRzTJGvYmDa0+yb/VxHF0dSE3M4H5YDMu/3sgXCz7+m5+Cwt+JQNERUvgT2R92m19uXAPgyyP7lUAoB9RqFUP7NPtL55h28Sgrb15EJUn83LwLNb0L/qXz/ZXk9rD8Rq7Vqila1JMxY9ui1xs5eiQIn7y5qFTJtuX59N6rVj0ZSSWh0app/r6tKN6Ni+Gkp2RQtVFpdHYanFzsSU3OQKNV450vN/ExSeT2ejm9nEVjN7Jr5QkAwoOiWH5mIu6erhgy4jCbZExGy3aNKtOqwfiM8rSkkqhYtyRn9lxBRiblcTp3btxjTNvvSHiYhFqjouZbFanWzKJ95OblytfrBpMUl8L8YT9z6rfzFiFKleUHuZAFcubrmLuxOQZCbfo25fqZYLRaNfXaVn+p+/w7OLPL36rwjASOzvakJWegUqvoMLAVW+buRq1RYzbJJDxMZOmoddwNikKfbuDUtvN0+bItd65HIqlU2Qo/thvYinYDnxaNpyamcfHAVWLuxvE/9s47OopyjcPPzJZseiCkQUILndBD7713pImACoiiIgoqioqi0gQVFUGUjtKl994JCSG0QIAkhARIQnrbMuX+sSEhJkC8FxS9+5yTczY73zfzzeyenXfe9ou7cRdFUki3yOjs9ID60G7fNmz8k7EZQk+Rm+n5zd1E4f/Lwn6WOH47mp8un0bFGkUJir/1jzOEcnLMhIbepHJlL6pVK82X0wcSHZVI6zbV2bo1FHd3J7p0LazfBdC2byC7fjuJxSyh02upUL001erlGwTHd4Yxe/wKQOC5V9vz/IQufLPtHQ5sPIN/gB8T+nxNVnoO/V9px8j3ejx2rbeu3c17HR+TTOq9DGZvfpuDG4I4vDmEmKt3qVynLGWr+jB4fBdGN/8UU4413NXrpdYMHt8VBDA42NHv1fb8OHElyXfTAKt21pKpG/IMofu4uDtRtooPOjsdCPDyZ89xamcY4aev4+BiT73WNWjUpc5D19yyT0MatA9Ao9U8Uzf7aoEPhPNUWHZ5LmvnbsPdpwS9X+1IndY1CNoZypYf96DICnci45Hl/ErDHmM60H5oCxxc7IuVMO7o6sD07ZNRVZWP+swmaOc5GnauQ0pCOrHX7uD7QNdvG/9ebDlCNp4YfatUZ1FoMEk52XzSoi1GyUJ8VhZlXVwLlQLbeHrMPnc4L6qgFUV6V6zxt67nv2HChFXciklCoxFZsXIsdeuWo27dcsycsY1Dh8IRRYEPPuxF8+aFtbeq1CnLmvPTGVr/Q7LSjdy4FEfQ/su06mmtjIoKj8NillFkhWvnYwAoXb4UWelGFny8gexMI5JFZu/a08UyhMbNGMxrbb9AssjIsszct1bQrGsd+oyxCr7On7yWa+djqNOiKh6lS/DCpO788vkmvMuWYtikHji5OvDBT6Py9lenVTUOrD2Rl/AddTGGM3vPc2jdKVr2aZhX4TX0/d6U9vdEp9fRsm9Deo8trHD/KByc7f/U+L8C3yoFDY+dSw7Sun9jKterwI7FB/lp8m9UrOXH+B9e5ttxi8lMzcbgYEfLfo1o1LUeJbxcH1le/zAEQeDTjRORzBaiLsbybpcvMWWb+em9X+k5psOTOj0bNp4JbIbQU8TT0YkzL45FVlWyLGZar/yFFKORbv6V+abjsyHS+P/AzYx8z9ybtZuTYszhXk42dUr5PFOeugfDW4cOhbNn9wU6dgpgwoSuREUmIEkKdnY64uPTcHV1YPu2UA4duozZLKPXa7uRcSwAACAASURBVElMzHjoviPO3SQnywSAxWShYo3Sedu6DWvBmYPhZKXn4Ovvye8/H6Ji9TLsWXMKY7YZQbCGL3uMaPHYc7gaGs03b6/Eu2wpEm8nI1lkQg+Hc/7YVbLSs0lPzkIySyiKQmyu56j/ax3pNaotWp2myAeEDkNb4FvFhwntpqEo1v5Dnw2Zh9lo4cjGIJacn0Wp0iXRaETaD7ZWmd29mci73WaQnWHk0zXjixRn/Sfwx07ayz//nVXTN/P1gY9Z9MFqcjKNXDoZgVYjoigKensdbp4uHN1wmkNrT7Jm1mbSkzIZOrkPvV4tvmG4e9lhvh67iFJlSjBt87uIoojB0c7mEfo/wNZZ2sYTRxAEtIJA+L1EMsxmzLLMrsjrf/ey/m9IMebQq0INll0JAeDXiFDmnDuKAHQpW4Uf2/T7exf4ADNmbOP0qeuoqookKSiKys4d5xk5shWvvtaB5cuO0rBRRSpV8kaWFb75ZjeKoiII0KBBebp0KTo0BtaqH61Og1mR8ClfCl///BtsSU8Xvt36Dsu/2s6GBQcAa5L1fcVxP39PZq59A0eXx3tM5k36lejw24gakbb9GxIXGU9E6E0AUhIyGPBaR66G3sSUY2LEB73z5v2xf80fKV/dF/V+r4DcXjj3Kcp42rPiKIm3klAUlVUzt/DlpomPXfuziFanpfWARhxeHwSCtTJO62jH3egEnNwcyErPBkXl3MFLiBoRr7Kl8K1ahrvRiQBEX4oFYP7by+k5tmOxPdG/zdyEIiuk3csgIvgGC4K/5NrZaBp0CHhq52rDxt+FzRD6i6jj6Y2vswvXkpN4IaDu372c/wsSsjPpsGURJllCIwjIqsqdbGt5vgocuR39t67vPgcPhnPieASRN+IxmST0eg3OzgZMJgk3NwdcXOxp374Gu3ed50xQJGdDomgQWAH3Us6kp+Wg0Qi8P7knhkdoZFVvUIHxs4Zw5Ww0/UYXrMzbt+EMa3/Yi4OTIU/aQ6MV+WrjW1w7H0OLrnWKZQSB1XME1kaJwQcu5Za6C9RrVY1B47vg7ObAjPXj//Q10tvr8CrnQWpiOgYHOz5cOY69K47Rok8g7j4lCo0PaF4VrZ0OAQjs+PREZf8KJv70Cie3h2LOsYAADdoH0LhrXW6ci2LlF78XaE4Ze+0ut67eKTBf1IqU8ff6U+H41gOasOGbHYgakYBmVfEu54H3HyRObNj4t2AzhP4i7HU6dg8egUmWMGiLJ+po43/jckoCkqJgkmUEwEGrw1GrI9FolWV4o3bR5eN/JbdvpzBr5jbMZgmDQUulSl74+ZXk9Tc6ERoajZubA6IocOjQFaKj72E2SyxYeICfG47ixx9HEhR0g1q1/HAqRjfudn0Dade3YEWULMl8886vyLKCTq+hcYeaOLrYM3R8Zxxd7KkU8OcaC3Z9oQVRl9egKiqmbDOmHDN6g45WfQKxd7Tj1O7zePmVpGzV0mSlZeNS0qlY+xVFkfnHP+PCiQiqBVbEzcOF2s0f3uW4ftuaLDg5jZws00Mrxf4xqCpqbv6zTq9l/HcvkZNpwqOsB75VfLgXl0y9tgGc3BaCqqiFpiuSgptnwTyhSyeuEnY4nLaDmuKTG347vukMwfvO02tsJ178bBAdh7XCpZRzsT8jG/8ebKExG08NQRAKGEE/hgSx6lIY/arW4O3Gzf/n/auqSpbFgpP+2al6KYqjZ66zeO1xvDxcGdS9AfVqPp0KrsZeflR2LcWllHgm1G5BE59y1Hb3RlIUDBptsZ6Qk4zZ6EQRF/3Tkf3QPCB6qtVqWbDwRQRBIDIyga9m7wCgW/c6tM/tAm0w6PLK40uUcKRz54eHw4qDqBFxKmFVbreYZcpV8WbYO93+62T+zkObIUsyKYkZePmV5Ju3V2E2WfjxwzWs+WYniXdSkSUFWbLKdHQY1IRxXw7C4Gj32H07ujrQpGvxvallKv078ln0Bj3TNrzNtl8O0HFoC1xLOfNSnUncu52KqBFYdG427j5uDK3wOunJmSiSgr2TAY1OJDPFavRfOHqFm+GxlKvuS2JsEu93nY7FbGHLj3tYHTOf2Ig7TB/+PWajheObzrA2dgGeZd35qM9XXDp9nYadajPl1zfzPH42bPybsBlCfxMrL55j5qmjAHwXfIr+1WpSztXtMbPySczO4ssjh3C2s+ODlq3RCCID16/mfHw8zfz8GFUvkFblyj9z1WmqqvLx3K2YLTIRUYmcDo3i+08HU7OKz+Mn/0nstTo2dx9R6H2dqCnW/M2Rl5h0YgcaQWB15+epU+rJr9HL25VPpvbl+LEIbtyIp1fPubz6ansQrB2jTSaJQwfDOXY0ArNZwte3BK+80u6/Pp4xx4yqqNjnGh6CIFC6XCnS7llDhmvn76dO86qPFWN9GKIo0mNkawB2rTyW56HITjeSnW4sNH7fmlMc3BDE+DnD6DioCYqicPlMJO5erpTwcCmWgfT/QL22NanX1moMR12+xe3IhLxrO7L6BCrWKkuzXoFYTBZC9l4gJSENre6B73lu922AnEwjqqqiyCpZ6dnW14oCub8V95tRfjroG84dDgfg1PZQrgRd/8cmndsoPio2iQ0bfxGbrobnvVaxGjZ/xhD6/MhBdlyLQBQEPB0dcdLbEX4vERWV47diCIqL5e0mzXklsNHjd1YMpv+0h13HLtO1ZQ3eH/3nypIfRBAE3FwcSEjKyPs/ISmdmjx5I+N/Zd2NC5gVa1htf+y1p2IIATRpUglRFDhw4DJGo4VFiw6ybPlYNm44w+3bKaRnGPOaECYkZHD3bhply7oX2k94eByzZm7HIsnIksKAAQ3p/0DjxPCz0Uwe9D2KovLxz6MIbFsdAL9KXlw5G23VLVOtGlbFJeTgZU7sDKPrsOZUqp3fyHH5zK2s/mZXgbEarYjBwQ6dXkPqvXwpFVlS+OnjdbTu04CfPl7P3rWnMBstCILAsIndGfp2t2Kv59/O2rnbWP7572g0IqJexJRlQlYUrp2N4trZKDQ6TZ6QrSiKvDhtIPtXHafd0OaUy9VPK1utDC9/OYStC/diZ29H8J7zNOxchwkLRnFmVxj937Je77DDV6zNKXMNJJ8Knn/beduw8TSx+Tn/JkbXzc/VcNTpqFLyz4lXxqVnIKsqFkVh5YUwvjpxDIuc36HXoigsPhfyRNaanJrF9iOXMFtkth2+REp69v+0v4VfDqVb25poRAGTWeK3LcFIDzSBe1YYUa0BOlGDg1ZPt3JPV3W7fHkPRFHAYNAREOCHi4s9P/8yinnfDUcj5j+deXo6c+rkdW7FJBXax7xv9xATk8Sd26kkJKQzf/5+OnWcwTvv/IokyRzeHILJaMFiltj564m8eeO+GEjNRv6IGhFJlvn8lcXMfH0Zr3aYwfFdYQ9dc9LdVD57cSE7lh/l3X5fW70KuexYfjT3JgouJR3pMqw5L7zbk98uzmRF6HT0f0jszskycfj3YM4du2pNClatXaE3/3zwoce/FXGHK2du5FeT/YtJvpvKoXWnWPvNDiwmC5JFpmqDCpB7ze87fmWLNeToW8WHARO6M+S9Pvx8fjZD3++DqqpsW7Sf2S//iEajIT76HjfORTN1wBxkSab9kBa8v2wcletVYNMPu5FMZlBVRI3IrF2TKeld/Ac1G/9sFIS/5O9ZweYR+pvo7F+ZsJdf41z8XQI8vXCx+3MhgAcjXveys1FUFXutlqEBtfnl3FkA0k3Ff7K/j6qqnAqLRlFUqpT3YNG6E1gkmVIlHEnPMOLu5oiz45/Pl1FVlY27zhEXn8qwPo1ITMpEznXtX42M52ZsEv7PWFVKR7/KnB/8FhpBRK8pXjituFxPTeLlA+swKzIL2/SjtqcPS5aOIS4uhZo1y+SNq1TJi7ff6ca5czdp1aoan0/bxC+LD7FixTHWrX+zQKWYp6cLERHW3jxarYgkKciyypXw21y/Fk/NhhXZsfI4INB5cBPA6v25ePoG4SFReSERi0ni6LZzyLLC7DdX0Dyi6I7MiqLmGSH3BVrv02lIUzYuPICLmyPzD36IWynnAtsnfD2MJV9sRlFVUhPT0Wg0lCpTgpc/6stXry/DlGNG1Ii06dcQgLVfb2f9tztp2bchr88dzvmjV/io/1wQYMikXgyZ1PN/+DSebSxmidEN3seYZcrzDCLA3egEwFoV5lbKheS7+f2y7kQlsG3RfoZ/MiDPoxOy9zwLJq7AnGNm36pj1tuQYM1BEsSCN6Uzu8NQZAVBFGjYuTantofiVc4DT7/CnkgbNv7p2AyhvxFXgz2ty1X4r+a+2bgpL23eiKzmaikBbctXpHX5CiwJC0VRVfxLlMQoWYpdpRaflM7EWb8TFZuERhSRZCVv3x2aVaVfx7pUKe+JViNiMkuIooBOazUQ0jONbD10gfKl3Wlev2KhfR8+fY35Kw9jschERMVjkfK9Bzqtho27zyFLMjWrlqFbm5p5SZlZOWZ+XHkYQRAY+3wrHP9i+QP7p1DhZ5Qs9N6xjCzJKisxK/QwKzsOplQpZ0r9wWAA6NChJh061CQz04jJZEGSFFAlTCZLAUOobDl3OGZ97etXEmcne65du4udnZZ7MfeY8/aviBqRwLbVadS+JqYcM2PaTSc9yRqm0tvpMJusmmSyoqCz01LK5+FeAI/SJXhv/otsXXyYxNspLJiyjrGfP4coirw0pS99X2mPo4s9ervC17BN34a06dsQY7aZAxuC8PIrSb2WVq/bhutzMWabSUvKQJYVUhLTWfzJOlRFZc+Ko/Qb15krZ24gWSRkSeHsgYv/akMo5kocmakFvbCCIND5hdasnrUZjVaT97mBVa9NtshkpWWjKCoaTX7uj5rrQVIVFXtXB/qM68TNS3EM8H6FAW93Z+j7fQAY9mFfrp65gVanIfTAJYJ2hXH2wEV+PP3FX3TWNv42VFvVmI1nHKNkIdVopGXZ8igPhAQ0osicTl1ZdSEMjSCgqCpXku7x3LrVbBr0fIHqpIcxZ8kBrsfcA0BW8sNsCODsaKBuNWuOQdD5aCZ9tQmNKDL/40H4ebvx/tzNXIi4jUYj0r9jXaLikkhNzybHZCGgcmkCa/hhtsgoikropVhro0mNSBlvN27GJbNpjzUEs+PwZZJTMxnRvykAi9ccZ+t+q3CtKAq8MbwNWu2T9c48KTItJuIy06nsVuqRHasTcrIwyfnq7nWLmXvk5GTgrbe6sHlzCD171cfV1aHA9kaN/Fm//gyoKh071qJ69dLcu53CdxNWMXPsElSs+Tin9lzkauhNHJwNpN3LwGyyruXdecNZMn0Ld28lo9VqaNGtDmM+7vvINTXvXo8fJq8hJSGd5PiTNO1aJ8+gKVEMbSuDg55uLxTuWG1w0LN+/knWfrcHrU6Dh6876UkZ6PRaSni50n5IM/asOkZ6UibDpzw7TTGfBjo7HaJGzPPYgdXD2mpAE7q82AZ7JwPbfz7Akimr8Sxbim6j2nFyawgDJ/YsUOXVsEtdRkx9jo3f7iAzNRuf8h6U9HJj/dztmI0Wln2yjoHv9ECr01K9cWXW31nIuUOX+KT/16iKijlXD86GjX8bNkPoH0RCViZdVy0n02xiSM2CZdNTW7XDTquld9Xq/HYxjBspKSiqyqXEBFov/Zkdzw/Hxe7RIS03Z3t0GhFJUXB3cyIjy4gkyXRoVhXPkk7M+mUfL/Vrwsxf9mK2yIDM18sPcOnaHRTV+uMsyQq/bg8usN/ouGSOBF3LddFbjTdVVZEVuJuYXmCsIivE38uXitDrtYiCgKyobNgZyt6jV1gy+wW8ShVPCf2vIsWYQ/vNi8iWzLTz9Wd+64cbEH5OrvSuUIPtN6/Q0a8S79RtVezjdO1Wh67dig5V1arlx8qVrxIdlcjHH28AoIKPG5Ycs9UzoLPeFGVJYd7kNczbPpHazSoTcugKPYa3oFXPelwOjmTr0qNIFpmwE9fycnniohIIPhhOw7Y1KF2hYAjT07ckWek5KIqK+3+ha/UwDm0MxmKSEAWBAe/1xMFex/Ylh3iv+0ze/fkV2gxozO7lRzi66QwBzao8cxWST4qyVUvz2pxh7F1xlKshUdY3VXAvXYKEm/dYPWsLjbrUZUvqEnR2OgRBYPC7vQvtRxAEBr7Tk55jO9LPczQ3wm6ycNJKDE4GRI2Ih587mj88ZNRpXYNhU/pyNTiSYR8+2ii28e/AJrFh45nl6u1Edl6JwCRZsCgKO65H4KTXY5JkDDotA2paW98npmTyvG9tjjjd5NCtaABSTUaCb9+mXYXCIav73EpPo0YrP0r7uOHp5kTlch6s3HaG+tV8cXI08PmCXZgtMjduJXI7Id94uRmXkpfr8yjSs4zYa7WoiprnyVJVFZNZKjCuTg1fRg3K76k0ckBT7PRa1m4PIS3DiNFk4XRoNL06Prx/zqJLQcw8ewhBgGmNOzG4cl3Sc4xEJ6VS3ccD3RPO9wEIT03AKFswyhKH4iIfOVYQBOa06MGcFo8XMP2zJCSk8dFH6zHlenliw+PyukVXr1+ea2G3QBAoW9kbjUZk2vKxBSqDkhPS88ZnZxiJvBxH5Vp+vNl9DhaThRVzdvDr2S/Q22lRVZWlX25GFAV6jWpDi271KPsE2yAMfKMT3078FUdXB1r2asDmBXuJCIlElhUmdf2SlHjr93DnkkN0G9mG8jX/XPPHfxJ+lX1o1KVuniEkCAIGRz2TOk4jIyWL3csO83PYbLzL5xupZpOFayGRlK/ph+MD3sNLJyKQc3ONZFlh3vHPiIu4Q0CLaoWMSUEQeG6CTRfRxr8bmyH0D+DM9VheW/Q7AHoXEZOLwMi69elRpSrHYm7SulwF9BoNKZk5DP9uDRZZwdnejhHt6vLrxfM46vTU8374DSopJ5uu65ahqCp+Lq7sbjWSXq8tJDElk8NB1xk1ILcDswoqKir5bUlaNvVn296L1s2CmterRPhDRYCoEXnnjU7MmbfHml+kFUisCUY3KHlBxT4ZVAGqBHhT0s0xb56dXsvIAU3R67Qs/O0oOp2GwAfKtO+TZTLz/u+7SczMIsQuBklVQIGpQfvo7ledLt8tJcdsobavD8tGDvivP4uHUb9UaSq6uHMp+S5jajR+4vsvLuvWBuUZQVqtSO0AP0LvpqGqUKF6GV58vxfxt5Jo3i2/MWFmWg4ZKVmUruDB8R35VWKu7k7YGfScP3UdU44ZWVJQVTAbzejttJw7dpUtvxzCmG3m7s17HFh9EllW+GLtePxr/e9NMjsNaUa7AY3RaEUEQaBsVR+0ei0aVSX1AYFZQRD+K4X1fwqXTkbwUZ/ZKLKCd9mSOJVw4pVZz/Pr9E1kpecAuZIme8LoNqodYm4Y/J22U7l5ORYHZ3uWXPkG+9wih+Q7KejstFhMEj7+npTx96aM/6ObT2amZrFg0goEQWDk1IEE7TpHaX8v6rSu8XRP3sbfgs0jZOOZ40pcArKiYpFl6jh5s+CV/nndo4fWyk9mzTKZkRVreCojx8SHLdsyNrAx24LC6TptMU0q+TFnZI9C+UJ3sjKQVYUcSeJGajLd1i0j3ZifnNm4Vjk0osCtu6kM6dGA/u8uRpRUVI1Aty61uC6lcOnibcylRJQUGckeypd1IyUxm7suJkokaXilbWPeDNmJm5OKXRpk+woYS6ggQFolsMuNpi2KDuX57EaUciiY/zK0d0O6tqmBvUGPITf5VlVVJu7fxc7IazQo6UNYxB3Msoy+vBaLYAYVfFQXopNSyDFbyLFIhNyMy9tnpsnM0WtR1PDxopz7/1YabNDq2NZjJIqqPjI/KCvbxNlLt6jm743HU5AuaNasMidPWkV9p07tS0CNMvz02e8oisrwid1wcnWgRmB+gn5sZAJvdvsKWZIZOK4DHZ5rxL51Qbh7u+Hi5siE3nPR6rQEtqlO4u1Ueo5siVOud8G1pBOKoqLVaZAtEmm5Ic313+/mvYWjntAZqXw+7HsizkYybs5wXp87nO8nLENQrRVrPhW9+Gz9BFyLSDL/t3AvNhkBAYtJ4s6NBHT6ZHYvPcyR9afyKrtUWeanSSu4G5XAqOlDkWWFq8E38toQxEcn4le1NJdORhDQoirNezck9todJiwYXaw1LP9sPQd+PQ7A+SPhJN1JRQCm73ifgEdIndiw8U/AZgj9A+gZWJ0doVdJTMvknV6tHiqh4evuylvdm7Pj7FVebt8QrUbEy8mJH3aewCIrnIi4yeVbCdQqV/Dpr6a7J30qV+dgTBQlDfZcTkpEHyDQ0OjBi20bUbm8J5XL5zdTe39SZ34+HES/RgFMPLKLGDUVSw0FvUaDxRMMWi3xOhPJHiZUINsPDqTdQgaSaoFdCpT0ckCUrWX/sgMk1QFFDzpnkWspSYUMIYASro4F/o9JT2Pb9auYZJlj8TG4ijoMopayRlfC0xIRzQLly7lTzduDun6lORMdy5iWDfPmj1i6jsjEZARBYOcbI/Fy+XOGSWaWifW7QvHxcKFTy+oIgvBII0hVVUZ/8CsJSRloNSLrfxiN0xPunNyhYwDVqpdGoxHx8XHjwqnrnDlwGTcPZy4HR7F9+TGcSzjQtm9DGrSuxoVT11FkBbNJ4tDmsyw69CEvvt+T4Y2nkng7BQBZMpOTZeKH3e8WOFbFmr58uvI1rp+PwdnVgR/e+xUBqN/2yXkJgvddIHjveYxZJj4d9A1+1cpYw6uKil8VH34OnVnkvKy0bBJuJVGuRpk8D8k/leZ9AgneG8aB345jMUlYzBIRwTeQpfwKMEVQMWabiDwfDVjFbwdO7MXGb3dQv0MtylYvw5fPzyNoZyiCILDg7EwuHAnn6IZTePi64/aIxHaLWeLMnvNIFhmtTkNOhhFzjhk7Bz1rvtrK0Y1BjJj6HA7OxRPmtfFsY+ssbeOZxM3Rnt/eGlKssS+0bsALrRsUeK+GnxfXbt9DqxHxK+VKeo6Re+lZVPAsiSAICILA9NadAZgbdJyotFRwURnUqxEdKhV+2usXEEC/AGtO0jfnT2HJVYQ054qb/tZrIAM2rb4fJUMFXgiow+m4WBAFTO5g56Dl2ybdORV3i/re3hy4GcW+yBvU8fahgXfpYp2rp4MjLnYGsixmSjs5M6VDa5Kyc/AvVZIXl21AQub5RnXQaTQsGdG/0PzIxBRyLBL2Oi2309KLbQipqkpiciZfLdrH6XPRaDUiBjsdrRtXfuQ8RVGJuZ2MqlpbBtxNTKOS45Pv1uvrWzLv9ZIZW0lJzCAjLZsvxi7BbLSWWR/Zdo6PF42iUbsarPhqBxaL1SME4FzCEZ1ei8Us5TVEHPFu0flMdVtUpW6LqgBUC6yAIitUqPHoXJ3dq46x5PNN1G1ZlUk/vlykfpXFLHH59HWc3ZysUhKC9frdjUxAo9Wg0Sr0GVd0h/PUxHRG138fU46Zpt3rMXnZuMdftGcYrU7LOz+9QuiBiyTkNtLUaDW0G9yUvSuOoqoKziWcKeHlyugZw/LmjfpyKKO+HJr3//kjlzFmmTA42rF76SE2fLMDyWzhavANZu6a8tDjh+6/wL1Y63G1dlqmbnibH95ahizJhOy9QAgXkCWZ17998SldARs2ni42Q+j/gF9eHcDZqDgq+5TCaJHoN2sFZlmmT8MaTBnQvsDYtxo2I8DDC0edjua+j1ft/q5jD2afPoqiqtzJyuTVug2p61maaS06MC/kBDXcPZnSrA0V3EqSkJnFZ8cPIQDjGzWjZ+WqVHBzY8DG1aBCozK+rOhV/Pwde52OvUNGcCkxgXrepXHQ5ferOfneWCRZxsnwcI/L5M6t+PbgCVpWKk+dMsVL8lVVlfdmbuJUaBSCICArChqNSGYxZCk0GpGXn2vGL+tOoCgK3yw9xPdTBxbruMXBbJZYNGsnKUmZjJ7UlSthMTiVdMLOXo+qqhgc9HmGECok3E7h9L6LZKRm41LCgcYdAvLW+dXG8RzcFEyj9jUJaORf5HVYNms7l85E8tIHvahevzzlqhbPgJ3//mpMOWZO7Qrj6tkoajTM3/8vn21gy88HsXc0YMwyodGKfLF5Eos++I3oy7GgwuxdkylTyfuhHogb52MwmyyYcswE7T5Pwq17fD9hOS7uzrz+9XAMDsX3wl0Pu8mJrSG06teI8rkG3tFNZwjaFUavsR2oXLd8sff1v9LlxbasnGatBqwaWJEXpw0m/mYi2ek5fLDyTcpUfvR3eNT0ofzw1lL8a5fHt7IPAtZGmKasR393reK1AgZHO2o2rUqNJlX44dQXrPryd36dsQkUFeEf7nWzURDV5hGy8W8jKSOb1cfC8CnhTO1yPkiKgskisf/C9UKGkCgIdKqQL7ipqCoWRcZOU/CrYpIlUo1G2patSNuyBavRjsXeRBQEDg4ZhUGbP69nlWrMPHUUkywz5fA+elWuRlxGOiIC2bKFm2mp/FncDPY09ytssBl0WtA9/OudaTQx7+BJ0nKMnI+LL7DNIsusC7mITiPSr17NAjlV2w9e4niItSpMI0LNyj4EVClN55bVi7XeRnXLs3JzEEaTxIWrcY+f8CfYte4MuzcGI1lkIq/e4W5sMoqkoNXrmbZgBJ5l3Fg6cxuXz0RRtV452vUL5IXpW5AsMsYcC1dCowlo5M/i6VtQFXjpg144OhfdciH0WASbFx/GmG1m+qtLWH7602Kvs0KNMkSH30YQweuBTsWmHDPrv9tjrSbMtvasMTjYIYgic/ZO4czuMEpX9CpQHaaqKpEXbuFc0hFPX+u+ajatTJlK3kReiOG5t7vzwzsrOLM7DI1OQ4WavrTs2xA7e7tCeUWRF2O4eDyC5r0Dcfd2Iystm/FtP0MyS6yauZllF79CkRVmjVqI2WjhxLYQNsT++NDzVBSF1TM3E3cjnpFTn8PD1x1ZVhAE/qtw3ZD3++Dk5kBWWg79xnfF3tHA7L0fF3t+p+FtaNG3MUfWn6JMFR8GvN2DpkGnMwAAIABJREFUW1fjeOmLoY+cV6ayD/NPf8HN8Dgadclv3fDcOz2QZRmL0cLQybbSehv/XGyG0P8Bn6zZy+nrMei1WnzdXfF0deLWvVRGdXi0IOvdzAx6bFhBqtHIl607MrBaLcDaM6fz2qWkGHN4vkYdprbIN6aOxd5k9K7fUVXr6+86WkMqqcYcolJT8sbJirX6rH15f7pXqsKFxHimtSpolD1NopJSSMnOQVZVIu8lsyb4PEMaWX/kvz94kqUnzyIgkGk082Lz/FBj5K17eRVzep2WuR/2x/FPeBiqVvSidrUynLscy4h+TYock5Vp5NCO85Tz9ySgQfm898+evM7iubup06gioyZ2KVTq7OBksOYpaUQki2yVvRAEJBVCz0QTuzSGU3svotNpiAq/jZ1BR4/hLVj7wz7c3J2oGViRX7/dze7fTgGgN+h45ZOCN7jsTCMTen9NTMRdRFFAoxVxdc83KFRVJT4miZLerkV2lAaYsfFtQg+HUyHAF/cH9Kv0Bh1lq/oQfysJQRCwmCXsneywdzag02tp1rMB8h806X6dsZk1c7YBMHv3B1RtUBGDgx3zT0wj8mIM73WdQVZGDgjWZOMN3+1iydR1iBqR2bus4wGS41OZ0O5zFFlh1YzN1GlVjcZd6yHdb++gQvCe89RvH/Cwj7YQW37cy7Kp61BVuHXlNqO+HMKHPWei0WmYs/9j/Os83uP6IBqNSJ9xXR47TpZkTm4Lwd27BNWbFAzXftxnFlfP3ABg3okvqBBQuLpPVVWunrmBo6sDfrlePr+qpfGrWppT28+ydcFeOr/Yhlb9GjP8oydfgWnDxl+NzRD6P8DFwQ6tKCIAHi5ObJs80hrSecxT6f6YSDLMJiRV4adzZ/IMoXPxd8i0mLEoCr9HXKahjy+Hb0XxYq0GxGWkowJGWSIm3erhiUpNocfaFUiKQttyFdAIIsNr10Obe/zZ7R//4/6kqebtgau9geTsHERBIM1ozNuWlJWDpCgICCRnFZQ2GNIzkIsRtzGZLEyb0PNPGUEAWo3I11MeffOY9uYqLp+LQRAEvlo+msq52mMzJq0hPSWbW1GJNG1XvYCRBNCuZx0kSSY1KZMmbavx+nPzrTdyVeXOzQRCDl+xdgg2SSTEJqPICiPe7cHAcR2xs9chiiLRV27n6VkVpUJ//uR14iITAWvOTuP2NRjyZue87TNGL+LEznO4ebiw8OhUHIrwKBkc7Wj6QPn+fQRB4KOlY9m2+BCl/b345dMNpCSk88VLC/nl9DQ+HfwtJ7edpc2AJkxe9hoAp3aEYsoxo9VruXQiIs+wAdi15DDpyZkFjpF0JwVUq0cmZN+FvPHpSZkoqorZZMGcaOHwhiBObDtL4651Ob3rHHqDnsCOtfEu78G7P7+SFxp7GIlxyexedpj7zd8Tbt3j9+92YsoxQw5sXbiXwE51CGhe9ZGJyv8NP769jD3LD6MqKp/+Pon67Wvlbbt9Ix5TjhmDox2Jt+4VaQitmb2FVV9sABU+2/wu9dpajb+cLCPTBn2DxSxx7tAl6raugYv7v7da7/+ZZ0kQ9a/AZgj9H/DZoE78VuYcnq5OdKpjfUIsjuRG09J+aEUNKtC3Sn4lUH3v0pQ02GOSJLr7V+WdAzsxyhIHbkZy7PkxHIu9SUx6Kh81a8vFe/FciL+LrKqYZJmrSfc4OOzlp3WqBcg2W5h3wKqy/ma7Zjjo8z0UOo2Gza+9wOc7DuJssGN4k/p52ya0b056jhGdVsPoB6rMADxKOvHTY0IJ/yvxt1MxmyQM9jruxaflGUKlPF3IybK2BbCz1xVohAjWm3uX/oF5/3/w1WA+H7UIVVFJjU0GVUUQBbRakVEf9cnrImz/QOVaSoK1BF4QBXzKlyq0tiq1/QqovQftv0zQ7jCadqnDBwtf5viOUCSzTEZyJtHhcdRo5I+iKJw7coWS3m6Ur/bwPCJFUZjY8yuy0rMRRQFVtcqq2Bl03Ludwpnd1h5HR34PYtzXw3Ep6cTwKf34/IXvKeHpQusBBfs3BXaszZaF+/LWq9Vp8pLADY4GWvXL94iWr+HLoAndObb5DLci7iBZZARB4N1FYzAZLTg622PIvU4t+zSkZZ+C34sHyUrL5pVGH2LMtPb40Wg19BzbkTL+XgTtCkMQ4OjG0xz47Tj2TgZW3vgOnf7J/RRfD4vGmGVCZ6fj5uXYAobQpCWv8eOEpVRtWIkGnfLDXJHnbzK1/xzsHPQ4uTlgyjYjagTO7DqXZwhpNCIanQaLWULMfW3Dxr8B4cEftSIHCIIBOALYYTWc1quq+slDxvYH1gMNVVUNFgShPBAOXM0dckpV1bG5YxsASwF7YAcwXn3MYgIDA9Xg4OBHDbHxhEk3mUg3G/F1LtiwTlYUsiwWErIz6bF+BUZZwt1gT8hIa4VOhtlE+9WLyTCbqOXhTWxqOnczM3DS2+Hj5MTCrr0p71biqa79qz1HWXbqLAAjmtSnftnSfL3/OK0qlWdip5bPrCTD5dCbzP9yG5VrlOb1j3rlGSxpKVkc3B7Gnt/PEhVxlyZtq/HJvGGF5oeeusGcDzfg6mxH7KVbmI0WtDoNb899nq8n/ooqq4z/aggd+he+me/feIa5b6+yJoLLCr1GtuLVzwpW3A0MeJ+MNOtNXjWbQZYRRIFxM4YQc+0OW385RLmqpfl2z2Ts7PX88N6v7P3tJKqqMOP3d6geWLjDeU6mkYzUbF4M/ABZsgq+jp46gPhbSfQe0w53bzfGNv6Quzfv4VfFh++PfVqsPJvFH69l4/e7EQQY/eUQWvdvjKOrPaJGfOj8y6evs/+349RoUpnw09eo1aIarfsX3STTmG3ip8m/kZmWzdiZQynp5catiDu81uwja2K6qjLgjc7sXHKISnXK8eYPLyNLMmMbTEaWrOXoq6K+p4Tnk2sIGRF8gxkjf6BU6RJ8su6dAl2lH8Znz83l2KYgRFGgzaBmnNgagjHLiM5Ox/Ttk6ndyvogdD00msPrT9GsdyDVG1V6zF5tPAkEQQhRVTXw8SOfDE5VvNW684f/Jcc63nH2X3puD6M4jyEmoJ2qqpmCIOiAY4Ig7FRV9dSDgwRBcAbGA6f/MP+GqqqF/eDwIzA6d/wOoAuw88+egI2ni4udHS52hcM/GlHM2za7bRcOxEQSm55G/aU/8FGzNlQq4U6G2USOJBF8N47roydQc9F3pJtNpCeb6LVuFWGjxj1VY0QUhLwO16IoMHHDTrLNFmJT0ugSUIVaZR7dTbc4REQlsPPQJVo09KdBQOGO18UhIzUbe0c7tLlP2DXqleP7dYVLvl1LONKkTTV+/moXqqJycn84GWnZOP/hRjf/i63cu5tGUjyQG+Zq3bsBC6duxJLbdXr78qNFGkLt+zXEr5IXk/rPQ5YUtiw5wpiP+xTQoHJwticjLQeNToOqiMiyjEYjIkkyr00fwktT+mHnoM/7bC8H3cCYbUJv0BF54VYhQ+jWtTu82XE6FrNE634Nibxwi7b9G9NrdLsC4344MY24a3fxreJT7GTjlz4bSOsBTXB0tce7nMfjJwA1GleiRuNKjAiYyN2biexZeYwylbypVEROz5aF+9iz4qg1d0lV+WDZOHwqelKzaWWuhUbz/OQ+rJmxicyULK6cucGtK7dp2rMBgyb1ZMfPB+jyUpvHGkEZKZl8OuBr7t1JZvLy16kaWLiK70GqBPqz+OLcYp3rfWq2qMaZPWGgqrTo25jUhHTO7r+AbJYIO3QpzxCqVK88leqV/1P7tmHjWeexhlCul+Z+oF2X+1eU52YaMBOY9Lh9CoLgA7jcN6YEQVgO9MFmCP2jMMkSM08d4V5ONh3K+fP+4T1kSxY+PX6QM8NfpY6nD6dv32JMnUBi0tMwSvm6YllmU55Ux+OQFQWLohSoQHuQhUeC+Pl4MO2qVmRG3855N+DX2jRBI1pfv9KqMfvCbxCXmoYKuDs+/in5seuSFcZ9sobsHDOb9oaxYf5oTpyN4np0AkN6BRZLGHbZvL2s/eUIbiUd+fH3N3Fxe/S6PLxdMdjryLTICAJs/e0UoihSrbYfdZtYb5BVA3xJvJOGMccMDvbo7XUc230eU0Z+HlS7vg9/CCtb2RvXkk6kp2RSKcCvkBDne9+P4L2B80AQqN68Gj5lXHEp4UT3ka0B8kJI9xkzbSCzxv6Cp19JWvcrbHyFHLyMZJaQzBLRl+NYcHRqkevS2+mKzGl5HP5FSLKA9fMrqodR3nZJzvulU/6QpL1v9XH2rTrO1eBILGbJahQikJ2Rw/pvd3L59HVQrQngNZpWIWTveYC8ireRnw5k5KfFa52wb+VRwoOuYTFJ/PjOCr45PLXQmLhrdzDlmKlY++EJ2BazVCAEl3QnhUsnruJS0pmuL7WlSoMK2Bn0VAn0x7mkI+Gnr+HgYk/751sWa502/j3YyueLQBAEDRACVAJ+UFX19B+21wf8VFXdLgjCHw2hCoIghALpwBRVVY8CZYDYB8bE5r5n4x/E6vDzrLochkVRSDZaQyUOWh21PbzRaTSs7jUoL48ly2zG1c5AhtmEIAh817HbI7sw3+dWehq91q0kw2xmTvsu9K5SsExdVhS+OXAcVYXdl64xukVDKnlay6gNOi3j2+cLuK586Tn2XL5GHV8fSru5kGkyM2bF71y+m0CTCn58M7CHtew+l8SMLObuO4aHsyNvtG1KRoaRrQcuUqWCJ03rVUAFJCn/Bhl66RZfL96P2SJz4eptfplZOGz1R3asO4MsKaSlZvNyt7nUCizP5K8GPzRnRKPVUK9pJY7useq7/b78BFmZJnQ6Dd+vH4dfBQ8mTOtLy84BHN1zkf1bQnH3cCY5MitvHwFN/Okx4uE3N4O9np8OTiYuKpFyRYiomk0WNFoNxmwz1y7cYubaNx55jnVaVGXVxVkP3d64U21WztqKJMlo9VqS7qYWqCb7X1FVlbvRiZTwcsXgYIdkkXi/+0wuHL9K77EdeW3OC4XGzxu/DGO2GXtnAxazhQ96z8bNw4XBk3oS0KwK34xbgsVkyZujt9NyfMsZzu6/QN3WNbAYLQiiQPzNRHyr+HBiSzAupZyZMXI+479/mYoPMc7AmisVGRaDZ1l3XNydKVfDF1EUMTjaUaV+hULjg/eEMXXAHARgzKxh9BzbqdD+pvSaSfDuMFo/14QPf32L7IwcRteZSFZaNqqq4unrzvzgGRhzewrVaV2TzSlL//uLbsPGP4hiGUKqqspAXUEQ3IDfBUEIUFX1IoAgCCIwFxhZxNQ7QFlVVZNyc4I2CYJQ888sUBCEMcAYgLJl/7vQg42ng4PWGv7QCAIe9o7sHjiS66lJNCuT/znd98446vXsGTKSc/F3aFLGr8hwW1HsibpOptmMpCgsOhdcyBDSiCKVPdyJTU1Hr9Hg/Yju0CUdHRjcMD9BdNfFCM7F3kFRVQ5FRLEm+DwjmuYnTX+ydR+HI6LQaTSUcXNh97owrkcnotVqmP/ZYKr5ezHnw36s3RZChxbVcHI0AAKqqmL5gwfhPlduxHMs+DptmlShUjkPOvWtz+/LjiNbFDLMOZw9cYOzJ6/TuPXD9ZsatarKiX2XkWWFrEyjtUxepyE71+Oj0Wpo3KYajdtU442Pe6PRiswYt4zQo1fp/VJLsjPMzHl7FaM+7I1bbi+duzFJXAm9yeHNIbQf0JAW3eri/xA19xqBFajeoAKXQ6Jo378hmWnZOLk6kJWezcqZW3FwsWfwhG7FTgD2Ke/B85N6svDDNUScjeatztNZEVa0dEZxWfTBb2xesJcm3erh6OLA/tUncHS156cz07kXl0zEWauK+5aFe3n1q2EFQrSXT11j9/IjVo9QLhmmLDJSsvh63C98e/ATHrTh9QYdxmwzqqKSmZpN9SaVyUjNQm+n47nx3RnoOxZVUUlLSCctIZ25ryzk+5NfFLluWZKZ0nsWF45eQafX8s6isWz/5QAdXmhJ/fYBNOtV2KMWdugSFqMFVVU5uS2Es/svkJqQzsSfx1Kmsg/3YpM5d/ASAEc3BpGZmkVqQhqmbJO1azeQnJDGsIpvYDGZ6ftmN8Y8wojf8uMetv98gD7jOtP1pbbF/1Bs/EOwSWw8ElVVUwVBOIg1n+di7tvOQABwKPfHxBvYIghCL1VVg7HmGKGqaoggCDeAKkAc8OCvrG/ue0Ud8yfgJ7AmS/+Z9dp4uvSvWhOzLHEvJ5uXawfipNfj5/LwfAdPR0c6VfxzCZYtfcsxR6NBEAT6Vy3ahv5t1GBCYuKo6eP1yE7Sf6Syl3teaE4UBJz/MFev1VpvkALotRrSM43IiopOgIwsq9Hh6mQgNDyWMxdimPNhP0YPakZEdAIvDWha6HhZOWbGfbIGk8nCmm0hbPvlNV5+uwv9hrdg9uR1XA69iYqKbxHVWg9SytvVmk8kQPlKXji52FOvqT9VahU2XOwM1kq5KQtfAmDDTwdYv+AgsqQgmWXe/2EEC6ZuZOuSIyi5N8WQw1cIaOSfZyT9kaD9l/Cr7EXMtbvsW3eG03svsvjYxyycspb9606jEUUcnA30f61oCYyiSE/OV5O/d/vPN9Z8ELPRzIZ5u1BVldM7z6HRarCYLGSnwaIPVjN8Sl9c3J1IS8qkRuNKeUaQoih88cIPHNv88IIMURRxL+3GG9+MIPJCDPXa1sTdpwQT2k/L69p96fhVpq1/m3u3U7BYJAKaVyX89HUsJgt6gw5Pv6I/X1mSeb7iGyTftZ6/Iqt8+cI8JLPVINv+035Kersxffv7VKhVFlVVuXDsCrVb1eDA6uMYs0yUqeTDjkX7sFgkfnhrKa/OHUEJb1fK+HtxJyqBCrXK4ujqgKOrA51HtmH3ssNIJgmP0iW5E5UAwLaFex9qCKUmprNg4goki8y81xfTqn/jYiVj27DxLPNYQ0gQBA/AkmsE2QMdseYCAaCqahpQ6oHxh4CJuVVjHkCyqqqyIAgVgcpApKqqyYIgpAuC0ARrsvRw4LsneWI2nj6iIPB8zaLy4J8cVdxLcXLEGLItFnycir4xO9rpaVW5cMjgcdTx9WHVy4NYG3yeumVL07duQbHQz3q2p1xJV0yZFuLOJ/LK4JZsP3SBgCplCKxl9XptPXCBzNxwwsQvNiLJMgO61sfXp2BF3MWrt1m5KQiLRUIFzJKc1xywRCknpn4/jDNHIyjr70mZco82hOo18eedL/tzKzKRDr3r4eBowNm1oNxE/O0Utq8OonrdsjRtl+9FM9hbvXiiKGBw0JORksWWxfn9bsBaOv/HvKD7RIXHMevNFflSHVhzTzJSraG3op4jVVUlaO8F7Ax66rYq7Om6dyeFkAOXETUiiqLQ+hH5SzmZRma89CPRl2LxLu/BgPHdaNipdoExd6IScSrhSE5mDs4lHOnwfAvWztmO2Wxh/5rj3IlOYPhH/diyYB8dX2hZYN7pXWF5/4saAQdnezRaDZmpWZTwdOW9xWOZ0ncOMVdu41fFh9FfDkGjERk7cyg/vLMSWZIJ2hPGZ8/P4/yRK1Ydvy2T0GhF7sUmk5KQRodhRYclb4TdJDk+3wiULFKhMcl3U5ncfTqrY35k6cdr+H3eTlRV5Yvtk6ndsjpH1p9i15ID2Gn03I6M59XA93BwceDHkJlkpWRRprJ3nuH35vejePP7UQAsfHcFG77eDoDHA92+/4jB0S4vX0qWZNKTMmyG0L8QW45QYXyAZbl5QiKwVlXVbYIgfAYEq6q65RFzWwGfCYJgARRgrKqqybnbXiO/fH4ntkRpGw/B1c6Aq13RUg//K3X9fKjrV7RGk4u9gZcaN6Dv2J8wmSUcDHp2Lh2H9oEE22b1K7J573lkWSEnN2dk9bZgurcNoELuDUVVVd76fD05RguCANX9vWhYpxz7jl+hc6sa2Om16O10NO9Q/Khxq861uBF+m1d6fYskKUz8sj9tuuWH/T4cs5TbN5PQ6bV8+dNIjmwOQavTMHRCFySLTGZaDv3GtEUyS2i0IpLFenNr1z+QrkObkZyQTujRqzTqUBODvT5vv2aTlBcWMjjoEUSBDv0bUcLDhVc+H4ijsz0OLvb0GpVf8bX22138Nnc7qgpvznmepl3rsXLWFrR6Lc9P7MH67/Zw/fxNVEWlRY/6vLdw1EPPe99vxwnZdxGLycLd6EQunYzgi02TmD5yPnb2emZse48P+35FRnImOjstHyx/nYBmVfCvU445YxZhyjGTlpjOt28sRTJLfP3qLzTuXBfnEo54lCmBm4cz6UmZ6A06Oo9oxciPBzDE/01kSSEzLZvku2lEXbyFLClEX44jNTGNkl5udH+5HTFXbrP9l4MgCMSE38ZstCBqRC4cv8rgiT2hIVw8foVh/m/i6GLP7L1T8Hqgkq20vxf2jgZyMo0PPX8gz3MXdvgyxmwTWr2WiOAb1G5ZnZb9G6Mz6MhIyuC7NxfnrsFETHhsXj+gPyJLMkE7rKr0eoOOj9e+/dBjGxzs0NnrMGWZ0dvrSY5Pw6ei1yPXa8PGs05xqsbOA/WKeL9IkRtVVds88HoDsOEh44KxhtRs2HhmkSQFJdddIsmyNafiAWdJozrlWfPdy4Rfv8sHX1mfCUTB2rTwQe4bD6oKKek5rN12FhU4Fx7Lx290e+jxszKMSJKMawnHvPfWLznKttWn8fEricloQVVh57ozBQwhY44l74b587RNXAmJyj2+ypiPH5DNcLRj6pJXOLgpmM6DmlCrSSViIxMY2346iqzgV8mL8tVKYzZaeGPGIKrWLceoKX0IO3GNwW90LJBH5OjiwCtfDCL1XgayRSYzNRutTkPkxVsYc8yIokDU5Tiu/oe9846Oqm7b9bX3lHTSIJSEFkoIHULvCIj0DoJSpAgICqiA0qUoAlJEUKmCIL0XaVJCL6FDQkIgCamk9ym7nD8mTIgJ6HuO33deda61XJKZvX+7DcyTp9z3rUiObjqHIAjo9FqKl3FDq9MiiALVGvhaMxZmk8SpHZdxdnWkRbf6CIJAGd+SBfpzFFlh94qjpCakI4gCRzeesfa9iKJoFYts2bMhYTcjeHIviqGz+jCl01dIJglVVTEZTYATens9a65/SWRwDJVql0NvbwkAazb34+bp+xhzTXw36SeKebqQmpBOpTrl+LDlHDKSs5i2eRzvzemHnaMdOr2WSnXL8+WQ1Tg42VHtJbmAjTN3kpmSRWZqFid+DmTwjHyNJmc3J7aEf0tUcAwPLoey7vNt1vcq1PQm4n4MWp2GuXs/AWDElwOZP3AF7l6u1skuQRBo2tViCRP7JIFtX+2jdMUS+DcuaLXxMkkxKcQ+SbB4vBlMFC/j8cptAT758X3WT99OvTdq4t/YpiX0T0MFW4+QDRs28vF0d2LmuE4cC3xAv8710RWhpuvl6YKXpwuLP+vFkTP36dSmBmVfKo3FPc+gXVM/jp59gKyoZGUbkRQFSVKIjEkptN4LHt2LZsqwdSiKwicLLBmfzPRcNi4/gSwpJMalo7fXIUsKXd4uKPg357t32fr9aSpWLcWhH3+zvh4d/rzQcQJaVyMgrznbbJI4eyAIOW8aLiosgZinSaiqwsaFh/hk6Tu06FwHrU6DtghT2183n2fVZ78giiKKrCBqRHqPbY+LmyMeJd3oNaY9u1Yet+o7hd2J5NbZYBBg+Ize9HhJO2jd7N0c23IeEDAZzMQ/iefCgRt0HNKKoxvOIksWP7WAdrW4cy4YFZWazfxoN6A5u1YcpW5rf6uflyiKjJw/wLr225924+cv94GqsmbqL3y+yaLb5OjiUEgocOaW8Sx+fy1ndl4mMzXfciU+IpGcTAOSSWLb4oM061ofB2d7tn61nxrNqjJv90Rm9lzCjO6LGLPkXbq+34G0xAzLziqoRfTTu7g7U6OZH67Fi+Hi7sz+VcfwKlucz38ej95eV0AIslYLf3Y8+6HwInkM+2IA787og0area1elyHbYA0eS1Xw+sNSV5v+zWjTv9lrt7Fh4++ELRCy8a8iISOLEw/DaFDeG//SXn9qn3bN/WjX3O8Pt2sW4EuzgIJigRmZuQybvBlJlnGw11OxrCc9O9RmwerjADx+8pyJQ9eQmZTNx/N6U6N+vg7MlTPBGPN6cQ5tu8ovP5wlKyMXewc9kllGb69lw9GPETUiTs4FS4eV/cvQf0QrPhu+ATMa0IggK0iSjCzJRfYAZaXnMKb9QlIT8xuXnYrZI5lkVEQ8vCy6SB/3XE5yQjqiKLDhwkzcX/LK+vXn80gmGUGQLX1HZpntyyxV78y0HFKfZzBsWk90dlp0Oi03zjzIs2wQiAlPwGyU0Oc1eD+PTsZksIzqPwoK5+DqE6iKytN7UTgWcyQ3y4CTqwNvDGiKb61yuBZ3QRAFPu+2CFmS6T0u3wPt97h4OFtEIM0SudmFPdVeRqPV0KBDLc7svGx9TavTUMzDmdxMA3p7ndVyY+vCA5hNEiHXwzmz/RJmoxlVUTm/9zpd3++ARyk3osPi0Om1eFcuuqR0++wDZvZYDAK8M70Xb0/u8drz+z2hQU/YsfgAd88+pHL9iszZ8yl2L5U3f0/YrQh0dlqMOaZ/mcOUjSJR4Q8MJ/5x2AIhG/8qBq7fQVJmNqIocGLCe3i5vHrc/q8gJT0HSVYwmmTMksLquW/zODIRjSiiKDKkGggJTgFFZeXcA/yw/yPrvi071mL/lktIJpkSpYoRfCcKRVapGVCBjr0DqNukUiFV6ajw56gqlK/sxf0bEUiSjKKoaJwcUDKyCb7xlKBzIZQq54mXj0eB/p/QO1FkpeeiyApanYZx8/vStGMtrv32EJPRTMe3LZNwiXGpSCYZvZ2W7ct+5VloHEM+7061AF9c8kp4gigiCqDVW75gAVDh/uUwKtcux4hZlpJQxRo+LHx/LYqicnzrRe5ffsyE5YPZ890JqjeqRG62ERc3J3xrlLVmLQCqNazEzd/uk5tfMwg0AAAgAElEQVRpYFDlCaiqyuR1o7l/8RFJeVm2XcuP8NnGD4p8Lh2HtCI6LI6rv95GkhTCbj3l15/O5TVgdyqkXN1+YHPCbkcQuOcaDdrXxNHVkaPrzyBqRGq18KP/pC4A1GpelYdXHqO309Hgzdqc3nUF2SQzYHI3ACZvGMvGmTso7etFmwFFZ1WCr4RhNkkoskLQyft/OhBSVZWvBq/k7I5L1tfuXwjh6pGbtOrb5JX7Ne0awN7lR4h5HM97C97+U8eyYeOfhC0QsvGvIikrG5MsYydoScsxWAOhg3eCWXPhOl1r+jGmddG+Uv83lPf24K3W1fn17AM83Jx4FpdK1Ype9O1Ul+2HgxDstQiA3kFHhSoFMwS+fqXYcWE6iqRw/2Ykl0+HgB4atKhCh571Cx0r8Ng9lkzbDcCk+b1p07k2h7ZfJSMthzIlnIh9bNGa2fX9KR7djkIUBVw9nfH0cuWDBf3wq1cBUWPJCaiKSnamAY1WQ4f+lvshmWWunw2mWcdahN19RrW65Tj2cyDGXDO3AoOZv+Mjbp55CIAgQuueDbGz12M2mflt11VcPV1o0b3gebfsHkDFGt6MaTkXk8FMREgMs97+loyUbK4ev8OgyV25fCiIZWMvImpEVEXBo4wHrsVd0Oo1KIqKbJZQVTi05jd6fvAmx38+jwDUf6MWvycnM5dZfZYS+/Q5TbvWJzEmlbinzwm5/picvOxOCW8P2va3BH2KonDlyC30DnrGLBzE2K/fAeC37Rf5VRQw5piIe5Jfbpy352NCb0bgU6UU45rPwmyS0em1HPz+JA7O9vg3rsLUn4oOzl7Q/t2WnNgcSGZqFkNm9Sn0/q3T95k3cAVuJYqx+OQMPPPKsLHhCVzcf73AtioqT+5FcePkHd6e0oMylQrbyji5OrL6+sLXnpONfxf/Nvf5PzRd/W/CZrpq4/+VU8GPWX3uCu2qVWZcG8tvyZKsUHf+SiRFwU6r4dC4IZTz+GuUjSVZYdK8Xdx6EI0KNKtfkcWf9wYsjdJhEc/x9XAlKyWbZu2qv1aE8GloPDlZRqrXK1dkz8eymXs5vjcIgDqNfRk3vRvlKlnKf4YcI1dO3Kd8tdKM67ioQHYFwKeSF2vPTufLsRu5+OsdhDxhSJ2dloU7xlOmQgnGtPvKWjZzK+7Cl1vHML7dAuQ8P7MqdctjNpqJi0iyZjREjUjnoS0Z9/WgV/apqKrKlyPWcOnILdoNaML5g0HkZhktDuda0SIWaJZAyRM4VMG9pCtNu9bHkG3g4kFLT9MnP4zkjQHNiAyOQZZk7J3syE7PoXLdCtZjH990jlWf/Iwx14RnGXcyU7MLSAFo9Rra9mvKR98OQ2+nY9uig2xfchgVlfFLh/Bm3ui7MdfE+w2nER+RiEYjMmvbRzTpXHCm5B2/iSTFpIKqokoWe4tJP4yiwZt1cCvxevsVRVFIik7Bs4x7oTLmRy1nEXL1MVq9luHzB9B3YhfSkzKQzTIfNPqczLRsNBqRHuM7Us7Ph2/Hr8OUa6acvzdr7yx57XFt/Pfxv2266lSltFrt2+H/K8e62fnL/wrT1T/nXGjDxj+E9v6V2TvmXWsQBKARBdwdHbDTaixmsvZ/3aj+r2cfcO9RLCoW49fyPp5cuxbOrl3XyE3Lxc4E1Wr60LpT7T9UYk6NT+fq8bvEPE0s8v2eg5vhXtwZnV5D8O0oPuy/mojHCYBl7LlNzwAqVitDt6EvJoyw/v+FeOKYL/pQp0kV9HZaFEXFmGvmyon7PLz+hJyXxrqzM3Op4O/N8Jm9EDUidvY6qjeqxIoT0xg4qbN1bUVW0NvpCgRBsqxw8VAQ9y4+yju+wPQNozmS8AMeJV2txrDFPJwwmyx/FnUa3IoXs3p/pT3P4NTWC1w8eJM+H3Vi+5OVvJFXairv7012Ri5jGk3nkw4L2LHksPXYFfK8yuyd7AhoV5OBU7qjeakBXlFUzu25yvoZOwCIeBiNMdeE2SgR9SjWul1GShYJUUnW6wnce43M1Gxun3mAIU9sc/6eT/BvVAlVtniWmY0S347bwLgm0/n9L6CyJLNi3Ho+ajGLRzfCmdlzCcOqf8yYgM+s9+AFDTrUxs5Rj0Yj4t+4Cmd3XWJQhQ8YWm0CUzaOY/7BqeyI+ZER8wdRskIJrOpORcSht07fY1yTaaz9bEuhc7Jh49+CrTRm42+Nqqp8c/s8x6NCmVCnOV0r+P/xTlgMYy/HR1HZ1RMfZ1d2jx7E6ZBwGlX0wc3xrwuEtFrLlI8oqvj5lqRVnYp8NnWHZSxfUdHpNJy/8IjFiwe+dp34qGS+GLkOk9HMiR1XGLegH2ajROse9a3GoRWrlmLbuc8Z0mExz2PTsHfQEf0kkQqVS6KqKjmZBhxd7Bk7tw/Dp3Vjx8qTxEYkUqFaabq82wIAZ1cHgi+HWgxbAY1eS/NOdShZ1gPnYo6YjRl4lHRl5IweqKpKnw/epH6b6jyPTqZmkyrYOeip09KPn+ZJgIqrlytDp/UscC3rZ+3i6IYzqCp8tmE0TV/KpORmGpBNEkgy6XGpoILOXsfMLeOo0aQKYxpOIyk2FWc3JzKSLdmpo+vPMGhqwT6ah5dDkcwSsqRwZtdl+n3cBY1GxC/Al28D55D4LJn67S2ls9CbTwk6dQ+/Br4EXwtHMsskRCVy9ddbDPikK7FPnqN30NO8awBBp+5Rt40lc6fVaaxBW4chLRlZ+1PSkzPR6bWsu7uEqOBojJk58FL2zZBjxGQ0YzZJ6O101tcPr/2NE5sDMRvNLBy6ipiweADinj4nLjyBcv75VoyDZ/ahced6uLg7U6ZSST7vvNt6HncCH/De3LeRZYWbv93Dq6wnY5cOJfRGOAMmd+fYT2f4/uNNVKpTga+OTmPBO9+SkZTJs5AYmnZtQM0Wr7Z2sfHvQMUmqGjDxt+KsPQk1j28jkGWmHThMF3KV3vtqPALRp3ew/Xn0QiCwMnuI/EuVoyBjer84X6vw2SSMJkknF+a4OrYsjrpmQaSU7IY3KsRd+88QxAEZFlBECz7JMSn//HaRrNF0VeF9JRsFk/YAgI8e5LA0E+7FNh2/MzurJi9j7IVihPQ3DIK/uXItVw8fAu/+hVYcuhT1s/Zy8ltl1BV6D92irXJWVXUPNf1PC0eVBaOXEOF6t58f3Iqiqqyeuo2Fr+/jh1+pfn6wMeoisrXI9ZgyjUxec0ostNzQLHMhmenZBWaWHr64BmGHBManYZnj+IKBEJ3zj207vsiQaERBXLSc3FycWDTw294HpWMRisyxP9jFEUlN8vAwyth1GmVHwS/MbA5h9b+RmJ0CtFh8QwoPw6TwUT1plX5YuckKlT3sd7XHu+346PlQ3Fwtue7SZtJT87kzpkH3Dp1D8/S7qy+uoCEqCQ+bD7TqtMz8fuRTFgxjMhHcTTrUg9UlYzkTFRFxWQws2zMGm6dfkDe1wogUKlueTKSs+j3cZcCQdCzR7H8mGdbIYgCXmU98a5Uihsn7lChZlm8qxTs6xEEAb8Glaw/d/+gI3fPPUSr19Kqj6W3afmYNZzbdRlVVVkeOI/OIyyyBB+1mElupoHHt55y9WgQxhzLxJxkknDzen25zoaN/x/keZyuw6I7qALDVVW9/Pq9/jNspTEbf2tcdfaogJ2ooaSjy58Kgp5mpHA+LoJcWUJWFMIzkv+fzyMyMok+vVfQp/cK9uy5RlDQU3bvusbYMRvx0OsZN6Q1xVwcaNiwIpUrl6RkyWL4V/emWDEHevcpaKSpqirrFhzkoy7fcOtCKPFRyWSl51LupWZqs0nCbJQ4ueNaoXNp1MqPWjVKc/9cMB91XUpmeg4XDt5EVVSe3IsmLiKR2+dDMOSYAJWw25HWfe0c9MzcNIZiHk5odRoks0zs00Sun7rP6d3XcHFzJHB/ELKsEBUax0D/yUzs8CW5WQYks8y+1SfRvxT4/L4XCeD9BW9T3t+bmk2q0GloqwLvPX+WjKqoCIKlX0ej06DVa6nRtAqZqdlsnL2Ly0du4lnGnfrtamLvZIdWr6WcX5kC65Tw9mDY7H7YOeqRTBKZqdkYc83cDQzh8uGb1u1m9FjEnH5LGVlnMoZsI5PXvs97c/oiSzKGbCMxj+MZ0/Bzwu9EIggChmwjDy+H8n79qaz8cAM3jt1kWteFTO44H09vixChqM3X+lFVi2VJs671+frXaWwNX0nPcW8V/Ow8jEajEVBlGUcnO8pX8+bmb3exc9QxfeuHHFx9nB8+2ZyvQfQ7mnYNYE/ienbFr7XqJt2/+MjqJP/kbv7zrd3SHztHPYqssHrSZmsmydndGZ+qZQovbuNfiMV09X/jvz/JCuCYqqrVgDpA8F99xbaMkI2/NXNvnAZAQGBNm15/sLWFQxH5f48ctDqalCz3/3wely8/xmiUkGWFH74/jU6vxWS0qD4vWXyUVq2qYW+vY++e64SGxqMoComJmSiKyo8/nKZjx1o45AUQD6494fDmCxhzTXw5ZgNmswwINGjrz7PHzwv0jKQW8eWoqiqBh26jqiqJsanERyZTr40/9y6FUrpicRxdHOg2og0bvthLqfLFada1oF9cw/Y12Ri0gLN7rnH1+D3uXLD08pQq70lM+HMEUcjLHFkyN5IsW8s/yXGptO3bmNPbL/Eo6Cmj5vcvdH4Va/jw45V5Rd7HyT+OYsMXu6nftgZjFg4kISoZV09nHJztmf/uSi4fvomoETm05hRl/cow/efxVKlbAfeSBc1+o0JiMOYa8a1VlvC7zzAZTHn9RSplXwqaHl0Lx5BjxN7JjuiwONxLuuJTtTQepdys02DPnyXj36gyVepXJCo4hr6fdGHN1F8wG8w8vfcMrV6LZJJxcXdiwnfDEUSRao0q8V6NT8hIyqTHuI588M2QV352GnSsjWcZd5KiUxizdAibZu/EbDCj0YjsWXqEYz+dRTKZeRYay4JDnxW5hr1jQcPgsUuHsGTE93hXLk3znvmB9vhv32Nk7QdkpmSREpcKgM5OS/12hSfsbNj4/40gCK5YrLqGAaiqagJMf/VxbIGQjb81F+IiMMoSjlodCblZVOePfY9alK7A6ntXUFH5tF4r9Jr8ZtnE3Gw0goCH/X9mJOnnZylfCAJoNKJVCFGn06DTafj++1N07lwXg8Eywl6wMbVg1sSthAuoKjq9FnsnO0ypOZgMJmLCn7P7/pf0rfk55jxHcp1d4b/CgiDQtmcA5w7epKSPB+WrlmLWpjE8fRCNZJZ5r8EMTAYzWr2G1OcZ2OVZSaiqStDph2i0InVbVaPz0FZ0GNiMs3uv41HSlYC21bkVGGKtWamKYsnACYKlEVeFpJhUBFHgy/2f/kf3DyyGqkmxqYz+ciAN2lvcd0q9ZEBrNJiRJQVZkol5nEDck0REUaTm2vcLrJMUm8KHLeegqiqlfb3o8+Fb7FhyCEVVEUWRhKhEosPiCGhXk+EL3uan2Tup3qQqhmwjqQnpXD9+m5S4PPNTAdr2b0qpil4sOTkTsEx0XTt6m+vH71DO35vosDhEjUjfSV1o2DE/qNwV/QOqqmLINpKRnEkxz6JNgy/svU5STApms0Tg7iv0/bgrP376My4ezpSr7gOoqKpFvuDP0uiteuyMWVPo9dCgJ0gvBdJ6ex0fLBtKx/feKLStjX8v/0V98xWBRGCjIAh1gCBggqqq2X/lQWyBkI2/Haqq8jjzHAY5nQm1m/D1zfP4uRX/05md+iW8Cew9GoMkUc4lf0z+eGQoH54/iCAIbGzXl2alyhfY7+HDaL768hDePh7Mnt3LmsEB2L7tCoqioNWKlC3rQXx8OnZ2WlQVMjJyOXzoNocP3earhf3onFkHk0miabMqXLwQSoc3axVYy8fXi3mbR7NsynaS49JwcXfCkGPivc+7obfXM2XlEBZ+sAlRK+JXt7z1niz9ZBuXjt2l54jWfLr8Hd6f3RNnV0dyMnIZ03IumanZ+FQpZR0Xl0wyWRk5ZKZl41nKjX0//MbmhRa/tLFfDqDjO83R6bV0yBNSBAi/G2UJfFQVBAHVbEZnr8OluCvGHBP9JnVGEAT2rjrBgythvDO1O755k1p/xNcj13DzzAMEQWDuzgkFen7AMkX2IhsFloDk0qEgZvVdypLj063bJceloWIZcY8KiSXiQbT1Pcks8+XgVWi0GkqU9aRNn0bIZpmQ64+ZNzAYnV7LB8uHggA6vZZGneoyef3YAuchiiLzD0zh9rkHzOr1DYqk4FnGnXYDWxS6poj7z/ioxUwkk8TEH96n49DWr7h6AcHSpUrvjzrTdXQHdHotsY/jEUVLCeGtYW3+1H18HTWa+VHM0wVDjpFGb9Vl0LTer/Uhs2Hjf5jigiC8rImzRlXVlyN4LVAf+FBV1auCIKwAPgNm/pUnYQuEbPztCMs8w+m4xaio+Ll34NG7/3n2wcuhsKL0gYiHmPK0avaFPygQCCmKyqefbMNolIiLS+PEifv06JEvDqjTafKmw0QGDmzKuXMhXLgQWugYn3+2iypVSrLi28HodFqaNbN8CW1afITLx+/xzsSOtOxaD5NJIvV5BiajhCHHxO77X1nXaNGpDquOTSbiURyN8xzrYyOSCDx0E5NRYtu3JxgwvgOuHpZrDL0dSU6WAbNJIu7pc+wc9Va1Zzt7PU4uDgA8uf8MU64JVYXvJv9CWmImAyYW7GfxqVLKWvYTBIGOQ1tTs2llWvRoQHZ6DrfOBXPxYBCb5u/FmGMi/E4kP91d9KeeSWJMCiaDGTsHPcnxaYXeT4hMtmoTqXK+UdeDvAmxF95nVetXpOOQllw6fIvk2IJebnYOOhRZxZBjJOZxHFsW7EVVVIx5U3ICAt6+pZi8fizPo5LoNLztK8+3mIclc6fRaV6pC3T16E3MBhOypHB07akiA6G2A5uTFJPC86gkBucJKL5opj676zLGXBOKrHJk7Snavt38dbewELIko6qq9d44uznx06MVGLINOBX7z7KeNv49/C9OjSX9gY5QNBCtqurVvJ93YwmE/lJszdI2/nbkSCmoKMiqmWypaE2d35NtNvHuye202PMDF2MjitzmXb96VqmVo5GPuBQXyYmoMCRFISvLgDGvsVRVwbWYQ4F9J0/pQt++DRn1flvatK1ORd98H7Pf928/e5bC9m1X6PTWIgYM+I7b18LZt/YskaHxLJpo0XOpULU0okbE3lFPzUYF/csAyvuVpnX3+tbeEM+SxXB0tsfeUU+p8p4kxqZwavc1JnRbSkxkEu5exRAEKFOxhHXcHsBklAi9HYnZJDHo0654VyqJIAhIZplNXx1AUQo6gzbpWJtyfqURBAG9vY6GHWvTfmBzNFoNH7SYw8pJm1k2fiOqqiKKQoHG6T/ik9XDqd6oEq37NrJ6d73MuG8GU6lOOUpVKIFWX1D7JzMlP1MuCALjvhmCi5tDIW0cRVFp2acRriVc6PnBm1RrWAl7JzvsnexwcLGnXrua5GTksnHmDh5eCUP30nTXCww5RuYPWsHCod8xZGYfhs3px4KDUzEZzawYt453K3/InH5LyUzNpmn3Btg5Whq6e7zC+0yjEXl7ag8+WjUC95L5Gcqn96NIT8xAq9Wit9fRoldhxfOD359gWLUJrJv2i/VaVVXlp9k7GBMwhS7O79LVZQi3zz0scDxbEGTj74CqqvHAM0EQXpg9tgMevmaX/ytsGSEbfztquHXhuSGMXCmF1iUnvHK7R6mJ7Hx8l9bevsRnZ3I1IRqzIvPuqR0c7fYe/u4FTVeblSqPRhCRVAVJlRn22y60okjtu85k3EnH1c2B9LRcatTwpnUbi97KhfOP2LnzKu071KRX74bY2WkRRYEhQ1qQnW3g+LF7lC3rSUxsCpkZFqE9jUZk166rSJJCRnouwaEJCKKA3k6H3l7LoIBZtO/bkHVnpxPz5Dn+ARUKXVtsRBIhtyJo2LY6Lm6O2Dva8ePpzzmx8yo/LznK2A5fI8sqiqzw5GEMP1+bQ+C+G6z/Ym8BJWVFVpjWdzk6vZaS5YqT+jwDeyc9kqTg5umMKdeMvVPBRlyHvOBLQLCqShtzTGSl5SBLMrJOw0crhvDsUTzdRhXde2LINqKz1xUIynxrlWPpyelFbg9QsWZZ3hrahlUfby7wum+NsoWapVVVJTI41qJDZKcFAcwGSyDb6M3aXNh3naPrz9Jz3JuMWDCQ8tV9KJaXQRvqP4n4p89JjkvlyuEgWvYuGIAcXnOK83st03rrZmxn86PlrJ+5naATd0lJSLP2Sv3y1T5GL3qXXfFrkUwSji4Fg+fUhDTMJgmvssX5PRkpWXzUbAayJOPg4sDSs3Mo7+9TYJu4p8/5bsIGUGHn4oM07lyPWi38ObX1PNsW7n9pYk9l/edbWXlpwSvvrQ0bL1DV/zodoQ+BrYIg6IEnwHt/9QFsgZCNvx060YE3y3z+2m1UVWXA8V9IMxn4KSQIVQUlrylZBbaH3mF2w3akmQy42zlYx+6nBrTm2zuXKO/iRlhaEsYME4nXk0EFo1HCt5IX3660TABJksy8efuRJIWQkDhWfXcSrVbDsuXvEBmRhE6nZf2GkQx+93vMZktmRRAgN9eEkvclJWpEmjSvQrMDk7hxNpiNXx1CUVT2rz9HrxGtqdm4UqFrS0vOYnynxaiKSvHSbqw9Ow2AYu5OZGfmYjJJkDe2rdFpLE3XjnaU8HZHEAS0ei2OLvZkJGdZtIkAWTLxLCweRVZw9ypGVloO6clZfDVqHV/8Mg5ZkhE1IglRyUSFxSEALXsEWL3DnN0cGTarN4fXnabTsNa8+U7LVz6bncuP8tPcvXiUcmXV+TkcXnuGncuPUq9tdWZuGV8gOHpBakI634xZy53z+RN/jsUcmLzmfRr/ztrCcp8F3v9qIL98fYBGHevSeURbjv10ljot/blw4AZmkxlFVgm+Fs57c/oRdvMpDy+H0vCtupT39yY5LhXJJFGirGehtaND4/I/Z4rK8g/WE3TybsHjiwKueeUyvZ2ugG5Q8NUwlo1ew9N7USDAx2tG02l4wYAxOz0HWVYwGyXMxkymvjmfufunUDUgPzsom6UXPep5x7Fk3/av/LWQbEGV+hULXYcNG38HVFW9DfyP2nDYAiEb/1he9PvIRYxAbA29zaGIYNJNBuoVL8POt95BFARGVW/EqOqNyDIbGX1mH8/s0nByziE706LJkvTSuLooijg46MnJMaIolkkwWVZYvOgIkZHJyLLC/n038jRl8kUCX5QwBAEcHXRMHvsTYnw6WanZ2DlY7CjsHfQ4uzpiyDWxdu5+UhIzqOBXmnotquLi5oQiKxgNZuKikpDMEtfPBFOitBvtejVg16rfkGUFjUbgrYFN6TqkBfYOepq8VYdPVg4lKS4VURTZOH8/iqwgy7IlUMwLikr4eJCTZcCYYyI+KoldK4+zcd5+ylYtRcvu9clMzUFRVG4HhrBh7j7endwVeyc7+k3oRL8JnbhzPoRVn26h/cDm+AUU/gLe//0pFFkhIzmLW2cfsuXrA6iKyq0zD3l4JYwn95/hW7MstZr7oaoqKfHpbJq3m+snCgYbfSd2plm3gFc+/17jOtLrpXJU1foVGVT5ozz9JAHPMm4M/6IfdwODmdFjESoqpSp40bJ3Y4JO3UPUiOxcfIhZOycVWLdiLYvX24vnGB2WHxghgEdJVxq8WYd+kwoKXb5gbr+lJMXk9S6psOubQ4UCodIVvRj2RX92fXOItMQMkmNT2TJ/D3P3TebK4SBObD5H1/fbM3rJYA79cIoOg1vh19ASNDsWcyxwfj5VS/PBsmGvvE82bPye/0Dj5x+BLRCy8Y9EEAQ2t+/P2gfXCHoeQ45sJkfKLwlJqkKKMReAO8lxxGVn4u1s+Q0+zZjLoafBfFyvJQElvMnomMviRUeIjk5h7AftrGuIosCq1UMJPPcIBFi39iyqCk+e5PctGY0S/fs34tChW+Tm5h8fLEFRanIWuqeJlokhwJhrZvr3w6jRqBJ6ex07V5/i5K5rmE0SV07eZ9/asyzdPwG/+uWJDInnvc+7snLabgIPWQQTv/zlA0qX9yT6SSIarZbG7WtQvuqL0X6Blj0C8o6t4l2pJLIsU7Vueab2Wsaz0Hi0Og1tezUg/EEMkcExjFs8iJkDVqKqKs+jU3Bwsken1yCZICU+jQNrz1iybxPe4trxO5StWpqZfZdhMpg5sfUCuyO/K+ShVqVeBa7+ehuTwUzM43iqNfDl6YNo7Bz0rJu5kyf3nyGKAt8cn8bG2Tu5dfahtaH7BfaOdnQZ3pb4yEQe347As7Q7nmXc8fIpnMF5QW6Wgez0XGRJRqPT8P3l+WSmZrHqi10WzSdFJSo4hh2LDyKIAiaDmeBrjwuNvnd6rw27lh4m8ZlFiDMhIv956/RaUuLTObvzMu9O703J8iUKnMOe5UfITMkq8Nrvy3ov6P9pd8r6eTN/4HIEAeq2rUFGciZz+y/DbDRz5fBN9iVvoPdH+QHXxQPXCb4SipAXe6tAdkYOmanZuHsVfRwbNv7t2AIhG/9YGnj50MDLhxyziYepzxn5227SzMZC23nYOVLKMX+KbOipXYSkPUdA4FCXoVRxK868+X2t72dlGVi79gw6nZaRI9swcFBTUlKy2bD+LC/3FouigFYr0qp1Nbr3CGDY0DVIUkEtmN83UtduWoUWXfK1aBxd7BHyxqctTg0CW5cdJ+RmJIJgUYJ+fM9iWaG31xEZGs/0H4ezadFhqtQuR0Dror2jFEUl4I3q1pLg25M6sfTDTRTzcKJZt/r0HNPeum3TTnU4u/c6Or2Wtn0b0bp3A35ZcoRT269Yt5nYbj7J8WkICNYGa1VRC5RosjNyyc0yUKZiCesEfmRwLF8fnkJo0FPKVyvDuFZfWNWOf1l8iKBT91BVyEzLQmenRVVUfKqU5otdk1BkhTGNpmMympHNMjq9lqkbxtKyV+FGa6wg4nMAACAASURBVIBiHs6890VfDq89TZcRbXEt7sKYBp9Z+3qszwTwC/Dl4eVQMlOzea/GJyw7O5ty1Sx+X3p7PZ9vHs/sPt9gzDViygtwRa2IRpvvP/Z7lfPosDg2TN9WoEcLIPhKGNGhsUUqOzftFsDKS/Mx5prwb1yFrLRs62dG1IiFPj9P7kZa19fqNMiSQnpiJlvm7ubD70YUeV9s2Pg9/0U6Qv8r2AIhG/94HHV6Gnj5sKvTu8y4coIHKfFoRQ0ZJgM6UcPomo3RiPl9KXE5GRhlGUetjue5WVRxK9jMum7dWY79ehdBEHB2tmfYsJZ4eDjRf0ATDuwPwsXFnvHj38SlmAMeHk74+FisF2bO6sGpk/fx8HDi6NG7mM0yDnZ6JJ0GzDJN2tdkxprhBY7VaVAzREEg/EEMEaFx1G9VjUe3IjAbzWh0WpLj0xk7tw/fTNpCqXLFad29Ho7O9sxeP+qV9+PUziss/XATdvY6Og5uwdDPuvNG38Y0frM2U3p+w7B60xn8WTcGftwZgInLB9NrbHtcizvjXtySNRs9vz/F3J0xmyWCTtwhNk+F2c5Bz8i5/bl/OYyuI9qit7f0xjwLjeOjtvOQTBJ9J3airF8ZJJPEoKnd0dvpqNmsKgCDp/fimzHrALh06CZoRJAU6z/MPcZ2YMS8AWi0GkKuh6MoqrVh22ySWPjeauwcJ2DMMRHQvlahBuV+E7vQb2J+BsWYa8zvp9JqUGSFwbP60G5gC4b6T8JsNGM2mvmwxUy2hK20erLVaFqV3bE/8uReFFPfWkBGShbelUvx8Q+jOPnzeZp0rY9XuYKfG0cXBwRRKKCFBJaAxsn11VNcvrXzZRyc3Zz46tdpBO6+Qrt3WqK3LziV12nEG/w8dzdg0UzS6rWgquRkGV65/p9FVVWuHb2FIdtIy76NrTYiNmz83bEFQjb+caSbDCwKOodeo2FK/dY4aC1fxlXcirPjrUG02beGyMxUNKLIiBqNGOpXv8D+K1p2Z8GN0zQs6UPT34kqAuj1WgRBsIyQvzTGPWpUW0aNerXuTNWqpflmya9kZxupU7ccer0Wd1khMDwBwU5HrSaVCjUKazQind8tqB0TF5nECsMOXD2d6fxOMxyc7Nh4cRaSWebO5TB8KpagZBFNvi/YuugwqqJiyDFxYM1pJJPE+EWDCL0VQeyTRFRVZdfKE9ZAKCs9hznvrCIxOoVhM3rS78OO2DnoGTajJ2G3Iji85pR17c7vtabHmPb0HNuhwDFvnnmAZJYsJb4jt1hzdX6R5/aykjSA+iLDpoKcpyGk0VruedWAirTs0YArx26RlZoDgKARmDtwJRqtiHflUqy+VLSVxwvm7ZvMjsWHqN++Ji7uzvjWLkfFmhZhzp4fdGT38iMAKJJCRkqmNRB6gW+tcrQb1ILDa06REJFI0Kl7CKLA9q8P8PV7qyld0YuvjnxOMQ9nPEq58c3p2Zzccp5f1/4GokCNplUZufCdAmPzL5ObbWBev6U8C43j03VjqNOmBrVbVad2q+pFbu9Z2h2NTmMNDnV6LcZcI+f3XqH9uy0JaF/7tffjdZz8OZBvx61HACIePmPonML2KTb+GfyXTY39j2MLhGz841h88xw7Ht9FFASK6e2ZVLeg4q9ZkVEBrSDS3rsSRyMfEZeTwaCqdXHW2dG0VDkOdx32yvWHD2+Nk5Mder2Wvn0bFXgvPj6N6OhU6tYthzbvCzsnx8jcL/YTHp5AVpYBRVF5FpXM9h3jMRnMVKxYAr29js7vNPtT11e6fHFGzezBpkVH2b/hHG+P74AgCCwYu5HbeSKOq49PoXT5wmPZAFXrlSc+Msnyg4q1lFOxhg96Ox2KotAwT6gR4M75R6QnZaEoKnu/P0W/D/MbkMv6lcajpCtJMak06lib0V8NLHCsxJgUZLNMk0512brwIIqcQ+/xHQncew1Drol2A5paAxuA6o0r06RzXe4EhtB1ZFv2fXcMs0FBEAXK+3vT/+Ou1m1FUWT0oncYPm8AD66EsnLCT7gWL0ZCZCKGbCORwTGoqvpaI94azfyYu88PQ44RY44J1+IuXDt2m6SYFIbO6Uv56t7sWHyINv2b4l2pVJFrmPP6ixAh5GoYdwJDMBst5amo4Bgu7LvGm0NaMbffUoth6+LB9J3UhfTEDKo2qFTo/AL3XGHVhJ/wa+BL0+4NuHs+GGOOiW/Hr2f9/aWvvBawlOM+XTuGJaO+RzYr5OZlggQE0l9h2gp5Rr+fb+XigRu8M703Hd5tVWib6NA4JJOEIis8C4kFID0pg6CT96jZwq9IGQAbNv4O2AIhG/849Bot4ouMzUs+Yi9Y/0ZfVt27TOOSZUky5DDl0lEkVeF0dDjudg50KFuF3pVqvnJ9e3sdQ4cWHg+PjUll1Kj1ADRs6MucL3oDcPLkfe7cibKMtech501o6e119BldtNaOZJZJjk+jhLe7tQwRGRqPo4s980dvJD4qmbtXHlOtXgXqtahKyM0IDDkm7B31RIUlvDIQmrR8CJEhcUSFxlG9YSVGftGHwAM3WDd7D3VaVGXAxE5UrOFt3b56w0potJbjpydnceO3BzRoZwmU7B3tWHNtASnxaXj9Lgt16+xDZg9YAcBHK4byS9gyZLPM6Z2X+e6Tn0G1lMxGfNHPuo9GIzJn20fWn/V6DTuXHUEURKasHW3V+gE4+OMpvp+8BUVWEAT48Nth/DBlq7VHRlVVDq35je6j8/udiiLmcTzjm83AlGui47A2nNp6HlWFB5ceMXROf56FxuHjV5qDP5wkKy2LzsPfwC2v8VhVVaJD45HMMqUretG8Z0PuXXhkKYEJlhJY8TLu3A0M5tbp+xiyjXw/aRP7kjdQqoJXoXNJfZ7O/LeXoyoqV4/eonqTqqCCvZMdletWeO11qKrKxf3XWfvZVmRzfrOaIEDr/k1p1bfJK/eNfBjNwdUnMOaaWDrqR9q/07JQgNZnYmceXX9MbpaBEV8ORFEUxjb4jMzkLBRFYcjsfvT9uGuBwPY/5dGNcHYvPUyVAF/6TOxSpJSCDRt/NbZAyMY/jsn1WlFMZ4edRsuI6oUbZ6u5l2Blq+4A7Ay7iwpIisK159EoqsqZmCfUK1GG0o4uDDyxjQcpz5kW0JZh/vmj2llZBg4fvo13GXdatrKInj7Nmx4yGMw8yPO3SkhIJywsAVVV0es1SJKMKIr4+hb+EnwZk1Fi3FuLiH+WTN3mVZm3aTR71pxh85KjCGAt0ZgMJuS8BuxRs3rxw6w9VK7lQ70WVYtc99qJe9y5+Iih07pz92Iorp4uODrbs/LTX8hKyyEzNYfOw1pZAy9VVdn89UGMBosFhaqobFt61BoIAVYxxt9z/eRda1Dyw9RfWDJ6HaUrlqBB+1pIJhlFlkmISnrtfRg8vTctezWylpZe5vDa36wj/6oK2xcdQpbyAwBZknkU9OS16wPcOHEHs1FCMstcPWKZvjMZzMRHJDKr12IiHkaDqlr7lM5sv8Ta24sBSI5N5f7FEADi8zJRDTvWQRUg6MQdzCaZLwd/x8Kjn1lkEZzsqBLgS3JcKic3n6Nqg0oFnN+jHkZbAigsYpiNOtejwVt1iX/6nCZd80u4siQTFRxDKV8vHJzsATj4wwnWTt2KKTffnNvBxZ6xS4fx1rA2PLkbSVZ6DlXqV2Tft0exd7Knxwcd0Wg1uHm5ImpE7Bz1eJRyQxAEstNzeHz7KVUbVMLByR7X4sX4+vgM69omg4nk2FTrM9g0Zyd2jnp6ju9E5MNoFg1bhUdpN3qO70Ts43jeGNTitb1Qqqoypf08cjJzObvjEteP3WLa1gm2abf/ZVQEW2nMho2/Ow5aHRPrFjbALIqevjW4lxxPdHY6NxNjSTcZLGUzUcPlhCgepSVhUmSW3blAuVh7nkYk0qtXQxZ9fZhbtyLQaEQcnfqi02kJD0/A28ediKdJVKhYAllWmDRxK0lJmYiiwJgx7fDyKkZsbCod33p1r0bM00SmDviO5Ph0AG6cCUaWZC4dtwQWL7IzAIIoEvEojgZt/HmjZwBv9Hy1rk5UaBwLRqzBZDCzd7Wlr0dvr8PZ1YHy1cpYDFVRC2SS4iKSOL3rKpIpf9ot7E4kD69ZGpX96lcoNB7/gjffbcmJLRcw5prITrdIFcQ9TST8bhTFvd1JiEzi8e1IDDlGq1VIUVSo7lPk611HtWP1Jz9b9XKadK7HuT1XyUrLxrOMO/aOdgya0v2V676gYce6bJ67G0VR6D2xM5cO3sCYY2LCqhHM6r2kkDhhVEgscU8T2L38KA8uPaJEWU8So1Mo5uHMxlk7LQ3ckpxvDqvTkJtlZO3dJUQ8iKbeGzUY33g6USExaHUavrv6JRVqWIxp/ZtWpXrTKty/+AhBEDix6RxjvhlSIBt0+8x95g1YTnZGDh6l3Fj/YCkOTvbEhScgmfOzjsV9PFhxfh4lfDwJOnWXOb2XIIgC5fx9eHovEkEUEEWBziPbEbjrMoNn98PF3YkmXepjMpgYVedTstKyKeHjydq7Swo1R+vt9YxePJgNM7blebUJeRpN8N2EjYQGPUGr03Lj+B1Ejcjp7RdZdu6L1z6Lly1Rbp9+QP/S71OjuR9Lz86xNWfb+B/DFgjZ+Fej12iY1+RNAELTEtkedodWZXwp6+zK5bgIDJKEVhCplebOl2sPoqpw5XI4Gq2IJClotRqiIpNZu/YMkiQjCAKyrPDgfgxnzwaTmZmLLCtotVpq1iqLRiNSvkJxnJ3tX3lO2787YQ2CAJyKOaDRahj00ZvMHbUBFzdHGr5RnePbr1hKL6X+3G/MplxzIe8tVVWRzDLzto3nxm8PqFjTh5LlirNn1UmObblAp6EtcXRxwKi1ZJ7MRgnJJPFZr2VotCKV65Rj8cF809u9q47z09y9VGvoy4K9n/DzwyUMqTGZTGO+F5gh20hKnqlqSkI6j+9EUrNp0RksgPiIRESNUKgHpfvo9rTp25hLh4NwdHGkSZd61G5ZDa/yJTi55Txndl7m1C8XGZpnZPoqylQqybbI1ZgNZqZ3/5qn958hCAJOro7M3jmJn+fuITMtm7uBFlVrvb2O45sCObXlPIZsI24limFnryMjJRPZrOSXxQQVVKjd0p/wu5FM77qQKvUrUrdtDdKTM5Aly8j/y7pCejsdn6wdw+h6UywB64ojDP9yoFWZWpYVpnddaM20pSdmEBMWT+W6FRgwpQcRD54hmWSmbhpHiZc0lUKDniCZJWRJIfFZMpJZRhQFcjIMfDV4JRf3Xwdg+Py3rX1W6UkZmI0SMWFxGHNMOBTxme09oTPt3mnBj5O34OTqSK8POwEWEcfgK2HIsowgiJgMZu5fDKG761AmbxhLyz6Fy3SCIPD18enM7Lm4QD/Tw0uh3DsfQp3WRTeI2/jr+ZdNz9sCIRs2XlDVrQSzGlr6SWRFYfrVEyioaASRclnOxOX96xAbm8rq74exevUpypXzpFx5T0wmCVUFUbQ40YOKu7sTX8ztw+ZNF2jarDIhIbGs+u4kqgrz5vWhQcPCZqoAslTwn6HqDSzqzAGt/TkQainJ7FlzxqLFg8qZ/UG0yRNKzEzLIS0pE59KXoV6PCrXKceIWb3ZsvgwWWk5+FQuSQlvD36cuYvDG86x/MRnOLs6kvo8g43z9yFLCmtn7kZvr6N4aTe6jWzL2lm7UWQFs0nCbILg608IOv2A5LhUWvZowLoZlozI3fOPuPHbfSpW9yE3u+DoduSjGOq08Od2YDAOznb41iz7ymdydvcVvhm9FoBZ2ybQ8M2CmbTbgQ/Zvvgw9dvVJHDfNa4fu4OiKMiSgizJbF9yiP4fdynyS/xlXthgPL33zJKhcrIj/ulzajTzsypLH11/mu8m/EQZ35I07lyXvSuOorfX4VrchYSoJCSTjEYr0rxHQ94a3paQq49p2i0A31rl6OU5HLPRzJN7kdwNfMisnR+zceZ2qjaoxMaZ2zHmmpj+ywTKVCpFibLFKebpQmpCGqIoMqHlTKJDYmnRqxH13qiFVqe1BkKV6lagYt79c/dyZeGvRXu1vTmkNWd3XCIzJYtaLapxbrdFA0rvqOfR9XDrdkfW/sbDK2EM/Kwnbfo3I3DPFbqO7vDa++davBhTNn4AwI7FB/hlwT7qvlHDYiLr5crB709w5XAQqBZRy/kDV3DM2DjPmLdglse/SVV2x68lNjye9/wtWlGiVizUf2bDxl+JLRCyYaMIXkycpRsNaAWBds39uXE8DFVVadPGn/Lli/P1128DsGHDOchzfarmX4bWrapRxtud+vUrAFj/P2P6LquD/fnzj6gfUBFRLFyL7/JuMy4cuY2qqtRpVoVPlg5izdz9BJ0LpqK/N50GNcW9uAtanQZFFElPzuLx/WicXOwZ32kJkiTTbUgLRs7oUXjt91qjtdPyLCyec3uvExOeACokJ6Rz58Ijmneph4OzvdULDcBkMJMcn4aDkx0tutUncP8N63uKrDC91zdodBqObw4skHHSaERKlvOk/dvNObY50Pq6IAg8uBIGQG6m0Trq/YL05ExCbz6lRpMqXDxww/qlf+3YbQQBfl6wj8ad6jJoag+WjllPbpaBU79cpJiHE4YcI3aOeuwc9aiygmuJYpY/qyonfj5PZEgM9g56ajTzw9XTmR3fHKZe2xp0Hm6RPfhg2RA2zNxJ3dbVqda4SoHz6jziDTqPyG9sX/jrNDbO3EF2Rg4+VUsT+TCGIbP7WifbAl7q/an7Rg1uHL+DRqPBt3Z5PEu7s+S32ayfvo0Hl0NRZZUN07czY/tE7Bz0DJrWi2/HrUdG4XHQUwBObTlP4O6rKIqCZxl3uo19k3em9S70jIvCs7Q7PwR9zc3f7rF3xdEXT4K0hDT6T+7G9x9vBlUlOS6VhMhEgq+EsituLZM3fFBorXvng0mKSaFln8ZodQW/QjbO2I4sKVw5HMTj25FMXD2STsPbcu3YTZS8AF+RFTbM2M6ORQco61eGby/NR5YU5vReQlpiOtO2fETlehXZEfMj53Zewr9JFUpVfH1PnY2/kP8+09X/cWyBkA0bRSAIAvs7DeZo5COaly5PTc9SlF3lRlpaDg0aFMzklPXxyNMWgnr1ytO3X6Mi1xw4sCl37kZhyDVz7NhdEp5nsHDhANKSs5DNMp55Ja4aDX354dRUMlKz8atbniM/X+TAxkAUWSEqLIELR2/zzqSOTFj0NssnbyPs7jM+7fMto2b2QJYVTAYz54/cpmW3eoTcjKB1t3poNCLh959x/eR9Dm04ax2Zf4EoClTL8wWzd9RTvaEvIUFPURUVUSNgzDWzfNLPdB7SEo1WRJYUi16NyRKkyGaZB1ce07Z/E87vu071JpWp1bwqgiAwceUwqjX0ZevXB0lPykRRlLyeEosIYnamAZe8aTBDjpHRjWdgyDHhWcqNj1e/x+UjNzGbJEKuh3Ny63lys4w8vf+Mxm/VpYyvF9GP4xGAEfPf5qc5uyjv782Hy4fy5P4zKtUuR1JsKiHXwln1yWaMOSYQLBkgeyc7MpKzuPrrbXyqlGL1pE3EhCcwYdUI2g/64x6zjJRMQq4/xmQwU7JCCQ6n//TKbWdsn0TojXBK+5bELc+MFaBctTKWYEKnUrZavrL0xpk7ilzHlNe0nhybypZ5e+j/aXeeRyURuPsy9dvVtvqNFcX2r/ezbeF+i8WIRkSSZHz8yvDWsLYEtK9DQmQic/p+gyAI2L2iZ+vmqbvM6rkYWZLZvewIywK/KGAoWyXAl/DbEZiNEs8jE5nW5Svq/R/23jo6ioP9375mLR5CAgkEAiQ4BHd3p1gLRYoUlyItULRo0QJFW6TFXYoVirt7cAjESIh7sr4z7x+zLIQEaZ/+nvfpt3udw2GzO7Yze3buveXzaRxIl7Ht2LngIFgk1I5qDv9yAkmUiAmLo3eJkYgWEW26DovJwqoxm/jh5BRePo9h1bebMelNOLs7sejsdPwD/ey9Qnb+duyBkJ1/JBbjDUwZy1A4NETj8uX/k334uXkwKLCG7e8SJfLnuFzTZoG4uzuh15uoV1+2tLh26gHXTz6kVY/aBJSRR9HLBhZk2bLeDBm8DqPRzPVrIQRdCmZKn9Xy+PE3reg8VC7N+RbJi2+RvCTGpKDXZrUFsZhFgi49IzYiGaPebH3OQumq/uTO60ZcZBKtetRmXJdliBaJgxvOkxmbgl5nRKEQsgVBKrWS+QdG4/XGVNb0rV9xbOsl8vvnZdnozSTFpoEEp3ZfpXzdEjy8+hxJApWLI7qUdBAlkCTCH7yg49BmPLsbQUffodT5pDKTNw2j+Rd1uXjgBteP3UVCsApSQs1WFbOIKCbFpJKZpsNkMPMyNI7iFf3x9PEgNiKBiMcvcXRxwGSVIXDN7cL8PyZw5fAdSlQuQqFSBWjUuaZ1OylIkkTvUt9gMVuo1CzQ2sAsgihhsE6GgVxefHT1GdEhsRh1RjZO2/VRgVDQmYe2bTi7OmI2mTm2/gxqRzVNetTLcsNWKhWUfivDBNCoax3WT9lJUnQyN44F0WtqZ1n2wfF1cFHrk6po07QEnX2YZV0HJw0IMLLud2SkZLJ1zl42PVueJdB6k1fj+yCrWUuixO5Fv1O9ZSV0GXqqNCvPlJ1fc+/cI1r2bcTJrRdIS8ogKToZfaaB3tM6E/4oytZrFHwzhI3Td9F/dnfbPhacnMqWWXvYNmef7blHV4PpO6sbtdpWZd13O6jZtgoRDyM5ueU8ZpPldT+QAEq1Eic3uQx3aPUJTNbzq03TMaTyOBxdHJh1aALl6uZsHWPnb+Jf1iRkD4Ts/CPRJ/UDKQWL4QpKTXWU6rIfXun/EYIgUKNmMUBWfd6z+jRHt13GbLJwet9Ndt2fY+vXKVgwNwEBeXn6NIaGjUpz48wj28103ez9KBGpWL808wb9IjdiP4kGQaBR11qEP4klNjIJpUpBt+HNmNDtZ+v+oduI5gSU8mXt+cmIokTw3Qi2LzuOyWgiKSYFS6Y+m8eVV34PylQPoFL90tk0h1zcnShU3IdtCw5mKZN5erlw58Q93D1dmbVvNIVLFWDKZ4u4eeIeAKH3XxD+MBKLKIGg4PLhO2QkZ3J+33VunbyPZBFRqJX4BvhQvl4phszrnmW/+f3z0qRrbc7vu0GHwU3ROKopXb0oqYnpSJLEpE3DeHorjMDaJWwj+027Z1XeDrkbwcj6UzDpTbZjv3kkKOuXu9kCahXOuZxp+nkt0hJSQRBwcNZQtUWFj7ru4Q8jrR8AqNayIhum7mDvksMggDZdR/uhLT+4jcSXySTFpGA2WXh6I4SQexGE3Alj4pYRbJi6k2e3Q7l/8TEdR7TKEggVKl2AYUu+RCEIaNN1iBZRVgvP1MM7AiFZWkD+HIoiICgoXjmAPmW+QbRYqNwkkB4TO9FvdneObTzLshHrMBvNtl6e26fuE/4oymZEJSgEdOlZ+78cnDR0G9+R4xvPkRCVhEKpwNHZgYIl8jO0+kRiwuN5fO05P56dSkD5Qvw8esPrlSU5oL958i6XD96g/qc1ObnlvE0SQZIkdBl6JrSaxb6kddnKcnbs/FXsnyQ7/0gEhQuSRf4lKQjv1ib5bzOh6wriopJsmjNGvYmwxy+5cDiI6k3KUrJiYZav6E16mg6NRkV0WAL7157FZDAjGoxcOnyHy4eDCH/0MqsnlcHEssOvp7MkSaJYuYJEBMeQO487nw1uAshBmVIpULJiYTr0rc/Ns4/pNbY1J7dd4urRuzTtWovTe65h0BrpM7kDDy48Zunwtaz4egPLzk3l8qHb6NL1VGxUhmndlmLSm1A5qPD08SAjKYP4F4mIFhG91kByTCpFyxWy7VdQCiDJhq4u7k6YTCJFyhTAxcMZbboOQQCFUiCwZnHm/zHBFhw+uvaM22ce0vCzGvgG+DBqaR9GLe1je6/f/jqYO2ceks/fmwJFfShfr/R7r8H9i4+RRClLAJfTL1zRbMaSqWXf0t9RqpTU7ViDLmPbU7yy/0dd6x6TOhF8OxRnd2fa9G/C2omymKNCKZD0Mtm2nF5rICMlkzy+ntm2oXZUU7RCYZ5cf06ttlUYVfc7TEYzjk4a9DqjrX/q4eWn+PjntTndRzyOYs34Lfx8fS5Tdn7NzgUHafR57RxFGm0ohGwuvwnRySBKGHUmrhy6ze2TDxi3YRhJsamIZhGLRZSvkwAvnkRbH8vbyF/Umz4zsttsOLk6sjlkOcmxKcRHJuFX0hdXDxdZRFQCo8HExLbzKFHFH9EivYrNbJ8H0SSyaOAqfIvmY8X1OegzDZzZfol9y48Achn21PYLnNt1lfbDWlCtRcVsx2DnP+Pf1iMkvD1O+79M1apVpRs3bnx4QTv/5xHNEZi0u1A5VEfpkF3l+f8vPq8wkbSk16PiSpUCtUaFXmfEwVHN5uszSE/RMrLtQrQZekb90I2yVf0Z03Y+mSk6pmweyuU/7nB8y0UsFhEJuawy57dvKFP9df/H+QM3WTB0LZ75c/PD/tHk8c2d4/GkJKSx4pvNKNVKvlrYE1cPZ0xGeQTeydWRtnkGYLaWmgICC/LiaQwmoxmlSoGgEBAtEkqlAoVSgUFnRBBAqVKSK48bKy/PxM3TlZiweJaN2oAoitw+/QCFQqBN/8a0G9wMX39vlColBp2RNRO3kZ6cyeB5PcjtI/dDJUan8GW5MZiMZtw9Xdkeuuy9lhgfQ2J0MqPqTyUxOlk+h5acv+Mk0WJNjcjUbFuFmQfG/+X9jqwzicdXnyEhkaeAJ+5eboxaOYgJrWejzzTQfWJHen73mW355LhU+pb+GrPJTNnaJWk/rAVTOvxge/3NQNjN04UVV+fw8nks0zotwKA3ElC+MCtvzvvo41s+aj0HfjqW7fm8BT2Jj0qymc9+9nUbekzsyNKv1pKWlI6njweCQiA5JpWbJ+5isYhoHNSMXTuEBu9Rq36beoho+QAAIABJREFU0PsvWDZ8LY+uPcNisuDm6QKSHGwVLlOQR5eDUTuoZNsX62eySKAfq2/L52TLrN84/9sVWvVtzOpxmzEZzKgdVOxNWJvNfPb/EoIg3JQkqep/a3+ORQtIfnOH/Ff29azLd//V9/Yu7F1ndv6RKFSFcHAf/bcHQZIksebKdfrv3Mu96Jg/vf60dQOp3rgMDk5qVGolao1K/lKXQLTImj1XT9xHrzViMYvs++UM+YvkZcv9H9gXuZzKDcsweNbnjF7Rl9l7vmZv+FJ+C1uaJQgSRZH5g37BoDUSExLLdWtZKic2zNzLpd9vcn7fdbYv/B2QlaBfjUO7uL8ei3ZydUK0BgYWs4hCoaBG6wp45vOwWYIAFCiWj3V359sanPMVycusfWMoUqagrKNkFnkeFI5f8fw2uwUHJw1f/dibCeuH2oIgkLMlkiSrKGem6bLpHP0VvPLnpu/3XZFEbEGQSq1E7aCWA7xXcZb1gUKpwKdwHoav6J9tW5IksWbcZgaU+4YLe6++d78xoXGIolyiin+RSMjdMJZ99Qu6DD1mo9w/9CYRDyMxm8zoMw08vPwUlUaFUi2fLxcPZ1w9Xhu8pidncvjXU1RuWo7+c7vTondDpu4e/afOiy5dZ3usUL4ONhOik0EClYMKtYOK3YsOMbTGRHpM7EihkgU4seUCR9efxWQyseT8DCo1DiSgQmFKVMlZ/uFd+Af6MWxxH9ukZGaqlsA6pdmXsI4l52Zy1LiNQxmb8S6c17aOSf9aJbvHpE6svDmfRt3qIlj7r1RqFQq7DcffjiT9d/79r2D/BNn5V2MRRWafOEPvbbt5Gp/AraiXLLt4hbMhYQz57eCf3l7pykWYvmEQK09MoO/Ediw+OJrJq/pSsW4JRi3ohkceNyrXL2UNkpQ0+zz7L2qlSknJKkWY0281Hf2Gc+VIUJbX4yKTbA3PkgRRIXHvPB6PPG4oVUqUKgW58rhme11h9WITFAKNutSk9ZcNyVvQEwcnNd3GfsK1I3eJjUjAYrag0qiQJPmm/OakEMDhtafZu/yI7PulEOgztXO2feVEgaI+1O9UHc98Hgxb2PNPTQQlxaSwevwWjm08my2A2jJ7LxazBYVSNmtt3qcBCoUcpLnnccfBRYNSqaTdVy2ZunsMG4KXZxFsPLjyKH1KjmDpsDXsXniAsAcvmNllEQad4e3DsPH16sFZ/lYolYTceyGXtwToOKJ1ltfL1C5J0QpFrNYbjvgUzkPH4a0oWa0oQxf2Rpv2OnBRO6gpV7cUgiDQflhLRv8ymPx/cqS8VLVitsfdxnWwZd5eBYtmg9kmupn4Mpmvak1m74ojNguN26cesHDgKoLOPuTJteesHL3xT+0foGiFwvSe1hmVRoVokYh6Fmt7TRAEgm+F0ntGFyo3LUfpmsWZuvt1OfjxtWdsmf0bN47eYfah8Xw+th2Lzky39wrZ+Y+xf4Ls/Kt4GBvH+EPHyO/uyqJ2rTkXEsb2oHvoTGa+OfAH05o3RhQlFIKAq0ZDyMMoTuy6Rs3mgZSvlX3qB2Qj1Mw0HaWrFLHdXPIV8qJj/4YAFC6Rj5rNX2vKFCqej803ZqDPNODpk7Mq9IUDt0hLzsBssrB90WHqvOEzldc3Ny65nMlM1QLkqEX0ih7j2+Ho4sCF/TeICo7NYmchiiJpienygpJEyaoBtO3fmGELewJyL8fupUcw6o2oNCpa9W7A4+vP6Tsje5Bz8eDNLL/wfN5h+Po2wbdDOb/3Oga9kR2LfqfVlw0/aj2AmV2X8OiqXE7xzOdB1eavm5xLVAkg4lEUonVce8Ds7tw+cZ/o0DiMeiOrbs7D28/LdhONCYtDoVTg7ZcHvdbA8hFrEc2iNcvzWv9meM2JDF/eD5Anu0q+EVzUbFuFQmUKEv1cvrk36Vmf09suYjZCyapF6TQyayCk1qgoWa0oj64EkxybwtBqEylZNYBnt8P4cchqvArkJiU2Fe9CeZi2ZwyF32E18rE8vRVqexwTHk/V5uW5c+ZBtilCQJYZeBsJQu+9AOTskXcO/nIfQ8fhrXgeFE74w0hGruhne/5NG5D2w1rSb1Y3Hl97xtBq43HzcuPe+UeYjWYUSgXNezXgm9WD/tL+7bwfiX9fj5A9ELLzr2L6sdM8iosnJDGJvfceUjyPF5IEaoUCSZLotW03SoWCzysGMrB6NUbUmoUu08DeX88wZU0/arXIqmx8+/wTpvddA4LA5181pduIFh91HM6ujji/R633+ol7Nn+v5Pg0EmNSbOPtSpWSn85+x7yBv+CW24XPvnr3PlVqFaH3X/D8bgRhDyLJH5CXz62Cf4Ig4ObpSnpSJiq1EoPWyJcVx5GakEbXMZ/QZVRrlp2dyvVjd6naNJACxfK9cz/dv23HndMPMJssVKhf2qYEnJ6cyZXDtylZNYBCJX2zrWcruUnYMg8fi1FvRBIlBASMehPadB2LBq/h1vG7eObzQO2gxmQwYTGLuORyxjW3C4SCyWDm8sGbfGoNTM7tvsy8XssAmLJ7DFVbVCCXlxvaNB0KlRJ9hs4W5IXei2Bs0xnWpnQFY9cNo0GX2oA8Jh71LBqL9bodXXuKio0DAQVfLc1Z4qFYZX+UGiWiXsSgNdhsPAAKFM/H7EMTKFAs39+S9ShRxZ/jG8+iUClpO6AJ+QN8mPTJPIwGE0jw4slL8gd4Y7GIxIW/3ww3l5cbj64+o5VLT/L7ezNz31jSEtMpXtmf+BeJuHm6ZintvYlao2LCxq+yPf88KByL2YLZZOGRVXBz0aBVhN1/Yc0gyedVtIiE3n/xH54NO3ZeYw+E7PwjkMQ0dIndkCyhaHLNQ+30yV/aTrE8njyKi0OSoHBuD2oU9mNx+9aEJiVz9EkwJlHEIknkd3Mnv5srxle/liVYPX1ftkDoyZ1wTCYLokUk6GIwxcsVYsXkXZSoUIixS3qisvZ8vI/HN0LY8sPvVGpQik5Dm5ORquX2mdc3xISoZHoGfsvkDUOo3aYSAD6F8rDoyIcbe5/fiyAlMQOFUoGgFHBxfz1hJwgCi09M5vy+61SoX5qV47cSbS2zrZ++h2bd6+Ab4E37wU0/uJ+ytUqwJXgJTm6OOLzRuDqmxSyiQ+MQBIFfbs/l1on76LUGWvVthMZBTamqRRmysCf3Lzy2KTK/iSiKxIbFk/eN7M0rJm0ZwfppO/EP9KPWJ1X4efRGzu2+ApI8vl6xUVk0jhr6z+oGQOPudQh7EIlSpaBSo0DSkzMQBIELe6/ZpAWuHLxBjdaV+enmfK7/cZtCZQoyuuHULOrXrx6LCoFHV4NtgdDFvVdtQRCAJEo4OGmYuf/d16nZF/U5teUCN44FZXst6PRD3HK7/C1BkCRJrBm/FVGUUArgkdedE5vPy7pARjOVmwVSs00lDDojfqUKsGrMJhDk9Sym7AFq4stkEq2TcXEvEhhSfSKSWcQ5lxOpCekIAkzeOpI6Hap99DE279WA83uukBKXRv85sqyCb9F8RD+PRZIkilYIIOzBCzy8czH8HYGlnb8BCbBnhOzY+d/DYjiJZHkOkg5T+l8PhKY1b0yNQn74uLpQo7Ds0dSkuNyInMfFmQcxcaiVShoXC0CpUjJkRid+mrwbhUpBkVLZBRWbda7B6b03SU/R0vvbNswavI7EmFRSEtK5ceYRNZsFEvsikfCnMVSsUyKLUN4rpn+xguS4NO5eeELZmsXJ75/3lWOHDVGU2LH4CGqNihKVi5DLy+2D7zX0YSTftJwLCOQL8KHTkKa06FU/yzL5iuSl8yg5M5K/SF4eXnkGgEqjwsnl/f5cAJd+v8n2Hw7i6uFM0NlHuLg78/PVWXjll7NX0SFxGHRGHJw17P/5OAdWnkCSJGLCExg0V77ZterdgFa9GwByVkBQCARYx/Intp3HvfOPyFfEm5U352Zxuvct6sPETcMB0GXquX/hie2cCYKCzt98QpWmr0uSn45oTZ121XB2d+LJ9ecMr/MdggAD5nXnysEbKJQK2gxsBkAeX09a9WuCQWfA2c0Jk8GEg7MD7l5uGHVGRFHE2c2JDlaTUYD6nWuxb/kfGHVGEARUKiWdRrbJds4sZguntl3Exd2JWu2q8vDK0xzPrWgRuf7HHVp82eiD1+FjcHDSoNcaEBQK1A5qfArnRalSoFRpMGiN7PvpGJJFpHG3OjTtWY8ja898cJtyJVhANFsw6k0Y3mhunvXFUvYlrs3WT/YuPPK6s+zSrCzPjd/4FWd2XMK3WL4PyibYsfNXsQdCdv4RKNTWG5rghFLzYdXfd6FWKmlXNmdV2g6BZWhYNACNUomzRv7ybtOzLsUC/YgKjaNOq+xCe175crHq1ATb34WL55Onn0QJ3yJ5iH+ZzJBm85AkiZIVCzN3R/aSgJOrIykJsmCgo7MD7rldGbm4F3t/Oo5/2QJcOnwHSZSIDY9nVt9VODppWH9njq3X511Eh8YjCAJ6rRGj3kTrD/TfjFz6JX4lfImPSuLTr1rg6PL+7YuiyKyeK2zj9wAGvZGgcw+p1aYy9y8+YdDc7uxafJiqzcujcVRjsYiIFpGUN9zFX3Fi6wWWDJdF/HyL+jBtxyhuWSfiYsPjiQ6JpVCpAjkey/Z5+wl7GIkggG+xfHyzeiDl6sjXOfh2KM/uhFG/Uw3yFZEnkk5sPo/JIGeBwu69YH+q3PgrCAKx4fHM6LwQQSEwZddoVgct4O7Zh1RoVJb9y48Qei+CKs0rsOX73Szo+xPf/z4BR2cHSlQpyp74tYgWEQdnByRRsk3Nvcmvk7Zx4KejSBKM/Kk/n37dhk3Td+f4voT39H/9GQRBYOGpKRzfdI7KTcrhXSgP3oXy4OQq24xcO3qbBxefIigEFEqBs7uuvLHuuyd8xq4dQoUGZZjR5Uee3AjJ8prZaGH3ot/pPqHjXz5uR2cHWv5NgaAdO+/CHgjZ+UcgKPKAkAfEKARV+Q+v8BdJ1euJy8igasECCIKAJElcOnqXRzdD8fXPS8mKhdm/9izBd1/QfVQLCrw1ufPdr/25cuw+hUv4UKh4Pu5cfIokSei1Rp7dj8xxn3P2fsORTecpW70Yha1+U6161qNVT1kaID05k7SkDPrX+A5JlLCYLaTEp5HvjTHjnKjWrBzVmpfnWVA4wxd8AUDYoyj2/XSMyo3KkqeAJ8/vhlO/U3VyebmhcVTTdUz28tQ7z1ViOg5OGlnrRpBLQY7ODlRsUIZRjWcQExaPxkHN+gcLcXF3QpuuIzYsAV2mngGzumbb3u3TD2wlqsjgGGb1Wk6jrrU5s+MyxSoWybFH6fmdMHSZetQaNYJCQKVRUeuTKrYgKPJpNN80nI7FIrL5+99YfWseLrmcadm3ERf3X0cQBJp+US+LdtHm73cTfCsEAYFtc/Yy8qcBNO5ejwt7r7J3yWH0WgM3jt7BbLKgTQ/mtx9/p9vETrJHl9MbweM7BuBePo+xNSOv/nYz2yJ+plbbKoxuPB1duh6FUtZvAljYfyV1O9XA2c3po6/LuyhUqgD9rGVCkMteHj658Cvpy6LBa2zPVW9diZS4dK4cugVAvU9r8PJ5LOEPIjGZzK8zlYJcIpvSaQEmg5n6n9Ug6Owj3DydiXwag0Kh4NCaU+Tz96Zx16zq32EPIhnfajaSKDH70HiKVij80e/DbDKTFJ1CXj8vBEEgOjSO4FshVG1e4W85T3b+t0bb/xvYAyE7/wgshjMgJgAi5szlaFy7f2iVP82DmFi6bt6JIEDn8oF816wRdy4+5cC6c+i1RmYPWU+PUS1YPWMfkijx7N4LVp2amGUbjk4aGrZ/PeEVWL0oleqW5OGNUPp/l90NHsDHz4veEzuwe9lR5g5cQ7Vm5Rj7c18UCgUvQ+L4Y+M5ytcpSdu+DTi6+SK1WlXk8uE77Fh8hHrtqzB0XrccRQjVGhWT1madrJnUYQGJ0Smc3H4JSQKz0cyKMZuZtGEo9f5EP4fZZGZY7amYLSIaJzWzD3yLX/H8OLo4oFAqCH8YJesDiRIJUUm4uBfA2c2JBp/V5Ont0By/aDuPasOVP2RLDpCDNrPRQoOudRi9sl+27MqVQ7eY1X0pCALdJ7Snx4QOWMwiXca8LpvGRyUhihJmo5n4F4nM7b2CmfvGUqlRWXbHrLYGL1nF+ALKFcbBUYME+FtLdAC6DD2iKKJUKXHxcEGXrsOoM7Jl9m/otQb6zvq4z2TfWd25uPc6ANo0LS+fx1C8cgB7E9byPCichf1+JuReBCDHHC+evKRk1Xebqb6Lc79d5Y9fT9N2YBPqtJevbdiDSI5vPkf1lhVZN3UnDy89RalSoFKrMFt3uObbLXSf2JEbx+9iNpp5dCWYgiXy06JPA3Ln8+DgyuOkxqejcVJzcPUJW2O1WqNiV9RKMtO0rB63hSPrThMfmciCfiup0aoSLrle96ftW3GEpJgUAHYvPsS4ddld7u9feMy6KTsoW7sEJqMc/Fzcf00OEiWJai0rMvKnAQyu8i2SKOFXwpcV1+b86fNkx449ELLzj0ChrgyCAiRHlI4fN5n1Z7kXE4tFFDGJIpfC5BuRe24XJFFCpVbi4eXKwQ0XbGq/kaHxRIfHkxyfgV8xH9w8slt9qNRKpvyaXajvTSwWkcw0Lb9O34MkSlz6/TZhI14SULYg4zosJCEqmf2rT6FQyhmqm6cfcNZ6Iz207gzt+jfC7x2GsG9js+yQsj7e9sPv1OtQjRdPo5nQ7gfMJgsz93xN8YpFctxOUkwqqYnpWMwiKrUSX39v3HK/nhLqM+0zdi46RM3Wlfj1ux3cOH6X+p1qcOngTQx6I1vn7qNh51qMWT3Aph1UpGxBPhvZivXTd8sRgAgvnkYT+yKBUzvK0KpPwyzH8Pj6c4wGE5Io8fByMDP3jc12nBUalKZs7RIEnXmIJEkkx6XaXot8Es39S0+o17E6Xm8oc3cY3ooCxfMjCFDVat9w/egdFg9ejSjKN+BRqwax5fs9/PHrSYw6IzeOBX10IFSopC8NOtfi/G9XCShfmILF5WunVCnZOuc3wh9G2lSlS1QJIKD8x2VLzCYzd04/oECxfLjmdmFerxWYjGZunbyHb4APn49rx+qxm8lI0bLLKq4Jsnimxfy6t0eXaSCgfGGUSgVKZw2JL5OJj0ziwaWnLLkwg2Zf1EefaeBlSAzTPl30xv7lRnEXd2cGL+jJkXVnAFlENOjcI2p/UgVtuo4Le6+Rz98bjZMGAajaLOcM74wui0iJT+PBpScIyJpfb/bNXT54k67j2iNaJAxaA6EPXmCxiCjtAov/OfaMkB07/3soVIVw9r6IZIlHUOWs5/Of4u7giNmqrOxkndQpWrYgU9cO4PmDSJp+Vp0tPx7hubXEJZpF+tWfBZI8HbT5xkxc3D7cYPwm2nQ9wxrMIPZFIm65XTDojJiNZhYM+ZVvVw/AoDXaxAJNBgsWs8VmQgmyWnXud2gR5cT3e0fz27IjVGxUhuvH7nFuzzWUaiX1Osgq9wdWnSDBOg20e+kRJqwdnG0bv3y3k9+WHcE5lzMqtZKWverbHM8fXAnm57GbKVHZn10vfiIqOJphdaZgMYuc3nlZzr5I8s33wv7rdBjajBKVXysUb/r+N5Bkted8RfKSEJWEgJCjT1frfo25uO862nQdvaa+tq54ZRGiUMj/5hwaz8oxm4h8Gs2Qhb0QRZGfR2/kwM/HUSoV7FlymE1Pl9jWFwSB6q0qZdlX0On7mPSy2CCCrF7dc2pn7p59QGJ08kcHQQBBZx4QExbHJ0OaM/TH3giCgCjKSt6Ozg6IkoQkSQTWKcnCM9M+WmRydo9l3Dh+FyRYdGaqrb9IEiWinsWwePAaVJqcG5eVKoXtczXm18EUr+TP0osziQmLY+GAVaQnZWDUmxhWY6LsXJ+D3MGgH76wPXZycXwdaAPTPl3IzpcrmdVtCY+vPQdg0qbh3DxxlwX9fmbRwJV8f3A8lRoF2tZx93IjPTkTSZKQsOplCQKi9Tj9yxWiZLVilKtXihtHgzAbzczvs5wJm0Z81PmyY+cV9kDIzj8GQZEbQZGzp9bfgVkUcVSr0JnMCMLrm0+leiWpVK8kAIOmdeLayQfERcnBwqsve73WSPDdCCrWKfGn9vn0dijJ8WmIFhGD1kjDT6tzfOtFQu5HMrzhTKZsGcahtWeo2rgsZrPI0c0XaN27HjuXHiUpOoXqLcrjmuvjTWcDAv0Ys2oAAE271mHIvO6kp2TiZ81KVGxYhqObziOJEpHB0Vw8eJM6n1TJso1Dv562lZsmrh9C5UZlba/N77eSmLB4Xjx5SfUWFajYsAzuXm5kJGdSuEwBarSqyO7FhzGbLSiVSrwLZhXlK1E5gNAHL1BrVPxwZCJXDt/Gu6AX1Zpnzxp4+3mx5s78LM8d3XCWxUPWkCuPOyuuzMLLNzdKlZJhi/vYlrly6BZ//HoaSZQwixaSopO5e+4hhUoXwCNvzkFly35NOLHlPEatgW7jO5IQlYhea+SX+z9+9LkHiI9MYHzLWZhNFsIevKBYJX9Wjd6IyWhi9qEJdPm2Pae3X5JLr7fDeHojhFLVi31wu4kvk7l38Qn6TAOOLg5EPI6S7TqsGkEALrlcmLxtBD/0XUlKfCqSKOHl60mf6Z3x8M7FsQ1nad67gS1D4x/oh3+gHwtPTWFgpXEgSYgWyabn8woHZwc6jmiZLbNTtXk5bhx7bf/ydcNpJEWnYNAZcXRxwGQycXDVMWvfG/wyYQtLL86yZXTmHZ3E8c3n8SuZnxvH7pIrjxv+Zf2Y9+VPmI1mwu6/wGyyZJGoOL/nKhM2/alLYicbgl1Q0Y6dfyutS5fgfkwsoUlJTGzSMMdlVGolq09PZMm4HTy794KXYbL9hFKpoHiFQjmu8z6KVyyMW24XzEYzjbvUoErjQI5uvgDIU1mZKVqmbXk9adZhkOwy37JXfVLi0shT4D8LDD3yutuyOQB1PqnCjycmM7LRDJ4HRTC370o2PVqIRx53nt4KJeLxS+q0q8LZ3VdxcXfKVjrLW9CLpJgULGYLPw77Fc98Hsw7NJ6M1EyKli+MWqOi01ctuX36AcUqFsbD2z3L+vP/GM/Dq88oUqYgHnndadu/8Z96PzsXHMRiFslIzeTK4Vu06d8k2zKuHs4ICgFBIeDgqMGnkCeT2sxGrVGx/uky3HOQJihYPD/bX6wC4P6FR/QpMQJJkhi8qDefDP64Um1kcDQDy4+xlZAMWiOXD14nI0XuidowbRdPrj9DFGWbEovFgleB7Jmwt3l6K4TRjWdgMYs4OGsoXaMYJSr7y9N8r+QElALthzanUqNANgUv4cqhW3gXyoOnjwfz+/5MWlIGTq6ONrXyN5FEspZK3pB28Mzvwfbwn3I8rq9XDWRYjUmkxMkTglFPZe8+lUZF3Y7VqdmmMi7uzrb3/+x2GF3yD8TT1wO1Rs3UXd/Q9Vu5r65O++qA3Kfl4u6EQWciT4HcqDUqvN7IFv7LKjp2/ibsgZAdO1ZUCgUTmzT44HIOThq+XSrbULwMS+D6qQdEhsYzd+h6+oxrS9GyBRFFkb1rzpAQncLnw5vj4ZXd5wvkfoq1N2aRlpRhU45u0KkaF/bfxMnVkcB32HqoNSryFvzwTfKvUKiULyqNCrPJgiRKLB6+ntptK7Fk+HpEi0ih0gX49fZcPPK6Z9NFmr5zFKd2XOLoxnME3w4jPSmD8/uu0W1sO9syTq6O1H4rywSyvs7pnVdQqZWUqOwvB5g5jJ+/TXxkIi+fxxJYpySNu9dh6+x9KFVKKtQvk+PygXVKMWHjV4Q9jKR1v8Z0LzTYNkof+fQlZWqVfO/+bp+6b+tNOrf7Cp8MbkFcRDzP7oRRqUm5d+ovnd9zxeaq/orHV5+hVCsRkG1JHl8Nlvu3JFkx+9L+67QfmnOgZTaZ2TRzD3sW/4HJKB9PQLkA5h2ZBMCno1pzdP1ZQO6/6jRC1jxSqpTUaF2JWyfusW3OPoLOPrSVuR5fDWbPksN45c/NmF8G4eLuTK48bnLPknWSTaFUIJpFVColSy/OzPHYQu+/YGS9KYgWEXdPV9KSMmyvWUxmTAYTGkcNa4J+4I+1p/ht8WEyUrVkpGZahS5h+/z9jFzRH5PRzKKBssL0iBX9WB20gOCbIQRavde+nPk55/ZcISMpk3J1SjK68XR6TOpE5Sblcjw2Ox/BvyyitAdCduz8B/gWyUPBoj6sn/c7eq2Rl6EJ/Hp+Mmf23WTTwsOYjRaiwxOYtm7gO7eh1qjwyudBRqqWy4fv0H1MW/pP/wy33C7ZtIIe3whh7fQ9lKlRjN6TOvAsKIJJny1GqVIwZ+83FCmds87Oh4gJi+fQujOUrVmcmq0qMv/QOH7/5TSndlziyqHbXDsSZLtZhj+M4nlQOLXe8D97hUsuZz4Z2JTUhHRePIlGlCSKVyxCYnQK2384QIHi+Wg/uFmOU25b5+1n14+HrQGYiIuHCysuzsDnPZ5WMWHxDKo8DkmSqNqsPFN2fk3jrnVwy+2SzeIhKSaF0U1mkBKbyqRtI+k+vgMAfWZ+zsZpuyhWyZ8Tm8+TlphBzbbZA7VXNO5elwM/HUGXrqfLt+3ZtfAA677bjkIhUKSsH8uvzs1xvSrNKrB28vYsNxmj3oRKpUQCilXy5+mNECKfRiOJIhISugxdjts6uv40iwatlvtlFAoEQUDtoKLHpNeaPV/O+BxndydunbhPrymfZTkf8/r8xOWDN+XSkkqJ0XptRVHi8bVnqNQqDv9yihZ9GjKw0re23ii1RmXzJjObLYQEheNd0CvLsWnTddy/+BjRImLUm/DKn5vMdJ1NkVuSIOjsQwC8fD2JePySzHT5fb4qNUsS+FktWS7uu8a53ZcxGcxMbDOHmm0r8/nY9rZReXdPN3ZGrebJjWeMa/Y9Bp2RSW3m4ODiQNdxHWxZJTt23oU9ELJj5z/ExV1uDFUqFbhAvpauAAAgAElEQVTmkr+cXxl1SoBOayQlIR2PPO9Xgx7XbgGRz2IRBFhzZWaOgomzvlxJfFQyT2+HUbF+KY5sumD7tX1gzSlGLOr5l97DxA4LiA6L58DKEyw+NZkSlf3pOdGdM7uvgMmSbfm7F57kGAi9oseEDpSrWwrXXM4UrVCYb1vN4d7FJyjVSiIeRdFjQge88mct68VHJmEymm0BV2ZKJoOrT6TvjC58MjBnm4+wBy9knaZMAzeO3+XR1WBK18g5i3Zm52ViwxMwG81smLrT1tPSZUx7+Z/vAO5feMzR9adZHbSAAsVynsQrUCw/O6N/AWD3ooOsm7zdllEKtY69v40oivzx6ylyebmRlpSBs5sT1VtVIjNNy/Ujd1AoBJKiU/jl3kJS4tNYOXoDLrmc6Ti8dY7b2/HDAVvTsFIhkMs7FxufLs6iY/TkxnO2zNqLQWsk9H4Eu6JW2V67+scdm2ZTnc41CShXGL1Wz4sn0Vw9dAsE8PbLQ/jDSHQZeluA8rbA49xey9mXuNb295bZe9k0czcOzrKMgkqtJDUxHY2DGqMkZ/0AAsoXZmKbuQxe0BNduh5BEFA5KDEbzUiSnLVq0kPW0fLwyWULvjJTtZzccoF75x+z+fly236VSgV58nsiWY/RIopo03Ss+247n49tl2PgbecdSHbTVTt27PxJSlUqwvif+hDyMIpW3WsB0KhjVeJfphB06SkProfQu9Z0Zm4cTPla7258jQ6Lt9lRxL9MxsvXg4XD1nH9+H18A7xJiU8jI1WLQqnAZLSgVCvxzPe6uffVSP2w+d0/qqT0Jgad0XazeyX2l7egF1O2DOfKH3eoUL8ki4dvIDNVi0suZ9r2f7/aryAIVKhfGlEUZSNNs+zHJlpEjm48x+XDt9kavMQmWilaRPpM/Yzk2FTiXiTwIjgGi8mCNl3PT2M203ZAkxxvZuXrl8bRxQF9pgG91sA3jWYwYkVfWn3ZiLSkDK4fuUPpGsXxLepD6ZrFbSPhVVtkVwl/UyHbnEPw9/b7A0iNT5N7egQBlYOKoYtz9sC6d/4xJzafQ59pwDW3C7tjf0GpVBATFsfcnstwcHbgM6vXmkded8ZvHP7e/TfuVpcN03aCJN/4Ryz7MksQlJGSyY75BzAZzAgKAbfcWUuzjk4a9Bl6BAG0aTpehsRSorI/IXcjaNC5JiH3Igh7EEHNTyrj7uVKgnU4wKgzZdlOrjxyj5ckSawet4W9S/9AFCV06XqALGWxwmUKYDGLVGxUlhObzqPXGpjbZwUz945h9bgteOb3oFjFIhxec5LWA5vabGQCa5fEwVlj+1wiyFNubxNyLxyfwnnInc+DkDvhmM1m/Er42oMgOx/EHgjZsfM3ULNZIDWbvR79VSoVdBvRnCe3w6wu8hZ2rzyJm4cz/qVfu7DHRCRw+8wjytUujl/x/Dy/F0HVxmUpVdWf4DvhXDh4C4PW+LrHwvqdrlAo2Dz3INWbl0OpVmIxWchM1XFk0wXyFvCk2+jsHlfvY9r2kWyZd4CytYrz/F4EGalaqjYtR9Vm8r/TOy9jNppRaVSYjCYWDvmVmXu+wcX93Uq+EU9e8nXjGRh0RgpadXkkSQ4yUuJS+bbVHPL6eXHr5H3SEjMYs3oAM38bDUD4w0hGNp6BJEr4FMrzzpvZ/QuP0WXIN12sGYdlw9fy8lkMJ7detBmAbny6hNLVi7Em6AebS/rbzPljEjt/2E/1NpUpXLogkiSxePAqTm29QKt+TRi0oBe/TNjCi8dRDF7Ym4IlfOk6viPxkYmYjGZGrOj/zqmzvAU9kawyC75FfWyTUfmKeLP4fM59Nu+j7aBm7F9xlJT4VJQqJY5v9SVtmLaLq4dvIwhQukZxJm7OGlgNW9KHRYNW4+Lhwu1T9zGbLRxZd9qmEo4kq3KXrV2S+Ucn83XDaei1Bow6k03Oof3Q5nxu7f2KeBTFwVUnbJlQkMfdXXO7oNcZAYkuY9rR7It63Dp5j+ObzqHSKPHI646XrycTNr0+vibd62U5VpVaxYorc7iw7xqCIDeHXz5wk+bqrnz2TVsGzpPH9r/vuhij3kRseAJfzvicAyuPUbZ2Sbnfyh4M/TnsPUJ27Nj5u2jfrwG3zj/BYrIQdPEpX7dfxIqj31LA3xuDzsjg2lMx6E02M1GzyUJUSBwKhQIfPy/5hvmmAav1f9EiEvE4irEr+3Lz5AMeXH2GQWdEtIhs/eF3uoxs+aeyQsUrFWHa9hF833MF144GIQgC03aMpFJDueE4IToFi0W0ZU2e343gwv7rtOhZ/53bPLPrCpmpOiRJIvT+C0D+JZ+3oBeiKHL3/GNUGiWSNYDZseB3Gn8uO7kXLlOQ1ddn8+RmKJUbB+a4/YSopCy2HK8QzSK7Fx/O4hi/ZvwWxq0fRr4ieW1+Y29Tsloxvts52vZ3YnQyxzacxWw0s3/FEYoEFuLgz8cwaA2kxKex/MocXD1cmLB55HvPbVJMCg+vBDNgfk9Es4Xa7aq+d/mPYWyTGWSkZKJQKPjs6zZUblrONn3l6uGCSy5nFEpZGygyOJpNM/fQY2JHfKy2LGEPXmA2mklPSJezSghI1g+XQhAQlLKg49ldV5AE6DzmE3RpWjJTdRzdcJaGn9eyaSAB5PbJhVKlwMHZAWc3Ryo2LItLLie6je+AUWfEYpab7AEqNynH6NWDiAmLo+07Sp5vU6h0AbqX7khCVFKW5u69S/+wBUIeed1JiklBNFvY9P1utKk6jqw7Td1ONeyGrXbeiz0QsvOvJjIllVPPQqjrX5gAr79/CqtS3ZLsfTyfHlWnkJqYgaOzhpiIJAr4e/MyJA69Nd1v1JtQOShxcNLYVKI98rqz8uI0Lhy8xd0Lj7l29F6WX9zJ8elM7PQjqy5NJyokjkG1ZOHCnMoGOWHUm7h44Ab5/b0pVU22cIgNT8CoN6FxUBN8O5RKDctwZOM5Dq09hW+ANxkpWjKsI9YBgYVIS0xnXr+V6DMNjP1lUBb/s6rNyrF78WFEUaRE5QAeXgmmWMUiLDoxmeldl5AcmyqXxpAzaA0618xyfN5+efD2e90orcvQs2b8FrQZekx6M+f3XrUFhgqlAoVSgXchLzJTtHImyKrODLIv2p8lVx43cvvkIj05E08fD7zyewCyyri7Z85TgG+TlphOn1Ij5VKRIAcZa8ZtYequb6jR5t09Vh8iISoRs9GMg7MD1VtX4uaJe0zttBBBgJn7v6XHpE4olAq2zN5Lanw6R9ad4fxv19gauhwnV0dObL6AySCvX7tDFbz98lCmZnHunntEzTaVeXDlKSF3wzm6QZ46EwQBpUpB3Y7V2Z+0lpNbL9Desy9unq7UaV+VyOAYRq8eRMSjSLbPP8DF/dcpU6sEufK6c3zTOXLlccevlFymOr75HIsGrcHF3YmGXWpna2p/Fxum7WTL7N+yZCssZgujm0zn658HsODUVAZUGIvFbEGXrkelUWHUm3l05ak9EPrT/LsyaPZAyM6/FrMo0nH9VrQmE4vOXeLCsAG4Omg+vOKfRKlSMuqHbqyevpfSVf2pWFcWXczt7S6PIltEVBoV3Ua1Ii4ykUFzXhuSehf0otOQZnQa0ozORUeRbvXhesWL4Bi59FTUh2lbvuLCwVu06lUvx2yQJElkpGhlHR1BYP7A1Vw/JisRzz34LVcO3yb4Tph1dN7Mptn78Cvpy9KR620moL2ndKJk5QDyFvTEr0R+1k3bxe3TDxBFibVTdjJxwzDb/srUKM7GR4sw6o14++VBrzXg4KRBEATGrxvK0Y1n8S3qQ5kaxclIycQ3wOe953Hnwt85su5Mjv07AeUL4ezmyOTto4gLT2DhwFUkRCYhiSL5AnwYsqAXAClW8UpPq1TB+1CpVbTq14SbJ+4yaP4XlK5ZkrFrhxH1PIZPBjf/4PoA0aFx6DMN1gsAoiQhGkwcXX/mPwqEJm4ZydrJ26jSrDylaxRn/pc/2xq2T++4SKVGZen8TVv2LD5sKx0a9UbSrXpBnUa2YtXYzbjkcqJa8/LoMw1UahJI6RrFQBC4feoeUcExtv298o3TZegx6Iz80G8lokVEn2lg3/KjAASdecj4DUNRKBXoMw3ERSTw06gNHN98DkGAr1cOpEn3uuxZfBiz0Yw2XcexjWfROKg5teMSotnClB1f2zJHr/b7Kut0cNXxHEs29849YlT9qWx6vgyzyYzFZEGhVODg7EhmmpbN3++lYqPAv+TXZuffgT0QsvN/gjPnH3P3fiSd2lWmYAFPnoXE8c347UiSxMLZn1OieHbncqPZQobRaLPV0JqMfykQMupNqB1U7+1DeLuHCOSMz5y933D58G3cPZzZvuAgSODs4sCgudktG1r1qse+lScRFOBXPD8RT6Np27ehbbqsWrNyVGuWXTvFYpEblie3/4F75x9TsVFZZh/8lojHLzFo5ebslyGx7Fl2BJBLS6IoIRrN3D3/GCcXRzLT5PHmoxvP023MJ8SGJ7BgwGr0WgNKtRKVIOToDv+mWOObU3Au7k606tOQn0dv5NTWCwxZ0JPfV58gISqJT0e1yeJb9gonV4cs98E3b5Lh9yMQLRLLv1rL5O2jKFDUh5CgMBQKBd4FPUlPyuDWyXt8124eoigxYkU/WvV9v1hj0JkH7PxhP/pMA3N7LWfD02U06FLbtm+zyYxKnfUrNCEqkfN7rlK+QRmKVihCsUr+aBzVGDINIMgijiq1ilZ/UigSIPR+BOd2X6ZmmypUa1mRai0r2l5r0acB53+7CoJAc2u50snVkaUXZ7B+6i6eXH9Oiz4N8LZKEXT8qiWt+jbi5vG7zO21DEmU2DB1J5lpWpzdnNGma1Eolag0KixmC6WqFyUtMYN2Q5pjNplzPD5JEqnRpjJNutfl2e1Qhv7Ym00z92DUGUCCJUPXULV5eRp3r8PzO2GYdEa2zdkr23VYM3frp+5kys6vkSSJ2T2WcW7PVRp3q8O49UOp27E6h9ecBKBk9WKEPYjAkClnVPWZehycNIxY0Y+lw9YiCALadJ0cOP27kht/D/YeITt2/llcvR7C93MPYhFFLl4Opka1AG7eDifNevPevf8GE8e0zbaes0bN9y2bsu76LT4rXxZvV1ceP4nm+q1QGtUvRcGPUPXdMHs/23/8AzdPFyavHUT5P2mxUaFuSSrULcnW+QewmGQfsVirm/fb9J36KS171sM1tzM3jt9DpVJSr6PsKh7+KIoJ7eZjMYvM2jeGYhVko87I4GhG1p+OLlOPaBGRRImgsw9JTUhn1LI+LP5qHX4l8nP5wA1MWgOCUoGzhxNIAhonNa37NqRex2qMazMfJInGXWoS8eQlw+tMQZ9pQOOkpuNXLfEP9KP+pzXe+14TopK4sO8a5eqWomiFIuxZcoiT2y4iiiKJL5MJvhWK2Wwh4nEUU3Z8nW39TiNaYdQZ2TZvvzxObfXkUqoU1skzi61PplDpAjg6OWA0mLh2+DY3jgZRtUUFWz/R4sFrKFW9GP6BOauBWywWNs3YhT7TgCBkDeIMOgMj60wmJCicrhM60vf7boAcHA2vNYnU+FQUSiWbni8nOiQWyWIBJFw9nNn4fAUqlRIn1z/nSWc2mRlVdzLadB27Fhxge+TqLCWlig3LsjtmNYIgyH5uwO3T9/mu3Tw0jmoWnp6Of6Bflm06OGlIjk1FkuRg3mi143glaKjSqBnzy2DKNyjNF/5fYdSbmNllEb8l/MqkrSPYMf8AZWqV4NyeK4gWkXHrh6JxUDNyRT/bPoYt7kO/snexmC0Y9SY+LzCIAsXzo3FUY7T66gnK19nLYpWKAHJf1cX915EkidM7LjFkYU9G/TSA+p/WRJIkKjcphyAIHP7lJGd3XabL2HYoFAoafV6HJUPXYjHL1hu1O1Wjaovy9myQnfdiD4Ts/KOxWERmzjuA2do8mZam4/DRe1isfkiCACEh8cTFp+Gd1z3b+p+WL8un5WWvrJRULSPGbsVkMrNt11V+3z1KNnp8D/tWnwIgPSmTcR0W8cW4tvTIIej6EC171WffT8fISNHiUzgvnQoMQeOoZsyqAegy9FRrVh5HFwd8A7zZOn8/2xfI7uFJcal0GNyM/atOkBidAsDuJX8w3mqWen6vbEoqWkScXB0xGU2UqByAu5crHnndWX19NhkpmXQuMASQJ30WHZtEoVJZhRm3BS8mLTEd36I+TGg7z1busZhFytYqQY1WcnYiM03L5HbziXuRyPgNwyhXt5RtG6MaTCUlPg2FUsH6hz/i4uEi9/YIAhoHWaFaskikJ2dyYd91ytcvnaUXR6VW0XZQU3bM349CAQgCSrUKl1zOeOX34HlQOEq1ElEU6TW1M/6Bhfh10jain8eiUAiygat1XB8klo9cx6QtI3Msk4XejeDJ9WfyMUkw8+B422uPrz4j6lkMkiTx2+LfbYEQQEpcKmajGbWDwJoJW/Av64dgNU31yOuO20f2w7zNq0ACq9npqzLYm6g1KpvOT0ZKJlM6zJcDHL2J45vOMnDeFyTFpPD05nO06XoW9l+JR143ytcvLTcZW0RePI4in78PL59FI1osBJQvhCTK5wBkEUVJgnodq1Ovo2x7MXRRr3ced4Fi+eg6vj3bZu+1Na9HPIrCw9sdSRRxze1KSvzr/q2oZ7G2c5UvwJv4F4nkK+KNqzVD+LZadOv+TSheJYCJbeaiUitZcHIKQxb2Ys+SwzT7oh49v/v0L51vO/8uPq6r0o6d/1HMFhHtK30RoHRJXxTC6y9uSYLnoXGsWHXqg9vKzDRgtAq6abVGWnVcRL8ha0l/NZ6dA7VaZtWj2TL/92xTTG9isYi2Hpfz+2+ybdFh0pIyeHwjBIPOiMVs4eCak2SmakmOS2XKZ4tYMHANE9r/QEpcGpIkEROagElvxmQ0ExsWD0ClhmXQOGnQOKqp0vR1Ca5q03KoHVSoHVQMmNONdfcXsvDk5CyO5i65nClWqQgaRzUFiuXLscTl6uGMb1G5hyd/gDcqtRKFUkGLXvWp/sY52DZ3Hw+vBJMQlcT8L197UEmSREp8GiaDfH4zUjKp274aX07vTJ8ZXZiycxQdvmpBvU+r8/j6M2b1WMqASt8iWsuWmWla+pcfTRffQRgNJiwmizzefn4Gv9xbyLM7YUiixJ1T94kKjkGhUNCgcy0mbBqOg7MGUZQIvRdBqwGNQQDRInH3zENGN56e43XK5++Ng5MDjq6OlK5RPEvTdkCFwji5OKJxVFOz7esJMEEQmLh1FMUqFUFQ8P+x99bhUZxt+/9nZi1CCCTBQoK7u7u7F2ihhZYCheJOoWiBoi2UQpHiLe5SigZ3T4BAAsTdZX3v3x+zbAiElud539/3ePo+OY+Dg+zsPffOzs7ufc11ndd5cnqLH1tm7abflG60+qQJcw9Nfe918XfQOeuYtXciNVtXpceYTvzx6zkSo5Mcz9/84x7d3AfxUZFhhD+L5NHlpw5eF0C9jjWJj0jky2oTWThgFcuH/oLZaCYxOpn75/yJDIqmWrOK/P5qDXnyuTjKVdeP38WjcD6m7xhNk571WHB0mqPD8UMxeG4/Njxclq1EtezcbIpXLoY+3ZjtZuPcriuEBUaiUqtYe3MRK87P5ufr32W7Xt/GLxO3kxKfRkJUMiu+2kD3ke3YFvhjbhD0P4H4f/TvPwS5GaFc/KMQmBLDjwHnqe7hw/DyjdFp1Xz2SSO2/nZFke73D2PY583ZvOMSZrMNq9WGRqPC8z1eX2/CyzPPGxkDMBothEcmcfV6EO3b5NzCPXnt55SrWZyNc/YjyTKehd3R6HL+Wr16EsHEzksxGy0MmNyZnSv+wGK28PDKM0Yt+RgEOLnqKFqmECFPIhE2m0I8zTTy9FYwn5QbS9XG5Zm0figxYfGo1Cr6TeiC2WTh2Iaz2CxWOg9pSdtPmjhes2ytkux4vhKT3oTXe0p9kiTxw/lZRATFKBo3f9N2r083KNkYlUTzjxpk40YlxaQ6/n6zw02SJL7ZPprfFh2kcfe6PLjwmHWTdyCrZRp0rkXIk3CGLhpA8INXXNh7HYDkmBRMehNOrk48OB9ATEgcwibQOmkpVNaL/lN7ULZmSfYsO+J4HbVGhcYp6/xXrF+WOm2rK5o6skTddjW4dvg2STEpgNLV9SbCAiOY23sZGp2GJWdmkZaYTqWG2cudbvnzsDXoJ+LCEvApl119ummv+jTpWY9uee0K30LQekAzvEu/G1z+q2jYtQ5eRT0Y3/RbLGYL53ddpu/k7tRuW43fFx3EbLJgTc7Ab+81Og9tg0teZzJSBK36N8KkN/FZuTHZRCNByeipNCoMGUYe+D1m1Mov6PhFK148CEGlUVOnXQ3H+2raSyl9Xtp/g+AHr+jyVVu8vBV9pKNrT/H83kvK1y2NSqWizafNsgVMxSr6MOP3sRz95TQ9R3fEt7w3Lx6GIoRA66RBCDAbzYoatX0/nbOWsjWz9J7Cn0Vx9eht6rarTsmqSklTn24g7Q0fs/S3mglykYsPQW4glIv/aKSaDNyKD6G6R1G8nPIw+vpeQjISuRb3kmoe3jQqWIqWzSuwZccVQCkb1K9bEl8fD2LiUkAo4oMd2/29AaMkSXw1pAVXbwQhbIKHAeEYjRaiopPJSNXzTZ8fiQiOZfzKz2jcpaZjnx7DW9Osex2e3H5BtSbl3kua9jtwi0y74u7Fw3dAUhai9ORMipYuxLqbC4gIjiYtMYNlIzYiSyq8fDzQpxtIiU/DarHx8HIgOicdi49lZRcCrj3j6e0XWMxWTmy+wMhl2W023tfqbbMpXT86Fx2ZqXrSkzP4EN258MAoLCYLWmcNkcEx1GieZW7ad1IXLh++hdlgYtwbXBGARt3qODR0RjWaqRiQmuHC3utIsoQsy/Sf0t3RSefkosPJ1YnoV7HsXqrwgjQ6Da7uLvhWKErBYp48uvyEPXaSOYDRYObrutPZ9vwnMlIzmdxmPmajmW5ft6NszVI07lEXnYuWhZ+sBEmiSKlCbJ+3j4Hf9kaSJLbN3UvI43BkWebUVj9GrBjMszvBXNp/g+YfNaSMfWF2dnV6p3z4GpIkseiPGexbcYzGPes5gqC7Zx+x+NNVFC5VkIXHv8HV/a/LZCc2nuH8riv0ndyduu2VgCQ9OUOxkLDYCHkczsoRG9A4aRylSlmtonabauQv6M72oJ9Ijk2hUPECzOm1zBEEaXQa3DxcSYxKRqPTkK9AXgwZBgbO7M298/607N+Yhl1r2zWBsgtmBlwNZPHg1ZiNFm6dvM/PNxdx98wjNkz9DUOmkT83n0elVXP9+B1KVPHFp6w3bQY2JS48AQmJOfsnOlSu+03pyr4fTlCpUTmcnLWkxKcxYEYvipQs+M65sJgtjGnyLfp0I5tm7sa3fBGmbfmabfP2ERGkdLfpnLWMWjn4L89pLj4AAsi12MhFLv4zcCr8MZPvHEIIgYtax7kOY3BVa1FJivibq1qLEILJ3+xx7COA6bP3k5CYjkqlYtPazynyAa3SQgi+nrCDsLBE8uZ1YmD/hjx5FoXZbOXU2QCK6TSEPI3CqDfx69wDjkDoNTwKu7+z7W3UbVOFQ+vOYrMJen7VmrBn0YQ8jeTLuUoKv2AxTzbP3ce1Y3exmhVLiiIlC/DdgYlMbLuAwDsvqdywLG4e2RdQ3/LeCsdGQKU33OozUvWkJabnKCC4c8kRtszeC0CBoh5kpOkxG81UblSOXqM78sAvgM5DW1O0TGFMRjOrx24h6mUco1cOYvSqwSwfvoHCJQrQql9Dx5x3Tj/k/oXHrL42H++Shdg2bx+LBv1Mq/6N+frHQdkCxF5jO7Lsy3UKgVsIhE0QGRxD4RIF+O7QZO6cfUSHwS1IS0rn2+5LeOUfhiRLOLnoSIxK4srBm9w4fgebVTjE9QCsZmtW6/aErUTaF8n75wIYsXyQ8jm0r8HBhM18VnYMgTeDCAkIo3KjctRqU41ydUpx/ehthBCUrVWKpJhkRtWfjrAJ9i47zOGUbdmsLF5Dn67n2LozjgCxWZ+GzDkwOduYteO3kBidTHpKJhf2XKPT0PeLCUa9jGH16E2YjWYCrgRyNH07KpWKGi2r0GdiN+6f9+fJtWcYM40Kydled6rZsrLDa83JRUfhEkpQ0eGLltw+/QBZllly6lsMeiOLB/1MoWJejPxxMCa9iQUDVpKZZiCvRx4kCQr4ejHv4ORspGx9uuILZrPalK4sOxx6nwIsRgtXD9/m6uHbaJ01SBKsHrsZq9lK/kL52PpMsVb5Yn5/vpjfnyntvuPmHw/QOKkJvB3MmR2XaNi1Ni3t4poAZpMFQ4bR4VUW8jiC1eO2Ysg0YLbrKY1bM8TBSTObLCwa+BPBD0Oo3Kg8lw/epGaryszaM8Gh6p2LXLxGbiCUi/9IpBj1jL91AItQFjlhMZJgzOCXRh+z8+VtKrsXobqHD6mpmcTGZS9vREUrZQ+dTiIoOJYihfPxPDiG6OgUKlYowqmzAZQo5kWjBlm+Xyazled2oqYlyUpRbw80GqVE1LplJUpX8wUJnFy0VGlYhsx0Ay7/YudP5fpl2HpvEWaTGa+3DEcBgu6HcO34XYx6E5IElRuUZeTST5FlmeWnZ5Acl0r+gu7ZAgpDhpHLh24xYe0Q8hXIS1l71010SBwjG36LyWih95gOfD67T7bX2rP8mOPvxJhkrHYDzwd+T3h87Tkmo5kL+2/yW9BKzu++ht+e6xj1JlZ8tZEf/Waz7vYiZfyFx/hfCaRKk/LM+WgFZqOFczuvsOH+EvYsP4bNauPk5vP0m9yVAnaX8oyUTPb9cAKtk4aSVXx5ciMIWZao3UbJ2tVuW43adkPUSa3mEvo4HFCcyTNT9Q6lbcW65F1UalSe4pV9sglLyup373Dz5FPUl4UQuLq7ANBnfFdKVyuBRqfBbLLwcbGvHKKMVovC79Ll4CqyfOgvXDl4A9rCUYIAACAASURBVIvJikqtYv8Px/g95Bf06XoWfrKS2NB4fMsXIfplDMImKGXv6gOlPPfHr+coXsmHBl1qkxidxMSWcxyEaGGzcXrbBa4fvUPfyd34aGJXHl8NxNnNCZVaJiNVj9UikFUyH03qluM5adi1DrvD12Gzm5EWLObFrtC1PLgQwKRWcxFCYDZZEDaBwc6JS4xO4exvl+j+dQfHPLXbVqP/tB4E3grm8/n9AKjVpirDl33KT6N+dZyr1zDpzSz78hdHx2L0q1hsVlu28qvGSYMkK8HV74sOYTVbuXrkNuXrlHbw0pxdnZi8aQQ75u8n8mUsao2aEpWK0mV4W34avQnfCt5onDQMrz2NZr3qUbySD7dPP8SQYSTqRSySLHHz5H1ePgqlTI0SOZ6jXGRB/Afxd/5fIDcQysV/JCa8EQQB9CxWHR+XfEiSxLhKWYafVtv7v7HFi3lSp3YJnj6LYuzk35XWYp2ajAwjKpXMsoX9qFrZR5nHYkWWJWw2gdUqKF+uMHu2jyQtTe/IKK27PBv/a89ZM3UX5/fdZPyqz2jV5/0t40EPQ5nZbxUqlczC/eMoXt4b97/gKhUq5oVao0Jy1eFbrggrzsx0PCfLMh6FlOMwZBgJeRoBEmyde4BHV54q5ZijUxy6Nv5Xn2GxWDEbzRzbcJZuQ1vj6Z0VfNXrUIOL+28oC9Qbx6Bz0SqLmZ2zkZmm58aJe1jsInURz6O5fuIeGp0azyL5+LbHUswmMzoXnYMkbshUym0Fi3mRHJeKSx4n3L3cHK9x7dgdwp8pGkaJUcl0GNyCPPlc6Dmm4zvnJDEmGZtNKCU7SUKSJEraFa3TkzMx6o0Iq+KPpdVqqN+lFjN+H4ssy0zd8jXjms0iMiiGoLuvWD1mE6NWfeGY+7uj0zix8SxlapSgfF0lKJYkiVptlCBscpu5WTYdEpSvUxrXvC45fnaxIfGOwMxqsZIYlYwQgjPbL3L3zENFrdtZy+z9kyng60nxij6Ofef0Xsrja89Qa1R8f3Imt089IC40S0JBkmV++nojJoOZ++f9Gbp4IP6Xn2AymHHzyINaq8FqMeFROB81WlTO+eICtE4avqo9lehXcdRuU5X5h6fy5EaQIkJosTk6zmS1jM1iw2K2UPgtkUtJkhjwTa93tnUd3paHfgH47bn2zuu+Pod5PfMw8Ns+73DQpmwawcZvdnJmxyVHQC6Eokv07M4LfMoVwcXNmZb9GtGyXyMeXnpCQmQSTXvVQ61R8+PFuZgMJrq6D0YIePkolEkbh2M1W5U2fft1abOKf1m2IBf/HfjbQEiSJCfgIqCzj98nhJj9nrG9gX1AXSHEbUmS2gLfA1rABEwWQpyzj/UDigCv86vthBCx/7O3k4v/C7AKG5djgx2Pl9fpSZdiVUkwZDDj7lFkSeK7Wl3x0LnYOUCSg5hbplRBvLzc6Na5Bo3qK4tbaGgCEmAwmLFYrFgsNtRqFWlpWd1gQoBaJWOyWdGoZWQJXFx05HHNKoMU8vXEb/8t9JlGhE2w7OstlKtZAh/7XWt0SDxu+V0dRqT7fz5NSrxC5Dz6qx+jlrwrkvgm3L3cWH9rIcEPQ6n+HksAk8HEsLrfEBeR6DDIFDahONaHJzrG1WldFZc8zhgzTWQkZzK5/UI2PVrqeH7q5q/oN6kLd876s33+fowWE7JKZurmESTHpnD79CP6TerKrzN3c+OP+wqBXAhSE9OZ0+cHdC5aPO1ZLZs1y20cYPiSAahUMmuuL+DBxcec2naRcc3nMH7tUMrWKknZWiWRUMpctdtUZcxqhUuUmpDGT2M2E/E8iuS4VHqO6kCfcZ1ZPW4LFrMFWZKp0aoykzeNxLNIfjZM+81BlFapVQgJilf0QaVWEf48iiNr/swWuBxe8yclqhSjs93J3qNwPgbO7O2QWgCFN7Xo01XcOHbHwbtRa9WM+2UYbd7jq/b4+jPCn0dm22a1WFk0cCUB1545FuIXD0PQaNU4ueh4ePExlRuXR6VSkRKXitVsRaNVk5qYTmxYdh2p7qM6cGSNot5s0ps4ufm8vRymZNe8fDxJMqfwmT3rlxSbwq7Fh/AuXZhuI9o5MogRz6OJDVOsOW6cuIfVaqPNgKac2naBlLhU0lMUorHtdTBiE6wevYnKt7/P0QZDCEHQg1f8OGw9eT3z0LxvIy4duInVYkXrrHnHqb5W2+r0HJ092M1IzeSbzot59STcEQSBYs+y7Mt1BN1/RZ58rmwKWI6z3Vg2J7uM9OTMbFmM378/rFisvHWf9FpQMhd/g39gRkiSpIJAY8AbJa7wB24L8cYd9XvwIRkhI9BKCJEuSZIGuCxJ0h9CiOtvHYQbMBa48cbmeKCrECJSkqQqwJ/AmwzDAUKI2x9wDLn4L4LZlrUwSUDl/N5YhY1v7h7hYvRzBND0xHOqexRloLUOKpWMzb7Pi1dxbFzzebb5mjUpzxm/J4SFJTCgf0P8Lj2lbOlCNKiXJbLm6qpj4dze/HHqER3bVcPF5V0eCEC9tlXYsuAQoCwU677Zw/zdo9mx5Ch7Vv2JRqvmp7Mz8C5ZgNqtK3H1xH0Aajb7MK8jL28PvLzfL+QYF55IYkyKgxej0akp5OtFxXplaNK9tmNcvoJ5mb1rLFM6LMCkN7/THSXLMqWqFsNisrBdgM5FR+3WVWjUVZmj0xBF+fjU9ouO8UIIVCplkTdkGIkMjubLhf25efI+D/wevzG7xNWjt6nfsSbpSRncPfMIo97EjyM38vP1BRSv6MOG+0uIi0hULB3sWD/1N87uvOxo+14zfitWk8XRxadxVTNwRm9HAHbn1INsJrRWs5W9K47SeXgbprVfQExoXPbsg4CVIzYQcOUp/lcCSU1Iw8XNifjwBOp2rMF3R6dz5/RD/HZeyTpPKol+U7pTr2NNvv/0J5xcdAxd+il582dl9r4fuIq0hPQ39pERNoHfrqvZWsZNehM/j91EVHAMSNDso0ZM3jSSGTvHs27SNkrXKE5saDyGNIPScSXD0MUD6Tm6M7VaV2XL7N0E33vJs9vBuOZ1ISMlE5vVRuHiXux48bMj4Fk8aDX3/QLQaDXkL+ROs96Kh5skK6Vdk95E6wFNUalkvIp6sMl/BRazhY+8h5GRnJkti5IYncSl/TfoOCS7EnZCVBLjms4i+mWsfW6Je+f8kWSZYhWKEvkihrfx4sErx99PbwZhzDSSGJNCWGAk5rckJxKiknl294WjzTr6RayjUywneBTOR5dhrTnz22Ua96zHud8vI2yK2Obrz6BwiQL/cut/Lv7zIUlSS2Aa4AHcA2IBJ6AHUFqSpH3AciFE6vvm+NurQii/Qq+/5Rr7v5zixfnAYsDBEBRC3Hvj+QDAWZIknRDC+Hevm4v/XuhkNcVdPYg1pOGs1lDYOS+z7x3nSkwwr0N7i7DxJDkafTkLGo0Ks9mKSiVTq3rWj6XJZOHazWB8fTxY8t1Hju1dOlYnJ9SpVZI6tUrm+NxrlKzsQ+UGZQi4rojtuXkqd8rn993EbLQgyxKPrj7Du2QB2vRtSNlqxZFVMr45WHz8OyhSqiA1W1bi5p9KEFCqcjG6f9WGE1v8uLD/Bq37N3aMrVC3FP0nd+POmUd8NitnTZVytUux+OQ0ooJjadKzrlIiVMnYbAKVSmbId/3QOWnROGmo0rgcLx+F8eRmMPfO+9OiT33MJisT1g3jm67fExMSjyxJ/DR6E7JKplnv+rQdqGRRdC7abPpEBYt5vXN3rnPRIcsyNqvCs1GpZSxvCAfWbluNig2yyOBJsQoXTFbJqNQyZqMFo97EmnFbSIhMBKGYuY5fN4y147eQkaIkn68euY0hw4DNYiMzJROQuHXyAUH3X7Lsi5+zHZOzmzNtP2vOmvFbuLDnKsImOPPbRX65s4TilRSlZi8fD+LCE0AIGnavQ/SLWF76h2GzKuKDWicNFnuZpqCvF1EvYjBkGHno54/VYsXZzYlFJ2dwYc81ln2xBpPBhLuXG7P3T6aqPftRt0NNwp5HERIQBgKa9K7Pqc3nEQIeXnzC1/Wms/LKdwAE3g7GZrFhlSz2rsQMHl1+ys/jtpCakI7OWUv3ke2x2WyK8aqzkk006RU9LrPJQp321Xh48SmSpEgwvI3RDWYo79kOYRP2MrVCon5Nan4NSZJoab82L+2/weLBq5GQ6Daqg517p8PNw9WR1Qx/HkXxij6EPo2gapMKFKvkw99hzOohjFk9BJvNRmxoPI8uPkGWZWS1Clkl0Wtsp7+dIxd2/LO6xjoBQ4UQoW8/IUmSGugCtAX2v2+CDwqPJUlSAXeAMsDPQogbbz1fC/AVQhyXJGlyTnMAvYG7bwVBmyVJstoP8Dsh/tsoWv99iDOkk2jMoFzegu9tM5ckiQOthnInIZSq+YvirNZwNyEMs7AhI6GRVY5xv4ZfI7RfBvWdijG9agdKFM9aXOcsPMzd+yEIIVi78jNK5dA99e9gzo6R/Dh+O7JKZsQChTDaZ3Q7Vk/eiau7C3XtmkOXj95l8/yD1GxekZGL+/+lKNyHQpZl5u+b4MiS6NMNfFTsayxmK/5XnhEbmsDHUxTCrCRJDJjegwHTe+Q4l8loZlLbBTy7HUz/Kd34ceQmzu68gs5Fi8lgps/4Tnz5XX+GLf6EiKBoRtSfgUlvZuzqzxmxdABDakzFbDSzf+UfLD4xjfEt5yjWFxLYDGaC7r1i4vrhfHd4CjEhce+4y7+NoYs+Jn9hd8wGMwV8PClZ1ZdJreZhtVip26E6c/ZPyja+76RurJ+yA6+iHnQd0Zbt8/YhIREbFu/ImJWsWowd8/ahf218KkGbT5tycpMfJqsJEPbbOkHo43CFjA2o1DKjf/6SjkNaI8uyUhqy/zpZTVb2Lj/K+HXDUalVzDs0lR3z93FkzUku77+pZM40Ms36NKTvlB6YDSZc8jqTFJNCSnwqT28+x6g3Ub9zbYbXnEx4YAQFfL1o2rsBJoMSjKTEp/H0xnNHILT4s584s+MipWuUoMeojrT6pAkBl58S/iwKgNDASF75h6FP12MxKm3yQggadqvFwJKjyEwzZAtO0pLSGVDya5JiUhi2ZCA9RnWgRovK3PrzAS37N2bK5pH4X36Kp7cHRcsU5uL+6+xcdJAWfRvx0aSuJERliTm+jeKVfEhNSMsmLKrWqh0ct8DbwZgMZoRNEPE8ks0BK4gNiychKon5/Vc6SPHRL2P5fF5f+k7q+kHfHaPeREpcKhf2X8f/8lNAabvvNbYTHb9o+V65g1z8syGEeF/MgRDCAhz6uzk+KBASQliBGpIk5QMOSpJURQjhDyBJkgysAAa/b39JkiqjZIvetGweIISIsJfU9gOfAtty2HcYMAygWLH3p0Zz8Z+PwOQY+vr9ikAwuGxDJlR+v/FkHo2O5oXLEpqeSJrZQKvC5QhNT8IsrBhtFpxVGtY17M+QK79jlm3cuxfGAyk0WyAU/CIWg8GMk5OGsPDE/7VAKI+7CzM3Dc+2reOnTWnTryFqjYqA60GsmbaLW6cfYTJaSIxJoXXfBlSsW+p/5fUBRxCp1qhQa1UOteptCw7Se0wHtE5/bR4b/CCEQ2v+5OWjUIRQusheczSMdqXuvcuPU7ZGCZr3acAvk3c4tm/4ZhcVG5RV1J1tgrTEdPatPAEoJSpZJePmkYcRduuFas0qAtlLgxkpmczr9yNxEQlM2TQSWZbYMmcPlRqWY/DcvkiShFFv4ruj09C5aKn0RiboNXqP60zXr9qi0WkQQuDl7alkNSTBGv9wJAnyF3Qn8FYW32zy5q9p92kzeo3pzPVjd1g3eRvCaqP1gKZUa14ZlUaFRqeh+6gOdB7aFpvNRnxkIkOXDCQ1IY3L+69jswnObL/AlYM3GbbsUzp+0ZoipQoBWWKcGq0GLx9PNs/cSf+pPShRuRgX9uxmz7IjjszL0V9OOTSBol/Gcnj1ScdxarRqCvjau+xSMzn3+yUAQh+HU6NVFbROWn65t5SpHRbw/M4L8hd0x6d8EYyZJkcXVtWmFdm79Bip9rKdLEs069uQuh1qkJqQTrq9tHZg5Ql6jenEgmPTsVqsjnJitWaKPpTVamPRgFVYzFZCn0TQuGc9xq39krUTt2Xjhin+ZGoq1CvN8GWfEhEUzaktftw7648QAt8K3gB0G9mOm3/cw5BhZNDsvnh658fTOz+LPlut8P3sx2rUm9g2bz8vH4UxccMwNn6zk+TYVIYvHegoj75GUmwKw2tOJSM1E99yRRyfgyTLNOpWJzcI+hch/QNTEpIkTchhcwpwRwhx/6/2/ZcKpkKIZEmSzgMdUIhIAG5AFcDP/uNcGDgiSVI3O2HaBzgIfCaECH5jrgj7/2mSJP0O1COHQEgIsR5YD1CnTp1/4Mfz3wMhbIjUmWC8DHkmILsomQi9xcwnFzbzOCXaMfZkxOO/DIQAzkQGMuHmfmxCYBbZU+1CCEq6eaGWJLS3VOQJULPu7gUsJhv9+igeSBPGtGfhkmPoDWYuXQmkScOyDjn/v3KK/3eh0aqxWm1889FKJTMCqLUqBODl/fdaRh8Cq9XGrmVHiX4Zx6BZvfDy9mDxsWlM7qi0s7t7uTmUed8HQ4aBCa3nY8w0IlBKN6+P9208uvyU5n0aYNSbsm0vUcmHMtWLE3jnBZKseIW5urtgzDRhs9kwGZSOsPfhzO+XCbj2DLPRzNpJ20iMSiY2NJ6Aq8+o2rgCVZpU4OsGM4gNS6Cgryfr7i527KtPN3DvnD9lapZQSk0vY1g5ciNhTyOZuGE4NVtXxauoJ2ajhRXD1mV73ZUj1lOqajHSk9I5tfUCwiqQ1Wq8SxfBs0h+ipQuTPC9l0Q8j8JqtTK28UyC7r2kSuMKLD07m1Nb/Vj19QZMejPpyRmsGrGBpr0a0LJ/Y/7ccp6YV7EUq+RD5YblObDqBGaDGf9LTziSup3g+68cQZCskslfyB2ds47IYOV7odLIqKwqJCSGfD/A4XTv4uZMmVqleBUQRkFfT1aO3MC9Mw/pMaYTK87PISo4hgK+nmidtDi7OrHlyY+EP4uiTK2SbJ29RyEN2wTFKvrwzY4xSJJEbGg8KpUKSZZwy++KPsOAs6tTjqrisiyR19ONtKR0ZJWSHWs3uCUtP2lKj3yDFHVqrYrKDcuj1WloP7glRUoVomSVYjToXItrR+5QsJgn5euWwZBpROukZf19hbgvhOCnMZu5dOAmBXw8kCQJtUamYv0yPLkZjNlg5vqJuxzfeI4TG89hMVswGczM2Zd9zXt6Mwij3ojZaCHyRawyj1ZNh89b5GgZk4v/k6hj/3fU/rgL8BD4SpKkvUKIJe/b8UO6xgoAZnsQ5IxSa3P8KgkhUgCvN8b7AZPsQVA+4DgwTQhx5Y0xaiCfECLeTsDuApz50Hebi/9QmB+B/jigh9RZCOcuoD/A7fhMXqUnZBsaq09jws0DzK3ZCTdNzi2th0MfYLS9u0CrkOhToiajru0hw2omr1GNsAlsksjmC1a/TiksFismk4XL14I4eOQOG7dcwsVFy6rlA/DxflfL538Kyd7F9RreJQtQvEJR/th+mU8mdkat+Wv7ir/Dhf032L38GGaDhdjwBBYfm0qFuqX59f5iAq4+o1arKn9bRrCYrVjMiueXJElM2zKStZO2kxCdjLDasnXaFC6uZNFafdzY4V9Vq5VS+pu5cwzfD16DSq1i0Ow+jP35C6Z3+p6Hl54AOHzCckLxCkWR7QKJpasVx5RpIt5OMnZ1dyEtIY3I4GisFhuRwdGkJaSRr6A7ABNbzlH8qFQyLT9uzImN5xylsFWjfmXL05XU66iIW+778RiPrz5zPC8hcXrbBQ6tPqkcnyyh0anxLe9N1MtYQvzDEDbBtSO3WTdpG8H3X2E1W3l06QnpyRk079uIPzef59HlJ8gqGa2zDq2TBq2TljW3Fjve99nfLimlNEnhPgG0HtiUhxcf45rPlW4j2tF6YDPcvdxYN2kbSdHJtPq4CUs+/xkhBBUbZCmUS5LEyivfEfY0AovZyrim32K12Ni/4hjlapeiSa8GDtNagLyebtisEfQuMARJlqjfqRau7i6MWJElalmwmBd1O1Tn0v4bhDyJ4OCqP/hkes8cPytJkvjp+gIuH7xJhXplmNx6HiFPwhk8rx9tP2uO3+6rCCEIvKUosk9oMYffQ9bYgxo1TXsrEhPhzyL5uv43mAxmRiz/jG4j2xPxPJo/t/hhMphJjkuhz/jOuHu60WV4Gya2msfLR2H0Gd8ZFzcnJElCVqlwdX9XyKlqkwq4e+XFqE/AalE0i8xGM8fWnebu2UdsDljx3msxF2/hP8wH7F+AD1BLCJEOIEnSbJT4oxkKteffD4RQWty32nlCMrBHCHFMkqR5KK1pR/5i31EovKJZkiTNsm9rB2QAf9qDIBVKELThA44lF//JUBVRIgGcQS6KSFsKmTspjw6N1A0JRREaQG8182fEY4q55mdc5ZbvTLXqsR+nIp++s10rq/imajtKuHmy++VdANLqW5AsatSRAo+3VJeLF/Pihd2Y9OKVZxiMZgxGMwuXHmP18oF/6y7/d7h+8gE7lhyjYYfqDJjSBVmWGbGoHz9P3YkkS7i6uXD1+D1klcyNUw+pXK8MX87tnW3h+legtt+xSzLZgqqCPp4U7NvwfbtlQ558rrTo05CzO68ghOD0jkusODeLC3uvc37vNV48CHWUFk7tuESf8Z1p92lTUuJSOb7xHElxKSRGJ1PQ15MVZ78FIOxZJOd2XWHAjJ547ypEoRIFaNG3IS/9Qwl9GkmDzrXQOWeV62q0rMySP2eQGJ1M/c61SI5N4eQWP8rVKkmZGiUQQlC5cXkeXniCrFKRmWZAVqv4bcF+h8GqzkXHuZ1XsilLFypeACEEl/bfwKg3MffgZC7vu0Fmup6diw5RpHQhLuy95tjHJa8zs/ZMoHbbaljMFnwrePPyYQggceyXU3h65ycuLIGarauSJ58rkiSx4sI8wp9FcvPEPep1qvlOGXLjtN84uvZPEIKW/Zvw2WyFqL9yxAYyUjIxmyw06l7X0R04atUQ+3470KcZEEKwc9EB5h/OcrxXa9SUrFocfYYBV3cXR2bp+4E/UaXJaVZcmJftGA6v+dORxfMq6sGY1UOwWqzc/OMeBXy9KFnFl3wF8qJSK1mhPPly1ke6fPAmT64/Q59h4NSWC5StXYpou+fb3uVH2R+7kfaDW2Cz2pjecSEmg5mkmBQ72V75boU/j+LumYckxyqmuxaTheMbztJtZHvyF3ZH56xFVsl4FM7H0EWfOIK1X25/j9Vqs3eF2rCYrKQkpNFzVJbA464lhzm17SJtP2tO2VolqduhOid+Pe94XgiIDH63gy0X/ydREKXL/TXMQCEhhF6SpL9s0PqQrrGHwDveAUKIWTkMRwjR4o2/vwO+e8/Utd+zPRf/QAizPyJ9LbgMAdNdMF+BzCBAwlNr4JcK5xjg38pxoyEjoZZlPJ1y9ltaF3g5x+0mm5UnKTHUK1gSWZIUrqsOMipbcA6WWb/pAr26ZV1ayxb148atYMqUKsTd+yE89FdUioOCY7hz7xV1a/91l9jfYdFQReguPCiaRp1rULKyD50GNaNum6qs+3YP9/yeKCrIZisv/MMJfx6DT5lCdPvy3eDvQ9C0Z12S41KJehVHvwmdHdv/2OLHmkk7KFHJhyUnpv2tcFyNlpW4dPAmNpuNvJ5uFPT15KMJnWn9SWM2ztzFhb03QAia9lTKjLIsE/UilriwROLCE9m5+Ahf/6BwgEwGE2OazMKkN6F10rAzZA1OLjpePgrl64YzsFkFskqiaNkifH9iuoPfUaFeVuu8Z5H8DHgjIyFJkkOIz2qxcunADZ7fecHlQzeVTIyLhkbd61LAx4PdS484snBpielsmrmLXYsPISHRY3RHRv4wiNunHmAxWUiNTyUhMovo27xvQ2q3rUZqYhqGDCNrbi9myaDVXNx7DZDoOKQ1XYa3JTYsnu3z9tK4Rz0KlyyI356reBX1pGjZ7KarAE+uP8OQYUStVVOudil8yincmDetHaQcsnbVW1bh4E9/IAH1O9cmPiIBs9Fi5x8pcHZ1Yva+SUxqNQeLXVog8FaQ4/krh29x+OeTlKhcDK2TEmw36q74u60cuRE/e+fb0jOz+HLRAAoW88LZ1YmOX7Z2zJGZpmf30iPo0/Sc2HAWk9HsOL+Bt4LQOWvROmtp2LU2sixTpbFia9F/Wg/89lzjk+k9HO9Vn2Hg63rTFesRnQatswabzUaPUe2Vc6JW0bBrbWJD4xm/btg7JevX88iyTOehrbM9FxsWz9a5e7GabWz+dhcSoHHSonPSkGnOKqULm0AI8f9LOfz/JqR/WtfYa/wG3JAk6bD9cVfgd0mSXIHH798tV1k6F/9LEIlfgkgE4xnezKsKhKIFlCcCd7Ueg3BjRrUOmGwWnFQaehbPuZU9n9aZeOO7TtIyEkVc8hKYEsPUKm1Z+OgktkyB5x9anJ20lCmV3bDRxVlLy2YVycgw8iggHBcXLUajGUmSyPeeu+B/BR6F3EmISgakbB5gQQ9DuHM2AEOmCec8TniXLMCrpxFIEg7BxX8XnkXykb+Qeza15i3z9mMymAkNjOTe+QCHHtD70GZAE4QQPLvzEu/ShUhLysAtvysehfMx/PsBXDtyF4vZwu5lRzm24Sxz947Hu0xhh7N70TJZi/PmOXsd3VZWq40JrebSYVALjv96zkHAtloEEc+jOPPbZfpN6vpB77NZ7wY8u/MCIQRFyxZRFnwhUGvUDFsykC7D2wJQsUFZFnyyEkmSKVaxKH57rtqbwQT3zz0CYOvsPWSm6TEaTOQr5E5aYjoajZqh3w/g4r5rLOj/AwLwLOpB0dKFaftZc9w88tBrXCeuH73Dsi/WYDZa2Lf8KLXaVuPGsbuoNCqcXLS06Nc423EPW/oZCz7+9Da2fgAAIABJREFUAY/C+WjSqx4JUUl4FsnPkjOzOLLmT+q0r4FPDgFU3fY1WP9gGSa9idSEdAaVGwNCMGbNUNoPzgqcKzUsR/+pPTi46gQWk4WqLSrzeaVx9BjdkXWTtmMxWQi4GsiqKwtwdXchLjye9OQMnt4MUkx2nbW8CgijQr0yfDTh3c9i3aRtnN5xCYRQFJ5tin2HJIFzHifWP1hGenIGxSoUxWazsXf5MaJfxvLprD58+m12Kxd9mgGTwYzFpLTy74laj0otO4Qu9/1wnPO7r2K12Fg6ZC2D5/bNUTDxbUQGx7Br6RGsZuX6UuxUlMXb0SFoh6SScoOg/wIIIeZLkvQHiqgiwFdv6BQO+Kt9cwOhXPwv4XV5QqBUUJXHeqsrAiMZVjWy7EZpFy/uJYbRzrsCzQqXRQIuxwTjotZSy1PRZTHbrJTK40WiMRONrGJR7W4kGTO5EfeK6h4+bA++QawhHRuC/BpnulerRttGFTDFman1hofTm9i9/yZ+l55itQoKeOVBo1Fx7MR9xoxs+z8yYVx+bDKXjt6lcv3S2fzDCvl6IYRA56ylQu2SfLtlOEd/9UOlURH8KAyA1n3/up08Jxxee5pNcxSz1JiQePqMVZR6a7eqwpUjd5BlidLvOQdvQpIkytYsyU9jt4IQXNx/gx/9FMH4qBcx2Kw2R/tzcmwqv367m3afNqN5n/rUbl3V0QpvtVg58OOJbHMH3w/h5wdb3+EZqDRqKtQtzYeiWtMKWAxmrBYrc/sso4CPJ80/akRGaiZ7lx91uJU36laXRSe+ITY0gWYfNWDj9N85aO9i6zlG0Y6p16kmL/1DQcCM38dis1gpXaMEbvnzsHb8FocyeXxYAsnRydRqW41Ppvfil4lbObbulONcmE0WMpIzFDVqSZAcl0pCVBLOeZwcTu2u7i6Url4C9wJ5GVRuDMImaPNpMy7svobWWUNiTApFyxZBpZb5rv8PSpZn/yTyF8pH0TJKgPTr9N8c5S+/3VezBUKSJDFobj8Gze1H9KtYhlSZqJDOx29F56zFardDKVTci8lt5xPxPAoXN2fGrx/OqpEbKVKqIM36ZF17SbEp5PXI4yBKR72MVZzqJajboQYWk4VHF59gNlrQ6DR4FsnvyOr57b7K9nl77STlGBafnEF8RCIqjYr8Bd3xKJyPLxd9wslN5+k1tiN5PbJbzDi56JAkpdvuyfXnzOiymAXHplKtaUUO/PQHm2fupkK9Miw8Ps0hhrhjwQF2Lj6cTYSx97hOuORxJl9Bd/b9cNxevrNhswnGr/nyg6+5XPzj4QSkCiE2S5JUQJKkkkKIl3+3U24glIv/MYSwga4dGPbiWP10HSDPaELTLKzzX8ntlAK46/LyODka/+QoDoc+ZHCZBuTR6FgXeBkBLKnTg/ZFK3Iw5AEPEsMRCCrmK0RnX4WcO7BMPXqf20C0IUslOcms52xkINM7tIe/6E7P5+6icJSEzWHSmpAYQMP6ZbIpTL/73gTbFh3B/3oQn8/sQaW3xnoUdqf70HfLXKWq+LD40ARCA6No0rUWznmc6Du2A2PaLiL4USgarYYCRfNTrXH5DzvJKIvwruXHlDZ2CSKCsrrwJq0fSrev2lDI14v8hdw/aL7E6GRkWcKQYSL8WRT9S4yiXO1SfLNjFLXbVuXOmUcOm4mAq895eisYbEpreO221Yh6EUPpGiVwdVdUjuENovjbZEsJVl+dj4ubM2OaziIzVU/jbnXo8HlLiryVxTMZzbx4EMK1o7eztG8ExIUlYLVauXFc4YZtn7eXtp81o6Cvl6PVGyD6ZaySBUBi/dQdJEQlMXBmbxp0rkVeTzcKFc8uo+BRJD/xEYqQn6ySUWlUjoxN8INXGDNNyLJE4ZIF+WLhADy88zGp+RyETbB76WHWTdqmKIpfX0jxSr4s+PgHXjwIUYQp7Vykszsu2YNLE1cP3ST43kvK1SnlGHdw1Qm+WJBlwdJ6YFN2LzmsZO1uB2E2mdFo3+WV3TuviDJqtGrcPPKw4Ph0rh66Sf1OtXBy1RF8/xWgyBoUKVmQ315mF4xcMWwdp7ZdUBSqSxZk1ZXviHhu72JTybT+pAkFfb2Y0GIOgON6eBPCJrBZbSTHpnBu1xWWfbEWSYJFf3xDtWaV6D2uM7XaVCUjOfOdElXP0R2QZIm9y4+RGJ2MWgPRL+Oo1rQiW2fvxag3EXg7mICrgdRoUZmoFzHsXX4sWxAkSRLNejagXJ1S3DvnT2xYAk7OOlb4zaKEXfQyF/8i/oFkaTs5ug5QHtiMIv68g6wM0XvxP1d4y8V/FYQtEWE4j7BlBSMicysY3uTM28AWi6wpSyWPiixouJK+pVrxKj2R1xafFmHjz4jHPEqKRG81Y7CamXnnKIEpMehUaiRZRiXJeOnyYBPZS21vI9OavbVbCMHufTdZvOIEMbGpREQm8fue69jesJyR7XehXm+Ul3KC/7UgDq47i/+15ywYsv4vx4Y+i2LdzL3cPhsAQLmaJWj7caNsfB2zyaJkHyQwGXJuWX8bVosVo8HE09svHCUoCRgwvXvW+5FlKtQp/ZdBUERQNCFPIhyPy9QsQZsBTShbUyEnJ8Wk8ODCYx74PWbWrrEcituAbM+WCYTdfd1CbFg8n1eZyKR2C5jffyVVm1R4p/Qgq2TK1SmFd+lCyCqZNgOaUryiD/t+PM6z2y8IC4xk97KjjG48E+sbZGchBBNazmVKh4Wc3OKXbU6VRpWNIG612HL0wFKrVciSEoSkJ2Xw23f7SYlPo2ytUmidtdw4fpeM1EzH+DdLjA261GbuwSk066MQz79aPohilXyo2qwSw5Z9xs5FB9iz+DBqnQqrxUa83bvLbDRz66TiyeaS1xmVWs52TlzdXRympqCUckpVK46Tqw6NTo2TqxOvApRM4cOLj9m3/JiDsJ6akJ6N1/QaSTHJrB69CZvVhs1m48dL8yhdrTifzvqIsrVLodao6TelG1onDfU71cKn3LvluDO/XXIEa/ERiVw9fIuytUvh5KpTCNqVixH6JMLRiZiZpueXSVkqJ837NsTV3QUkpSvs6No/MRvNmAxm9iw/yheVxzO/3w+Mqv8N0zsu5LcFB7J/pmoVvcd2Yt7BSZSuXpz6nWvSwp4prdKkAk6uOlRqlcOkdvHna9HbO0NlWUKtUZG/sDsaZzVx4QmsmbAVk95ERkomF/dl0/3Nxf999AS6oTRjIYSIRJH3+VvkZoRy8cEQQo+I6wzoQfYCr9PKj701GoWg/0aQYnmJLboauHzG/cweXIoJeieIichMYXm93tyODyXFrCfVYmDVYz9+atCXDIuJA6/ucS7qGd3O/MK+Vl/ipNLwQ73etDuVdVcrAVXze5Ni0uOuVUoTV64H8evWi5jMVp48jaRJo3IkJKYjBDg7aXBzc6Z968rUq1vqHU7R23DL72Lnpahw9/zr79SU7itIiU/jxNaL1G1ThavH79GwUw1mbh7uWBRnbBrGjsVHKV3Nl9qtKv3lfAChTyMZ02IO+nTlTlySlCCjVuvKf+lJ9jauH7/LgoGrQZIYvWowGSmZbJy+E+c8Tvx87TtWjdmM/5VAEOBbPmvB7DikBRf33qBRjzpYTVbSkjJo9XEjHl0OxJhp4t75ALY9/YF1U7bjt/e6QnCWFE2lsauHUKpaMfRpSqcTQMkqxVDrVJgNCtE3PSUTq9mCLGtIjErGOa8TQfdeIoTSht5tZDtObDyLSq1iwvrhOOdx5uxvWUT6t0nhEUHR3Dvnj9VqRaPTIKuUFn2XvM7oMwwMrTYJo96IZ5H8bH7yI5IkUad9dR5efIwQ0GloG2q3zeKtla5egl/9fwCgv88wEiKTCL7/ClklZ8v4IElsmLqDPcuOsOiPGVw+eAPf8t6EPY1k7/KjpCVmeZF1GtqavpO74126MKVrlOTeuUf8vnA/vy/Yz/Bln7Fu0jZMpqyMh1MeJ6a1m09KfBqz9k2kZquqgCJe+DpA0Tpr8SqqXA+zei7h+rG71GlXjQXHpjNkQc5mv7/O+F0pgdmhUsuUrFaMtOQMfMsVodUnTSlZxReL2YJao8JqUQQ0D//8J30mdMHL2wNZlhV5AAGyJNOkZ30Cb79Ao1Vz59RDLCYLkcEx2Gw2hFXw8MJjmNkbq9WGsNlQa9QE3g7m/vkAZu+dQOE3RE/n7p/A05tBFC1bhPwF3YkNjSclPssuSlIpwWZiVDLDa03LFniqdWpq2mUecvFv4B+YEQJMQgghSYocpJ0k/UHIDYRy8eGwxoNIA0xgDQcMgDNSnuEIyyuwhoD1BQDClkSaXkuXJRbSDUcwVtJDEfCx5CM9QI+xug3XSA1bVl2ldIYHzwrHgpOEHAfDD/xGny61CEyNxYYgIjOZgOQoansWo3geT74o25Ddh2/j8kCNqZCVyy1fsOjhKb6vo2RIzCYLJnvXSEhYAv0LuKGLTEY4a+jcqy4hV5+TN91A1cp/719UomJR5v4+iuf3QxycHpvNxuZ5B3hyK5ih8z6ifG2lJvd6URFCcPXEfYSAm6ceER+ZRAH7IuVTuhDT1n84Z+Hk1guOIEiZG1QqiWELP842Lj4yke8/X4ssy0zdNALPItkFHO+ceeTgudw6+YAHFwKwmMykJ1u5deoBs/eM4+6ZR/hWKIq3vUvpwt7rnNlxGQQ4OWsZuSarS+xwtWI8u/2CT6Z1x93LjSmbRjJ8yafERyQojuhFPfEurczzOggCaD+oOUkxKWybvw+r2Yok4MtqkylatjAPLz7B0zs/Hb9szZ+bz1OnbTW+Xvk5/aZ0J08+V1zcnDGbLJSuXoLgB69o/3mLbItfamIaMzovIj1ZIdl7Fc3P4Ln9qNaiElqdhsjwBPRpekwGM5HBMZiNZrROWnqN7UKlhuVxcnWiROX3l1IKlShIUnQyNnspqEarKjy6+ARXd2ckSSIlPo30pAz8Lz9l0BzFeuXBhQB2L8lS+Jckia5ftXdwgRp2rcPpbX4YM01IksSjK0+xWq0Iu/Fsy48b4126MLsWH8JqtrJt9h5HIOSWPw/zD03h9pmHtOrfGLVGTciTcK4fU0qHt089JDY0/p1S4NFfTnF6+8VsittNe9fn6x8/Z8Wwddw7+whJlrh71p8aLSrx+YKPGb7sU379ZqeS0bRYmdt7Of2n9SAmJI6JG4ZzaPVJKjcuT6+xnej+dXskWWZI5fHEhSciSVDApxD6dD2D5/fjxcMQxjefjdlkYcrmkSwfth6LycrBn06yMyTLPFatUTs60gAmtp5HbFiWHpnNYsVisQdykoyQ7KRoCebun0jVJln75uK/AnskSVoH5JMkaSjwBR8oy5MbCOXiw6HyAefeYDgBLp+h6GuCJHsgeSgKvqmhTXFSx2CxqvjhdGMyDFokJHRPnVAHmzC9MqFFhUeoM4YMM7ctIQC4BCn8h/so5YGFK0/QanJ5zsUE4q51xhJp5fzTQJo2KMvUqm05Nd8fk8WKNkaFMcGKXCJrQXQ2WVDHpWJx1aF2d+HkmtPIcamoNSpOrT6N2WTh+YMQajarQJlqOdu2mE2KgapKraJ6k/JUb5LF5flj2yUO/HwKq8XGwi/Ws/XB9wDM3zWafT+fpn67qhxef46IF7F4FclH/oI5l6v2//wnl4/c5eOJnanXrlqOY/J62smlivohABaT9R2+yI6Fhwi4+hwk2Ln0MCOWfoosZ3XLdBnWhksHb2E1W/lofCeuHL6pTGuzkc8rL1qdhgada2WbMzYswVEOu3P6EbuXHaHXmE5onbT8cO5d9Qx3L7dsZaacIEkS3b5qy8ktfsS8ikOWJaJfxRH9Kg5JVoKJVn0bMvanLxz7FPTNsk3RaNWsvfM9hkwjzq5Z2aCYkDiG15hERmqWoGbZmiVp9UkTx+MipQrR9tNmXNx3nZ5jOvLjV+t5ejOIUau+oFabnM//m1hwbDrrp+zg9LbzSJJMmZol6TGmM/M/Wu7ojpNliRotKzv2KVe7FAV8vYi087nK1y1NiSrZg62Pp/ci4EogWictHYe04uK+6yDLIATGTBN12lVn95LDSCoVkS9jyUjNxDWvC6e3X2TF0F9wctXR4XOFp2Y2mBVRT7uYo3uBvOxZdoT05Ez6TelGcmwqv0zcpgTFUtZn0uHzlngUzkdCZKIjYH52O5igey+5fvwukcExyCoZn7JFeBkQSuCtIOZ9tAKVWqZIqUL86p8lWHjt6B0u7b/OoLl9yUzV8+T6M279+ZDe4zpRqUE51k/d4SjxHl13RjFstVhJTUjjzI6L1GlfI8fvTFpSht1RXoVrXicyktOzyubCqgRDsgw2G7O6LmLCryNoM6DZ336uucgB/8CMkBBimSRJbYFUFJ7QLCHE6Q/ZNzcQysUHQ5IkJPe54D73vWNmHv6EigUu/X/snXd4FGXf/T8z29IrhEBCQi+h9947IqACIlVAUEBRBERF6U1AqlKlKL333ntvoYUkJIRU0nuybeb3xyybrAmKz+PzvD/fN+e6vC4ze8+9s4W9z3zv8z2HhzEluBKqkAwZGVSgi8z7umWmGV43BQCSDHPrdCfJnE1EcBKTZirC0TK7PUhMyUKrVSvRAaJM2wqVcN6UwqwVaxg5qw/zPlmHJkuPTi3ScUgrjq1RDNbMRrO1O8hslnB4TRv7jVMPmTF0FVqdhoUHx+NfpRRxLxLZOv8Q/gGl2DT3oHXhy+9yW7VBOb7foGSQtX6vAS+CYildybtQN+nIkDh+nbkPQ66RGYNWcCB2eaEtvl2HtuHQL2esqdzIMhqd2iZAMzUhHZPBhEanBkHJCuvuOQwXTyeWnJ+Kl68n/lV92Pb8J+s5PuVL8CIoBlDMGQvDW8PbEXTjGU9vPyPmWRzrvtvO9gUHmbJ9LBXrlrV2SeVH6N3n/PT5enwqehMXnkBksBJ70ahLnhWZo6sD6x/9SMidcMa3m4Fao8bZ04nkuFQ8vN2oUCfP2+nA8mMcWnUSs1mi37fv0q5fCwRBsCFBoHj3mE1mkCVUGjUNOtdm4sbPrI9npGSycfpOPH3c2RG7mtsn7rNj/n5ys/TMH/ozW1/YRnEUBic3R75c/TG9vuzGZ40ncXDFSXYtOmxdNASVyKStX1hT6S0fF+9P7EkJ/+LUbVej0M+4Yt1ybI9RblyPbTiLWqNGMhtBEHh0LYSWLxJx9nQmNT6dnMxcbp8MpF6Hmiz7dC0mo5mczFyuHbpNr7HdKF+7DH2+6sGlPTcYMr0PJ349x69TdyKZJZJjUxgys2/eGicr22HD5vSnQafaAFSoXYbQu8+t1yaZJV7k05UJImh1GmSzbE2vT47Li1J5GZHA3IHLMOQaObvtCjVaViXoeihGvZG1326l+6hONOlWj/0/HUOW4a2P2tK0R33Obb/K88Bwlo5cg6O7I1siVhRwSJ+660s2zdxDo7fqcnrTOdIT0wDysvZkCSxblUaDxIkN54qI0P8xWIjPG5Gf/CgiQkV4YySmZZGRo6es9+u1Ke3qt2TqxlybY4Is4JgiUNzVkdS0bEz5xLEAdauXpmQJVw6ffmhzfMKM3fw4uRfXYsIwmhQSExyuuERr1Cr6vdMAzxwTa/rvVLpRRBBEAQdnO3JzDKjVKh6eVXy0BFFA56AlJ1OPSi3yzoh2lHpNCOu+1WcwGcyYjGYuHLjNwCqlmDV4BaGBL1CrRYwGhYSIKoHPFw8qdA6tTkOFWq8PCT6z46r1rtzJzeG1PicxYS8BGU9vV1r1bszVg3do8W5DfCsq+UlGg4lPGk0iOyMHjU7NmKVD2P7jIUxGMxnJWVzad5N38znxvoJvxZJWInRq80UeXwuhw8CWlAnI2y50dLFn8vbP+emLDRxcqfy2ZKVm8/Vbs7F3tGPQlN68PaK9te362f0IZg9cRlRwLMF3wq2akmm9F7Enfg12lqgJUMTdleuXZ+ml6YrzdLe66HMMOLo6WO0MwgIjFL2MpUKxYOhymrxdv1ACVq9jLYr5eBDz7CWjl3zI2590snn85zHrOL/jihII6+5E7TbVre7UvhVLvfZzKgx2jjpys3ORzLa3zeVrlqHx2/Vtjk19bwFProUAsPjijALWBslxqZzbfoWqjSuyfd5+rhy4hTafA3d6YgYLhq2kXoea3D//CEEUqFSvHJf33sBo0RFJkmwlMgA6Oy2eJd3wKOlOQlQysiwjS7K1Gy9/BIxaq8bZPU9KERMWn3dxAgUqA5FBMQQ0rUTP0Z0Jvh3G7ZOBDJnRN+8UMS94FuDBhSc4uTuiUou4eDqjtdNQvXkVvlz9MSq1itbvK3lqzXs0YEiVzxWhtV7xHfq9Y3ft1tWo3boa53dc4Vk+smYymBUXd1cHenzaib1Lj2LINVqtE4rwFyHzjzJUFAQhgz+oYcmy7PJncxQRoSK8EZ68eMnQhTuQZRjYvh5JaVm4O9nzSbcmaPIFNfZoUo2pG0/YnOvmZMeE91tSv3ppNu66zrmrwaRaSuMATRuU5/3u9RnYuxF9P1lrPf4wKIbTl5/SslFFlvxyxmZOk8lM3Rp+LP94nfWHVxRFnN0dmb9/HGd2XadGk4oE3Q5n84LDiCqRkTP7sPnHI5QqW5wPxhYkB6/QtldDHl4PRRQFqjepxIvgWEyWRf0VCXqFmYNXkJWew4SVw2jSpfZrZiyIvSuUaD21WsXHs/u8dtyikWtJiFSqQftXnKRmsyqEBUaQlpCBm5cLWanZZCRnKvlhBjOV65dDo1UhqgQElUCtloULsnuM6sTNE/cRBIEbx+5jMtzm2Pqz7IpdXYCUDZnWh4OrTlp/aiSTTFZaDr98s4X0pAwGfd+Lw2tOs3L8Rox6I2qNClEUMFkWXFmSeHI9lDr5toxeoWwNP8rWUAhj/ggOUATA5LsWnZ1WqXoVAmd3J9YHLUWSpD/NWgMoU600Cy9MJ+JRFM3fbfin4/Nj9+LDNiSocoPy+FX1YfzakeRm60HOE3HHhr1En2PAzlFHfGRiASI0of10S7u/iMlCbExGE+9+3pW9S48iy4ord8dBrRg0pTfFS3vi7uVKZkoWao1ayfLq1Rh/C4F9ci2EbT/sR5+tZ1qvhWx+/jPJcalkJGcybPYHrP5qk1XL5lrMmfqdatH2g7zu4vK1/Xl85SkA74zpQkJUMtGhcaQlpJPyMg1DrpHkmFSa9WxIs54NbUgQKNuY3+/4kh+HrSAzNYsaLQOYuGEUj64EU8eSg7dl9h62zt2HLMsYjSY6DGhJCf/i9B7/Nqc3XaTXuG4FSNArbJq5ix3z9xc4Lksyaq2K1Ph0Vt9fgJuXEmhbhP/9kGXZGUAQhBlALLARS2MtSkTYn6KICBXhjXA7JBqzWcJolthx/h5ZuQZUokhxNyf6trYlAM72WjIsZnCliyt7/fZuOibO3kuopaKTH+u3X+X97vXxKeGOVi1ieOVGLMmcvPAElSigVouYLMctekjGz9hN81p+xFs8YHqOaEP/L99CZ6+l/zglfqJm00q06F4PR2c7XDyc6ND3z/O42vdpTJ2WVcjJ0jO++4/kZOlxdtZZ1mTlyRXvFJmE6GSQYcOMPX+JCNVsXpnAi0GotWq8fDz5ou103Iq7MGHNxzbO074VvXn+WIkFMZvM3LvwCEEU2TJvP6MWDMTNy4V3x3Th+K/neWtYW/YvP0novQgEUaTjgJaUf40G6tbJQMwmCdfizqTEKVsM2Zacq98TIUdXB5zdHMlIyef0LSjbJsmWc28ev2fNtqrVugq9x73Nvp+Pc+fUA5zcHN7I5PH38K1Ykml7v+L8ziu4ejrTaUgbNFoNcc/jeXw1mAada+PsbmvQl58EpSWmE/k0hioNKzB66VBcijnj7OFEt4878OjKU2b3W4xnKXcadatL9P3nTOk5n6z0bKbuGkftNrYdR7dPBpLyMo3SVUpxcEUe0XfzcmHJ5ZmoVCKnNl3gx+GrEASYsX8i9TrUZMK6Ufz0+Xoq1StHw84Fvx/JcakYDSZ0Dlp8KpQkLjyeYj6eDJnZl9KVfTjyyymqNatMs3ca2hh/VqhTluU35xL3PN5G3+To5oBkNiOKitO5Vqdh+Nw8U90uw9pyfudVkOGbzWOo9ztt1Eez++Hh7Y7OXovOXssBy2sdOrsfV/ffJCo4ltFLPrSOj3waw42jd2nUtY41SqRJt3psj1lNSlwqHiXdEEWR+p1q8ejyUyo3KE9Y4Atys/WoRJHnDyOtcw2Z8QFDZtg2AeTHtcO32WQR2ReG1Ph0Dq8+xfmdV9mbtOG18xThzyH8AzVCQHdZlvNHFawQBOE+UGgcWH4UEaEivBHa16nIxtO3Sc3MoWKpYtwPj0UQBDTqgnffQzs1ZPmhq8iyTGxSBiZJYsrGE2iiC5qxqdUqypb2JCMzl7uPInF01GFIy6sW3bofQeDjKL4a2ZHLt57RomEF7j2K4vDpBxiNZlKKObLy/Pe4uDvi5Fp4ZEZJ/2KFHv8jeHq7cfvcY/S5iidKqt6AWqtGEARavdeQ87tvKCJPS5t23daFV15kWck5+n2VYsqm0YTci6BUOS/mfricJ9dD0WjVHF1/zuoWDfD1hlGM7zSLoBvPLLERoNGobNqMh03vw7DpSlVpw7RdCKKIALgWsyUJ+XFkrZLYnpWajUojYjZK2DvpbK5TlhURq1qj5rutn7PwkzWUrVaaz5YOYcX4jZiNZj6cokQqfPB1Tx5dCUZrr2XMT8PwqeBN3XbViQqOpbivZ6HZZ+d2XmXp6HX4B/gw+/DXBXQ/APU71qJ+x1rkZOUS9TSGlJepfFx7PJJZwrOUBxueLi309aUlpjOk8hiyM3LR2mn4fuc4Ri0aAsDzR5GMbzMFk9FMclwKO+YfYPfiI9ZKya9TdlqJUFRwDJ83n0x6UgZqrQrJrHSMiWoRB2d7lt+ci0olcnTdGRaOWGWtmh1bf5Z6HWpSs2UAq+/Of+3nMGnr5/w6eQf1O9WiVusAvukyh8S7qkjWAAAgAElEQVSYZBYMXcGkLZ/b5GvpcwwIAmh0Go6tP8uRX07z9OYzKtYrx6JzU9HaaclIUtr0RbVI5UJcvKs3q8JXG0YzZ8BSpryzgHknv+P05osE3Qhl5MLBVG9Whb5fKd2Xi0euwZBjREYm7P5z5p+ajD7HQPyLRCRJcR7/tLGSJv/btJ3sjF1treQIgrKFKIpKYOroBt+QFJeKnYOOH058R1RILDp7Le998VaBaywM+hw9s/stLkCCBFFAVIk2xzNTsjDkGl5bVSrC/1pkCYLQH9iG8i/xAyyeQn+GIiJUhDeCt4czx2cPV7xfcg2sP34TN0c7ejYt6NXxYccG1Kngw8I9FwgMiwXAy92J1tWrsv3AbQAcHXQ0q1+W4sVciYtPpfuHiljYZC7kbk+AXL2Rq7fDeB6ZzMTRHTlz+SnZOQYeBUUTFp9G89fofV5BlmW2LT5G0O1wBn/TnXJv0DpfrUF5SpT25MXTWN4f2wUHBy0OzvZ0GticOi2rsvCzDahUKrp/1IahU3sVOD8yJI4vO80hN9vA1C2fUq9t3taQSq2iSn2l7b5U+RI8vBIMApTIR9qyM3L4utsPhAW+yPdCwJBjJDzfnXR+9Pu6B3aOOgRR4J3RnQodA9D2g2YcXXcWJzdHdPZa4iISrAvgq+ceUecrEqKS6f1lNz6a/QG/BS22Pv791s+t/28ymihbw4+dMYrgODkulZSXabiXcMWvio/NuLmDfyb07nM+XfIhS0atJSstmyfXQ7l+5C6te9tW68IfvODrrnOUPyQzWWnZ+FT0xmw0o88xKFEgr9kKiwyKRp9jwGwyk5NpZna/xdYqwd6lhxVxLSCZZUxG86sGKgRBCaQNvh1GuZp+7Fx4iPQkxTzUlG9b1Nu/OAvPT8OzpDuyLLNs9FoblULHwa1e+97nR/0Otahv8S3qX3YUZpMZs8nM7VOB1jH3zz/ix+GriH+RiEarZvDU3vw6bRf6bOXGIuJRFOd3XmXHgoPWWA6TwUzEoyib54p4EkVGciYnNpxTNHAGMzt/PMSt4/fIzdIzZ8AyG+fpPuPf5sFFJTS478SeZGfkMKz6l6TGp+Pk5sCA73tZc8Qkk5kZfRfRY1RnqjevwuiG3xAVHEuXoW34ZOFgy2clY9IbSXmZysrbP1if59aJ++xaeJAuH7WjVa/CK7b6HANGva0BqUqjonxNf5JfppEYlddWX7N1QBEJ+nfxz6wI9QOWWP6TgcuWY3+KIiJUhL8EQRBwttcxpmfzPxxXq1wpohKUbRONWsVHnRrSuUEVGtctS3BYPMU8nJi3/AR6w+vdlT3dHalTvTRtm1Xm5w3nMRjMvExIIyomheH9m7P813MYjRJrtlyieb4k88Jw/3Iw25cdR59tIDIkjnXXp//pa7Vz1LHy3HeYTWarIPgVwh9HYTaakWWZF8FxNttJ2xYe5vyem5Qq50WmJVZg59JjNkQoPz6Z15/K9crhWsyFhp3zKrs3TwTy/HEUxkLeoxMbL/LFT0MLXJdWp6Hva0JNTUYTB1aexGQ0MWJuPz74qgfOnk5otGpr5ecVTm26YO1U27X4MB/NLnzLIvTuc8a1m47JaGbannGYjWZm9FUI05SdX9KgU77Xc+w+N44qi+7CT9ZYYzkks8SlvTfYueAgg6f1sW4hbZt/gJSXaZazZWSTibD7EXQd0Z6bR+/Sf9J7r9UDVW5YgYp1y/HoylNElWg1GwSo264mJzdeAEmm/+RedBzchkMWMXjVxpXY9/Nxdiw4hJefB7EW8bAgCji5OZCRrNxgvj2ygzVvC8DexR5jokKYRi3+0Ea8/KbIyqebcy/hStCNUGRZZt6Hy0mwLPT6HAO3Tz1AlvIaDox6Ayc3XuT5w0hUahWePu4ICFRrUpmPao4jKz2bnLQcDHojKpWKxm/XQ6NTI6pUNOvZgJtH76K109jYFAC4ebnyzaYxlK1eGpVaxZPrIWQmZ2EymEiNT+enMesYNKU3J349T1x4PNcO3uHaoTtM2fmlUjUySxzfcI4vVo6g37fvsm3efmRJYnKPeSy6MJ1K9cqRkZLJN51nAnDnZCABEZUo7utZ4L1x8XBm9JIhHFp1ku6jOlGnbQ1C7oRRv1Ntxrb43kqEBFFg/NqRPL0Zil+Ab6FVxiL874Qsy8+BHn82rjAUEaEivDEiXqZw+l4IzQLKULn0HzsyA4x9twXzdpyjcunitK6lEJX6tcpQv1YZJs7e84ckCCA1LZtzV4I5dTGIgIreJKWoAYGASiVJy8ixaobcX7Mllh/2jjqwCE8dnP/aj+PvyQZA54EtOLPjGvocA++PzetOiQl7yZb5hzDkGokIilHEvTK0eqfBa+dXa9R0GNCiwPEKtfwx5CgCWlEl0nVIa64euUtGcibVmlQq9Lr+CLsXH2HTrD3IMmQkZTJsVh65OfzLGdZ+uxVRLdJteDuqNqxofUyX7+46PjIJyWTGu6zy+Z/eeskaeXBgxQkcXR2sXV4Xdl+3IUIly5VAlmTsHHT4V/XFxcOJyOBYVGqBqwfvYNQbmT1gGfsSFcF8/oqGKAqYUbZ8ajSvytiVHxf6Gk1GE+smbSUxOpnvto8lKTaVpzdCadk7L2S0VZ+mlK5SCpNJonwtf8LuR1g9dR5fDbaOiwrOy3LrNLgVCVHJ3D4ZiCAKZOXbvhUEgUXnp/HT5+u5f+4R67/bRr0ONW2qYW+Cj+b0Y9ln6xAEgTptazChg0LWi/t4otaqFYsErZo+E7pTtoYfuxYdAlkhLJUblOfJtWBkWWbUwg8pX9ufwZU+z3O+BhDAKJu4dug2fSZ0p+/Entg56CjhV4zwhy9o+0HezU1GSib9/EdhyDUS0Lgiiy5Mp3ztMvhWLpnXXi9DpbrlCLzwmLjweOuxqJBY3Iq7kGhMsYa7Dpram3M7rhAVHItaoyYsMIKwwAhOb75ofc5X28iFwWwyk5ulp9k7DWnzQXPsHe0oaTH+nHXkWyb3+IGQO2GIosBnjSeRm6XHvYQr654sLjSjrQj/eyAIwnfAclmWk1/zeFvAQZblQ6+bo4gIFeGNYDJLDJy3lWy9gV+OXuf47OE4O/wxoejWKIBujQpqZzKz9Fy7nRcIrNGIeLo5kpyajdFk5tVvoVmSeVWjDXr2ktXzBuDkoGXygoOEhMejEkVMZonQ5wkYDSaeP4mhdIUS2DkW7BapXKcME1cMJTTwBV0HFSQdfxU+5Uuw+fGCAscdXR0QRRFRpbja9ZvQjdbvNcQ7n7uv2Sxx+eAdkmJT0NlrafVuQxuBdGJMMqH3IqjVsiqiWtE/qLUqOn/Ymo/n9ef60btsmr2P6R8sYeK6kQW6rV6HrPQcJElZbLIz8hZyQ66B5WN/tf69e8kRvlw1gn7f9OT++ceM+EER2948cZ/pfZS4iXFrPqZ17yY061HfYoon0X5ACzxLunNp7w0EBLoOa8PLiAS+6zGP1IQMPlkwgMUXpvEiKJqm3esjyzIPLz9l69x9PLgYBCji41fQ2CkLmNZOQ6V65Qi+GQwINsJrg96IxqLdAjix4Rz7fz6GSW8iMzWL2Ye/pXJ9W63Mi6BoxrWeSlZ6NrIkU6t1ADp7LZJZstl+EQRQadRotGp6fNqFx1eDla0iQSggpvar4kN6YgaSScJkMHHrxP2/TIS6jehA0+4NkMwSa7/bpoTrAs4eTvQe9zbF/TypXL88zu5O1GlTnTptq3P39AO6DGuHT0VvqjaqiJObAzVbBpCelIGUr2okqkV09jpyMnLIzdKzeeYeylb3o1XvJtRoUZUaLaraXMu+ZUetAasPLytdZFqdhuU35zKt949c3neTKg0qsHXuXkLu5P1bVqlFAhpXotfYbqS8TKOYjweSJPFVRyXMVa1VU6FOWcpUL824NtMw5BhQadQgS7Tq09SmKnV4zUl++mwd/lV9af1BMzZO24ksSSREJtH1o3a8eBLF7sWHade/BY3fqkd4YARmk5m0BCWGIykmmaSYFLzL/PlNWxH+0XgAHBQEIRe4AySgpNBXBGoDp4DZfzRBEREqwhvBLEnkGIyYJRmTJJNjMOH854WYQqH5ncGgySSRmp7DwF6N0WhUnLkUREh4PPlvDiVJpmJZL5auO8OziERkWSFndjo1jeuWZdzbC3gRHIdbMSdWX5yC1q7gXWCTzrVo0rlWgeN/FbIsc+fsY5zdHalUp4zNY66eznz360imfLAUs1nit9n7eXd0R5sx66fv4cDq0xhylVbzs7uuM//QVwCkJ2cyov63mE1mSpXzYuzPw/ht5h5qt6rKr9N3kZGaRUZyFtGhccSGxXNux1U6vaEepfsnHTi1+SK5mbm0fC+vQqJSq1CpRatJpGxJmB88pbfN+TeO3LVWey7tu0nr3k2o3qwKW8J/wmw0WwNf19ybR9DNZ5SuXIqln64j4rFiyDd/6Ep2RK+0ITL12tdgUjdFLyKqREYvGgwo/khpielKFSMnl6inUXyy8EPqtK1ujadY++1mtv+wD/9qpVl2bQ52DjqyMnKsOpns9BzMJjOiyjYA9eKua1YSBPDoSjAIIoIIflV9eBEUDTJo7LR8s/FTZBmCrofQ4t2GVKhThojH0daW//x4Z0xXFn28Cp2jjibd6r3RZ/J7eHi7cXn/TU5vumA99vRmKDMOTMTFI0/8fnn/TULuhPPeF2/hacmca9o9z8PIxdOZXl+8xe4lR3B0sadasyrcO2Pr03X37ENa/U6X9TIigdjweHwr+yieQJJsrbyAUv2aumu89e8+pUZYvxOCSkClUeMf4IsgCNYtrsToZB5dCkKWFaH59H0TLDEoSviwSzEXdkQXNLT8bcoOTAYT0aGxhAdGIEsSklnm7NZLnNlyyaqRCg98QYkyxfD08SAjOZOKdcvx4OITGnerVyBepAhvhn9S15gsy/uB/YIgVERJmi+J4i69CRghy3LOH50PRUSoCG8InUbNnCFd2HTmDt0bV8PL7fUdSb9HXHwasfFp1Kzqi0olotOq+XhgC1ZtvGipUCjVnxLFnOnStjp7j9xVMrVEwVIVgopli/MgKJpDJwNt0sr9fDz4fEgb3p97CFmG5Ph0EmNTKFX2P3cX+OvMvexbeRpZlvn+t1HUb29bHajasDx2DjpycwxIZomveyxg+Iw+VLV08dw8mZf7ZTKaCbkXYW1bT4hMwmQ0oc828PxxNIEXn+Di7ogoCtw589BKVlSWbr38i9Sf4eCqkyTHpiDLsHL8Rj6a/QF12lVHpVbx/lc9FG8XScankjctezUqcH7noW04s+0yJqOZdywmjYEXnvDgUhDt+jVn58JDHFt/jvgXiQiiQLFSHrTqkzePIAqIom1rfviDSGXBtXRj1Wqt6KjiXySSFJOCbFLCWVPiUnl0OYhuIzpYz9239CiyDHHh8QRdD6F2m+rK4mgxAkyNT+Uth/44eTjS64tuJEQlcnrzJao2rojWToMhx4igEjCbZGRZqQQlRiczeceXrJu0FS+/YkzrvVAJFFUJrPpqE7mZuSDAhsnb2Bz+s42uqtPgVrR8rxEandrm+F/Fppm7bP6WJJmvOk5n0fnp2DvacXHPdeYMUIj2jaN3WH5jbqHzfLxgEAO+74XOQcuIWhPQ5xiU8FSzhEarpnXvJiRGJ1PMx4OcrFw2z9rDjnkHkGWZ4qU9GffLJ8Q9T+DdMV0KzB1yJ4yfxqynQp2yxIa9JCokVvkMTWb6+Y1CVIssODOFyvXL41HSnXK1/AkLfEHlBuVx9nDCxdOZKTvHcedUIF2Ht7eZW5ZlnlwPIaBpZW4eu4csy/gH+OLk1paU+HSuHrhpFa6/Cr6NC0+wErfg22EcN27/l9//IvwzIctyCBDyr5xbRISK8MZoX7cS7etWsjmWmpnDxLWHyco1MGtIF/y9FAHpzaeRzNhyklLuLoRei0IQBJo3KI9GreLE+cc0qV+OtzvU5MjpBxhNEvY6DR1aKuX5McPaMH/lKTQqkQRLareDvVaRcfzO4yYiKpnE1Cy6DmrBkd8uUbdVVbz/hXb5v4Int8IUHxS1irCHkQWIkKOLPT9fnMKw+pOQJZnH158x/q15ePl6UKqsF1EhsTbjTUYTMWHx+JQvQdkapWnRsyE3jt8joEklzu+6jj7HQJKFwLyCzl7LjD3jqN60Mm+KS3tvWucIfxTJ9L6L6fxhayo3KE/yy1TavN+UnIxcRv44EFEUSY1P48Cqk5QJKE3L9xpRvqY/u2JXA0pl4MmNUCZ0mIEsw95lR8nJyLURdkc/i0MQRVRqFZIkMWrhIM5uv8KmmXto2Lk2Y1cNx7OUGzo7LfpcPa7FlcwzAO+yXlRvVoU7p+5bydOZLYqe5KsNnyIIAk17NuDSnus4ONtj0BtZOGIlPhW8lQgIlKgRs8lMekIGG6Zst7ZYP7j4hDlHv8PLrxiRwTF8332etXV+yPT3afFuI1q824j3fT/OM5E0ywoJApAhOTaVqwdv0+JdW8JYmE3AX0WzHg15di/C5ljEoyiOrDlN+wEtmPfhz9aut+z0P77ZdXR1IOJxFC17N2b3osN4l/Vi1qFvSEtI48vW0zCbTAz/YQBBN0I5v+OKVaOTEJlEvQ41KVaqcBf5eR8u5/mjSHQOOiasHYlBb2TnggMIokhYYAToYeWXv2HvbEf/Se+y9MosQm4/48RvFziw/DjdR3WiYZc6NMwXvfIKv03bwc4FB5EliR6fdmb/z8fYMmsPDbrU5sWTaMVJWhCo1qwyOZk5vHgSoxh4Gk2IahUe3oVn+xXhL+Af5Cz9d6CICBXh38K28/e4ExKNWZKYtO4o3/dvT+XSXkzZeJzY5AwiE9JwsAMxzcS9R5GkpOVglmQu3XhmY5JYorgzaov4193NkTFD23DxeihnLS63Hm6O1AzwZUT/Fly+GUpGpp4X0cl4uDlQqoQrn/7wAaPn9n1tVMXfiY+m9WLWhytx8XSiY/88V97QwBccWnuWxp1r0bhLbcpUKcWzB0qbu9lkJjY8gcSYVNyKu5CVnoM+x4DWToPOXouHZVtJFEXGLh/KiPrfcuv4faW1WxTwr+ZLVmoOIXcVPUalemX/EgkC8KnoTezzeGRJRhQFcrP03DnzkKPrzqLPNVCyrBcbHi+yjp/edzFBN0JRa9W4FnOmVqsAm/d3yai1VmKVnpSpiNAFQFA6rD6Y2JMzWy5Zt6eOrT9HWOALzCYz53ZepceoTlSoUwb/ar4E33pGdloOt04GUr9DTVQqkR+OfYvRYCL49jPGtvgeWZI5t/0Kw2b3o5iPJxN/+4x+376LWwlX+vuNtBo6au00fLd1LBFPotg0fSeGXKOSdC8KaLRqtHZaytX0w9HVkfTkTBxc7MlKy6ZcTX/O77pGQNPKVKpXjsoNKnD1wK3Xvp9zBixD/k22CoL/Lgz47j38q/mSEJnEma2XeHY/ArVGhWcpd6uBJQACfLdtbKFz7F9+nC2z9xLQpBI3jtxBVIm06duML1crIvNLe65hMpowGUwcWnWKuPCX1mojQDEfj9eGBQMUL+1JzLM4QMazlDvVm1ehw8CWXN5/k1kfLEGSJIJuhGAymnl4KYi3P+nA/fOPCbkThkanwZBrpOdnXdBoCy5Bd04Fos/Wo9KoOPKLsoWMrNgpJMUquWYarZqQO2EY9UZKlvNm+A8DcPd2I+haCK0ssR1FKMKboogIFeHfgr+XO2q1iGSUCYqK58MF29kwoS9iviRPwUmNk0nNqMGt2bDjKnEJ6RgMJisJEkWB8hYfoMDHUXw5bRcIULFMcXSWH8o2zSojSTLb9t8kI1OPWiWwdOb7lPcrhs5SRfhvkCCAirXLsOGe7XaELMtMfHs+Wek5nNlxjTXXZzL/8ER2/3Scc3tuIIoC8VGKC/Xo+f2RZRnfCt68fJFIpTplbCoJSbGpvHyRaL3rF1Ui733amVLlSzBr0M/o7DR8vW7UX77uiRtGcWz9OdyKu3Bw1SkSo5PoOboTqyZsAhnMJomLe65zbMM53v64A1npOZhNEhqtYO0Myw+34nlJ8yXKFGfu4a+5c+YhjbrUwctPqcr5VvRmau9FGHMNhNwJR2unQaNTAnM3zdpNclwaOZk5SJaOocUjf6FqowpMWDcSrU6DRqumSsMK+FYsSUJUEm5errh5uZKWmM7ohl+TEJnEJwsH23QbGfRGQu6EMWByL3wrliQ24iX7Fh+lRsuqtO3fkkr1yuHoquRrLRqxmnRL23vo3XBkSWbuwGWse7yI1n2a2BAhnb0W73IliHgcCTIY9cYC1b2/Cy3eacS2efuJeBSFAPT9qodVz/PWiPZc2X+T/t+9R4XaZYgNj8fJzcHqsi1JEsu/2IBklrh28DaCCLlZepuOuEbd6rFp5m6yM2RyMnOsW7WuxZ2ZeWAi5Wr6/2FX4nfbvuDkxgv4VixJ9eZVrMeb9WiAfzVfIp5EYcwxIgiQk5XLzoWH0NppkSQZfbaB1V9t4viv5/gl8McCcw+d2Y/pvX8kJyuHrFTFYsHZw5EvVn3MnP5LkUxmSlfx4dn959aKXbOeSkxKQONKBeYrQhH+DEVEqAj/Fro0qIKrox3fbzhOcmY2GpXM9aAIhnSsz8ytpwHIwczauf2p7FucFo0q8Cwika17b3DhegiyrGgggp8p7bdRliRrvd5Ert7E2h8HIggCfj4e6PVGklKykCQZjUaFp5ujlQT9TyEqNI7oZ/HUaV3VZjGWZQkHZzsGftODAV93x2wyc+XwPTxKuFK9SV5run+VgoGfXqU9adCxJlcPKXfyarUKnwre+FTwZsXVmW90Xae3XWHF+I1UqFOG6TvHorXT4ujiwHufdyX6WRzrvt9ObraestX9GLlwMA8uPuGt4e2Y2HkWRr2J++ces+jcFDbP3od/gA9lqvkWiN/4dtNnLB69FpPBxMQNo3B0ccDe2Z4Fw1ehVqsYtXgQv03fjdlkslaOSvgXo+uwdhgNRjbO3IMx14hKo6J608q8eBpN/ItE0hIzuLj7Ou36Ke3cKpWK5bfnEXo3nPK1/FFr1Nw8do+0hHQks8Tmmbv5cs1Ijqw5yaOrwejstbTs1Zg5/Zdy7dAtS+VNy81j9xj3y0gbsz1nz7zAUVmSUWtUOHsqhCI329YJ/edbc8hIzOSrjjMxGUwU8/Gg28cdeFOYTWYeXwvm0ZVg2vVrXqhfTn7cOHoXfY4BlVq0upoDfLJgEJ8sUMJ+t8zew6ZZe1CrVfx8Yw6lK5dCFEV8KnqTEJmEqBLxq+pLQmQioyxC9OjQOMY0mUROpp5vNn7KgeUnSIhUfHhKlitBlXzWCfkhyzL6HAM6e8VYtMeowg07nz+MVFr9dRpqt6nG/XOPMeQacPNyxcXTkRBLx2jEo6hCI12qt6jC1siVDA34gpfPlUgeD293pvScR512NfhoTn++7TrLot0S6fJRuwLXUIR/A3nNuv8oCIJQCVgBlJBlubogCDVRYjf+9EeziAgV4d9G04AyzB7ahVlbT5FjMLH84FUc8hEUSZIJi02ism9x7HQaqlUqSdCzl9bFUaUSGGYJfmzXrDKXboQSFZvC+JEd8c+3WOh0GkZ/2IrtB27TqVUAJYr/aajwfxSRwbF82mYGAgL12lZjzr5xHFh9miZd61jb5Z/eCeebnj8iCAJzD4yn4p9kbkmSxLP7EYz9eRhfrhjG5QO3qVCrDD4VvG3GvQiKxt7ZnuI+hWs4Vn29mYyULJ5cD+Xuucc0ypdzdWz9OUWILMtsm7ef6XvG02FAcy7uuWH101FpVPgH+DJ25XBG1J3I7iVH6Pxhaz5dMsQ6j7OHE4YcAzeO3WNMs8lUaVSBwPOPSYhKQhAEfhoj8fxRJGajpfKnEokNj2f999vxC/DFbFIqXmajmdT4dGo0r8qt4/dBlilZzlbsbuego3qzvMpD6SqlEEQBQRDITM1i8Ser+eXhQox6A5N7zuO7t+eSlZZlbUE3WITrWek5NkRo0tYvGFl3IvGRiXiW9CAtMY3gW2Gc2nSB9gNbsXT0WsxGM1p7DV6+xfCv4svP12eTFJtC3fY1CjV0lCSJDZO3E3rvOcPn9qdsdT9+nbqDzbP2IAgCokrg6Noz/Pp0yR9+F/pPepfJPeej0qisIvLf4/TWyxhzjQj2AvfOPqJ05VIcWnUSjU5Dh8Gt6TuhO15+xchIycTBRWnzvLj7Gllp2ZjNEnuXHmXmoW+Y3GMe2enZ9BjVCaPFryg/ZFlmcs/5XD98m/qdajPr0NeFVmAfXw2m46CWnN91jbrtavDtls/Zs+QIQddDGDSlN4ZcI581/hZJkq3dZa9w++R9IoOi2Th9F1np2Yo+aNlR1Fo1L4KikSWZG0fuEv7gBTKK4aksydTv+O93ghbhfwXWABOAVQCyLAcKgrAFKCJCRfjvoFEVPw5MG0qTL5ahN5oQBQGdWoXeZEYlCtSvaBtpUbOqD6eTMqy+NpdvhFK3hh9Ojjpmf93TOs5kMvMiOhnfUu5oNWr6vF2fPm/X//3T/48g4mkMAgK52Xqe3gmnct2yTFj5kc2Yg2vOkJ2hbCsdWnuOsUsH/+GcC4av5tKBW6jUKlbfmkOXD1sXGLN72TE2TN2pkKvDEwlopNzBy7LM6a1XiAyOoUItfx5dVRoo/PP52Ty4FMTxX8+DoGhpGnauTWZqFtP6LOLprWfIkky7fs14d0xXtHZa7p59hD47F6PexNkdV22IUHZ6DjeO3gOU8M3IpzHKAwLo7DWUq+lH4IUn1m4xUSVafHrMhN4NtwkRTYlPY8WtOZzfeQ2fCiUIaFyJzNQszu24SrmafjZbHkd+OcWyT9ei1qqxc9SRk5mLWqMiKjiGu2ceEh0ciyTJiJb5dY463Iq70HV4+wK6Fxd3JzaH/4zZLNHL6yNrN9LCEasUjxu1CrPRjGsxF+v2pdksMX/IclQaFTMPTKSYr6dNa/v1w3fZu1Tx4Yl/kcgvgT+ye/Fh664l41AAACAASURBVGdkNslkJGdYx8uyTFpiBs4eTjbvSUJkEqIoYMjW8+uUHcw58q3Ntd84dhedvQZRJeLo6kCTt+uRmpDOT2PWYzaZCbsfQcv3GrF17j6O/HKaUhW8WX5zDnXb12TTzD2IZom2/Vrg5OrAhPWjGFF7AktG/cLZbVeYdehrm+dKS8zg5jGlm/P2qUCeP4qkbHVbC4HrR+4yo89CBFGg+6hO1rDXPuNsnc5XBy7g5fME6nXIC3y9uPsaPwxehsloRjJLyJJM4LnHHMjYhEotMqbJJF48iSI3S09MaByCAL3GvU2nD9vgH1CaIvzN+AdWhFBME2/8jqD/sWuvBUVEqAh/Kwa3r8/qo9dwd7bHx8OVEh5O9GhSneK/a7efNKYLer2JK7dCMZllTl4M4mbgC7atGIbW0nosSTKffL2F55FJlCzhyvpFg1GrCo9U+LuQnZnLknGbyUzL5vMF/fHyLbziAtCwQ02qNa5A2KNIRs0rPNKmcZfaXNh7CwRo/AYeRrdOPUCfbcDOUUfoveeFVnyuHLiFIdeISi3y4GKQlQjdOvmApZ+vx2QwUa1JJSZv/Rzfit6U8Mvrolsx7jfSEtLRaDX0/qIbbw1vx9Dq44h59tI6JujmM6tPTvWmlXEt7oo+J5EeI239kBxc7HFwsS/QuaRWq/hi+Ue06duUbiM6EBUSiyRJODjaMXvAMhKikpUgWrUKQRQxGU2AjM5eS8dBLa3zfN9zPiF3whEEgaWXZ1C2urLgHfnlNCaD0lbv7uVKTpZC1Lz8ihPQuBIancZKsCWzhFqtYlPYcuu8Br2R2yfuU7qKD74VFU8ilUpkwPfvsmrCJmRJRhBFUl6mWZsU8/+07lhwgGTLFu5nTSZhNksMmfE+709Q3P0dXe2RZRmVWoWzm7L11vitulw5eBtREChbw48hM/sCSsfgxE4zeXQlGL8qPvx0fba1c07noAMBBJWIzkFL/ItEPEq6odaoyc7IYVqvHzHqTai1KtY9WoiTmyM5Wbk2F3twxQmuHryNZJZIjEri2d3nVG9ehc3hP5Gbpbf67EQGRYMsk5ul5+mtZwW+cy6eTpSvXZawwOdIJolRDb7h4/kD6WmxUQAIf6gI4U1GMyF3wqzH0xLTycnMtRob+lf1xb9q3o2R2Wzm9JaLGHONSFLeCqyz11rfi4Xnp3F5303m9FeqaLIMddpULyJBRciPREEQymOhcYIg9ALeSMRXRISK8Lfik25N6Fi/Ev3mbCEmKR1nex0zBncuME6lEpky7i12Hb7Dyt8uYDSZSUnLIjUtB69iigg3K1tPSHg8kiQTGZPMgRP38C3pQcPaZf5j139g7TmuHLmH2Syxesouvls74rVjtXYaZu0uvGvnFZp3r0eFWn4gCHj7/Xlb/8BJ77Dyq834VvCmWpNKrP1+B0G3QilV1osuQ9owd+gKEiKT0GjVOHs6ce3oXTbO3sfASe9QqrziKWQ2SYTee45Wp7YhQQCV6pUjOjQOSZKp17EmJqPZhgSB4uETG/YSnwrerPpqE8lxKXQZ2oZBk3sR8+wlG2fspmyN0vT+shvLLs9gyehf8C7nxb0zj0hLzGDc6hG07qN07niV9sSrdN725qZnywi+Hcbm2Xup07YaidEp3Dn1gKEz3y/wXryMSMSQa8TOUUdSTDKX9lxj18KDlK3hh0qjQhQFUl6mgqx8FlHBMTTt0YDFl2aSlpjO8rEbiAyKpvf47jbzTu+1gPvnHoEMK+7Ox7diSa4fvsPaSdsUPVbFkvhWLkXPMV3wKOXOvbOP6DsxL8KobrsaXNl3E6PBhFGvELJDK09ZiVDNlgF8/dtnRDyO4q0RikfO1xs/IzIoBi+/YjbC+DkDl1ldtWOexRH5JJrylu936z5NyM7IJjEqmdC74Qyp+gXF/Yqx6s48S5VNuSlQqVRWYbNRb6JO2+rcORWIqFLRtEd9dA46zm67jFtxF8pZtmZdi7ngmu+rUaddDWq2DODprWeMXFiwaimKIksvz2DzrD1sm7cfY66Rw6tP2RChLkPbcO3gbdIS0xnxwwBA8Rsa22oqklni4wUDC9UV7VxwgJtH7yIDTm6O6PUGjDlGxdjSAp29jjZ9m3F+xxWuHLhJvQ61aNClboG5ivD34J9kqJgPo4HVQBVBEKKBcKD/m5wovC7b5f9H1K9fX7516/XtrEX4/wNRiam8O/1XjCYJN0c7js8ezpdTd/IkJI7h/VvQt4ft1taydWc5cDKQ9s2r8NWojlbdgCzLTFt4mNOXgl555KHVqPju8660afbXWsffFCe3XeXnb7YjyzJdBjTjk5l9/iPP8ybY+9Nx1ny31aqxcXC2x2Q0Ycg1UibAl8+WDGZSj/nkZhvQ6NQcSPyFn774laPrzyFJMo6uDuyJWWkzp9kscevEfYr5eFC+prIodnYYYHVZBvAs6c6vTxeTlpDO4KpjMRlMiCqRndErGdNiMtEhcWjttUza/BmNu9ZFlmWuHLjF3EE/I4gCHQa05LNlQ/h3EXjhCSvG/0ZAo0p8vKA/3RwGIMsyGjsNFeuV47El+kEQBGq3rc7Mg1/b6H+UbShzAXPD90sNJzkuFZ2DlmrNqtCoa12eXA/h3ParALh7u5GVlo1HCVfWPlporTDl37YKuRPOZ02+tbac95nQncoNyvPbtJ007d6AITPef6MuxoEVPuNlhCIILubjwYagxdw//5ija8/QeUgbGnapgyzLdNb1Q5ZldA5afjw7lUp1y/H4ajDndlyhdZ+mBDRRtg6/6/4DN4/fQzYrFbHuozry6dKhJMWk4Obl8m8ZPQLEhsczsv5EstKy8atUigVnp+Bewu2147fN28+G77dhNkkENKnEkkszCoxZOe5X9v10FGToMKgVDy48JibsJYOnvU//Se8VGF+YwPp/MwRBuC3L8n9ND6ArXVr2HfvHN3h/F8LGjfvbX5sgCI6AKMtyxp8OtqCoIlSEvx2ujvaIgogoSMhA4ONogsPiMRjNrN92uQAR+mxoGz4b2qbAPEGhcdx/rARvvlqmDUYzkTEp/7Frb/9+YzR2GrLTc+jQt8mfn/AfhFqrsiEo+hw9aq0anb2Wxm/VoVQFb3It3jlGvYlHV4Pp9UVXTm65hElvsskvewWVSqRRPhO70HvPcXRxsEQeKO7PXT9qy5R3F1j8g5zITMnG08edJ9dDrdUjk8GERqOk1o9tPY2nN5+BoHRehd4L59Ca0xQr5U7jt/71u/aaLauy4sYcQFn8/Kv58vJ5AmqtmuCbeds3pauWYt7JyTbnXth1lYt7rvPOZ10IaGJLmkcvG8rPn61Dn2vg7qlAHl1+Sr9v3+XK/lsIgkCKZdsrOS6VsMAXzB20jJjQON7/qgfDZitboBXqlMHBxYHMlEw0Og3eZYszw5LDFvvsJW3eb4q9sx2yDCX/wOV89JIPWfTJanwrlGT6gYmYjGamvrcAo97E9SN32BG9GkdXB9oPbMmpTRfQ2Wv5tNG31G1fg1mHvrESoFfIzdIjmyVrI8KB5ScYuXAwxV4jqv+rKFnWi/odanJ+5zWiQuPY+sN+RhVSQXqFlu81YueCA2Rn5NJnQvdCx/T/7j2SYlKQzGY+mtsfF09njAaTdVvs9/i/RIL+x/DPqY9YIQiCJzAFaA7IgiBcAqbLspz0Z+cWEaEi/O3IzNFjNJmRZEjLysXLyxmVSsROp6F2IRlNr3D2ylNu3ntOr7fqUs6/OCt+u0CixVn6FSqVK0HPvyEv7HUQBIHWPf+7Yuywh5Gsm7ydMgG+DJ7cy9qx03VoG85uv8qja4rouePAlgyc9A6pCRmUq1FaCcXM94N1ftd1SpYrTnEfD/yr+vLx3MJ1S/kxvv0McjJzEUUBNy8XkuPS2Dx7r2K6qBJxcLLDbDIjmSQWjVyDIAjIyHiXKY5LMWe+7fYDIXfCFesAWTFtdHR1YOX4jQgCTNo85t8iQ68gCAJLr87m0eWn+FUpxaeNvyUzNQtZkkmKTuHwmpO07deCiEeROLk78sOgZRhyjVw7eIvtscp12zsqW1It32tCy/ea8HmzSQRdDwWgXE1/llyawfb5B0iISuLR5adUa1aZhMgkYiwdjtt+2E+P0Z0xGU04ujqw9PIMzm6/Qr0ONZk7cJn1WiVJ5vG1YJaM+gVZlun3zTsMmdG30NfV+K16bI/My9nKzdZbt7xEUUSwuGpPWDuSET/0p3dJZav24aUgYkLjKF3Z1n7hq/WjWDVhI7dO3MdsNFOhTtl/qQqUm60n9E44ZWv64eiSFyp4/9wjLu29qVyfSrRux74Opcp7szNuDbIkF+pLlJutx97Jjklbv7A5np8EGXINnNlyCS//4tRtV+Mvv5Yi/J/BNuAC8KqM2B/YDrR/7RkWFBGhIvztKOnhoohMZdCoVSRn57J1+TCiY1Op/Ls28FeIiEpi1pKj6A0mLt98xv71o6hepRSPg2PRG0yIosCwvk0Z1Pt/tkoTdCuMSb0Wo9KomLd/PGUC/lrC+O+R8jKNT5tNxmwyc+vEA4r7eFhFySq1igiLTkJrr6VMgC8uns54llRiTOyd7GjduxHndl5HpRY5vumSEjgqy7yMSGTi2k8KfU5Jktix8DDRIbFWo8RXmW+gkA6VRlmEMy3hpHEWPxdBFPCp4M23mz5jaq8fiY9MQkBApVZRp201Zh/6mi8tqeJaey2JhVTvYsPiWTRyNc7uTny5eoTNQvtHsHe0s7ZK//JwIUfXnmbT9F1kpWWzavxv/DplB9lp2RQr7WlNXpdkmT4lPkKWZWYc+Jq67fM6lb7b/iVbZu+mTLXSNHqrLoMrjSH22Ut0jnYsPD+NGs2rkBiTbK3KiSqR2QOW8vjKUzR2Wn6+PpuB3/cCoEGXOhxfdxazWWLyzrHsWXzEet6epUdfS4R+DzsHHfNOfM+ZbZdo3acpDs55VT0XT2eqNa1E6N3nuHu7Ye+kIys92+b98/Irxvfbx5KTlUt0cCxlqv91MbEkSXza+FviwhNQqUXGrlI0X7Iss2vRYavtQfla/vQY1QlZlrl26A4qtUiDzrULVGxEUYRCehwu7b3B7AFL0dppWHJxBv4BioA6/kUi49tNIyMli6m7x3Fo5UmuHrgJAkzf/3URGfpv4B9YEQJKyrKcf+91piAIBcWHhaCICBXhP4JmAWW48TQSR3st5Ut64Oxgh9sfLHi/T5oHGN6vOXWr+ykCVm9Xins6v+bs/x72rjhFlqVL6vCG84x+TbfYmyL2ebzViFGWZcIeRLJ13gG0dhp2LjlifS5DroEVEzezd8UJ1t6Zy7b5h9i55AiNu9RmX/xqdi89xqY5+5RJBQE7RzvU2sKdgff/fIINk3cgy6DWKttbKpXI1xtGceK3C1RpVIFTmy8Tej8Cr9LFeBmRgFqnBlkJe11w6ns8vN3QOehQqUREjYrSFUuSEJXMs/vP+WL5Rywe9QtefsXoMKBFgedfMf43Ai8EodKoOLzmdIH26jeBi4cz7fq1YMvMPdg56jAZzKRkKFta0SGxqDVqRJWIi7sTidHJgNJtlp8IFff15PPleWL49MR0QMaQk2vNN3Mv4cqwOf3Ys/gwJct58fDiE2QZ5BwD984+xM9iTfDpkiF0HNSKYj4eeJZ0R59t4N7ZRwBUblDuL722qo0rUrWxralh5FOFEM8/NZkXT6IJf/CCQRU+RVSpWHBmSgETRHtHOyrUKfuXnvcV9NkGIp9EW/8dzv9wOV5+xQh/8ILbpwIB5XswbHY/BEFg548H+W3qTmRg5MJBvDX8T2/AASWfzmQwIZnMXNp3w0qETm+5SHxkEpJZYuP0XeRk5FiNHF8+j/+XXlMR/k/ghCAIfYEdlr97Acff5MQiIlSE/wgWftKdZzFJ+BRzxTGfgPV1KFPak4mjO3H9TjjvWzREgiBQ/08MCP/bKFejNJcP30UUhQJhq7+HQW/EqDf+YcWjcv3yNO5am1snH1C+tj9nd17DZDRb77qtDPH/sXfW4VGcXxu+Zy1GEoIEYhDcLbi7BndocSjFKdYCpXhxhwLF3d0dgrsTJECIECcuazPfH7NskpIA/Ur7q+x9XVxkZ2fekWx2zrznnOcx/Rf6OoKwgEg2z9iHJMGVI3fo+n0rqrXwYtfCo+h1Bmq3qcTX49tkmhK5uO9GmmEF6nWtjnef+rx6EECdTtVwzOHALyPlNvKwwCgKeuUj8FkIkigxdf8osuWWi2N/PvQ9R1afIToslrPbr2DQGVg5ZguzT4xn/rmJ6a9Fio7HV5/jlMuR3J450VirQeCTtStxUfHcOf2AEtWLfqDEnMMtO0tvzOChzxMWfvureXm+Eh68eRqMaBSJColGEARUGhWNetTJdD9Go5HEWNnOQalSYutgg16nZ1DFHwh8Gkz5RmUoV68UT2/4IRkllCoFVdPoWQmCQJEKBcyv63SsRp5ibrz1C6PyZ6YG/e69Ztfcg5RvVAav+qWIi0qQ/c92XWV2z6UAjFk3iNodq7Hqh80mTSYDlw/czFQN+v+DTRZrWg5qzP6lx0GSZwGT41MIehEify4FqNWhKuXqyZ//148C0KboEAR4Y6rp+xwa96zD0+svUKqUVGqSWrdWrEphc3q4crNylKtfigX9VuBSMDf1TGrjFv48BOkf2zXWDxgObDa9VgCJgiD0ByRJkjJV4LUEQhb+FJQKBYXdc/6ubRrWKmZ2oP87cv/iU7bOOYSgEGjUtTqVG5XOdN0Q/wiG1JtGcqKWwXO60jSNPk5alEoFE7fL9RE+e28w99tVZpNShUrAoDWi0ihl3zFJ1lZxcnYku6sTcVEJ2NhZk9M9G7b2Nux4tQS9zoC9k12G+3pP1Zbl8b3hh2iUMOqNnN95ncSYZO6ceYQgCHg1LGVO62TJasfrh4EYDSJWthpznQ1Arrw56T21MzeO3+PCrmuobK3MnWhpEUWRAZXGEfRclvSo1qo8gxb0IIuTHdVaZl6PJUkSAyt8T2xkHCqNilUP5xMZFEWBsp6oNWpC/cMZWnU82mQdxaoWJuhZCHU6V+erH9sxotYEgv1CkUQJxxwOrH++mCxZM78uSqWSMnVL4HvtBdlyZ8W1QC7evgwj6PlbDHoj14/coffPXfDuV5/osBgGLOz1UYuM++cfc+/8Ixp2q52hsSjIgfLO2fvRaw10HtuGcU2nEx0Wy8U910GQUCgUdP6hDaGvw+WUJ7KIYu2O1Wg5oDH3zz5CpVFRu/2XTxcPWtiLZn3qs27CdopUKohXg1LkL50Hvzv+6HV6+kzvYl63+8QOBPgGo1QpMy2IzohG3WtTsXEZ2f7FUX5YuHbkNlM6LsDa1opRawaQx2RBs+zmrC97ghb+dUiS9P9OGVgCIQtfnMCYWDbfu4eXmyuNC325J9W/goSYRHz23aRQ2bxkyWrHroVHKVIhP4271eL53TcYDSIGvRF/3+CPjnPz1EO0yTqMeiMHV53LNBB6z4U91wnyC6VJ91qE+kfSbmgTfPbd4NTmS2iTdWTNaU/NNpVoO7gxs/quJDYyHiQYsbyPuY7E2s4KazurT55j+2HNiAmLZffCYwCmmZMYdCl6k4idCo213DLu3bceTrkc2TJ9H171S5o1btJSqUlZZhz5gdjIePPshyiKspihWkVyQoo5CAK4cuA2o1Z9+8naIL3OQESQnCJRavV08eiPQhAo6JWfn4+OY0D5MeZutzD/CPZErDVv++uD+XTLP5B3ITHmAu5PMevkBA4tP8HW6XuZ0HIWP+0eSU6PHLz1CwVgXp8VLLsxM8Ntrx66xeuHATTtWx9tkpZx3j+j1+o5tuYs29MUQ6dl97yDbJ2xD0SJpIQUFEql+doB6FN0XNx9lTzF3bHOYoWVtRVth3kDULVFBfZErUOpVKSTDPiS5CuVhyn7x5hfO+XKypzTEz5YL7enM0uv/fz/2kfa1vtHl57yU5s5IEGi3sCFXVe4vP8mCAKj1wwwm85a+AuQ/pmdeYIgtATef9melyTp8OdsZwmELHxxeu3Zy5voaDbfu8+uro4Ud868ffjvxrhWc3n9JBABgeyuToS8Cuf0tsu4FchNg85VObPzKiGvw1FplMRGxeOYSd1S+XolWD9N7r5q1jPjIMigN3Bh3y3CAyLYNvsgBr2RMjWLMuOgfPOxdbDhxAYfVBolnsXdGTxfNtoM849ArzVgZasx23f8HgRBICwgtaPUzsEGvVZPdlcnytQuRs+J7ajYqAwGvZFG3WqiVClpMyhjg833lKiW2qIe8iqcoTUnkBSXzNhNg6nRuhK12lXCZ88NANQa1Uedzd+jUiup91VNrh64aU5biZLE81svuXv2EXpdqnp++9/UGcW/S5CDReDZTT/iouJxzPFxb7o7px6wbOg6ABJjn3Lj6F0GLerFFJOC83vLDkmSWDp0LdcP36bbTx3wKObG9M4LMOiNXDt0i5FrBsjriRLJv1HdTos8yychIfutzTr5I/uXHqdgOU+2zdhHTHgskgQ+u66hsVIzbMU3FCjjad4+7ezcv4HFQ9aYU8CSBMkJWnQpegBuHr9nCYQsfBRBEGYCFYEtpkXDBEGoLknS2E9tawmELHxxtAYDIrLSv9bwWVYvfxtC30SgS9abCnANSKZvZkkUcXJ2oHKj0uxZdpKHl5+zfuo+hi3snm57o1Hk7M5rAGx6NBuDzpBpsLRi3A5Obb2CUacHUZTNRyPjubjvJiWqFcL/cRAIAkiy1cV7Rq7sx5LhG8hTxJWarSv+rvPbvego+5acIIebEwqlgGiUSIhJIiEmCZVayeX9t/DZc4Mu37eky5iWnxWw/JZL+2+QGJeMUW9kRvdl9Jkexfgtw3AtsIOdcw+R0yM7wS9CmNZ1MQa9kSY96+BWMDe1O1RBEGTvNisbDbsXHuXywdtIkoCgVCIZ5bqpGm0rU6ZOCWyzWGPQ6mn3XXPaf5c+EMrq7IB7IRdC/cNxLZAb+2xZMjrUdOxfetz8s9Egkq+kB54l89Dr567cPnGPbpNkcc1XD95wYt1ZtEk65vX9BbfCrqZtjMS9SyBvcQ/6z+nGlYO36DK2Tab76zSmFSmJKehS9PSa1gU7B1uG/dIPAO9+sqv9yDoTQTIZgptmiv5OGPQG/B8F4lbY5Q8HZrk9c+L/KBCAyt7l6DGpI3fPPkSvNZC3hPsntrbwRfln1gg1A8pKkiQCCIKwAbgLWAIhC38uOqORoYcO8yA0lAn16tK0cGF+bdOaJVevUtnDnXKurp8e5Hdw5u4LHr0OoWOdsrhk+/Lu82NW9+fXcdsoXaMorb5twM75R3HJn5PHN16iVKuwd7KTZwYkMqzF2bX4ONvmygab0eFx1GlXkf0rz1C2ZtEPWu2D/MLQJutQqZUUq5Qfa2s1vjdeMrvfSqztrKjfuZqs4SOKBPmlppbyl8pD4261MBqMZi8s/ydB7Fl8nDK1i9GgS/UMzy0lMYU143cgGkViwmNp+HUtHl1+SrCfLJL4XiXZoDeyadperh66w+JLk9MpKn8OXvVLsmnqHox6IwadgVU/bKVpr7qc2nQRUZR4FxrD2gk7CXkld8xtnr4HtZWahJhEQl6Hs2fRUTwKu1CsSiFTQTAUr16E0JchpCRo0dhocMiehc3+y0mMSTSnV2Ij47h39hElahQlh2s2lt6cSfDzEDyKuqFQKEiISWR0/cm8fRnKqLWDqNm2crrjbtS9NndMXVGj1w0iXym53un4mrOE+ocxtvE0NvotJZuLEwqlQjZkNRgJevaWPMXdyO6SDe9vGvDwoi8tBjSm5cAPrWXSkhSXTHx0ItldnbC2zTilOXbLUDZO3oV7YRdq/OZ4/w6MqDOJVw/e4JjTgbWPF/Dk6nMCnwVT/6uany2L8J7srk6ytxoCufM6Y22rQRJlv7h1E3bQdpj37/4sWvjPkRV4Z/rZ8WMrpsUSCFn4Q1x5E8DlNwEk6fVMPH2WpoULU8w5J7+0+vyiyc/lsX8oP647jt5g5NIjf3b91P3TG/1OKjQoRYUGqTolI1f0pWuxUcRExqPWKPn12hTzbJF37zofbB8Z/A693oAAhAdFMbT+zyTGJiGKIrny5mDgjC7mbrOBM7swd9BanJwdGLOiL89uveTGiTmAXB/ToGsNnt16hTZFT/cfU60G9iw+xqbp+9DrDOxZepz5J8czvs1cIoOjubDnOvlKuGdYtKy21uCUy5G4qHgMeiMKlYL+s7/i527LAOg4sjl7Fh3DEJsEEvg/DiQ6NIYcbtnwfxzIxPYLUFupmLZ/lNlA88iq01w/do9Oo1tSwqRyXKCMJ6sfzKF/+R8QDSI2DtasGb8dURTRWKtRKBRUalKGhxd90esMiEa57ioi6B2HVp6Wu9XeRNKkV10KeXny4qYfwU+D0CbpSE5I4cr+Gzy6VJ8ytUugyZWVq4dusWLkBqLeRgMSao0axxz2hLwOZ/CS3uZ00tWDtwh8Fow2SceasZs/CIRqd6xG6TolEI0iZ7de5MAvx/Hu14DAp0HmYvGIoCgKlPFkxZ05bJ+9nzObLwJyOjDoWQgPL/qiUivpOKYV3SZ0+OhnbeG3v3L98G1UGhXO7jmo3qYSw2r8SERAJG2GNaPvjK/J4ZadEb9mrAf1v0avM+BrEvuMCYtl68972T5zPwqlQrZcOTb+d40nGuUCcVESeeMbhLW9NQqlArWVCvtsWcySBhYsZMIM4K4gCOeQExK1gB8+Z0NLIGThD+HplBVJkrBVqynunNolFpmYRNcdOwlPSGBhc2/q5P//aZqkJUVvQBDkOpEU/V+TcpMkiYS4JESjiCQp0SXrad67Tqbrf/19SyLeyi3bXUZ6c2zjRYx6OaXz9mU4cwasYccL2YohTxEXFp9OvVmEvI5AoVQgGkUcsmehYJm8LDjzYXFqXFQCep1BFjp8HcGAqhPM9TAAZGJBoFQq+O6XPvzYZi5IcGbrpVR/LWdHuv7QilYDi7jFZwAAIABJREFUGzKuxRye33pFqZpF5ad0YOvMA4T6RyAoBPb/cpJvZ3+N/5MgVo7ZgjZZx+Mrz9gTusq8L2ePHKy8PYuHF33RpuhZMWoT2iQt2V2dWHplGk65HDEaRVIStTy69BQrGw3tv/MmMjiKczuvok3WsX7iTvIWc8WgMxATHkdWZweT5pKAS/5UReN5fX5Jd/4GrQG9To9oFNk6fS8tvpXrmwqVz4+AgLWdFeXqZ9zx5+TsyIqRGziw9DiiKOL/MICBC3uxedoeKjfzIr8pwHQtkJvvVvSneqtKXNh5lTNbLiAa5dkLg87AQx/fNL+veOb2+QW91sDINQPI4SpLBqjUSlAIIIBSraR/mVFEhcgClDtmH6DTmNbYO306pfe/Qq1R0XJgIw4tP0Xp2sXZMfsAoighikYeXPDl2a2X6SQFPkZEUBRnt15CNMqzkk+uveChjy8LfaZw//xjqrepZLHW+Av5J7bPS5K0TRCE88h1QgDfS5IU+jnbWgIhC38ITycnDnXvxouoKGrn8zQvP/rsGYGxseiMRuZfuvxFAiGvgm4MaF6Ve6/e0t/7rymcFASBiZsGsX3+Uao1L4dHYZePrp81pwOTtw4xvx6zog+bZx3k7atwVGoluT0zlxSo074yZ7ZdJiwwkjGr+me6XudRzbl3wZeXD/xRKBUkmAqJFQqB4Ut7UeAjNibTvlpizv/rkvWorUCv1RP6JgKD3sD3TWYQ+DwEx5z2TNwxzHzzKVGtMFcP30GSJIpWlG9u+hQ9RlEO8hLjkpnSaQHjNg8x6xc5e2SnftcaPLzoa65viQqJZnDV8Rj0RpLjUxCUAiNWfEOdjvLvc9Tqb3HK5cjexcfQpehJNqXCAL6Z0x0rGw35y3ji7JFqne5WyIWUJB1GvYEsTnbUaFOZc9svgw1Ua13JvJ5nCQ/WPFlARNA7CpXPx62T93ErmJuYiDie3fCjTudqZM3pSLBfCAZToH1szVk2vlxKy4FN0Ov06a6lIAhUbuZFrrw5ObPFh/cX1tbRll7TUtvLt8/ax42jd5EkkWVD15CcoCW3Z04GLe5N7nzOWNtZcXqTD1GhqSrcKpUynUv935UhS/oweHFvJEmiTfbeJJmKw/VaPaPqTeZQ3MbPGicpLjldWYouWceLO6+p7J0afFqwkBGCIPxWqOu9mJWrIAiukiTd+eQYFvd5C38GD0JD6bJ9JwLQs7wXo2r+t4XQ/B4E8PJBADVaen20diI6LBaFUoFjjo9LYoiiyJLvNnBigw+SKKHSqChbpzhTd4/46Hatc/Yz22oA2GW1xcpaQ5shjVGplKz8fisgi+ituPUznsXkItXrx+4xpfMiBAF6TGzP25dhHF9/XlZZNhUxW9tZMWnXCLPQXlrWTdjB7kVHMOiMH7wnCLLR69AlvQEIexPBiHpTiI9OZOKO4eRwcwJBIK/pWK4cuMmCb1eSr2Qephz4HtEocnn/DQqW9TTX9cS9i+ddSAx5i7tnOJMwteM8bhy7i2iUANmp3b2wK7/en0eH3H2JCY8FZAXlJn3qo1arOLDsOO5FXFl6fYZZsiA8MJJrh25z49gdbp+8j1KlZOCi3jTrW9+8r31LjrJmrNzI4pjDgfDASKysNeb1VozcwP7FR2WHe7WS7C5OTDsyFs/iv98e46/i/X0j7bV9/SiAsU1/NqUo5c/QSf32zx5z1/zDbJyyC22i1jx2lqy2LL89K13g+1/jr3aft3b3kDwGffx75EvhN27EHz43UyosMyRJkup9agzLjJCFP4XSuXNzolcPopKSKJ07Y3+x/xIFS+ehYOnMZ2oALh+8xYxeyxEEgal7RlK2dnpxyXWTd+Oz5zqdRjanSY/aXDty11zgrLHRMHH7sE8ex7wzPzL966UEv5BnjBNjkhi9uz9rJ+wkII02kgBmUUWAO6cfyrMkEtz38eXumUemICIV0ShmasLZ+ftW3LvwhBd3X2HUp3Y/CYJ8Uz2y6gwXdl8jX0kPph0Yw5aXSzIcB2DZ8LXEhMXim/CcjZN2IkkSLQc0Tpcuc8hmj0O21GBSr9MztvE0Hl1+SpdxbXly7QUpiVo01mokCfRaA1Fv37Fm3BazNtF7w9Mjv55Ko+wdxqNLTylVqxhXDtzkl2FrSU7QolQpaDeiOTncstO4V510x9tqUBMcsmXhXVgMjy4/IzosBgR59hDAtWBuVCaT0a/Gt6XL2LaZnvv/ClEU2TZjPwFPg6neqgJz+6xApVEx//wkPEuYAjaJVEV0MPvCfS412lRizfit5teSJJEQm8SW6Xu5uPc6uT2dWXhxSqau9Bb+m0iSVPePjmEpwbfwxRFNT4vujo6UcXH5T+T2E+OSuXToDmGBUZ9eORPO7ryGXmtAl6Ln4IpT9Cozhp86LECbrCPYL5S9S47z9lU4i4aux2gwkj9NYPXeif1TFCidl9X3ZmFlSjcpFAIRgVEEPntrXkelUZHV2ZHAZyHsmHuY6LAYTm6+aA4GmvetR612lTMsXl03cScBJqPY01suMrL+FM7vuopNFmsW+Uymc1rlYUG2ybCytUKpVpIQnciLO6+5efzeR8+hYNl8aKzVGI0i+5ccY8+Cw/zQZBqQOlPxW17cec2zWy8xGkS2z9xv1j1SW6lo3r8hHkVdKVa1CPsWH8WgM6Cx0dBrWmdZPiDNkHqtgQJlPRnvPYMF36yU67W0eowGkeb9G9F6cFOUyvSSAwqFgqc3/Fg3bhuPLz3lq/HtGbN+MFVNqtp5irmhVClwyJ6FRj3rfPTc/1dc2nuDbTP3c277ZRYOWE1yQgrx7xI4vvYsAImxiQysNJaY8DgQZL+08Vs/HZinxdbe+oPvCkmUOLH+PAnRifjdfc3a8du+2DlZyAQp1Wbjz/73JREEoYMgCPamn38UBGGvIAjlPrUdWAIhC1+Y5devU3jeArw3bCLpNzUVfxUX9lzn66IjmN1vJUbjX6O9Msp7NrO+WU3PsmOZ3X+1WR3499CiX3001mqs7azwu+/P25dh3LvwhMsHb+GQ3R6lWomVrYbsLlm5e+EJD3yeIigEbLJY03dqp0ytHNJy4/g92jh/QxYnW8o3KEmvqR2p4u2FWqOSx7K35ueDoxm5sh9z+65k45TdfFd3qrn2A+Dx1eeMXtMfK7OKtVzwq0vRc37nVQZX/ZEjq88wp+8KHl1+xuxev5AUL2/frE99PIq6Yp8tCz9uHUa74U3Jljsr+Up4yKrYkqxonBkpSVoeX30GyPYfgkK+WepSdMzuuZTG6k5M6zz/g4Aot2dOk9yAgFvB3FzeL4s7Gg0iJWsUJTwgklvH76JN1qFUK5FEkQ0/7aSgV37K1iuJSqNEpVGRwy0b2XJnJcA3CG2SFrWVilyeOek+qYO5ky4jTm04j15nIC4qHtdCuanVvqr5pr/ux20kxSXLnm1bL3/yd/i/QG2ahREUAk65HNFYq1Fbq7HPZk9cVDwzuy/FYBK4VCgUTNk/JlM176T4ZGb2WEqPwkPZ8vNe8+/KMYcD47cMSxdgCwoBK9tU5ezPUQi38J9lgiRJ8YIg1AAaAGuAFZ+zoSU1ZuGLsvLGLSQgICaGW8HB1Mrn+Zcfw6Ih60iMS+bywds06V6b0jWL/un7DHweIisFA5cO3aHx1zUo8zv3W7Z2Mfa+XYEgwKw+K4mNTECUJNwK5sbeyY5ll6bw6MozKjcuy4ape8yqu3mLudJheLMPxtPrDLx6GIBHYRdzTcumqXtJSdRi1Bup0KgMbYfIWjcLz0/kybUX1GxTkazOjlw9fAdBEDDojSQlJCMoBPOMk15rQBAERFNaTqFSkNMtG+GBkUiihKAQWPvjDvNMikqtQmUK0nK4ZWP1PVkiIO5dAl3yDsSgN6JUKRi/ZSgFynhmWlAeHhDB8JoTiA2PA8AQHku/Od14fPkZrYc0ZUyDKUiihM+ea9h9u5KvJ3Qw+4HdPfMIQaFAkgy8eRKEUiVbU1jZaHAwCV4aDSLWdlY06V2PY2vOoNfqeHbDj2JVCqFQKlFbqZh/YTKCIDDi129ZPmI9xasVYcy6QWbhyZsn7nFszRma9KpHpaapD6M6kx6SJErcOHaXS3uvE+YfwYhV31K2bkle3X+DJEoUrVTwd31m/iqqNPdi4IIeBL8Iof3IFiTEJDK2yc/smH2A/UuOERsZZ163SOWCdCs4GH2ynhGr++Oz+zqJsUmMWTcQl/y5WD12q1l2YPOU3ZSpXZyS1eW/lRptKrHqwVwmd5iPNllHvxlfUbCcJ7N6LMWtsCsVGpUhJiLOnFa08CfxzykdTsv7vKw38KskSUcEQZj2ORtaAiELX5R6+fNx4oUfGqXyf2atkaeoG68eBqDX6pnVZwXdf2xL4094ff1RBszszC8/bDcHCzndP+6qnhnvZ3XGrO7P1cN3cMnvTCGTv5dbgVy4mWpwGn5dg6PrzgPgd/8NYQGR5MqTvqB0dJMZvHoUQJasdqy9OwtrOysqe5fjjakWqGS1wuZ1C5TJS4Eyqd05lZuVpcW3DfC794aek9pxYr0P147exaOIC51Ht0AQBCbt/o4dcw5RvVUFWn7bkBvH77Fo0BrylfLg7tnH5rGGLOn9QV3HqrFbObzqNAgCams1Giu12YAzM05t9CEyWNZKUygVdP6hNfW/qkWAbzB3zz4kT1E3gv1CMej0HF97Fr87r81mnS4FcpE26SIHeQbU1lnIW8KDTt+35sbRu/Sc0okS1Yty8/g9Qv3DqdupOme2XESSJARk2weAaq0qUq1VelXv5IRkJraejV6r59Le6xSrXJCG3evQvH8jRGNq7czNo3fM7f6Lvv2VhZenUbFJORxz2ONRJL3o5t8FuaA9tQDc2s6KiMBIRFHCoDegsbFCm6RFqVKiQCDFdJ2WDF4ra0UZRFaO3sSkPaPSzZZKEuYg/T0eRdxY/WCe+fXhlad4fvsVL++/wWf3NVRqJb/enYNznv9uAbWFDAkWBGEl0BCYJQiCFZ+Z9bIEQha+KHObNaV/ZBSuDvbYW33aAPSPoDcYmbzpJH5voxjbpR5l8ssq1jMOjubwqjNsnL6PyLfRLBq6nkbdav6uWqXQNxEcXXeeElUKUblJ2U+u792rDnXaVebKkbsUKJ0H13x/LAhUa1TUalsp0/eLViyAnaMtibFJZtG5tBiNIr43/AC5bib0TQSexd35elwbqjb3wt4pC84eqe7pkiQREx6HY057JAm0SVr6Tu+cZn8F+W3Fh1e9kniZOsQkSSLw2VvK1i1B17Gt6VNqlPk8CpXzTHdca3/czu4Fsvq2Uq3kq+9bU6djtU+ah5asURS1lRpBgO6TOtJxVCsmtpnN9cO3UWpU9J/TDUmSWPX9FrTJWnTa1NRs8SqFmX36Jw6vPMX5nVfQm2bTIoPecWzNGbpN6JBOAHHN4wWEBUYyvul0OfMnCJSqVezjVg+CYJZwkkSJJ1df4HfPn0LlC1ChSVmum2bZYqNSNY9sHWwQBME8I/JPwcbOmi5j27B/2XHqdKxGywGNuHLwFlVblOfAshM8viKnL3O6Zyc8MBLUSlwLyk0T/WZ+hVFvJOj5W9p/15z8pfOSnJiCWqMySy+kZffCIxgNorkxQKGw4sXd15ZA6M/knzkj1BFoAsyVJClGEAQXYPTnbGgJhCx8URSCQJGcf80X1Ln7fpy950eKzsDkjSfZO6knADZZrGn4dU22zDqIta2CnO7ZMgyCYiLimN3vV/RaPaNXfYOze2pgMLblHEJfh7PfSs3i8xPx/AyvIzsHGxp2qfa7zsH3hh8rvt9KYa98fDv7qw8sBJ7dfsWpLZeo0apiui4yhULBgtM/cnbnVSo0KEW2NC7eIIsnth3cmP3LT1GmZjE8iqRanaRVnX4XGoMgCMzosYxHl59TsGxeosNjiQh6h8ZajVKlZPqB0RSvUuij53Hr5H02Tt6NNlmH/6NABi3sybaZ+6nWogJ5i8vXTpIkpn+1mKsHTRIYgjwb0GZYM2wysZhIS5k6Jfj1/lyS4pIp5JVfPk+VUg5AAI2NFY171kGXouf57Vf0MHmDvad41SIUr1qE4Su/wdvmq9RrpfrwoVGvM7Cg3wqCnsvWJoJCYMaxHz96fDZ21ozfMYJJbWanFq5LsnDiDxuHsu7HbVjZavC99oJnt14iAMNXfvPJ8/670nNKJ3pO6WR+/V7vZ/CS3tg72ZGcqOWb2V9z5/RDkuKSqdtZ/tuwc7Bl5KpUtezTWy4yr+9yAGq0qcyIVf1ZO34bD3x86TO9C0UrFiT8jSw2ajSKuBV0yVCiwcJ/G0mSkoC9aV6HACGZb5GKJRCy8I/FJZsDoiihUSnxyJk+EMia04Ffrkzh6a1XVGyYsYrwroVHuXf+MZIosX7yHsasSr0ppSRqEU03M22K7k87h1l9VhDyOgL/x4GUb1CKKk1TZ58MegNjms0kJVHLiY0+bH66IJ2+kP+TIB74+OLimZNS1YukG/fVowAafFWD/jO7ZrrvKwdv8XOPX0CS9yWJEi/u+qO2UiOJEtok+bx3LzzKT59ozVcolUhICIKAUqWgxTcNaPFNg3Tr3D79kOtH7pqvKxIkRCewdMhaRpsc2z+FW8H0gpbDV35DLs+cZHdxomH3WgiCQIeRH7d3USqVKNVKs+L3hok70VhraDMktc5qbq9lPPR5km47/8eBqa3iJqLDYxlefTwRgVEMXNyLLVP3oFQpEI0SXg1K0axfQ7PFx5ClfQHQpeh44OOLZwl3crhl59+GxkpNjbaVmd1zGeObz8DKxsqcls1IKXvdhO3m2Z5L+66T1dmBE+vPk5KoZWLbuSiUAgqlXIDtVb/UB9tb+PL8E5Wl/wiWQMjCP5aYhGRzq363BuU/eN81fy5cTdoyKUlabp54gGcJd7M6tEs+Z3MRr0u+9AW6k3cOZ8vMA5StU5wi5fP/aeeQwzUbkW+jkSTInju9R6AkYbYckCTJPMtwcpMPO+YfIfhlmDl4qdykLE655O3P777G/AFrABi6qAcNutYwjxEdFktWZwcUCgUXdl83p4isbDVok3RkcbLDqDdgUCmQTLMZVVv8Vrj1Q7zql2TAvO74Pwqg/XfNM1zH1t4GkzF0unNMW0/0e3HIZk//Oamec4mxiaitNelqknRaPSkJKeaiaKVKyayTE1g8cBUBvsHoU/RcP3KHNkOaER0Ww7TOC3hx+xVGg2jSOZJTXfuXHGX4ivSK31f23yDy7Tv0OgOLB6w2d0CpNSr6z+3xQeAEoLHW/G6NnX8ay4atI+h5CMF+oXKaRYDgF6GMXjeQgqaaN5AD8IigVMkJhVKBs0cOJFFCqVJgNBgxmtx0fmgynYbdajF67cC/9mQs/OuxBEIW/rHsvfQQgylQuPDwFcVccrBj3iHsHG1pP7SpuZMHYELb+Ty/8xoJiZXXp+OSzxnvPnXJmtMBvVZPrXbpDTgLe+Vj8s7h5tcRwe+4fOgOifEpvLjnT7tBjSiVptj4/8ukHcM4s+0KniXcyZY7KwdWnKJk9SIUKJUHtUbF1D0jObTqDPU7VSWrswN6nYGFQ9aZn6AFpYBSpTTbUADcv+CLNlmezbl7/gkNutZAkiTGNp/FA5+nFCrnyfxzP9H8mwZcOXwHSUwNsuIi41Fbq+UOrtIeGPRG3At93FYE5Bqapr0+1DXTpcgaSB5FXClepRADF/RgyZB16dbpOq71R8e+dfI+rx+8oVHPOjjmyLxb6Ojq0ywetBobO2uW3ZyJa4HcRIVE07/sKBJjEuk2sQNdx8nmtWVql2Da4bGMrDORpPhkvhovL9859yCPLj1FNIo45nTAo6grz2++BEHI0J+sRPWiKBQKVGolkiRhNMjXURQlXt7zzzAQ+i/wXqcqbYrw1YM3jG4whb0Ra8ypam2yjpxu2YgOj0USof/c7rTo35AytYuz7Lv1+F5/ka5e5dQmH75b+U2GtUQWLPx/sXyaLPyjuHD/JfN2XyA+WUvraiW4olKiFAQaehVmxZgtnN1xFQSJ01sv0/OndlQ3idb5+waRkqTF2s6Kt6/DccnnjCAI1Gglv//qUQAnN12kUpOyeNUtkW6fkiTxXeOZREfEmdMpd8/7sj9o6R8Wi8yS1Y5WAxoC0K3YCKLDZYuNdQ/mkD13VsrWLpauNkipku03EmKSMBpFKtQvSY+J7bBzSO28aTOoMTdPPUASJdoPbQrIXk73zj9BEiX87r8hMugdpWoUYV/YSgKevmVQ1TTmrqKEIGDWxbmw5zpLh20gfykPpuwdab7JfQq9zkD/8j8Q+TaafCU9WOQzmeb9GhATHsfm6XuRRIla7avgnaYb6bc8u/WSSW1mYzQYubj3OouvTM903QPLjmPUG9Em67hx9C6thzTl3tlHaJO0GPRGts86wPNbL/lmTndcC+TGJV8utr5JLzOSp6ibXJANtBnajK/Gt+P1owAUCoG8aSwvAp8FY9AZyFcqLxteLMH/cSALvllJ2JsI880/6MVb/qvEhMdluFybpDX/HOofzoAKP5jS0CJqjZqQV2EIgkBBr3zU61ydmPA4YiNjSYqTbWEcsmdJ94BjwcKXwCKoaOEfw+vQd4xZdZigyFhiE1M4dM2X07P7c3p2f0rnd8GgNyJJIgadkYCnb5nRcznx0bJdwtBFPcnpnp0qTctStlZ66wpJkhjV+Gf2LTvJxA4LzA7gaYmNjDcHQcAHXVqfQpIkrp98wP1LzzJ9Pzo8Fr3WgCRB/LsEwoOi6F95PF0KDmPr7IOkJGpRKBQsvTgZl/zOSKLIPR9fQl5FpBsrT1FXNj9dwJbnC8lXUr552zrY4FWvJEqVgkJlPcnh/t4BXUX+UnkoWjG/7KshQPGqhajcLFUDZ+WYLcRFxfP05ktun3rw2eccERhFRFAUumQdz2695NCKk+h1Br4e35b6X9VAbaXiysGb7Jp3ONMx4kz6NAa9McPfS1pcC8hdSUaDkdJ1igNQtl5JrGytUCgV6JJ1XD5wk1k9MrfvaNK7HhN2fMeYjUPoMrYNEUFRXDt0O92N/fqR23zrNYYhVcZxZNUpQt9EMq3jfCKCoqjaogKFKxSgVK1itB7c9LOv1b+NEtUzni1VaZTmh4eHF59i0BswGoxmUcz3Ni/7lxxj9bithLwOIykuBY21mub9G7Dh+eL/hFL9/xzpL/r3mQiCoBQE4a4gCJl/WfwBLDNCFv4xpOj0sv+TKR4pnjcX9jap3UYDZn+FxlrFyS2XEA0iCqXC3BFUs3VFaraumNGwSJKUzgzUoE9vDCoIAmPXfMO2eUfIV9Id+6x2NOxS7aNfyE9vv+JdWCxlaxVDm6Tj2EYfdiw8BhK06FeXpIQUvHvUpkApj9R9rBvAlpkHqNayPJ7F3Vk3aRf+T4JAgk3T93Hfx5dZh78nu4sTjtntCXzvIv8ZxdyCIDD94GhiI+JwyGGPQpH+GWjsxsGsGL2Z7C5Z6Teza7rutaIVC3D79EOQMHeAfQ658+WkbJ0S3DxxHwGBX8duI/B5KIMW9CA5PgW9SWRw49TdePern6FqsLWdNXqdLOCoS5ZnDn577O+5e+YhAGprFdGhMVAqL9ldnNgWuIKLu68z/5sVoAc7R7uPXqfK3qn1ZqPrTyLkdTgKhYK5ZydRoloRbp9+IF9zSXanf2aSKQC4deIeR5K2ZjT0fwJJkg1sdSkG87KqLcpz9dBtAFIStCTEJJIlqx0VGpXGytbKXJQvCNB/djcAIoLeyX+TktyxJwgCTXrV+6hhsYV/NcMAX+BPUdK0BEIW/jEUy5OL4W1qcu7eS2qU8qRT7fT6Pg7Zs/Ddsj5496nHhb03qNGyPH4PApjYeQk2dlbMPTrGXDydFoVCwfR9I9m77CQ121T8QJgQoJp3Oap5f9q2Zufi4+xdcYr4d0mo1EpEo4gkSbjmd0abpEOhENj7yylEUeLCvlvs9ltgDqiqt6xgTuUBFCmfH5VahUFnQDSK5lZugNG/fsOS7zby/M5r9q84TZlaxcju4vTRYxMEgazOjhm+5+yRPdPOsHGbBnH79CO2zzvCoBoT6TmxPa1N6by0GA1GFEoFR9acY/moTeQp6krvKR25c/YxRr0BfYqeCJMXW5+pnbh84Kb5qTD+XQJ2jrZIksQV002zanMvfmw5y1ww/t7Xy8om41b7cvVLcev4PQSFgoCnwRSvVgQbO2vUGjV1u1RHkiSCX4aYZ2pSkrQcXnkaxxz2NPg6Y52puHcJiAYREZHR9adQt0t1Tm64gEqjxsbOKt0sIUDTj6T5/u3ERsYxpMp4wgIiUSjla2ltZ4VXw9LmQEhjo8EmizUATrmysvrhPPqWHIE2SUeFxmXIU0wWlOzyQ2uC/UJJSdJSvEohSlYvSuE/sWnBwt8XQRDckdWipwMj/pR9ZGZS+HekQoUK0q1bt/7Xh2HhH8T4dgu4ffYxgkKgy0hvun+iMDczAp6H4HvzJcc3X6J09SKUqVGE+UM34F4gFxM3DcQmizUBz0P4tuZk840b5OBDkiSyu2TF3tEWpUpJwIsQ9FoD1nZWbHs8x3xjyAjfG35snLqX8KAoBs7rRvk0+inTui3j0sHbKJQK2g1pTJ/JHTId549y38eXiZ0WkZKoxSaLNfveLk/3/vH151kweC1W1mo01hrioxNRqpW4FchNqH84usQUrGytyOWZk4TYJMZtHEzQs2B2zjtMvc7V6TZBLlbeu+QY6yfvQa8zUKRCfl7deUlyfDIgkcvTmZrtq9JtQjuWDV1HZPA7mvWtT5Xm5bGy0WA0Gjm37TILB65GEKBUjWL8fGRspuc0t+8Kzm2/hEKpoM2QpljbWbN30VFss1gz+/QEcns6c//CY0bVnSRvIKTORFnZalh0aSqvHwUwu+cyuR5rRAv6z+n2pS/9P4ZTm3xYNHA12iQttg42pCSk4FowN+2Ge7N85EZ0yTrcCrmwzncBSfHJ2NrLYpKJcUmE+UcEhEjZAAAgAElEQVTgWdIj09m+/zKCINyWJKnCp9f8Mli7ekie/f+UeOMDnk0a8clzEwRhNzADsAdGSZKUcVvqH8AyI2ThX03VZmV5eOU5wO/2/nrP1aP3mPHNKrO31+vHQZzbfZ3It9HERydy+chdytctwfDGMxCNcsu1Qqkkp6sTCbFJJCem0KZ/A0pXL4ydgw0vHwZy6fAdAp6F0DbfMOq2r8SY5X0+2G/8uwQWD99IWEAko1b0TRcEARQq58lNU8qqwEeMSr8EeYq6olQpsLa1okTVD8UV10/ZAxJok/WgkBWWjXojAU+DcS+cG89i7rjmz8XeZScw6Ays/WkHC878RNPe9dKNE/g8xNzx9vTmS1r0rUdcZCwPfHwJD4hiz/zDnN7kQ1JcEnqtgfsXnuBRxJWVd2ejVCqxtrNGoRBISdQS7PdxLbW4SLn4XRQlds07hGgUEY0ScZFxTO+yiK7j2lK1RXncCrsR/CIEhVIgTzF33vqFkjWnI26FXChQxpPStYqjUqvIljvrR/f3b6dk9SIIClBbq/HuV5+vJ7TH2s6KlEQtZ7dfJvhFKEOW9GZqxwVc2n+D4lULM+/cJOwcbM1ijBb+c+QQBCHt7MavkiT9+v6FIAjNgXBJkm4LglDnzzoISyBk4V9N8z51KV2jCFY2VuTK8/8Tr7tz4Yk5CAK5DiJ/SQ/i3iUiiSJ5i7gS5BdqrnlRKBVsuPszOVycMOgNaJN1HF57gdEt5yKKIqWrFUY0igS/CkOSJM7uus6IxT0+aAm+fPgOb1+FoU3Ws27yHqo1T6/n0/G7ZhQonQcrG80HgopfGidnR369MZ0DK8+Qp7BLulqd8MDIdOrM2sT0NUtKpZIJW4fy8NJTDqw4hdJGg322LFw/fo9KjcukS0kVq1yIk5svYdAZUGlU5CuVh2a96zKi7iSi3srF0gkxiWaHctEoEvA0mPjoRByz21OluRfVW1fC7+5rhiz9MLhMy+AlvRnnPYO3fqHo9Uaz3o0kwdMbfkzvspDlt2cx//wkNk3ZRW5PZ9p+503IyzBy5c1p7p5z9vhvWz0kxSfxy3cbuHP6IbpkPYIgUMgrv9lDzNbehvnnJgFyOnJs0+lIEjy/9YrQ1+G4maw3Plb/ZeEv5q9LFEV+YkaoOtBSEIRmgDXgIAjCZkmSvv6SB2H51Fn415OniCuJcUnsXnKCwOchBL8Mw6A3fHpDEy6eOXnv2GnvZMf0ncOZsP5bxq7qx6JT4yhUNi853LKZxxRFCUeTeJ9KrcLW3obD6y6gTdah1xq46+PLvUtPUalVqK1UeNUplqEuSpHy+UEQsLbVfNDSD3LarUKDUh8EQUajyPGNPhxefe53neenOLr2PAeWn2LJiI0cWnXWvHxkw+lEBmfe0RUTEcfiYevJ6uzIkouTqdy0LPfOP2F6t6Vc2H3dvF5KopbFQ9Zh0BlQKAV6TWxPk561AZi0eyQeRVxQaVQ45rBnyNI+5DebxEoMqzEBnVaPSq3i+/WDWHV/LqVrFsvgaFKxyWJN0HM5Tfn+i1/1G00mg85AttxZGfZLPzqNacWueYcZVmMC8/qtwGgUMxn5v8PtMw9o7dSLE+vOExEYhWgUMRqMHFpx0rxO3LsEszu9lY2GMnVKotaocC+cm1x5cyBJEpPazaWxugszvl78vzoVC39DJEkaK0mSuyRJnkBn4OyXDoLAMiNk4T9AQmwSI5rMRK81sHbyHhRKgbxFXFl8bsIH3l4ZUcQrH1bWGiRJoljF/JQ0pYYqN04V2LOzt0ZjrUGv1WNrb4Mizbj+vsHERKS2X6vUKiRJomGnKrT+tgG582Y8o5CvhDurbkwnMiSaYhULfPb57l9+ig3T9oIEkSHv6Gmqv9HrDBxbdx6lSkmTHrV+tx5LeFCUuYPrvQs8YJYoeI9CKaDSqNBYqUmMSyY+OoEja85y8+R9arauxPM7r9Em61CqlIT4h5u3E0XRfN2UKhURwe/o7DkEg97AtP2jWHJtBgFPgshbwh1rWyt2zjkIgCRCRGAkYf4R6TzV3nN83VnObL1MhxHNqdQ0teDd2s6aLFntZB0bo4goiggKBbXaVSY+OpHqrSqQp7g7t089IJdnTh5e9GXd+G0AXNh1ldaDm1C8yh8X1fyncnHfdaZ1Wshvy0wVSgXeJnuVe+ceMb75TCRg4s4RVPb2YtbJ8YQHRJLTPTtKlZKIoCiuH7kDwPmdV01eZR9acVj4C/nnlA5/ESyBkIV/NOExCTwPjqBCIQ+sNSpT664+nehfSqLWJNUvd/iIRnjz9C3RYbHkcP14pxVAicoFmbJ1MMGvwqnXvnKG6zhky8LsA6O4fe4xNVt6cWT9BYJfhtFpWFMcs9ujVCkQFGqy5XKky4hmJCdqadajVjoriIxw9sieziX+c4iNiMNoEE2WGnIA9uz2K9ZN2s3jay/kAtX4ZDoOb/aJkdLT86d2hL2JIjQgApVKidEoolQq+GnbUDb/vB+3gs6c33UdXYoehULBj1uGML7NXIwmaYKE6EQOrjiFKElkc3akYFlPWvSTu6xEUWRM0xkYRRE7R1tSkrTsX3bCfJNd99Munl57hmg0MnH3SMrVK0Xwi1DzsRUo42l2N3+P0WhkaqcFXDkglyA8uvyU/rO/xr2wKxUalUGtUbHizizunX1MIa98HFx+kvCACC7suoqgUNBuuDfz+63AZ/c1jAajOfUJckrOJZ/z77p+/zbunn6YrjEAoP5XNajWqiJRb6M5/Otplo9Yb04rn95ykcreXmyavJvTmy/SboQ3rQc1IVvurLgUyEX4m0jcC7tmKKNgwYIkSeeB83/G2JZAyMI/lnfxSbSbugGjKFHYPQerhrRnZJOZvLjnT5MetRi2QPagyuHqRP/pnTi59bJZWblMraJkd/n84tYyNYt+UGydGJfErG/XEBsZz6hlvSji5UkRL08uH7nLmkly55O/71tm7RvBwhNjeXzdDzsHGzkI6p4aBKUkagnxj5ALkj9jhupTdPzOm7DAKAw6A70mtiMqNIYxzWahS9EjSRIqtZK4qITfPW52FyesbNVEBL1jz9ITuOR3ptHXNfGqVxKveiWJDovl3M5rgFwo7Xv9pfnJ0jGHPdVbVeDU5osoBIH6XavToGsNzmy7TNUW5bGxs+bl/TeIoiTPzhhSb7AaGzUqtcKsSnzk19NUalKObhPbs+3nfYiiSPGqhT+4dlM6zDe3bQMgSaweuxVBEJh68HvK1ilBDtdsNPi6JgBDlvRmYts55oDn3PZL3Dn9kJREraxflYZeUzvjlOu/XRzdalATLu27SXRYjHlZZPA7ZvdYhihKGI1G8+9RpVbi3a8+4QGR7JhzAL3WwPIRG2jaux5WNhpW3J5F0PMQPIq6WeqE/scIWExXP0AQBGvAB7Ayrb9bkqSJmazbDtgNVJQk6ZZp2VigD7IM3lBJkk6YljcBFgFKYLUkSTP/+OlY+C8RGBGDUZRI1ul5FhiBv28wb56+RZLg+AYfhs7vZi7Ebd6nLs37yF5Y2mTdZ9tEpEWSJO6clwunqzQpw7GNl7hz3heDzsDysTv4ebfsTRYbGS8/KUuSeRbKs5gbkW+jmdpzBZIk8eDyc75f0Yek+GT6VRxPQkwSJasVYvrekX/4umTJasvYtd+aXwe+CDEL3QkKgZptKtJlVHOCXoSyd9kJSlYrTL2OVT9rbEGhMM+6rZ+yF4/CLpzfdY0qzcpRrm4JRq7sx+ktl2g9oBH5SnlwctMFIt9GU7djVXpP6YCTsyOi0Yh33/r0Lfc9RoORrbMPsv3VEopULIDvdT+srDWkJGmRRAmHHPbMP/Uj8VHxPPJ5gihKNO5ZB4BmfeqzdfpejAaRA8uO03VcWxyypaZUHl56mu7YbR1tiY9KwMpGw6kNFxAE2XMsLW2HeXP75AMQ4NSmiwiC3AXlmMNB7jIziPSf8zVthv6+2bR/I3mLu7Pz7UqWDl3LgV9OoFQqqNCoDM9uvkSfrENjo0FhJf/9Lb89E/dCriTFJ8vLlUqyONqaFdo11hpL55iF/xmfMyOkBepJkpQgCIIauCQIwjFJkq6lXUkQBHtk9cfraZYVRy5wKgG4AqcFQXifVF8GNASCgJuCIByUJOnJHz4jC/8ZSnrmplrxvNx8HsigFtXxKJSbrM4ORIVEk6ewK4+uvKDUb6T+I99G8/Z1OCUqF0SpUpIYl8yCIeuJj07kuyU9yJ03ZyZ7g1Pbr7JszFYQoGHnqhT1yo9SqUBpo8G9oCzUqNPqWT99P6IoolSrGLmkJwAHV59l+4Jj6PUGRINI2JtIAAKfh5IQm4Q2Wcfd83/Ox9+jkAvdf2zLpQO36DK6BZWbyM7ng2tNJsQ/nDPbruBRyIVC5Tw/OdaIX3rTuYAsvJgYl8QP3rNISdJydO05NjyeR90OVanbQQ6qwgMjSYpPwWCqTcpfOg8O2bJQsGxejHojRoOIXmsg/l0iRoORty/DADlN5pAtC/HRifT8qR0ehV1IScrGiFX9yVPMnQKl82I0ithltSWrsyOJsUnYZ8+Szm8NoEnPuuxekKrIHx+VgGcJD+Ki4jm36wo+e64x7+xECldIrb8qU7s4654uoEfh4Rh08sxQDrdsDF7UkyxOdmR3ccK98Id1SP9lBi/uzYD5PeQXpvqxF3de03dmVxKik/As6WFOI9ra27DyzmweXHhChcZlLLM/f1csM0LpkWTFxffz6GrTv4wu01RgFjA6zbJWwHZJkrTAa0EQ/IBKpvf8JEl6BSAIwnbTupZAyMJno1QomNuvRbplq65PZVr3X7h/8Rk/dljI1F3DKG3qqgoNiGRA9YkYDCKSUcTZI7tZ10cSJVaO28HELYPNY4miyNmd19Gl6Gj0VXXePH2LXqdHNEoc3eDD+b03Gb6wO6JRpEqT0rx6HIRTTnsS45Nld3hBwM7BhvjoRH6dsAuD3ii3FpfNy4CZnZnacwX+vkG45HPG/3EQbQY2+tOuVfuhTWg/tEm6ZaIomv+SRfHzOqCy5nCgbocq+Oy9SU73bIS9loudJQkMhlSV5ZiIOEY0mEZsZDwgq05vm3WQyLfvEBQKJmwZgrNHNuKiEug/qysqtYrC5fObZ3EWnZ+Is0d2c0H3942n8fphAIJCYMy6gczsthSFSsHUfWPQafUUq1yIu+cece/sI5r0qot7YVfaDW/G3iVH06XZvt8wiCmdFmAIjUFlZ2X2L0tJ0qLX6rF3ykLYm1RlZICY8Fhmdl9KtZYVGLt56O+57P8Z0hbeD17c+6Pr5sqbk4bda//Zh2TBwmfzWTVCgiAogdtAQWCZJEnXf/O+F+AhSdIRQRDSBkJuQNqZoyDTMoDA3yzPuArVgoXfgcZKTVRorDn9FeofYQ6E/B8HIUmgNxVvhrwONxfjqjTKD4qSD685z5qJu5EkibA3kbQd0ADfmy95eusVolHCoDfimCMLxSsWoF+1icRFxVO0fH6+Ht2coxt8aNajFg7ZssjF27YaFCkG1NZq5h0ew9Vj97h99hEpSTrsHGzY8Gg2uT6hRyNJEo+vvkCvM/Ds9muKVy5I6Rr/f/2gKbuGs2vBUUpWLyK36n8mY1Z9Q/8ZXbDPloXHV56zf/lJarerjLN76vVb+t2GdC31hbzyEfYmAr3WgJWNhqldF6NL0aO2UnP18B1C30Ty/ZpveXrzJW/+j73zDo+i6uLwO1vTe0IChAAhlNB7700BqaKgVEGRojQVBZH2IQqiCAgoooICigjSpffeAoSekJDee9syM98fGxZCAiSA2OZ9nvAkM3fO3DsbsmfPPef8rkaxdfleer/1vDWPK+xSBHnZBmzs9WxctMPadPHQhpOM+XIoMaFxTO8zH2Oekb2rj7A2Yinupd1wdLUnPdHijNk52eJfuzzv/zCGJRN+IKBeBRp1qcee1Yf44o1vEEWJd759k7b9W9C8R0OC9l+mcbd67FtzhLxsAzfPhz32s1ZQ+McgKzlCRSLLsgjUEQTBBdgoCEINWZaDAQRBUAGfA0P+jAkKgvAG8AZAuXJ/bvdchX8HYxcMYsHbKyld0YvWvRtZj9dtE0ilWuW4dvYWgCVqI8todBo69m/G8JkFJSpS4tMxm0VkSSIpNhV3bxc+3z6J9Yt38cPsjZSvWprqjSoRfSuBjORMDLkmLhy5zpwN4+k/oavVjs5Gy+K9H3J232Xqt6uOzkZL6QpelvsD2Rm5zB76NQv3THnoun78+Hd+W7wTQ64RQRDQ6jUsOzqT0v6F9dMeRXZ6DskxaYyc+2qJq3QEQcDF06J9WKtlVWoV0bFbq9ei1qiQJMtf1LBLkdRpG0hqfDpZadlEh1i2wcwmMyd3BHHqjwtkJGXStFs9Vv1vg6Vr9KGr+FT0wsHFnjfmDmDFB2vJyczh5rkwtDoNgkqgWb42mzHPhJwf4UqOS+XWxdtUrOVHg4612bf2CLIMg6ZbXt9qTQJYdGw2ADu+28eCkcutUaMtX++mw4BW1shPbnYeiRFJRF6P5a1FD2/QqKCg8M+kRFVjsiynCYKwH3gOCM4/7AjUAA7kJ6Z6A5sFQegORAO+95gom3+Mhxy//57fAN+ARWusJPNV+G9SuW55lhwunM+vt9Xx2fZJyLLM9bNhmE1mdq89hk95T14a93yhfIUX3+pMdGg8hlwjr01/8e7xMZ14cYxlG2vn6iMseme1dWug++ttiQ1LZN2inQQ28qfzK80BS1PGbq+1sdoIqOPH8Ol9+Hb6ekxGS75MXrYBjU5dZHNFgItHrluVumVZRkAgKz2nxM/HbDIzstlUMlKycXKz57ugTx94z8dlzOeD8CzjRnRIHKd2XiAvx0BKbBqLDs9gzaeb+HneFsxmkYA65Qm5EI4kyxjyjBgNJgQEZEkm5lYCoRcjUKkFmjxXG72djuyMHEx5Zl5+rzvdRnTEzduFg78eJyk6Bb9qZQkJCgcZti3fy1uLXqPbmx2JCY2nUZe69H6rYILzN5N+4rcvtlqjgoIA3UdaXtfVszewevZvVGtcmU93TXnqz0dB4W/Nf+ydtjhVY56AKd8JssWS4PzpnfOyLKcDHveMP4BFGO2MIAi5wBpBED7HkiwdAJzCUqEXIAhCBSwOUD/glae2KgWFhyAIAlUbWLaCajR9cEM8B2c7pnz/5gPPA6yetxWzSUSjVfPesmG0e7ExwxpPJfpWPAd+O4VvgDeBD2iG2P31dkiSRGhwFL7+pehTbgx2jjYsOjityCaLQ6f1YfagJRgNJmSgY/9mVK5XofgLzycrPYfk2LT8ZGUTWek5uHg4ldgOWJyq2LBESlf0KpAnYu9sx2szXyI7PYcZ/b4kITKJN+dZGsL2f687FWtapEECmwTw3bR1GHKMDJv1Mg4udvSf1J2w4EgkSeL41nPIosTxzWcQTSKCSkCtVdOiV2PcfVw5uuk0nw1fhiSKVKpbAZ2NpSVBo+frYDaZmdjWIoJ79eRNqjWqRL0Od5tgbv1mD7Js+X1wK+3C9N/eoWqjSoiixA/TfgEZLh66woWDV6h/z3UKCgr/LorzMccHWJmfJ6QC1smyvFUQhJnAGVmWNz/oQlmWLwuCsA5LErQZGJ2/zYYgCGOAnVjK57+TZfnyE65FQaFIstNzeKfrXKJD43n7i0F06Fe8UvE77N9wiutnw+j5Rnurg7J91SHO7A2mSr3ypCdnIahUVK1fgdjwRNKTM4v1iUoQBHq92RGAkc0+QjSL5OUYOLXzAt3faF9ofPUmAUxYMoxZAxdjyDFyZk9woTHFwcXDiW7D27HrpyN0GtDisZ0gUZR4u9V0Im/E4letDAsPTS8UVbN3tmPujoIK8IIg0KTL3Q7PI+cW7Jjf7x1LAnxmWjb2znbkpGVzfPNpJLNIlYaVmPn7uzjnzzk9MQNZljEZzWh1Gr4+Pw+1RoV3eS/O7Qsu0PDv+plQqyOUnZ5D6xebsG/NEZw8HPlo3QTiwxPxq14WWZILvH53tgEVFP4zKBGhgsiyfBGoW8Txjx4wvs19P88GZhcxbjuwvbgTVVB4XE7tvkRsWALGPBMrZ28skSN0/VwYC8auwmgwcW7/Fb45NoNbwZF8PeUXDLkmnN0d+GLHJNy8XXDxcGRw3Q/ITs9FpVbx8vjnHxgNup/Og1rx7dR1aHQa6rYNfOA4O0cbkC0yBnYONsVex/2MnPsqI+e++tjXA6QlZBB+NRrRJHLrUgQpcekc33YOtUZF50GtiQtLICokjnrtLNpSJSEv28CoJh+SHJuGzkZDl2HtSUvMYNjH/XFyd7Qmw3cY2IorJ24QF57A+GUjrAKeYHGSBLWALFr6J9XrUBOApRNXsemrP3BwtefzA9OxcbBhVMMPEASo0rAS8/dNY8isfmz4chvtX2mBf+3yT/ScFBQU/t4oG98K/3qq1CsPgoDeTkeDDjUAS3JtelImHmVcC6if348pv5eMLMnEhCfSvexo+k/okr+lYkmErljjbrqbIdeILMvodFoa5b/xFoeeb3agVa+G2NrrsX2IgxPYuBLvfj2c0EsRdBvertj2/wzcvJ2p374Gp/64QKPn6rBtxT7WL9gOAkTdiGXrt/sQBIF67aoz7edxxbabnZ7Dp8OWkRCZDIAxD5r2aEid1oGYjGbeajqFm+fCeH5YO3qM6myVwDi54xy+lUtTqU55XEu5kJuZa/1kK0syE9vNoP/7vdi4aDvIkJuZy+0rUVw/cwtjfhXatVMhvOA0iIq1/Pg5clmJHTgFBYV/HoJ8v2Le35gGDRrIZ86c+aunofAPJCU+naSYVALq+JGVls2IZtPISMmm0yvNeDtfiuNBbP52Hwc2nCbkUgTGXBPu3i68PX8AF49dp8ugVpS5p2rr+rkw1s7fRr22gXS/x1EJPnGTU7sucXjLWdy9XZi2ahSOrvZ/2nr/DE7sOM9XE3/Cv1Y5Jq8cZZUIMeYZ0dno+PLt79m58iCCINCwUy3O7b+MIceIIMDw2f14cWzxujG/1WoaoRcirF25S/l5sCJoLlqdhpvnwpjQdrpFbkMAjU6DaDQjy6Cz1VnyiAT46uQcTu04zw/T1yGa7vY3EgSsydE6Gy3fXf6Cd9rPIPZWQqF5vLdyNB0HtHrCp6ag8GQIgnBWluUGz+p+tj6+csUhE57Jva58MuGZru1BKG09Ff4VmE1mlk9dx5xh33Bs23mGNZjMlBcXWPvNuJVypnLd8giCwI3zt60djw/8dgqA377ayfs95hN87EYh292Ht2PgpO7IoozORkvtVlXISs+hfrvqBZwgsCjVT189poATFHopkil9F/Drop3EhiVy+WQII1vP5Pyhq3/iE3n6LB7/I4lRKQQduMqZ3Zesx3U2FrmSIR+9SNNu9WnRoyFvfTmUCvmRMlmG76evL/Z9okPiEc2WBPROA1uy/OwnpMalsf6LrRhy8nD1ckKr1yIIAmaDxQlSa1QYc42IZhGzSeSz4cvoPqoz7fo1x8HlrsMp528relfwZNm5uSBAblYeADb2+gLzuHnm1mM/KwUFhX8OiiOk8K9g95pjbPl2P4d/P83Hr31NdGgCZ/cG8+OcTYXGVm1QEVcvJ1Rqga6vtSHkYgSrZm8i6NBVpr+6uND4nMw8pg+0CElqtGrUGjVfjFvFtFcWc3LnRcBSiZUQlVzk3JLj0hAEgTvRV1mSSYpJZeagJU/vATwFVn+yiR6lRjDt5S8RxcKdpivWKoeNnR5Zlikb4F3ovLOHI1NXv8UHK0fh7uPCrPUTcHCxx8ZeX6LqtonLhlO6Yik6DmjJ+CXD0NloGdtyKt9NWcsHXecwd/dUvgmaR2DTytjY67FzsmXSyjHUbm3JrRIEkESRjYt3MOqLIay5vYTuIzuj1qjQ2+no+kYHVt1YRNkAH35f/AcZSZbG+VUbVyogrir/17rKKSjcQX5GX38TlA1whX8FmSnZGPM7Rt+jjkBUSFyhsfZOtqw4M5u8bCN2jjbE3IpHlmVUagGHIpoLXj8bZu3fk5MlcmZPsFWH6tTuS3iX92BcpzmYzSJDpvSkz6hOmIxmgk/cpFyAD/XbVadDv2ZcO3uLUr7uHN16HrDkE73bfR63gqMY9Ul/2r/U5Gk/lmIjyzKrP92EJMoEHbxCWHAklWoXFMH8cNVoTu++iG9lH8pVebTelpO7I9+e+4TwK1E4uTswo98CKtQox4DJPR+qMdW8ewOa5zdKPLP7AvOHLyMlNi3/NVJhMpjxrVKaT/+YQvDR68SExjP/9WUICDTr2RCNRs2JbWf5aeZ6Qs6F8dG6CYxZOJQ+47uSFJ1M9WZ3u3FXaeCP1kYDCNRtV4OwixFkpmZjY69nwJQ+j/cwFRQU/lEojpDCv4LIkFjr9zWaVubS0euo1Cr6T7zb4TnschTRofE06lwLnV5rqcACSlcsxax1Y7l8MoT2RaiwJ0Qno9aoEc0irp5OuJVyJjUhA0El4FPBg6BD1zCbRUwGM3t/OUGfUZ2Y9spirpwKRaUWWH5sJmPmWtpkRdyI5dTuS8iSjE95T24GRZCXY+Db6etp/1ITS0NBQXjmSbqCIFC5fkXCL0eht9XhU76w+KzORkvzF+oXOCbLMvt/OU5ejoFOA1sWajzoWsoZ11LOvNl4CmHBkZzbe5mAuuVp2rVesea1ZOwPJMekWhtNevq6o7fT5c9HR732Nbl46AomgxlJlBCABp1qc3LbOURRIis122rLp4KXVfzzDq37NsXT1x1TnolarQPpNqITYZciqNqoEnpbXbHmqKDwr+JvFq15FiiOkMK/grptAjm44TSCAJ0HtGDWurcRBMHa5C/schTjOn6MIAjUbVOtgLgqQO2WValdhFQEQLOuddn87X7iIpJ4+/MBlCrrzrzR3+NZ2pUug1qTmZbNms+2kiXm0Ce/4/S1s7fIyzFgY6cn8macVTOrXGUfFvzxAWFXo/Cv4cv45z/Fxk5PjSYBnDt4hWmvLEatVjNv86NlQtwAACAASURBVDsE1PErcj5/FnO3TeLG2TD8qpYutuzGju8PsOy91cjIRIXE8cbH/YscZ+tgg6BWIcnSQ6vi7qdKo0okxaSQl2PAbBSJvBbDknE/MP23d6xjuo/sTNC+y+Rm5TJ0Vj9K+5ciLDiChIgkRswb+Mh7BDa521TTyc3BusWmoKDw30BxhBT+NmQbLNtP9vqSfxJv17cJ9i723LoeR/32NayRiaATIaxfcQjJYERSCZiyDVw5FVoi244u9ny1f2qBY0sP3m2jZedow9qrn2E2idZKqmHT+rBi5gYCG1SkepNKBa71r+mLf01LIvHyYzOICUukRpNK/O+1rzEZzJgws2fd8WfuCOn0Wmo0e3Cn7aJIjktDNItIokzyPSKr92LZ0lKjUqlw83GjZvPiC8W+8+2bBDapzJJ3ViEaLFufLl7OBca4ebuw4PDMAsdGzh9c7HsYcg1cOxVCxVp+OLo6FPs6BYV/K/+19DjFEVJ4pqRm5/Lq0p+JTc1kdt/OdKljeVM8GRrJyO83ArB0aC8a+/s+zEwhUhIy+OT99ciSzIGdwXy9ZTwxt5P4YOiKu4McHCHXRI5aS0RoAuX8vQrZOXP4OsvnbqdWw4qMmNwVjaZ4/0VUKhU6/d28l65DWtN1SOtHXudZxg3PMm4AtH+pCWf2BiMIAi26FW/r6K/k5M6L7NtwGnc/T3wrevL6nH4FzkuShEqlIiczjyunQpAlmeTYNNbO20Lk9Vj6T+pO+WplHmg/OiSOqX0XIIkSHr4eJNxORKUScL7PEbpDXrYBna32oflHRTG2xYdEXIlCo9OyOvwrHF0dS3S9goLCPxulakzhmbL/Sijx6VkYRZHFe44BFudozMpNGMwiBrPI5nNXSmw3OTET0SRiyDMREZLA89U+YOKrywoOEgQEL3dUNnqK6qF4+2Y800auJCIkga1rT/BCzal8N39Hseew5P219PEfy4qZv5V4/gAtutXjx6BP+Onip9QsYWTmr+Dzt38gNjyJjNRc+ozrikdpN+u5ua9/QxeXYcx8ZRG2DnoadqqFSiXgG+DNugXbObjhFNNf/vKh9tcv/IOYW/HEhSdSrUllVBoNkiyw/ssdpManFxi75tNN9PIZwZDq75CZnxeUkZzJ2rmbObzx1APvYTabCT0fjslgJjczl2/e/fEJnoiCwr+E/1jVmOIIKTxTavv5IAgCNloNbav5k56Tx7aga5jEu03vXqhbDYC07FwGf72O7p+v5Hps4kPt+lb0LFTynZZ8N1FWrVZh56DH08cZb183Lp0OIzE2rcD4qSN+QBIL/u/cuPJosdaVHJvG9pWHyE7P5bevdj+WKjxYdK2c3P4Z2zNlA7zR2+qQZZlSZd2txzNTszmw/iQAp3ZeIDkmlRm/jOWXsEWMXTQEAQFBJaDVPzzaVr1pAHobHXpbHbVbVcXZwxEbez32znbYO9sWGPv7kl1IokR6ciaXjlwDYPagr/jx443Me+Mbzu8vWsowOTq1QGfxrLTHe90UFBT+uShbYwrPFH8vd3a8O5SkzGxMZpF2c5YjihIqlYBOrebFRjVoUqkcAOtPBxN0OxazJPHZ9sMsH9b7gXbVahU6Gy15+WXu9yOKEjlZBnKyDAAsnrkJvV7LyCkv0OK5mtjZ60lLzipwjUanpl7TSkWZK4Sjmz1O7g7kZObh7OZQooTgR3Hu4BVmDlqKo4s9n219l1K+7o++6Bkwa+3bHN8RRIXqZQs0lrR3tqVC9bJE3YzDs4wbrqWcEQQBR1d7qjbwZ8KS17h8MoTYWwm8XPFthk7rw3ODC28jdujfHN8AHyRJplojf5p3rU/QoSuUDfBh24r91GhWmYC6lv5EbV9qyrZv96Gz0VGtkeU1y0zNRjSJaLWaAo7ptdOhnN17idZ9GuPl646btwupCenobLS8+Xnxc4sUFP6t/NdyhBSJDYW/jMW7j7Fs70lkoF750kzr1R5/L3frJ/TZm/az5ngQAF1qVWbeK10fYg1CrsRwYFsQ7qWcEE0iR3df5ublaERz4eaAd9DpNZTx82DJprEs/GgjOzecRhAERk/tQdU65Sjn74Va/eDAaVxEEsHHb1K/bXU0WjXXzt6iWkP/IvsRPS7vvDCP4OM3UWtUDHy/B/3GPf9E9m5fjyHmVgIN2pdcDLW4mIxmIq7F4FvZB52NttD5yyduMqXXfPKyLZV1v8ctK8JK0Qyp8Q5J0Smo1Cq+DfoUr7LuyLJMQmQyzh6OhF6M4Ifpv1I+sAxxt5MoH1iWIdP7olarSEvIYFDgBIwGEw7OdvwauYScjBxCzodTuaE/tvZPz4FVUHgaPHOJDW9fudKAZyOxETz/7yGxoUSEFP4ynqtVmVVHzmM0m3mtVQMqeroTmpCCj4sj9nodJ0MjrGNN0oOdmTtUCixNpcC7jf4at63G2L5fYZTN1m0zF3d7Auv5cf5YKLk5BowGM+E348nLNfLWjJ70GNQMN08nHO/beimKS8du8EGfLxAEASd3BxbtnYKgUj3UcXocmj5XmxvnwwGo2TTgiWyFX41mbKc5CIJAg/bV+fD7N5/CDAuj1Wnwr1Xugee9y3uiUgnY2OsLiNYWh5T4NExGMzobLUH7L9NxQEsEQaBUOQ8AZr2ykNT4dK6fvcXHm96lRrMqxIYl8OPsjXiWdUMUJWRJJi/bgCRK2DvbU7tN9Sdar4LCv4p/TnzkqaA4Qgp/GZVKeXD0ozeRJBm9VsOE1ds4cPUWDjY6Nk8YjKv9XWfERls4qnA2PJocg5EWlctz5vAN/jd2NU7Odsxf8yZepV3wrejFqv3vs2XNCX5etg9JlKjbLID35r7MuWMhfPj6CmTZUt795dQNTPqsH36VShW6T1HIsszU/osw5wt6psanM6L5dExGM96+7kxfMwZHFzt2/nSUdYt20qJbXUbPfeWhSvcPos/oTtRvVx07Rxu8yj7ZtljEjVgEAfJyDNy8cPuJbD0J7t4uLDvxP8KCI6ndulqJrp3y4xiWT15LTGg8i8evIvxKFG/MecV63tndkfTkTEwGM3OGLOG1mS+zYdEOQi9EoLPVUbGmL7FhiQz+qI+1z5SCgsJ/FyVZWuEvw2gWSczMRpf/ZnTw2i0MZjO5RhM345IY06EpDnodno72jGjXqMC1uy7d5I0VGxj/01aW7j3B2qX7MOaZSE3O5NCOi9ZxDk62vDS8FQPGdKDn4BaMntoDAK1WBdx1SuKiUko8f9U9ulTdXmuDIddIXraB8GsxvN7kIwbUep9vpv1KWmIGu9YeIyokvsT3uEP5amXwKutOcmwap/dcIi/H8Fh2GneqRY2mlfEo7Wrtdv1X4eXrTuPn62Bjp3/04Hto/FwderzZEbVGjSHXSNDBguK1H29+j27D2qHWqEiKTuWLUSssfaXyNcjCgqPITMli87LdT3M5Cgr/Dp5VxdjfKOqkRIQU/hKyDUa6z19JYmY2zSuXZ+nQngxuWZ9v9p3Ez8OF6mVK0evLVRjNIgazmbNh0Xg42mMwmfFwtOd6bCImUUSUZC5HJ9C2QyChVy3RjpoNCwp8qjVq+g4vmIy78KONqNUCZklGb6Ol95CWJZq/IAg07FCTY9vO07hzLUbO6Ud2Ri4n/riAWqMiIyUbBEt0wpBrRKNR41bK6YmeWXpyJm80n4YoSpSr7MPC3ZNLbENvq+N/v7z9RPMoCRnJWdjY64vMExJFibxsA/ZOj96GvJ9WvRuz/bsDJEWnMGzmS9bj4ZejyMnKpd+7L7Drp8Oo1CpKlfNg6pq3+PWL7Wj1WjYt3YVKrXqqeVwKCgr/XBRHSOEv4UZcEvEZWcjAoethxKRm8HanZoxq3wSNWkVSZjZRKRnW8bM27WPOlgOIksxHvdrRr2ltjt28TZbByPjnmuNoVrN383m0Wg0e3kU33LuXuOhUzCZL3pAhz8TPX++n5XM1iz3/5Ng0jmw5i2iWOLLlHJdP3uTdJa8BsOPHw3w5/kdMBjN6Ty2jP+1PYCN/7J2e7I03PiIZs1nEkGPkVnDkI8eLooQhx2jVVHtSZFlGEqVibydt/noP30z+Gb2dnsWHphXQ+cpKy2F0i2kkRqfw0vguDPmo+AKn6UmZfDF6BaX8PJiz5T1cPC0O5umdF5j16iIQYOCU3nx1dCbXTt+i8fN1cHS1Z+S8AQBUaVCR8CtRvDC8fQlWr6Cg8G9F2RpTeOaYRJFbCXe3otQqgbj0TACiUtIZsPQX3lm7nXuzaWRZxmgWMYkiG05fxtPRnrWj+7NlwmCOrD3LiBe+IPxGPKHXYvj124OPnMP42X1w83JCrVah1Wvw9Hm083Qvjm72BUQ554363vp9sy51rN+nJKRTpV4FPHxcS2S/KPxrlaNxp1o4uNgxfPqLDx2blpTJoDrv82Klcaz7svhNIR9ESnw6A2tNonuZ0excfaRY12z7bj9mk4jJYOLs3uAC5y6fuElGciaSKLH12/0lmsvqOb9zcsd5Tuw4z/fTf7Uev3o6BKPBhCHHSNBBS5l9h1ea4+hqX+D6lj0bMnByL1y8nixCp6Dwb0R4hl9/FxRHSOGZM2/bIWZv2m/dIi7v4UqdcpZqr9mb93P+dgxBt2Os5/UaNf2b1rH+x3muVgB/XLzO1vNXiYtOYcP3hzHkmqz27+Qjh16NITo8qcg5tHuhLqsPfsCMrwfzxntdmDSvX5HjHoROr8X1HqmH5Ng0lk/7lZO7LlqqsvLzhxq0q45XWTfO7A1mYte5bFhaMC9FlmW2rzrEihm/kZaU+dB7qtUqJn/7ButDFtBzxMOjGRePXCc7IwdJlPh9+b4Sra0oTu2+RGZaNqIosW7hH8W65oXX26PRqtHZaGnQoWC0rWrDitjY26DRaWj3cpMSzcW9tCuyBLIos2fNUZKiLU71c0Pa4O3niaASuHDwCqd3XXyEJQUFBQVla0zhLyAiOQ2D2Wz9OTkrh52XbiDKMmVdnbDRapAkGZ1ahVGUMJhF1h4PAsHS6Gv9qWAiUywSC681rYfeRodabcaQZ0aWZLavO43eRsfvq44iyzLTlw6mYlUfdDoNtvYFE3PrN68MzR9vHRVrlCXudiKiWcJsEvntq91sXr4fWZaRJRmNTs3737yO2SQyc/BSjHkmbl64TYP2NShX2QeA4zuC+HrKOsxGM6GXIpj6w0iWTv6Z7Iw8Rn/aH7dSJYtU3aF640ro9FpEk0SHl5s+3gLvoWbTAFRqNTo9tO7VsFjXdBvejtZ9GqO301nFaO/ojzm7O7IyeB4ZKVl4lC5ZtKzP2Of57qN1AJiNZqa++DlLjs3Cq6w7XV5ryw8z1mMymFnz6SYadqpVsoUqKCj8rRKZnwWKI6TwzHm/WxvSsncQEp9MnslMLV8fPly/C4BhrRrwYY922Nvo+PHIOc6HWyJDqvwwj1arRqdRYxJFZBnicrJZ8vvbBJ8NZ8msTWRl5CEAF07ewpBnQhAENq8+zplD19Fo1cxf/SYVq/o8lXW8s3goW+tXYPlH663HRLOIvZMd2Zm5VG9ciRf9x6G302PnYINoFhEEoUDOjjHPEsmSZBljnpmNX+9l//pTiKKINt+RKgmiWcRsEnH3cWFV0CdkpuXgWUJHoyjK+JdiVdAcMlOyKV2xsFjtg7izLSXLMp8MXcbBDado0aMBU1aNQmejLbETBKDRqGnQsRZndlsiPrcuRfDj/zYwaGofarWsikarRq1V07x7/RLbVlBQ+O+hOEIKfyoJeek4aW2xUd/Npynv6crPY15BlmVMosjnO45w9GY4sgyx6ZmM6miJYHSqEUDQ7RimbdhDeQ9XXqhbFYNZpFHFsny4fjcGk5kybs5E5GXRtlsdnF3tmf/Br9g72vDisJZ8OXUDdg42pMRnYDaJSKLEqYPXnpojpLfV8dzAlnw/a6O1n1Cl2n58tGokelsdH768ELNJRM420G1MJ+ydbKnVvHKBfKFWPRsQFRJP9K0Ehkzpyek9lyxl+YIaZ4+SqaDHRybzVvvZZGfkMu7LQTR7vjbHt5/Hr0ppares+sTrdXSxx9HF/tEDiyA9OZMjmy1d4Y9vP09qQsZjR7sAZvw6jvee/4TLJ26ADMHHbgBQtaE/312cS3Z6Ln4PUbZXUFB4MP81iQ3FEVL401hyYxerww5jp9GzpvnbeNoUTE4VBAGdRsPrbRsRlpiKwWymU40ATKLIz8cvsGDnUWqUKUWbqhU4eD2MyJR0hrS0fMof1KIec7cdZOmeEywTYO3o/twIjiIjLYfU5Cz2bwli3YmPuBEcxc9L96HWqNDrtTRtH/hU12jvaMv0n0bzx+ojPPdqCxq0r2E9V7NpACFBt9Ho1LTp3ZAKgWWt50IvRTJv1Hdkp+eQlpxJ+75N8CrrRpfBrdBoNeRlG+gyuFWJ5nJy5wVysnIRzSK/Ld7J7jVHuXrmFoJKYN6md6lSr/zTWnaJcXJzoFzV0sSEJuBd3rPETt79aLQapq5+iym9PiM9KZPX7imh9yjthkfph1ysoKCgcA+KI6Twp7Et+hwmWcQomQhKDaejT+F8jRyjCVudlvmvdKHr/JWMX72V6mW9ORsehSzDmfBozoRHA/DZ9sMs+OMo7ar7c/haGLmmu3lG2y9cp6anI2q1CpVKwL2UE3k5RiYN+oa8XBN6Gw0/7H0PxyfoHRMfmczMQUuQJZmpK0fiU94TgAbtaxRwgACunApl84r9qLVq6rSsWsAJAlj6wVrCr0Zbf979y3EGfdADt1LOPDegRYGxRoOJw5vO4lXWjZrNKiPLMr9/vYeokHj6T+xqjTDVaFIJMT8ydft6LCqVgGiWsLHTkRKfVuSajHkmLh69TvnAMiWubLt+Lpx1C3fQoF0Nnh/08D5MKpWKL/d/RNTNOMoGeD8VGRLXUs4sOTbrie0oKCjchxIRUlB4Orzs15SlN3fjoLGlgXtF6/FrMYnEpGVgr9My8offAfjghTZk5ORiFCXOhEU90KZZkgo5QQCOeh0dn6uPVqchOzOPTn0aYMwzWTXGJElGpbr75iuKEt98spWw63GM+KAb/tUeHUL4ddFOwi5HIcsya+ZvY+KiIQ8cG3c7CUEQMOQaiQ1P5Pb1GFLi06ndogoqlQoXT2dUKgFJktHqNbh5OePkVvS204Jxqzi69TwAM1aPITszlx8+3oTJYCLiRizzNr8LgN5Wj0anwWSwJI1LMrh7O9O0S10aPSBpeHLfBYRcjEClUrHi5CxcS1BSPrX/QjKSszizN5iqDSoUcvbuR6fXllhXTEFBQeHPRnGEFP40BlVsTZ9yTbBRa1ELFick6HYMA5etQ5JlbLUaDGZLBONseDRatRqjWFBc1d/LjejUDMq4OBGZkgaCQMcaAQRHxZFtMBKfkY1WraJ1tYoIgkDbbnd7+Oh0GiZ91p8d607R5eVG2DvaIIoSQSdCiAhJYOdvZzDkmpj33i8s2zL+kevxr+mLVq8FASrVuvuGnpmWzfHtQQTU8bM6Ay261+PkrotE3Iil+/C2vN3hYwQBOr3anFFz+nMzKNziBOk0DJnck+cHWbbEiiLqZhyGXCM6Gy2x4Yk4uTvkf2ITkO/55OZTwZO6ratxatcl1GoVaq2acQsG0fC+0vXg4zfZ9sNB2vRuxM2g2xhyjdjY6YgJSyiRI6TTWWQrZJkHzl1BQeEfiBIRUlB4Mi6lRfC/Sxvws/dgZu2XrU4QwI4L15Hy373vjercjE8m23i3F5BGreLd51vRvX41HG30ZOYZ6PLZ92TlGsk2GNgycQgvLvyJ+IxsAE6GRlLFx7PQXJp3rE7zjneVxb+auYn9W4IwiyKyJCOohAKNEe9wYNsFosISeeHVpjjnVz49P7AlPn6eSJJE3XuEQif1nE90aDwg8M2xGZTydUen1/LBckvF17bvDyLLMoZcE5dPhACWhoxJsamoVAK1mld5aPfntz4bwOdjV+Lj50HbFxuht9UxeHIPokLieeWdrtZxKpWKmWveQpZlbpy/jY29Dr8qBSNdJqOZyX0XYMwzcWTrOQa+1511i/6gVrPKVK1f4f5bP5TpP43hl4U7aNm9Pr4B3iW69g6SJPHj7N+JvBHLyHmvWpKxBazl9goKCgp/NoojpPDU+Th4I2HZCcTmprI37hJdy9QD4FZCCr+eCi7ymptxdxsflnNzJsDbg71XQvh020Ea+/vyWusGpGXnIQP7rt4CoHu9aoTGp6BWq2haqdxD55SckMHH49YQciUao8GMTq/BLEnIkkxESDxZGTnMmfAzSXHpdOvfhBWf7cBsErl0OoxPV94tYa/TylJ9tXP1EdZ+vp0WL9QjNjwRQ64JGzsdybFplPK9qxAvyzKBjf0pH1iGpOhUXp/RF4BZa99m5+oj+Nf0JaCO30PnHlDHj6UHPypwrPfIjkWO3bXmKPt/O0WfUR2pUq9GofOCgLXZoyAIdHq1OS+Nfe6h97+X6+fCOLX7Es261mXWkKWkp2RxKziS5t3qoVar2LHyINdOhdJ3XBfKBngjSRLhl6PwLOOGo5tDIXsbl+xm7bwtAFw8eo28LAOCIDBn87sENq5U7HkpKCg8JWSlakxB4Ymp4OBFdG4Ksgy+dnedgoSMLFQP6Kvu7mBHSlYOoiQTn5HFqI5NmPLrbiRZ5tStKAa3rGcdK8uQnWeka51qdKgRgL1Oh7Pdw/W01q84xLWLEZZGh1o1ao0ao8ESkZJk+HrJXs5djkROy2PzT8eQseQRZWfmFbIlSRJfTvgJSZTY/O1+hk3rw5YV+6nbuhrVGlYsMHbmoCWc3HsZJ1cHJi4ayuZv9zF35ApGzH6JfuO7FPOJFo+EqGQWvbsak8FM8PGb/B6xqJAumEar4dONE9j501Fa9qiPSwmqtzLTsnmvx3wMeUZ+W7Ibs9GM2SQSG55ETkYukTdiWDZpDYYcI8e3n6dD/2akxKVzbOs5tDoNXx2dgSHXiE8FL2vEJy4s4a79lGxkyfIXeM+aI4ojpKCg8ExQHCGFp870Wn3ZFxdMaVs3arnejdQ0quiLn4crV2MTAdDkJwsDvN25GXsvh7L/yi0MZpGTIZHUKOvFlegEAst4Ud7DjQBvD27GJ1HaxYkms5YgCDC6fTN61gvkUR1p/AK80Oosv+4mg5ncbIP1XKlapdl+4gZmd1twt8W5nDsRWbkIWhX2VQs3DxQEAc8ybqQlZqBSq6hUx4+0DAN//HKK2q0DaZGvNSZJEsd3XwaVivS0HGYM/RpBkjDlGvjqvbW07lm8Ds3FRafXWhpPCpYeR8IDvM6q9StStX7FIs/dz9Ft51n+0XqqN67EkKk9kUQJZDAZTbTt3ZhDm87Q6V49r/xPkhnJWWxYvMtqx5hnYlLXuaQmpOPt58mSYzPQaDUMnNKLI5vPkpaYYb1Yo1XTslejx34OCgoKT4gSEVJQeDJ0Kg3Pla5T6LhKJXAjIcmqticiI6sAGdaeuMiUF9pyIiQSAXi5SW0Cy3gRn5HFrfgUui34AZMo4elkR1xmJqIsgwwL9xxj6b4TjG7fhNfbFHzzTM/IJTMrj7KlXencpyEepZxJT8vh88nrLWEgQGWvIzwrB7MoWUXKEpHA24HcPBMh0SncjyAILNz9Aaf3BBPYyJ/tPx4lOz0XgE9H/UDDq3PR2+pQqVTobPWYjJbIkyxb/rGx0+Ff8+lXT7l4OjFn4wTO7A2mTe9GBarkHpcvx/9EZmo26UlZdOzflLFfDGTPL8fpNaIDjTvX4p2vhlrHBjYOYNT8Aayes4mEyORCtuIjLNufMWEJli3Ech44uTkwbc3bTOr2KYZcIwDPD21N3TZPt9+TgoKCwoNQHCGFZ4YoSRYHRgDkux86NGqB6mW8qF3Oh1PTRwMWpyk+PYvN569yOToeU341WVJWDmrhbqRDLQgYRZGN564UcITCI5N5c8KPiKLEq30bM6R/cxq0rMKgUd+R7eOAJtNAncb+ZCFzNTTeep1Op6Zj20BOnwsnNDyR0cPbFrkWZ3dHq4ZXzaaV+O1ri7CpJMlkpuVYE7CHf9STr6f9hlqjJrBhRYZP6UFidAr121Yv0u6vi3ey9vPt1G8TyPvLXy9xv53Ahv4ENvQv0TUPwzfAm1vBkcjIlPJ1p07Lqg/VLus8oCXXzoSy47uDhc751/Yj9MJt6rQOxCs/j+rI5jN8MnSZtTM3QExovFWTTEFB4dmj5AgpKPxJqFUq9Bq1pWT+nl2bN9o2ZmTbxsiyzLnb0bjZ21Hew5XXVqwnIjnNUgouCIiyjCxD00rlaBrgR8PyZRix8nfScnIZ2KxgBGrD1nMYjWZESWb/kesM6d+c9Ixcbkcmg16DSa/BZKvBxVaHPlKNJMPgfs1o1rAi/hW8GNC3+IrojTvWpO/oDuz+5SSd+zfBw8fFeq770Na8MKQVwj3OW6VaD07s/n7WRosUyO5L3AqOJKD2wxOp/2z+98tbHPz9DDcv3Cbo0DW8/TwKrOUOhlwjh38/Q9lKpTAbzKjUArIEYHnNBEFg6LQ+1GldrUCp/dk9wQWcIIDzB65ybMs5WvRo8CevTkFBQUFxhBSeMZvGDmT5gdNci03kdnIag1vUY3R7S4Th8z8Os/p4EAaziCTL2Gg1iLKMBnizTSO+OXgakyRxPT6Jr4f2BqB5JT+2XrjG1qDr9G1YC41axb7D19i0Pch6zztOjb2dDq1GjSm/d1HwtWjUajVqtQpZlPhp3XGaNSxe7sz9vDa5B69N7lHkuaIchwdRqVY5Im7EotGq8fbzeKy5PE1sHWw4s/cyJ3ZeZK/mJLaONrQpQn1+ztClnD9wBWQY9dmr7P/1JKIsMnByL87uDaZWi6rUb1+j0LPoPqI9R7ecJSMlyxoiVGlUqJ5C52kFBQWF4qA4QgrPlHLurszq0wkAg8nMrss3uRQVR82y3py6FVWgt1CeyYyApZt0aVcn7G10ZBuM9Kpn2VYymkW2XLgGwJWYeG4np1LR043TI1NRqQAAIABJREFU58OtNlQqgY75+SYajZpVS4ey6ucTlPJy5OcNZ8gzmBDymwLq9Rpu3krAv0Lx1dWfNvM2v8PlkyFUCCz72AKnj0NMWCJHtpyjXutqVKpdMGKVmpCOaBKRJcmaC3U/UTfiMOQY0dvpOL//CnJ+a4Kze4KZv2vyA+9bobovC/ZOZUTjKZjyq/iGzehL0651n97iFBQUSoayNaag8GyY+PN2Dt8IQ5Jkyrg5Ya/XWbfA7pCfX0xESjr7Jr1ORm4eXk6WfjSp2bmoVQKiJKNVq5k+43ciI1MIrOKDVqvCZJIYPrCgbldpb1feH/c8siyTlpHLmfO3adU0gC07L1LGx4UWTQKe5SMohN5WR70nTBS+euYW0aHxtHihHjZ2+keOlySJ8c99QnZ6Lms+28bK8x/j7H63548h926jywdVoo37aigLx66kfGBZur3ejuPbzqPWyLTo+ejtLZ8KnnQa0JJDG0/Te3Qneo3qVIxVKigoKDwdFEdI4S/jaszdJOiI5HQAvBztScrKsXafVgkC5T1c6duoJjZaDTbau2/QFyJj0ahUiJJIdpaB6Og8ZBkuX4ulSqVSLP1swAOTjQVBYPybd5sSjhjS+s9a5jPju1kb2LHqMDmZuWi0Gg5vPsuM1WMeeZ0syeRk5iGKEipJIi/HUMARKl3Ri8ibcSBDQmQy2Rm52DvZFrBRo2llJv8wkojrsQTUKc93Fz4lNzOPssXoOC0IAm99MYi3vhhU8kUrKCg8df5rydLKRrzCX8arTetyf3whITMbSZYRACdbPZ/07czW8YMp7VJYA6uxvy+2Kg3IMnaJklVgFSAjM++pKJz/nZDlB/91So5NY8PSPWSmZiOaJQy5RqJC4oplV61R8/7y4fhVK02nV5oxrtMnvFrjPW5fiwFgwsLBDHivG5Ik8euiXYxpN7uQjdvXohnbdhafj/yWWQMW4+7t8lAnSJIkrpwMITk2tVhzVFBQUPiz+He9Uyj8I4hNy+T0rSgGNqvL620aUdXHE3cHW8p7uFrHyMCJqaPoVqfaA+0429rw9UvdKXNDwDmj4K9yn+71HnDVP4/k2DQG1p7EC6VHcWTruQLn8rINRIfGY+9si52jDXo7HTobLeWq+DD+y8HFvkfQoWvE3U5ix6ojpCVlkhKfwabl+wHIycjl0vGbmE0ikigRdzspX1vtLjGh8QiCQF6OkfArUY+834Ix3zO5xzyG1fuAmPtsKSgo/IXIz/Drb4KyNabwTAlLTKH3otXIskSzAD+WDOrJuE7NAcgzmuj02XckZeXQrXbVYtmrGViWn799nZTUbMZMWoshz4Rer6Hn84UbOv5TObrtHGlJmZhNIt/P2kiTzrXQaDVkpmbzRvNpZKfn0qJ7PZYdmsblkyHUal4ZZ/fiS2cAnD94FUOOEY1WjSCoUWtU1G1teQ0+eXMFl47dKDD+y/E/MXfzROvPDTrWokHHmtwMCmfM/IGPvN+5fZfJyzFiY6cn5MJtSvuXKtF8FRQUFJ4WiiOk8EwZv3YbBrOlOujAtTBCE5Lx97I017PRaTk0eQSiJKEuQTM9d1cH3F0dWPXVa1y6Gk3DuuXRav89v9o1mla2NheMu53IB32+YOLioUzsOpfUxAyQ4dj2IN5bOoyW3es/1j2GTu3F52+txLucB6Pn9cfB2Y5ylX0AkETJIt2hFpBECbVajZNHQQFVrU7Dhz+OLv79pr/IonGr8K3ig7uPCwOqTkBno2X2xon4/IVVewoKCvytojXPgn/Pu4XC3x5ZlguozGtUAjfikqyO0B1K4gTdSykvJ0p5Fc4l+qdTtlIpPvx+BDMHL8NkMBF8PISv3ltDcmyadUzPN9oX254sy5zcdYmstBza9G6IRqumede6NH9AyfqkZa+xYsYGjmw9h1qjxq+KDxMWFn/brSja92tG+37NAJj5yiKSYlJBgC3L9/HGx/2eyLaCgoJCSVByhBSeGYIgMKCZ5c1WrRKo7etD66qP18Dwv8LlkyG86D+OmYOXUr5aaVQqgT5jOlr1ywD8a/gyZErPYts8+PsZPnn9Wxa/u4YVM3575HiP0q54+bqhUqkQTSJJMWnYOdgAFqfqm8k/MzBwIluWW2RGUuLTmdh5Dm+1mvHQ/J/MlCxMRvPdpG4ZTu28wI1zYcVei4KCwtNFwFI19iy+/i4oESGFZ8oH3dowqUtrVA/oR6NQkJ2rj2DMs/Tx8aviw6I9UwAIvxrNxG5zEc0Sb38+4KE2RLOILFtU3QHiI5IRzSJms0jMrcRHzmHLigNsXr4fs1FEpRYY+P4LACREpzCu4xxSoixRvqXv/USXoa3Z+NVOrp4KQZIkVs7awAc/jAQgOiSOfeuOU7dtdS4duc5Pczbh6GpHTkae9V5RN+OY0ms+v95eXMInpaCgoPB4KBEhhWfOf8kJOrTlHMNbzmTp1PUPLX9/EK17NUSr16LVa2jT+66obPlqZVh34wvqtw3k/d6f88uCHUVeH3opkr4BE+ldYSznD15FkiTUGhWeZdwoX7U0w2f2ASyRnfiIJKsC/L3ERSRjNooIgmU++9adpH+1d5n2ymJSEjIAS7TPs6w7KrWKclVLo9VrsLHVUz6wrNX+hE4fs2buFib3+IzNy/cimkVyswyFmjSq8x02BQWFvwilakxBQeFp8fn41RhyjSTFHqddn4ZUqVMyEdX6bauz+tKnyLJcqBIs7HIUZ/ZexpBrZOWc33lp7HMIgoAsy9wKjsLJ3YF9v54kN8sScdm0fD9JMan8+MkWjHkmVGqBlR9v4sPvRrBw4mr2/HwcB2c7lh2ZVqCh4ktvd+b8wSvER6ZgMpi5FRyJIc9EXo7Bcj+dDq+yriza+yGCINChf3PcSrlgzDPSOL967/bVaLLTc5Aly1+/ag39ObblHIY8I05uDlYHTKUSqNG08mM/bwUFBYWSokSEFBT+RLzLuaO31SII4F7K+bFsOLk5FFkO7+3ngc5Gi429noDa5a2CpqvnbWVCl08Z3ngqZSuVQmdjiSi1fbERhjwTUn7jSUmUOZOv/r5z9VHMJpH0lCyu35ejo9VriLoZT25mHsd3XEBGxsZOR4XqZRFUAoIgULFWOZzynSdBEKjfvgZNu9ZDpVLx48cbebPJVESzhJO7AyM+6Y8pf7sPGeq2CcTFywmVSkCSZOJvJ6GgoPDXIcjyM/n6u6BEhBQU/kTm/TaW47suUaWuHx4+Lk/VtoOzHcuPzyT8SjTVGt5NOj/xxwUMuUa0Og2GPCMrz3+MaBZx93bBZDSze80xbgTdBizaZvc2R5QlGb9qpQvcR6vToLPRIgM6vYahH/bk0KZzxIQlIEsystlM8KGrXD5xk+r3abUlx6Xx8/xtFtuyjNloplaLquht9QQduoqgEnjh9fa8/eUQZr26mITIJEbOe/WpPicFBQWFhyE8Tt7CX0WDBg3kM2fO/NXTUFD4WxAdGk96chbVGla0RoMATu66yMfDv8HNy5nPtr6Lu7cLSbGpTOwyj7SkTPqM7sivC3diNokIKoHWvRqQm5nHyV2XaNOnIZOWDSt0r6iQOE7svEjlOn5M7bfYmsAtSxKYLN87uNixPuIr0pMzmdF/IemJmZjNYoEIj1qnRqvRsOL8HESzhFavwdXr8SJlCgr/BQRBOCvL8qPVi58S9h6+crUe45/Jvc5+N/GZru1BKBEhBYV/IFdOhfJBn89BEOg1oj1DpvSynmvcqRabIgpWXR3ZfI6UhAzMRjOn9wTz4phOrP9qF5IokZdjZPrq0Yii9EB9trKVvHmxkjeJMalw74enexww2/yS+l0/HubG2TDMJhG1xpL4rFILyDKIRhGNRk1SdCpVGjz91glXT4YAUK1xpaduW0FB4d+J4ggpKPwDuX4uDEmUMRlNnD94jSFTHj6+RpMA1GoVKhstzbrU4cUxnTAazKQlpjPsI0vlWHFEaj1Lu/LesmEc3HgGjzKuOLnaoVYJZGfk0HlASwD8qpVBrVGj0Wpo0qUON8+HE3c7CZDR2+vo+EpzKtevAEDkjVjCgiNp1Lk2Nvb6J3omO1cd4qvxKwEY/cVgOg9q9UT2FBQU/hsojpCCwj+QNr0b8cdPR0hNSGfoh70eOb5S7XKsODWTzNRsylcrA8DrM/o81r2bd6tL8251+W7mBlbP24ajmz1LD37Erwu2s+P7A7Tv34xPtrxHRkoWDTvVZMs3+1gxdR1ms0j9dtUZna9FFhuWwJhW0xEQCKhbnnk73n+s+dzhyvEb1uqzy8dvKI6QgsJj8ndqdvgsUBwhBYViEB2WSFZGLpVr+RbIx/mrcPVy4usj04s93pBrZN+vJ7BztMW3sk+xoj+PYueaY5hNll5AZ/cFs2HxTiRRYvt3B3h5YjeqNfIH4PmhrYm7nUh6UibD//ey9frY8ESLYn22gfCrj1asfxT1OtTk7J5L6Gy0vDSh6xPbU1BQ+G+gOEIKfymRcan88sc56lQpQ4emxVOcf9ZcOhnKhwOXIQjw8uiO9H+7U4HzZpPI0mm/cftGHKNm9qFiYJm/aKYPZvm09ez86QhCfon6C6+1eWKbzw9qwfpFu7B3tKFem0A8y7iRnpyJvZMtTm53+xDp9FpGzOlf6PraLavS5Pk6XDkZwhtznkxfbPu3e1n6zo8gw/ivX6dsgM8T2VNQ+E+jRIQUFP5cjCYzH365lWth8YiSRGpGDlsPBOPr7UqVCqWKvEaWZRauPsjx87d4vW9z2jep8szme/VsGKJZRDRLnDt0rZAjdGTHBfb+dgZDrpHPxv3Ekl2TntnciktWeo4lGRoV2Rk5Jb4+L8fAmvnbUKkE+k/oit5Wx5DJPen9ZgfsHG3RaNUsOTqDq6dCqVK/Alrdo/+0qDVq3v/uzcdZTiEuHb2OIceIIAhcPnaDdv2aPxW7CgoK/34UR0jhmXPy4m3OXI4g12BCJViqiQTAnN/oryiuhyXw+54L5BnNzFy6g+xcA20bVcbR3uZPn2+73g3Y9ctJMlKzGfhOl0Ln3bycQJbR6jW4P+VeQU+LEbNeQhYl7JxsS6RUf4fVc7fy+zd7rT/fqVK7N/Jj72xHg441i7xelmUWjV/F8W3n6f/uC3S/Zw5pSRlM7v4ZyXFpTP5hJLVbVSvx/Pq9253LR6+jUqvo/dZz/2/vvuOjqtI/jn+emUwqJYQOoYP0Ks2CCCqirGWxN9y1YC/r6rquit111Z+6rgXFvoqKFXWtKIpYkCIdpPdeQwIpM3N+f8yAAVJhSkK+79drXs7ce869zwlJfHLuKeWuLyK/0xghkShr2rAWzjlSkny0bVGPerWr061dJh1bF/84IyM9FcxI9HkpKAjw2Kvj+fDrmYy693z8/iBJZeiByMsv4Pspi2mRWZtWTeuWOd46DdJ54bvip2V16duaO56/hNVLN3LCWb2LLRdPterV4LYXhh9w/WAwiCOUsB7I0mPL563m6zd/JG9XPiNvHc0plw/cM9bq2zE/s+K3NfgLArx41zs8OX5Eua/frEMmry34d/kDE5EqT4mQxFyzRhm88uBFLF+zhb5dm5PoK/3bsF5GdV6873w+nTCHd7/8lbx8PwuXb2DIVSPZsWMXZw7qzg3DBuy3oeuu3AKSkxIwM2595CNmzl+Fc/DyQxfSPLN2xNrU89j29Dy2/D0ZlcVFt56KWWg7jfNu2r9XbLdtG7PYtmkHzdo12mtQee0G6ST4vJgnibqZGXud8yX78BcEAPBUgIHoIlWeeoREoq9ZowyaNcooV52WmXW4+txjmL9kPdPmrsQfcGRl7cIF4N3PfsXn9XLtRf33lH/0hXF88NUMWjery6gHzmfpyk3k5vlJSfKxat22EhMh5xxTZ68gNSWJDq0bHHA7K4qCfD9fj/mZajVTOOoPPco98y0QDJK9fSfOOQL+AL9NW8qYJz+n1/GdGXzh0QAsn7+aG469D+eCdDqyLen1anDezaeQ2aYB1TOqcf/7f2X2j79x0p/673XtgtwCvD4PgYIggWDxj0dFRKJBiZBUKh6PMfSEbsxZtJYCfwAXCP3p4hzMXbRur7Jjx83EOVi5dhuLlm/k71cM4v9e/Jp2LevTt1vzEu/z6geTeO2DXwgGg9x21SAGHdW+xOQhP8/PE7e8ycrF67nuwbM5rGvTg25rJL1w17t8/t/vwYy8XQUcd3bfctUf/cgnjHv7JwBSqyUzbszP7Niaw+Rxs2nXsyXN2zVi7s+LCLog+bsKmPbNbBywYOpSRk15kIW/LuPvpzwMwM4duVx859A91z72rL58/t/v2bJuG5fec1bE2iwiB8BpjJBIhbNmw3b++/EvtGtRn9MGdmFA7zbs3JXPus1Z9D+8NQ+O/ILsnDyuG9afn35dyne/LKRXl2ZUS0tiR3YuNasl0zyzNqnJibz71GVluues39aQmxfaQ+ve/3zG2K9m8tRd5+z36G23if+bzo9fzCRvVwGP3/Imz1awmWMbVm0mP68Ab4KXTWu3lrt+clrSnranVEsOzQoLfyl8vtA2Gn1P7sbbj/2Pjas2gxnBQHDPFhtzJy0iGAxSkOfnly9ncPGdQxn/7s+MfXYcg4f1Y+RP90WmoSIi5aRESCq8Wx8by+KVG/ncl0CTBrXo0aEJfzi2057zLz90EX5/gKlzVnLbo2PJLwjw8Tezcc6R4PXg8RijP5rCpWcdUeZHQlecdzRLV25m3aYsnIPZC9eyYcsOGtSpUWT5eo1rgYOkZB+Nmpd9IHasXHH/OezMzqV6ehp/uOTYctc/9y8nh/YSc47Thh/HgDP78OmrE+jevz2NW4WWPKhVryavzHwY5xzjRv/AgmlLOeP6kwA4ZmgvPnp+HFvWbefiO4aSm5PHo5ePIhAIsmDaEjod1ZbMQ+ARpMghoYr1CJW6+7yZJQMTgCRCidO7zrm79ilzJXANEACygeHOublmdgFwS6GiXYAezrnpZvYt0BDYFT43yDm3oaRYtPv8oWvj1mxWrdtG58MakbDPqscX3voqS1ZtItHn5a6rTmZAn8P2nNuVW8AN97/D3EXr8Bj4w4/KPB7DY7ZnSr4Z3HP9EI4/quyLNjrnuObuMcxeuIZWTevywoPn4/UUvyLzzJ8Wsnb5Zvqf1oPklMTyNL/KWfHbGob3+n0mXrP2jXlu0v1xjEikYor57vO1m7hOJ8dm9/lfXq88u8/nAQOdc9lm5gMmmtlnzrmfC5UZ7ZwbCWBmpwKPAYOdc28Ab4SPdwY+dM5NL1TvAuecMpsqbt2mLC742ysEHfTp0oyH/nLaXucfuuk0Ro6ZyI/TljDiqf9xyerN/HnoEQA888YEZi9YC8DuYbZHHd6SzVtzWLRi455rOAcPjvySwzs3pVaN1DLFZWY8ddfZbNiyg7oZ1UpMggC6HNGGLke0IT/Pz/IF62jcoi4J4cdGsrfsbTkkJHrx54dmi61bvrGUGiISC0bVGyNU6oZDLiQ7/NEXfrl9ymQV+pi27/mw84C3DjBOOYQtWbkJ5yA3r4Dp81fvdz6zfjr9urfC4fAHgowdP2vPuU8KvYdQz8/1w45l45Zs/P4ghYf05OYV8OGXM8oVm8djNKhTY08StGX9dsa+9B2LZq0ssry/IMC1Jz3C9UMe5eYz/k1pPa5VVfverTn1iuOpkVGNjAY1uemZS+IdkohUUWXaedHMvGY2HdgAfOWcm1REmWvMbDHwMHB9EZc5B3hzn2Mvm9l0M7vTKsJOlhIXPTo24bDm9fB6jF25+Tzz5oT9yvTs1JSUpES8Xg9nDOq253i11L1XlvaY8dXE+Vw3rD91M6rRo1PTPcmQGbRsWqfIGF59fxLHDXuS2x4dy5KVm/ht6Xr8/gCfjJ/N1z/+tieh+evQJ3nxwY+5+cwn2bh2237X2bxuG2tXbCI/z8+CmSvZmZ13oF+WmJkzaREfPv81WVuySy98EHZsyea3qUsI+AOYGcMfOJcxy/7D6AVP0H9on6jeW0TKwbnYvCqIMg2Wds4FgG5mlg58YGadnHOz9ynzNPC0mZ0P3AFcvPucmfUBdu5T5wLn3Gozqw68B1wEvLbvvc1sODAcoGnTijUlWSIjOdHHiKtO4uy/vkR+QYD/fjyZS4YeQXKSb0+Z2ulpfPTUcHblFey1rcZDt5zGNXe/TX54Qb5A0PHCOz/SMrM2Y0deAcDy1Vv4cuI8enRswuGd9v8e2rI9h+femgjAD1OW8OO0pXg8RufDGjJrwVrMYGduPqcM7MzWTVkU5PtJSvaRvW0ndffZUqNu41p0O7INU76dT/9TupNW/fdYg8EgcyYvpXb9GhVmQPXSOau4+ZRHcEHHmH9/zug5j0TlPts37+CyHreRn1dA12Pac++YG6NyHxGR8irXrDHn3DYzGw8MBmYXU+wt4Nl9jp3LPr1BzrnV4f/uMLPRQG+KSIScc88Dz0NosHR54pXKY8rs5QTCA5vTqycXuWVGQoKX6gl7j7np2KYh41+/gTkL13Ddve+QFx5zsmr97701zRpncPk5RW/CmZfv56Kbf/+28weDWDD0bHfp6i0UFATweIz1m3YAcNvTf+L1xz6j7wmdaN5u/y1BPB4P9712Jf6CwH7jg0be9T5fvfMLzjkeffd6WnduUoavTHTNnbwYFwz9WG1Zvz1q91k+bzUF+X7yduYzY8K8qN1HRKS8Sk2EzKwuUBBOglKAE4B/7VOmjXNuYfjjEGBhoXMe4GygX6FjCUC6c25TeAD2H4BxB9sYqZy2bM/hsdfG7/ncpW0mZkaBP8BrH00iLz/An07vQ2ry/jOxVq3bxq0Pf8iy1ZtJ8HpITk7AnHH9n/rzwZczqF+nOkf2aFnsvbOyc9mRk7vXMZ/PS2pKIrdcdjzvff4rqSmJnDOkBwB9ju9In+M7ltqmogZJz/xpEbk780lM9rFw1qoKkQj1/2NPnrtjDAV5fpq3bxS1+7Tr1YrWXZsxf/JiLrj11KjdR0QOXlUbLF2WHqGGwKtm5iU0pmiMc+4TM7sXmOKc+wi41syOBwqArRR6LAYcA6x0zi0pdCwJ+CKcBHkJJUGjDr45UhlNm7dq99p8eD3GlWeHtmx489OpvDY21IOyc1ceN//5+P3qPv7yNyxdtRmAAn+QYaf34dKzj+TOxz9hwuSFmBn9e7ehScN0Ljo9tCHq1u072bA5m/QaKTRtlMFZg7vz/pfT9/QmNWuUwauPDOP1sb+wfM1WhgzoGJFd7i+9/VQeufF16mdmcPTJXQ/6epFQrWYab8x6mBUL1nJY9+YRvfbMifN59pY3aNuzJdc9cTGPfn5bRK8vIhIJpSZCzrmZQPcijo8o9P6GEup/C/Td51gOcHh5ApVDV4/2maSmJFIQCPLn0/vSIrwH2O5HZc5BILD3nyj+QJCfpi8lNdlHQoIHvz+IL8HL0b1asXDZBr6dtIBA+JHPuB/n4/V42Lp9F+MnLSBrRy7mMRK8Hp6880yuG3Ysl5x1JJfe9jpr1m+nQ+uG5OzK57k3JxIIOv774S+cfnxX6mZUO6h29hrQgTEzHjyoa0RD9VppdOzTOuLXfWT4KDau2sLaZRs5YkgP+gyuGMmfiJTAUeUWVNTK0hJ3GTXT+PA/w9m5K5+a1VP2HD9/SE927sonL7+A4eFeot0eeO5zvpu8CH8gQLNGGXg9xr03DqFpo9pcOeKtPUkQhBIpfyDIB18VmjofcHjMmLtoHZ3bNsZjxur12wkEgnz63RwuHtqb9Bqp5OzKJ9HnpUa1pKh/HaJt2rdzGTvqGwae1Yf+p/eK+v0aNK9L1qYduKCjbmb5NtgVEYkVJUJSIfgSvHslQQBJiQlcc/4xex2bNm8lr380mQXL1rMrr4AEjGWrtuBwPPfmDzzw11Np1iiDeYvWUeAP4PXYXknRbgleo0nDdE44uj0AiYlealRLZueufHwJXmpUT+HVR4YxZdZyunfIJCnRt981KpOCfD93XfAUBXl+po2fS+cjDiOjfs0S62Rv38nDV71I9rad3PzUn2nUsl657nn3Wzcw4YNfaN4+k5ad4j8eSkTKxoKllzmUKBGSSsM5x80Pf8CuvAJ8CV5qp6dRPTmJdRuycM6RXjO0YvQtlx1Hj45NqFMrjfWbdvDwqK/wej3k5hXsWbri1OO6cvNlx+25ttfj4ZV/XcTP05dyeKempCYnkpqcyKBwolTZeTxGgi+Bgjx/6LFgGVa8/uSlb5k2fi5+f4Dn7hzDPW9cW657ptVI4aSL+x9oyCIiMaFESCqV5GQfuXkFeDzGC/eeT/3a1fl8wlx25ORx2vFdgNA0+xP7/Z7AnHxsRwLBIBOnLOGxl74mwevh7JP3G/ZG3YxqnDKwc8zaEkveBC+PfnwL37z7M0cM7kaNMox3qt+0Dt4EL94EL41bla83qLD83AI+e+U7Nq3ZQnJaEoMu7EfdxhlsXreNT0Z9Q8vOTegXg0d1IlJGGiMkUjGZGSNHnMOnE+bSq1PTPTvBn9S/9OnszkH3Do33LLJYFbXq3IRW5Ziyf+zQXqRWSyZ7+06OHXrgicpzfx/NF69PxJ/vx8wYP+ZnXpj6T+4570kWTV+OLzGBjAbpdOzb5oDvISJyoJQISYU3fe4qRn80mWN6t+YPAztz5TlHl16pkKzsXQy75TU2b9vJBaf05Mrz+5VeKcrmTlnKPZe9QFr1ZP755jXUr4CDic2MPid2OejrbN2QRcAfWprAOUf2tp0A7NqRSzAQBAu9F5GKoaqtI1SmvcZE4sU5x80Pvs8PU5fwfy98zaq1W/crs2j5Rpat3lzsNWbOX8OOnDwCgSAfjpsZzXDL7I0nPidrSw7rVm5h3Lu/xDucqLrq4fPpPagLrbs1o8sx7Rgx+joAbv/vNRwxpDvn3DSEw4/vdEDX/vmzX3nzkY/YtiGr9MIiIkVQj5BUeImJCezKK8DM8IUH+ebszMPn8/L5hHk8/so3ANx7wxD69dx/PZzObRuRlpJyUbJkAAAgAElEQVRIQUGAIQMO7H+4kdbjmHbMmbwE56DD4S3iHU5U1c2szT1F7C3WvH1j7nqzqP2Zy2b+5MU8eNHT+Av8/PTJNJ787u6DiFJEgPA6QlWrS0iJkFRoZsYz957Dp9/OoXfXZtSvU4PPvpvDQyO/JCkxgY6HNSQv348BU2evLDIRqlk9hfeevpwd2blkpKfFvhFFOGP4ALr0bU1KWiKZrerHO5xKacfWHMyMgD/Ijq058Q5HRCopJUJS4TXPrM3VF/6+ntB7n0/H7w+C81M9NZlqKUmkJCfwx0HFr1zsS/BWmCRotzZdSh64vHnddu65dBS5OXnc/twlNGu7/yavFYm/IMDi2SvJbF2ftH3WhIqGnid0Zuh1g/lt6mIuvfecqN9PpKqoamOElAhJpXPa8V1YtGwDZh4mTF6E12OccWIvmjWqeAOOAXZs20liso+k5LIvyvj1+5N55o532ZmdCw5ee/RT7hx1aRSjPHi3DX2chTNXkFY9hRd+voeUage/P1tJzIyLR5wR1XuIyKFPg6Wl0jnluM58+NwVnHFSNwL+ILl5fuYsWBvvsIr06ZhfOO/Yhzi//0OsXr6pzPX+fctb7NwRSoISkxJo06UJzjlcjJ/dO+fIzy0otVwwGGTOpEXk7cwnJ2sXa5eVva0iUsG4GL0qCCVCUiml10jlnJN70KpZHRrXr8nl5x4V75CK9Mnbv+AvCJCfX8Dk7xeUuV7DZrVJSkkkMSmBmx67gJ4D2nNWp9s4o/2tzJu2LCqxOudYv3Iz+XmhxKcg389fhjzC6S1v5D9/e7PEuh6PhzOuHYTX66FT39Y0a98oKjGKiESaHo1JpVW3dnVeeWRYvMMo0R/O6c0zD3xMYpKP3v3alrneo+/fyORv5tC2ezMat6jHf24bQ07WLgA+euk72vdoHvFY/3X1y/z46Qwy6tfg2fG3s3rJRpbNX4tz8NnrE7n2X+diZsXWv3TEUC4dMTTicYmIRJMSIZEoOvns3vQ7sTNJyQkkJpV9jFD19FQGFlrNuc8JHRn3zi+A44gILHJYlB/+Nx1/QYDtm7NZNm8NLTpkkl6nOls2bKfb0W1LTIJE5NBgaLC0iERY9ZoHP4Oq98COjPruHwQDjgZNa+93fmd2Lt+8N5nGLevRvRw9T4WdeP6RfPrfidRvUpuWHTNJSknk+Ql3snHNVho2r1Oma2zbmEX1Wml4E0rf1FVEpCJQIiRSSdRrXPysuAeveoVZPy3EPMYDb1xNx14ty339ax86l0vuOJ3k1EQ8ntDwwcRkH41blm3D1X/f9Dpfvfkj9TIzeHr8HVGfNSYiUeBclVtQUYOlRQ4BG9dsJT/PDxib120/4OukVkvekwSV17i3fibgD7Jh1VYWzVxxwDGIiMSSEiGRCignaxc3D/03w/rczexJi0stf/PjF9KuR3MGnH44Rw6Ozhii0iQmhzqYA4HAno1VRaTyMRebV0WhR2MiceYvCHDf5S8yd+pSLr3tVAaffwTfjp3KwpkryM/z8+xd79GjX1vWLNvEZXecRsNm+4/XadOlCY+P/Uscov9dWs2UPWsfxXq9IxGRA6UeIZEoc87x5QdTGfPiBHbl5O13fu6UJcz8aSHZ23Yy6r4PAWjerhGYkZyaSI30VD5+9Xt++mImj974eqzDLzNfYujvqgSfl22bdsQ5GhE5YFVsQUX1CIlE2dcfT+fp+z8mEAiyfNEGbvnnmXudb9yiHh5PKOk5rGto/7GOvVryxEd/YdO67RTk+Zk3bTker4e0GtHfw+tAnXrpAF64+z2SU5PocWyHeIcjIlImSoREomznjlyccwQDQXZs33/sTO0GNRn5zT9Y8dtaOh/RZs/xFu0b06J9Y5xzXP/Q2axdsZlT/3TMfvUritOGD2TAmb1JTk0isRz7qolIxVKRxu/EghIhkSgbfGZPVi7dyJZN2Vz59yFFlqnbMJ26DdOLPGdmey2uWJHVyKgW7xBERMpFiZBIlCUm+bjmjlPjHYaISOkcEKxaXUIaLC1SCeRk7eLOYSO5fsijrFi4rkx1Fs1exfvPj2fD6i1Rjk5EpPJSIiRSCXw2+iemT1zAwpkree7u9/c6FwwGefHBj/j7OU+xaNZKALZuzOLmoU/w8kMf85fTHtd0dhEpuwoya8zMmpjZeDOba2ZzzOyGiLWxECVCIpVAw2a18SZ4SErxkdmq/l7npnw7j09e/Z4ZPy7kn1e/AkDOjlycC61RlLU1R4mQiFRGfuCvzrkOQF/gGjOL+JRUjRESiaF5M1bg8Xho2zmzXPWOOqkryalJZG3J5phTuu91rkatNFzQkeDzUrN2aLByZst6XHTTSXz/v+mcc90JB7xthohUPRVl1phzbi2wNvx+h5nNAxoDcyN5HyVCIjHy6ZhfeO5fnwJw472nM2BIt3LVP7x/uyKPt+venNufv4Rl89cy6Jw+e46fedVxnHnVcQcesIhIBWFmzYHuwKRIX1t/JorEyJxpy8nLLSA/r4A50yK7KWmvAR0466rjqKnp6yJSedQxsymFXsOLKmRm1YD3gBudc1mRDkI9QiIxcvZl/Znz63K8Xg9Dhx0V73BERIoWuzGFm5xzPUsqYGY+QknQG86590sqe6CUCInESLPW9Xjli5vjHYaISKVgZga8CMxzzj0Wrfvo0ZiIiIjsYS42rzI4CrgIGGhm08OvkyPdXvUIiVQQwaDjmy9mkZtbwIl/6IbP5413SCIiceOcmwhYtO+jREikgvhs7DRGPvEFDlizcgvDrz8h3iGJSFVTxsUODyVKhEQqiC2bswkEggSDjk0bIz4xQkREiqBESKSCGHpeX1Ys28SunXkMvy5+vUHOOV5/8it+/GoO519zHP1O6hK3WEQktgywKrYSvRIhkThbs2oL9/79HTxe4+5/nUO9BjXjFkvurnxWLNrAuy99T35uAQ/f8jZHD+5MaPKGiMihR4mQSJy98dL3LF28HjNjzH9/4Npbip4UEfAHWbJoPY2aZJCWlhTxOGZPWcbtl7wQ2pfMjMSkBNLrVFcSJFLVBOMdQGwpERKJs9ZtG/D9N3NxQOu2DYstd+df32TWjBWkpCby8phrSKuWHNE4vh47lfw8PwA9j2lL34HtOeL4jhG9h4hIRaNESCTOTj+7N02a18Hr9dC9Z4tiy02fuhS/P4gBK5Zton2n8m3cWpoBf+jGN2N/xTk4fdhRHN7vsIheX0QqB40REpGYMjN69mlVarmzLjySt177gdbtGpbYc3SguvRpxegf7sA5R7UaKRG/vohIRaRESKSS+POVA/nTFQOiOmYnrXpkH7eJSCVTBdcR0hYbIpXIvknQrOnLufe2d/h23Jw4RSQiUrmpR0gkCpat3sy8Jes5ukdLqqdFp5clEAjyjxveIC/Pz6QfFtChcyb16sdv6r2IHApcLHefrxDUIyQSYRu27ODPt7/Bwy9+xdX3jonafcwMb4L39/fe0I9zfr6fW65+jVP6P8h7b/4ctfuLiBwK1CMkEmEbt2QDjtw8P6vWb4vafTwe4/+evZgvPplO36MPo3ad6gDMnbWS3+atJi/Pz2ujvuWM8/pGLQYROfSUcWf4Q4YSIZFSLFq+kdse/4jUlEQeveWP1M2oVmL5Dq0acFK/jkyauYwrzzk6qrG1OqwBV980eK9jzZrXJSHBS3IKdOrWNKr3FxGp7JQIiZRi5JiJrFq/DY/H+ODrGQw/66j9yjjncC7US2Nm/O3S4+MQaUit2tV4acw1rF6xmbYdG8ctDhGRykBjhERK0blNI5KTfPgSvLRtXm+/88tWb2bw5c8w8E9PMmX2ijhEuL/0Wml07NqUhPAYIhGRMnMuNq8KQj1CIqUYdlpvOrRuQGpyIh1b77+Q4WffzyUrJxeANz6ZTM9OehwlIlJZqEdIpBRmRq9OzYpMggD6dGlOUmICiT4vxx3RNsbRiYhEkAMLxuZVUahHSOQg9ejQhHefuJT8ggCN6mkdHxGRykSJkEgE1KlV8kyykgSDjrEfTmXr1hzOPqcP1SK8q7yISLlUoPE7saBESOQg+QNBVq7ZSuMGNUn0lf9H6ssvZjHquW8IBIKsXbOV2+88PQpRiohIUZQIiRwE5xxX3/kWi5ZvpH6d6rz26MX4fOWbqZWfX4BzoZ6h3NyCUu/3w8QFABx19GFR3YBVRKqoqtUhpERIpDjOOZ4ZNZ5vvp3LmX/sxXln9dmvzK7cAuYuWotzsHZjFhu27KBx/fQ95wOBIC+8/SPLV2/m6guPIbNhrf2ucdLJ3Vi3djtbt2Zz+fCBJcb03ru/8PKLE3DAZZcdy9Azex10O0VEqjIlQiLFWLc+iw8/nkZBQYBRL3/H0FN7kJTk26tMakoig45uzxffz6NHhyY0rLv3YOlvJy1kzKdTycvzs3FLNqP+ecF+9/H5vAy/suQEaLcVyzeTn+8PvV+5+QBbJiJSPNMYIREBqFkzheRkH16vh5o1UvAVM/5nxPUn84+rTyxy8cLUlEQAPF4PaamJBx3TRcOOZsXyzWBwwYX7r3AtIiLlo0RIpBipKYm8PPISZs9ZTY/uzfB4ih+PU9wKzn27NedvVwxi5ZotnHVyj4OOqW69Gjzxn4sOqO7OnDzee3UiNdJTOeXcPng8WkZMRIqgHiER2a1O7eoce0y7A65vZpzYr30EIzpwzzz4Md9+Pguvx0NSso/BQ3vGOyQRkbhTIiRSRezalU8wGMTMyN1V8uw0EamiHFCBVn2OhVITITNLBiYASeHy7zrn7tqnzJXANUAAyAaGO+fmmllzYB7wW7joz865K8N1DgdeAVKAT4EbnKti/XFSqXw1cT4vvvMjx/RqzVUX9Kt0U9evvf1UkpMTqVErlZPP0mwzEREoW49QHjDQOZdtZj5gopl95pz7uVCZ0c65kQBmdirwGDA4fG6xc65bEdd9FrgcmEQoERoMfHaA7RCJugee/pwCf4B3P/uVQf3a07pZ3WLL7sjJ5dufF9KmeT3ataofwyiLV6t2NW558Mx4hyEiFZjhNGtsX+FemuzwR1/45fYpk1XoY9q+5/dlZg2BGruTKTN7DTgdJUJSgdWvU52NW7IxMzJqppZY9qYH3mPx8k0AvPLIRTRtlBGLEEVEpJzKNEbIzLzAVKA18LRzblIRZa4BbgISgcKLorQws1+BLOAO59z3QGNgVaEyq8LHRCqskfefx8Qpi+ncthEZ6Wklll27IYu8fD/JST42bs5WIiQiUkGVaf6scy4QfryVCfQ2s05FlHnaOdcKuBW4I3x4LdDUOdedUJI02sxqlCdAMxtuZlPMbMrGjRvLU1UkomrVTOWU4zrTPLN2qWXvvPYkWjapzeD+HejesUkMohMRiRDnYvOqIMo1a8w5t83MxhMazzO7mGJvERr/g3Muj9AYI5xzU81sMXAYsJpQUrVbZvhYUfd8HngeoGfPnhXnKydSgj7dmtOn25/iHYaIiJSi1B4hM6trZunh9ynACcD8fcq0KfRxCLCwUF1v+H1LoA2wxDm3Fsgys74WmnozDBgbgfaIiIjIwVCP0H4aAq+GExoPMMY594mZ3QtMcc59BFxrZscDBcBW4OJw3WOAe82sgNDKBFc657aEz13N79PnP0MDpUVERCTGyjJrbCbQvYjjIwq9v6GYuu8B7xVzbgqw31gjkcouZ1c++fl+apUys0xEpMKpggsqarMhkQhasmITpw0fyR+vfJ6x42bGOxwRESmFEiGRCPrp16XkFwQo8Af45JtZ8Q5HRKTczLmYvCoKJUIiEdSvVytSknwkeD2cddLB7zYfSc45crJz4x2GiEiFok1XRSKoaaMMPnnhKvyBICnJvniHs0fAH+DmP7/A/Fmr6HdCR/7xyLnxDklEKqoK1FsTC+oREokwn89bYhI0c/5qXvtgEus2ZhVbJtLWrNzC4vlrcUHHhC9mk5/vj9m9RUQqMvUIicTQuo1Z3Hjfu/j9AT78cgbvPzs8JvdtkFmLBpkZrFmxmS49m5OYqB99ESlKxVrjJxb021AkhnbuygcgEHRkxXC8js+XwDNjrmHThizqNaxZYtktG7J4+Ja3cc7xt0fOpXb9cu2KIyJSqejRmEgMtWxah8vPPYpu7TP55y2nxfTeCT4vDRrXwuMp+cd+9LPfMGvyEmZPXsroZ76OUXQiUiE4tLK0iETXeaf05LxTesY7jGI1alobX/jRWaNmpW8wKyJSmSkREpG9/PFPR1O3YToARw3qGOdoRCTmqtjK0kqERGQvZka/wZ3jHYaISExojJCIiIhUWeoREhERkT0q0vYXsaAeIREREamy1CMkIiIiv1OPkIiIiEjVoERIJILGj5vDAyPeZ+7sVQd8jZXLNnH1BSO5efjLbNuaE8HoRERK4YCgi82rglAiJBIha1dv5dEHPubbr+fy97+Mxh1g9/JLT41j8W/rmDtjJR+9PSnCUYqISGFKhEQOwtLFG/jqs5nk5OTh8dqe417vgf9otWhdj+RkHwk+L01b1I1EmCIiZRSj7TUq0DgkDZYWOUBrV2/luuEvA/DR+1P4z6hLGPHAmUz6cSFDTuuBmZVyhaJdOPxYWrVtSEpqIj36tIpkyCIisg8lQiIHaMOGLAzIzS1g9aqtbFi3neef+ors7Fym/LKEmjVTuPufZ1G7TvVyXdfj8XDUgPbFnl+9YjNp1ZJIz6h2kC0QESlCBeqtiQU9GhM5QJ27NmXACR1pnJnBNTcO4p03f2LVyi1s2ZzD2tVbWTB/LR++Ozmi93zntR+48txnGXbqv1k0f21Ery0iUhWpR0jkAHk8xk1//wNzZq3kbze8QcAfxOMxzAyz0DihVq3rR/Se3301h/x8Pwk+DzOnLqN1u4ZlruucY2dOHqlpSQf82E5EqoAq1iOkREjkIP34/QLy8/wAdOrahEuuGMDOnDxSUhPp0q1ZRO913iX9ePAf71KjZgpHH1f847N9OecYcfnLTP1hId36tuKBly5VMiQighIhkYM24PiOfPz+VPz+AOdffDSduzaN2r2OGtCej3+4PdzrVPZEZvvWHH79cREu6Jj5yxK2btxBRr0aUYtTRCqp3esIVSFKhEQOUuvDGvDeZ3/FBR2JSdH/kfJ4yj+0r0Z6Km06Z7JozmpatmtIeh0NtBYRASVCIhHh83njHUKJPB4Pj46+kk1rt1GnYfoBJVMiUhU4cMF4BxFT+m0ocoh7+7nxXDboUT57exL1MzMOarFHEZFDjX4jihzCNq/P4vX/jGP18k2MvP9jcnfml1h+47rtPPfgx4z7cGqMIhQRiS89GhMpg9/mrOazD6Zw1MAO9DqyTbzDKbPUakkkJfvwej2kpCXhSyz5Ed5917zGorlrSExMoG6DdLr21crWIlWOps+LSGGBQJC/XfEKubvy+fp/M3nloxupXbd8q0XHS0paEk99cD0zfl7M4ccchjeh5ESoID8Q2izWwF8QiFGUIiLxo0RIpAz23km+cv211KBJBg2aZJSp7B3/uZDX//MVrTs2psfRlafnS0QiRNPnRWRfXq+Hfz4zjE/emUy/4zpQu+6hs/6Oc44XH/6UiV/M4ryrBnLiWb259f/Oi3dYIiIxo0RIpAw6dm1KxygulBgvKxdv4OPXfyQ/z8+TIz7ghDN6amq9SFWnMUIiUlWk166GN8FLkseoVae6kiARqXKUCIlUAHOnL2f8/2Zw7Mld6dg9svuTlaRGrTSeGnsD86Ytp+cxbWN2XxGpwNQjJCKx4C8IYBaaqXXb5S+Tl1vAlx9O463vbiMlNSlmcTRqWptGTWvH7H4iIhWJEiGRGPEXBPhpwm/UrVeD3F353HnjG3i9Hu7794UEg6El7YPBIMEqNmNDRCoSpx4hEYmOJ//5Cd99MQsHtGnfiPw8PwATv57DXU9exOfvTWbw0J6kVUuOb6AiIlWIEiGRGFm6cB25uQUkJiXQpEVtfpuzGjM4ckB7uvZsQc+jtG6PiMSZA4JVa9NVJUIiMXLN34bwyF3vU79hOsNvHMywKwbi8XpIr5UW79BERKosJUIiEbZ7FWoz2+t4u86ZvPj+9Xs+p6bFbkC0iEiZVbExQlo0RCSCJv+wkFOPup/zB/8f69ZsjXc4IiJSCiVCIhH05ksTyM/zs31rDt99OTve4YiIlJ9zsXlVEEqERCLoqIHtSUxKIMHnpevhLeIdjoiIlEJjhEQi6IwLjqTXkW1Iq5Z0SG3OKiJyqFIiJBJhTVvUjXcIIiIHyEEVW9RVj8ZERESkylKPkIiIiIQ4cK5qLaioHiERERGpstQjJCIiIr/TGCERERGRqkE9QiIiIvK7CrTYYSyoR0hERESqLPUIiYiISIhzENSsMREREZEqQT1CIiIi8juNERIRERGpGtQjJCIiIns4jRESERERqRrUIyQiIiJhTmOERERERKqKUhMhM0s2s1/MbIaZzTGze4ooc6WZzTKz6WY20cw6hI+fYGZTw+emmtnAQnW+NbPfwnWmm1m9yDZNREREpGRleTSWBwx0zmWbmQ+YaGafOed+LlRmtHNuJICZnQo8BgwGNgGnOOfWmFkn4AugcaF6FzjnpkSkJSIiInJwHFVu09VSEyHnnAOywx994Zfbp0xWoY9pu887534tdHwOkGJmSc65vIMJWkRERCQSyjRY2sy8wFSgNfC0c25SEWWuAW4CEoGB+54HzgCm7ZMEvWxmAeA94P5w0iUiIiLx4jR9fj/OuYBzrhuQCfQOP+bat8zTzrlWwK3AHYXPmVlH4F/AFYUOX+Cc6wz0C78uKureZjbczKaY2ZSNGzeWJVwRERGRMinXrDHn3DZgPKHxP8V5Czh99wczywQ+AIY55xYXutbq8H93AKOB3sXc83nnXE/nXM+6deuWJ1wREREpBwe4oIvJq6Ioy6yxumaWHn6fApwAzN+nTJtCH4cAC8PH04H/AX93zv1QqHyCmdUJv/cBfwBmH1xTRERERMqnLGOEGgKvhscJeYAxzrlPzOxeYIpz7iPgWjM7HigAtgIXh+teS2hc0QgzGxE+NgjIAb4IJ0FeYBwwKlKNEhERkQPgXJUbI1SWWWMzge5FHB9R6P0NxdS9H7i/mEsfXsYYRURERKJCW2yIiIjIHhVp/E4saIsNERERqbLUIyQiIiK/q2JjhNQjJCIiIlWWVabFnM1sI7A8/LEOob3MDnVVoZ1q46GjKrRTbTx0VIZ2NnPOxWwRPTP7nNDXJRY2OedKWpcwJipVIlSYmU1xzvWMdxzRVhXaqTYeOqpCO9XGQ0dVaaeUTI/GREREpMpSIiQiIiJVVmVOhJ6PdwAxUhXaqTYeOqpCO9XGQ0dVaaeUoNKOERIRERE5WJW5R0hERETkoFS4RMjM3jaz6eHXMjObXuhcFzP7yczmmNksM0su5hrXmdn8cLmHCx2/zcwWmdlvZnZiLNpTTHwH1UYzu9vMVhe6xsnh4z4zezVcb56Z3RbLdu0TY1TaWNb6sRLNdobPNzWzbDO7ORbtKUoUv19PMLOp4XpTzWxgLNtVRJzR/J49JH73FCr7VzNzZlYn/LmmmX1sZjPC9f8ci/YUE1tU2hg+dmz4unPM7Ltot0VixDlXYV/A/wEjwu8TgJlA1/Dn2oC3iDoDCO1mnxT+XC/83w7ADCAJaAEsLqp+JWnj3cDNRRw/H3gr/D4VWAY0P8TaWKb6lb2dhc6/C7xTUpnK2kZCmzk3Cr/vBKyOd/ui1M5D5ndP+FwT4AtCa7rVCR/7B/Cv8Pu6wBYg8RBrYzowF2ga/lwv3u3TKzKvCrvFhpkZcDaw+6/EQcBM59wMAOfc5mKqXgU85JzLC5fbED5+GqEkIQ9YamaLgN7AT1FqQqkOoo3FcUCamSUAKUA+kBWhcA9IFNp4sPWjIgrtxMxOB5YCOZGK82BEuo3OuV8LfZwDpJhZ0u6f3XiJwr/lofa753Hgb8DYQsccUD183WqEEiF/pOMujyi08XzgfefcinD9DUVVlMqnwj0aK6QfsN45tzD8+TDAmdkXZjbNzP5WTL3DgH5mNsnMvjOzXuHjjYGVhcqtCh+LpwNtI8C1ZjbTzF4ys1rhY+8S+p/mWmAF8KhzbkvUoi+bSLexPPVjKaLtNLNqwK3APdENu1wi/W9Z2BnAtHgnQWGRbuch87vHzE4j1HM3Y59TTwHtgTXALOAG5+K+YVWk23gYUMvMvrXQo9xh0QtdYikuPUJmNg5oUMSp251zuzPw84A3C51LAI4GegE7ga/NbKpz7ut9rpEAZAB9w2XHmFnLSMZfFlFu47PAfYT+CruPUPfvJYT+ygwAjYBawPdmNs45tyQyrdpbnNpY1voRE6d23g087pzLDv1hG11xauPue3cE/kXoL/aoimc7YyVabTSzVEKPwIr6dzoRmE6o96UV8JWZfe+ci0qPdJzamAAcDhxHqMf9JzP72Tm34GDbI/EVl0TIOXd8SefDj3aGEvqm220VMME5tylc5lOgB7DvL6NVhLovHfCLmQUJ7ZuymtBz390yw8eiIpptdM6tL3SdUcAn4Y/nA5875wqADWb2A9ATiEoiFKc2lvX7IGLi1M4+wJkWGuyfDgTNLNc599RBNqdIcWojZpYJfAAMc84tPshmlCpO7TxUfve0IjTGaUY4Oc8EpplZb+DPhIYkOGCRmS0F2gG/RKRR+4hTG1cBm51zOUCOmU0AugJKhCq5ivpo7HhgvnNuVaFjXwCdzSw1/E3en9DAtX19SGjANGZ2GJBIaFO9j4BzzSzJzFoAbYjSD2kZHXAbzaxhoY9/BGaH368g/DzczNII9YrNj0LsZRWNNpb1+yCWIt5O51w/51xz51xz4AngwWglQWUU8TaaWTrwP+DvzrkfohZ5+UTje/aQ+N3jnJvlnKtX6PtyFdDDObeO0O+e4wDMrD7Qlij9AVZG0WjjWOBoM0sI9xz1AebFojESXRU1ETqXvbs0cc5tBR4DJhPqgp3mnAmMfO0AAADaSURBVPsfgJm9YGa7N857CWhpZrOBt4CLXcgcYAyhb/zPgWucc4GYtKZoB9PGhy009XMmoaTvL+HjTwPVzGxO+BovO+dmRr8pxYp4G0uqH0fR+LesaKLRxmuB1sAI+326c70YtKUk0fiePZR+9xTnPuBIM5tFqIfl1t09L3ES8TY65+YR+vebSSiRfcE5N7ukOlI5aGVpERERqbIqao+QiIiISNQpERIREZEqS4mQiIiIVFlKhERERKTKUiIkIiIiVZYSIREREamylAiJiIhIlaVESERERKqs/wcfIp/jDKAOGAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5, c=sites.vs30)\n",
+ "\n",
+ "plt.colorbar(label='Vs30')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Next, we need to get values for the Compound Topographic Index (CTI). The process is the same, using a raster of CTI values. (Though it is possible to calculate the CTI from a DEM using algorithms implemented in many GIS packages, in practice the range of the resulting CTI values is incompatible with the CTI values that Zhu et al. used in their calibration. Therefore it is strongly advised to obtain CTI data from a dataset that has a global range of 0-20; we recommend [Marthews et al., 2015](https://www.hydrol-earth-syst-sci.net/19/91/2015/))."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sites['cti'] = sample_raster_at_points('./tutorial_data/ga2_cti_cali.tif', sites.lon, sites.lat)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAI/CAYAAABj+03oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3hVRfrA8e+cW9N7J5CE3kLvgoBSRQERbIi9F6z7s6y9oK66dhcRxF5QFFAE6dUgvbcAgSSEkN5vO2d+f9yQEBOaVGE+z5Nn7z117sG9efPOzDtCSomiKIqiKIpSk3a2G6AoiqIoinIuUkGSoiiKoihKHVSQpCiKoiiKUgcVJCmKoiiKotRBBUmKoiiKoih1UEGSoiiKoihKHcxnuwEnIjw8XCYkJJztZiiKoijKGbF69epcKWXEmbrfgD5+Mi9fPyP3Wr3BOVtKOfCM3Oxv+kcFSQkJCaxatepsN0NRFEVRzgghxN4zeb+8fJ0/Z9c/I/cyxewMPyM3Ogmqu01RFEVRFKUO/6hMkqIoiqIop48EDIyz3YxzhsokKYqiKIqi1EFlkhRFURRFqSTRpcokHaIySYqiKIqiKHVQmSRFURRFUYBDY5Lk2W7GOUNlkhRFURRFUeqgMkmKoiiKolRRs9uqqUySoiiKoihKHVQmSVEURVEUACQSXaoxSYeoTJKiKIqiKEodVCZJURRFUZQqanZbNZVJUhRFURRFqYMKkhRFURRFUeqgutsURVEURQG8xSR11d1WRWWSFEVRFEVR6qAySYqiKIqiVFEDt6upTJKiKIqiKEodVCZJURRFURSgckySKiZZRWWSFEVRFEVR6qAySYqiKIqiVFHL21ZTmSRFURRFUZQ6qEySoiiKoihA5QK3anZbFZVJUhRFURRFqYPKJCmKoiiK4iVBV4mkKiqTpCiKoiiKUgeVSVIURVEUBfDWSVKz26qpTJKiKMoZVO5wsW1vNh6PfraboijKMRwzSBJC2IUQfwoh1gshNgshnq/jmJuEEDlCiHWVP7cdtu9GIcTOyp8bD9veQQixUQiRKoR4VwghTt3HUhRFOfdUON1c9dRkbh/3Hfe88cPZbo6i1EGgn6Gff4Lj6W5zAn2llKVCCAuwVAjxm5Qy5S/HfSelvO/wDUKIUOBZoCPeLN5qIcR0KWUB8BFwO7ACmAkMBH47uY+jKIpybjIMyb8+mE5OQSkAa3dkYhgSTftn/LJQlAvRMTNJ0qu08q2l8ud4x74PAOZIKfMrA6M5wEAhRAwQKKVMkVJK4HNg2Ik3X1EU5Z/hs9/+JGXT3qr31/ZrpwIkRTnHHdeYJCGESQixDjiIN+hZUcdhI4QQG4QQPwgh4iu3xQHphx2TUbktrvL1X7criqKcd6SUfPHbqqr3MWEB3D3iorPYIkWpmwQMeWZ+/gmOK0iSUupSyrZAPaCzEKLVXw6ZASRIKZPxZos+O1UNFELcIYRYJYRYlZOTc6ouqyiKcsbMStlGabkTAMMEu0yldHzmfSYtWkVOSRkHi0uPcQVFUc6GE5rdJqUsBBbgHT90+PY8KaWz8u0nQIfK15lA/GGH1qvclln5+q/b67rnx1LKjlLKjhERESfSXEVRlLNud2Yez074rXqMQmj1UNCPF6xgwGsTGfD6JOZvTj0r7VOUv1IDt6sdz+y2CCFEcOVrH6AfsO0vx8Qc9vYKYGvl69lAfyFEiBAiBOgPzJZSZgHFQoiulbPaxgDTTvrTKIqinGMWr0utMYhzZPfkqtfh/n44PTouj87sjTvPfOMURTmq45ndFgN8JoQw4Q2qvpdS/iKEeAFYJaWcDjwghLgC8AD5wE0AUsp8IcSLwMrKa70gpcyvfH0PMBnwwTurTc1sUxTlvDO4Wws+npaC26PTMjGKx4f2ZnC7pvyydis/rNyEJgRWs4lrurU5201VFCT8Y7I8Z4LwTi77Z+jYsaNctWrVsQ9UFEU5h0gpcbg8+NgsABRXOOj+/EdVGabXrx7EZe2anb0GKucsIcRqKWXHM3W/lslW+e2vkWfkXsn1M8/oZ/s7VMVtRVGU02DN5nRG3DuBB1/6AYezOkCS0oW1eDRrHvgft3fy/tHXODrsbDZVUWowpDgjP/8Eau02RVGU0+DNifPIyikmv6icT3/8A103GNirBY1i92IlFTTJHV3WEhj+IE1iqielGKUfguN38LsXzaffWfwEiqKoIElRFOU0aJoURVZOMbqu89X0lUgJ0+ZuYPak6xHYAAO7X3du6pyLcaANmOIg6EUo/R/ggKKHkPaNHFqxyTAkQoBawUk5ndSYpJpUd5uiKMpp8ORd/Xn2/kGEBflxaOinw+VBihBExBxE2DeI4A+g9G2gAvQMcK0HBGAFEQCeLQDM+WMbvW56m2EPTCC3QNVUUpQzRQVJiqIoR5CWlc+E6X+wcdf+EzpvzeZ0bn3iK35dsIkDeSVV26PDA7nuoU9ZsvogwtISXEtACwVsIATC1hMR9g1Ye4MsReZdi3TM5tOfU/DoBgUl5SxevQsAh8vNb0u3sGXXgVP4iZULnUSgo52Rn38C1d2mKEoNbrdOVk4RsVHBmE3/jC+y08EwJLe+8i0l5Q4+m7mS6a/fhiEl+UXlNI4PP2q31/PvzSQnv5Sde6tXCbBbzeQXleFwenjlo9lclHwACu4FJJgbIkImIEzRAEgh8K4trmE419K4fjLpBwoxaRotGkbz07z1zFi4id0ZuUhg/DPX0Cwx6rQ+D0W5EKkgSVGUKh6Pzs2Pfs7+A4U0SYrio1euvWDHwBhSUuF0I6V3Cn9qeg6Pvj8dKSUj+7blgVG9jnhuTEQgBcXleDxG1bZu7RNZvHIXNquJ6IhAKHoccFferACZfzPS3AQR/B+E/71I9yYQNmanlNGp/nj2ZbTmzmtvY8rstcxN2Y7L7UECdpuZjOxCGsWHs3NfDvVjQvHzsZ7eh6Oc1/4pM8/OhAv3z0RFuQA5yl3kHSw+4v6DeSVkZhXicuts3pFFhcN9Blt3bjGbNP5z3xV0bBbP2FEX8+Xs1ThdHhwuD4vW7jrquW88cSW3j+qOzWpG0wShQb4s/jMVaRi43Dp70nOZvjS08mgBhhP0XeBcCI65CEsztMgFYL+MAcnfMajjVt66bRoH80s4kFeM0+3BbNYIDfKlR9skenVoyH3jpnD3i99x9WOTKHe4TvvzUZQLgcokKcoF4kBmAfeOeB+nw8319/Tl2jt61zomOiKINi3iWLVhH326NcH3AstIlFW4eOI/08jKKeKZ+wbRIzmRHsmJfDL9D1ZtS8eQ3hlmdwztVnVOhdNNucNFcYmDLalZ9OzYkB1pOWiaxqevjmbTzv28On4OxmHLng/stJn6UW4QYSBCwTi0JIkLaRSBeyfC0hjKv+BQIs9mkVzUNon8wjKKSx0k1Qvjidv6Y7dZMAzJ+u2Z3qwXkJldSOMGZ6YgoHJ+UbPbalJBkqJcIDb8uRuPW8fj1vl96uo6gyRNE7z93CicLg826/n59SCl5KvpK9mdnsdto7oTGxlUtW/O0q1s3J6J063z1qT5fPraDQBoQiAAi1njyouTGdDVWx17X3YBY174CpfDjbkCzJrG5B9TyMkvRdcN5izdxs1XdcVqMeFwevDztZIUk8fYEcuxWz0gg0AevmabL5Q8i0Qgg94EUwx4igGJPewxXvpkPsvW7QbgoTF9sFcWqNQ0wVX92vLjnPW0aRpHYr1wDEOiaeqXnaKcjPPzW1BRlFo69GiMj68Vj1tn+A3dj3rs+RogASxdvYtJP6TgdLnZm5nPxHHXV+1LqBcGQmC3mWl62EDo0QM7ohsSp9vDLUO6VG1P2bQXt1vH4zEQOng8BpnZRVX7c/JL+O+nCzAMSdOkSJ68awANY4uR+VMBHYRGjdVvKav8XwnFL0HVUpdAyZtkZD+K0+XBbjWTlVMMzb27tqdlM2PRJkwmjR5tk7hh7KdkZBVw+7UXMeaqrqfu4SnKBeb8/SZUFKWGsMhAvlrwf7icHnz8bFXbpZR8N3MNm3bs59aR3Umsd34vkWE2mQCJEAKzueawzLbN6/Hh81dzMK+EHh0aVm23WszcflgX2yGdmsd7X5igdfM4srKKyCkoBSkROsRHh7Bx536khLBgfxonRAKRyOB3kK4UsF8BRfeDnkGO50qyctbTOnoXCA2BH971wg9x8sRt/Xh14lwaxIRyademVXtWbEjD7dbRDclPs9eSub8ACUz4ZinXDO2I1aK+6pXjJdClGq58iPp/jqJcQExmEz5mU41ta7dk8PG3S3E4PexMy+G7d245S607M7q2TeDBG/uwOyOP66/oVGPfvox8bGYTSQ3CmbdyBz2SE/H3tR3hSrBwTap3nJKmERMfzIsPXMbweyYgKgwEsH17FharCSEE3dolVJ0n7H0Q9j4AyPB5gIcH3vqebZmRtIrtxJg+Q+ifHIzMGwlUeE/SYmiWYGPyS1eDLEVo1V/ffTrFM2dZBc3i9jLqoi3c/NJQQCClQV5BOjGRiafm4SnKGSSEmAQMAQ5KKVsdtv1+4F5AB36VUv7rdLVBBUmKcoGzWkxI6R13Y7WYjn3CP5wQgisuTa61fdmfqTz7nxmAxOUjkL5mggPs+PvY6NQ8noeu6V2rHILNasakCYQU2KwWIkID+Pw/Y7jj4S9wuTyYETwz9jKiI4Mqs0h1twcsRIcEsDs7j505Eewv0nhvTg4jO31NlPYy6PlgZCAPXgzCBrIc6XcnWsBYpJFPnBjK5IdKARMCFyN6b+TX5c3o1GkL5XIT8Pkpf47K+UkCxrkz8X0y8D6H/QcshOgDDAXaSCmdQojTOkNBBUmKcoFr1SSWJ+8ewNZdBxg1uP3Zbs5Zs3rDPlwuDwBS03CY3RzIcwMlZOYUcUnHJrRpHFfjnFGXtMMwvPWURg/sCEBSfDivPz2Cyd8to1vHhvTs3Pi47j/u+kFMX7kZIQRvTF+My+Ph19UBzH76a4y8MWDsBgRIHfBAxfcQMBbpXAAUVc5H0kH4cP/IFQwYthA3ErNp+Cl6QopyZkkpFwshEv6y+W7gVSmls/KYg6ezDSpIUhSFfj2a0SAulIUpO+ndtTHR4YFnu0ln3P4DBQCYTIJOXRuydX8OUkoKSiqQUhIW5FfjeN0w+GHBOkrKndwwqCM+lTPNANon16d9cv0Tur/T7WHS/JUcKCzFJARSQrnTW6dK+N+CLFgNwl450LsUzJXZMC0O73pvErAgQiYipT+2wufx0QKJD33t7z0Q5YJ1jpcAaAL0FEK8DDiAR6WUK0/XzVSQpCgK+UXl3PX0N+i6wVfTVzJ9/J0XVKVtj0dn+Urv1HqTycQ1/dpT7HLRuF4EK7bspUViFPUigwHIOFjI2h2ZFJdV8NFPy/F4dH5csJ6LmidwYE8+LZvFcu/NfU54+v3NH3zPgULv4rWGlPRsnsgd/ToDIGy9IWodoCFzh4BeCq5lSNcqhLUL0udGcC0G/0cQ1o5YgIZR35yqx6Mop0u4EGLVYe8/llJ+fIxzzEAo0BXoBHwvhEiSUsqjn/b3qCBJUc4x27bt5523ZtEgIZxHHrsMyxkYJ1RW7sQwJG6PQVFpBVLCBRQjYTab6Nw+kbUb9xEZHsCj/5uOR5dEBPvxwys3VwWMpeVORj/3JbphYDaZkIaBbkiKyhzMm7MZYcDufbl0aZdI5/YnNlh6f351JXQJ5JWU0yyueriFEJbKfYd+F3izR0IIRNCTwJMn8QQUxUvKMzq7LVdK2fEEz8kAplYGRX8KIQwgHMg5+ml/zzkzOktRFK//vPorO3YcYMni7SxetO2M3DM+JoTbr+5B06QoXnxwyHlbhLC0zMmfa/ZQUuqote/Ru/uREB+GzWbG5fBQ4XSTfrAQXa9ef62wtAK3ruNweShzOPHzsaFpApMGmLwlBaQhCQn2PeG2PXllX8ICfNEqA7I9B/PZuO9AreNEyP/A50oIeBxh9c7Ok1JHGvmcpj+mFeVc8jPQB0AI0QSwArmn62Yqk6Qo55jY2GCysgqQUhIVdebGBl1/RadaU+JPhfGfL2Lm3E1cMbANvbs35cPJC2mSFMnto3ud0WBM1w1uffAzCovL8fO18e3Ht9eoH/TFlBR27ckBAQkJYRw0HNwwqBNms4kKp5uNu7JoWj+C0QM68vuKbQT62dmalo0QgrZN69E6NopVK3dz2aVtaJxUXYjS49HZujOLejEhBPjbMZm0Orsyh3VpybAuLXn40xks2ZaGr9VCk5jwWscJcwIiaFzVeymdyNxhoKeB/XJE8Oun9sEpFxzjHBmTJIT4BuiNt1suA3gWmARMEkJsAlzAjaerqw1UkKQoZ9XcOZt48z8ziYkN5p33biAgwIennhnGvLmbiYsLoVXreA5m5OMX6INfoM/Zbu4Jyy8s47ufV+HRDb78YQXzl24jPbOAjVsyadk0jou6NKrzvHdX/ME3m9ZzdcvWPNi1xylpS3mFi4O5xeiGxO3RKS52EB7mX7U/IT4Mq9XbtTn8kjaMGOKd6Sel5OaXvmZ/bjE+Ngs/v3Yrd1/Zg09/WcHu/XkA9GydyKcTl+By63w4eQE2m4nLLk1G0wRPjfuZtRvTMaSBx2MQFuLHx2/eQFiIf+1GAm/cOIRd2XnEhgTiZz+OtfM8O0DfD+jgmA6oIEk5P0gprz3CrtFnqg0qSFKUs2jypMW4XB6yDxSS8kcq/fq3xm63cNmQtgBMef93vvjPr5gtJsa+eZ23KOHANlj+IcuG+PvZCAiw43C48fW1EhzoQ9aBIiSSwAB71XFSSrbm5hDl548mBO+vTMFjGHy46k/GtGlHqM+Jd1/9VYC/nZFXdGTG7+vp37tFjQAJ4KrLOxAXE4IQ0LVDUtV2j26wK9MbDDldbrLzS0iICeWmyzrTsF44mhAsWbQdt8fbLefxGLzz8Tx03aB396as3ZSOw+lGCJASiksc/LFqN0P61a7VBN512BrXkUE6nDSKkXmjQN8L/k+CKRr0dLAPPJlHpCiVC9yqkTiH/DO+aRXlPNW5a0NmzVyPEIJmzWNr7CvKK+X7D+bgdnmQUvLGfZ9htppZ8ftGHnv/prPT4BNktZiZ/M5NbNiaSZuW9QD45fcNNIgPI7lFvarjnl4wl6nbtmDWNH4edT2BNhtFDgeaEOiGcaTLn7B7bu7NPTf3rnOfEILunRrW2m4xm7BZzDjdHoQQ7Nh3EIvZRFxEEL3aNmTarHXMX7INkN7xTJX/Xtt3ZfPBpIW4PTpms0ZosB+FReWYTBptW8UfV3vdHp03fv6Zvg2+oFlcNIHRryK0YKRjIeh7AAmlr0DkaoQsA+3owZWiKCdGBUmKchbd/0B/Bg5MJjw8gNC/ZDbe+79vKCsq974RIDQNR7mLtG37z0JL/76QYD8u7tak6v3oOhZcnZ+2G4fHg6/ZwtbcHHo3SOTnbVvRDYPxq1fx7169z2CLa4uPCmbfAe84secmzkYTglfuvoxebRt6ly0R3gyQyzCwBdnpkZyAxWyiTOpgArMuyS8s464bL2ZQ31YE+NuPfVNg1rrtNPT/inaxW0FuQ5Z+iAh8EixNqF4ZVyKMPIT5+AIvRTk6tXbb4dSTUJSzSAhBk6YxtQIkAKEJhElDWjVKGofiCLETmxTBfa9ecxZaeno90LkbZk0jLjCQng0SiA8MwmoyYdFMhPmefFfbyfrosZGMvboXHZrF4/boON0elm3YA0Dfns145K5++AbacQuJWzdo3TqeOX/uAE2AAF3zdsMtXZF6xABJSsnvS7bS78b3GPPY5xSXVhAZ5E9+uS8eQ8PABFooAJqlGdivAsxgGwimenVeU1GUk6MySYpyjnrgtWtZb3azp9ybTdIbhnLvw1fSvOn59wvxmlbJXNPKO0bHoxt0CIvlvk5dCfX1YWSLVsc4+/Tbp6czK+BH/Hv645/ui6abGdG7DeANdAf2bcWm3QeYuWgLIKuWKqk8AItJYEIybGDbOq8vpeT+F6awZnO6937781mQspOhlyaTsf8R3vttHlf1iSQp9vqqc7TgV4BXTufHVi5A59jabWedCpIU5Rxl8bOSVlFRVdUxMS6MVknRZ7lVR+dwe9iek0uTiDB8LJZjn1CHR6bMZGlqGgA/3TMak3bsL2zdMEjLLiAuLAj7aRjUPnHPj+S5CinRynj88REMiL6o1jEP33IJ/S9qTkRYAGaT4ONvl2EYkpjIIP775AgC/e34+9nqvH5+UTnrtmYctkXSvFE0ZRUuPpy4BLfbxLw/ipk5AXIKi7n3zR+ocLh584GhtEg8t/+bUJR/MhUuKso5ymYx07FFfSxmEw3jwpj05DU16vqca3TDYOikLxnz1RSGTfwKz3EMuF6cmsagjz7j3zPmVA3QXrtvP+UuN1LCjuzjqxF35wdTufaNr7ly3Oc4KhepPZWaBiRg17zT8RP86s7kaZoguVkcMRGBRIQGMOnV0Ugk6VkFjBo7EZf7yO0KCfQlMrS6yzW5WT22786muLQCj8fAoxtUVLi45ZVvuPs/U8g8WEhuURkTpv8BeDNRG3ftJzWj5vP6Im02gxc9xuPr/4du6Cf7GBTlgnPufuMqygVOCMH7j4wgO7+Esgon1z3zBTarmTfHDiUyJOBsNw+AwgoHewsKaRkdSXGFg/SCIjyGQXphEYXlFYT7+x31/MenzSKvvIKsohIGt2xC96QG/GtgL176dQH1Q4MI9Tv2eCSPbrByp7ebKre4jPTcQhrHntpZXnc2vJquYW0IswbTwC/22CcAFQ4Xuu4dXG0YkivvnUCPDkm88OCQGtmxecu38+mPKcRGBZNXWI5uGKzZnM7G7fvp0SGJh27py/czV7M7N5+tad4Fz02awG4x0am5dxHdr2av5qOfvJmrF+8YxKWdmnq37/0dXRpsKtrDztIMmgU2OJWPRTlP6fLcKCZ5LlCZJEU5h2maICY8kE+mp7AnK58d+3L4ds7a035fKSVLN+9h2ea0Iy51kV9WTr+PJjHmqync9+MMQnx9GNKiKSYhuKxFE8KOI8CpHxqM3WxGSklMkLe6+JDkZrw5cjA7s/O49bMfmbx89VHbaTZpjOjmHbfUqkE0iVGhf+MTH51JaLQPaXHcARJAw/oRNG4QUfXe5dZZ9Gcq23dnV22TUvL8+zPZnZ7L5p1Z9O3WhNZNYjGbNJwuD/uzixh2aTKD+7fGsHh/cQkB1/XvwEePjeS6/h0AWLR2Fy63jkc3ePu7RVXXbxWYiF2zYjdZqOdTvQ6coijHR2WSFOUfoEViFMs2pAGSZg1O/y+7bxet491pSwFokxjD7gP5XNenPTf1q16LcmduHm7doMLt4Y+0dPbkF/D8oEt4/YpjFzTclp3D2wuW0S0hnpHtWtEiOpLEsJCq/Wv37cel6xhSsix1Lzd171DrGnPX7eTxz2YSFujHFw9fwxOj+mIxndrFgPNdReQ5C2nkX7/OpUSOZuuuA0gkLRpFe19Lb1AUExlUdYwQgvAQf/ILyxBCcP8NF+Pna+OVj2aTcaCQ/7uzHwADuzZj6qIN5BSUcm3/Dtw1rHuNJV36dmjMup2ZgDezdsi4NnexsySDeN9I/C3/vIrtypknEaqY5GFUkKQo/wA3DOpE0wZR2Cxm2jaJ+1vXyMop4sFXf8ThdPP6o8NomhB1xGN3ZObgdHmQwModGRhS8t70pVx9cRt8rN4B2e3iYmgRHcn6/VnUDw5i6MQvCbLbmXnHGALtR68DdP+UGewrKCIlLYOPrr6C5tE1A7/h7Vsyff1WSp0u7uldu64SwPhZKbh1g/yScuavT+WaXnXPHDsRn36/nJ9nr+fyS5MZPKwxD619DYmkc2hrGvjF0ja4GY0Djq/Latz/ZrM7PQ+b1USDuDAKisp5+OY+hATWzLBNePk6Fv+ZSnKzOEKDvd2Tz4+9rMYx4cH+TB13S9X71dvS2bAri8HdmhMVGsCoS9uye38em3Zn8ci1vauOs2hmWgQl/L2HoSiKCpIU5Z9ACEGXlic3nmTq3PVkHCjEkJJJP6bw2iNDj3ishre+jwCsFhMCQaCvDZu5+ivDajbz9Q2jAGj9+rs4PTqlThfbD+bSqf7RyxT42ayYhEBKiZ+19vpkccGBTLppBE9Mnc2EJSt59coBBPrUDLwuadOYvTmFCAHtG9YOHGet3s74WSn0SW7I/UN6HDMTVFxSweQpKei6wZdTVxDbHSQSp+Fiae4aluWuZUr6bD7p9AKBlrrXXTtc/ZgQMrOLAHj8jn4kN6s7uA0L9mN4/zZ17vtmxioWrNjBNUM60LNjI1IzcvljUxoTp6egGwYzlmxi6qu3YNI0nrqpX41zcxyFvLTlMwwpebrljUTaQ+q8h6L8laGKSVZRQZKiXCBaN47FYjEhgPYtj16dOaugBCnBrGlc17sdTetF0Klp/RpdPIcb07Edn6SsokFoMK1jjj4l3eH20KthAmG+voxq14rkuLqPf23WYlbvzcSkaXy1Yj3Xdm6DEBBUGSzdNagr/ds1JsjXToi/L9NWbMbp8jC8WyvMJo1/fzkLt26QubCYQR2aHXMwt6+PlaAAOxUON3abhW6RyczKW0RmRTa6NDAwMKSBU3fBcVQ3ePaBwcxbvoO46KAjBkhHs3d/PuO/XYbL7eGpt37BEmpBlxIkuHXduw5cuaPGOdv2ZvPlrFV0a53I7vAtbCveC3hnuT3S7PwrQqoop5sKkhTlPDFr6RZe+2QO8TEhfPj01d7lMg7Tq2MjJjx/LU6Xh1aNjz4A+ZEre/H4pJmUVjjxGJI+bRphMR95vM9jfXsy9uLuWDTtmBmbN+Yt4bs1GxECejVKOOJx8SGB2CpLHpQ4HFz8n48RAsaPHk6XJG+QlxQdBsA3i9bx9vQlSCAzv5iHhvYkKjiAnOIyNCEI9a8ejzPx22XMXbqN0Vd24bK+1YUqzWYTn711I2u3ZNC2RT1CfPwIsQaS7cgFKajvF024NYTNxbu42BZyzM9ps1oY3LvlUY85Gj8fK1W3EOD06GhC4NENfGwWWiRGccfQ7jXOuf/NqRSWVjB/VSq3PtgMq2ZBAgl+qpaScnzUArc1qSBJUc4T479fhsPlIf1AIcvW7mZAj+bousHLb/3K+k0Z3HXzxW+csEYAACAASURBVPTr3aLGOVt3H2DGks3YrGZWbd5HUr0wrrqkLa0bx5KcFMuMlM18u3Atof4+3HjYoO26WE0m1u7MYOx70/CxWpjw2EjqR9Xu4il1utClgQlBqdN1xOs93K8nTaIj8LdZmbVpBy5dx1Js8Nwbv3D70G5cOaAt6eW5vLzpB7J26XgsbmSFRl5xGQCfP3wNCzfuom1iLGGB3rE+GVkFfPXTn7jcOq9/OJsBF7fAbPL+Qsh3lvBH2Q7atU0k1Nd7fGrpPhyGC7tmxaqZWVO4hfVF27GbrHQNq+4iyyjPYXdpJp3CmuNjqrtg5IkKD/Hng+eu5otf/mTRpt1YzRoXtUli9/48Hrr6Yrq2Sqh1jtvjrcXk1nXk7kD+3X0MhpR0Dfv7wZqiXMhUkKQo54kuyQ2YvWwrAmhRWZl745ZMlv25C4fDzX8/mlsjSPLoBnePm1K9fAawY18O81bs4LMXRwMg3RLh1Nm0cz+r6qcTHxlM1FFqNH3620rKHC7KHS5m/LGFe4f1qHXMv/r1wpAGdouFm7t6Z63NXrKF1yfMJTTIl3eeHklsZBBmk8awtt72BthszN2yE58sgyJZzrufL6R7hyTe3jeD9YVpEAfWODDpZlo39ZYSCAvwZUT31jXuHRjgg9lsQghBYIAdU2X3oSENbkp5j2JXOULT+Knnvwi2+nNr4gg+3TOVJgEJlOsOPIaO22Pwvx8W0f6WllgtZg46Crh71RsAJPnH8k77sSfyz3ZULRpFM+7BK8gvLqfQyGNr+WbuCb6UeN+6u++6tExg/uqdABzILeG2sG6nrC3KhUEiVJ2kw6ggSVHOE/+6pR+X925NZFgAESHegcWx0UEIwG63kNTgL2NypKyqcn04t27w1czV3H9dT2b+vhHDgIVrdrF8y16EEHz7zGjqRQTX2YZebZJYtT0DKSW+ZjMe3ajK1BwS6uvD68MG1dj27ucLqXC4yXQUccdTX/PLhLtr7O+SFM/yx+9h+F3jKa9woWkCX7uFOJ8wTEJDx/s5dLOH93b/wqikbnV2hwX62/nkP6NZvzmD7h0bVh3jkQa5zmIkgA5jV0/ks25j6RvVhb5RXQA44Mjl1h/ewJWvkb5asqHHfjq2qk+WIw8Ah+Fib9mBOp/LyQr0t/J/q1/DYTj4Lv1HxrV+njjf2l2m9151UVXV7TGDOwEwceoffPHLn3RtnYDVamb5uj3ceEVnbri882lpq6KcT1SQpCjnCU0TtGwUU2NbZEQgn7xzI7vTcujUPqHGPrPZRJC/DzkFpQAkxoayZ38+AIUl5QT62vGzWymtcCIFOFwefGwWUjPzjhgkXXVxG0J8fXjuw5l8PnUF6Rn5PHPXoDqPPVxMRBAFRRUAFBRX1HmMr83CxHHXsyBlJ53bNCDQ34cHml5GmM2fybsX4DDcWISJSHtwjQBJSsmXaYvYVJjOHY360TA2mvqxNQtOWjUzNyddwqTd8wDYUZKFx9AxdMmW1AMkxYcR7R9Oi4wurN6cjtmkkVjPOx6qVVAS3cNbsaFoN7cnDTnmZz2SCr2M/RVp1PNJwmaqWdPIIz04Daf38yCZmfU7bYNbE+cbS6xP9b95/agQfhx3c9V7w5B8MnU5UsKydXsAidtj8OG3Sxg9pNMJ135SLgxqgdtqKkhSlPPM9tQDPPvqdAID7Lz6zAjqxYbgY7dwz2NfU1Lq4MUnhtK8ifcXa35RedV5HZrHY7WYKatwcdfIizBpGhOevoa5K7ZjmODr+WtpXC+CLpVLYRyJo8KNCUGF083mXXVnVopKKnjriwXYLGbGju7NDcM789SbMzAMSWjQkSt114sO4YZhnXl/+0weW7SOaxv05MakvoxO7M2+0hy2FGfQI6JZjXNW5+9i0q55OAw3e8oO8P1Fj9V57VsbXsK24gxScncwIr4rZs3EHc98w659OdisZr5/91bGPTaULTuzMJk03p68gIb1w7lxeBeeaHHDUZ/JsXgMN29tf4QKvYwgSyiPNP0vmqj+ReU0XMTaY8h07Adgce5SFucuxYSJy2IHMPvAPJoENOLhJvdj1qq/1jVN0DQhir3787FYTJRVVI4BE7BmawYdWhx9lqOiXOhUkKQo55nxkxeRlV3EwdwSZs7dyOiRXZk5ZyNp+3K9mYUvlvLmiyMBaN0ohvU7MjGZNFo2jCEkyJd6kcE0jvd2zZU7XGzfe5AurRqw6J17a93Loxu8PWURu7LyePTq3jSMDadP58b8ungz6QcKeHhMnxrH64bB1t3ZTJm9lrkp29E0CA/247YR3Rk5qB3bdmVz/5jeR/18WRX5TElfjsvw8P6OmQyP74rdZCExIIrEgKjDjitge3EmfmY7Em/tJ7updk0mAI+hs7konSdbXkWo1R9RWcNpS2oWhiGRUpKZXUjTxCiSm8Vxy+Nfsn1PNstW7yIpPpxenRqdwL9QbaWeIko9RejSQ67zAC7Dgd1UHSx+sHM8WY7aAaeOzm9Zv+OWHnaUpLKrdDdNA5vUOGb8M9ewKTWLRvHh3P3Sd+zOyMNiNnEgt/ik2qycn6QEXdVJqqKCJEU5z7RoFsvmbVlIJI0SvZWsmzSKxlI5YDky3J9bHpiMQ9PZU1CE3WZhcI/mzFy2hbXbMjCbNGwWM3abmWf/N5OiUicrNu9l1a5M7DYzrRvG0CAylE7N4pm/Zic/Ld2Ew+Xh6Ymz+Prp0fjarXz471F1tu35j35j8epU3G4dJGjChJ+vDU0TjL2xZkC1M+0gNqu5VtdYkMUPm2ZBQxBk9cWq1S5NkO8sZfSy/2IgifcN49nWo9henMmV8XUPZH56w9ek5O3EhODF5OsA6BLemBuHd+Gzn1ZgtZgpKCrDMCSaJrBZzVVdVTbrkb9GHboLi2bGJI7+SyfIEka74J6sL1xGl7B+NQIkAJfhwqD2+LEoWyRhtlB2le5BExpR9tpL1tis5qqM0b/vGMhdL36Ly60zeVoKg3u2UF1uinIU4kiLV56LOnbsKFetWnW2m6Eo5zQpJavW7SUwwE7TRtX1cVL3HCQ9I58X3/gF3ZAYGriCvAGGxWzCpAmcLg82q5no8ECy80qqZr4ZJtBsJnRpIITAYjLx5j1XYNIED30wDV036NgsnvfHXkmF0439sCDicIPu/rBqzJGmCQb3bMHjt/avNbh76ux1vPeFd6HWcY9eQde2iTX2H3QUsb4gjU5hjQi2+tW6z9aiDG5b8QGGdyg2Sy59GXMdwdQhAxa8QLG7HJtmRpcSi2ZiSGxHWuQ04vUJc3A4vVPrOyc34O1/X0VeYRnf/bqasBA/5i3bhstj8NJDQ6gXXV3yYGrGYsanTiPE6s9HHR8lxHrkWYHHctCRw/fpU8msyCKjIoMkvwRuTrgBP7MfgZYA3t35ERuKNhHvE8dzrf6NVau72uX+g0Vc+dAnVe/fe3wknVofvftUObuEEKullEevv3EKJbQKkP+eevJL/ByP25suPaOf7e9QOTVFOc8IIejULqFGgATQKDGSzdv2oxvewEEYoFUGMm6PjsvtoVf7hlx1aVsO5pdS4XRXFTMUhyptS+9gYKfbw5vfL6Rj03hevm0w9wzvwbjbB/P85N/p+cD73PTqt7g9eq223XlVj+oCiVISFxlcK0AC+GPdHpwuD06Xh9fGzyGvsKzG/kh7EP1i2tQZIAEk+kdWBUhmoZFZkV/rGF0abCrcR4GrlLsbDcCmmZESPFKnQnexsWgvYcF+GEb1H5IrN+zF6XITFuzHPdf3IievlC27stm55yATvlte4/pTMxZhYFDqcbAqf1ud7TxekfYI7mt8J+OSn+Pfzf+PGxOu5/uMqTy24Sme2/wKG4o2AXDQmUNGefVCt2n783C5vQFeXmEZQf41B4Rn5RadVLsU5XynutsU5QIyfdb6qtctmkTz7OND+d+PS1mxaS+3Du3KyH7tAKgfHcL73y8h0NdGTkEpUsDwPm2ocLmZusT7Czn9YCFZ+cX0btsQ8AZP05dvBmBnRi5pB/JpXC+ixv0H92rJO18vosLhBuHNJP1VcamDMcM68+f6NNweg5yCUr78+U/G3tSn1rFHYjdZuSiiOX/kbifJP5o4n9Baxzy9/mv+yNuOWZj4uvvD/H5gHWsL9lTt7xLWhE6NG/Dig0P47+QFZOcW06tTI2zW6ixNUnw4VosJEDT8S4mFflEd+W7ffCyaCT+Tnev+eJ4gix+vJN953FmlzPI97C7bQuugLgRbw5lzYD7fpv8AUuKS3ixfRkUmiX4JpJenE2QJIs4nBikld7/4HdvTsomJCGJwzxZ88uNybFYLJk1UBcqhwUceJK8oigqSFOWC0qJZDGs3pAOQuicHq0nj4dF98Pe1YdKqMzpDe7dmaO/WSCnZuiebkEBfYsIDkVKyPT2H1MxcosMCiQyuXuhV0wQ9WiWwcls6EcF+xEfWrrbt9hje8UiASRPYrTW7hd74ZC4/z91AXFQwY67swlfTVgJQP/bEF2d9ve0YClylBFv9aswUO2RV/i4cuhsfkyC1NAsfkxWBd1kGszDRM9IbwPXs1IiLOjakpMxJgF/NatqDe7ckPNQPt1une/ukGvtuTBzEoJiuBJh9eXrTJ+Q4C8l3FTP7wJ9cU/+SY7a/xF3Ah6lPY6CzKGc6/24xnp2lqbgMFwKBr8mHct3bdeln8uWNNuMIsgRi1syUO1xsSs1CSklWThHT5m/A7THQhIeWjWLZtucAvnYrrf5SMkJRJGrg9uFUkKQoF4D8gjI2b9vP5QPaVAVJAnj764XMW7WT+tEhTH7h+lpBixCiqnr3ofcT/3U1+w4WEB8RXGs9t7fvG0ZmbhFRIf5YLbW/Xvx8rDx950B+mLOWoX2TCQqo2f3zy4JNGIYkN7+U9s3jaRgfgdmk0aNDdQBS4q5g7OqJZFUU8EzrUXQLb1rnZxZCEGo7csbm9kb9eH/HTBr5R9MuJIkWQfF8s2cxpbqTy2M70jQorsa1Av3tdV6nc3LCEe8RafcGdy0DE9levA+JpLF/vSMef7gKvRyJRJceyjzFSCkZGjuE1NI9SKeZobED+Cz9SwA6hrYjzFadLfO1W+nfrSmzl2+jTdM4endsxFtfLMRus/LCvYPx6AZhQX742I9jpV5FuYCpgduKcp5zONyMunU8LpcHt0fH4zHQNMGIy9vz1dL1GIbEbjXz4RMjadnw+DMLP89ax4y5Gxk5pD0DT2Ih18O99OEsfl+6lfAQf75440b8fGpP2Z+e8SdvbZuB03CT6BfJ1z0ePiX3Pl5SSjZty8TP10ZSg4hjn1B5zrrCVALMvjQKqLmkyJrtGeQWltK3Q2PMfwk6F2T/xMaiFVwSOYKWwd4K2t/8vpp3pyzB127lnScGExJiJc6n7gWLyx0upPQGp2UVLmxWc51jwJRz15keuN2gVYD8vx/PzO3ubbbwnB+4rTJJinKeKywup7zCVdXNZbOZQULHDoms2L+f1LQcIkL8aVivekzN6h0ZfLdwHQM6NuWS9o1rXTO/sIx3Ji3A7dF59YPZ9OrSGN86ApoT9dTdA7jzmh4EB/rWylId0jTQG2TYTVbahSbVeczp9OUPKXwxJQUp4eUnh9G5XeIxzxFC0C6k9nNcsXkvj7w3DQFMmb+OxNgw2jWpR/3oEFomRtMnajh9oobXOOeHBRvw6AZOl4edO4uJCQvkzXk/M7h7cy7tVJ1VyzhYyJgXvqLC6eb/briEguJylm9M467h3enQTBWRVJTjoYIkRTnPRUUEMnRQG+Yu2sqVQ9rTtFE0LgzumzANQ0osvhqvPzQUu83b9eLRDe57fypOt87ijbtJTooh4rCxRwB2mwWLWUMisVpM3PvUNxSVOnjpsSto0bh2NuqXzOVsLkrj2gaXUN8vqtb+Q4QQRITW7CKTUuI03FWFIJsGxvFFt7HkOItoG3LsAOVUW7sxHYfTg6YJtu48cFxB0pHsyy7wfj63zvrU/azbuZ+fF2/EajHz8p2XcXG7hrXOGdEnmfemLMFqMdGhaT2ufeYLXB6dFZv30q5JPcKCvDP+lm3wzhD06Aaf/7aSnIJSHC4Pj70/nfnvewuDutwefliwHrvVwtBerWqMS1MuTBKBoRa4raKCJEU5zwkhuP/2S7j/9urBwu/8tASjsqtdNyQFZRWHHU/lL0sdIbwDsv/K18fKx6+PZsXaPSxK2cmGrd5p5y+98xtfv39LjWM3F+3hw9RpOA03m4rT+KLrk7Wul+8s4ZXNP6IJwZMtr6qa2u/Q3dy+4gN2lWYzsn43Hmp2BQDxfuHE+4XXus7p4nJ7mPjVMkpKK7h6WEf27MslwN/O4EtandR1B3drwbINe9izP4/cwjJcHh0pvSUZtu/NrjNIuq5/BwZ3b4GPzYJJCMwmDZdHR1S+PqRrqwQ+mroMwzAoKXPidHswCVGjDMAHPy7lh/nrEULgcnu4pl/7k/o8inK+UUGSolyAujVvwNfz1uDRDTo3i6d9o+pxMiZNY8LDI5m+fDO92zYiLLDuWkQJ9cJIqBfGbws2V23z/8vsrxV5WxifOgOP1BF4lwapy8epc0jJ3Q5CMHn3fB5sdjkAW4rSySjPQyL5KX0FDza9/LgqRLs9OmaTdsqqSU/7bR0//rIa3ZBUONz8NPmeU3JdPx8rbz84HCklPyxYz4pNaWzbl0Owv50reycf8bzgwwKdjx+/mlkrtnJx20bYrGaKSisI8vehQXQIv/33Tu587Xu2pmUjgI4t6vP0Lf2rzl22YQ+uynpWhSV1LyysXHh0VUKxigqSFOUC1LlZfaa/eAsuj058RHCt/c3rR9G8/pG7xQ732F39eXzcT/jYLbz8rytq7Ht+02c4DTcmNHpFtOG2hpfVeY1Ie1DVwqyR9iAAMsvz+L+1n+Mw3AgEbqlz7fK3mNjlPvzMNYMxKSWFZQ6CfO18OW817/60lIhgf75+4jpCAk6+FpDFYgIhEEJ6X59iQghG9m3LyL4nVunY49FpWC+csQ0uZl92AYMeGu/tUru+L1f2TsbHZsEwvMuZSMDl8RBV2Z0ppWTfgQLAmy1s1ziOLTuyiAjz5/tpqwgJ9uXqoZ0wqYHeygVMBUmKcoGKCgkgp6iU2976HsOQvHLLYKJDj6/I4a69OTz0/BQA3npmJDM+vYcdu7P57IcULurUiK7tveN0giz+5LuKMQmNuxsNJcJeOyADuDGpD1H2IDSh0S86GbfhYXnudlyGt2CirKye7V2OZA/dI5pVnSulZOyH0/hjSxoNY8PYmZGLBPKKy/hj614Gd27+dx9RlSH921Dh9FBSUsH1I7oc1znbsnIwpEGL2OMLNk/Uqq37GPv2T5g1jfGPj2Ldjkycbu8YpG/mrMFuM3NRclKNyuf6YdXDhRB0a53A6m3pBAf48u5Hc8nJLUUIcLm9mbhAfx+G9D9yRks5/0jAUHWSqqggSVEuYJNm/cn61P1I4JnJs9iekUNCdAgfPTACX/uRZ6t9/8tq8gvLva9nrOLxewdy39PfUV7hYub8TXz34W1EhAXwbvv7WXhwHa2Dk44YIAGYhMZlcR3Jqijg8kXjKPVUcG/jQZg1Ey69+pe8WZhoFlizzlC5082yzXuQElL353GoIqRhSNo2jONUMJs0rh3W6biPn7VxO09O/R2Ap4b0YUSHkxu7VJfv563D5dZxofPrsi2MuqQt43/+AyndZBwsZNxncwkP9qd+ZDB7svLRhCC5UQyDHx5PTFgg/x07nP+OHc6+7AJ8LGauuf1jdEMiqF6GRtdrL6qrKBcSFS4qygWsQVQoFosJq8XE9owcSiqcpGbmsmTTnqOe16VtAjarGZvVTKe2CQA11jg7NCg8wh7MyPq9aRZYcxHVCo+TFXlbyHeV1Ni+6OBmyjwOPNLgy7TFxNpDMIvKRXiFiU+63EOoreZMO1+bhc5N62M2aSRGhWAze//2u39YD2LDAk/8oZwCK9O8WR2H28OK3eknfP7rX86j513v8vLkOVXbDhaUsC+7oOr9wK7NsFpM2CxmerdvRHxUCLPevpP3Hx2B2aThcHnIOFjImh0ZdGnRgGduGUDKpr3kFJaxYVcWlz82gez8EhJiQokKD6TPRU0RAi7q0ojLLm3NtcM7cVm/1qfkeSj/JAL9DP38E6hMkqJcwK6+uA0xIQHoUrJwXSrz1qYCkqb1jl4ksW+PZiQ1iEBKSWK8d5bZW89cxY8z19C7WxOiwo8enNy35h0OOPKxCDNfdnsKf7N3IHKn0EaYNRPSgEJXGXmuEqyamYsjWtI/ui31/Wq2a+X2dD6dvZJAXxvRIQE0iAohPacIkybYnp4DeIO3jz5ZwOatmdxze19atTj57FJJqYNN2zJp3iSG4MDaY55u6NaORdv3oBsGt/U8/gwUQGFpBVMXbkA3JL8s28ydw7uTnl3A/W9OBSQPX9ObK/u0oW/HJiQ3isWkaYRUtsFmMdO+ST0uv6gls1dsp6TcgcPlodzpYnD3FqzZnkFqRi7gzcAtWLOT6/p3ID0zn+Urd2Mxm/DztfHYvQNO+hkpyvlABUmKcgETQnBxG+8084uTkxjaoxWxYYHEhB47A5NQL6zG++TmcSQ3rxmAHKjIJ9uRT5OAeHwqB1vr0mBvWTYSidQk87PXUN83irYhjWgYEM3PvR5nb1kO962agG4YuA0P1yX0Ijm4AQcdRaTkbqd9aEPifEIZ++HPOFyeqvvtzy/GrGmAQK/MZq1em8aM39bjcLgZ+69veOf1a08qUCosLufauz6hrMyJyaTx7f9uIyoyqOazCQ9h7qO3/q3rB/jaiA4LJL+4nCB/O8F+dqZu2YfL40FKmLd6J1f2aQNA+F/qV4H33/Rfoy/hliFduPP1KeQUlLIrM48RT0xi7KiLmbFsc1XWr1Nzb4bvwcquUoAlK3b+rXYr5wc1Jqkm9SQURQG8U/87NK53xABpUcoOHnnhBxal7Diu603Zt5DRKS/x8LoPuWH5OHZlHsQwJCahcWvSYPzNPtT3jeR/O6fz5IYJzM9eA0CgxZfWwQ3oE+kdxyOBr9MWo0uDm1Le5a1t07kp5V3KPE58/rLWnM1s5rq+7WgQFcyf2/bx6eyVhIT44akcvKx7dN54Z9bffEJejzw7hbIyp/d6usHPs9ad1PX+yqRpfPXcDfx37DC+eWEMZrOJgd2aE+hrQwgorXAecbr+1rRsXvx0NrNTtmGzmGnXJA5fu4WyCheZOUVs23eQuPAgzCaNXm2TaBzvzQbmFZRVXWNAn1OzxIyinA9UkKQoyjGVljl57q1fWbEujefe+pXSyiDhaGZn/YkEpAcyv/Hhpie/YuxrPwBwbYNLmNbzZWJ8wnFKN27Dw67S/TXOHxTbHptmxqaZ6RnRArfhodhVgdPw4PR4KNedvHDjALTDaiFpAob1aEVGbhFFZQ4+mLaMBvXDiI0KBkOChHpxISf1LA7mVI+jEgKSW9ResHZfZj7XPzCJMQ9O5p2J85k+Zz0nsk6mn4+VDs3i8ffxZt/qR4XQrZV3xuDWtGxemzK/6tg3ly2l0/iPePqXOdz04tdMX7KZZyb8xvOTZvPrsi0UFFdg0gRCE0zYsYbwbqGMe+wK4jtFsCXnIEIIHr3n/9k76+gqrq4PP2euxp0kJMFCcJdgRUqxohVKgbq7v23funvfKrS0pdRLDadAcYdACBoSCCGEuHtybeZ8f9yQkCZY7aPtPGtlNXfmnJlzh9V7f9ln798eRWiIL5eM6cF9J5mO6vw70XOS6tG323R0dM6IwSAwGBScLhWDQWA01v99daQih2XZOxkY0pE+gfX9ySa3GMYbyd8hK4yIaiNOl8bOA8dxudS6Rq43trmYjOp8rAYTl0UOaXDPfsHtmDvoQVyaRpRXMD8uT0Db5gnhDrRUDzZoR7lsVHc6tWzGgWN5KALCg3wJ8vXCw2zCoCgE+3qBlGQcL0IARqPCtdMH/a5n8cQDY/ngs/WEh/pxzeT+dOnYeOtuzg9bSc8sBiDteCEWixEPq5mRg3+7HUFosA8nas2Wph/mCcdIUouLmLlzBwBzD+7HxxMM1e7EeSkliiJQhGBM/w4sKE+hVNjZkpnBpox0HKrKJwm72HLTrYwf2Y3xI/VSfx2dX6OLJB0dnToKKqrw97RiMjQ0TPSwmpnx4pVs2JbC0AExdX3eNKlx164PqXLZWJS1ne8HPUqwxZ2fMyY8lmHNeiA0wT37f2L/4WzGDu7coNN9lGczZsc+fMr1hHsE1v2+eM1+OO6BSPZAAp99v5UQL08+ffBKEo/nkpxRwOje7fCymvnxqWs5cCyX3u0iMZmMjBjeiTXrDtIuJozo1qdPSv81UkpUTda1/Ojfuw39e9c31k3KyufbbXsY0qE1Izq3RQhBx+gwNu9IxeFw1QoWsNmc53RfgL2HslA1jZ4dIrl2XF8+OhCPE4kIEEgpOVxUVDdWM0NZGzDaYIy1JS/cOpb56/chJUwd2ZNDiyvYk5uDlBKXqiKBGpeLIZ/NZsm0q2np78/x7GKSjuZhVBSGxrZt8G+l8+9ASqHnJJ2EOFMIWAhhBTYCFtyi6icp5TOnGHs58BPQV0oZL4S4Cjj5E7Ab0EtKuUcIsR4IB05sro+SUuafbi19+vSR8fHxZ35XOjo658xzi1YzLyGREG8vFt5zDT5WyynHljgq2VKQRGe/Fty84z3smhOzYuTbgQ8TZm28neVu4urC+qsconNh0ep9vDF7NZomEarEVKNhtZgYEBvNM49NPOP8mhoHVqvpnFqV1DicXPXhdxzOKeT2i/px98iBjcYMfGIG6jEbBgcoKlwyujsP3TqCect38/n329CkZMTgDtx7w4XnJDqWbUrk9TmrAbh72hAmj+rJmqOpzNq5k8mdO3Nll66U22wMnTObMoejwdw9d9xJWkkp7YODsBrdz9zucrH5eDoxQUF8sGMHPxw8ALhtpZ4eeiHNys28/MEKTlgjkLx4vAAAIABJREFU9eoUxYxnp5z1enX+HIQQu6SUff6q+0V09pd3/nDBX3KvJ7v8/Je+t9/C2USS7MBwKWWlEMIEbBZCLJdSbj95kBDCB7gPiDtxTEr5DfBN7fmuwEIp5clZjldJKXXVo6Pz/8jRgmLmxu1lwe6DuFSNshobiVl59I9ucco5t+2cQZG9AkUInukyjRU5CVwY2rVJgQTuiqvfKpDsDidL1h7A39eDJR/dxtufrWP//kwqnVXYbE5S0077t1UdHh6nNsc8FXuP53C8sBQJfLEpoUmRRJYD40l51At/2cvKjUmEhfhSWlGDyWggMizgnKMyB1NzsTtdICExNZfJwIwdcRwuLOT59fkMiIqihZ8/A1q0ZMWR+oq0bs1CufS7ueRWVhDh48vyq6/FoChYjEYuauOuZOzdvDnzkxJxSYkQgvjk4+xacARO+pt576Gsc1qvjs4/kTOKJOkONVXWvjTV/jQVfnoBeI2GkaOTmQZ89xvWqKOj8ydy45yfyK+owiAEBiEI9PKka2RYgzGHcgvwtpiJCPBDSkmerRRValgUE5GewdzbfgIVzhpk7ZfuH8mbs9ewaksyihA8fudonr9/PHa7k2dfXsTxjGIevHvUmS/yG0nLL6bG6bYY6NGyeZNjRvVuz9qNyWiq+71LKamucWCzO7FaTEgpiW51blt8ANPH9SEhKQNV1bh+Uj9yKipIzM/HpWl4GI3kVFTQws+fF4ZfREJONvlVVYR5eVFUXUVWpfsj+2hJMfetWEZyYQHPDB3O4JYtAbi8U2dsLhcLk5M4WJDP8pxUPMPBuzZ3XgjoGP3ntFPROf9R9e22Os4qJ0kIYQB2AW2BmVLKuF+d7wVESSl/FkKcSiRdCUz61bHPhBAqMA94UZ5L+YeOjs4fgrN2f8VoMDD7+svo0SIcg1L/IfnZ5njeX7MNKWH29ZfRu1UEj3WawhdpqxkS0gWb6uCWHe8DcHWrYdzQZuQfsq7P5m1n7pJ4rBYjDqeKELB8QyIXDWiPxWLilecm/yH3OR0rD7gjNALo0SK8yTFP3jGG2M4tMZkMlJXX8P7n69A0SfvoUMZf1JUAP0/atTl3wdE8xI9vX7u+7vU9y5biqm1W2yYgkL4R7qq6kpoa8qvcJfy5VVUNrtEvMor1aWlUu5w8uvoXtt50KwCKEFzTvQfJhQXszctFCpAWgaeHiZcfmkiNzUHPJqr2dHT+bZyVXJRSqlLKHkAkECuEqGtEJIRQgLeAh041XwjRD6iWUh446fBVUsquwODan2tOMfdWIUS8ECK+oKDgbJaro6NzDnx83aWM6dKOpycOJ7WgiNFvzeG1ZRvqStbXJx/F5nThUlXij7m3YMaE92LuwEe4I2YsB8rS0aSGXXOypTDprO97ur+JXC6V2T9sobLaTkl5de142HUgg7i9xxqNL6+o4bmXF/H0iwspLas+h3d/eqYP7IFBEVhMRkZ3jWlyjNFoYOzwLowc3JHLx/ZEURSkhK3xR9mTmMETry/mged+5N1P11J2Cn+j0yGl5MEVy1l55AgGIfAwGrm6e/c664OdWZlNzovw8eGZYReiIfEwGmnt794KdWkaNyycT6eZ7xHk6YlBCKQAV6jCu69Owc/byvPvL2fCrR+xNeFoo+tWVdvPyc5A5++FBDTEX/Lzd+CcYmpSylJgHTDmpMM+QBdgvRDiGNAfWCyEODkZayow91fXyqr9bwXwLRB7int+LKXsI6XsExJy7iFrHR2dxhSUVrI7JQuXqtE5IpS3po5jUo9OvLB4LdmlFXy3Yy9HC4qRUuLrYQXA02xifPcOACSWHeeu+A/5MOVnLmzWjRCrH1aDmZvanHnrq6S8mssfmM0F173Dsk2JTY6RQKuIIExGBVWt/0J2utQGjXfLymvYviOVTz7byMatKWzelsKnX27+HU+mIXvSczAoClJKdqdnn3kC4OttxWBwb7t9u3AnOfll7Nybzrzlu3n9w5UNxian5fHp/G2kZhSe8nopRUUsTzmMU9NQpeTF4SOY0rm+Ye6QVq2xnFSN6G0yExMYxNeXX0G7oGB+uOJKXhw+go8nuAP5+/Ny2ZGVhc3l4qP4nfhaahP0zQoGg8L8lXuosTtxulTmr2xolPnkW0sYfcNMbntqLi69+a3Ov4AzbrcJIUIAp5SyVAjhAYzEnXsEgJSyDAg+afx64D8nErJrI01TcEeLTowxAv5SysLaZPDxwOo/5B3p6Oiclpyicq587is0TWNQ19a8dtt4wJ2H0jzAl8KKKhRFIcjbi18OHGZtUioAlXYHwd7uHmHP7P+aXFspSWWZBFv8+H7go2edi7Rl91EKS6tQVY05C7YzdnC9w7PLpXLXsz+w/3A2Pt4WnK6GX8Sx3VrSrYPbl6iiwsa06z+qa6dxgrgdqb/puaQdK+CNt5YTHOzDNTdfwO1fLKKw0r1Og0Ehv7zqjNcQQjDrlems2ZxMt46RPPH6IiqqbLhcGkiJprn9ixwOFw6Xym3Pf4fd4eKTeVt5+b4JDI9t1+B61TYHj76yEGeYitEkaB0UyCUdOzZ41hG+vuy89XY+37ObUpuN2/r0JcTLq+58l2ahdGlWv93XOiAAi9GAENC1WSjPDLuQL/fuYUBYBI8/t5CikkqEcG+/jhtWL8bsDhdra93WD6flk51XSovm9RYNOv8UhJ6TdBJnk5MUDnxRm5ekAD9IKZcKIZ4H4qWUi88wfwiQIaU8OW5rAX6pFUgG3ALpk3Nfvo6OzrmSklWIJiU1Dhfxh+q3aoQQfH/7NDYePkbPFuGkF5Xw6E8r6qo0JG4hBRBg9iHfVoZDOnn/8BIKbWXc0W7cWd2/W7vmKIrAYjYyrG/DLawjxwtJSXdXq1VU1rt6Gw2CGyYP4PrL+tcdy8wuwWZv7D2UX1jRwLDybHnn/VUkJedgNudTFKCRV16BlODvaaVfdBTXDu51VtcJb+bH1Zf1Q0rJq49dwqGj+WTllOBwqPTsGsmoq96j2u5Eegi0k3atZv+0rYFIcjhdvPLJSnJyywjMg4poidNfJS4zk3bBwRwsyOerPXu4pENHLm7Xjjv6xvL65k08vPIXnhgylJigIByqis3lqo8WAf5WD1ZfewNf7d3DvrxcCqqqePmikRxKy6OkrLpOmP74/o00C6pvUWM2GejbtQV7krKICPMn/Ff96nR0/omcTXXbPqBnE8efPsX4Yb96vR73FtzJx6qA3uewTh0dnT+I2A4taB8VwsGsfAJb+/De6q3cNbw/BkXB39ODiT3crtD7MnIxCMEJGdIyyL/OZPKNHjcycdML7ugIks2FB89aJLUID2T+2zdTUl5N64iGTXIjQv0wCwW7S0MqAhSBj5eFCcO78uWCHWxNSOO9p67Aw2oipm0oLVoGkZZW2Ci74ZKpM5j17jVERpx9pCOiuT+HDucA0LtVc7blZYOAOy7qz9WDGn0EnpG3PlnN0jUH8PIw89U71xPg78VFU9/BXtuQV1Olu48KYDQoXNCrdYP5361IYM0Od+RGSECFY6WlTJ/3IwZAKAouTWND+jH6RESwIyuTz/fsxqlp5C6r4NNJlzJh7tdUOhw8OWQo13avfw+qpvFh/A4cqsqWjOPsvf0uoqOCMRkN2B0uFCHYsiuNS0d1r5sjhODqS2IZ1KeIicO7kplbSmJKDkP6RuPr7XHOz0fn/MTd4PbvkS/0V6A7buvo/Muwmo18+siVTPvoO/Zl5HC0uJiY0CAu7tq+wbiRnduyLvkoybkFTO7dhSv6dkUIQamjipkpS7EqJqpVd7Tn2tZn3+8rs7CU7zftpWd0BG0i3Tv15RU1bNl2hCXL92ArqKn9YJI4vRSocjF3cTxSQFJqLrc8+CUvPjqJ/YeyySooQ1gVpF1DSLBaTdhsTmw2J5u3HWHq5CZTHZvkgXtH4xniyYo9hzmeV8a8e6+ipLyGksxycnJLKa+wkZ9fzoD+bevct0/Hms2HcDpV7AYXB4/kMqhPNFaLEbvD1UjU3Xz5QK6b2HCtinC3FNGQKBIspaBZJE4fgQqI2pwgVdUQCHZlZ+OsrX4rqbGxMf0YNqcTl6bx5d49DUSSUVHqEr9Ntb8bDQb6dW/J+rgUjEYDVmtDX6utCUd54q0lCAHJqXmsj0tBSsncJfF889b1Z/2cdXT+TugiSUfnX4qn2eSuxKr9/deYjUbevHJso+MzU5ayMnc3CoKBQR24MXoUHXzd5eJ5tlK+PbaeGJ/mjI9oWqDc/sF8MgvL+H7zPr5+cCotQgK49o45VJRW1yVpC9x/0Souic3uAKsAo0BTJRnHinhrxkp8Aj3rojIGo8AkDEwY042FS/dgNCrE9mnd5P1PhclkYNmewxSUVrJ2Vwp+BhOLftgFgKIIjEYDiiIYNrg9/33Q/VwW/7ybdZsOMf2KfvTt3fB+V4zvxWc/bCPQ34uWzQNJScvn+YcmMOf7rfToHMlXK3e5rQ0As9FAbnUlV6/4nsyqcv43eCxXjumF3eFk36Fsdu09jme+xFoIBf0kiqIQnAgV/hq+lQZyskqJ9PXFqChoUtK7eXMuaNESs9GIKiXTunQjJ6+M0vJqqmscPPnKQmKsJrpP7sDU2B51EcJHbxtFy4hAgvy9GX1Bwz5zGbmlaFLidKikZRQCErvDRU5B2Tk9Z53zH/Xcarr+0egiSUfnX8qbU8by1bbdtAryZ0i7UwuKkrJqklNz6d4xEk8PMx4GMwoCIQR9gmLqBJJLU7l22/+oUu0YUAjzCGjQ8PYEdqe7b5gA7C6VG979nmO+diyawKOkPklHAAa7dIsIBwhNgCrRJBzPKOaRK2LZm5iB2WTklScuJap5AJ6eFqZe0Q+rxYSX16nbqpyKFqH+VFTb0KTk5yV7645rmkTTNBwOjZTUPACyskuY8fE6HA4XiQezWLHwQRSlPkZ0w5SBTJ/Ul4LiSm78jztRXgiB3eFi/6FsHrhtBD+sSiAs2BfZwsCgH2ah1WaAvZWwiYtbtqPrwCgG9G3Dzbu/cT8TDZZefjWRof7c98yPHMsqRggIC/blqjbNyK+qIn5tKsnfp/F9rgfbb76VKoeTDesOcdVLszEoAl8fD6qqHVRVOzAfctJpXLO6NXt7Wrh5StMNgMcP68yOvccoLKnk8TtGs3TdAbbvOcatV/6+hsE6OuczukjS0fmXkJldgofVRFCgNwABXh7cO6KJNhtAXmE5DodKcKAX19z3GXaHi+BAb759/0bujBlHkNkXD6OZyyLr5x+uyKrbflPRUGXTJeLv3TqJT1bG0TcmimZ+3iRl5iONArufwKOkflx4qC89urVE1VTGjOhKZEQg9z38rTsiUlbNYy/Mp39sNK8+eVmDaq8T7++38NZ9l7B2VwptI4P53xsr6gSRh9VEx/Zh5OSVc/+dbrNMq9WEwL0t5uFh5uTiPpdL5fl3fiYxJZdhA2LQNInN7mpwr8++3cLiz+4EYNSCT+sEEoC/xcq4xZ+TXOK2BggNNqIUapiNRpoH+OJjsfD+M1P4dvFOlm88yNtz1vDsfeO4vXsfJnywC1XVWLRmPzdOHsCOhDRmzFmLy6XhomGj3YQDx8/62Xh5WvjfY5fVvX7ghuFnPVfn74NE6DlJJ6GLJB2dfwHzF+1i1pz1CCF457VpdGxf7x69MS6FD77cQM8uUTx82yh2J2bwyEvzkcD1V/SnusaBw6mSmVOC06ViNZm5rk3jHKRIz2C8jB7UqHZCLf7EBrZrNAagY1Qz3rppAgA2hwsfDytVNjtmkxFF0dBqS74cTo1HH7wYgFVrE1m97iDtYkIpKKrA6XJLiu27jrJj9zH69Tq3rbVT4Wk1M35QZ7ZsTyE9owiDQRAe5k9oM1/2H8jEy8tCQIC7vD4o0Jv/vXIlCXvSGT60QwOhtnNfOtsS0qixOVm+LpGwZr5k5pRw4YB2rN6cjJTu7b0TXBrdmTcTNtcJy6KaGtIrS+vOF8WqtBEBvNJ7FH4+7iRpLw8zq7Ykk1tQTml5NZt2pjK0XwzNAr0pLXebVj75ykIiwwPqninAxDE9+HFxPAhBbM8/5rnp6PxT0UWSjs7fFCklR48V4O/necboybqNyTgcKgZFkLA3vYFIemXGCiqq7BQWVzF6SCd27jmGw+FCAvuTsrhoWHtWem7DFC7ZXJzI8NDuTd7D1+TJ9wMf4VhVPp38ok7rmySlZP+xXPy9PZj/2DUkpGbRNyaKuO2pfPTpBlRV49Ybh7B63UF27Unnl1UH0KQkJNibe+8YwVsfrXLnLCkCL89zb1x7JnbuSsNRm++UlV1CVlYJEnCV1bB63UGuv8q9xdSlUwRdOkU0mh8ZFoDTqQJQWWlnxgtTadPCnaQ+sHc02xPTKG6r8VzcGh7uNZg7uvVnUHhLbl4zn8Kaauyaqy4vC8ClSSr2VHDPzz8yuE80rz48CSEEraOCKCypREqIDPPHaFD48o1r+Wp+HD8u3MmB5GwKiytp0yKI1PRCpISfV+/ji/dvIK+ggu6d9dYjOo3R9JykOnSRpKPzN2X2l5v4cWE8Qgg++N/VRLc+tSP9VVf256kXF+LlZeHCwR0anIsMD6hLxG0W7MPFF3Zm6Zr92B0urro0loqQctYlbsWmOnjv0JJTiiQAP7MX3c1njk7M+HkrX63bhaZJ/nPpUKYO6QHAxSO7cvHIrmia5MrrPqSwyC0ATiCEYOLYHvTt3YqFy/fSpWNzunRoLFJOsD8pi607UxkxpAPRrZqdctyvmTS+Fxs2H6aqyo4mJVK6hZ3JaKBX95YNxmbllvLAcz/icLp4/fHLaNcmlKjmATQP9eN4dgmKQZCw/ziB/p48+cZiKqvsBI0NYmlWMmQLPAxGHukzlG4h4fw88TrGLv6C3Gp3g1qrwUgbv0Cy80sx5GtouKvMSitq8Pfx4Om7x7I14SgtwgNoX9sfzsvTQt9uLfn2R3eLzfyCCh5+9nIef2lhXXl/RHgAEeEBZ/08dHT+regiSUfnb8rm7SnY7S7MZgMHDmaeViT1j43ml4UPIgR1EZ7c/DL+++pCnE6VG6YMZECv1jQP9QdgSW2ujBCC5IIs7N96Q5mBoEm+p7zHubA9OR17baTljQUb8PPy4OLe9RYELpfaSCApiiA40JuCwgrCQ/254/qhp71HeUUNDz79A3aHiwXLdrP0m3vOqnQfoHXLYBbMvRuHw8X8xQkIIYjt3QovLyvNQnwajJ2/fDc5+WVICV/O286LD7vbf9xw5UBeeHcZUsKho3mUV9jYn5yNqmrkHLQj/ARCUFdZBrA9N4Mqp9tBXACalIQVWqjZIHBoEpNRoU2LEGw2JxP+8wXlFTaevmdsnUA6QY/OURiNCi6XhtGo0CzYlyfuH8uO3WlcPl63qNM5NVKCquck1aHH1HR0/qbceNUFmE0GgoN8GDywcf7P3v0Z3P/oXObWRhQURTTYApu7KJ6j6YUczyrm6PFC2rSsF1lC1I9NP1iGudIKLkH5pt//4elSNcbHdsSouD9+NE1yJKdh7zKz2cg10wbWijrw9XH3j0tOyWXOV2fXm83pUtFqVZbTpbLvSBZTn/qCR2YuxuZwJy8XlVUx/ZmvGPvgR+w7ko3TpfLiZyu55ZXvSMkowGw2MnVyLFde3pfWrUIaCSRwCxKzyYjFbKR31xZ1x0cO7khYiC+qqrFu62HsThdGg4LVYmJCQDumtuvG2FYduLVLvVVCv7AorAYjCu6tNoemslZkUGV0IgREhQfy3L1j2RSfSkWlHZeq8dXCHY3W9OPiXe5WKIC3t5WWkUEkpeTyy/qDfDZ3S4McJR0dnVOjR5J0dP6mDL2gPUMvaH/K80++sICKChtJh3Lo3bMl7dqGNTjfLjoUs9kdxegQHdrUJQDo2DYMgcBqMdKvNtHXrjpRpYan8dzL7O/+aAF7jmbjaTUR4uuNt4eZ6bXbbSdz4zUXMGlcD/LyyzmYnM3szzcigeZhZ9cOIyjAm8fuvZhf1iUyeUJv3vhmHalZRWQVlLFmZwrjBnVi6ZZE0rKLcKkaM+dtZtKQLvwSl4zN4eK5Ob/w9TNXn/E+g2Pb8vFrV+F0qnQ46Rmv2ZxMRZUdg8HdIHdY/xhie7SisspOcFtfLlv2NQoCTWq8O9SdyN7M05utU+7gpyP7eXLbKveFBBT30QjdZCQts5Dn3l/O43eMwmhQEAJGNCGQ07OK6n4vK6/G6XQxd4FbTG1PSON4VjGtooIazdPR0WmILpJ0dP6h+Hhbqa6ygwRPz8ZiZtzwLjQP9UNVtQYRkF/TIiKQ72beRH5RBR3bhpFcnsndu2ahaiovdruGQSGdzmld8UeycLpUQPDMtBF0b928yXFZ2SUk7D3OjvijHEjKYuTwznTpHMnIC898v+pqB0KBEUM6MmKI2xSxVVwimfnuirHI2r5jHVuFYVAUjAYDPWIi2LIvrS7iExrgjholJmUhhKBTh/p1Op0qr729nKPHCnjw7lGNkreLSqp48f3lOJ3uZPmXH51Ex5j6ZPmpy+ZiV93bjRuz0hrMFQLiczPxNBipVt3J4yYfExazgsOpYjYZiG4RwryZN1NZ7SAyzL/R+795+gWs23yorvnvhGtm0jIykLzCCrw8zIQ2ERHT0TmBbgFQjy6SdHT+obzz2lRWrkmkc6cIIps3TtKtrnHQLNCbDXEplFXUMHxg+1NWpAUHehNcW0G3Lm8fNtX95bswc/s5i6SbR8byyco4urQMpVOLxhGs7TtS+WnRLvYdyEBq1AoqWLJ8L2vWJ9G2TQjRrU+dhB2XkMbjLy9AEYK3np9C145uAfPszWP4bmUCSOjU2h3xie3Ugs+fmkZZlQ0BfPt2AlK6HbBfuPVilizfy4yP1gDw4N2jGDq4PSaTgc3bUti8NQWb3clrby/ntZevwMfTgo+Xe1vQaKxv+2H+1TYcwMFit/8SKpRV2imoqSLEw20tsPzYIX45nkKNWu+r1DYgkJiO3iQkZtC6NgLk7+uJv69nk88gKNCbn7+5hxff/pk1m5KprnHQsV1zHrm7K61bhOBh/eMrAnV0/miEEHOA8UC+lLLLr849BLwJhEgpC5ua/0egiyQdnX8ofr4elJZUsWrVAdq0CsHPt74JaUpaPnc8Phd7bW6O0aiwKe4Id1w7hNDg0ydnD2nWhXkZW1Clxvjmfc95Xbdf3J/bL67vee10qjz93HySDuVw603DePuDVXXl8ydQFIGmSaprHKxel3RakbR01b66+as3JtG1YwRFpVVc/+RXFJRUIYANcYcZ2ieGwb2jaRvpzsU6llOMxF3B1jzED0+rmcSDWdjtLoSARb/s5fkvVhLg68mTN45CIrFYjEgDTH34M4wGhTkvXEWr5kH4+Xjw9jNXsHnnEUYO7ojRWJ+cnVdYTpsCfw5WFiFUd+7XnE3xPDrKnYge7uWLdIKlyABBgnA/Hx7vMYxHvp2HqkmWrj3AzVMGEejXtEA6gcGgcOGg9myKSwEEwwa2o2tHveRf5/S4zSTPm3Tlz4EZwJcnHxRCRAGjgLN3Q/2N6CJJR+cfgNOpsnL1AXx8rAwe1A4hBPMWxLP45z1omkTVNB57eHzd+O0JaTicrrrqMadTY82WZFLS8vnm/RtPe6/Ofi1YPOQpXFLD13T6L+qzYfeedPbsy8Bmc/LR7PUYDYp7m8qgENrMh7Gju1FWVsOCJQkoisLAftGnvd64EV3ZujMVRQhGDHHbHayPT6GorBpwJ0QfPJpHcloeny+KY8WsOzmYmovBIJj50OUkpuUxpr973rQp/dh/MBMhBJmVFaiapLLGQUm1jTdfmkJmVglfrIrHUeEWZbsOZtCquTvS061jBN06RiClJDe/DD9fD6QG0+/6lJw2EsVS+0UkYeXBI4T6+BDgaWVit460d4VwqLoQi8PAbd1i6RochsFsQHOoeHtb8PGykJZbzJKdSYzpGUO7yKZF4+D+Mdz/4BhsLif9e7f5vf9UOjp/KVLKjUKIVk2ceht4BFj0Z69BF0k6Ov8AZn60hhW/7AcBDz9wMRdd2AmL1YQQAkUBq6VhA9vB/dry1fztVNfUt6iQEiqr7Wd1P0+j9Q9be4va7SOr1USH9uHcfMMQ1m5M5oIBMXTuWJ8HNHVyLEajoUFErCn6927DrP9dzWtzVjNnSRwt41PYtjeNX28kahJq7E6+WLSdb5fvAgkP33ARF/Vui7eHezuqZVQQ33x6KwAf/7SFr5bsxGhQ6NkxkrBgX7p2jkR6KLz0yUq8PS0M7tlQwFVXO/j0uy0sXLYbD6uJl/57CS6niuISaGY40cvEpCi8tXoziiI4mJPP4dpqPynB38PKL3sOUx0kcFVBy7b+aFJy+atfomqSOat3sO6l2wjwbixYlyYk8/yiNQggt6qKu8c03YZGR+dk1Eb/t5w/CCEmAVlSyr2nM6z9o9BFko7OP4C8/HIcThdGo4HCwgoALpnQi/KKGtLTi5h+Zf8G41tFBtGudSh7DmYCYFAEJpMBIeDIsQLatjq159LpKHNU422yYhANw/U7Dh5n6740JgzuTHREcINzYWF+zPnoRtIziujVoyVms5GYto1zlc6lJ9ucBdtJTM1BEYId+9NRNYmn1cT911zI6m2H2HEgHQCDQZCYmovd7gIBny+K48WPV+JhMTLvnZsJ8KkXHrdOHsSkC7vi42XF86ScnrGDOzNyQAcMitKgwe2XP25jzrdbQLr9jgwGhaLSKoYNasfaHSkUtgVZq10DvDw4XlKGUSisOJhS57Qd6e/L6E4xbEs+jlAERh8TLUL9sTtdqLVl/FJCSnYhse0aJ9+n5RfjVFU0TXI0r7jR+ezicvLLK+neMvy0Duk6On8SwUKI+JNefyyl/PhUg4UQnsDjuLfa/hLOm41HHR2d3849d4yge7cWDBoQw4Rx7nJ6p1Nl4aIE4nYe5Z4Hv0FV6xvO1tgcdQIJIDTEF4dDpbC4ik+/2/Kb1vDes3tdAAAgAElEQVTS/sUMX/0al254jxqXo+54XnEFD767gG9W7uKWV75HysYePeHh/vSPjcZs/mP+bosM88diMmI0GFCEwGwy0CzQh4nDunLoWF7duNYRQdx/9YX4eFsRCDJyS5FSUm1z8u3P8Y2uGxrk20AgncBkNDQQSADzlyagaRLF4DaN9PPxoHe3ljz30ESefmYS0lQ//tVLxjAougVmg4H88sq641ll5aw9dJSurcLo0jKMFiH+XDOsF76eVvq2dSekhwf40LNN067jVw/uSe82EXSOCuX+cRc0OHcou4BJr3/BLbN+4qp357I+MfUsnqzOPx2Ju7rtr/gBCqWUfU76OaVAqiUaaA3sFUIcAyKBBCFE2Gln/Q70SJKOzj+A5uH+vP36tAbHCosqqK5x4HJpOBwuHE4XHgb3F7zVYqJtqxCOHCsAYGCfaJas2ocQgq4dmi7Jbwq76mRD/iFaewWzKHM3qtQosJWTVJ5Nr8BWgNs88oQsOlGp9mdz+5QLiI4KcXsxBXiTeCSH4f3cnlK+3lbKKm0ADOzRhubN/KiosvFr7WYx/r6Px1HDOjNvaQKenmZmvDyVpJQ8MrKL8fONoE/LCIK9PCisqmFi1w6E+/kQHRzIpiPpDa5hd6kkZGTz/JerKKtyr/nad75ny2t3MfveKdgcLiwmwymjQIHennx6xxWNjhdVVLMvPQcJ2B0qB47n8ciXy/j87il0imoYxUvOyic1t5jhXaPxMJsaXUtH569CSrkfqEvAqxVKffTqNh0dndPidKrE70ojKiqQyIhAsrJKuP2eL1FVDS8vC1dN7d+g7FsIwWf/u5b9ydn4+bgdmUcP6YjN4aJHp7OvgPpPwnfEF6UhJQwKacum/MMEmL1o71vvCRQR4sfj141k3a4Upo/q/Zds6xgUhTGDOta97tim/g/NR24YwYNvzAcg0NcTs8lAVFgABcWVmE0Gqmocbifrn3cy5eJe+Hr9tvyrO28YxuQJvbHZnbw3ew17EzNBwjsvXslja1ZTXG3DoAh6RoXT++UZGBQFkyJwaRKLyYjN6bYAWJl4uE4ggVt0OlwurGYj1nOIvOWXVeLnaeW1RetZEJdIiK8XUUF+HM0tcgtEAZU2R4M5R3ILufa97wFYvDORj26//Dc9C52/E+dPdZsQYi4wDPe2XCbwjJTy079yDbpI0tH5B/DsiwtJ2JMOEj7+4Hp2xB/F4XBXr4WH+jFtSv9Gc4QQdOtYv01zstnh2ZJSnkeN6sTDYGJCRE8e7zIRf7MnJsXQYNy4gZ0YN/Dc/JT+LLw8zDhrW3a8+80GenaI5OOnp/KfNxeSX1JORbU7pGR3uDiUlkffLi1Pd7nTcux4IY+/sgCHwx1Bs1qMZOWUklJQK0wkzNwQh1PTkEiGxrQmtlUUszbuqBNJVkPDj2l/Tyu+nucm3N5cvJFvNu8GCS7N/d7Lqm28NG003lYLM5ZvoUerCPq2bSiQM4vKEAJqHK4mc5p0dP5MpJTTznC+1Z+9Bl0k6ej8Azh0OBebzYnVaiL9eBH9+rbhsy83I6Vk0oSeqKrGzI/WciQ1j7tuv4j2MX/MFv5TXSfx0oEldPANZ3BoO0zKuX+kxCcd57FZPxPk68nM/0wmyM/rD1nbyTicLj5fFEe1zVFXuQYgpeSVT1cyYVg3DqTmNJq3PyX7d4mkLTuO1Akks8lAbM/WDB3Yjh6p+9idkYMAYltFsirpCEaDwt3DBtAxvBk5ZeV8s3MvZoMBP9VMxknXvHPcQG5+/0d2p2bTPjKE2fdcgSIEdqcLv1NEvRbHH8R1Uk4auLfiOkWG4mU1M/OWS5ucN6hDK4Z1jiYxI4/HLrvwNz8Hnb8X2nlc3fZXo4skHZ2/KbsOHKekrJph/dtx710jeHfGKtpGhxLbpzVms5F5c+/Cbnfh6+vB5q2HWf7LPmw2Jy+/toQvZt/yh6xhULMYlg1/8Jzm7E3JIi4xnTEDOtIiNICZ87ZQWlFDVY2DX+KSmT7qj+9S//2KBL5euhNNk1wYG4OH1USNzW1/UF5px2xsuL2gCIEmJTkFZb/rvhNGd2fp6v04nSpSStq0CiE1LZ+H+w3gY+se1qccZVniYXpFNeeDaZPwr40QPTp6KNNjexDo5cne1Gzun70YD7ORT+6ezNG8EuJTMt1+T8fz+G7jbj5dtROb08XjVwzn8oFdG61j6qBuzFoVh5RgMRq4c/QArh3aG4MiWBB3gPzySq4a3BNva8P2NSaDgdeuGfu7noGOzt8ZXSTp6PwN2RKfytNvLQEB+5KyePDmixjyq2a3FosJS60/UoC/F1JKTCYDQUGNS+lT0wt4+s0leHtZePW/lxDg/8dEc3KLK5i9aBttmgcxbVQvCkuruPONn3C4VD5ftpOf37yFvp2iOJJZgJTQufWfVqRSh6fVzOqP72bG3I0kHc3lnquG0qF1KCu2JJGYmsv0sb35YlEcSFi2OYm7pw/Fz/v03kynom3rZlx6cQ/m/7wbKeFAUhZzF+xAAHnhGgS4xVlCRjbeloY5Yy0C3T3ZBnVqRdyb9yCE+7jdpSKEQEqJEIKiimrsThcuVePHzfsaiaT1iamUVdv48q4ryS2toKSqhgHtWmA0KPyckMzLC9bh0jSO5BbxxjXj6q57MtV2B+sOHKV9RDBtwxpaOOj8s5ASVL13Wx26SNLR+ZuRk1/G1wvjcDhVNClJyzx9YYdLU+nQMZwXnrmM9PRCxoxqHGmY9dVG0rOKMSiCWx75Ggk8ed9YenaO+l1rfeLDpRxIzcEkFHy9LPRoF1mXE+N0qfxv7npeuPViBnVtjb+PJy3DGveYOx02u5MXPlpBXlEFj98yijaRTX+BXzmmFzV2J9U2B7dcNhCDQSGmZQg7DqSzOymTztHhzHxiSt26Fq/bT1WNAx8vC14ejZsDn8DlUjEaDVRW2fnyh214epq5+vJ+dW1I1m85hIeHhcH9YzAYFCxmI7v2pSMl+FQZsde+3R6RYRgNp06WPdleoFurcGbfO5nVu1MY26cDPp5WFm5PROJiyuDuDealF5Twn6+WYXe6+GHrfhTFbaJpEAqvXDWGKrsDKUHTJMWVNVz84qfklVXy4tTRjO3doe46d3y8gKSsfJAw7+FriApu3FRXR+efiC6SdHT+Zjzy6gLSMgoRCCJC/bn/huGNxhyrLGRvcSZ+Zg8e2vkjilD4/ILrmdy76V5r7aND2Z2YiUN1kdkiH5Fn5L1P1/LqS5ewKDOe9p7NqdrvpFmID316tz7rtQohUGokmqry1kdrmTfzZkb0iWHVzhQURWAxGxFC0D2maZ+fM/HzpkQ2JaTicKq8Pmc1s56e2uQ4s8nIrZMHUVZew7ylCWTklLBkRxLgdtK+qF97wkPcPetMRgPfvHod+1Oy6dY+opF4sTmcPDNjGXH7jmF3uLhidE8cZXZWbjiIogi8PMxcMbEPOxLSeOndZagujd7dW/LGM5PJzi1lf3IWqqrx5H/GsTo9jbbNghjXtUOjNZ+O3tGR9I6uT7Je+9Jt2J2uRgndqlafh+TSNKh96UJjc/IxnrxsOMfyi8krq6RLZCgf/LIdl6rx0artDURSWn4xNocLD7OJrOKyOpFUUlOD3eUizMfnnNavc35zvlS3nQ/oIklH52+Gy6WBBJNJYVjPNgT4NNwKKrRVcsX6j9GQGBDYNHeV1Pz0BDr7N+2BdNPUQYS38uWFQwtwhjrABe0yQ7lr52ekVxXiscIDa6oFRQief+ZSYvucXR+w/15zEdc//BUaEiklxzIKee6WsXRqnUBFtZ1rxjQUbctX7GPR0t1MHN+TsWO6NXnNtGMFPPvCQjw9LUy6ojeKcIutiGZnjm489doi9h/MxKVJ8BQgBAZFwcvD1GCbyc/Hgwt6Nd0jbuWWZLbtSavzfJq3ag/j+nZwu/DVRmUAyittCNwl+2UVNQA0D/Pn65k31V2rc9uz96Q6HRaTEYup/uO8oKSS71bvpn2LEJ6+/CKW7znEziMZuMu7JV5WE9Mv6IHJaOCRScMAOJpXxKyVcVhMRi7qGgO4E9s/XLkdXw8LRsXAgHYtqKixM3PFNnaWZbMpMx2DELwyahSXd+n8h7wXHZ3zCV0k6ej8DVBVDUNtROPVRy/hk7mb2b7xMEvm7WLjqiTmfndn3Rd8gb0CVWrYNRcCMCDQkHgZT71tJISgX6/WKOXuaIOHyczDt4xk/MY9aEhEqcDpUDGbjeTllZ/VmhNTcrj7uR844SRpd7h4+t1lfPPWdVw1uk+j8ZWVNt567xdcLo233/uFCwbG4NtEn7ZPP9vI8YxiFEWQfbSIVx+YREFxBaNP8kU6FRWVNlRNIgCrQ2CwKtw7dSiX3zgLq9nEjFen0TIy6LTXSE7La2CK2b9bK+65aTieHma8vSxcNq4XAMMGtefQkVyOZRRxz02No31/Bi6XyiNP/cSWzEykye003iYimIgQP3544CrKamx0b9m8kTs4QJvQIJY9cSMHM/N4/qfV/BS3nwfGD2bO2p3YXSoWo4HLB3Thto8X4HCpuIwSQkCVkgUHD+oiSecfiS6SdHTOcz78YDU//bSTjh2b8/Y7V9MyIpBbrhjIjl+ScKgaxcWVaJrEYHB/8XXwDSPcw5f0qmIMKEjhjgh8eXQ7N8YMwt/cuBEqQLDFh5l9b2BbYQoXN++O0WjgzV5XMStlDW1uCiXlx3zCQv0ZNeLsvgzj9h7D4XQ1cLIurajhwOEcBvZqHIkym41YzEbA5f7d0vTHU/t2YexKSEciiW7TjP7dWp1yDfsTM0k5ksdFF3bCz9eDpx8azwefrSesmS8xrUPp27MVb81ahd3uwm53sWLNAW67bugpr6dpkkVr9tW99rCauO+aYfh4W7n/1hENxhoNCnfd+NeWzR9JzedgUjbSx/1v7lQ1ko7lkZJRQExkCDdO6Fc31uZwMmvBVmrsTu66/AJ8vawE+XgSd+Q4eaWVSODp71fWjXe4VLalZCCEuxedOOnf9aY+f3xFos7/D5K6liE66CJJR+e8Z8GCXQCkpRWQmppHhw7N2bTxUO32EAwcFIMQwt0nTBEIITAbTEjAIASythLKKBTMipG3E1fxddoOhoe15/XelzeoZOoZ2Iqete1EALr4RzGj7/XuF0PObd3DB7Tji/nb64wbwS0curRreovJbDbywfvXsj0ulf6x0XWVeb/m6ukDad8uHA9PM107N3YHtztcHM8oAgn/eeIHNE2yYvUBPn7/Olq3COaNZybXjS2vqOFoekHd68Ur9zFlUp9TVvcpiqBVRCDHsorRpMRud7Jh5xGumRh7Vs/kzyYyMhCr1YRflQNDqJXgUF+OZhViMCiEBDSsavx2ZQI/rtmDJiUuVeOpG9w9Q2Ojo/h20x6ctb5KQgDSvaXXoXkw1w3rw8GMPKYM6U65amdQyxYEejYtvHV0/u7oIklH5zzlRI5Mn76t2Z2Qjre3laioQHYnHCMlJRch3IJIIJgw/n8oiuCBV8cSFunHs93H89SexbT2DuKmtoP4MX0XI8M7IYBPj2xBAsuyDjAuoivDwtufaSm/iVYRQUSFB3A0owiA5qG+zHj6Sny9rThdKqqqYf2VEGoRFUSLqPrtLk2T5OeXExLiU7fdKIQgtm/DSNSylfuY8+Vmmof5cTyzhJoaBwEBbqHjdKoUFlc2GL9rXzoff7UJqUkKiurPOV0qCfszuGjwqROpP35uOjO+3cDPGw5gUJTfZTb5R+PtZeHrT28hI7OY3IpKnvpkORKYMLgL4wc1dDw3GQ1uWwHAbKx3SB/SqQ1z7riCO2cvxKmqxLaNIsDLg+jQQIZ3aVuXr6Tzz0U3k6xHF0k6OucZVRU2HrzuEzKOFXDnf8cx5YpYOnWKYOLEXqxalcgnH69D0yTR0c0IC/dHdanYbE5srVTuT/kR0zEDD3UayeLhdwHwxO6F/JKVyPKsROYOuQWzYsRem8ydXJ77p4kkAA+rGUWAyWTkgeuHExbiy9GMQm59ci4Op4vn7xvHsH7tGsx5/4PVLF66hwsGtqW0tJrEg9lERQXy0czr6krrf83bM1a5xdBJgqegsJzxY7qTmJTNyOGdcDjc23gAz76xhLLymkaVaxazke5NRKdOxsvDzKM3jeTaibFYLSYCfP/6KMraDUl8/s0WLhgQwy3XD2kQDfT2stCxfTgLv1yNvba1SXmlrZH30bQRbif2qho7HduFk1tSQViAu0qtR+vmrHzqJrJLKmgbGtRkDpOOzr8BXSTp6Jxn7I5LJTe7BIeXmbc/XIvBqGA0KqSm5uNhNWG3OxFC0KFDc+67fzQbNiSxc+dRqqJUNEXDpmrMObKF1w+sYExEFxKKj9f1VztUnssLPSbyWMJCvIxmxkY29kw6GxwOF4uW7MbT08zFo7ud8kv0xQfG88X8OFpFBdXlIW2IS6HG5vbn+WHZ7gYiqabGwYJFu5AStmw7gtPpTpDOyCwmL7+ciOYNfZSklBxMzsHHy0pZRTWqWp8oM2xwB66dPpBrb5nNZ19vYWtcKu++7m4FFejvRXWNAwH0696arNxS7rhuCLG92tTmRZ2Z8BC/s35efyRSSl5+82dcLo15ebsYcWEn2rQKaTTuiuHdWbsrBU3TmD7KnUxuczgpKqumebAvRqOB68fFcutH8/hi7l6EgEWPXEeYv1soeVsttAs/dbK/zj8TCXpO0knoIklH5zyjXecIXCYD0ujeC1FVDVXVyMos5plnL+Xw4VwURXDhhR355ustREYF8dnnt5HnLOfh5HnUuBzk1ZShAcuzDvBUt3G8eXAVrb2DuDC0PV4mC6MiOmMQAkWc3g9ld/ExHt79Lb4mD2bF3kiIxZdt21OZvzCevfszMBgUNE0yYVyPJueHBvvyyK0jGxwb2KsNXyyIw6Vq9P5V1MZqNdG6VQjZOaX4+liJiQll27ZUOrQPJyy0oSjJzCrmjvu/pqI2SuLpYaZf39a4XBp33zacZiG+7DuQgapJbDYnh1Jy6+a+88IUVm1MomNMOF1rm/xm5pQw7bZPqLE5efXJy84YUfr/QghBs2BfioorEYrA36/pSFbbyBBWvXtH3evSyhqufPILKqvtjB3YicevG8HGPUfZk5ZNjdOFp9nEsfySOpGko6OjiyQdnfOOZuH+PPfWNJ544ke3J1ItD/1nLBERgcz+9GYqK21MueJ97Hb3dkpsvza89NIUVkbdjyo1Lln7ATk1ZXgbLWRWl/LdkJsJ9/CjyF7Fpes+pNxZw/v9ptE3uNVp1zIrZTUljirKnTUszdpNZFowb737C06niqa5c6bKK2zn9P4iwtx+Rpom+WZJPFdfEovFbMLlUikurmLmu1eTciSf6DYheHpaqKqy4+lpbrRdtHZDMpVV7ntLKXE6XTz16IQG4zp1jKBX9xbsO5DJzdfVZ54H+HsxZWJDG4Llaw5QVFKJlPD1T9vp3nky5yObt6WgSUm7mFAevHs0gQGnbiFzLKeYJZsPkHQsD5PRQGW1HYdLZfXOQ3SPac5rX60Bo4bFy0Cf6Eh6t/ltpp46/yx0M8l6dJGkc14Ql5bB4bxCJnbviJ9H053M/0306duGjz+5iVkfriE1NZ8bbxpK+/bhdeePpxfWCSSAHXFH+ebrLVxz7QUYhMIPQ29la8FRHo7/idkpm/g8dStOTaWFVyA5NWVoSD48tOGUIkmTGk/v+4n9pRkYhIJRKHTxjyIpJweXS0NKSVCQF/36RnPZpF7n9N40TTthnYSqSTQN1q1P4qVXl6BJicVixOnUePC+0Ywd0w0vLwvV1XZ+nB+Pr48Hkyb0RFEEvXu25OvvtuFwqnh7W3j4/ovrBFJmdgkvvrYEq9XMs49NxN//zHlDvbq24IdF8QAM6tu0keT5wGtvL6eiwkZpaTXFJZXMmrOefQcyuenaC5h8Sb3wW74tiRfmrMSp1ns6CdzValMu6klmfilOl4Z0aHQLD+Wd6ydg+lXOV0WNnXvmLCKruJxXpo+hT/T5GV3T0fmz0EWSzv87B7LzuO3rhWhIViSm8M1NU/6/l3Re0LJlMK+8emWT5776agtC0MCD6IufNrO3Uw4v9bwED6OZaB93HzMJODX3F2VWWQlGswEFGBJ66iqlVTkHWJm9DxWJguDrQXfRxqcZHSY1Jyk5h6pqO489Mp7m4efew8vX24MX7h/PsvWJXDKyGx5WE2+/vxK11qnaZnOLvy++3lLnuv3+B2tYszYRxaBgNhsYd3F3OneMICoykNS0Aior7bz46hJC35xO27ahvP7hSpJScjEqgp8WxnPz9Wf2L4huF8qst65GkYLWLc6vJq4uVWPVjkNomkaNWUMzuPvWZeeWsXd/Bjabk08+39hAJG3ak9pAIAGYTQYemj6cS4d2paSimq9XxKNqsD81h1tf/Z7P/o+9846Oovr78DOzLb2TTgIJSSih9y4QiiBVQFFRFEVUrGDXn12xomJDRUUFpQtI7733FJKQhPTe25Yp7x8bAjEBgi+o6D7n5Jzs5N47d3Y3O5/91pfu4HhsBsWllfTrFsb6E/FEp+VikiTeXbWDpU/d9Vdfuo2/GtVWJ+libCLJxt9OQUUlgiBgtkjklldcecJ/HFlViA3LpqSFEZftdog5VrEkKQrbcxJYnxnDmKAONHPy4rm2w9icFUdmaQm5KeXo9xvQOMFTDwxkXIuODa5vUSTe/H0l9vv0mCNkmvbxJMTZGwAXF3tmvzXhqvd84Ggy8xfuIbJVAD27hJCVUYSHgx3NAzxJTM5Fa9CillObeCxqRfz83GorjVdVm6zuPVGl2mipXdfJ6YLV0SLJbNkRy7wNBzicnY3srcW+EnKNVUQnZRMZ6selWBcbz9OrNqIVRRbdffXXdz1Jzyrmq+V72Hk6CZOkgE4FLw0uJQIbTsRT6qziqNHS+g8tTu4c2pndp5KpNklo7TW0bepLZHNfRvaxFgN1cbTDbLkgomJTctl7NImX5/wOAgyPSSeyfSCoKo6lIGgtlFUYcXGyWXpt/HewiaTriKqqfPL4Ao5sPs2UV24l6vZef/eW/pH0bdGMWzu14XRmDs8Pu+m6nSehLA9HrZ4Ahxu7g/nuvHhy/cuQFAX1dhh0ug27TyVQ2M8EqHWub2KzLoQbfXli3nIMkgFVBbkUog/mMO4SXjJFUdEv1iJIAtp0Dc+NH3lV+1NVlc++205ufjlPPDAIL08nXn1/DVXVZuKTclm14YS1v5kKCUm5pGYUYqq2cD4KwtXVgQqjibiEbFauOc74MZ15fMYQ9DoNri4OjLooSPzVF0bx0Web2bs/EY1G4EhaFnG5Bdb1RahyhtWH41h/IoH5z99ORLB3g3tefOw0FllGkmW2JiTRxs/nqq75ehEbn8WjL/yKRZaR9YCTpra6o+Cs4VRqDpIWqtxE4qpLOHomHY0osnzHSQZ3iyAwwovo9FxkDfTp2YJ7+l+ojK0RRWbdOYBPFu9CUhTuG9GN9OwSZEXFIsms2xnL79uj8XLUU1kpk1NZwpeLdvHstCF/2/Nh4/qjYquTdDE2kXQd2ff7MTYs2AXARw9/ZxNJl0Ajirw0/Pq2b/ggejM/JR1EFAS+6XUXXbz+OQUArxYvgzX7SC9qCfXw5vkXRvGkbGF9RjQBjm714ox2HEqsrZcjCgJarcjwfnVbi8REZ1BVZaZL1+boNVqcHOyoLDOhEzX4OrhRVFiBh2fdis2XYs68Lfy2/gQAyefyWPTVA3i4OWAyS8iyUhuMLooCsqxY0/xFAUWvopUFOnYMYte+BGRFpaKimpTUAma+sJji4ko0GpHu3UPp2rk5YA3AfuOlMZSWVfPeT1vZciwRVVURa2KTFFVFqXmcXVh2SZF0R+f2HEnPRCdqGNzyn1MscffBs7V94nRmMNjpqDRa0GhEbh3ZmYWbjqERRSRFobC8io8X7yQlqwiTRWLb0UTuGtuNxOwCa2++Fk3rrT9xUEcmDrpgUayoMnHgZAq5BeVkZBdbBVNJNTqdBlUFg77hKug2bPxbsYmk60h2Sl7t76LGpsz/LvbnJfNd4j5UrO6cI4WpN5xIqpJMHC5MoaWLH5FugcztNpmk8lwG+7ZhWephmtg5Mza4YffZ0D6tWL39NBZJRqcVaRHUhDYXuZ727IrnnTdXIQgCEyf14O4pffn8iyls2RRNizBfHn14AZUVJibe3p37HrjpintNyyiq/T07r4yS0irmvjOJzTvj2LY7jnPphYSH+tA8yIvJE3pw18PzMRotCIiMGdOJybf1QMVaiHLiuK58+tVWiooqAZAkhW8X7K4VSedxdbEnOMAD/Wlr4PEj4/uy52Qyp5OycLTT07VVEH3a1Z1T5zlqFcbBkIfQiiJ2un/Ox2Lr8ItchCqseu9+Fqw7TBN3J24b1JEurYLYeyqFJVuPoygqmfmlyMqFjMiJPdtxS5dWONrp8XC6cvC6k4OBj18cj6qqzJq9kv3HU+jZqTmFJZWkZRUT5Od+xTVs3PjYYpIu8M/5NPgXMmBiT5bN3UhpQTnTZ9+BqdpMYXYJfs2b1EtntnH9+Dh2W202lVbQMDKw3d+6nz/D1P3fca6yAI0gsGbAk3T1bE5Xz+a8fGI5m7KjEQSBdzpMYIBvq3pzW4X4suHrhxnx0JdUVJlJSM1n74lkonpYK20nJeXWpvQnxGcD4B/gQUWFkc8/3URVlQlJktmw/lSjRNJT06OY8vgPSJK1vtPbn66nX/cwJozsjIuTHR9/vYWEpDw6twvG28uFeyf15qsFu/D3c+XeO3vj7GTHqy+Mrl2vY7sgtmyPrbVAJSXnsf9kMhsPJzCwSxj9Olgz0aaO6kGgjxt6rZZBXcK4Paph0XgpnAz6qxr/VxAU4FH7uwr8tv00g7tF0KqZDyt3nOLjJTsJC2zC85MHM/vnLZRXmbDTaxnULZze7Zrj6eqI56WXvySCIPDes2OwWGSS0wuY8doSjKQvUd8AACAASURBVCaJT3/cwbihDdfEsmHj34hNJF1HPH3d+CVhDoqsUF1h4r6Oz1FWVEGf0V149ptpf/f2/jOkVV6wbDzcsh/F5ioKTBW0dQ+odcv8EzAZLezccBqfAHfW2kWzOvM4twS056W2o0ksz0FSFew0OrKrS3DXO7I89TAbs6MxKxJ6UUuuseySa8cm5VBVbQ14NlskwoIuVGgeOaoThw4kUVlpommQJ8uXHiI01JsN605ZLTwCaDQio8ZcOdU/LjGbd+duxN/Hldz8ciRZ5siJcxw/lUZ5lYmysmqrIFNVUmssTpPGdmP8LZ3RasUGvzwMjYokKNCDR2YuRFGs7rNn5q7BqMhsPhzPytn34e3ujEYUGd7T2p8sq6CU6e8tparazIePjaZ92I1Z/+fi7EGzs8i81fv4Zu0BvnthEp8s2UWV0cLJs1nodNaingadFg9XB9YmJrI6Pp5vdh2muLKaaVHdmdSn8eLm9+3RzJ63iSYeTnzw/DhEQcDeoKOpv82S9G/HVnG7LjaRdJ0RBAGNVkNydDqVZdVYTBL71hz7u7f1n6HYVMUtgW35OfkQAIvPHeGTuO0IwGD/VnzS/Z9TbuCDl5ZzaHcCsoNK9iwZGZXf0o/xcPggnm59M18lbqeXVxgtXfyQFJm3Y9YgqyoC0MMrlNFNL2050YgiOq2IySIT4O1GsP8FC4WHpxOfz7uXH+bvZMmvBwG4ZVQH1JqaRYFNPfnwkzvrZJJdivc/30Ryaj6iKDCkfyvSs0qIS8gCFYqLK5k0titxCdkYTRamTe5bO0+na7gn23maNfNCvajewcVaSmggyHTN7hhyC8tRVJVv1xxk7lPjrrj3fyI6rYaBfSLYticetAIWWcFeqyEzvwQXRwOVRjMAR+IyEAWBwCbO+IV4kBxXDkBijrW58OzfdnB77/aNtmD/uPIgiqJSWlZN3NkcfvrgHs4k59KtfbPrcp02bPxTsYmkv4jwTs3wCfIk7Uw2t9x/fYOUbVjJM5YzcssXmGQJDQIyKjnV1puHCuzNS/p7N1jDzo2n2b89juSEHExGC3pBi6vqQLXWgofeARedPTcHtOe39OPsK0jkQEEyPb1CaWJwocRchUYUebPDrdhrLu0uahvuz/MPDCH6bDaThtetNL1542l+WbgPBwc9inI+qFrk48/uJiE+m779WzZKIAFoanq4KYrKgWMp1nR9QaBL+2AmT+iBs5MdH7/ZcO2ny2HQ6/D1caWkpAqDnY5XZo5mzb5YBnYOo4l7/YDyDuEB1sKIAvSKbHbV5/sn8cITw9l6NgWlJl2/e5tg+rYPISEtj2/XHKwdp6gqqbklJBcUw/mnRBDQCAJBXm5X5eIf2DOCX38/giiKtG8ZgJ+3K37ef0+vOhs2/k5sIukvws7BwFf738BstGCw/+fFPvwbiS/NRVLk2o739hodjho9BWZrEPD08CsXGLzeZGcU8eHLKzCbJOzsdIS29COwmRfTBwznUGkK7npHNILIpqxokivyMCkSc+I20KvfDBb1mc6e/EQ6eQTjorO/4rmG9mnN0D6t6xyTJYUP3l2LLCvodBp69ArDydHAXff0wcnJjrBw36u6nlFD2zNn3hZUVIxGCZNJwqDXMqhfK+ztdOw5eBY/HxeaNfWiotKEq8uV9w3WTLhvPpvCqeh0Wkf44+bmQMeW9bO1ztO9TTCLXp9MtdFyyYy2GwWr+8P6u06r4cV7BlNlsuDj6UKQrzv5xeV0bRXErhPJ1sw+CbTlIDlbRZGsqng41w3aPp6SyeGkDG7uGEFTT6tLb+ehRA6ePMetQzsyfVIfhvdvjZuLPS5OjXuNbPx7sLnbLmATSX8hgiDUEUiL56xl3Xc7GHR7L+5+cez/e31VVakyW3D8BwagXsyBrTH8/OkmvL0cGXNff9r1jrgu5+niGUyocxPiSnOY0fImujVpRqS7P5KiYKfRNuqbdUlBOTq9FsdG3syvFlG80CNJq9fw2a8PIQgCiWU5vHJqJQDjmnZhuL812Nxeo6OLpzVLy8PgxKjAqwtOrnd+jYCTsx1lpVVYLDLBzZow5b6+fzqxYMTgdkiyQnFJJb4+rrw3dyMms8THX2/hp6X7ySsoR5ZVJFlGVWHYwDY8+WAU9nZXfs86ORro1b1Fo/cS5PPviJ8x6LTMeWIsy3ecZESv1rg52zPu+e/IL65EIwosfmMKTdwcGT7za8oqjciKiotWh2SvocxoAuBociZJOYWE+nqSU1LOtHkrMEsyv+w5yfZXp5GWVcSrn67DZJbYeegsa795CB8vF2a9s4LTCVn07NicN58aiUa09fSy8d/CJpL+Jn6fv53vX10OwKL31xB1Ry/8mze+gF1xbinznluEk5sDD7w9CVGvYfKXi4nOyKNHaFPu6deZPuHB/7gsOlVVefvxhZgLSjgrSRzecJL3V8+kZeeQa34ue62OJQMeqHdcJ14+/uU821ccYs7jPyFqRN5d+SQRHZtd4x2Cj78bL35wu9XdFp/Nrb3fYtqsYVR3EVBVFZMisSnrNNtyYjErEk0dPHmi5Z8v5mc0WVBUFYcaUSIIAgGB7pSWVAGweNE+OnUOpn2HP1ciQRQFxg63CrfVm06i1MQRVVaZqawy1xu/YVsMm3fG8cwjQ7l5UCSKohIdm4mnpxMe7g6NEk//Bbq1DqJb6yAAzmYUkJFXUtuSZuxz8wkP8uamTi0wWyQOxKRSVFaFtkC+4HaD2nLmVSYLKtYA+AqjCbWmltR5FNnqcn3ug1UcjUkHYPeRJGITs2kbcWMGwNtoPCq2tiQXYxNJfxPbluy/8ECF4ryyqxJJXz2zkF0rDyFqRDx83TCEeHM2KRdVDwejU4g+lMwDk/ozdWC3a7Lf57ds4rf4WMa1as1bA//8TVoQBNw8HMnLL6p5DPmZxbTsfIWJfwObf9mPxSyBAIc2nb4uIgmge78INBqRHetPY6w2M//jTXy75QkWnttHRmURpZZqLKo1HiXXWEpWdQnNnZrUWyfmbDZvfLUBSZKRZIVJwztz280XntjoxCxmvLUURVF5d+Zoera3WqSCgjyJi8msvele3PbjShw6lsLug4ncMqQ9EaEX3r/fLtzDT0v31xmrEQXs7fXotBqKS6tqj8uywtz52xjUryWfzdvGxs3RmM0SgiBwz129uOeO3o3ez7+dBesO8fVv+9GIIhpRwGSRkRWVuHO5xJ3LRaMRrQ2EVdAIIk8M6cHqE7GM6NyKUB9rMYAQHw+eHNGXX/eexE6nZW98Kn1aNuO5B4ew/3gyk26xxqwdO5NeW1sMwN/nxq5Ub8PGn8FmO/2buHXG0NpPHwcnO5q1vLpvaGlSJRIqZlXm999P8fOb62iyKQ99qQX/LQW47ilkw3tbr8le86sqWX4mBpMsszQ2hsKqqitPugwfLn6EwXf1QaPVYDZKrPhiM7IkX3niX8yoqTeh1WmwdzTQZ+TVdbq/WoJDvRFFATt7PW06BuOqd2BZv0f5odc0NMKFf1N/kzuHNqWQllFYb40Pvt9KamYhmbkl5BaW88WXWxkyeDYzZy5CkmQ27zuDySxhkWRWbTtVO++xJ4cR2SEIQStiEVT+9+ZvvPHOau57cD679yZccs8FhRW88M5vrNpwksdf/NXaCqSG1RtOoKpWEezqYsfIIW2ZemcfVi14hOXfTcegr/v9rLrazNZdZzh+Ig2TWaqJw1FZserSmaBpGUXExmfVyXr7t1JQWsnGw/H8tPEI5hoR3DrkQqHJ80JGlq0CqWmAO3cO68zUod1Y9ewUpkV1R1VVlu84yavfbkAnQVZxGWey8nn8+9VIssLQvq149bERRIT48MvO45S7qZgdrX30PvvfBDzdHP+ei7fxl6Mg/CU/NwI2S9LfRO+RnVma8ilnjqYQ1iEYR9crV8O9mMKRARQa89EoIrozlaiyip29ngdat2XNzh0ggynz6pvFqqrKke1xqKpKSGQgP3+6CYtZxq+5A4WiiSaOjrjaXX2DS1VV+f2nvWSnFjBh+iAK0wpRZNUaf3MyjbSEHJq3/meZ8nsMa8/ShI/QaEV0+mv7r5JUls/0/b9iVmQ+6zGRtr7+fPPbY2SmFdK6fVDtuJaufvyv3WgOFyYz2DuSt2as41vTLhYs3MeKhY9gZ3ehTYSfqxOp+RZQQGmiR1MhIwNn4rI4m5hL+zB/Vm61iqORN7UFoNpo5tTpDE4nZCNrBUBAscjs3B2PLCu89e4aNqye2eA1KKrKefOTclGVZ4DhUW1ZsuoILs72/PDpFNz+8P5+9tFhzPtxF6qiUlxaiagR8fZy5sGp/Xn7g7WYTBZEUSTqJmug+Q8bDvPT5qNEdQ7nuUkDOBGdzjOvL0cQYPKEHkye0PP/9Xr8k7FIMre+toBqswVJtt5aRAEyS8qQ9VYLnbuDAwUllQgqqCJkFJexdO9pHhzdq9blfiAmlTm/7MRkkVi3PxbJXUQADFptvXphe+LOIQOCs0inHiFsS0jB188NX3fnv/z6bdj4O7GJpL8RZ3cnuka1/VNzH+3di/szs2g2Px9VBgTo2r8lPTqH8ru6ExWVoBBvTEYLBrvG9VvKzyrmlXvmkZaQg6jXIGl0qIqKIMLNI9oz8KkRtGnijVYUMZssCIJQKx7KS6vYuOwwQSHedBtQv+rzvo2nmT97DRazzNmYTCSTBKIIioLOoGPtDzuRzDKtujYn6vZeaDRW60lVhZHvXl+JIMC9L4/F4S/uQG7ncO1jYoyyhfE75lMlWWN0Poreyvd9J+Pp7YKnt0u98cMD2jM8oD3lFUZMJguSpKAiYTJLdURSqKcbB2u0SqiLK85+diQm5GAwaMkvKOPDd37HCejaPYTeHUMwmSxMeWA+pTWuL71ei9lszQRUFGu2WxOvS98Uvb2ceXnmLaxYc4yC3DLmfrWFR6dHIYoC0+/pz8TRXXByNKBvoM1HVL9WRPVrhdFkYdOOWHy9Xejc3hoHtW75ExiNFkpKq7AIKkVlVXz2214UVWXVvmjuHNSRmPhsJMnqajp8IvVfLZKScwoprzbVPlb1oIgCo3q34buNh9FqREyKjKoTrO4xQUCSFSqqTSiqiuZ8HztFqbW6qSq4WXSMH9aBtORCoh77gruGduG+kd0BeHBoD6JTc9CKIgcSUtkdm8KB+DSWPHvXX379Nv5iVFt228XYRNINhlGyUGI00rdpM0K/KUCtuSlqNCKz3p/I2l8OoNGISIpMcnw2syZ9wcfLHq0VHZfji5eWkhKXBYAsiSDUuDFUcHK2p1tAIADH9ibw6oML0GhF3vv5QfybefHGIz8RdzwVUSMyclJ3UhOyKS2qxFhlpnWnZrTr1QKLWUKRVU4fTEIQBbQuDvj5OJMen83a762NgLcs3k9RbhmTnhoOwML31rDx5z0gCIgGkQdeHY+2kYHXfzUVFhOZFWWEuXldtpJ3vrECsyzVPm7vEdio9Z2d7HhyxhB+W3OcUSM61Euf79YtlGXLDoOqMnhQJK1a+VOQX86HH67jzTdWoaoqsqyyf08iZ+KycHA0UFJSVSuMXnpuJPPm7yAnpxSNRqR/33AefnDQZffUv2c4n8zdTFFxJeuLounTM5zOHa1ix6MR7hk7g45RQ9vXP26nY9XmWL7fcBitVsTbzZHSKhN6rQZPV0eGDmjNhm3RlJZXM/WOPo16/m5U9FotGlFAPu/OFARUFQZ3DmdM70gcDDqW7z7NZ6v24uvhzLg+bdl5KokpQ7rWyUbr1bY508f2YuGmo5RXmQh0c8FX78jiU0cwWWS++m0vd9/cBa1WQ7vmfux85yEOJqTx+NerUFQVo0W6xA5t2Pj3YhNJNxB5lRUM+/VHys0mJodE1onFePh/o9AbdAwY1ZF1vx4kIzkfVVE5G5PFvQNn88WaJ3G6Qhq7i4cTWp0GWVLwaOJMhVHGYpHpP6IdTXzd+OyVFdzxSBRzX16BxSxhMcO8t9YQdyINVVVRFRUsMsu/3QkXuV/Sz+ayd9OpGrN/zTdZRUUGcjOL6uxBkRXys4prH+sMOgRRQFEVlmQfYMX2RH7uNQMf+39WEGmxsZpBq76hSjIzMDCUL/pfuqRDoIMbtzSNZH1GLFH+ETze+qZGn2fE0HaMGNpw77m2bZvy888PcS4ln//9z5o52ay5V21fNqtQVpFlhTlzNvDFl1Po0D6Iw0eSGX1LJ27q15LomAxWrj6KJCkcP5FeGzuUkVnEwSMpdO8aQuAfWlP4eLtQUWlCVVS8POsXdvyzrD8Uj1mSEUSByUM642hnYMXu0zz40TLevG8Yg/q2ZO2W0+zYF0+71gH/uEzOa0VzXw+enjiANftjiEnNrT3exNWR7KJyvttwmD6Rzdj7yQz0Wg2CIHDfsPoJG4IgMPnmrowf2IGBMz4nIT2fOYt3Ym/QIYoiPh7O9b5MdQtryvSbexKdmsP0m3tc92u18fdja0tSF5tIukGIK8hn3dkEqi0WLIrCmtREgpwMmI0SdvZ6Bo/rCkBhThlDx3fl5IGzHNllDbotL60m9ui5Bt1g58lNL6R9rzD8gr3w8nMjpHUAS7/cQrueYTi5O/Hhc0uwmCVS4nPIybggYtKTc2tThlEUqx3/D/EpABUl1RjsdChKjZgCVIuE2WiqMy6yRxiTnxlZ+/iOmSMw2Ov5JXUvlVEKBtnM/oJExjTteslrWZiym88SNiIg8GzrkYxu2o2KciMZGUW0CPNBq732lqi4kjyMsgWjLLEjM/myYwVB4N0uY3i3y5hrvo+8vFJefnkZJpP1W39aamFtQHXrNv4kxOcgCAJBwZ5oNCLvvjkBVVVrBUZhUUXty1dZZSIpOZ/wMB8efOxHzBaZ737aw8pFj6DXa1FVlW9+2IUgCowb1Yn+fSIIDvoz7VQbZsqwLrz58xZc7A1EdQ5n8faTxJzLQVFUHn3pV0rzrUVB12w6xcgh7QgJrp/x92+hua8H/dqG1IokQQB7vY5pc5ZSVmVi9f4Ylr9yN/6eF6pimy0Scal5hPp74uRgqD1+MjETqeZ/VpYVfnj5DtJyiugQFlhPaAqCwJRBdSu027DxX8Imkm4ADmSmM+X3FQjU9IITBKZ06sy4lS04vi+Rzn0j0Om1lBZVMnPSF8iSgqOzHSMn92T9r4ewdzTQskPQJdcvKSzn4cHvoigKvkGefLnlee7q/DKFuaXs33CKu56+xTpQpTZQ9zw9B0eycYnVxYN86Qw1URSY8fYE5r6wFLPRgkYjIFeazxuWagnv1Az3i+Jy9HY6Jj01HDnFiS8SNqMTtXT1DK23fpVk4rXTyygwlRNXmolc44f8IG4tg9zbMeWurzAaLbRs7c8Hc+68/BP+J+jk5U+IiycxRTlMa939mq/fWJYuOVQrkLRakXbtgzhy2CraQkN8eOD+AeTkltK374UCnhUV1sazAQHu7NpzIZvNzdUBvV7LiVPpGE0WZFm11m4yS+j1Wo6dSGPF6mMYjRZyckrYsj0WWVZ4780JhIU2vpzFpRjTO5IRPVqhFa2Nb5v7eqDTalBVldL8CxmWggAe7v/ezKuTSVk8/sVvKIpCoJcLTg52PHVrP77dcJCKamtcm6Kq7ItJZVyftog1rWEemL2ElKxCHOz0rJx9H/YGa/xafkkleq0GsyQT6O1G05qfy1FWZeSDlTsRBIFHRvRiT0wKTZu40TXs0lXPbdy42CxJF7CJpBuAmII8FEXFrMh09PHjp1HjcdJbA4r9LvrmXl1pQlFUJItMZVk1Dz4/ktumDWTb6mPcO+hdOvRswQuf3lXPpF6QXYIsy5iqLaSfzeWRoe9SWmzNjFNV6NQnDFGrISu1gHH39WPq4Pdr5w6d0JXs1EJij50DrYBUU2Onaag3RfllVJYZ0em1THo0ijlP/4Ii16giSa4nuABWf7ud8Y8Mxq1J3QDmu5r3Y7h/Jxy0euxqepSpqsprp5exPTeGtq5NOVGSilmRsBN1SDV1hZoYnMlIL6LaaMFktHD6ZHrtmlVVJg4dSCIs3JeAQA/+P9hpdfx+yxQUVb1sPFKFxcSB/HO0dffHx/7aZwr16hXG/v1nAXj11bG0iQzkyy+2oqgq997XDycnO9pEXoiBSs8o4sEZPyDLCpNu68HQwZFs3ByNl6cTLi52PPLEj+i0Wrp3bk5eQQVjRnbEuSZ43tXVHlVR0WpFZFmlqOY9s3jZIV56dmT9zf1Jnvl6LbHncnjm9gE8N2kgs3/ZRpW3Fm2Jheaubrzz8ljcXK4uO/RGIrfE2m/QLClkFJSh01ayZn8sm48l1LzfrG7qj5bvJLOwlMfH9kVWFGJTcgBrH72sglKCfT04dTaLjuEB3NSpBWm5xbw4ZXCj9vDluv2sPXIGgCOJGRSUWa14Xz48jk6h/6ysVBs2riU2kXQDMC6iNasTzpBXWcGLvfvXCqQ/4tvUg3tnDmPHmhNMfPAmNFoNnj4u/PjxJiSLzNE9CZyNziSifd1vf6FtAhkwtguHt8Xi6ulEckwmoigQ2jaQCQ9FEdI6kJDWF26sT707gSXztjN0fDc+enYpOemFSBbFmummA4MGykuqqCo3AiCIcHxPwgWBBLh6OlFiNNU5BtY2HWkJ2fVEEljbcFxMZnURW3JOY1YkDhcloRe0GEQdgQ6enK2w3iD8HNxpEeZDmzYBnDqZxu139KqdP+uJhaSlFiII8P3P0/G6TCZXQ5SZjSw4c4xAJxfGNG+DIAiXFUiqqjJh+3xyqsvQiSJbhz2Gs+7aZutFDY6kZSt/NBoRPz83Tp1M49ChJNzdHYmOTmf16uO4ONsTFdWGLl1DOHkqzSrAzTLbtsfx4/wHmHZffybe9SV5+dabsyxbqK628O3nU+qcq0WIN++8disJZ3Nxcbbjky+2gABdOjW7ZtezPyaVfdHnqDZbmPnlGpr7edRWiPYPb8Ivr09pcF5FpYnc/DKaB3nVWlZuVAZ0aMH+2FTWHYzDIitYJJmY1BzkGpeZooIgqBjNEgkZ+QBoRJG7b+7CL5uP0b1NMM39PHlx3lr2nkpBEGDRa5M5Fp/B1iOJ+Lg7434ZkWmRZPbGnUOSFbQakSqTGaNFwk6n5futh9lyMpFHhvfC0VYd/V+BreJ2XWwi6QbA3c6eVRMa5yIaO6UvY6f0rXMsLDKQlPhstFoNfkEeVJRWUZRXRtMWPgiCgCAIPP7eJAB++mAdmcn5gMr46YPoP6p+EcXBY7sweKw1TuGXL7YiWawf1hazhCDAu78+zMzxc2sNRaoKt0zuw+mDF2J17FzseeblqZzem0DLziEc2nKaAxtOEtGpGa261nenNYSXwRlnrT1VsglfO1cejbiZYnMlzZ2a8Mjh75AUmQlBPdBqNbz30R315qelFmI0WrCz05GXU9pokaSqKjlV5bx0cCO7MlPQiiL2Wh3Dgi7fg05BJaWiEBUVnaohs7KElm5X10C2MQReZBX75psdFBVVUl5u5PXXfqt1xe3YEcfrb9xKj26hfPfjHiRJ5o7brIG5zs726HQaLBa5phikA1Pv6dvguTp1CKZTTQuT1i39URSVkOaXjw1as+M0Xy7ZQ+fWQbz68M0N9gOzSDInkrJwcTCgoiJgdSll5JfWVJtWmTSo4b51JaVV3PXIfEwmiT7dWvDK09fOqvV3oNNoeGXyEA7GpZJTY63TiCI3d23JmoOxqCq4ONjh5eLIE+MuNG1+dEI/Hp1w4fGx+AyqTRbsDTpW745h0aajWCSZ2JQcPp81/pLnPxCfRm6J9bx6jYY5D4zi3WXbkWSF/XGp7CcVSVZ4YcLA6/QM2LDx92ETSf8BZv/4ADFHztEswhdTtZmHomZjMUsMntidGW9PrDP2zqeG0aJtIHaOBjr2uXLj2efm3MEPH21AVVTyc0qZOO0mItoHM+ON8Sz8dCOhrQJ44KVRBDT3piivlHmvrwIB7nxsKP3HdCGguTezRr6PqkLbnmG8tfTxRl+XnUbPr30eJ748i7auQdhrL3yT3TjwRSRVxkl7aUvN9Eei+GH+Trp2D6VlIwtZqqrK/duWsyMrBREVSVXQIFJuNl1xrkYQeaxVfz6N24Giqrx1aiM/9bunUedtDGazxLyvtlFUXMn06QOJjc3E2dkOg0EHqNjZ6WpFEkBeXhn7DiVRXl6Ni7M9PXtYm8dqNCJzP7qLLdti6Nm9BW0j65coUFWVbxfsJjomk2n39adNK3+aBXs1ap8fLtiG0Syx+1gSsUk5tA3zr/3bpyt28+v2Ezja6akyWdCIIp89OpaPl+/mbGYBAF/PnECwj/slLReJKXlYLDIms8T+o8nk5pfx0VebcXNx4MnpUdgZGlc3DCDxbC679ydyU98IQppZxd/OPfEcOJTM2FEdCW9x7UXupRjTuy1frz0AQJtmvjw6ujdZRWVUGs28M3U4Qd6Xb+g7Y3xfPli0jfCm3gT7Wscqqkq16fJtaIKauEFNoHiHEH86NPfnl6fv5OuNB/hm4yHUK7iYbdx4qDZLUi02kfQfoLiggjUL9+Pt70rLyABkScZstLBvw6l6IkkURXpelGKuqCoWWcagrftWMUkSJUYjXfu3pGv/lnX+tic9ldJ2jnyz60XsLprX/5ZOfPfuWiwmic9eXk7/UZ3IyyxCEARM1WayUvKv+tpc9Q5086zfGd5OowMufTOsrDSxYP4OKjOKSBSAi7pUSRaZDYsPotVpGDy+a50YrqVJp9mamVTzSKBjE386eQUwJqRNo/bb2yeErxP2Ui1bOF6YfuUJV8G6tSdYt+4kkiSTdDaXnNxSJElBqxV5552J+Pi4Mv+7nZyOyaB1uD9RUZHMu/NzJEnBaLIQdyaLdpGBfD1/J6qqMm3qTTg6Gho819ETqSxfdRSj0cJr76xiyY8PNXqfoUFNSE4vQBDAz+uCW9Volliw6Qiqav0dsAYbCzD/6YnsibYGC7cIuCDGVFUlMaMAF0c7fD2slsC2rQII9HPn/R7J0QAAIABJREFU7Lk87ri1Gx9/vYWDR1PQaEVCmnnRv1cEdgZtvTims+fyORmXQf/uYXh5OFFRaeKhJ39CkhR+XLSPX76fhqKovPX+Wsxmid37E/j9MqJeUVR+WnaAzOxi7r+zL95ezsiyYnXL/gkX4NSbu+Fsb6DCaOKuQZ2xN+j4+skJjZ4/sk8bBnYOY/v+eIKbuDN5WBdSsouYMb5hK+F5gr3dWfz0nSTlFNGndbPa41MGdkGWVUySzLSh16ZHpA0b/zRsIuk/wMcvLuPkgSR0eg2+gcPw9HUj61w+t824fNBmTkU5o35ZSInRyJsDo5jYJhKA4upqhv38IyXGau5o245XbrpgZt+TnsoD61eiAnsyUpk7xJoZV2KsJqX4Qk0kWbaWC+g+pC19R3fm7Mk0Hn530rW/+EuQkV5ERUo+anElGfllrPt5H7fcbS1K+POnm1j53S4QBKoqjIyb2r92XnxxPuerPRk0WhYMug1nfcNCoiHauPnT2bMphwpSeSii4ZtTZYWJ7ZuiCW7uRduawowAxw4kMf/TzXTo0pz7nxxSL13bwdGAIICoEZAkGbOqgl7EDBw7kUZqZiF7DySh02lIzCjAYNAyZmQnFi0+gJurA5FtAvlx4T7WbjgJWCtwPzK9bjHJymoz015cSEpGEVoRdFqxTssRVVXJzi/Dy92xwUrbAJ89P4HD0am0CG6Cl/uFODODTkOInydZhWWIApgtMo46HU56a1PcAR1aIP+hvMS3aw/yw/rDqMA3sybQprkvdgYd8z++h4T0fKZ/uAwprxpRAItF5tfVR/hq0R40osDc12+jVZi1/1lhcSXTn1+Eoij8sGQ/HSOb0qdzKJJ04XwHj6bQ9SqaHP+29hjfL9gNKqSlFzL97v48+/IyNFqRT9+/gxYh3o1eC6wutkkDG3YxXowkK+w9moSnmyOR4f51/vbMuyuJPWuN1/v27TsJDapv/VNVldiUHBztDTTzs7pum/l40MzHg90nklm2/QSj+kQyqGs4Dw3/91Y6t2EDbCLpP4GTiz0ajYiAgKePK9/ueglZVq5YhXtbSgrlJhOSovDN0SO1IulETjaVFjMWRWHlmTi6+gewM/UcUzp0IrO8DBUwShJpZSUApJQUc8vSn5AUmVEPd8I93sTIu60NbgGe+vTauZwaS2gLb1wcDZQWV6IRRSou6kpfUlCBJCkIApQU1u1/N61NN47lZ2GULXzeb/RVCSQArSgyv8/lWzu89sxiYk9nIAAffj2F8FbWG907zy+jrKSKjJQCetzUkradguvMi4qKRJIUSoor6dkrjGmPLsBSE9ybmVvCoaPnUFUVs1kiN68MWVGZOqUfd9zWA4NBhygKJJ/LrxUG1cb6bpjjMemkZ1tfV0kDvXqGcPdFLUH+98ladh0+i4erAz9/OAVH+/ouMXs7Hf261Lf+CYLAB9NGsmzbCYJ83Pls8S5KKyp54bPfWfrevTzzyWp2HUticI8I3nx4BAC7TiRjNEvotCInzmbRpvkF99dve6IprTSCA2gR0BpVCoorUQFZFDh44lytSCotr7Y+NxYZc2kV2/bGs/vQWXp2D+XAwST0emuGn5+vGy8+PaLW3XYp8vLLWbvxNNRorLzccpb9dhSTWQIzrFp7nE69QugQFnDZoOk/wyc/bGftjhhUVeW9Z8bQtd2F90lGTom1nY1BR25BWYMiacG6Q8xfcxBVhTlPjKFrK2v5kGqThWe/WINFkjkcl07nVk1xc7p8gVobNyY3SvPZvwKbSPoP8OTbE1izcB+e3i70GWbtFdeYNiU9ApuiFTWowNhWFwpRdvb3x8PeHpMkMSIsnFmbN2KUJLalpLD7vvvZk5FKWlkJL/ceQHR+LqfzcpBVBZMsc8Szku2fT71el1oHY5WJHz9YB8Dds4Zjd1FBPa1Ww5ernuTL/y3D0dmeMRdZi6bMupmKsmp0eg0Tp9cNRvVxcGbl8MnXdd+5OaWYTRJ29joK8soJr3nqvbxdqK4yo6oqdva6OkUgwVqLavjwCy0+XnlhNC+/uRJUKCquBKzp4hqtyEP3D0Rb8x6wv0jIFBVXodas5e9fv3ZOy1Afa2PbGvacTGHPyRT6dQ3j9SdvYdehRCySQmm5keS0fNpGBKAoKkdPpeLl4UTzBm7K51EUlelvLaai2oQgCNZYF1HAoNeSV1zBvpMpAGw9lMDTdw/E1cme6aN78uy8tXg4OzCka3id9XpFNmPJ9hOoCEiOAlqtBjtJwCLJ2Bt0DOx9IeYuJMiLO8d2ZeeBRFIziqyNZAV44ekRmE0SDg567GtioPr3iaD/ZeL1KipN3PfQd1QbrTWMNBqRscM7EODvzqEjySAIbIw+y6rYBBzsdKx5/wF017DAacK5PIwmC3qdhpSMwjoi6eUZN/Px99to3cKP7h2a1R5PTM9n1txV2Ol1ODsYMJolREFg36mUWpEkigJajYhFktHU/G7Dxr8d4eLWFg0OEAQ7YBdgwCqqlqmq+solxt4KLAO6qqp6RBCEZkAcEF8z5ICqqtNrxnYGfgDsgXXA4+oVNtOlSxf1yJEjjbowG9eGMpOJcpOJAJe6KfmyolBpsZBfWcnIX37GKEl42ttzeJo1NqXcbGLQou8oN5to28SXjPJScirKcdIb8HNyZt6w0TRzu3yg6f+X+W+vZtX8HQCMnnoTbbo0Z8F7a+k8oBVTXxj1j21jEXMqnc8/WE9YS38ee2Y4Gq31ZlRaXMn29afZuPoYKYl59OwfwSsf1XdRHj2eyuyP1uHmak9aehEms4RWq+G5p27m3TnrUVWVpx8fxtCoyHpzN22NYfZH6xAEUGSVsaM68dhDUXXGDL3vM8or6gaqC4LAzKkDOZdRxPKNJwhp6sm3b9+BQa9jzrzNrN8Wg6qofPzmbbSJqOsCAqgymimvNDJ21nfIsoJep+HR2/uRnV/GbUM64uXuxF0v/khWQRnBfh4seO3ORsX1zF2+m0VbjyMg8OTYvgzuHo6TgwFRFC85Pzo+i407Y2nT2p+TKdl0jAhgSLeWDY41mizMWbyT8iojT00agJerI2kZhdz/yILanni3je/Gug0naRHqw8xHh2BRFCa9/jNyTUr92g+n4XENrUlxSTm8NncdTTyceGfW6DrVti/FM5+tZvuxs4iCwJDu4ew8nky1yYJeq+HTmePoHGEtGxKfmsfmw/Hc1LEFkaF+12zPNi6NIAhHVVX9y8qeO4X7qh2+uPsvOdfewe//pdf2Z2iMJckEDFRVtUIQBB2wRxCE9aqqHrh4kCAIzsDjwME/zE9SVbVDA+t+CTxQM34dMAxYf7UXYOP64mIw4GKo/yGrEcXav70bNYQd51JIqyyh03ef83Lvm2jh7km52US1JHEkJ5OzDz5Jm28/pcxsoqzIxKhlP3Ny6ozrKlSsN0GhZr8C7z32E9WVJrLTCuk7ogMRHYIvv0AjSDqTxeZVx+k5oBXtu4X8qTXKSqtxcNTXtktp064pX/w4rd44V3dHevSP4JuPN6EqKvu2n6G8tApn17o32E+/3EJ+QTkFheW1ZRgG9m/JZ/O2YrFYi2yuWnu8QZE0ZFAbgpp68NjTvyDLEitWH+PhaQPrWA2c7A2UV5jQakRUrE1zNaKAJCk8dd9AHrqjL3YGbe1rGx2XhdFoQa/XcjY5r55IOpdVxL2vLsIiSQzpHkFCWh5De7Zk4uC67qwf37iLtJxigv08Gh34/OitfRnarSVO9nr8vVyvPAGIjPAnMsKfMc/MJ6uglDV7Ywj28SAiuH4M0eKtJ1izJwZFUUCFtx+6BX9fN9q2CSA+MYd77ujFoiUHKa8wERefTWp6Ib17hHHPzV1ZufMUo/u2vaJAKqsy8sS3q8krrWT23TcTGXz5jLpWob78+vF9jbrW83QID2B/9DlUYEDncIrKqjkUm4YkKxyNS68VSRHB3g0+DzZs/Fu5okiqse6cD8w4nzLUkMXnDeBd4OkrrSkIgh/gcl5oCYLwIzAGm0i6oTBJEu/t3UNhVRUDQ5vz3I5NVEkWXtuzncNTHqK9tx8Hs9KZ1qELaeWlGKUL6eeVZtNF+WSXR1YULIpSJ1PuYhZ/upGln2+m+5C2zPr07tqb8x2PD611K942YzD7Np4mN70QUHFv8v+vdi3LCrOmfEt1pYl1Sw+xYMPTHNp9huQzOYy/tw9NfK/chPeHr7azeMFe3DwcmbfwQVzcLn/DbOLjgp29joqaGkZrlhxCEEVatQ2kQ41IaxnuS25+GcaamCKDXsuuPfEYL0r/jxrY+pLnaBbkhZurPaVl1YS38KnnVnnt8RE88uoSBAEiwwMI9HHDxdmesUOsrj57u7pZhTOmDuCNj9bi08SFgX3rW2QORp/DIslYJIWzGQUservhGDW9TkuLplffny38EnOuFJcnK0rtB90fA8bX7Y9l7d5YYpJzsEiy9TlSrVXcf11+mOjYTAAMeh2RrQM4fOwcAtC8pr/cQ+N689C43o3a/5pDsZw6Zz3P+yt2suDJ2+qNSc0rxmSRCA+49PNjkeQ6br2C4gpOncnE1dme0X0jadXMB4NOS+vmvrg62hGdnI2jnZ7hvS79XrHx78RWAuACjYpJEgRBAxwFWgCfq6p68A9/7wQ0VVV1rSAIfxRJzQVBOA6UAS+pqrobCAAyLhqTUXPMxg3E4pjTLDp9EouiUGSsAgEctDraefui02j4dcxttXEzlRYzrgY7ys3WeJO5USMaVVslvbyEUWt+otxi4sM+wxkdWvcDW5YVFsxeg6qq7Pn9OBNnDCE4wuoGMNjrufvpEbVj31v2GHvXnaBlp2Z4B3hQVWHk5clfkRSdQfveYbzw5b0YLo7PyS/j+/fX4+ntwl2PD6G8tIqNSw4R2ibAWvZAVZElq2VGVeHUkWS+ePt3LGaJ2BOpzF38yBWvb+3Ko8iyQmlJFfdO+Jy2HYJ48e3x6HQNx6hotBo6dg9l95YYAFYsPEBlhQmdVuTzXx+iaTMvnn7yZvr3jWDHnng2b43B09OJgsLy2jXaRwYy9pb6RULPY2enY8HXU8nILKZ5A7WPrO47kWqjhTPJuXz2ysQGVrlAx7ZBrPj+0iUC+nQI4duV+5FkBZ1GpKCkAi83p0uOv1pUVSWzoBRPF0fsDTokSebxV5dyMjaDW4d35Mn7B9UbP/vHrVSbLTjY6bBYZB79aDkezg5MuaU7HcMDeOuHzZgtF3oV6gWRg+vjmbgtmU4dg7CYZQRRIDu3lKaB7uzZn4iriz1vvvc7Mx8bQmjzS1tjFEUlMT0fH09n3JzsCfXzRCMIaPU6WjWtP29v3Dme/HYNADPH9OO2vu3rrTdr9goOnDjHwJ7hvPnkSCqrzdz51A9UVJlABW8vZ354bzLVNS7Czi2bsvOLR//0c27Dxr+FRokkVVVloIMgCG7ASkEQIlVVjQYQBEEEPgKmNDA1GwhSVbWwJgbpN0EQGldQpgZBEKYB0wCCgi7dpNXGX4+DTl/bcNfLwZGNt03hbHEhvQIvvE7nrTqOOj2bJt3Lidxsevg3bdCF1xCb0s5SYanJsIs5XE8kaTQiwS39yEkrRKfX4tVAsPF53DydGDG5T+3j3b8fJ+7YOVRF5dDWWNYt3MfY+2+q/fvcl5ZzaEccWp0W70B31v96gJS4bLQ6De//+jBhkYG88eU9rPxpHwOGt8PR2R5BsN5kL04dv5iEuCwO7E6gz4BWhIT5MHRkB1YsOoAsKZSXVnPsUDLHDibRvU94g/MBuvcJY9+2OGRZobLCaG3totNQWWFtA6PViPTq3oJe3Vswc8YQNBqR12ev4ejxc4wd3ZnqKjOzP1zH9Ptvwt3N2hg2O6eE2DPZbN0Zx9BBbejfJ+KSTWrbtQwgMtyP0/FZ3NyvNeWVRpwd7aioMjF/6T4c7Q3cM657o4ORA7zdmDqmB3MW7iQ2JZf7XlvE6jn13Y1Xw5ylu1iy7QT92ofgZK9n3YEzODkYWPLq3RQUlHOmJg1+xfrjPDF1YB2376nELFbtjq5jPbJUmiirNPHm95v44aVJdSygBp0GIduELKlUSDJtWvlTXm5Er9Ny+/hujJ30GaoKJaXVlJRW896c9cy7REanJCs8+clKjsVnoNdqePm+oazceYoxHVrRNTKIAe3rZwUeTkzHbJFQgR2nkzgYn0ZhRRWv3zGEYG938orKORqdBsCOg4mUVxopLq3CaJJq3bGFpZWMfPpbzBaZSYM78vht/eud5zxLt55gxc5T3BbVkTH92jbyFbFx42BrS3IxV5XdpqpqiSAI27HGD0XXHHYGIoEdNR80vsBqQRBGqap6BGtME6qqHhUEIQkIBzKBi8v4BtYca+icXwNfgzVw+2r2a+P6Mq5Va0ySRGF1Ffd17IyTXk9Tl0vHfXg7ODKkef0P+cvR178ZH4oaBARuDa0fQwPw0ZqZRB9IIqx9EI7OjU9JDo7ws2ZRYc2icnKpO1dXE1cjADq9lvKSKmTZ2qPufMkAF1cHoo+kcOLAWd748h4mz4giKS6bux6q36KhqtLErAcXYDRZWL7oAEs3zuL+GVHcOqkH7736GzGn0lFVCLyoaXFDePm4otVpQIBmod44udjTqXsIEW3qG2MNNdWlX39pDACLlx9iybJDSDU9wP733CjmfrWVlWuOoSjWf6/DR1NoFxlYK6D+yL5jyTQL8ORcRhHrdsaw50gSS+dO5ZMF29m4Kw5RFHC01zNpZOPjMUtqBB5AXlHFZUZeGZNFYuHmo6gq7DqVjFYjYpZkKqpMfLZwJw+M64mri9WdGBnhXyuQFEXl5Q9Ws/NQIrKTAIJQzx+sEQWauDnx7OQoEtPz6NY6mCZuTjz62E+YsVqWTkdnMvu1W8kvrECSZNq1CSTmTBYWi4xer8HHu+H/EUlWGDnrawpq3luqovLiV2uRaso4LN17CndPR756eBxhAU1QVZVjSZl0CQ1k/ZF4qs0Wgr3dWbb3FJKsMHv5dp4bfROero4E+rqTmVtCi+AmODkYcHIwcMuASNbuiMYiyXj5OpNeXAbA8h2nLimSisuq+OjXHdb1f9pKVJfwRgWG27Bxo3JFkSQIQhPAUiOQ7IHBWGOPAFBVtRTwumj8DmBWTXZbE6BIVVVZEIQQIAxIVlW1SBCEMkEQemAN3L4bmHstL8zG9UcUBO5s1/7KA/8fhLt7sX/iQ1RJFvwcG44jsne0o+ugqzJQAtCyYzM+WPE46xfuo3XnZkRNqFs1+LE3x+MX5IWp2sy5+GymzLyZTcsO06pjMB16hQGwYcURKmoa+b788I9IFpnRd/bE/w9CJ/ZUOot/3GsNnFbBYpZrG5S6ezrx2ge3c2jfWYJDvAi4gkjq2D2EWa+PJT0ln6hb/o+9tw6P6lr/t++9RzJxJyQkEEGDS3C3YsVKgVJapEihQr3UW6qHlrpQKKVAgeJS3N1dEyDubpOMbXn/mDAhTaA9v3PO963MfV29mtmz9tpr1mxmnnnk87TEzcOA528MvKzsYjZvvUDT6BC6dGzgOG4w6EAQ0IgCBoOOklIT6zef5c66UlEQ0Gpq9gLdSs7l7S+32fV+KrDZZEruMHJ+i6qqnDibgF6vpW2L6snyufmlnDuegKFcxWIQ6Nv57uX15WYrb363nfi0PGoHe/PIgHZ0bhZeZUx6bjFebi6Um214uxsY3CmaJTtOI1ll9uy9RlZaEVPGdmHdtvMM6lVpeGdkF3H8bAIooC9VwSBg8HFBoxUpKTPj7+3Ou1MHMevzDSRk5BMe7MesMT3QiCJPTuvNF9/tRZYVTpyO5413N3LhciqCAJ+8PxqtVkNOXilFhWX071vzvXojJcdhIAEOjSuwJ4GqCuSVlPH4d+vZ+950vt5ylOUHz6Oo8N2MEbStH8qu8zfYcPwKGlEkM72IiS8tw81Vz9KPH6HUaCE02NdhFL44tS8vTrVXLn72ywFW7DoHQJDf3UOdri465IqbRVYUCstNTiPpb4gzJ6mSP+JJCgaWVOQlicBqVVW3CIIwBzijqurme5zbHZgjCIINu6za46qq3pZdnkmlBMB2nEnbTu6Ct4sBb5e792D7T2jSJpwmd+la7+HlygOPdeeRru9jtdhwdXdhzdl3HCKYAB26N2b72tPIsoK53K6Ls37JEfoPb0u9KHv+iKqqvPL0ckzlVgQBGkYH07ZDFPt3XaHvwBboXbToXbR07VVzmXlNdO/XlPi4TKaNsrcVeXHOCHoOqAx9vPj6GtLTC9HpNHzywWj2H4pFq9UwYVxnJEmh1Ghm9MgYJElGoxEd4cH+vaMZMrAV+QVGzpxPolP7KLthVcGdeTiGCgHKgT2i8fNxZ9aEXni4ueDu6sKogZWVacvXnWTp6hOoqLwwoz/dOjTgx1+OotNqmDimEys3nOJGfDaoKv1aNGTOjEF3fd3bj17n5JUkrDaZtLxiLsRn8NUzI3h1wTYMeh3fPjeSp77YQHGZBb1Ww4fTBtO6QR2iawfywVfbscgyRcXlfDx/FzZJ4cNvd9CpXSReHgYC/T3x8XajuMSEi17L4D7NmDauGwOe+x5ZUSktt5BXXMbN1DxkRSE+PZ+CknICvN0ZOrg1yakFbN52AQFITs3HapUQRYFLV9J4eExHmjQK5tKVNMY8Oh93dxc++2gstYMqvUphQT64GXSU1yDiCaBWfFrfjgKevpWGySqh04hcScmmbf1Q+rVqgF6robjczBdf78FSsYbEtALaNas5XUGSFY5eSkQQ7Mnxc58Yetf9N7joEPy0WMts6Nx05JeWExbw+wUKTpz8Vfkj1W2XgGrSsqqqvnmX8T3v+HsdsO4u485gD9M5cfKnRZJkbst3STYZRVG508fSpnN9Fm15jhtX0nj32RUACKKIVltz1ZSqQnFhOetXnkRVVS6fT+bld0bc9fpGoxlZVvC+o8x/7dKj/Lr6NMGhvljMNlQVtq07W8VIMpttdtFHAeb/sJ+rsZkV11d5YlrVUOCHbz/Anv3XGHRfc1o2r0tqWgETH/8RRVGoG+ZHZHgtLFaJ55/qT3T92jz1SA/OXU3l0ZEdaBhemUjs4ebCrAm9KCwpR5IUSsrNaDUabiXmYrHYEESB+ORcYm9lsWnHRQQBdDoNAYGeaHUaRKBpg8rwl80ms3PvFTzcDfTo2hBBEAgNsjdblbWginZvxrKdZ8kvKUcQYP2hyw6xS0EQcKsIN/bq2JAb8dncTMxh6kNdePqtVZS5qUh6Aats94q56LX8/MUkElLyaBBRCxe9/eOxdcM6nLyajNkq8a/le/DxNJBfXE6jsEAmzFlOkdHMhzMGM2ViN1xctOh0GhpEBTHnw83ovfU0aFUpebBgxSHS/KxorVZ27L7MxPGVOXKebgZ+/XgqiRn5XLyZwVdrDzuei6rrT2xBPlpRw5fT7gfgmaFdeXGxXUhzSEwTx2vu2TwKgOzEQpZsOElILW+aNbi7plFuoZGMrCIEi4JNlQj8naT5tx/qz+dbD9OhQV1a1HNqJf3dUMGZk3QHTsVtJ07ugV+gF89/PIZ9G88xbEJXdPrq/2QCa3sTWNubOd88ys4NZ+k3rDV17qgKy8ooome/aHZtuYQsKxhLzXZZA0khNTnvrteOjc3guWeXoygqL788hF69oyktMfHjV3uQJYXcrGJcDDokSWHI6Kr5Px+8NZIlK44SWS+QDb+ecxxPSSv47WWIaRtBTNsIwG6Y7D143REKTE4pID29CEVVWbj4ELOfH0TPjg3RasUaE7M37bnEpz/utTctdhMQdCIP926N61VXAr3dGT20HSvXn0JARUDgenI2h5PTEPw1PDesK6Puq/w99t0P+9m64xIIYLVJZGUVc+joDYZ1asrqU1eRFQVFUekYXZczcfZ8rtYN6jCoYxOW7TxLTOMwGtW1G3GiKDDjke6Oucc82olv9tq9W//afJCPH7FXQbq56mn2Gx2nj2bezzuLdrDjRCzFRosjTSkjr5gysxWbpPDjlpP0aF0fpaGBeUdO0lYM4Z0vHmTamk08tmkjr/Tpwbi2LUkMsmJ0ExFUMPlXN6S93A20bFAHL383PPwMrNl2ntr+nrw3bTB6vQaNUCmC2SYqlL3vTa/55gGmje3K5FGd7C2J7lFJaimzYsi0oSgqQXW9fjd8NrB1Iwa2vntI1ImTvxNOI8nJP4r87GKO7LxCs3YRREVXV36uiR6DW9FjcE16qFVp370R7btX/fIoKTYxY/wCZEnG4KqjXmQgQx5oy8cfbgWtyM3EXGbNWEJJUTnPvzKEZi3CHOceO3YTS4W20cZNZ1m27ChGowmDqx7JJqN30bJ40yxEjYC7R9VwZIP6QYx7oAMvPrscm6QgaAFFhXIJWVIcKt53Umo0M/HpxfYWJhVdfD3c9dgkBVEFPz97Ivf011eSV2hEEATWfvUYfnckeG/ee8l+PQFki4CMwo87T4MOcsuLyDOWM2V8V3Q6DVqthkNJKfY2F0BSZiFWm+zw4GTnlGC1SWg0IrFxmWz49RyqCvFJubhFuWO0WvF01TOwYxMahgXi6+mGIArM/Hwdkqwwrt/de6t5eRnQiAI2WcVkrTm8dRutRqRj83C2n4gF+7ag14h4eRgoM9vbf/RpZ69G/PrISayyzIX0LH69GotNklCAXXG3GNe2JX7+7ghlheg1GuqE1aw4fyI5lalrNiIATwzswPRO7WscdzfibmWxbONJTqSl0zCqNp9OH4qhBuP+NjdvZuOi1WC2SGisztqYfzwq/E4jjn8UTiPJyT+K58Z8S2FuKaJG4Mc9L+NXy+v3T/oPKCqwVzhZLRI2m8ynCyaREJ+NRiOiKDKKrHLtsl0y7ItPtrPwDqXtHj2asH7dGSRJJjDQk2tX01EUlRatQhnUtzmtOkTg6V01YTs5KQ9QqRceyOWLKUiSgiIr6BGQZZWrl1M5fTqB4GAfgmp7V8k3ir2VRanRjKyoaF21PDe1D107NeBVXBzzAAAgAElEQVT4qXisVonB97UAICe/FJsko9dpWLLhJMnpBUwd04WmDYLxrDDWBEFAdBHR6TWY70jyPncjjcZ1a/H4BHv1VPiZG7y2cBuuGTZ2b7xI7OkUXpg1gF/WnqJZ0zqYzFY8PVypHxlY+cGtqjSNqs2J68mUWWzc99ICVODdSQM4fzOd7EJ7ddySnWf4YErN+U0j2jcjKbeQg1cTsEkK11KzWXfyCqF+Xkzo2a6aovfgTtFczcpmx6UbdKkfjrfWhRVXLyEECcTUC+PRgTEAxNStw7m0TFy0GrpG1mPz1VhkRWFqJ7unb+7QAXx64AhhPj4Mjq7ZG3M+PRObLCOrKkcSk/+wkaSqKnPmbWHv4QpjToALShqHryTQr83dJSU6dapP2Hp/0tILmDqp+13HOXHyT8RpJDn5R1GYV4rNKqE36CgpKncYSXu3XGD1okP0HNiCh6b1/K9dLyw8gP6DW7JzywV8/T1IT82nfoPaDHugHetWnXQ0cnVx0RERWVUtOSqqFus3zEKWFa5cSePY0ZsIgkBMhyj6Da3u2Tqw/xpzP9wCwAsvDaZX36Zs3niOkpJygoN9SM8oQlVVVq04TmxsJqqHFq8Ad/x9PXj28b5ENwxGFO0eJlVRMJosaDQiA/vZc50kSeb4+US6xUQRm5BN84bBbN57GYtV4szlFOa9MpLTl5IBe3irX4dGuOi12CSZrSeu4+vpRt+2Vb+s+7ZrSKPgACY/vhirVSIxKY+X31xLSYmJ46duMeGhzhw5cYu5n+9EFO175e/nga+HKzqNBkVVkWS7Mvaagxd5qHdrNh2zC212jK5eSVdmtvLEoo2k5hfTq2kkWcVGUvOLuZySSZnZil6nJcjHk0Ft7En0iqKyLzYeg07Li8N78tKIXgBsvnAdrguYbBLJJUWO+ReMHs6VzGwi/P0YvuhnrLKMTqNh+ZkLuOv1tKoTzMdDB97znhnerAnrL1+l2Gzm6W6dqj1/9mIyb87dhI+3G1+8N5aAimq09KwiDp24WTmwwiNwMz2PY9eSmXxfDGGB1ZOsPdxdWPDtxHuuyck/C+UP9UL4Z+A0kpz8o5j92ThWfL2HTv2aEt7Q3gNLlmQ+fXM9sqSwYsEBegxsTkjYvcvw/yiKrJKanIfNJpOTWcyCL3bz7qcPMf3JvnTu1pD4m9nUredPSYmZLt2rexb0FWGSmJhIvv5mAuXlVprWoIcEcOZUItaK8Ny2rReIqh/E8tV21W+TycrxozcJjwhk+pRFSFoBWZYozykhK6eEOZ9s4edvH6NDmwgOHr9hT/hecohFK4/yxbtjqBPiy8PP/0RBkb1E3c/bjYeHtmfvsRv216mqfP/LYSJCA8jIKaLMoLLtZCwaUWBk9+ac/v6Zu+bFhIb40qVTfQ4fu0H/Ps04UOEJkSSFJSuOOSrqbus45eUbubY3gfsHRWOy2Nh34RayrDCyW3P6tGlARG0/JEXB1UXHteRsmtSt5bj2ros3uJqajdkmsf9Kwu2oIqVme2WipCgci0umb4v66LVaFh48xYKDp1CBN+7vzYi29vL9/k0b8PWe46QVFpNWWMz+6/H0ahKFTqOhdWiIY08AbLLMnpsJHIpP4r3B/egeGY6f+93bzwR7ebJz2kSySkqp5Vk9iXrhz4cpNVowmW3sPXydMcNiKCopx+Ciw9PDgNFoRtSIDB/ehroRAbz/y14sVonLiZmsfeP/pnGpEyd/F5xGkpN/FJ37NaNzv6pFlaJGxNvHHWOpCY1GrKY59J+wa+tFrl5KA9XuXakbHsDpE/EkJ+URGuaLRiPSKLoO7u6/rzVTUFDG+fNJeHu7ElaDETdyVAwnT9zCWGrm2pV0Zk77kW++n0R4RCCurnp6V+jzDBvehnW/nqsQ0rRrJvpW9Ix7empvSoxmrsVlYDLbsFgkjpy6RZMmIZRXSBwAGMstRNUNYMbD3fj250NotRqaN6rDzIe7sXznOeZvOQ4KyIqKXqetYiDJisLBCwn4eBho0zAUQRB4+9VhAPzw0yFHE15vL1cKK4wyUQQvL1eKikwAFBaVsfXIVdCJjO/blvF92+Dlbg/1RYb4c+5mGhM++gVBgCmDOjB5oD1k1SDYnlDvqtfRuVFdQv29mb/rJFJFXb2qqGy/EIeHQc/sEb24mZ2H2SYhCgIJuZVJ70XlJjIKiytej8qOKzdoE16Ha9k5tAwJxk2vY+GYEbyxfQ8X0u2VhVZF4a0de/FxdeXAE49V2RNJUXhn1z6u5+TyZr9efHn4OMeSUqjn68OmyePR36Fb1b5NOAnJuagqRDcMYd/hWN7/YhuiKPDBqyMQRYHohsG4GvScvXln96fqnIxN4cuNh4lpGMasEd3+pw2nnTj5K+I0kpz8pVFVlSXvrufo5jOMf2U4PR7o8IfOs1okLp2MJyyqFkF1fPly5QxOHLhOi5gIPL3v3WT230GrFdFoBBRFoEHjYDr2aMQrz6205wopKjqdhiMH4/jX5+PuOU9mZhFvvrEWi0Vi+7aLzHpmAFarRO/e0Y4mrZFRtVizYRYPj/6a7OwSDAYdKSn5hEfY1ZnLyiy4u7vw5Kz7mPp4b35ee5K0zEIi6gYwfKA9fOfpYeBqXIajOa5GI9CjU0NqB3nj4W7AKpUR4OPOk4/2QFXhoSHtaN+iHlm5JbRsEoqLXke76DDkzccA8PUwMHN41UauX647zNoDlwD4YOogerSKcjxXZrI6KuuKKoQV9ToN774xnGbRoUyeuZjcvFI8vA0UKzawKqw/fImpg6u+7xfjM5Bk2W7AnIpjwn3t0IgizerWZuUzD5FZWErnRvZw3NXUHI7FJdG8bm0uJmciyQoZhSUcjE1gao/2pBQUY9Bp6RMdxbFbybSPCEOv1aDVaLDKdoNuZJumDPj+JwpNJnSihp2PT+RWXj5mm1RlXSabhEUyYpNl9Hc0bP7l/CXWX76GVZZ5fvN2kgrtIbzU4mJSCouoH1BpFE8a24VO7aLw8jBQJ9iX599e4zAsL1xJZer4bsiKwonYZIJ9vXjxwZ5cS85mYv92bDx2hY/XHKBxWC2+eXIksxdtpajMTGJWAT1aRNG6vrOF5j8dFaeY5J04jSQnf2mSr6ez7qvtWE025k79nu4j2/+hX8PvPL6Yq2eTEASB77c/T60QX4aM+WMG1t2wJ2dLVSrN+gxsQWmxify8UsZM6MrliykIgoAs2yvArFaJ7Kzi35/bKjmMh+JiEx9+sBlBgNTUfCZPrtpC4unnBvDpx9sIq+tPTEwkAO++vYHDh+Jo3DiEz796hO+WHGTbniuAysMPdMCrop2LqqjId/SdE0WRdz75lYh6gfz8yaMoqsq8H/fxzpfbWLL+JN+8PQZFxa7CbZN488lBFNssjvONZmu1yqqbqXmYrRJajUhiZkEVI+nCxRTH37cTtUVRxFhmxd3dhZWLp5OdU4yo1zD41UUoqkq52cbF+AzaNaqsDBzUoQmrD1wiu7CU5OwC+rwwH7Ms07xJCF89Noz6te0eJaskMa5rK94c1Qc3Fx3vrdtHYZmJE2lpHF2VSi1Pd9Y9OZ6MohJGf7sCQRDo3TiSOSP68fbwPiTkFNCzSSSCIFBoMqOoYJFlXt2yi2PJqVVed3RQIIUmM491aFvFQErIL+CjfYewyjKiIBDs5Uk9Px8OJyTTMDCAcL+qVXCCINDkDt2jkYNac+FyKlqtSK8u9pDtu8v3sOtsHKoKP704lpFd7Hllj879hXKLjeupORy+kuAw4mySgp/nf+/HgRMnfxdqVrxz4uQvgoevO6igN+jwv6Plwr1IT8rl/NGbWEw2ZFkhNT73P15HSmIuowd8woP9P2H9Lyc4dyqBdStO8MSjC/H0cWXq0/3w8nalXYdIohrWplaQF02a1sHL25WRo2OqzKWqKgu+3cvMx37k3JlEMjOLMJaaqXeH9pLNJmO1yuzYfqnaWjp0rE+LlnW5fCmVmdMXU1pq4tCBWFRFJf5WNhkZhZy9lILZYkMFR7NXsPd6e//V4Xh7uqLVikiSTFpmESfOJrD74HW8PFzZeywOWVFJSstn8NTvmPrqcsrNViRJYfXWM1WMott5RHfy7OgeRIX406p+CCN+0yA1O7cEVbWHALVaEa1GRKsTad40lNJSMwt/OsTRE7cI9PGgY3RdXF10aLUaIoL9qswT5OvJE8M7Y9BrsckKxWUWLGaJc7Gp7L8S7xg3Y+FGnl68maH/WkK51cYH4wYwa0hXJEXBZLWRnF/EyK+WEZuRgwCYrDbOp2Qw9MulzNm8j0M3kpj20wYm/rCGIHe7FIJGEBwJ8Lfp2zCKxQ89wMEnp/BoTFVpglt5BWgqxrvrdTQMCOBEUipuOh1fDBvE8nMX+WDvQfLLy6mJLu3rs3XFU/z685PUj7DrQl2IT8dklUCAG2mV93fbBqEYdFpkWWHumgNYJbsHysvdQL2gmiUJnPzTsDe4/b/476+A05Pk5C/N9y+vsOfVAG//MusPnXNwy0XH3waDjhYdIv/jdZw4fAOL2e7tWfD5bnR6LVaLXQ370/d+pVvvaAwGHRvWnOZmbCaKopCXW4qiqHz/9V76DWiBq5segCuXUvl1/VnMZhtz3lyPVVUQBIH27SNJScl3hFYACgurN4NVVZUD+66hqpCTU0JmRhFt20Vw8UIKISE+uLu7MHJAK75beoiQ2t706FS14qxj20hWLZjG7kPXOHY6nnOX7d6d4CBvUjILEAUBRVWRFRVQkSuXQ25hGfe1b8zW49e5kpjFc6Orl5Q3CA1g9Ts1JxC/+sJgFi4+RLs24Tw5vTdZOSV4e7ni5qrnrfc3cfTETURRZOOWc9QNC2DulME0Dq+Fv1fVZrwJmflYrBIN6gRyIy0Xi02yhxEEiAyqNKgup2Riskq46nUk5xYS4OlOuL8vgR7upFbkHGUUldKibjBN6wQRn1PA5G7tmLv9EFZJ5kZ2HjqNiE1W8BcMzBnTF1EQaBlcm37zF1NoMvNou1a83r/XXe+dbpH1qOXhTlapkdf69OCLwyewyDKiKPLjqXOsu3wVqyyTWFDAwgdrVmc3uOiqPH7hwZ68tXQndWv50rtVZVPpl8f04lRcKiXlZvKKywDQazV0aFxzyxInTv7pOI0kJ39pzu+/is1sw+DuQn5mIZHNf//DvnWXBqz6fj+qqjLhuQFVVLQL842IooC3r/s9ZqhOwwphSkEAjUbEUpHTo9Np0Oo0fP/ZLgYMa43ZZEVVVUerk5rw9XVHVVV0eg0GNz0WoxmLxUZqagGbf32OoffPw2ZTKuav/k9YEAT69G3G/n3XqF3bm/DwQN55bxTxCdnINpnxY7/FapUQvHUUFJU5KuhUVeXU+SQ0okDblvUYNqAVg/o0Z8/h6/j7utO+dQSnLyffc+05+aWIgsC3zz3wb+0fQLnJSl6+kSem96Z9hQJ48B29zSwVIUdZUkjJKiLRWILsKdJqZlUtpJxCI498YDeeQwO8Gd+3DYt3nEZWVQSNQHpBMYk5BXRuVI9nB3fjy+1HaVUvhHKLjbzSMg7fTCLXaDcgBGBQy0aE+XqzdOpowO4dOxiXyOEbSUQF+pGUX4hGEJjUtR09oiIc6zj57AxUVaXcZqOw3ISvW80FAbvibpFVas9T2hF3k8fat+GDfYfwMRhoEOCPWlHKf2fD29+ja9MI9v7r8WrHrydnI91h1broNLz0YE+GdXZ2iHJSyZ9FTFIQhB+BIUCOqqrNKo59DNwPWIF4YJKqqkV3n+U/w2kkOfnLoaoqh9YcpzivlHEv3c+Pb68jPDqU5l3/WIPYJq3rsXjfbCwmK8F1KxNij+69ykcvr0YQBN795lFatq/qYbp+KYW5r6ylTl1/Xps3Ftc72jesWnIURVHQ6kRC6/qTlVGEwaBDQaW02MTWDWfZuuEs738xjoH3t8JqlejUuQFHD9+g38DmDi8SQGhdfz6YN5ZP5m4jN78UT29XLGYbU6f2RK/X8trrw3l3zkZEUaBx4xDHnnz80RaOHIpj5Kj2vPza/cx4si8engbKyixMnbiQkhITYXX9sVrtXhXJJCHrLJSWmnHx92D1pjMsWnEUUJk1tQ+D+7VAp9MwsHflF+iNxByHGvdt9FoRL09XzBaJ8cNiEARYuf0sF+PSeGxkZxrUrar/dDfem7uFM+cSEQSBj955gNYtq+oceXsa7F4sVMw+IpJBYN+leAq+2sjCF0c7xuUWG1EBs1UiMauAWxn5judkm8ILS7eh1QgE+3gxoHUjJFnhcmomzy9JQ6vV8Ooou9dHpxHp0SiSj0YNqLIOURT4fsIITsanMHPZJmRFpZanO/e3blLtNd3IzWfMkl+wKTLvDuzLyBZN77kHqgoTYtowtnUL9BoNSYWFiBUh5Ad+59w/QquoEHw8XDFbbXRpGsHUgR1oHuHsv+bkT8tPwNfA0juO7QZeUVVVEgThX8ArwMv/qwU4jSQnfzkOrDrGvCnfoSoKfcZ3Z0v+D//2HH6BntWO7d92CatVRtVp2LP1QhUjSVFUXp6+BGuZhcy0Avb+eqFKordOr0UURURRw9gJXTm09xpHD8RWmV9y1fDinPU0qB/E15+MQ6fT0qmbPdT1w5LDHDl+g4kPd6Fnt8ZYbTL5RWVYbTIWs41Nm59zzNOtWyMWLJhMYlIuHTvaQynp6YUc2Hcdq1Vi+bIjjHukM94VZf034jIpL7dgs8lkpBdgMOgo1qvIrhrcXfUO+YFbSTlYrPYQ4ccL9pBvNPHoiKrJ7PVC/NBpNVhtMgIwpHdTWjUJo1fHhhjLLJy5lMyBUzf5fs0RzBaJG0m5rP98yh96T3JyS7BaZVxctOTlVw8jZuWUICsqokZAI4O+QEGQ4caJFCRJRlvRSy66XhDDujTj4Plb5OWU2j/lRBBUMIg6rIKKySqRlFvA/F0nUFTVkcDsKkBdXx8+GjWAjKISHoxpXm0dt/Fxd0UFtKKIn0fNSc8HbiVgkSVkRWXV+cs1GklDohuRVWoko6SEp7p2BMClIrF7e+xNzJKEoqqsunCZ+6P/2A+B20iyAqrq2BtPNwOb35mEyWLDw/X3ZSec/DP5s1S3qap6SBCE8N8c23XHwxPAqP/lGpxGkpO/HIVZRSiygmSVyE+v3rC1JkzlFuY8s4KMlHyeeWc4rTvUrzbm/jEdOHgmAUUUOHAmkd7nkygvt9KxY33KyiyYZbthgAqevwnHvfDGUFYtO0atIC969GtKanIeRw/EogKiTkSVVBRX+z+31LQCVqw5xfJVx/HxduOVFwaxZsNpLBaJ9+dupUfXRoRHBKLRiBgMOpo3D6u21vCIQMIjKj00/v4euLnpETUCvrU8yCoo5VJ8Bmv3XWBQx2h8/TwwZxbh1yqI1NJSpDx7o1arTeZ6fBbNG4UwcUxnrt/IIiWzECsKC345yvhh7au06OjaLorIED9uJObiohXp3CqKHh0bYLPJTHxuCWaLDY1ORNWAKAiOPmx/hNnPDeKzr3dRL8yfnt2qGwOzZvTlg3lbKbPZSFLLEMptdqeWpFJiNDt6yAmCwMtje3H9WBLGQhkVsLkLgIDOKtO7b2OOXktiaOvGnMvM5Eam3dMkAB0a1MVcYmXhT4eoXzcQfcfqyuYmq43XVu4kITufp3p1QhFUhrWJxipJvL9pP0duJBFdJ4j3RvWnT8Movj92GoskMb5dzf3/NKLI9E4x1Y7fSsujLKMcvSKi6qB/w+r37PJTF1hy/Bz9oxvwfN+uDgX3H5Yf4fjpeBJScgGBT+eMpk1FKFojik4DycnfhcnAqv/lBZxGkpO/HAOn9uHGuXgKs4t58uvH7jou6WY2OzecpV3XBuRll3D5bBKSTebVaT/xzZoniaxQ3L5Ny/aRiC5aFElBkmVemb0ajUYkMNCLnJxiPEJ9KM4upVmLMLr3s3sEjhyKY82qE/Tt34wRYzugd9EiigLjp/TAWG5h547LhIUHkJZZiM1sRRVAIwqsXn8KSVIoLjFxPTYTQRDQ67Xo9RpGjvuG+/o246cl00lLK6hRYTstu4irNzPp1CoCLw8Drq56Fi2dxtYDV/hm23HGvrkEWVFRFJW4lFy2zZ/G7lNxfLnmMBabhEYLggSKojDr3TXodBpCanmTU16O3lOPKCv4eLlhsUq4GqomBbu66BFVuzFyO7/FbLVRWmZBlhW0ksiLT/QnKbOAUf1qNgxMZpu9q/0dVWD1I2vxzafj7/p+RkYE0n9Uaz5auQ8EUN0E9OUqUeGBVZrsgj38mJSab6981GkQRQFLhWBkz8hwjuyNY3PWJcYMaMOzQ7pRv3YA3m526YaRz/5ARk4xeYVlHD4bT+8OVRPbVx29yO5L9vYfn/96mB2vPcbnW45w5FYSecZyVCC72Mj8fSd5eUgPTjwzHaus4OGirzJPfnEZNlmhtl91r2ax0cTk91ciyQpBBh3z3xxTRSsJIK2wmPe27UcFfjh6hp4NI2hXL5SdB67y89qTd+SOqXy/5CDff/LIXffWiZPb2HPg/s88SQGCIJy54/ECVVUX/JETBUF4DZCA5f+TlVXgNJKc/OVwdTcwe+nT9xyjqiovTv6B0mITm1YcByrL0VUVtq87zYyXB1NabMLLx80hHTBlai+WLT1CSIgPycl5mM02UlPtngaLRSIyOoQvvpsI2HuZvffOBiRJIfZ6Jt98uRuNVsNnX44nOSkPnUHHD0un8ci4b5FsCiIg6EVMZptjLRpRoHOH+nTuWJ9TZxJZsPgAigJrN57hwRHtaNGiuhepsKScCbOXoqgqtfw8WfXpZAC8vd0olm2ONh6iIKDViOh1GlxddAT5eyIIoNNq8PLSUVJgqqhQA9kikZxegKyo+Pm4UWq0UFRSzhufb+GT2SOQZAWNKJCZU0xyej4I0KtzI3p1suvyeLobmP5wV9Zvv8DQ/i0Y0vPuicDLfj3F/NVH8PdxZ+kHj7Bu90WW/nqK9s3q8dGzQ6sYTrfJLynj7SW7OBNXqT2kDzTw/rj76BwTVW28IAg8MaknS9ecoFPbSIYMbMnmA5dpEx3G/tM3sNlkFFXl6s0MZozuSmxiNpcK0+ncKoLIOv7kGI2YRIWggOoGTFJeoeNvRYV31uzhaFwyioDjE1UQBPzc7Ynaeq2WOx1ql1IyeWvtbhIT8tGbVF6b2J9h3arul9FkRVYUbJJMsVHm6Q/WMu/p4TQJD3KM+W0i9+0Q3dpfz1VLrm8YFYQTJ39C8lRVbffvniQIwkTsCd191HtVkvwXcBpJTv622KxVe37dybbVpzm4/TLGUhONm4fxyU9TEEWRBx9sz4MPtqe83MKbb64jM6MIo9GM0WgXSMzLLXHMIYoirq56ysstKIq9Yk2WFT7+1xZSkvKRZYWNG86i0YhINgVVFFBUQFEAAUEAV1c9z85eiayA0WjG4GJv4eFi0OHhYcBssfHFsgPkF5URFRZATPN6eLkbkBUVi1UiPacYmyRz/EIiQf6eDOzUhCXbTtlzd0QY0aM5o3q1wuCio3urKN56bAA5haVoZYH5Kw4jyyqyYs9buW0w1Q7wotyUh9kikZlTzM+bTvHdisOE1/Gnd/sGlJaaURSVs5dS+G7ZQSaP6YyrQc+44e0ZN7w9566k8OnCPQzs2bSK6OFtVu04h6yoFJWaOX0lmUXrj6OoKqevJHMxLp0bmXk0CA2kbcNQVFUlr6SM7zYd4+iVpCrzPHpfDN06Nrjr+//g0HY8OLTy87dJVG2GPPE9ZqsNBAj0cefxMd04dz2VZ+euR1WhTi0venZqyL6cFERBYOGh03weNbTKvI2CAxGEygqgxJyKkK9qz3sK8HSja6NwJnWv+bP/mZ+3kF1iBHcV0QY/7zhdzUiqE+jN48M7s2zHGYpKTeQWlfHD5hPMe3oY++MS2HjxGmPaNmf2fT1Yefoiw1tG07yO3TPq5uVSZX1hIb7MmtrnrvvkxMlv+TNrGAmCMAB4CeihqmrN4mH/RZxGkpO/JYIg8P78CaxbcoRrF1Mwl9swmyp7j8myQklFX7AbV9LJyy6hVrC9Q3pJiYn9+68xaVJ3mjYNpaTExMdzt5KWVsCMmZVfNqIo8PX8iRw6aE/QXrTgAKoKiXeIU1rMNh4c24FfN5/DqCp2jYAKVBVHb7LbmC0Sb782jBZNQ3HRa1m26RRbD17FJskcPhvPym1nWTjnIZrVDyY+LY+ZY7vx8aI97D4eh6qqfPnaKEJr+ZCcVYhWo6Fry0gi6/g79qRvTMOKa6vUDfZFlhUaR9XmqXdWk5RegFYj0q9LY24m55KQkscLU/ry3AfrUFXIyivB1U1vTwKWZPIKjazdeg5VhUce6MCxMwnUC/XjxffWY7FKbNt3le1Ln0Sn01R5jY0jgzhyLgGrTSIls4joqNrEp+bhotfy+cYj3EjLRRAEFr80mq83HuVUbCruhqqhKle9jge6Nyczu5gbCdkE+HkQ4OdBUKDXXe+JcrMVo6kiJKgRWfbho5QYzXyy5Cg2m4SiQmJ6AakbT6ENEDEhcyk5k6IyEz7uleX7Izs0Y/H+M2QWlQKQUWj/vwhotRpyjeVsuxjHzL6dCPGtup6lR85SbDI7HgsK+HnVnPT9yMAY6gX78ep3WxEEiGkSRmG5iVmrt2CVZfbHJXBq9kwmdGrjOGfP9VscErJx9RHRFSmgQlm5lVKjGV+ff0/WwomT/78RBGEl0BN7WC4NeAt7NZsLsLsiAnBCVdXqehf/JZxGkpO/LU1b16Np63qYy63Ex2Xy1lPLMJaYq43z9nPDv1bll9krs1eRkJCLIMC3300iPDyAd9+rLKAwGs0sXLgfnU7LlCk9eejhzhQWGFn8gz1UdhtRFNBqRbr3aMzQEW15ZOoPSNK9tW5at6hLz66NHI/d3fRVEqcFARatPc6VW5kI2EUEYxOzMVtsuOi1JKbm89HM+/lu/RGahAfRqVl4jddRVJUOLcMdYcYJIyAOX9gAACAASURBVDvy3rc78PZ0pWeHBowZ3NYxtntMfXYfjUWn1XBf92j6dWnMT2uOs23f1YoRKtNeXk5+oREQUCo2QVEUlDs84WXlFsrMVkKDfBwqAglpeXz7+miuxWcREerPuPeXO1SgF247yfGryahASZkZvVaDoqqEB/ny2RPDUCSFSbN+cugn6bQibzw3hJ5dKvfvTrw9XJkxuivr91xkRJ8W+Hi68fDspeQXlVUZJyDQLLQ2Z9MzKTZZGPzhYpY+NYaoILux6aLTMnf8IJ78cRNmqw1LxXo1oj28ebufG7/5MZ6cV8jnO446xuuLQZThcnwmyVmF1KtdXfG6e6soFr/+EBarRLOoYEpMZoedrRGF316C2KxcLIqE7KfiaxERTApFJeUs/uUYzz3er8Z9ceLkt/xZdJJUVX2ohsOL/i/X4DSSnPztMbjpadq6HvOWTOPr9zcTfz0DjUZDmdGERqvhwUndHE1iwa5SbbVKGAw6CgqMhIcHVJnvhx8OsGP7JQRBwMPDwMSJ3fD182D02E5s2nAGD09XnpzVDy9PV3z9PQgNtSs8v/XKUHbvu4qvrwfbdl7CZpNxNejs7UFU6NIxijmvV1VUHtanBYIgcCM5h4TUfDo0r8eVW5lYbRJajYbcAiPPT+zNnG93EBLkTd/OjXF31TPv6eF33Y+tx67x7qIdGNAyvFszpo3tyn3dmtC1bSQz317FyCcWMnV0FyY+YC9Hf+Xx/owd3BZfL1eHN+LpSb3w8jAgyQonzyeRnmXXcnPRa5n5aA8uXk9nxIBWjuq2pIx8Jr+xHJukMH5IDOF1/LFJMo+N7IRep6VV41AAZgzrxJuL7RW++8/HO4yAimwyxvZqxdMju6HViFyLy0BRVEdPO5ukMGfeFgwGLWazRPvWEbi5VfVAjR8Sw/ghlZVkFotd9PO2CKiiqEx9oBP39WjKwPcXYZVkrJLMuM9XsOuNqY7k7lYRIRx5dwZxGblM+W4tRRYzdWv5MmdUPzaeu0av6EhCfKp6kdxc9AiCgCgIqLKKpsKxaa82q7rOO2kQVlnF6OVq4IfxI9lx9QZDWzbB5Tdiog+2bc5PPx/FUKCiKiparQiqXajzP0VVVQ5fS8RksdGvVcMqxrsTJ39XnEaSk78dxqIyfnhlOToXHY99MA5DhehjvahafPzjFCYP+ZTM1AJEjcjIR7tw/9iOVc5/7fVhzJ+/j+bNQ2nVql61+fV6e96QvSKtMpQ0ZXovpky/e/uJRg1q88kXOzGWWWjVIgy9XouXp4H9B2NBEGjZvG4VYw3sX6Aj+rasciw9u4gPF+7Cx9ON4X1b4GbQs+7LKUiSzJnYVOrW9iUkwJu7sXDTcVSLisVqY/X289gkhRen9OXarSzSsopQVfh582mHkVRaZuHlDzaQnVfC9Ie78vCIDri46Jg+vjux8Vls2HHBMfew+1owanAbHhzStso1T11ORpKUirDhLVbOnVjj2kL8q677zh+09jwrez83gMYNgunRuQHHTsdTWpEzJooCr3+4CY1GJDTYl0WfT7jrPgDMe3GkI2ncy8NAg7qB1K8QvxzXtTVLDp51XLu43Owwkm7TKCSQIe2bsPLEJdKKijl6MxlBEFiw7xQv/7KDMD9vFk55AB83A4Ge7vw07UG2nLnG5t2X0egEWtQP5qkHu+PvXXMozGSx8fI3v5KcVcCbk++jbeMwYsJDiQkPrXF8LU933EwCKCoqdsV3i1ni4LE47uvVlJhW4ffcj3vx66lrvL9mHwC3svJ5YlDn/+e5nPy5+bPoJP0ZcBpJTv52LHp1BTt/3IcgCnj4uDHh7TFVnpdsMqpqzx/p2KMxR3ZfJTermEEPxuDm7kKrVvWYP3/SXeefPLkH7u4u6PVaRo1qX+W5rMwi0tMKadm6rkPAr7zcwrtvbeBWci6lZfak59S0AlYvnYHFKhEZHoher+X+QTWXy/+WOkE+PD2+J/NXHWHV9nNMHN4BQRCY/e0WTl2391lb8c4jhNbyqfH8JuFBZKZVqPirYK0QUqwfHohep0VRVDq1rmyvce5yCkUl5SiKyi+bz/LwHQKT4aH++Pu6k5NnpHPbSJ6e1LvKtXLyS5FkhW5t6rNo/Qlkk4WHBrVlz4k4zBYbA7pGO4wegJZRIfRoGcnp2FRG92zJir3nsUoyggBRIf5MGlDpBRJFgace683jj/bg0vU0Pv1uDz7ermTmFGMy20hMzUNV1Xs2PW7ZqA7zGo3AbLFhttrw8XTj2IUEcgqMPDWgM1G1/flx32kGtm5E3YCa99MiyfZWMwhcTMnkdGKaI2QYn1PA7is3Gd42mmd/3sKF5ExeHNydCXPaUlhqIjo8qNr69p6+wScr9tMkIogeraI4fyMNs1XiX8v2svr9iXd9LWDPO3t15gA++mw7iqRiMtluP0NR8d1zXFVV5bNNh9l/OZ5p93Xg/vbR1cYk5xZhkxQURSEp217hV2g0cSIumdaRdajtW70S0ImTvzpOI8nJ3w69QYcgVnh6ftP4E+Cdrx7hlx8O0rxtOEUFZXz65npkWeHk8Zu4B3vTuXMD+ve/u9KywaBjwoRu1Y5npBcybbJd/btd+0jeftfev2z3zitcvJCCSZZRXeyGk1TRe81Fr2XMA+2rzQV2iYHcQiNB/l6O0EZiWj7urnpe+WwzGTnFnL+eRrMGwcQ0q8flhExMFhuuLjoSMwruaiS9Ofk+EtLySU3Jo0VUHZ56pCd7j8Xx1bKDtG0axoSR7YmqW8sxvlmjEIeHq7iknBPnEunYxm5EGVx0/PzFZPILjdWSpk9fSeaFeRtRVZXZj/Vj67fTkWSFnUeu8/HiHahAcmYBT4ytbIKrEUU+mznM8Viv07Jk5xlEAeZMGoC3e6UnZ/3W83z5w14URUUQ4PkZ/fjqh31YK6oaUVU2bL/AyEGta9yH26RkFTLp9Z+xWCWG9mzOtsNXUYGLcelMH9uVpJwCImr5svLoRUrLzTzQsTn+nm4Vl1BJyS5EsimE+XvTt1l9zialI2A34hRVpZaXO2cT0zkRn4rJauOjXw9w/O2ZNXr7CkrKeWX+FlQVjl5KpEVUCCrg6qKl0R3vSU2oqsru67eYt/2wo1IRQBSgd7fG9LpLrhZAfFY+vxy+iMUm8faK3QyJaVLNeBvfsw1XkrMot9iYdX8XFEVl7NzlFJWbUBSVGQM78WjvtlWM3n+XeGMSWzN3E+FWj8EhfRGF//e5nDj5b+A0kpz87Zj03kO4e7uhN+h54NnB1Z6PaFibV+bavUs7N9jDKZIkc+FWNsrNLE6eiCc6ug6BgZ48/9wKbt3KZvr03owYWVnSXVpuZt2Ry4QF+tCntb0MPTHRXtVmNtu4djUNgMyCEi4X5mFzFTBYNFgEEDUiUZH37mdmtUk8MnspmTkltGtWl09fHsmKrWdYsOooCPYkZLDn1EgVOTnPju3BJ8v306heLdo3rbnR7+HLCZy5kcrM0V05fSMVHw9X3Fz1zF24m9IyC8eNZob3b+kwylRVZeHqY5hkCVUAWYUl6044jCSwh3Rq16r+hX/sQiIWq91L9dnS/byzYCd1annTuXk4kqwgKyqZucX33IfH7+9Ev7YN8HZ3JeA3IamNO85X0b5atuYkslxpHMiySuzNTODeRtKJi4nYJBlJVjh8Lh5FVbHaZDJzi3li0UZuZeVXNCW2j996NpZNs+1hvJySMs4mpCMqkJVXjFxopU9wPWQXgRMXEzFrFF5YsY1FUx9AwF6VFx0aRG6JkU2nr9EsrDYdG1a+V4kZ+Q7VbEVR6dIigk7Nw8nILaZby8o2OZIik1iWS6irH65aez7TitMXmbvrEJTa8KpYq6u7nlmTezO4b3Nii7MptZpp6hPMT7dO4qbVMz4qxtFWRSMKGHRaArzcEQQBo81MXEkG0d6huGr1+Hq48v0TlY2LLTaJnGKjIzn/u+3HcNVreahHa+Iz83n9550Eersxblgz0ix5DAhuhYeuarjyTlRV5f1rn2JSzBzPP83FoivMDHv8rtV/Tv43qAjOcNsdOI0kJ387DG4uPPrW6N8fCPQe0pKb1zLITi/kclo+pUZ79ZtWK3LhQgpJSbnYbDI//XQYt2APEtLyGN2/NW8u3cmZuFQ0GhEPgx6dVsPVwnxC6vmRlJBLSKtgJFlhyrw15BSVoqnrwssDuhIU4EV6ZhED7+GpSksv4JnZv5BuM4EAxy8kIskKB0/ftKtlayo7zIqiQEJqHp1aRjCgYxMGdKzeZPU2CZn5vLRwKxabxLI95wDQ6zV4uRmIDAsgLjEbFahzh8GTnl3MzsPXsEkKsl5AMQhcys3h4s10VBWaRtZGp9XUeL37ezZjy6ErmC0SRrMVUEnPKSY2NZfAAE8y8kqITcnFbLFhqMHjd5uokIAajw8f0JovFu5xGC9dYqLYdzSOUqOJAD9PDAYdjzzY6a7z3qZzq0gWrj2Goqg8NKgth87cwmyVePmxfjyxZJPDCBBkQIWkjALScotYsv8c5xPSCfbyJLuolABc+O6XIygVelmqav+Ald00lFtsbHr2UW5l59MhKoyHvlhJQnYBOo3Iymceon5t+2tsHhVM88hgzqVloOgFNpy7ykvDelbxIp3OT2D2+ZWU2swEGDxZ1+0ZXLV6UguK7canr0CZVaCOwZNFrz9ErQAvjmYnMOP4KgQE6nsGEFeSg4A9iXxMRGv2FFzkyQltcTd60qNZFBbZxpjDn1MqmQkyeLOq26xqXh0XnZbnh3fnqy1HK3rfCZgqQrcfrdvPtdRs9KUKZ86fRRQFdmVeZEGH6fd8L9Q7stAuF8Ry37z5tKwfzILZY52J4k7+f8FpJDn5R6PTaXnytfsBSErMZdu2C7SLiaR2bR9OX0+l0FvExUVHcFQgb83fZg+DXEhA9dBgkxU0GpHErAK+2HAESZYR9AJSAxdO5Wez++wNSsrNyIqKVifQtFUYelkgvF4AHu53753184rj5GWX4iKAzUPENcAVrUZk0ohOzP50E17uBjq3jmT9sSvIAgT6/7FcEItNqqbErKoqNllm3isjOXEhkfr1Agmu5c3S3WfYcOwKo7q0wN1Vj0aUsLioWBQZmyQz4+O1aDUijevVYsHsypyvFTvP8s36IzSPDOar5x9g85fTGPbsQopLzHYhIVTMZit5FWX3eUVlxCbl0KpR9dYrt0krKEYUhWrVYiMHt6ZPt0YcPnkTdzcXusTUp2XzMGrX8mLH/qvsOhzLjgNXmTqu6z33JTTIh63fPo7VJvPMv9YRn5qHIICnmwufTxrKtzuOUVxu5lxcOgAuOg0bT17l11PXMFlt+Hm44lMsUmYxISuKI6nfng8FMZF1SLyZw0vvradReBDtXw2l0Ggfq9eKFJdXylLodVpen3ofoz5Zhk2S+fnQeZ4Z3BV9hZq2rCrMOrMEi2I3RoosZaSU59HIK4SpXWO4kZOHpCjMfW4Atb0r74vLhRnYFAVZVcg0lWBTFEQBymwWXr+wigM51wB4omF/fD2akWkqpNBWhk2RSSnLwyzbcNNWv2fH92rD4JgmfLrxEB6uesZ1t3vtwgN9uZSYiepqRhQEJNVCuvkqDx59gWcaPkyXwOrePUEQeLXJs3wc9zWlNiOFF+yG46X4TM7fTKNto+rq807+N/xJFAD+FDiNJCdOKgiPCGTmE3YtGVlR+GjpXiQtCD5avEO9ULNzAEjNKWbxk+OYt/YgEbX9iKjth1WSUFUQRdBXeFb8vNz4ZPr9LNh6gu7NI7lxKYOvv90DwLtvjySmXUSN61AUxdFIV2tSiK7o3daxZTgHlswCYNmus3BGRJEVtp2OpX8ne0PYkjIz+aXlhAf5VsspaVI3iFkjuvH91uOUlFuoF+RLbT9P5q09yOpDF/n5pYfwdDOQX1LGV5uOICkqn6w/iIu7hlohHkzp1oovVh1EVlRskt1YunQrkxNXksgtKqNPuwZ8sfr/Y++8w6Mo9/b/mdnd9F5I75RAQkLvvaqISFNUBCwHEY69HLsejx57w95QUBQUBZHepYQSIJQkpPfeN8lm68z8/piwEBMUy3l/r+/Z+7q8zM4+88wzs0ueO99y3/uRFYUT2WUcTi+ie1gABpO1nSCpKCivZ2DvCI6fK8XVRUePyEunHreczubx77cDsPymaxjdM7rD+yfSS/li/TEGJ0ezJyWHwycLVX0mWcEmyXzx/VFumjkEt19osQeVnDjptOSV1tkjW+U1epJ7hfHmLari9rqUM7zwzV4iAnwYkxDLqr0ncdZp8XV3o7GqyW7dMm5wD2aM70t6XiWjB3anR2Qgk//2DharRF5JLaeyynlj4dUs33qIhIgg3t5yCJNN4pX5VxER4EOwjyfe7q7UNxsQRYGbl6+lsLaBiclxjBgVjFbQYEYlST29gonzUC1H/D3cWLFgdpf3Nysqmc2lGTRZjQwOiGRrWSYg4KzRkaEvs4/7vvQYZ5pKuCV2HFNCkthdmc7syKFdEqTz8PVw5V/zpwKwquAnVuTvY3CPOB6PmYC/pxsbTPs51ZSGICiYZDMvZ33GhoB+KCidolM9PGP5aNDrlFY3MufTzwEFjSgQ5CgKd+D/ExwkyQEHuoAoCHi6u9BiMKERRSYP68WBUwUoisLkoT2JDfHn3btmAfDuxkPQLo/YNzqYiQN6EhHozdB4tdbk/P8fe+o7e43O/kM5DBwQ3WUKYfrV/dm3X1XQThoSzZO3XsHra3/icEYRPcIDmTUmEX8vN7QaEUEQaGw1klVSg4erEzf8ezU2Sea6scncN3tMp7nnjE1CpxUprG5k2/FsirMaUYBavYHUnDIm9OuOm4tTBxFIs1WiVm/A1c2JCYN6sPNYjv09WZa56/Xv0WoEfth/tkOkSiOKhAR4MW10H37Yl24/LghwJrcCUI1uz5vknkejwcjZsioGRoexKzPPLr74U1YBggDv7D7MuF6xLBk/lBfe2YbRZKW+MRMvT5d2gqNFp9WgUxR8vNxwcdahKAqb92dQWFaPs7OW5F5h+Hi6smrjMQYnRnHthCQAHlgwnve/OcjAPhEk/sxSZc6IJOaMSLK//vjvs3lr40FaTRbCI3wpLq7nb3NGcPPVaiH+kL7R9rGDEiI5fKYIjUake0QAAb4erFg6l7c2H+RUcSWyrPDWlkO8umAaLjotd0wawr++24MkKWSWq+R80/Es9rmmIjtLBDp7MidyKLd3v7TkxMXo5urJxkmLSakp5LPcIyqhF6DebGBB7BheP7cJgDpTC5XGJs42lrBz0hM8kzS301xpDYXUmpqZEJyIVuyYan0/dyeSInOg5hzZLuU8GjOT2WJ/sltP2KMTMgpfFP3IurJdhLsF8Wry/UiKzPOZH6O3tvJg/ELigiLY9vod7EzNoW9cMGGBl5a0cOBPxv+swe3/ejhIkgMOdAFBEFjx9A3sPpbD4IRI4qODCOvmQ1NLG0N/pmIdFeSLc7v1xuBekcyfOKCLGeHG64dy5kwJRpOVbdvPUFPTzEvPz6WpqQ2bJBHQnjbrmxDOZx/dhr7ZSO/4EL7dd4Y1e9KQZIWCygZ2nchh8fThPLlgMs+u3EFmURW3vbSW+64fiyzLmK02dp3MYcrAnpwtrGTKwF5oNCLZpTUcyihk7b7TWGwSF/8eFAVIjFa9v1yddCTFhnK2sBJFURAFAbPRynMrdzJ7ZF80oogkq9Ye54vGbZLC6bwKrhgWz67UHJK7h9K/Z5iaQrl1CglxIaxYf4TGFlVKwNROFq02CYPRYi9EN1qsTH9rJSarjUBPd/49ewp7zuVhlWTOlFWxIS2TNouVnKo6xvaKITzEl9IK1Ttt6YIxfPjlQWIi/HngjknkF9XSI6YbtQ0tpOdX8urnuzFZbAioxeauzjr0rSYOpRUQGezLa6v2UFbdxCO3TebKUZ1b4H+OJoOJ9JJqzFYboX5e7P/83kuOfe7uqzlXUE1YN298LypEjgnyQyuKoIGYbn7248u3pHSeRFQwC1YERaHW3MIneXtZGDuaKqOenVVnGerfnQSfrvWTAD7MPsT7WQeRZNn+GcZ4+DMnuh/DAnpQaWzkoZNfIijgouk68na0Lo8HTnyBpMisLjzEx8MX4yRe2EZ6e4WR01yBRZGoMum558TnDPaLZU7YJL4r3w0o6AQt26pSUFCoNtaz+PizSIqM0WZCQubTgvX8O+luymqbeHPtT1htEu6uTnz8yPXEhQU4apMc+B+FgyQ58JdE5skivn5nF4PGxTNjwS/XnPxehAZ6c/O0C7o8vWO6dlKfNqQ3Pu6uGM1We6fbwfRCDpwtZPbovvQMV9NJiQnhvPPWzdyxbCUWi41jqQWknSrmkSfWoSgKtywcxQ3XqQKOYWG+hIX5UtvUqhqyXgRJVjieXUpFvR6zVY2ySJJMcmwIfl7uVNY3M2tUEn9741tkWWHtvtO0GE0YLTZEQbBr+KAAAmg1Ip/edx3dfDzs11i+9Fo2Hs4gPNCH51bvok5vQEJhy7FzDOodzuncCrUwWSPaCQ9AQXkdN00dSHZBNeMXv8O4Qd158a7pTB+dyL7jeaScLrSPFYBR/WMJvShKUNtioNVswWKTKG3Q0yc0iABPdyqaWsivacDVSWe3/fBydWH5s9dxKDWf+O7BRIf7M2mUWrhe36jWPF1358fYJJkBA6JUI9/227ZYJSztz04B0vMqKa9uwmyx8eG3hy6LJKXmlGBuL1R2d9Fhs0ls2p+Bs07L1JG9O2zmGlEksXtns98r+/XinW0p1DYbSMkuYunUYarBsU4DRnXMuD4xGBQzp3wyEHQXInXOGrXYfdHhD2i2mvhU3MemcQ/h69y1MGVKTSFGSf0uaRQBGYVPcw8zNqQ7LVYrwwJ68NKAm0hrKGRG2CC2lp9Cb2mjztKM0WZhSc/JFLXWYFMkJEXmXHMZH+fuYlmvK+zXeG/I7azI28PnhT/Zj53Vl7K051QGB/Tli6IfGeKXSKmxmn01qUiyhN7aeuE5CRpcNWpq7/t9Z7C2f1cNRgs3PfMFrs463rx3Jv17XpoMOvAnwFGUZIeDJDnwl8Qziz+jpamNs8cKSBwUQ1yfSxf+/qchCAKjEtX6orLaJr7YdYINh9KxSjLbUrPY99qd9vqg8DBfYmMCycmpYvy4eI6lFmBpJxmffLofrUakf79onn/pRzQ6DRk2PYoIVw6NJ6+8jsr6ZjSiyG3ThnDn69+p1wdumzaEHuGBbHz2FmRFIbO4mk+3HcVik6jVtyLJin1DP48gH3eS4kIZFh9FeGBHTSVPV2dig/35ZNtRNYUmAIpAgJc7x8+V4u3hyvL7ZxEX6s99b63nSIYqYplfVk9BRQNyu0fdgZP5NBtM7EnNJTWjGFA78sK6eTMwPoL753dMF0X4eXNNv95sT8/l5uH9cNZp6RcRQlObCVlReH3eVWRU1DAgKpSwdvPYK8YldJgjr6iWJY+uxmKRkBW1X+pYRgldZRDc3Zy4alQCzQYTgiDg4qRlRHLXtWI/R15Vg/35j+odw0frUli7/SQC6qY+Z8qvi4PWNhuoazZgk2TSS6vJqagju7KWl266ine3p3CuvJa0ogpunpHI6doz9vNi3AN5uM/VCAgYbGZkZGREjJIFX7omSfJFxoJS+y6Y6BvC5O3voigyo4KjWBo/hr/3uoIfy07wcsZGrIpkjyYeq8+nyHDBvFkE2qSOdicuGh2L4saxpSKNGnMzGgRcNU5EugdwX9qLVJsbyG4p4uWk+4hxC+Xjgu86nC8pEmmNWRytP8vEQT3ZevicXfNJUaDNZOWu175n37vL7GKtDjjwn4SDJDnwl4SruzOtzUYUVG+2/y1Y8tZ3VDY029vSzVYbeeV17E7LZXTfWBKig3lv+c20tJhwctJSXtHIdxtOYLWqG/rBlDwOpeRRVFSHIArgLWL1UjeD1U/Ot19HURR6RwZRUFmPv5cbC9uVqAVBQCMIJEYHc+P4/qScK2bpNSPYfCST/WcKmT68D1uPZWG0WPn7jFGk5Zfz3Fe7eGHtHr565Eb2nc7HYLIwND6Sez/YiMUmodOIBHm609JiorZBJVxGs5V6vUFtTRcEu3iiogCKgoerMxazje7hAXi6uWAwWqC95Ty5ZxjvPzrXThzP5lVwPLOUyUN7ER7kw7MzJ/PszAtmrC/OvZKjBaWE+3kT5e/DkNhf7nI6fa4MWVbsdVWKSJcECUCWFL7dkYZGIzJuUHfmXz2Y+EtEDDt91lcM41xpNe4uzswdlcQHXx/AYlWjdXVNF6IjJrOVljYzgb4eneZw0mroFRpIemk14xJimf/2GmySjItOi8lqw9ZObNLS6gjt7kOFqQkBKDTU8lb2dlaPXMbLA25kVcF+poYkE+rW2ST3PLoKDlQbm1EUBUkwcqwhndNHs/lX8nXUm1uRFBlZkVE/XYHiiwgSQKibP3f06Gya66Z1ZsPYh2gwt1JjbibKPQBPnSty+wqsso1n0t+ju2ek/djFMFU58dSG/YT6+PHFU/MxWqxsP5rFN7tV+xubJLHtaBa7UnO4bmI/RvS9PFLrwOXDUZN0AcLPW4L/N2PQoEHK8ePH/38vw4H/BagsqWfnd6kkDo5lwKie/7+XY8eEhz6gqdVof63RCDhptZjMVpydtGx/4W+06E0s+ftK2tosPHT/FfRNDOeeB76itdXMc8/M4lBKLlt3nEWSZNoCtSjuGt6/fzZJcaH2eXefyOGpT7cR4O3BRw/PvWT3T2NLGy+s2YNWFHn0hgl4urnYO9PcXJwYcvdye0qjZ1gAhdWNWG0SGlElNLKioEVAZxPs9TwajYivpytfP7sAbw9Xymv1vPTFbmRZ5lhmCaIoMGd8EnMn9Cesm097Ss7K8q/302Iwce9N4+xeZXVNrcx6cAVWm4S3hwtb317yizYil4O6hlaWPPoVdQ2tyLKMpIDkIsCvTDuqfyyvPjjzlwf9Am5/+msyOlYABwAAIABJREFU8ytRUOjm64m3pwv/uHUy9778HSazjUUzhnLbrAu6TfUtbUx/6XNskky/6BBuHNmPuz7baH//vIwAgJerM2vuu5FypY4HTn6JWbLR0zOYr0b9/bLX92zaNr4sSO10PNjVixapDq1WQkRgfswobo0bz4uZG9FbDAQ4q9+teksrR2vzkJBxFrU8nTSHySFJnea7FIoNFbyXt5bs5mIkJDy0bqCArMhEugeT1VKEVtBS83UkFqN633Fh/qz5lyrc+enGI+w+nsOMMX1Z/s1+lcBrNex9d1kno9//SxAE4YSiKIN+feSfA5e4MCXixTv/R66Vd92T/6P39nvwf/eb5cD/aYRE+rPgvit+feBvhKIofLn5OCezy1g8czi9Y4N/0/lv3jmDT7Ye5Xh2KZIioxU1WK02FGhvnZdJOZKHyWRFkmTWfX+cqZP78u1Xy+xz9EuOJDkpAh8fN3r3DkMUhQ5WD7Ks8MQn27DYJMrr9KScLWTmmK43q/c2prD3VB6CINDN15N7Z41WO7/aUxXuLjqaWlWS5ObihNKe2lC1nURG9Y4hu6yGxhqDfc6oYB9WPTUfp/aNKSzQm+X3z+KNNT9xPKsUSVbIKq4lKuRCIbKLk46HF07stD6j2WpXlzYYLSiK2v32RxDg58Ed80fz3PKtyO2ZQmcJFFcNkqTKA1z8p6FGFAj08+ShWzqvT1EU3tx4kAOZhSy7ajgTk3tc8rqVtXp79Kq6oYWahhZe+Xx3ewefzKb96R1IUkF1PTZJxmixcrqokoVjB6IVRWyyjKerMyKgN6rGvc1GM98fSefuq0Zyd8+pZDdXclv3cb/puRhsZvvPIoI9ilNjbEFGh7egQauV+aLwAHurM3l94AK+LznG2uIUZBSG+MWxYvgS3s3ZTptkoY/3b6sLinIPZUncXB449RqSAgabkSF+iTyRsBjA7rM3e/MKSoyqt6C9fg647Zph3HbNMPStRt7+9gAAOo2I5o9+YRzohL9Q7OQ/DgdJcuC/GpIk8/HbOynMr2HJvVNplqx8suEwJouN3JJaNr21+DfNlxQbwvJl11Jep2ff6XyG94mitKaJr/emcc2IBPy83Bg8MJoVn6sk5cqpncmNRiPSMyGURS+sQd9q5IXFVzF+wIXNuaqh2b55KEBJTdMl1+Pj6dpOsAR8PTpbQmhElXyJAlw5uBc9wwL46WwB+lYjt10xlA+3HMEmyWg1oEPEapPRG8x2gnQe6/ed4esdapu3KMDS2SMv63lFBPkyaUhPjmaUcMes4b+pc6m+0cCajanERARw5fiEDhGoleuOIEkyoiAQGeZH375hbE05h0VW8PF0xWS2YbHamDUxiSF9oxnRP7YDEf3m4Gm+2HuSoT0j+C4lHVlRePCzTRx++S5cnLr+tfno7VN48LX19tcajUBeaa29A/D6qR27HvtFh9IrNJDTRRW4OusI8fPixtH9OFlQzvUjknnm2132sU5aDQNi1W7B66N/XUW8KyT7hbG+RK1rujN+JO9lHUQBZGQ8XEwoAljaN8daUzMLD72LSbbayVRqQz7Pnv2OotZaZGReP7eZ1wbe/JvWEOMRzvyoaXxRvBmbYqPCWGN/TxAE8lpLuXvpAL5dm0eb2crjiy6k8zIKKjmSUdxOymdy6EwRU4fGO2qTHPiPwkGSHPivQn5OFa/+6wcCg7x59NlZpB7JY8uGk5hMVl58+nvufHI6cnuhqrurE3mFNWzdm86owd3p37drP7S86npajGb6RYXYN+qwAG9uapcCiA3xZ2xynH18VGQA675eitFoxd+/c50KwJ6TeehbjVglmRVbUjuQpG6+nni6OdPSpkYGxF/4S3rxtGG46XT8lJJDVU49prEXLEBkWaGp3YZFUaBvdAjXjenHo/PUiIrFamPVrhOYrTa0GpG5wxI5m1/FXXM6m/vuTcuzR2cUIMT/8nRtzhVWszs1F4vFxqpNqcwYd/npmydf2Uh6TgVOOg3+vu4M7X+hNiU+Loii0npkRcHJScOym8ZyLLOE8ho9FquN1S8uIMjf077BljfoEUWREB9P1YR23V4kWaG8vtkeHZJlWPDSVzw6dzwCAk46LX3iLkQaRw2IJTrMj/JaPQgweUI8u3dnY0Omd2wQ864c2GH9Oq2GxMggzhRXUt/SxrzXV9MnrhvnKmp4dt0uunm709DSRoivF28sutpuXfJ7kd5Uaf+5rE3P6KA4jtQUImFDFDpG8EyyFUUGa4kbSpsGdDK6EBP5VIMCOkFDsGvXBsq/hulh48g3lFHaVsXS7hfU2tMas3g+8yNAYPrssSyMmcOZsipmffAl/qILGallqsq9KHD1yASeuGXK730UDvwC1LJCR3TuPBwkyYH/Krzz6lbyc6spLa5n55bTRMUEogBanQYZuO/xNTiLItOn9mX+9MEsuvszjCYr32w8wb8fvZbRQzumWw7nFvP3lRsRgNvHD2HJxKGXtQ43N2fc3C6tYpxypgCrVUJQoKGplbqmVgLaW/S1GpHVT97Ek59sxcvdhZunXjqlr9NoKMmopji9itLMGsKCfZg/R5UZEATwdndBbzCi02owWqxc/ewKGluN3D55CLdMHszqR27kYHohIxKiiep26aLg264eSmpmCTZJZmB8BMHtmk96o4m9OQX0DQsmLsCv03nn1cXPpyN/Cy62WbFYJdraLLz87jaOpRXh7+uOTiditcpIkoKHmzOe7VYwVpvE/pP53NBOWnaczeGRtdsAeHP+dEb2jMLH3RWDyYJGFLA2yQgmGVkDxfW13PX8twiigCiKPHnHFUwa1guAtLpy0vrWQL2C1UthpZDGhLGxuFSIPLBoQpf30CesG1qNgFlno82scCKrHEWjgK9EZEgIH1w5k4gAH3SaPx4tSRbDWC+fRhRF5sUMJMrZl7ve/R6rVYJReopNNYS5+iIrCpWmJqQyN2zFbpwv5pKqXXAdWQ8yuOaHkJapZ+BHbxEe4M3bd8ygqdVE78huVDe24OXmgpdb12a2OlHLQ/GLOh0vNJRhU2QkRSKrRZWKeOKHHeTU1ONqFHFSLqSC88rq/vDzcMCBy4GDJDnwl4Ch2cgjs9+gvKCGe16fz9gZv6/WLzI6gLycKlAgNNyX5IHRPPavWZSV1LP7VD623BZkUSHYy4Nu/p52LR2At1fs7USSzpZWY5UkJFnhWH4pCeFBPL9hDwnhQbw474rL2twycitZse4wg/tGMu/qQbS2mTmWUdLeUwQ1Da1Me+BjXlo2nXEDugNqpGrFI/N+de7cgmr0zcb2TV3o4BknCAKrHprHzpM5DO4Vwcvf/0RpnR6A5ZsOcc3QPkQE+nDD+M4+Wz9Hco8wNr+xGHdnHc66C2a181d+Q0mjHgGBbcsWcjC/GKPVyvUD+uKk1ZIQF8L9N4/nVFY5N189uNO8sqxQ3qQn2Nuz07N89oHpfPzVQWKjAhg1OI63P9nDnoPZALQZLfRPisTJRcedN6vK41NH9qGgrB6NKDIoIRJ9mwlBgJ3pF1S9957LZ0x8DGsevomDmUXEdfNj2T/XYpNBbO+gt8kKyAqioJCRV2knSTtKc7CIMrS7rCiAEi3y9qLOqtXnMX1QHza2pnGoIRckATHNHTnJAM4KR4VzeHpf+acQJEVRePejQ7hbXHHWaQkc5cGWg+coym/AJskMdY9keO/+GPUSPRLceDNvE4pV114j1U5eJQFrlTNyrQtVjWZq2moRgcqGZq5/aTWyIuPu4qw2Lgjwyi3TfrGG6+eY2G0oh2pP0WRt4ZaYGQBE+vlQ0qBHcVeI9+5GQWk9vl5uPDy/a9LpwJ8AhUu3g/4XwkGSHPhL4OiOs5TmVWNus/D5cxt+N0m66+GrSB4YjX+AJ8kDowEYPlrd5LzCvMl+Zxs6rYaRg+PQakTu/dtE3vhoFxpRJDaqc7rj2kF92JR2Dr3RxN1TR3Dfl5uoaTZQ19rGwewixveJo7xBT151PcO6R3bZhfOPlzfQoG/jZEYpSfHhhAV7d2rEkhWFlVuOodNqSIgJxsfT9VfvNb+olqX/+AoECA3y5roZg5k2qW+HMWEB3iyaopKT8AAvThWqdiFOWg2uzr8urbAnPY+P96Ti5ebM0bxSPF2c+f7++QR6qVGvkgY9JpsNV52WVcfSWH3sNAoK5U3NPDJlLAAzxvZlxlh1XecqaxAFgV7BKtP426rvOV5UTrivN+uXzbf74gGEBfvwzP1XA2A0WTidecGDTBAEbpw5hMH9ou3HbrhyIGMHdcfd1Ykz5dVc9++vEYCHpo1h37kCRFHguiFquq+btwezhidislhxc3XCYpVwddbi5e6C2apqB7m5ODF36gUCeVVkPCuzj2OS2rsARQ23xncmfjZZYktZOu46ZyYE9+J0a4nd/Ffu1wrtj11C4UB1HrOifp2kXg5cnNQuS0ERcNJqCPH3QqsR0WpEWkWJLw+dRpYVrrbEM0UzhnVlGXQUDhCw5bSbDCugOIGgKjtgk2UsNgmTtc3+/sOfb+Hwy8s61a9dCt5OnrzW/8EOx16ZfSVb0rOJ9PNhcLRDQNKB/3k4SJIDfwn0SI5EQNVE6jem9++eR6vVMGFq3y7fmzougeEDY1XLChd1p7r2in70jA2itKKBccM7Sw108/Jg4wML7a+7B/nTYjKjKAqR/j5UNrVw7RtfoABJEcGsWDyn0xxurk40NquyAa4uOrw9XHls0SS+2n6SHhEB7DuZj6IolNfqefT9Tbg4adn48u322qJLoaKqCUEQMJmtmC0S10xN/sXxT82bTEyQH1WNrSyYMBC3X5lflhUe+HIL1ou810xWG8fyyxiXEMvx4nIenTKGTw6fYEz3aFw0WlV7R1aoN7R1mu+HtEye3rgbqyQR6efNuzddQ0q+KlJZ3qSnrFFPbGDnlB3Al+uOUlRShwCEhfjwyN1XktRH3VSz86vJLahm3IhednXvjScz7cXv2ZV1HPun2l0oCAKVtc08tnwjgiDwwj3T+fKFBaSdK2Ngnwi+3ZFGfmkdQ5OiWLH+CM99uJ3XH5qJi7OOvv4hnJxzL5Ki4KrVqfIJothprW9m7uarwlQUReHp5Gks7D6cd7P2qUTp57z0T+oyEgSBjx65nk0HMxiSEEWwvxfB/l64uajWLHuLCrFUVah6V4LA1tMX/PnOp0M7rEkARQPPzZ/KoB4RPPDpj6SXVHe4pk2SWbnnBH+benkp6K7g6qRj9oDE332+Aw78UThIkgN/CfgEeOId4ElNWQM9+3VdQP1noKXVRF2DgaQ+YXadmgNHc0nPKic81Jc+PUJYt+kEWXnVLLp+BBGhHet0li+4hr2ZBcQF+REX5M+RvBIUVE+y80alP8dbT87lxz1nSOoVRky4PwDXjkni2va2fn2rEb3BxJzHPleF/ySZ+ua2XzX9HDYwluGDYsnJr+b+O9UuocKSOr798QSDkqPwD/Miq7SGqQN64eOhpmFun3L5G1qjoQ0XndZeF6QoCq5OWobGRTBvxRrKGptx0mrYffeteDg702q2UKZvps1i5eHJnc13DxeUYLapquBF9U3ct3YL05J6seVMNn1CuhHp17lQOLegGqPJik6rQRAEtDoNo4b2sBOk0vIG/v7oVxjd4IOdR/j62YV4ujgze3AiuzNUaYRrBvTu0Bm3YsNhsgqrEQSBlT8c4+FbJzF1ZG/2peaydvtJTGYbR84UYZNkDKZKvt56gkUzhqqK3doLxPJSBfUlhgZM7fYgr2bsZM8V9zMuqCcLD35Om2Tp0J7/1KmNTA3rg7vu0vVrl4voED/+PvdC0b2iKPh5uRMV7Mdjm3faj4+Nj6HB0Ma+c2pd0JS+PSht0JNbVY9Navf8U0BUoEbfyj0f/YDFZmNKvx6k5pXh5epCSW0joiiw7tAZwvy9uWpQfIe1FBsqeTL9HRRF4dnEpcR4XH6UyCpJ1LYYCPH2RBAEyhr1pFdUM6p7NB6XEf104NfhkAC4AAdJcuAvgeN7MtDXtaDICmve3MaVN3fusPqjyM6vZtljXyEgcPXkvtxz+0ROnClh3aaTmMxWnn55I4uuH8HbK/ahKAo5+dV88c6tHeZwddJxVb9e9tcDY8IY3j2StOIKHprWmRgAhAR6sfj6UazemMrTb21meP8Ynvr7VYiiQGl1Ixv2n2VArwjmjE9i44EMxvSLY39aHp9vSWXioB48dNOELgUYdToN/3z4mg7HHnj6W+oaWtm+N4PWYBGTqPDCur28css0Jve/fFFOqyQx+43VWCQJnVbkk8WziQ70w81JhygK5NbWoyhqmrCquZXugc54ODsxLaEX6RXVdCVie+uoQezNKqDZpHbt5VXXYZMkrkzsxfMzJ3do0QdISc3n6Zc3Ighw89zhLLhuOJIkc+OsIfYxNfUtmF2hsZtCo2DgH2u28t6iaxnWPZJDT6l2MS4/Swd1jwi0p0XjIi+kWNtMFmRZQSOKeLo702a0YLbY+HzDUUxmK3def3nfyXv7TGRXZRYArVYzpYZGEnxDOTLtH2Trq3g87Qdymi8Q6sLWOhJ9f7vtzu7UHDYcOMvsccn2Wrb88jo2H8pkZFIM768/yOncSjSigCZYy/lm/1e37OeOCcM4lFOMVZI5XVJJdIAvMwf1IdDTgzWHT9HYYsRN1vDNoTNUNrQAoNNq2ffvJbQazby2YT/rD6dT1dTKk6u3MzohBk/XC0Tvx4p9NFqaAVhfvof7ey3otP4TxeW8ufsQAyJDVXudVgM7z+WpVjMKjOkRzT+nT2LGe1+gKBAd4Mv3S276zc/JAQd+CQ6S5MBfAvEDYxBEEScXHcOv/OW00e9Fdl4VkiRjs8kcP6X6jHl7uqAoClqtiK+3G+u3nbJv8KUVDZRVNVFraiO2mx/eXXTz6DQa3l54TafjF0OSZVoNZt5ffQBZUfjpWB4FpXV0jwpk6SvrqG5sYe2uNERBRFEUjmQUsTNVLVD+bu8ZrpvYn+iQrtNQP8fF5MRu2wF8vOMYk/v3pLC6gcXvfIdNknnvzmvpHdG1RUdds4FGQ5sqOqkRCff36XD/940fyScpxxnfI4ZXdh3gQH4RV/bpya6sfMw2G+8eOMLVifG8OGOqPeLSMyiAW0cO5K3dKWrtKFBQ10h5UwvDzkQwd1DHNGlmToXdziUju4IXn5jVaZ39EyNJTAxjf105igD1rRfSfEW1jZwsKmdy3x5087ogxXDd1P5EBPsiCDAsKRqAI2eKeOnTXciKwvDkaP5x22Q+33CEH/adxWy1cfRs8WWTpFjPQK4ITWBHRSa9vIOJclc/O62o4cOcA+S31NpTXAk+ofT0vjybFJtNIjWrlIhuPni5u/Dkx1ux2iSOZZQQ1s2bRVcN5s21+2lpM/PFtgvOBTZFwWS74OvXZrHRKyQAjSiiEUVqmg1U6Vs5WVzBmqXzmDGgN0azldLaJu795McL87SnXT1cnXlo1jjWH05vPy5zIreMcUlxtNlMpNSfItg5ACdRjbr19+kYZTqPu9b+SIPByMkStU5O+hmx3pNdwOLRqkSD0Wojt6YOSZbt2l8O/AE4Ikl2OEiSA38JhEQH8nnqv2isaSayV2c39T8Dnh4uSO3Cfy7O6j+NHrFBvPj4THIKarhyfAKfrU0hJ1+tvZBkhWmvfIakBVcnLXsfX4yHy29LixiMFhY9vIqq2mY8PVwwW6xYbTLPvrOVZ+6+CqPFag99WyUbNkmxu9mDSnT8vd0u+3qvPjOHtRuOMzA5ij3FxWxPy0Yrikzup3Yhfb3/FDV61Xfs893HeWnRtE5zvLbpACv3n8DD1QmdqGH2kET8PdQ1pBVV8OIP+0gMD+LIg0soqm9k5sdfIckKm9KzcdFq7O3+O87lcvOQfvQNvaA19PbewyiARhAI9/WmqrkVQYBg7862K9OnJLP/SC5tbRZuueGCeKXVKqHRiIjtHX3L75/DS5v2UVTXxCPTxyLLCi9u2sdXh0+hEUVWHjzJjn/cZj9fEARG9OvoB3YiowSLzdauCC4Q6OvBbbNGcPJcGXVNrdx53ajL/gyOVBdT0GBgbvhwnhwwCUEQkBUZURBx0ehQ2k15B/hFsGr0LYjC5W36j324mSPpxSiKwiePXs95XU5ZUSitbuL5z3ei03b9K18jCHYS8vzcKfQJC2LNshsoa9DzxLod6NtMWGwSc95ejUYUESygWOQOczw0a6z9ZzdnXYd99p5PNrLv+Tt4pfATsluKAHg4fhFpDVm8lbOat3O/5unEJST7XIjC+rq5ojea7cReFAQEFKT2iXsFBZAUFszg8HAO5BWhaZB56uNtPH/HVZf1vBxw4HLgIEkO/GXg5eeBl1/X4ot/Bmw2CWcnLSazTTWXbceg5GgGJUcDcPdtE0g5nk91bQuyCDaNWsXaZrGRUVbN0O6/rV7qXH4VDXo1ImM2W5k0Kp4tezPIK67lln98yQuPzOC7fWcYnhiFTZb5YX86M8cmsWprKnVNrYxKjsXzEno0XSEuuhuP3atuIlNJ4OHZ42hpMxEdpEYzhvaMYMORDGRZoaimkd2nczu1ca89chpZUbDZZF5bOI3hPaPs7z369TbKGvQU1DQwunc0Q3tE4uvqgt5kokdgAON7xvBJygn1L35BJNTbq8PciWFB5FbXo9NoWHnbHPZmFRDi48XoHtGd7iUo0ItVb3dMd27ZdZZX3t2Oj7cbH7+2gAB/D7QakcdnXGgZ33eugHXH0lEUNcpR29zK8YIyYrv54efRNeGcPr4v2w6dw2SxsuCaIdQ0tGCy2Pj65UWX/ewBKg3NLNi9Bqsik91YS4J/EK9mbsUiS3w0/CZu7zGSLeXpoCic01eR3lRBku+v1+vUNrZyKqcco9mKq7OOwsoGNBoNXCRh4enmwgtLr+aZT7bR2NyGrCh08/VgycyReAe4s/5EOjMHJjKy/fPsERxAj+AAVt5xHTPfXNWePgVZkkEAbTtZcXHSMn/cAIbHR3dY04j4KFKy1IisoJG57+C7tHlXY5GtuIhOWGWJLVUHUVCQFJnPCn7gtf4PomknhSsWzOaH05nE+vtxML8IXzdXenQL4B/fb8Mqy+TU1GGTJTz0Ah4V6mL2HM8BB0n6gxAcYpIXwUGSHHCgHeNHxZOdX01JeQN/v3V8l2O0Wg1fvnMbr7y3g6yCKtI1rdhkVQU4Ifzy0iIXIz42CC8PF6xWialjejM0OYZNe9Q0hSzLGFrMvHb3DPv4eZNUFe+ZY/tS39xGUBfO8r8F/p5u+HteIAYTk3uw6j5vbnrta7LKanlk5Va2/zMMP0830kuryK9uYHJid7acysHDxYk+P7vnYB9PaptbkWSZJzbtwt/bnZULZtNsshAfHIiTRsPCYQM4XFBCn5Bu+Lt3JCUrb5nLqdJKegT54+fuxrwhvy21+tX6Y0iyQovBTMrx/C47+jxdnREENTLhrNUQ7ufNks83oNOIbH3wFnzcO8srRAb78uM7dwBwKruMuQ+sQFHg3vljmTWp32WtrbC5gambP8aqyICCFQs/VZ2j2aqqnr99bi9nmypQFAURAZsiE+Ti9cuTAueKqln84lokScbFSUtiXAi9o4PsxsWgWsVcN7Efg3tH8sPLt3PwdAHB/p74e7nzzKfbaGozog10osVk6uIKSodCXgFArTsnwMuN3c/d0eW6nrlhMvNeWU1jmwFBJ1PrXIooKWgFDSMC+jHEPwF3jQutktrZWWAoY/6RR/HTeaMTtTzW53YWj1bryyb1UWuqDGYLni7OmGw2unl6oNNoCLz434AjTeTAnwwHSXLAgXZoNeIlydHFcHHW8eR9ahqqpL6J/ecKKapr5IGvtnDvFSPpHdoNWVZYefAEVU2t3DFhyCUjFB5uznyz/Db0LUYC2n/ZTxzRi31HcnBzdaJf764LdnVaDcF+nVNQfwbigv3RaTTYJFntPlqzi/HJcTz93S4kWaZ7sD9b/rEIPw+3TrpPby+6hs1pWaw7nc7Z2hoaLEa2ZeaxZPSFYmp3JycmxXfvdF2bJLP5rJr+SwgNaveM+/VUU01dC+WVjfTtE86UsX1Y9c1htBqR/okRXY4fGB3GK/OuIre6jrlD+jLxxU9UOQAnHUV1jfTrgiRdjOMZJVisauptz7EcZk3qR7lBT2ZjDSODo3DTdt1htbUkC+tFqVJEiTNNZWjbIyehrt6caSxvr8dS0CqwuzKLG2OHdDmfzSbx0Q+H+WrHCaw2GVlR6B4RyHsPqjITN00ZyI8HVcIdGxbADVNUgq3ViIxKiuFoZjErNh21mxLbquFUaRUrD5ykm5cHz8+dgoeLMz5urogXpeM0ooBNVBC1AqsfuKHLteVW1HHz618jywoxowxY/OsQ20NPNkXCKttwEp14Z+Dj7KhK4YfyvRgkIwabkVabWjf2bekOlvWYh8Um8cQPO8itqeeZ6RP5cdkC0iuqGRildqAunTWS3ak5NLeZ6N8zjMUvruW26cMYmhDV5docuAw4yKYdDpLkgAN/AJH+PsR08+PN7QcxWmyU1DWx9eFb2Hwqi3d2HMYqSZQ1NPHuomsvOYdOqyHA14Nmk4md+fksuHk4d908Fi8Pl05aSOl5lby3Zj9JPcO4Y+5IsopruOv179CIIu89NIe4sN/n71Vep+e7/WdIjgtlbHIcn949h7UHTrP5eBZ7z+bzU0YBNq0CAuRW1XOuvIYJiZ2JjqerM/NGJFNnbSMvpQFFgYSQbtQ1tPLlt0cID/Nl9rQBXXbjffDTUT49eBybJCEr4OXizLqlNxHmc+loSmW1nkX3fIaiwJD+0Tz3yLVMGtsbT3cXPH9m6FvbYmDhh99Q39rG6zdezR0TVLmDuyaP4N1dh+kTHMiuXecw9DMycmBcV5cDYOqI3ny38zRtJgvzpw9mZd4hXjvzE5JVRw/vQDZcsajL80aHxPDK6Z/sr0URzLINrSCiAL19QkjXV1LUWq/W4QjQZjN3OdfHkOR3AAAgAElEQVTGA+n8e+XODlYuOq2G268ZZn+9dPZIdEFOpOSXcPuE4R3Ssk99vJU95wpQjBJajYisSCgatX7pbGkVWo2Gb4+dZeagRK598wtkRUEAdBoRoc6GT48mnOJMFNtKCSahw9rabCZOFpQjKwpmm4QtJxTd6Hqki3beM02qDpO/szdlxirapHYPwYvGhLuptWq7svLYlpGLRZK4/fPvmRwVy62TBtvb/b09XNn+1hIyC6u48+V1mK027nnje1ycdCyaNphF036/TpMDDjhIkgMO/EF4ujihKOpf2F7tbc7nO8dQoM1spaG5DT+vXy6wvunbbylsbARgxy23dCkW+fjyH6mubyGzoJpBCZFsOJiOvt2k9pvdp3h0waTfdQ9L3/yesromnLRaVj16AwmRwSy9yp1tJ7KxdTE+Nb+sS5J0HsvGDGNwVDheLs70Du7GPU+s4XRGGVqNSFFJPYuuH0HAz8x9K/UtWG2SPWLRbDIz491V3D95NDdeIu1WWFIHCphMVo6eKeJkTQUDgkK7HLv1dDYVjc1YJZnlOw7Za29uHTuIW8cO4urFH/B9Uxmb96bzxasLCA/u2qsuItiXLe8tAWBVwSHeydmF4CQhKVaymmq7PEeWFdbvzyS02IdavxZc/bVMjoqiVTJxoDoXURCpM7fy48RlNJgNvHR2Ox46Z+bHDetyvi+2HUeSZAQbiFoBH283Nrx8Gy5OF74zZ8uref+noxitNnK+riPlH0vs7+0qK6LZ2wZeMDu6Oz0iutEiWCisbeSnLFUfKcTHk/zqOtrMFpW6yOBVCZK7Bff+zQg6hVdyPmdd4Cv2edcUb2N18Va0Fld0riHIiogSV45W0AFWJEVGkSEgsy93Hf6O++eNwyiZERDQICK1UymNIDI+UFXV93d3swt/GtosbD6excn8crY9c7v9uhpRJLDd21AU1MYAg8nC+9+nsPCqIV2ScgcuAcVhcHsxHCTJAQf+IJIiQ3j1xqvIrqhlzlC1Tf3q/vFU6Vs4ll1KZloZ15z8hLfun8nAXl2ngABK9HqMNhuuWi1VLS0Eu3vwrw+3kXK6kIggHxr0BloMJkRRwGZTO7gCvNztCshbT2dj/QYemz3hstJUF8PU3kUnCOrPAMG+nrxx+zX8lF7AoJ5hPLNuFy1GCx5uTswb8cu1QoIgMDQ6AllWsEkykk1V2rbIElt2n+VQah7fr7jTLtgpyQr3ThpJfauBiqYWCusasckyrRYrz2/dyw2Dk7rc6JITw9EE6JCrrFT0tDJ381f8e8Rkru+VTJPZyN6yAgYEhhLl5Uu/yBB7W/voXjGd5rJdVMNjs8md3v/5/QE0WgxqDZEArloNDyV1TVJPFJWzMe0cRosVf6sHBxcvQSOKlBsaefjE97hodCzqPgIAP2d3XhrUWc7gYlwxNJ6PvzkECmhlgUfnT+pAkJqNJj46eAyzTUIEvFw7RtV0XlposyIA9S5WRLOe/h6BlJXXck10DwryaynJrGP87Fh8nVyosrbi3KhgNcqI2vbvlgTeLioxURSFTws28EP5PmQULE5t+EzJx1PrRoutDaMMUe7ByIpEz8b+rE8twGSx8eTHW3nrkRv4rHA9vk7exLqHsb0qhStCRuLlpM49IDIUL4uWNsmGaKHd8qXz9zu/qJYIN0/8/N05V1WLTZKJCvZ1ECQH/hAcJMkBB/4EjO8Tx/g+F1I0GlHkjglDyT5bic0iYxVlPj18HA8/F3oFBtrHlen1HCopYXBYGHG+vmTW1jImOpp+ISFkFVSz91gOJosNfYux4wVF+PS7FEb0j8VJhlYPMMsW1h9NJ8TXk79N/m0phjeWzeDjzUfoFxdKdmktLW1mRiREM7KP+t/mE1nYLDJOggabWebJr7bz3h0zf1HyoLisnjsfXo3ZYiMyTNUdUhSVgDQ2GbjnibUEBXiSeqoIfYuJx+65kg9unglAbk0d8z5Zg6JAqI/XJTe6o3VlFAwxYzzfF64oPJ6yk8LmJtbnZ9BgMiIIcHDuHSRFhrDxvgU0thlJCOtcZP/6Y7NZvTGVEQNiiA73R1EU/nX2B7ZWnGFmxCDu7z2Vt7J2UGSo48HeVxLlEcCt3cdQbWrGKks8ljgdP2f3LtcZ5O2Boii46LRE+PnYN/kwd19Wj7mty3N+CbPGJbFuaxqNzW1oRdEuWXEey/eksC+7EEGA5PBQXp/bsePriWkTeOKHHXi6uHC4sASbJLOxWcG97AI5LC1tJCk+jM9un8OSp9ZgMlkxCzbkFi2tPwQx75beXNdHreErbatic+VBu1I4gIiAh9YNs6yS7tnhk5gYNISjGcWspwCtRsTX0xV/Z28ejF9kP298UMcaLJ1Gw5p7b2T3mTwEATJLath7Np/ke95gwfiBPHCtKtL6+OubsFhtVNU2s3jeKL7blUb/yFAURXEQpd8KR02SHQ6S5IAD/0HMmzyAo5nFNEbI7NOXsP/rr/nx5puJ8fXFZLVyxapVmG02dKKIAFhlmaKmJkRBIDjAC80lIkKyrFBQXsfTS6/iyJkiUqsrMSg2JFnhw+1HuWXC4N8UTeoTFcQbS2fw0IebOHhW3VzfWDqDob1VSYMavdqxZpVkkCCrvJadp3OZOfTSvlq795/D0GZGUSC/qA5QU5LdAr2QZYVT6aVotWK71YrCl+uOMnlsHwB6dAvgx6ULOFtRzcjYrmUVqgwtpFSUYJY6JgQlReHj9GPYLmrJ+nfqPt4cezVhft6E+XVt59KnezDP3z/d/rrW3MKPZaewKhJrio/Q3aMb35akYpKsNJoNfDlqCV46V17oP/cXn21ti4HTJZU8eOVoJEVhfJ/YXxx/OVj2/De0tqlRxRuuGsiQxChaDGra1dPdBQ8XZzSigCRDYX0D7+w9zJ3jhtnru3Jr6rBKMk1tRmjXfhLad0ZRFFQxS0VhT0oWCnDTNYNpazPT0mZmy74MJiX05c5+k+3kw8fJC40g4iw64aZxJsm7B246V+ZFTsEsq2m2yPYao6EJUTx5yxQq6pqZPT7psu43Ntif2GB/qptaSc0ts6ezV/900k6SfL1dqW80IEkyK75NwWC0sKk+nfFDe9K/j8Mc14HfBwdJcuC/GpW1eg6eyGdIUjRRoZenWv1bMKRPJD+9dxcjPvqQeqMRN52OMr2eGF9fipqaMFrVv7LNkoSTKOKq1RLnp67Dz9uN1S8uZG9qDicyS0lJK7xQ6wQ06I3c/cI6vnppISW1TVz70kokWUGjuby/ms1WG3vS8ggP9KZvjCrQWVGnx2y14aTVkFlczdDeat3T+j1niPTzodlsptmoFhP3Cg2kyWDk0S+3YrRYef6mKzoQkCEDYvh6vWrk2qt7MOlZ5fTqHsw7L9zAYy9soKHJoLaTCwIaESaO6ai8HOrjRehFRdsGs4VXdh7AYLbQ5mFlU3mW/T1RENAIAmHuXjRbzDSYjYjA+bhIo6mzoe6vwdfJDX9nD/RWIwHOHgS6eKrpLUHE2+nyBDybDEamvfo5BrPFvs7Xth7gzflXMzb+95OlmoZWrDYZF2ctI/vFcuxsMQ+9vgGA1x+axdKxw9CIAu/tO0pjm4l1aRlsz8xl3wN/w93ZiR9On8MiSbjqtEyMjyPE24vB/sGcSi9j1MA4zmZXkFtcw6Z9GYCahtWIIuOG9mDXqrvZW53KnEMP4al1Y3hAMhXGGu7teSMlbVV8U7KTww1n6O0Vi7fOg13Vx/DWeRDhGoQgCGw6lMHzn+/E3dWJKUN7XbbO17ubU/h4x9EOQQ5JVrh1+Tc8NW8y7z5zPfMfWIlNkmgzWdBpRSxWG+k5FQ6S9JvhiLydh4MkOfBfC5sks+ixLzGZrWjXHmLje3fg7vrnG2RqNSIvTJnCc/v2MTA0lBGRamQkwN3drnSsE0WWDhtGRXMzj4+9oFwcHODFDVcO4oYrBzFl8Ts0Gzp2OxVVNGC22Ijq5svy22ew63Qus4f37TKKpCgKLUZzu06QwJMrtnEwvRAU+OD+Ofx0Op9zJTXotGr7/4c/phAb4sdzX+7kfBPVshkj6BMXTLCPJzFBfizffIgjOaXIisxbPx7k5YUXFLoT48P49pM7MFtsBAV6YTJbcXbSIggCTz9wNZt3nSU8xJfE+FBaWk2EhXRdKH0enx46zrqTZ7HJitoi7yVi81FpUIJfN9x1Trw/fgZlBj0PHdhGVVsLKArhnj48NWwigCqiKCv4+3SdFuvwuQkaZkYM4HBdPvfHTyXJL5J/Js+k1NDAddFdt+X/HGWNetraCRKoBf0Wm8T64xl/iCT96+/TeP+bgwxNjCKhewjPvL8VS7tw5I6ULAYlRHLriEF8lnKStvYaM7NNQm804e7sxMLh/Xlp2348XZwZ3T0ao9XG4MRo+saFggDHz5ZQWtlov955Hz6jyYpZsvB69mpkZEwWCxsr1I690025PBS/AFEQMcsWakwNfJD3HburU5ENGu5JsjIxdBBf7TipmgMbLfx4MANnnZbtR84hyQovLZtOTKj/Rde9kCr75tCZLrNAJ/LLWfjmGrY9dZta+C/JiAI4O+lobTOzYt1hBiZG0qd7cBdnO+DAL8NBkhz4P4F9B7M4k17GrOkDCA/zI7e4hrue+xZFgeWPz6FXTOcaFKtVwmC0IEkyigJGk+V3kaTzkZdfqnuYGBfHxLiObeUBbm6smjOHXXl5+Li68sGxYyiAh5MTj48b12mOaycksWbbSQQBokP9KSpvYNakZHsX3OjeMYzu3bkgWZJlJEnmzo82cCK/jP/H3nvHV1Gm7//vZ+a09F5ISEhCgITee2+CgqiIiGBDwbp2XXvBsuraK1aKFaSJIALSa+glhBJCSO+9nTbz/P6YcEIEXN3dz+e3+/nmgrwIZ2aemTlzzjzX3Pd1X3e/9jHMveMazhSUYXe6sVlM5BRX8tX6/cb6muG543JL9p3MxcdmoabBmOhX7Ejltsv7kV9ezdPfrqXB4cKkCIQwERt2IckJPK9lyvnVej7eViaM6cp7n29k3eY07rt9BN/tPUxhdS0zB/YiwOvC6IK3penaCARqXRNJOlVRio7k6V3r+WjkJBICgjhZUYKCEV2qdNjZdzSLR15djpSSR24fzcSRXS7Yx/nYV5bJ/DPbadBcPHV4KT+NeJDLooxtpJS4dA2zojbbpqiqlvWp6fSOb01SVBjJUeFYzSr2RgIjhKGxubbv7+/7YsjIKWVjykkG9WjLgG7xDOjWdK2vHNaZTXtOIYTg8qFGytLHamHx7Gm8++sOjuQXMblHJ09k7qb+PZnSsws7MrJ4ZOkapJR89NMOOO3Ax8tCXb0DRRWYTQpuTadTu1ZU19iZPK47mtQuenwSSZ+QToyM6ENGTQ53JE7mm6w1lO/yo+GUHy+u3kmvVzoxvn8S6TmGsHr+6hR0vaka9OPlO3j9niuRUvLYgp9Zf/AUl/dO4pUbxzOqayJLdx0FoEubCNIbP79gVJBaLWYemzWa1z9djxCCuoaL2ye04A+gRZPkQQtJasF/PVL2neHF11ahaTrbd5+mf+8E9h7Npqq6ARTBojUHePbu8Rds52Uz8/isMXz/834mDu9CaJAvqVmF7DqZxdju7WkT/vuRDYCPl+3gy1UpBPjYeO2eifRKunT12sXQPyaG/jExfJiSglvXces6udXVF1337uuHMnF4F/x9bOw+chaTSWFk3/YAZBSWMfvjpWi65OM7ria5dTgAZ4srmPHOd9Q7Xeiajg7sSc+hoq6BZ24cw5yv1hMXEczmw6dxazpCgI/NDEJgNZuYPLQLo3u34443lyCB8X2TySwq5/q3vqXB6cJqVpkxrCftokK5rHv73z3XkrIatuw8RbdOrWmXEMGiH/eyfrPRAqWorpZd5lLcms6ZknLev37iBdvfPKAHDrebT7bvweF24/YzCJLa6DOk6ZIapzExJgaGYDOZcGoam3LPsCUvkyurEzzRltc+XU/HxFa0jb24r5Qmdeamb6JBMyrAvNQmgmbXXNy881NOVRcys+1Q/pI0BjCI07SPvqOitgFFEax9bCa55VUet2p/LytrH52Jqir4WP8cGXe7NWa/8B31DU6+Wb2Pnz64Az+fJiLZq1Ms6z65BwSeKrddZ7K58+sVWM0mvp55He0jmp+rzWyitLYeKY0oU6Vdw0/Tqa61G55IZpWn7rqMHh1jueaez3C63Dz11k+s/fIeHk++hR9y1pPsH8/20kPoUufhDjdhUczc226qZx93JU7h18yvQAeHXWfcg58QGxGI1WzC4TJ6EZ6PDrHGw0xpdR0bj5xGAr8cOMlj1wzn2etHM7ZHO6SE/h1iEUKwZMcR1h06xa2j+qAogjGDknj90/UeI9KhfRPp3z2uJYrUgn8aLSSpBf/V0DSdOa/9hLuxMW11dQM/rzuKW9NQTaB7q2Rkl1BcVkN4yIUO1ROGdWbCMEN8XFHbwMz3FuN0a8zbsI/tf7sbRfn93Px36w8AUFVn587Xf2D2pP7MmjTwT5/HdZ07M//AAaodDlr7+9Pjww+xqipvjByHs9LJgK7xeNnMxEQGMW/5bhasTAGgrLKO6y7ryXfbDlFSXQfAgk37efVGgxSuP5xOrcOJrku8rWZcbo1OMREEensR3Nabpc/fTE29nREPzQUM3cm8x64n4byUB8D6v8+motZObHggd8xdRkNjCkfTJT3ioxjayUgd1dod3PXJcgoranj1xvH0atukBbnrsW+oqKpHVQTffTILPx8biqIghMRsVUEzIgpVdjvr0tLpGxdD4Hl6FbOqcn2frny+Yy+ql0DzBrNqws9sIdzbl+PlJZgUBV1KHuwxmKSgMF7bt5WsGkMIfyaoxlNhh5S8NW8Dc+6fcNHUW3p1Iccq8wDjofq93tM9y45W5pJdV44Evjm7y0OSAMpr63FpRhXg22u2kxgZitIYYQzy8cL/T/TZOx9uXTdcvhvfc6f7wmiOyaR69lXdYOeub3/EoWk4NI0Vh9J47LKhlNTUkZpfRJ3DyZMr1hHs40WfuGhKa+rwztPJUcuJCvcnt6ASTZcktglHNv4B4/smgUFh3RkUZrRjuSPx2ksed5RXGDeP7ce8VXs839HMgnKC/LzQpcTf20pZdZNeLKfISPEF+XrTOiSAwooaokMCPBYG/Ts0d9G+dlBXurSK4MFXlmJSFT56YSr33zKC71ftZ/ywjtw25c9/F1vQgvPx58xUWtCC/zC4NZ36hibNR3KHVk0ToW483Z/OLuGdrzb9w7Fq7Q4cbsPMrs7uZMBjHzDlta+orr9YPysDw3o0T6F99uNuHK6L2S8aMCrEjAnu51On+HD3bioaGjhUUIDd7cat63x9+DDVDgel9fXcO285c+b+wv2vLqG8qh4pJfklVTjdGi63Rn6xEXXq1z4Wq9mE1WxiYFLTRDIoqQ1Wk4rFpPLwlUNZ/dRM5v9lajPy5+tlJTnWSAvFhgcSG3FhBM3P20ZseCAAMSEBmFQFRQiu6tuJIR2b0j6frkvh8NkCiqpqefKbXzyvSympqKrH5dKQEmpqHQwZ0I5ZM4Yw68YhvPrAVdzYvweXdWzHkdwCHvhhNVd8OB+9UQxVa3cw4cOFDH7jU5xuDb0BLIUqS6+YzvprbiOtvBgdyY6CbDKry1GE4Ir4JN4dNgEv1WQ4SbuLGX2TQYh1CQeP5XLv84svep2ivIOwqWa8VAtdAlsT6R3oWdbBPxJvkwWrYmJoeFPXeiEEf592OclRYQhgxYE03l+3k5nDenNFtw58cNOki+zpj8FmMfPK/VfSu1Ms113Wg582p1JWWedZvvPQGUbMfI9xd35EdkE5+7LzPO8dwND28RRV13LFBwt4+IefefLHdTg1jZKaOnafySGrvJLkgTH8+PFsfL1tRmsUXbJjfwYhgT48/5fLGdY3kTeeuAazSb3IEV4ad149iO9fvKnZa5/89ToSooKpbXB4iB3A2pQTnC0ox6QqLHp0BvPvv47vHrnhdx9W3l2wicrqBkor6vjb3HVcO64HSz64vYUg/SuQ/0s//wVoiSS14L8KGZklfL5wGx2TWjHjuv5YLSZunjaQ+d/uQEo4nJrD7FuGMe+b7TiERBPGE3bYH2gEG+bviyLwiJTtLjfZJZVsST3DxL4dL7rNnFnj6RgXwbuLt6IogrBAXyyXmEROlpZy3fff49Q07uvfnw9TUnDpOrtzc3lx1CiklHibzcQFBZFeWoouJdZ6gd3hIjWjgIn3fkKP5NY8c8dlFJRWo6oKN13ZF5dbY9GOw2i6zpSBXbmyT9OxdoyJYN2zs7C73EQEXvw9EELw5V+nklNUSUx44D+0Dqh3OBsN/QTjenRopsUqr2mKCpzfMkMIwfOPTGTBol0MHdiOQ0ezef+LTaiqYGCftpzNLuPuW4dzrKSENceMlhVldQ3Y3W68LWZSzuaSX1WNlBKL2URUgD+zh/Shc2gEc4+kePZjVgTW83RCPcKjGBIdz6bcDBQhGNApnv0BZyivMo7zt/5TWfnlPPnGSsxmlU8fmEmVuY6uQc1TqP5mL1YNf5BCexVtfJpH3MZ0bsfoTon0ee5DQAMkE3okExsSyL+KIT3bEhbkyx1zvsft1li38zg3TuhL3y5tmLcixSNa/nX3SSaN6Yav1UKNw8EVnZNwuNyMfucLw8LhPGhSYhKCBpeblMwcnrliJBNHdeF0Vgkmk0K/7gYBHtG/PSP6G+nUTbtPkX62mKvHdics2PB/Wl2wjdPVuXQIaIOCwsiIPpiVpuklPiqEV+64nKWbjzB1dA/aRAZzKrsECVjMKkhwujUUITwkzGYxkRzTpCU8W1zB5qMZDEqOo12UkTqsdzipbGh6iDlng9CCFvy70EKSWvAfjdrKOo5uO05S30SCIgJ55uXl5OVXcuBwFsntW9G7Rxwjh3Rg/vxtoAp0oH+feNq0CqKorAa3WaCoggnDL+3ncw6KgAcvH8yWE0ap/YEz+dhdbnLLqqhpcHDHR0vJKq5gzg1jGdWtHWBM/tPG9mJM3w4cySigd1LMJQXcP504Qa3TiHqtPmUQAbeuU2W3ExcUxJqbb+ZsRQVVdjuPrV2LEILAeF9Ul5PKmgY0Xefg8RxsFjMfPNnkzXPwTB5HswpxazpLdx3liWuaN+kN8LFxMWcgXUrq3U68VDO1bgeVlnpilH88mWcWV+DSdKxmE9mllfRt10Qibh3Vh1+PnMbp1nj+ujHNthvSvx1D+hvv26yHF+Jya7g0WHsgHQVQVMG0af09FX9eZhPeFjMFRVUs/mo3LrOGRVUJcVroVh9Aa6sfh07l8sXevZzromB3a0xY+RVbp8ymvsbB3X9fgtOtceuEniS3juCyNu0IvMfMs++sRqgQOsHC3FMbuaPdCIQQfPHDTjJzy1AUwZq1adx/ywiO5RaxLjWdcV3akxxtaL28TBbifcO4GIQQfDLzahZs28/oTokegrT/cBYvvb2aVhEBvP7stfj6XNqIE2D5lqOs33OCG8f3YUDnOABq6x0IIdB0SWZeGa/N+xWLSaGuMZqqqoK+XeII8fVmw4O3UVZXT3SgP/d8t9JDkCyqSoCXjZLaOuP99PGi3uXinuH92Z2ZzZihSQzt3Rar1XxBIcPRk3nM+WANLrfG7kNn+fLVGRyqPMmXZ1bi0JysL96NCRM7S47TyhZNG98wxrXqQVFlLZpV8NpfriSgMeV48+V9+WbdPrq1j8bkZ6K6vIFZl/cjOuzCT6tL05jx1nfUO5y899N2Ev2CeHHWeD5au4vTzipUxdBYPTRz1O++py34A5BAS1sSD1pIUgv+Y7F9eQqv3fIhUpfYfG18dfp9fLysKIrRysLby4KUkscf+A5zg5EmExaFZx5ZTHlpDapJ5ZP5s2gV9Y8nfiklt8/5nqyCcgJ8vbjp2r6kZhXh1DRW7T1OTGggGYVGNc3bK7d5SNI5hAb6MrJXu0uMbmB4fDzzDhxAl5KZvXpxuqyM9LIynhhqmOFF+/vzzskNrD95BrdU0XRJqzaBfHnfNdwx53vSzhTSrX00/r9p3JoQEYLVpAKS7vFNfcvq3HaqnPVEeV/o//Rx2nbeTN0MQKSXH7UuB05do1doDDPb92NX8VluaNuLOL9gHJqb5/avIaeukhd6jefpa0fyzPfraB0cwOU9m7yN9hzM5OCRbBbffwNREYF8snwnz360mnH9k3h0+shm5PG6K/vwyrs/4/AWuBuL3s6WV9I6KIBPpl/NzjNnmdyjMzW1dh5/eRmZWaUEqwKbr4XaumrW+9exOf0smi5xBGqQBCjgRqfe7SK/tpr3vtxMTnElAMc25fLUCyMB6N89nnXz72XCprc4Ul9E+pl8uge3oX9oW5ITItm+7wxISYeECEqr65j64bdICfO27mPPC/diM19426xvcLJy7WHcLg2LxcTwQR1478Yrm63z/hcbKauoo6bOwaYdJ5g49tKtXfJKqnjjm4043RqH0vPZNvcvqIpCr44xTL+iN/uOZZN6ugC7w4X9vCKu3h3b0DnR8LzysphpbTEIx7U9O7P9dBaKEMy/5VrsLhePLvuFqAA/nh4/HLum8dCS1dQ5XQQ26n9aBfjz8bQr8bc1fd7q7S6EMMxMz09zAzS4TdhMbsqdKmsL0oF0rMKE1AQvzd2FW9cJ9fNm9RO3IoTgnmsHc8+1g7nt4yXsOHUWi0nlSEERKw4fZ0Snts0+Wy63ToPTZUQnJZzJL+Pv32ykWnXjkDq2GAuPTB1N9+TWjetrPPfOKtKzSujSIZpNu0/Ru0sbXn30you2NGlBCy6FFpLUgv9I1FTU8vL099Aaq5GkhMqiKv72/DX8uPoQ7RIj6JgURXV1PSWNuhwB4NQpzDcmRqsiyEgvpFVUIOmZxeQXV9GpXSS/bEkjrnUog/s06YmcLo2TWcUAaNV1xIYEYjarIODy3kkkxzRGECxmeiREU9fw5+0CekdHs23WLJxuNyibLtEAACAASURBVJF+F4rIj1UWsLHgJA4vF9LmRa/AGJ4bORJFEXzy7PVUVNcTHODdjGw0OFxs2HuKF6eMJTDQm46Nx5nfUMFNO9/DqbuZ1mYwd7W/rNm+Pjmxy/N7qb3W4069u/gsB8pycWpufs5JY/vE+/kpO5VVOcewa26e2PsTP4y6lWWPGRqTg0ezOZKWS9eOrXnylRW4XG7WbUlj4Ye3sfCXvei6ZMXWVG6+vC8RwcY519Y7WLBpP3qkheToMFLPFCAE9OkRB8DgxDYMTjR0Vfc99T1Z2WXGZ0CT2KsdYDPO/1xkxFqhELZLUN9ap761pE9oFO2DQlHP07Eo4sKJ0c/khSqM6jNfkxHVuX5CLxLbhGE2q9jNOiNf/cxTnabpEremwUVI0usfrGXrrlO4NR1VVVi8ch9LvriT+gYnc95cRVFJNTHRQeQXVSF1Sdu4cM+2lbUNrNyWSnyrEIZ0T6C0qo47X1/kEWdLKfkpJY0tx85wy6je3HBFb/YVFqDWWvFpgGqHA1mvowrBjAm9Lzg2gJFJbdn+6Gx0Kal1OokK8GfbI7NJOZvDjQuWIJG4NA1d4vFVKq2tZ+WRE8zo290zTt+ubbjp6n4cP13I7OsHA9A9sAO3JVzFy0dX49YFLr0p3emQbl5OW4K7nYWGo37klRuu8KbzDE/P2WfouuTTX/fg1nU2pZ6hS2wkMaHGA4631cxL0y9j7prdFOZXYjGrJESFMHl0d17+YQPx4cF4uxVufGQBI/u3Jz4mlN2Hs7A7XOQVVQGw62AGp7NKLmoH0oLmkP8leqH/DbSQpBb8R+JvM5oIEsCYG4cSGR+OEILbbhrieV3/nUaksW1C6dU3gROnC7nnme8RQmC1mqirc6CqCm8/N4WuSdGAIQA/p0fSNEnHNpGsff52qurttA4xnsaXP3EzB0/l8uaXGxn763GeuX0s4wZdXKsEkJZfzOz5y1AVhS9mTiYxPIRgL69Lrt/aOxCTouBjNpPQPpDFI6/3LFMU4anCanC4OJNfhpCGr8zBU3kg4MNHrsWsGhPU4YpM3LqGU3ezLCeFa2MHEGZrcq8eEZXIzzlpaFI20096qWb0xlomp6ZR63KwMT8dt66jSkH+6Up2+mdgNquEBvvy2JyluNwaNqsZZ6Nnjd3hwmY10SrEn/LqerxtFgL9ms5766EMsgrLsTvdlFTVcuWQzvh5W7lhbK8L3pPyyjp0KRuduY1UVvuoUEpwUt3gaGrMiyCoyMLEiHhevmICihA8f/t4Zv1tETnFlZzMLub1bzbw2PSmdMz7fWawLGcfSf5RdA40IhBCCPp0NQjazM+WNNNVdW4dccledUUl1Z7qLU3TKaswGt+u23yMfYfP4nRqWC0qLz0+ifBQf+JimrRMj32wkqMZBaiqwgcPTWZX6lkKy2o9y4UieGXJRhwujT2ncnhw0hAOZOQZJMrHhrSo2K2S8EBfenW6eAsXAKvZxKS5X5NXWc2ghFjm3nAVh3MLcOkami4bBdTSk+506RoxQf7NxhBCcMs1/S947YqowewqyeHXwiMX7FdDR0TaCS4NZna/wRdo3l6ZNo63V29j5b40z/stkUhdkpZZSJvIYHy8LIzvlcT4XkkcOJlLaWUtI3u1w2RSWfjA9TicbkbOeBcJZGSX8tRdl6FpOhaz6rF90HXw/h8wi23B/238Q5IkhLABWwFr4/pLpJTPXWLdycASoI+Ucp8QYgzwKmABnMCjUsqNjetuBloB55STY6WUxf/a6bTg/wI0TWffuqab7eNf/YWR1w+ioqKOt15djSIEDz1+BQGB3kgMAnGukqdtYgSh4X5MmNST/oOM9NfZ3DKju73DhVvTDA8Vk0p1TZPIUyIxmYwbqsmkIITA18uCn1fTpBgV7M+6klrqHU6khOc//YWOCZHEtjLSWbnlVQR42/BrnEjnbdtHeZ3x8f529yGevfL39RJBVm9Wjb6L45WF9A2Lu+g6DpebqU8voKi8xqAyxl9sFhNF5TWe9fqFtMfbZMXudFHrbuDuvZ/xw5CHPcvf7HcVdyQNZFvhGd49tgVNc6MKwVv9r6LUXse2wgzuSB7E349sZFPBadQK8DpjQpxy8cSaZdisZkKCDSH4b1Mv984cgaoofP3cDPadyGHVjmPMfPk7nr5lLMlxESS1MZ7kbRYTAzrH8cRNowGoqm7grY/Xk5NfQUVVPddN7MV1k3rz7qcbcLs1FEXQs2sbnrhvPKHBvry/eCsLf9kHgElRQEJCVCgmVSG7qIIfNhxqFu37YeNhEgb7Mzm2N0IIQm1+zG43Ak02EW1d6jx5cAlbC09RZzcBVkyqwgtXj2Ziz+SLXpPD2QWcqapo9pqm6cx5axXHjufjdBqTdMbZUswmFZvVxKFjOXRJikZVFSprGjy+PlV1dorLm/tkXTeqO9+mHPFc/xW7j3miTDUNDsIDfCnV67jrcqOaq6yunk+27SE2OIDpfbp7Io9nyyoprKrBpWlsTs9E03Umde3I8kNplNc3UNMogNYawwhSwgurN7LizqhmKbdzkFJyqrqAV9OW4W/2ZnRkVzYVpqKhYxUmHLKpylMIGDYmlOndejQbo9bu4M7PlnG6sKwZIR3YIZY5X6zlZFYxfj42lr5yK16NZqQ9O1zYYqS23tGM7C9YnmLcF34TEokMbU76WnAJtESSPPgjkSQHMFJKWSuEMAPbhRBrpJS7z19JCOEH3A+knPdyKTBRSpkvhOgMrAWiz1s+XUq57187hRb8X4Pbef7NVdC+VzyapvPWq6tI2XUaJEyddJqkjlGMn9AdVVXQdWPSyDxTzNz5tzcbb/iA9qzffoLsvHJunNyPTTtP0j4+goG9mtpC+HpZeePBq1i1NZWJQztfMpU2qFs8H/+wHTAmkbe+2cw7j1zDBxt28fnWvVhUlSX3TCc2JJDB7eLYkJaBBAa0vfQT/vmI8PInwuvSN/Ki8hrKqus8N3+LSSUyxJ+uia0Y2TPRs16w1ZfXe9zIPXs+wyHdVLnqmo2jCEFSYAQuXePdY0YEaXBEAqOjjZL269v2BGBp5mEAVCHwO21CYBgtNthd5BVUcNfNw9h9IJMDR7LPG12wLSWdAb3bUlPvYPexLBxONy/PX8/Xz88gITqEH16+haKKWroktPJs9eG8TazbnOYhvO98tgEppSf0bzabuPm6AYQ2krPdx7I822pSx+2Gr9bu45rhXbn3jaUUllU305/o/m5eSl3JwfIsDlVkU+Wqx0u1UOKoYVBoO97vO4NdJaf5pcBwdSbegVpi4bbBvRncIY7HF63BZjbzyOVDCPBuiow99v0aSrDjI0BIUBTjs7Fx2wnO74HlcLp597MN5BdWgYARgzrwxH3jefnOK3hn0Rbax4RRWFZNvcON2aQAgvumDOH6MT3p07kNH67eyYm8Yo7lFOFrs1Brd6JLSXSIP7+8cJuHDD26bA0pmTlYTCqhvj6M62hUpQlhEFO7282VXZNQFYUIf1/W3HsLLk1j4BufUGN3YDWpOBpJWGltPWvT0pnSs7lDeKm9mtkpc8m3VzRecdhXblQQxniFkVdfxm9xqqbQ8/vR7ELsThcl1XVkFpdf4PtUUl1HRnoRABI7eSWVJLa+uFAeICTQh6vHdGXN1jRG9GvPL9vSkJJmfQyjwgP+tH1BC1rwD0mSlFIC52K/5safi/HMF4HXgEfP2/bgecuPAV5CCKuUssUvvgWXhMVmJioxkvKCCmzeVkKjQ3j3jTXsSznDuYd+TdPJOF2ELnXMZhWXS0NVFbr3bPIIcrrc7Nx3htjoIN58erLn9StHX7zzeL/ObejXuc1Fl51Du9gwurWP4vCpfAACGkXUqw6f8JQw783MJTYkkEk9O9IxOhxVUUgI+/c0z20dFkjf5Fi2H8kEIDEmjKmjurNi61HW7z3F+AFN0Y5OATHc3HY4KaXpzE4cc9HxugRH8dXwGWTXVjCudbKRVhPGE7iqKDzadSRW1YRVMTGodxsyzpSQdjKf/UeyGTk4CZdb56/3juOR53+gsLgKoQjenLseRQhGDO7A2MuMqkKbxURsRJOAPjLEn8iQ5mTQZjWjCIGORFUVTKqC4zzC3Kd7HB07NAnTyxtNCBVFoCoCl1vH4XTzxrebKKmsNaKMquC5W8fyetrPVEcYkbYtRcep11zoSGrdxq1oR2k6J6sLee7wcs/4AvC2WpjUsxOvrdrMmiPphj7o4HGW3DeDxAgjZRYZ4EtxaA0OVWdsQgKFeZVkZpeiNbpJm81GLzyL2UREmD/5hVXY7S4OHc3Brel42yy8/9Bkft17khe+XIvTpRHoa+P1e6+kR3sjajKoYxxnS8rJWGmQj9Hd2vFjyjEkRu+y6//+DV8/NA2A1OxCNF3i0nQ0XVJtt7MvK4+X1myist6OzWRiRt8enj5yNrOJoupaj7+XU9MY3LYNe7PyEAI6tbpQwzNz90cUO6o8/5cYRFUD6jUH7t9MEQIYG2l879YfSefJb39BCJg2sDsCgZfFhL+XjaKqWoRbUpBRQUJUMJn55fRoF92sn9ul8OisMTw6awy6LikoreZQWi6KUFBMEkVRuH7ChencFlwCLdVtHvwhTZIQQgX2A4nAh1LKlN8s7wnESClXCyEevdgYwGTgwG8I0jwhhAYsBV5qJGQt+D+M8sJKqkqqiet86VJ5IQQfprzCsR0n6dCnLTZvK8eO5uJ2G20zzBYTSCMasuS7FOx2F916tuGuv4whLr7pafPZN35i39FspJR89tp0EmIv/ST6Z/Dmg1fxypfrURTBQzOMcvvbhvRmzo8b8LdZGdrB8JZZl5rOW+u2M6BtLM9MHPkP3bv/CBRF8PYDV3Puq1JvdzH6vo/QOlZzpPAIhadGc2t745iEEMxsO4qZbS+e5nNobm7YtJAj5fnclTyIJ/eu4sfsVGyqGYfm5vYO/flrt1E82X0MOfkV3PbAfBxON4/cdRn3zRrFjLu/wOnSWPTjXt6ecx13P/4t7kb9h1OXnMoo4okO43n3waspKK1mTN8OFz2Oc7jrlmEEB/rgdLkJD/WnbVwo9z+9CE3T6dcznpefuKrZ+jeO7827i7cSHujLlJHd+PTHXYCgqLzGE41KbB1qGHw6VIQ0Q6SbCbE9WJ67H4fe3PTzTE0xdZpxe1KFwhMdJ3LN5b1QFIGfzeZRs7o1nflb9/H8NWMwqQrv33Qln63azc+LDrAt/5QngjF8UHtuuKYfTpcbHy8r5VV1VFXVk3aqAIfTTf8+CUx/7iuyCsuJCPZjVO92Hv1MZa2d1DOFHpL01MI1rNp3gqToMK4f2p3xvZI4mJlHVmP1XmZROacLSqmzu6BSRzGBimRkhwRGvP05dU4Xmt74hCGgqsHO8Lc/o6y2nr+OHcqMfj3oFx/DttNnmdA5ideuHse+rDwi/H1pExzI2rRTfLJtD+M7d+C2gb0odV68dQ5AvG84Va76Zu+vSagEWw3hfmp2oWEIKiVZpZX89PgtFFTWUFJdy8PzV2Gqh3rNSb6rmrsnD+am8X3+0HfH4XRRUd3Axp0nOXw817hWbo2pE3px5cguxLX+x0SrBS34Lf4QSZJSakB3IUQgsFwI0VlKmQoghFCAt4BbLrW9EKITRpRp7HkvT5dS5jWm6ZYCNwILL7LtbGA2QGzsH0tZtOA/E2eOZnP/4KeRumTyA1dw64vXX3JdH39v+o7vQX5GIbWV9Qzo0or8nDLcmsTpcGO1mpjz2nU8+fD36Lrk8IEsjh7ObkaSTmeVNIqIzWTnVfzbSJKfj42//aV5b7EpfbowqUdHzKrC/qw8XvppI1tOZuJ0a5RU1zGpRzLdY6MuMeKfxzmCaTIpmP1B79AAKnyWuZ4b2g7Gqpp/d/u0ikIWpO/hRGUxEvj0xE5PhZtdM6qbPju5i85BkVwR24n3P9+I3WFMeh8v2Ezn5BtwazpSSqpr7Cz60ciaa7pEUQT+fjbun2WQs14dYuA3/Ki23sGjH66kuLyWObPGoWqCz77ZRpfkaGbNGIIQAofDxWtPT8ZmM9GpQzS/xQ1jezF5RDcsJhUpITTIF4fTjQAy8koBCPb3Ji2zCBCYdvvy3INjmNClCzckDGBr0QneOv4LOnBFVDd6hcRjEioWRWdqm35cG98bXZcUV9fy8PghVNY3sD71NLqUrDx4nF+PZfDoFUOZ3Kcz8d5GVMyTGjSZCAv147NvtjF9cj/i24Sy8dsTfL98ryc6tmLdYZxBhtVDfmk1izcc8pybWVWaqgEbHPy8/yQAGYXl9G0fg81iYvFjN3LHR0s5llVIiJ8PbcKDsTtdWFUVxSXomRjN5zv2ecwWFSG4vFN7hraLp7K+gRq7A01K5u0+wE39e/LZ9Ktx67qh7wL6xrVuvKY6Dy9dg1vXySgtZ0xSIn9Nvop3Tq6mQWvSogkMMtQxIIb7OlxBTn0pq/MOsLfM6MEW1+grNW1Qd7afOEuD08Xd4wYQHuBLeIAvf/36Z4SiIFQdVYLd6ebTFTs5nVvCMzMv4/0ftlFRXc+D1w8j9DfGqOVV9dz48Hxq6520iQry5DqEIhjaJ7GFIP1JiJZwhQd/qrpNSlkphNgEjANSG1/2AzoDmxtv3JHASiHElY3i7dbAcuAmKWXGeWPlNf5bI4T4FujLRUiSlPJT4FOA3r17t1y6/2Dous47d37G/vVHuOXFqYyZYfj/2OsdPDT8eU4fzPSsu3XJ7t8lSQA7V+7jlenvousSt8uNtJiha3tQjIamsXGhqCYBTkNv8dnHG3G5NKZMM6pvHrljDC+++zN2u5MtKacY0jfR80R6qSjWvwKLSUXTdW6ft8yjsTCrCiCJ8L+w5P+fgabrzFu9h/ziKu68ZiDhQX58dP913J02FyEkgVafCzrT/xb1bidTNy7ArrmQgFVRceoX7+y+pySbK2I74WwsCz+H+NhQ2iWEcyK90IjumVR8faw4HG6kLnE63ZSV1150TICfd6Vx5HQ+TpfGm99tpiazmqKSao6m5dGtY2u6dmzNbQ8tpLikhvAwPxa8dyvn9D31DU4OHMmmXUI4EWH+5BVX8revNpBVWM7Tt4ylb8dYwoL8cLk1Xpq/rmmnis6LuctJjA2lxtXAytxD6ICCoLVPMKFWX1p7B3GyuoCcunI0XWf6x99zPK+EHnFRzJt1LSv2p/Hiil9xuHVq7A7mrNjAmM6JjBqSzJoNqRQUVxEXE0KXpGh++Gk/TpfGkWO5rF30AKcziz0ESVEEwf5eyBAbuY3RIFVRMKnGLe7eKUMZ08fQEvnYLCS1DiejsIzIQF9eWryBlJPZ3DCsB/Puu46c0koig/ywmk14W8389MytZBVXkNQ6nPc270QBdKBtaDBvTr4cIQT5VYZeSwABNhv1ThfeFrOHIJ0PRQiCvL2oarCjCAV/m5UJQb25LKo7o359AQ0dFUG3oDjMipkJ0b2I9g6hrV8kg8OS2Vp8nEivADoGxNDgdGExqyx95EbAEH+/vGwj6w+nExHoixBAgEKX8FaknSrA6dLYdjiT5ZuPsHzLEdxuo4fd3//SvMVLWnoBdqcbl1sjt8jQfJlNKleO6ERMq3/cqLoFLbgU/kh1WxjgaiRIXsAYjKgQAFLKKiD0vPU3A480EqRAYDXwuJRyx3nrmIBAKWVpoxh8AvDrv+mcWvD/E07uzWDTop046h28d/fnjLx+EOsWbCHreC65jRqecygrqOBvN77HfR/cjk+A90XH+/XrrTjtTZOzcLiQJ7NQOicwfkI3nn/8BxrqjeVSgq5Jas+rWOvfIx63W8Ph0ti2J4OlPx/k0++24+1l5qOXptH6f+DmKRDNembFBgfQLjKMJfuOcueIfp4S/X8W6/ecZMHqPThdGoXl1Xz06BQ6x0bxQ9hDHK48S9+Qdhf1BDofbl3HLY1GpQJ4u/9VvHhwHcUNtZ7y/3No7WPoiMYM68ih1Bx0Cb27G7qtF/86iTlvrkJVFW6fMZhH77mMh55bzKHUHIALKovOR3xUCEIIbFYz7WPCOFnsoKTMMAn18bFSXdNAXkElmqaTV1BJdU0DQY0WCPc99T05eeUoimDYuE6s2HbUUxn12tcbWPa3mQzqaqQ8v1m7n6MZ+YZGp3c9NuCn3IN8d3a350wtqol431DyGirJqC1BBzYXn+DNQ+s4kV+CW9fZn5lHdYODcV3bs2LfMfadzUNVBDaTCavJhNXLxGdvGd5Rui5ZvyXN8/7abEZUb+ywjhxKzcXPx8pVl3dn7LBOBPjbeGfxVsqq6hjXL4nnv1yLlJIubSM9RF4IwcKHpnK2qAKXpnHLO4vRdMlXmw7QKSaCUd0SsZzn3RTo40WGWk6/1z82qsraJ+Bvs/LEuOGeMaMC/BmSGMe6tHQySstYuPsAdw7td9FrJYRg8e3TWH88na6tI7l54RJOl5TxwIiBXB7dk/WFh5FSklaVi47kzj2fsnLY4wghMCkqIyMNXdrZkgqmvfMtDpebRycNY9qg7mSVVrI8JRWHW6O8tp6bhvciyMeLqf27Mvu1xZzOKWHGuF542ywIIVBVgY/XhTYM3ZKjCfT3wuF0o+s6UoLLpbFs3RH2HM1m0bu3XfKz2ILf4L+or9r/Bv5IJKkVsKBRl6QAi6WUq4QQc4B9UsqVv7PtvRg6pmeFEM82vjYWqAPWNhIkFYMgffbPnkQL/jMQHhuKUAQ2HysRbcL4/MlvWTV3vUc/IxSBbJzM7HUOti1NoVVCBLe8MPWCsRa+8APbl+/x/F+aTZDQGrOXhbseuIzomGBWrzz0m60kwcHNw/BxMSFkZBmpl80ppxodil28+N7PfPzy7zfO/CPYeDyDDzfsYmRyW+4ZNQBFETw1cQQvrtyAIhT8bDbWHzuNqgg2lZ6kR1Ikf+0yBov6z1mUmRpJlmjsSXcOEV6BjPXqfqnNmsHfYmNCTEdWZB1FAsvOHmXRqFtYnZ3GT9mpHK8s8twjl509wqykAYwf1YXK6np+/OUwFRX1lFXUEhHmz4ev3gBAdm4567cc55apA1kfmUariABGDUnmdG4JmfnlDOmegM3SlALskxzL3EenUFpVx5DuCVRMqGf1+iN0SIykfUIEUkq6JkdzMDUHRRHUNzhRVYUFi3dx+kwxupTYrCZ+STnRrHQ8KsQfKSUb96fjcLp5874r2bAvnTqfBj4v30hr7yDWFaSiN56hr2rh772mMSAsEZeuEecTSnpjFdaSwhTCQ6MoLKmjf9tY/L2sCCFYcOd1nC2pYOvJTIZ2iMf6G3PJTxZuYfnPh0BKRg1N4tbrBwHw5sfrqat34HJrDO7bjtAQ47P66HTDCfz9H7ZSbzfsJeat3sNb9zVpsMyqSruoUOodLnxtFo/I+omFa+jRNpp591/X7Bi+3nMIu9tYJ9Lfl+euGIVb19mSnkmrAD/ah4cS4uNlRJOE8NhW/Bbrj5/mUG4+9U4Xyw+l0alVBHkV1UgJX+zcz+7H7mRCdC90qXP//nk4dTflToNsq42Rv+y6UvaUpVNy2hCKuzSdpbuPMm1Qd0L9vLGaTaiKQoifNw9PGOIhct++cCOarqMqihFN1jQqaxu4fnRPz/HNX53Cqh1pTBjYiaT4CAZ0j2flhqOe5RLILay86Lm1oAV/BH+kuu0I0OMirz97kdWRUg4/7/eXgJcuMXRLqcH/IaQfy+P7TzYx5flppB7MYN+JYrI+34iwGykdU3gAorTKM/kKRaCaVALDL9ZVDL5/azUiOAhZ3ug/ExUG/r64BGSkF9GtZ5tm3cMB3G6dz+duZNK1Ta7Dbz87hV0HztAuPpwDR7M5cjzPON7MYvYdyaJv97h/6bwf+f5n7G43maUVjO6USIfIMKb27crQpDjm7NnInkM5gMSt65yoKiTjbAHxfiHMaNv3n9rfqN7tKK+uI7+kipsvbxpjxZYj/P3bTSRGh/LxY1Pwtv2+ad6AiDjW5B5Hl5IgqxdR3gHMShrAVW268PqRDazKTgMk46ON1hCKIsgrrKK4tIbi0hq+WrybB+4w/I0cTjd3PPoVDqcbi9nEigV3Y7OaSc8tYcacr9GlRA+G0KG+fDXyBsK9DHLQuW1T+X9osC83T23q2i6E8Jgz6prOph2nSD9TxLbd6SiKwGoxMaRfOwJj/Fm4Zp+HiFfV2flozTbmL9+LQHDd2B48MmUEO09mYV/mT5mvmZJuTX5SY6O6MCAskap6Ow0OF98NuYunDy1lfUEqCMmUKxK5Nro/xcXVfPnDLob2TSQqPIBNW08QFuxHm9ALW94cO5mP3eHCZFLokBhJTLRR2ag0migKjM//b9E7OZZFvxrEf3DXBIoranC6NFqHN+3D22rmrdsmcvv7P+DSDKp3LKuptH7jkdN8t+UQCbHnWtXAqCTDGuL5Vb+yOvUUUkoW3jKFR0YPJSrAH2+LuVmJf12Dk4Vr9lCju/j2ZCpOze1p+nw0vwCr2YxVmhjZIQFFKHQLigPg5vjh/Fp4hJsThqM2RjMb3E5u3f0BLl3DbLdiNQej65JpgwxCbzILrp4STG5BHY8NvOqCNPg5CwdFEVwzvHkbl8KyauYu34Wm63y0bDvmOqNZrsWi4m5o8r6S0kjr/U+k2P9vQrRUt52HFsftFvxb8MxdCyjVNLYcNqrJpI8Nd3I86tEMpI8Ne3w0Qgef+gbufutmnA4XVi8rY24aetHxAuNaUVHZgBYUABVV4HCCNEp5wyL8OX22hFn3jWbu22s9pdY2LzNtE5uXK3t7WRg1KIm6Ogeph3LwV8zUSzdCCIIukeb7Mwj186a42vAgCjzPTftoRRGb8jNpCHARbLIRH+bPKe8846ndfKEx359BQDtv/Np5NXOx/nj5TpwujcyCcvakZTP8PM+ki+HqNl2REk6kF9G2NITqWjv+vjbCvHx5KnkMBz7Pwik0lq44yFrvNF5/7CpatwpqTOtIoqOaUpVvH95Erd2B0AWadDJt/XyuoKASOgAAIABJREFU6dCdJTuOoEkdoQlktSSzppxlmUe5s+OAP3SeIwZ14MTZQmSYk5iO/pzMKERKw/Tz7luGM2mcMdF2aduKp+auRghBXKtgfjl9DKkbE+PerExgBB/8spM6hxOH20Ww8KOaOsyKyv1JY1l3+BSPfvUzAGH+PsRG+jOxbw8CrF5Mjx/IjpQzvPzxWlxujW9X7aNv1zbsOHAGk6pgs5oYPTCp2XHffctwnn/jJ4IDfRgysB0lVbWEBfjy9pzrWLHmIH17xBMTdWGqd0DnOL6bcyMOl5uqWjvXPD4PieTxG0cxcXBTg+Zu8a2YOboP32w5iMut0ysxmokvzmP6sB68sXwLLk3nYGY+ix6Zhp+XheKSGmrq7RzOK6TB5cJmMpFeXErX6EhmDrywjcnbizbz8440NBto4QJdgqVBYHaANdTCirtvosZuJyHUIDzztu0jr7yau0b357bE5pWU9ZoDp+bGJTU0q86ap29BRfU4ly/L3cj26hQ0b513ztRyU9wVdA78/c8uQG5xJfNX7/FU7KmKgqIav9vtzfVzivif0SC24P8NtJCkFvxb4LKo6LoAIVAAqetgNmHqkYjDZKRZfJPjiGrlz9EyO4OHtKdf37YIAfu3nsDLx0rHXoaOxO3SaJ0UTdXeM1iC/HnoizuozC7mcGoeHQYnseSXw5SV16HrksBwXy4bmszAQe1oaHDRvVfcRY9v0bI9bN5+Ek2ThIX5YjGrrFp9iPvuGo2q/vMNL7+ZPZW1x9Lp2SaaiICmVF9r3wCklHhZTHSMieDT0VfzTcYeLC6VnF9LWRt/jMtGdPrT+5t/Yh9/P7QFkOR0rWJ2J0NH0q9TGzbtT0cRgg6x4b8/CMak0V2N4oOFm1kvJRt3nOTTl4zUWV5RFdIOmsPwvamoquejb7cw6qaO9PNJZJhfW0YNMIiBW9f54mwKXv0UvE+p2Nvp5DcUkXpwLZpZwTfEjKlGUJfkxqQodA/54xV+3YdH4fYqRkPnqfx5RAwIZERoJ+o0O9/6rKPyTBk3J4xiWI9E3ntoMoXl1Yzu3Z53jq7nW6+9CKdg6ijDDmFocjzpBUba9bXk69H8XHTwjyTA4s3rP2726KeKqmopq6lnQEJ/Zo3ux3sLN7N83WFPab7brVFb50DTdJBQWdVAaUUtXjaLx4DUK9BGq76tCPb1YsJL89AlTOybzNqDp7CaTOSY7LRqE4QJhSfnrsbLaub1eyYSEuBDTIRBnj5Yss2TUlu352QzkiSE4O4rBnL3FQPJK6viqpcX4HRrvL5sM1azyegfJwRRgX7c/foSsosq8LZZePKusTy7+ldiggK5rNFgEgy/KX8fm6ddSF5xldEXr14wJKoNTqGTtjsXl1sjUCiE+/kQ7mfow9YcOclHv+7G5dbIKa/ks9smU1RVi0lVCPH1JsTqx93tx/FT3j6mxg4kwNb8wcSmWhAoSHSOV2fybOrHzOl8F50DE/lu3X4+XLaDzgmteP+hazxGkJ+v3M281SmeawJww9ie+KkWggK8+e6nvRSUVqPrEl2XPH7HWFrQgn8WLSSpBf8ydF1n8IiOrNp4zIgiKYKhw5O5+ebBlJfV8sSTPyClJDAqiFO5FZwsOMK69alMubYPfk4Xiz80nJUfeXs6g8d3Y/2SPZw4lIWU0LZTNMMmGhqEScAd9y2kpLSpaqqy1s62g2e46y8XN0s8h8AAbwQCKXVKio10S1nZMQb0bUv/vm0vuZ2Uki8Wbudoag6zbh1G547NS9HD/H2ZMeCCbDQdQ8JZdPk00itLuTyuAz4mC7M7DGb2w19x6kwRZrNKeKgfPbr8cVsLp6bx8bFdNGguBHC2ptyz7PnbxjF1VHciQ/wJCfD5Q+OVVtQZpfZON9n5FUyc/TFJbSN58cEJ9O/WhpTDWTQ4jKfyPfYcth44i0QiQhX6uOLIrq2gY1AkfmYrNW0dNLT9TR89RVLbrempftXY2/C1WLl63XxqXQ7Gtu7A1LbdiPVtHlVx6m7Sa/LZUZKGRtOYRc5K3H1q2FF8BBzwZeZ6xkX1IsIW2KxVRa67AiI1EPBW5lqKRTV3jBnG0I7xBHp7ERXc3MQyzN+XoiojGqgIMKkKbcKMY0o/a1SkKQJahQdy1w2DCQny5Z7nFyGl5OuVe3jvq81YTCqfvTKd+NYhPDZ/NafySg1jzMY01aq9J9ClxOHS2HQ0g5N5JXQNCyc9pwRFEXz/60HumTzYc0zj+yez8Oe9SCAtswiXW7uoW3TKyWw0XcesKgT4ePHRXVez8fBphnaOx9ti5mS20elJ13Vi/QLY/OCsZtu/NG8dP20/hi4lUWEBzH9qGjlFRopbFTCpcxIRwX7M3mG4mzc4m3tLgfEd0aSkrLaBnw+d4Kkl6xDApzOvoXdCa6bFDWZAWAJ17oYL0l6ToochgKU5G6lwVQMqhfYyOpPI3BU7cTjdpGUWcjg9j97JseQWV/LVL3ubESQBjOrTno7xkexJyybXXoclyMK8J6aSEB3628NtwR9Bi3Dbg3/+EboF/0+isryWPVtOUHdeFdmPX+1ky9J9mCsaDA2ShPLyOuLjwujVK54Vy+/nhmkDyMur8GhHNE1ny9YTnDqcg73BicPu4t3HF5F5Ih+rzXBeVlSFwFA/dP18fcGF396GhubhdSkli5bs4bW31lBUXE1efgXfLk5BP69HlyKMSqrQ0N8vzT+SmsuS5fs4nJrLcy+v+N110yvLmJOygc25ZwDoFhrJlHZd8DE36YOcLqNEXkCzG/3vwa3r2N0uDpfmUetq8mK9r2vTpKoogk4JrX6XIGUXVXAmr6ldRIf4CMYPS6ZDQgS6lJRV1nMgNYf9qTm88sgkfl34F4+wXbdI3FLHpevk11cxes1HTN/8FffsXEKf0Fh+m8xQhaBbSCva+AahCME1cV1oFxjGZ8d3c6Qsn4zqMuam7WTS2nlNJocY1+7uvR9x//5P+ClvT7MxTSiYzrM30KSOn+nC1KWpUYysSUm1u4FP0zdT4aynY+sIrGYTW9POUGtveh8DfZrGGNapLe/eeiVjuxmRlvtuGk5c62C6JbfmvpuGsWB5Cl//uAezqqDpkuKy2saydI1dBzORUuJrtaIqohkZ8PWycH7GR1UE7WJCsVlMWEwq3v8fe28ZH8XZt39/Z9bi7o4EEkjQ4FCcYoXS0hZKS/Wquzv1UjcqVCgtRQqUUqy4S3ASNCFO3G03KyPPiwkbtgktva/r87/lyfEGMr6zs3Me50+Ow2Rwajsdyyjk501HneNUvdlKRW1rOYWqejPvrNyBrKgoqspPj99E18hg7p84iG7Roej1Om6b2A+jQceQHh2JCW2d4ttw4IwzilZR3cjO41kkxoXibjKg1+voFBlEXkmNs/7PbLHxybKdzv3HJ3dxps7yKqpZmpqOXZKxSTILdh9m8ocLeWbVah479iEvn/yKZQWbXM6vE3RMixrFnKR76OgZSb+AJK4K0SZFveKjcDcZ0ImiU3F7zncbsTSn00RB0CJWvp4Y9TrKqhv4cMl2bA6JxiYbWw5ntvq87WjHP0V7JKkdVwxrk537pnyKzerAP8iL7/94EkEQqCitQ3LICLKCTgDJHQoKKpkw8QOum5ZCr14xHDqc04rglJXV8/IHMzl9OIeGWguNdU0s+ugPXvr6DiyNVjYvP0Tq1tM8MP59Pl3zOCY3I688dw233P2d8xiCAAldwmhosOLtrQ12+1Kz+P6nPdgdMmczihk6OJ6q6kZUFdzdDHh7u3P16G70T+lI545/nZry9nZrNr8V8fubGqabNiylymph8bk0RkZ1ZGN+JlfHduHrUVOdA+Ybz05lwdJ9xHcMpX/vuL+951l1lUzdsBBLs8CjAOgQGBbegTCPK9de2n0imxe+Wg/Ac7NHY6mzMm/Rbjzcjfzw7q28/+0W0s4WoaISG9FioTJ1dDJb92cyOboztTFW6uxWpsQkcbiigCbZwYGyXHZMepi3T2xm/YUzSM1E1KDT8Wa/iST6hdLosOFj1L6bBL9QjIIOmyqjAvV2G5KqIKoCVfZ6PHRuZDQUogIKKtMiBrG2+BB6UeSZxOl46k1sLm1xO3LXuXZl5TdWcbAiB0VVMAo6REHATW/ES2/CYnMw7f2fsDkkgn08Wfvc7QiCwOCucRzJLkIFpg9MZnDXFmua+LgQlnx0BwBT7v2ayhoz5/O06M+lxsoIAh9u2st3qUf56v5pbEvPIi7En9yyGn7afpR6Swspu35wEreP7kd0kC9dYkI4fKaABesO8v3agzw24yo+WbYbh9QSsXF3N3Dvl6uoMTfx4V2TGdBFiz4a9DoneTEZ9IQ0Cyw+Mv93dp3OYXBCLF/eP42Hpg9r85mYt2IPDqmFoOp0Ap2jgmgwW4kJC2DCoEQ6RwU1m+/qkBXNbGT5thPMujqFYH8vRFHArbm7TxQExiZ15lRhKQadjv3nC3DIChdqagkdKGLwsXGyLouZaARXVVX0oo7MhnzSajN5qfvdhLq1iD5++PAUTuWUEhPmT4CPB6VV9dQ2WJzrBS27T2WdmZlzFrk0chh0Ovp3axcf/i+jPZLkRDtJascVo7aqEUujDYddoqywBpvVgZu7kZvuGUFxfhWFhdXkNPtp1ddrkaaly1JZuqzFCzkkxIeqqgZ0Oh0mu4Of3l+Pb6AXlkYroihia5J4/NpPmHrHVeRllKAqKmWF1WSdKqR7SkeiIgO46fp+LF91uLlrBQ4dzeWLb7bz3JMTAXDYJWeUJv9CFTdF9EMQBEQRJoxLIjunAncPE8ndW7uJ/xkd44KZ+9r1ZJwvZdxorS5EUVS+/WEXp88Vc//dI0nsqnVp2WXtnIqqsqngPCqw7UIWJeYGIry0FE90ZABznrqmzXO1heVZaU6CBNq7SxRFXug7ymW78poGXv7mDwRB4M17JrRSJE49leescdmXnkva0QIkWaHRbCP1eA5zn57KobR84qICiArTuqm27s/gj92aUai7zsAL/a8GNDuTn7IOk15dzAPdhhJg8uCDAdfyQq9xlFrqaXBYCfPwIdZLI1sXCRLADR17UGFt5JOTu5FVFQGVsevnkxTiyRlzBkEmH6ZEDmBd8WEGBHbl8cSp3NJxJN56Nzz0bjgUiXivcM43ljApPMUlWlNnt/DgwUU0SNqzF+Lmw4MJo+kXFIdRp6esphazzY5dkrlQVYddkjEZ9Nx6VR96xUXgbtTTOezy6ZnwYF+qay1at56i0jcpmhNni/B0N2ILFJBsNhqabBzPKeaBiVqn3pHzhSzc2uLhLQA3DOlJTLB2j6/q1Yn1+85gtUsIApzILEZWZGea7uoBXQmP8mfBlsNIisJXGw44SZKPhxuf3zOV/Rn5TOybgEGnI6ekil2ntUjm/nP5lNQ0tEov/rojjfX7znAqp8S5bFRKPE/PGsWbP2zm0JkCBAEOny0gJSGaB64fwmMzruKLlXtxSDKyovL0F2uYPbU/RXX1vHH9WBYfOEGf2AhuHdKbmYN6IgoC13z0I6W1jQgCRPsGYDeYmR03idzGIp5J+xSHIvFE11v4JHMxkirze+EuFg184xI1eR29urSkt++Zu5yy6hY7FFVVcUgto/mlulwfPtLie9eOdvw7aCdJ7bhihEb6M25aX3ZtTOfaWwbj1lyo6uvvyatfakJ60677lLq6psseo7xce8l5uOuQs0s5nl3uXCejcGzPOQA+eHIJQ8b34ODW03j7edBksbNn/QkGX53M/XePZNWaYzguSVddqndkNLU81nq9jjXr05r9tETW/pGGw6Fw7nwpKb1j6dI5rM3rdDhkBFEL5/fuGUvvni3RhXUb01j+22FkWeW1d9awbOG9APx49XS+OXmY0dEdWXDmKHl1NYR5ehPs0XYK7JfVh9m5P5PZNw5iUErHNrfxM7m3WuZQZEx/0ln6bk0qJzKLQIAF6w7y5M0jEYWWlM/0kb3YfvQ8kqxw6/gU9u4+D2gDi5+vJ0aDnqEprrVZZZX1SLKCJCkcPJHHotWHmDG5Lya9nl9G3d7qugJMHgSY/jraJggCt8b3ZXl2GoXmWkRBpNBcR0l+DaGBMnUOM2PDevN0YoshcahbSwu8QdSzYMBjWBUH7rqWNGaxpZbpu75wGtYCJPqGMymqxcw4KtCXKSnd2JyWyaxhvXl95VZOFpTy/LSRDOry18bGAB88P40vft7Nhp2nEUWBLnEh3DCxNy9+sBbJrCIECIgGgX7x0c59usWEEObvTUGlptXTPTaMzn8ya71jcn/SsooxGXRMHdadLYcynOusdolBCbEs2KKlHgsqamlssuHlbmLtoTO8unQL7kYD0wZqBN4mabYsF4Us/T3dWfTHERosVmZP7EdNvYWPlu1sleqdOiyJIF9PymsacTSrxZ/NKyMjv5y9adkUVtQjCgIxof5kF1VxOr+Mx5asQyeKRAX6svaJ25zH2nEmhy2nzvPQ2MGYrTZO5Jewb3c+s4eOJcGnAwtyVmORNSK7oWSv0xy3wWFmR/lh+vgn4mdsHSWtt1hRmn3xvNxMmK12FFlptR3AE5+t4eU7xrkYPrfjH6A9kuREO0lqxxVDEAQemjOVh+ZMvew2gYFef0mSLqKh0YbobsJgt7S5XlVUnvhgJvVVZvIyS3jzngUoBh0RKw9SbpMwGfWIooCqwpiR3ZAkiTlvreaR+8fw5ntaWkkUBcaPTWLthjRAq4O6mB5RZBVPj7YF9FIPZfPyG6sxGnXM++gWOsQGUVJWx6Il++kQF8TCn/c5ZQe8PFuO0TckkvmjtZnv1E7dyKypJN4vsE2bkILCar5dvBe7XeLluavZsuLxNtuUb47vzeLM4xRbWmbQRlGH45I6niqrBYvRgcGgyfdZ7Q6G3vsZfl7u/PDyzYQFeNMxMpCNH9/n3Cc6zI+8Iq3w+3J6mtPG9uT0+RLOZJVSWF7LvFW7+ObsPt6/axpJ/uF4GVrfv9M1pbx2fCNxXv7k19eTU1/FewMmMzKypa3bx+jGjmvu51R1CTO2/YwBHcEeRlShkUCjN128W6IHqy7sZ3VRKoqiMLvDKMaF90EQBBeCBJBecwG5OdWnE0SGBnfmnT7TnevrLFa+3pxKqK8nO1+7lwMZ+SzceZQmu4OXl21m6yuuBc1twdvTjefuHcfMyX2564UlrNqcxtJ1RwGNkHjUqMy9eyKdwltIkKrC7WNSiAjwYWDXmDa/44TYUDZ+rBHtNXtOYtDrnFG/tPPFjC6vw8fDnepGCxabnQPn8hmUEMtby7cjyQoWm51dp3KYPaovCVEh3DEmhW1p2Tw0eTDr9p1m/ur9yIpCZZ2ZB64b4jIA6kSBh6YPY3Byh+Zr0YrJL0JRVXJLapx/C4KmRSTpVByCFj2tbDA71xfX1PPcL39gk2Q2pGXQNy6SkxdKscsyH2/cy8xBPekfmMza4j2oqsr4sMEMDExmV8UxCswlzDu/HC+9OwsHvNZKOf6Dh6bw7ZpUhvXsyMbUc2Q2X6deJyLLisu47pBk1u493U6S2vFvo50kteOKUV3RgLmhiei/qOOZfn0/3nt/Q6vlOp2Av78nNTUWrX0aUAK9UATolRxNeIQfm3456LLPy7d9w1uL7qV0WxV2QcAS4Ut9SS0IAgaDjhnT++Pr7c4X325HVbUXuCgIeHoYsVkdGPQ60tI1iwxBADeTAUuTHb1OZPq0FBetn0uxYvURHJKMQ5LZsfssHW4dxpy3VnM+qwy9TnTWcYiiwJOPXN3mMUw6PclBbUepADbvOo29uVPIy8vtsjoueQ01gEqouxeTY7uxpTCTiTEJdPTRUll2WWbCuu8wY8czycBbA8bz4/pDSLJCnbmJ7UfOc/O4Pq2OGx3h7yRJf+w6w8mMYiaO6E7H6JZ0k6eHiXeemsqH32/jx8JDNCXIgI3bd/2Mh97EY0nDublTitPv62xtGY8f/I3chipO1ZRgd6goKty391dOXP8E7voWxW1REOgRGMGqcbeTXV/J6Ih47KoDT72bU4gwq6GEeefXYW92k3/7zAqGBnfDo41i7cHBnQlx8+GCuZrnkiZyU5yrWOc7v+1gU1omOkHAx8Od/p2jUFUVN4Pe2cl2pXAzGbBaHa1sV7rEBjOsj2tE8LHv1pCeW4IKLHpiBl0jXU2WK+vMbD6YQXKnMH7ccJhdx7NdFLxrG5t4bcFm+vWJ5VB2IYIg0C0mlG3pWc66JUVVGZIY13J9RgPBvp4E+3pSWdGgdZyqWqNA5oUKl+s26HX4XFK4XlRR5/z/xYjUpcgvrSG5UwQ3jelFekU5+87n8+jVQ1r2EQQuvS1H84rwcTehk0X8PNww6fV09+nII/EzEAWR4SGapvDgoJ7cc/hNHKqEwy4hqTLGP5GklMQYUhJj2HIow9m1ByDJCoIA3u4mbhzVi2Vbj2OXJGaMbd112o4rgMr/GDFJQRAWoNmWlauqmtS8LAD4BYgD8oAbVVWtaWNfX+B54FogBO2TlQO/A3NVVb0iKfZ2ktSOK0LWmSKeuuUbVFXl+juGUV3ZgK+/J7c8OBqDseUxGj++RyuS5Ovjxn33jaJ3nziWLN7Prt2Z1NVZQBBwuJsYMLo7190+jBkPjuGO4W8538znjuWye+0JBl/dgy8++kNbKAigqkgOmT49Y/jw883Ol7IoCnh7u/PZ+zezeftpeiVHc+ZcMQsX70MURR6+fzQ/Lt5PZIQft868vKDh2FHdST9ViCgK9EyKIb+gClmSNT8oyTW8//D61ZQesvHxVZMYGxt/xfdz+RotAqHXizx858jLbvfcgfUUWzTJgh8zjtA/JJozNeVU2SwEuXlS77BSY29CUhTs/jLd4sOaC3o1IpKSEN3mcW+Y0IfU47mIgsCB47k4JJk120+yacGDrQjbvTOHMn/tAa0XVgUZaJBsvJu+jRp7E492H87S7GO8nbYZuyxjEETNVLX5e1FUleOVRQwOi2t1HQl+IST4aaTbDYPLOpNO79I1ZxINGMS2X1k+RnfWjnoURVX+1rsOoHNYEAsfvJHssirGJP+9eOGlWLb+qAvRSOwUSlxUIC/ef3Vzi7yKh0mLdF2orMPqkHA3Giiprm9Fku57dznFlVoq6yLpkWSZmWP7sGzrMVRVi/RNTenG/ZMGE+rvTaC3B/UWG3qdDr1OZWzvLs7oVXpeCQu2HsZql3ji+3VsevUuqurM1JmtPHT9MD5dvsupZO7n5cbApDiuHtgihtklJpj0LM1nccaY3pTXNHKhrIaahiaqGyzYHDKVdWZG9IlnBPE8cglBAgj38+bjWybx0oot1DdZSekYxTs3Xs2J/BIGdIpGFAV+KdjELwVbAJBVmVGh/QlxC+C66FHsKDvMtKhRGEXXZ+Eivl+Tyk8bD7darqpaRKm6wcLS12/F38fDxQanHf9rsRCYB/x0ybLngG2qqs4VBOG55r+fbWPf5cB2YISqqqUAgiCEAbc1r7siAa12ktSOK8LJw7nIsoLkkFm7JBWL2YZeLxIY4sOUWa6Ew9PTiNlsByAiwg9BAE9PN158cSXZl9QgoaoIksSSDzdw3e3DCIsJwmDQ42iOsMiyyo7fjyLqRUxWCclsR3E3IOp1IMIzL6+kf984Z53T9Gv7ctusIZhMBm6fpb28e/WIYcSwBDw9Tfj6uDNhbDJ/h/FjkkjpHUtTk4OHn1qMpcmBr4+bSwu3qmoF3LZDDTSMg/eO7vlHJKl3UjTHT17AYNARGuLD/c8sxt/Xgxcfn+iSBuzoE0hGndYaLqsKqWX5CILAvJP7eLXfOILcPLk7oT/Ls9OZFd+b5RuPcy6/HFEUuWZoEl1igts8/8ETeSiKio+PO1W1WrqkqcnujMhdCi8PEz5ubtTZrVxkLULz9VQ0aa3pu0uzsMra9zYgOJZ/dR3Ewowj7C3Nw8dgopu/qxL6lSDaI5h3et7O9rJ0fA3uTIroh0HUU9JUzam6fAYEdsXH4FoDdSlBqrGZyTNXkuQXxfPTRuLv6Y6vh4kbBiVzIreYp3/eQIivJ8O7deRcUTmP/LCGxiYbn9wxhf6dXcnlofQ8qmstxEb4s2pTi2egv48H37x1MzpRdNYICcDn917LoIRY3px1NXNXbqdbTChDu3Vo9Rmr6iw4JBk3o57oUH+KK+sI8fPmgeuHEBcewOpd6fSMj2Rk33inRQdAYnQIvzwzi6KqegYmtHRxebubkBUVUQBfdxNGg56Hb2hRtb/2qmS2Hs5EVeHNeycxoLtrLdZD04cR5OuJyajHzaBn5Q4tVf3g9UPZdTybgrIanrq5hdTnVlSz+1wewxM6ENcckRuR2IldL3WgssFCsLcnoigwrJueM/W5xBtjyG0sxqbYERHJN7cUj8+Om8zsuMmXfR72puXw3dpUJ8n7M2oamvht10m2Hs5k+7wHL3ucdvw9hP8hNUmqqu4WBCHuT4unAiOa//8jsJO2SVKcqqrv/ul4pcC7giDceaXX0E6S2nFFGDouiV8X7qW+xkyHLqGcPVEAAugNrettZt08mB8WajUHhZYGFKvMe++vd6aXnFDBTVGJiQ+jzmrlYNEFTGGeOApaQv7H92Zy+nAOj75zA6lbTjNoYk+O5ZazYVM6DoeM2WLnh6/vxMfHHW+vtu0+IsJb+2v9HYICvTl8NBebTcJul6iptaBvbrkeNTyBbbvOoaoq5iAFd72eYRFtF/5eTHX82Uj3rRemkZlVSmS4P69/uI7TGcUY9DrWbk5nxrX9nNt9MnQqpVt+5kRxMaJZQPUDo6An2qvlMz3bZyTP9tEGrq9y9mrnUnGxLfkzft+ajqyoNJit6EQBWVFxdzO4XKeqap5zBp2OeYOm8/zhtXTxDeG1PhN488RmZFXh8aQRANyfOJSjlYW46fS80XcisV4BDAntSG5DFWHuPi5aURex4WQGr67bRueQQL679To82pj59w/sQv/ALjRZ7RQU1VAd0cDtqR8jqyrBJh96yWqVAAAgAElEQVSWDnmmzc9XYzNzzY7PsNhtGM1ufNhrBs9eq11rdnEld85bgQOFqgYzC7YfZtHuY5rKNDBv435+ekgzXc4vreHut5ZS22jFzSGApCArWi2PJp8wC50o8tuBk7y6dKvz/KtTTzEoIZaU+ChWPj/7st/DO/dP4uvf9jEwKY4+3aJ45IPfKK9r5PXvN/H2/ZO5bkRL4bnV7kAQBIx6Hb/vOcXqXemczi0jMS6Ub5+/CZNBT61ZK4gWRZHusa3TvT3jI3n17vG8NH8DT33+O188NZ0tu85w+nwpj90+kh4JkU5PwLd/3KLVRqmQeaGCr565AavdQWlVgzZBkCRmzFuKTZL4cusBdr90rzNVKAjg4aHTZBJUhUePfUC1vQ43nYk3kx+gqKkck87I1KjLR1EvhdXu4MX561sRJAHQI6A2yUjuGolssNiwOaRWxsPt+D+DUFVVL7LrUuByM7B8QRCeAX5UVbUMQBCEUOB24MKVnqz9KWrHFSE43I+fdzyHqqpYGm0s/3YnPv6eXH19a++nGTMGkpwczTs7d3GwvhRUHR1KfBjYLY4VK7VQuaeniQFDOxIY4s65YBv9vvsKEQF5iicdv65HlFynMpXhOhYn17G7Po0PJo5jx+5zWKx2dptKmGytYkzEX6dMVFVlXtoBjpUX83Tfq+gW+PfWHUndIwkL9SWvoJKZNw7Ay8OEp4eJiVf3oFdKHO98vQmPepFbvPvwyIDWHnT5xdXc++pSmmwO3nvyWgb0iHOu0+tEunXVLDqiwv1IP6v9FMNCWtq1zVY793zxKwXFtXg5tOiSqgdREsinBtqoSb3rmoG4mzThwpljW9ciXcTVVyXy+9Z0vD3dMJl0lJQ3MHvagJZz2+xc8+mPlNY3cufQFJ4aP4wdkx52rp83uKUoWpJkErxDODT1CQCqas1U1ZkJ9PWkk09LjZNDlnn6142cKSnj5UmjmLN2Kw02O2kXStiZkcPE5K4u15idV8GTc1ZoKt+ApclOVJIP0lAFm+KgyFp92fRabmMlNsmBJChI7haeW7iBPe8+AMCS7ceR7AoYtGigdEkRvAD07xTFmfwy4qOCWLzxiEY8BLAJCvrmTcOCffnq9ZsI8vdCVVXeWr7D5fxTBlyZ5czApDgGJsUBMPbNb5EUBUGG1LP5zm0O5l5gzi+bqcmqx6DXcd+1g5i/+gDW5klHTlEVWw5l8PPGI1glCUFRcSgK2aVVLufKK6yivtHK2r2nta5FWWHxH0c4fCgPq83Bq59tYNWXLQXssyf048T5Iq34fFJ/zE12bnxpITUNFrzdTdx57QBskqSRy8BGnk9bwo1xg+jlH8tt+78g31zJ1KgUHk+cRKm1EgUVhyJTVWnl874tE//U9DyWbjjClJHJjB7g+gxchO0SWY+L0OtE4qODMefXU2ZpRDJqucm+CZHtBOnfxf+7SFKQIAhHLvn7G1VVv7nSnVVVVQXhsnGvm9BScbsEQbj4wi8D1gA3Xuk52p+kdvwjCIKAp7cbdzwx/i+36949kvM7GlB1AiZRx433DmFSUgL9+3ckK6sMzwQfntm3BWu9BPWX7GgQKBvqjeqmI/6CSL/OsQyd0puXzh/EJssU1tdzXqplxktX8c6eXdhQ+PDAPsZ0/GuStL+kgC/SDtIkOciqrWbPjff87Wd1dzPyw9d3NovpuQ7EWUWV2AUFVYLC7GqXOp4fVx9ka2oGUaG+1JutqCosXnfYhSRdiofvHkVCl3D8fDxcpAD2nsklq7gSh0NBaM5zCc3BuN8PnuGVGWNbXZfRoOf2Sa5FyxchSTKr1h9HkhUeumU4s68dgK+3Gwa9DllW0F9ie7H6+GlK67VU2sJ9R3lqfNuChBl5Zdz3xi/IssL7T1yLJCs8/+kaAN59fCqDerakmPacz2NXZi5NDgcv/76FBpuWkpVVlb27M1j1w0HunjWUgX21e/Dzr6lU15pdznf+aBXXTOtDam0Gt3UYddn6o2T/SBK9IzhRU4Au18MptAgwICGG9QfPIksq904cyDUDu7F8XzoOVaFXdBgrtqTx84ajhPt6UVKqPZyCAL6ebtTqNYmBaeN7EuTfckxPNwO1Zm0Qf/a64S6F1FeKWsGObATRAd6RnqQXlqKi8uyqjdQWNmBQNLKQerrApTja7pD448AZsouq0IkiISFeKEaBlJBwZj2xELPFhtlqx26X0ekEBg/ojEGvQycKjOjTmUMHczE22+RcCn9vD964ZyKdIoPQ60ROZZdQb7bikBSqG5r4YNFO7psxiDWFJ6iMqGBvZR17K88xt9fNlFhrUVBZW3SM55OmcVPM1SzP3Yo1y4Mnf1jL/FdmktAhlPpGK4+9+ysAh07lk9w5gpDA1u3/vl7uPH3zSH7dmc70Ub3olxhNRkE5A7vH8fBzS6iobMStVkHUCbwyexxnz5cQFx2Iu1vrCGY7/kehUlXV1jPtv0aZIAjhqqqWCIIQjlaM3QrNxdzP0nYq7orRTpLaccUozKtk37bTpAzpQqeE8L/d/rkRw3h92066hwQzuqtGYvr27UDfvh3412+/YTPLoMP1KRQE6vto0ZS07gInhUrmn95Ez9Awys16QKBXaBg1TU3Ym329At3/WpsHwMtgRFVVREHA2/jPXpx/JiIAU0Yks2nvWax2B7OntERgLpTWsOC3A9gdMjmFlRgNelRVZfTAtmfIoGk5TRiV1Gp5QlQItuZiXlEQmD44mZ2ncqgzN9G7Y2Sb1/VXWLb6MAuX7QegvqGJ+24b7lz3y5F0Pty4B50oclP/nvSMbknVmC4hT2VV9ciySkSILwAb952lqdkmYsWWE3h7mJwz/u0HM11IUnSALyoq7gY9nYMD8XN3I7eqBqMN9u/PRjZLvPr+WjYuexSAvIKWSIgogqJobu+9qhJ4ZkSLjtKlcMgyn6/dR3ldI+9PnUFlfSOnAssY26ulXmxcSlc6hAUgyQpdooPJLKzA0ASSHU5llDq3yy+pRddMRiYP6U55TSMHT+cjCNDgsDu3EwSBhY/dxNwV2zmcVcjn6/czKDGODqEtyuVXgifHDeP19dsQEOibFMPshSsACPPxQvDWoVpkjM1WI/HRQSzeqFmXBPh40C0ujPQsLQPx9PQRdI0K5sZHvkdWXCfZDgn2H8zijkl9uXXaANxMBsIDfMguqGTc0JYC7jqzlWue+habXSK5czjfPT+DLjHBxIYFuHSWdY8MJt3PQGWLjSAXzFUEGL2osNYzKkx7rmfFTmDNvBLKS2oxGQWyCio4X1DOpr3nnPtp4rBtBwUkWcHa5GBUz86MH5CAu5uBqBAt5fzeK9N5/q1fycwuR1ThvmcWY7U58Pfz5Ocv7sLQRklAO/5XYw1a8fXc5n9/b2sjQZu53oAWF1sJjEKrZzoHfK2qatvFbX9CO0lqxxVBlmQem/U1Foudpd/s5Octz+Dlc/maF4BpSd2YltSt1fIGm41dWfkIqgASGIwCIR6eVDRZsMuyM9IrNxtnApwqK+O3GbPwMRl5cMM6zlSUoxNFJEXhXGUFdlkmo6qSTv4BeBha17b0DA7n85HXcKqyjFkJPf/t+xEd7s+aL+5ttdzbw4ROFBFF7fd3x7SBjB2U4CQVoOk17dmfqc1+TXpGDU/E8xK9pYrKBs5nldGrZww6QURSNQPT6wYn8fR1w9l1KoevN6byxHdreXv2BNyMV/YzNlvsWseZqmK2tAzyNofEW+t2Xrw6Fu47ylvTxnLfiAEcyrnAMxO0VOKBtFye/Vh7H71873jGDkpgeEpnVm1NQ1VUJg5NJMjfix2HMkGAqSOTKaqt597Fq6lutPD8+OEsu3sG2RXVjE7ohKqqHC0oZv7OgxwWitBJOiLrWgivsXlwMxp0JHYJ51yWRmA6xbWkSu0OCYNe54zkrTl4hmV70nBIMg0WG1/cP43uMa61Obml1dz94QpNjFBV6RsfhcmgR1EU7Jd0L4p6AYMiYNDruGlMb05mFWuCnUBKomthd4fQAGotVmRFxSHL7D+b949J0ox+PRid0AlFVflo616szVpJvu5u3DU9hQhvb5Ijw/DxdKNfYgz9EmM4dKaAa69KJibUn6ROEXh7mOjTNYq6hqYWyxQ0kqlJYDiw2iR+WHWQjjHBjB7clV6JUfRKdFWnXr71uNPcOO18cfP3oGfRnFk8M28tu45n0a1DGD82bOVcfbFzP50gkuwfw6wOQ6myNxJi8kFRVB5+ZwUXSmsx6EW6xobQMSqQ+99Yjs0hoWuugxszsCuhQS3p5tXb0/nwx+3ERQQwdlAC3686gKKqlFc3MGVkMrmFVfyy8RhXD0lkUL/OZOdVIssKtfWaTltldSOV1Y2Eh7b89trxvwuCICxFK9IOEgShEJiDRo6WC4JwF5DP5VNnX6C1/hvRyJEJjWBNAroCj17JNbSTpHZcEeTmmZwiK8iSgM3q+FuSdDkYddrgpzbTIUlRqbI28UC/ARh1OtZnZnC6otwlLS6j0i04hDd27eBcZSUqmvGru17P8Lg4blixlKzqKgLdPdhy6x2Y9K0f7XGx8Yz7Bx1ol4OqquwpzMfP5EaPENcB2M/Hg7ceu4an31+NrCh8s2IfMyf2ddnm24W7WbXmKHa7jF4vsnXnWT59byagRXjuuG8BsqwQEe7HnNvH8uWG/fSPj2beuv3UN1mpM1vJr6ilsLKOP46eY9qg1lGotjBtYm827ThNk9XByKEtkS2dKKJrNoS9+PkMej2PjBnssv++4znOKNHOw+cZOyiBXl2jWPP5PUiy4jTXXfzu7ZzJLiE2IoBXNmwjq1yLCD372yb2P3MfCWEtHXdDOsXwr0WrNHkBk8hDD48BNMXzi4OdJClcKKrm4btG0adHDFHhWhfVZ2v2smDrYTqFB/LzkzNxNxowW+1OIcZGmx1JVlqZzW47dh6z1eaUKEjPaR7kBegQFkBeaTUqYDDqePOOiaAonM4pZWTfeLrEhpBbXEXnNtzlbx7em9eXbsXdaGB4UtsK6n+HYG9Ptp7N4ve0s85lJ4vKmD9rGn4eLY0JO49lcS6/jFnj+hLcnPYb3rtFMd3X252bJvXllw3H8HQ30CMhkqOnClzOdfR0AaMHu0Y4SyrrKaqsIzbM/6LaBpHBLSRDEATef3iK8+/x29926liJCOgFkY6eGokNddP2q6huIC2jyNkR+v6T19LQ7GUnAH7eHqz/skXo9CK+/XU/DkmmsKyW7AuVTjuYzfvPsmn/Waw27bxZFyoID/IhKMib+vomunQKJf1MIYNTOrnU+LXjyvE/qLtt5mVWjb6C3YepqposCIIBrcA7XFVVezPxOnal19BOktpxRTCaDDz77g38tmg/Y6f0JvAfvHyK6uq5UFdHv6hIdKKISa/n6ZFDeG/PXhRBQUGLGkV4+3B9YncWpZ9ARXOSV1SNSnUPDuZIcRG/nE53KisDdPIPYM7w0fSePw8VqLCYKWlsIM7vnwkE/hN8cGgvC04eQ0Xl63FTGRHj2trdIz4CN5Mem92BosBDb63g4ZuHk9xFK9ROPZyD3a6RDUlSyDxfiqqqCIJAWXk9DknGZpPIza/kSOYFfD3cND2jjALk5iLji7Pv6KAr79xbveE4VTWa0e+877Zz3+3DSekZh14ncs/w/szfdQhFVYkL8md8UpdW+08dmcymfWeRZIWbxmtF4cfOXuDEuSLGD01k8brD/L7zJGVVDYiCQLC/F0MmtAzCoiC0UvfOLKtEbCZosqrSr7n1vqyynspqrSZKUVWqay2cPFPIlKtbooBLdh9HBYqq6jmZV0r/LtFY7S0+d9X1FgY8+TneHiZuHdGH8upG/jh4luQO4Rj1emwOzS9NUhRnjU95bSPv3TOZeb/vI9zPm2fnrWm+dvjkl13O6MrXq/ax9v1/udRxTR3QnbG94jHodRh0//UUzxc7U13+VlSV239cwZK7ZuBhNLD9SCYvzt+ArCjsTcvl51dvafM4j9w2gjtvGISbUc+tT/2IzS6j14koimbYPHpQVyqqGwgO8KbJ5uD7tan8tOEwKhAa4MXLd4yjpLKeGW00AJyrK+L9s2vp6hNBkaWaAotWmC2rCpN3votOFPmq/910840i0N+T+Jhgsi5UkNgxDB8vN3y93XnnsSkcOpXPtaNcZTlUVeV0VgnJ8RGkpuWiqiodIvyZMiKJmnoLu49mO7vcxOZ3RElpHUabptSfmV3Gzt+e+i/f/3b8n4EEoKqqQxCEw6qq2pv/lgRBuKJUG7STpHb8Awwbm8Swsa5Ri/paC28/vQxLo41n595AZKw2wz6Qf4GXNm0h0teHY0XFCILI2M4d0et0/H76LKM6dWRGUjIrzp3Erip46A1M6aLVRLw8bCQv7diCXhQpM2uFu54GY7Prt+som1VTTWljAzcn9WTJqTSGxsQR4/vPW/7/CY6Xl9AkOdCLImeryluRJE8PE4vmzubGJxagqAonM4t58NVlRLl7ERnmx4XCapftHZJMUXENUZEBdOoQwoihXdl/JJuE/tFsOp6B1SFTUWd2qddwMxqYd++19OkUyZViV2qmkwxk51fy0tzfmTQmmU79IqhsNDOxR1csNgfPTxqBKApUNVpYevAEnUODGJ/UhfjYEDZ/o+nPCILAqaxiHnxzOSrwy8ajWKwOp+8XQGFZLaIoohMFFEXlxQnDWXcygy93pXJVfAfenDKWEG8vTAY9VruDQE8PZ1dSeIgvPRIjOZpegChqZetbdp8FAV54dCKCIDAiuRPb07PwdDNilyReW7qF6CA/THodKmB1OJAUhdrGJr7ccABJVhAdcDyriHmPTCMswIeCshoe/fJ353U/MHUwo/vEM7pPPBMen+/8LIqKkyABVNZZ2J2Ww6i+rpHJiyKS/w7GJHbmbGmFy7Ks8mqWHznJtcmJvPLdRidJMFvtbR3CCS8PE7mFVYwc1JVl644QEeLHRy9Mo7quiQdf/QVJUnjw1qs4eaGULYcynNHbsupGBnaPc0ap/oxXT64kp7EMN9HAy8nX41AkFuXuQRAEshpKQYZPzq7HXW/irk4j+e71mzmXU8aGPadZueUE08f2YnCvDgzu1Vo76rtfD7B4w2EURWX6uN6s3HycH9YcYlCPDuQVVzkVtnt0icTSZCevuBpRD6JdQtTrCPD7+xrFdvwN/ocobv+bKBUEwUtV1UZVVZ2dRs2Ckn/9w7kE7SSpHf8Wfl9ygJNH85BlhbnPreCxOdfSKSGc5/7YRFF9A/m1dehFEUlxkFpQSHVTE7KqsiUrG4MoIqkgGCHC29s5+w7y9OClq0ayJTuLDVmZ2jIPT/pFRPHkoKFsy82m3moju7aaIA8PYnx9eWPUGF4fOfqy9h7/STw/8Coe2LyWADd3bkhoIY0ZeWWs2pLG0D6dGNa3Ex2jAsnM1wY7wSxTXFNLRUUD/n4eNJpt2GwOTEY9JpOBgABtMBJFgaceH8/1b//E9gsF2oAAdA4LoMHq4MyFMgC6R4f+I4IEEB0RQHFpnVbALgpYrQ6OnMznx+Iz2BwSUQG+bHqiRWPt0SVrSSsswaDTEeDhTv+O0S73d+73W52Dal2jFQ83I6BFxLw9TNw2dQArszKaxQ0FVh47TUZZJZKisOFUBrcM6EW38BDiQwI5WVRGg83O3qx8hnaORacT+fiNm3A4ZDKyS3nwuSWoKmzbc457br2K4EBv3r51PLllNQR6e3D1nO+cNTwmg473bptETmkVX29MxS7JWmu9AEajDpNBT3xUMN7uJurNTXiYDJhVlS6RQWw9mknPjhF0iw2lW4cwdp/Ivuz9fHn+BtR7JjA6pXXU7d/BgyMGEh8SSEldA2vTz3GutAKDTiTEx5PKOrOzPVsA5t7ftvjir5uOs3DVQZK7RLD/WA6iKDJ2SCLP36eJDO9IPY8kyTgkhdVb0sk317kUeQf7eeHvc3myEermS6FFS6MGu/nQyz+OiZF92Fl2mpfSfkFRFU7XXcChKqTV5HF9zACOL63iXFY5BoMOu0Pixqv7YNC3jrgdOpWP1Sah0wms2X7SmeLNvlBBZXO3o0Gv41xuGQ6HTGSoLw/NvIogb09OZxQz6pIC9Hb8/xeqqk64zKp6NKuTK0I7SWrHv4Wo2CD0eh2qopKTUcITs7/h40X3uLRmG3U6PAwGnh91FZ/vS6Wovh6bJDtNWkVRJCFYq1M5XFzIbat/RQASg4Jxa64tmhTfBUVV+e7YEepsNvSiwNLrbqRrUBBuzZ5g/y8IEkBycBh7ZrkaoqqqykNvrqDRYmPj3jMs++BOvnxlBkvWH2HrgXMYm1QqiutQgUcfGAMqREf5U1pWT9cuYXi4t0QgKurMFFfXO6MFOlHk1lF9iQ7255kf1mHU65l72+V+/5fHy09MYt2WdPx9PPjtjxNUVDUw7bq+nN61W3NiV1Q2ncrk16OnmDmgJ402G7KiYtSB2d564uV/iVhleJAPnz4/ncOn8hnSqyNhzQW44VkBPLR0LXZJ4nRJOSa9DoPOgChoaaWKBjMWu6NZdFPlva83sTU0nBcem4DRoMdg0JEYH050RADllQ34+3rg7+tBTWMTN3+whNKaBp6+7ioXmxC7Q+bMhTLumzCQ2BA/iqsb+HnnMfp0imRy30S6xYTi7a4Vyr/x81bqmgUYz14oR1XhpQV/sOq12xnTv4sLSTIZdEQG+5JTrEUC7ZJMQWkry6j/CMZ1i+ebPYfIqtCIyL+G9WNCd42MXT+yBzuPZXHXNQPpGhtCUUUd3h4mpweboqh8/MMOFEVl79FsBASsNgenMlsKrIf07cSClQdQVQeNit1JRHy93Pnk0WnExwT9Zffk271msqHoGDGeQfTyj3MuHxHanQ6eIeQ2lmNXJU3fSrazOHcvpoZAVFXFZpf4fMlu1u0+zdJ3b2917PtuHMoLn67BYnXQ2KTVLvl4mnju7nHM+WI9sqIQGx7A+YKWaNvwFC2i171Ze6wd7bgIQRCGACdUVTULgnAL0Af49Er3bydJ7fi3MHJST7z9PPjgxZXUVpvRG3Sknsvj3v4pvLRlGwA2SeKX22aRGBLMmM6dyKio5Jsjh9mUd15L/6hwulxrK86v1TwHmySJJkli7YxbEASBjv4BWCUHFRYzsqpi1OkI8vR0EqT/LhSUVHOhtJZ+STEu6TBVVfF0N/Kv6YO5+/pBSLLCvgPnCfD3okdSSydRXGxr25Bwf2+GduvAjpPZiIKAXicSE+xPbIg/y5+99Yqua/PO03z67Xa6dgrlnZeuw2TU4+lh4qap/SgsqWH+ot1YbRJdwoJ4YdIIjuQVcWO/Hty5YCV2WeZgTiFL7rmJr3ak0jk0kPjQIGfd1EW8+fBk5n6/Bbss89r9EzWxTTcjb3yzEb0o8sQdo5i34wCy0tKxGOnrw40pydglmXk7D2CXFfSiSJ+YCErOVVFzvo79BWZ27stk3AitM1KnE/nu49mczymjU1wIer2OfWfzqGm0oKgq32w8xKszx/Lr/pOk5ZZgMuoZ17sLz//4B7tOZWN1yJgMevadzeO1m8e5CA36XmLuetH/6+Iy258U4n+ecwu1jVYe+GAlkiwT4uflooj9d5BkhfS8Yo7nFDM5JZFQ/9Z6QJdi9/k8rM3dXwaxpYPv8RkjeHzGCAAWrD3I92tT0etEfnxlFnHhAYiiQHSYP+VVDYiiQFxUIGWV9Tx2u6ZuXVhaw90vLKHJ5mDOwxNYvjuNkmZNrOgQX5I6tW3MfJHgmIx6PPUmboht2/8wp7EMhypjEHWk+HfiaE0OdkXCb7SK//5QzuVq0dDcwqpWzxRAr4RI1nx+LzOe/oGSSk2nKtDPk2c+Wk1K9xgemDGMx5u1lURRYOqIv7caasc/QPM7+f8QvgJ6CoLQE3gS+A7NC274X+7VjHaS1I5/GylD4nl27o189sbv5Pd34+3sI3hcaCEvsqqSVVVFYkgw7gYDvSLCOVlVpv0OBa1A+7GBWifV5C5d2ZKTTV5tDW+NGkungEDncdz0Bp4fOpzvjx/l2oREIr3/eztX8oqquOPFnxEEgf49YvnshRtYsek4V6V0crb8n8ku5ZG3V2h+ay/eQNcOf+1hpigq57PLePXGMbw6cyzb07NIjA4hNsS1ED2ntApPk/GyA+28BTtpaLRyOqOYY+n5DEpp6XxavzmdymqtgPvnlQeZ+9J1TO3djc2nzju92fSiSOeQQN6YNo4pn/3Ewr3HuD4liZevGeU8jo+XGzaHxP4Tudw1ZzFJncI5eraQ8qoGBAHeWb6dzKoqpOY0jigIXKit46Nt++gcFOhM70iKQpW5iUEBERwy5qKqEBHm2rbtZjKQfEmbescgf8Rmic2GJhtv/LKNVS/Mxu6QeOzbNTw8fzUNTTaszRESm0NCURQarXYXkjT37onMeGsxpdUNBPt6UtvYxJn8MtYdPMvEwYnMXbQVWVYxGfSEBHgTFxHIT6/cTGWtmf7dYlvZzVz8Dr9Yv59zheU8NnUY8RFBfLlhP/M3HkRoNh5edeAU61/5a/uo+6/qz/1L1qDXiQzo0LZR8caDZ7FLMoIgcPTcBeLCA1i1Iw3BR8f4Xt25dXI/woJ8qLNY8WoWVtyemonZokUJl/9xnA+en8aTn/2OucnODaN64ZDkVmkwVVV58rPf2ZuWw8DkOD59bFqbkdv0mgImRfZhW+lJ+gV25s2eN7Esfx+nagv5V+fR2BNV7np5CYqq0iEy0OUYB0/mkV9czferDmBusjN9bG9WbD6OQS+SX1yDoqocSMsl50Kl85lQVfWyIq3taEczpGZl7qnAPFVVv2+WD7gitJOkdvxH0HtgJ35Y/wRJH32OVZIQBQGTTodNltEJAgOiXHVYUiIiKM1sQFZVREll/4HzDA2NxtPLjfmTpzq3kySZC/lVREYHYDTqubN3X+7s3ffPp/9vQV6RprTdZHNwNruUbp3CmPOAaxps5ebjmJu0VNWvW9AuaQQAACAASURBVNJ44Z6/Np5+58P17N6XiV4n8sPXd3Hd4Naz5EXbj/L5+v0IwDcPXU/PDlqKQVVV1h0+S155DZ3jQzh1StP0iY1uIZrHsgtZeeIMCAImg46BfTvQYLbyyM9rSCstA0Xlmp4J3DakLyaDntScApocDuyyzPr0cy4kydxkZ/+JXADyi2vIL25JPbkZ9HQNDWZfdRFCc1ebThCxyxppOVNarnXoNc9Yq8xmXnliFtv3ZRAV7kdSQiQNFiubD2YQHx1Mj84taZS1m9P4eP5WvPU6hDA9jYqEXhXJL6/hYGYB+RW1KKqKrnkAdjPqCfDy4PrBSQR6u9bZ+Hi6s+Htu5EVhVFPfu30b3tj0WYcNgd6UYcsS/h5uzfXXIGEyovLNqMXRT6/byqhvt4uEandp3NYvOsYTXaJkpoGVr0wm5+2H2v+jrRJw8UU38Xvra6+CW8vN3SXpLhK6xsRBQGrQ+LT7fv5fvZ1LteeejQHT1nzE/TyMDKsV0dq6i28u2w7Fg+Vk+lVDB/ShW93HmZl6kligvz45fFZ9O8Rx8JfU9EpKlcPTcTbw405d41n5is/MXfRNjYdzODTx6e5nKu2oYn9J3NRgcOn88kprKRTtGsUdF9FBs8dX4IgwA0xg3i4q1Yre0uHSyx7vGHxu7dRUlFP/+QWv8PthzJ5/as/kGQFRVFRVJXj5y6wY8HD6HQid89ZQl5RNU02BxfKahGAmyelMPmqJDpEBdKO/zD+b0WSGgRBeB64FRgmCIIIXHEKop0kteM/inv6p/D5/lSCdW4klZtw7xvItP49CPF27ZL5YOwEmhwSO3OzCd/YxCF7GnevPM+Pyx/E2CyOqCgqj/xrIfl5FYRH+DH/x3vQ6f+ZyvQ/hcVi44OPN9LQaOWpxycQ+hdSB4N6daBH10iy8it44rZRbW4zrG8ntqVmNP//77VzDh/Nw2aTEN0MnM8uJSS4daRoe3qWU4TvSFahkyTtP5vPm79swyHL9O4YyVvPX0t0hD9hlwhZvvvrTsplK25RBmaOTmHq+F7c8OQCMnR1GKtVTFbIsZbQ9XqtS7FPbCQBnh5YHfXMGtDL5To83Y14uhudJPAi9DqR5+4ex7hBCVw/uie5ldWoqoqHycgTKzZQWtfQLPEgIoqazxgqmEwGF+Xxxz9Zzbn8MhAEFr50M52jtGtatzkdSdL2CZTdMAsSkk0m3NebnnERGPUnNJkIFWRZRa8T+ePVlomj3SGRejqfuPAAYkK1CJ1OFLln0gA++nWPU5m9qt7CxUDHpTGThduOUFmvFRDf8sFSZEXlocmDuWOMZkzs7W5CVbVj+nhotU/Dkzqw42QOogDxEcE8PHkIoE0CHn9lOSfPFhEbFci3H92KsTnS5WYwQHPkyd2gp6yinkB/T/R6HRaLnRffWY3DIeNp0LHi09vx9nKjyeZAdhO0Cxbgl/1p7DyTg6KqlNU1cq6onD4dI1n1xb9oskmEB2vPd16JVmfVZHNwNq+UP8PXy52uMSGcz69AbFS449mfefjW4dwwoUUeIKuhFFnViuTP1RU5l9c5GrHKNkLdNDLTITKQDpEtxEZWFDamnsOmyCiy6rzXRje981589fJN7D6SxStfbAC0Mbxv9+h2gtSOy0IQhC+AJWgebjcDd6qqWioIQgzw/pUep50kteM/ikeGDmJqZGceumU+52wSnqlFDJg+sdV2OlHk0/GTWHTkGMuXbUFSZWprLNTVWghuJibmRivZ50tRFJXCgirWrTtGZGQAKf3+a0J9V4Lffj/Gnn2ZyLLCF19v4/VXpl12W5NRzyfPtW2PcREj+3eha1woggDhwX+v/Hv7rCHM+2YbUZH+JHeP4svFezhzvpjIMD+mju7BnM/WU9zQgMFfh5+nGwd3Z7No4X7uumEQ4XEBIGgF2GcLyxG99C4ECbSuuPxyLdIysEcHJFmhsKyWi/EVASgtq6eorJboMH8+/WkntlP13Dq8Ow+PGUxhWS3f/rqPztHB3DK5H9+/fjPvfr+VyBBfjpwuoLahiRf+NY5xgzX33XBfb8J9W4jejifu5mRRKV/tOsigjjGU1/9/7J11fFX1/8ef59xYd/fYGBsxmtHdJakgoIAdX7uxG1tsRfmqgCghIindzcjBAhasu3fznPP744w75gaign71d58+8LHtfk7e7d73fcfrVcOe9PM8NKR3k3uRX1qFySLh5KCjuKKGbYlpLN5whFg/bzRaEauzSJHBgE5RcHLQcr6wnIEdo/n6wSlU1Nbx5oodZBSVMXNQY2uoxz9eTWJKDoqisPjFmwgP8GL38XQ+WbYbB0UgJNiLyEBvpg7uhJ+7C4eTs5k5qsEPr0dsOFtPnMNqlTBb1X6rZbtP2IKkLi1Dee3mkZwrKGVyfSbw9ZtHkVFYRpC3WyOZgJfeWcPxpBwAcvPLycouJSZKLcmOateKGpOJwqoacvbmM235lwT4ufHfebMQRDV4ArVcfSEDZTFb6R0Wxvb8bDQagUHtonHU61h/NBlvVydig9Xsj6e7MxcLZSS0CadTq1DOZBbw8I0DmjwXoijw1dM38vWP+1n000HMFolVm080CpLGhXZlV1EyFeZa7o9TM6pnq7N59PgHyIrM7VHjGRvS1ANw0YbD7EnKQNaqGTGTVcJktZJedFFmUq9jaM84Nu9PYeeRc3SPj6BXh2v3OvD/nf8VMck/SSrwNhAELAVqABRFOY/ak3RF2IMkO1cdvU6ddgPQaATMZitP3fstKUm5zL5nMJNmqP1HDlott/VIwHpDJWt/TmTgkLb4XpQ5cXVzpN+g1mzffBpZVvjozQ1oXfU8OWcs/Qe0vibn7uPjikYjohFF/Hwv31h7pQT7X7ktwvixnRg/thMAP6w9wpLVh5BkhcTTOWzdl4LFKqNYZOJ8vHlsxmAeenUFZovEV8v2sXXhA4zt1poVe09RazTzwPyf2f3GPY32//SUwQxoH02ApxuxIeobpiDQKL3u4eZIkJ8HxeU1/LLnNBarzKotJ7nn+r489OYKsgsq2K5Po0WID306R/PJMzew8/BZNu1PQRDgWEquLUhqjviQQD6Z1lBSfeQS6166YyTvLdlOfHQwXVqF8sC7P6IAp/KLaN0lhONn80BRA7t20UF0b6uWb1qHqYrPP86JwCrLTYQdk7MKMZgsOOq1vLloK73jW3AyPc824VVdYWBffgbT0xey9NVZXNe3XaPpufE92hEb4sf0d5bYdKeGdmrFlkOpfLFqH/07RXP3xN4M7tBguiyKAtFBTbMeF6xWADzcnQgP9eFAYgarNx5n9JD2TOnaHkVRGPDB2ygKFJfVkJldSmzLQN57+Qa27kpmUN8423Tkq++v48TRTDRBIhZHhWNZ+bwydRj3j+qNt6vTJUUudVpNkxLbr9FqREb1b8vSdYlYJAlNfCXl5iq89OqHGk+9C1/2aGzVk1iRglW2IiGzrehws0FSWVUdsqw2cA9IaMXRlBxyiiuZNqyxiKUgCLz58Phmm73t2Pk1iqLMA+YJghABTAUWCILgBCwBvlMUJe1K9mMPkuxcddw9nVUBQFHtwTh1NIuzyQVYzBILv9huC5IucNcDQ7nrgaFN9pN6Jp+Tx7KBevNLwGq0kPMrMcaryfCh7dDrNNTUmhk5/O+dmtFqNY3c3o1m1afMQa+lT9doQgO9MNVbM5gtEidScpg5qCs/HzyDxSrZGnUvRiOK9Gvb8Ak8JbMQV2cHqmvrbSIEmDAonkfeXolOq8HT1ZmqOiP+Xq6cPJtPTqE6fWi1yui0GqySzJ0vfs/pc/lQb2ORmlnEyi3H8fNypU/n6CbncKV0iQ1j0QvqNJ+iKESF+JBXUoVOK3I6oyG4iAz25pNHJzfadsuhVLYeSWPKkE6N+pkAHps2iLe+24rJLHEwKYvjabnMHt2dHbpzCPVlNoDSylrScop5atEGsosrmD2kKw9cp77Jx4X64+roQFWdEZ1WQ5i7O09+ugaAnOIKhnWPxdlR38TW49c8eMdg3vzoF8KCvZn73EQkq8yc11ZisUjsO5zOqm/uxdXFgRED2/LLttM46LXc/shCunWM4M3nJtMurrFWltFkwaJRsNQ/9d/vOc7j4/oT4NG8KOTvJdjfg/53e7Ar/xglXjJLszdzZ/TES67v49uR5dlbMUhGJoc17yRx69gelFTUIsky903ui4erIxarZCu1/Rp7gPQX8O/IJAGgKEoW8AbwhiAInYAFwHOo9uq/iT1IsnPVqa0xYrFIKDJUVxrwD3JHqxVxdNLRvkvkJbfbufUMRw6mM/76brSI9mf+J1soLakG1L9ZAWgZG8jY65raJFwtBEFg0MCmprzXknOZxXz+7Q5ahPty2/S+NtfycUPas3H3aU6mqO7uYwa045bre1FRVUfLCD8MJkuj17LNe1Pwb+FFoKcr0UE+PDLhtydc73r5BwxGC6IAXu5OlFYa+GrlgXrBSREXR53q1yfLvD5/I4IgoCgKQX4eeLg58eAby0nOqJ9UVCA80AtXZwfeX7QdAVUm4M8EShcQBIH/PjON42m5RAZ5M+vl76iuMyIrUFRew8rtJxjRszXpuSW4ujjy3JfrMVskdh1PZ8O7dyKIAk4Oaq/m4G6tGNytFbe8uoSkdDXYignz46s5U1m4/jCF5dUcT8ujfcsQCipryC6pQAEWbD7M1H6dsEoSbk4OfPvwVDYcSaFXXATPfbbOdq6KrHDibB5zF25FURRuGZPA3RP7NHtdvbq15KdvGjJORpPFVkZTbVzUr596YBR3zxrAdTd/DMDx0znk5lcQHtrYRHfOA6P4+OttbC7NwYJMXIj/H7JIMZospGQU0jLcDxfnBvPlxKRsNrxfjKQE4T6sgqDoph52FxPs5Mv3PV9BQUEjND0Po8mCs4OOV+8a3ejnFwdIJrOVTbvPEOjnTteLmr3t2LkSBEHQAiNRs0mDge3AC1e6vT1IsnPV8Q/0tHW66nQaKssNLFh5H3nZZbRq3bzY2/nMEt54eRVmk5V9u1NZuuYh2saHciYpF7NJbVKeeXt/ps1s/s3mr+L0mTwen7MUrUbkvbdupEWLpjpHv4eyilpue/gbJEnhQGIG/r7uTBqjBoFajUhmfdbMQa+lRbgvnu5O+NWrczs76hnSK5bNe1MQHESWnT6D8biaWcotq+LVm5oXnJRlhf9uPkRWcTkGo2q1IStwoWVWEAQ0oogoQE2dagSbV6zq1YiCQFigJ6/cN4bH3llFUVk1AqqWUbe24bz/xCTufPF7m55OcXlNk+PnFFXwytcbcXdx5LlbhuPq5NBkTXM4Oejo0S4SgB9emcmqXaf4ctV+ag1m3l+6g89+2kutwUSAtxtyfblXlmWGPfQZiqLw7v3jbSU5gNfvHsN/1xwgKsSHPh1aMOHJBeQWV+Ko1/LFkzfQqVUoRZU1tmyeRoCnvlnHsYw89FotSx6bxl0jewDQKz6Sn3cnIcsKc+8Zw5KNiTbdrCWbjl4ySPo1jg463n9lCpt2nGZw39Y4OzdkAz3cnYhvHULquUK8vVxwctJRW2dqFMQE+Lnz0mPjeNJkIau4nJbNlPh+C1lWuHXOYvKLKtGIIk/eOZTBveJQFIXv1xxGsqofWcLyWjE2uC+KonCgLAmNINLVq3WTTM/FwrIXs/VIGs98tha9XsuCOTcSVd/MXVBSxb0vLKW6xsjcx8bx06bj7Dqsinq+9cR4e6D0V/AvyCQJgjAUuBEYBRwEvgfuUBSl9vfsxx4k2bkmdOsVw7FDGTi76ImI8sPVzQkPT5dLrr/4b/JCP9OsOwbQoXMEOp2GoBAvfP3+fkfv5T8eora+NPXz2mM88J+mZcLfQ15Bhe1NWFHgbEYR3y7dh85Jx+KfD1FTfyyT2cr7/93GsnWJLHlvNt+sPMB3qw/Tu0sUW769j2+2JfL5hn22/TrrdeguMQn43Y6jfLhmDwrg4KFBWyUhiiIv3TOaNTtP0bZlEOt3nyY1s4gAH3fy60tcoJbrPnt2Kj6eLjg6aBEFAY1GIDzIm4LSKlIzi3jytqHM/WoTgb7ujOzbNCv37pLtJKbkoNWI/Lj9BDeP7Pa775uHqxMjesSxYPUBnBx0WKwydUa1THa+sAKdVg3yPFwcKaq3sli182SjICnA240nbx5i+76yxqDe6/rJQQAfN2cevK4PC7clEurjTuK5XJT6NQdTs2kRoGZyHps+iDG92+Lv5Yqvpysms5XDyWqpuM1vaGP9mraxwU2Uo8/XB8vzXplCVk4p5zKLmXrnfERRYN4rU2nTKqjRemcHHa1D/X/XcS9gNFvIyimz9WG9/PEGAnzdOXe+hIMnsgDVYPnOcQMQBIHl2VtZlLUegDujJzAyqNcl930xP2w6ikWSkYwWtiWm2YKkX3aeobCkCllW+GrZXowmqy3ozq8P1u3YuQKeQp1ue0RRlD8sjW8PkuxcE55/eypZ6UUEBnvh7PLbmYKISF8eeWoMh/afY9LU7oCa0eh8DSfZ/gjR0QHs2pOGKAok/Ma5mc1WzBYJ18tcf+uYIHp3i+ZAYgYx0QFs3nUGq1XGqshIuqZBTm5hJQXFVfWWErDr0DlmT6pmUPtovt5yGItVYljnVtw9suclyyybjqfZglJZJzC8dxsmDG5PalYxw3rF4enmxHvfbkNWFApKqoiN8CeroAxFhncfm4BPfbA774nJrNxynNLKWjbuPYPFKjNv8XY+fvoGPn9uaqNjmixWjp/Nw9fNmWA/d/Q6LQLgfwkD1QtU1Bg4ePo8HVoGE+DduJHe38uNr5+dxtHUHF7/ZrPt5y1DfcnIK0VWVIsXQQCdRsPo3m0veRxJlqmplzLQiCLOjg5YrBI3vvUdGUVl9IqLIKFVOKeyCpEUVVZgQLuG518QBNq0aFCqHpoQS2SQNzlFFfS5wimstPRClqw8REKnSLp0iKCq2kB0pD/b9iTz2vtqEPLUAyMZ1CeOT7/eiaW+0Xz3gbQmQdKfwdlRz6QRHVm2/qjt2uqMZrLzy5DqdaQG9Yyla7twALLq8jDLFgQgqzb/io8ztm9bTqbnoxEFerdvMLptFxtkE7Ps1TmKbu0jmPvZRkICPRlm92W75gjKv2O6TVGU5nVZfif2IMnONUGjEYmKad7e4FIMGtaOQcPa/fbCv4mjx7JYuHgPoigwcng8PbtfutcmL7+CO+7/BqPBwgP3DmXsyA7NrtNoRF6do04VbduTwuvz1iFJMhqNgKgVsVhltFpR1QVCLbt5ebjg5+1KRZURJ0cd/j5uuDjp2frqnVglCXdnx2aPdYFB8dGcysiDWhnBJLNp3xlq6kwcOJmJKAh0bx9hyyK4uThwNrsYSVZw1GtxuqgZPMjPnXum9mXvsXS27E9B4yAS04zNiiwrTH9+IVn1PmcDOkfz+PRBuDk7MKBzyybrL6AoCje/uJiKGgNajcgPL8+kqLyaVuH+6LQa8oorueXVJZjMVuKjg8gqKGdY91huHduD21//gZwiNUvn6erEj3Nn43aZ+6IRRbrGhXHyXD4+Hs6E+nuQXVJBVlEZVklmZ1IG94/pzaTe8ZRW1fH4pAGXtRU5kpzN4eRsRvdq06yJK6h6Td+tOIjFKjFjcncefXE55RV17NinmjqLgsCMyd3JK6y0WaQcOJLBoD5xTBjVkaMnz6PVigzoHXvJ8/ijPDR7ENcNjufzJXtoExNIt/gIWob7kZJRhMUicde0him1GREjOV9XiEYQuT5syGX22pgxvdvSs10kDjotrvUlw13HzvHEJ2twdNfwwi0jiAxWM3UL5s64uhdox84VYg+S7Fx1CnLL+XnZIdp2CKP3wGszqn+tqKkxsn1nMjEtA3Fzc+T7pQeIiw1i1Ij2pKQWIEkyVqtMRmbxZfez/1A6ZpMVqySzcnXiJYOkC2zdnUx2bhmjhrQnv7CCqRO6sWV/Kmu3J2EyW/Fyd2JQz1imjO7Cix+to6LSgILCnLuH41I//u3soONKhGRvHtSFipIalvx8BABZUCgur8FskXDUa9FptaqMgwLjB3fAx8OZr37cT7f4cFpFNi3h9OoYxbwnJ1NRXWdr0pZlBVmWVeFDk9kWIAFsTzzH87eO+M1eJItVorCsWlXPFkVGPfIFoiAQF+HPvIcmMuPFRVTXqeXI/NIqNn/YIHfw/cs3M+7xryiprCU8wPOK+p4+enQSy7ce479rDvLwB6t4454xBHi5kV1SCcDzSzbx3aPTmt1257FznMspYVy/eIxmCw+8txKz1cqqnadY9+4dzW7z/cpDLFq+H0UBg8GMRlQzhxfKzSZJYvveFCJCfXBy1OGg13L9darafO+ElqxZ/B9EUcRBf21exqPD/XjzifG27709XfjwuRuarAtw9GFep0sJOVweH4+GEvyx1Fwe/mAVoIpsbjqUwu49ZwF45p4RDO519YNBO5dAsU8QXsAeJNm56sy5bxF52aWsWablvQW3Eh179UoB15rHnlpKRkYxCODr60ZeXjkbN58iLNSbYUPbsWlLErl55ei0Gior6/DwcG52PwldIvnqGw2yonDdJQIkq1Vi6+5kCour+HbZfiSrTMf4MN59UX0jcnZ2YPXWk2i1IlHhvjxyqzpCnV9Uidkq4eigpe5XatdXgiAIFBZW2753cXLAbLHi5+VKlzZh3DmpNz07tMAqSYzu1w6tRmTKiMtbwXSIbRhFzy2q4JZnv6PWYOLl/4xmYEIrBneNYcthVZZEp9WgFX9bOV2r0TCiRyw7j6XbSmGyonA6s5BDZ85jsUq2tdOHNxaMrKo1UlHfY5SUUUBljRFPN6fLHu9AUhZvf7cdgJq0XPaeyOTJSQN5ZMEazFbJNmmmKApzl29jR1I6d43oSbSfF3M+W4vVKrPz2DmenT28fh3UGS/9/EiSXO8lqmCVZN598XpWrD1KTAt/Fq84QFllLYoC2/emotdpeeSeYbRs0RCkOjUj8fBPZu7ChpKpAhhrLLYM2r5jGfYgyc7fgj1IsnPVMZutajOyoApJ/pMoKFBLG46OOlXGQAEBAVlW8PZyoUf3aJYuP8ixE9nMX7CTRx8a0Wh7SZLZtCUJgKXf3o3FKuF5iUDqgy+3sn7rKSRJRhAErJJMRaWBTUdT6RQdwrnzJeqkkAId4hq87565ZwRvfbmZyFAfBvZo9buub9Evh1myMZFAN1dEQUBWFKrrTFTXmdCLInu2p7BzyxluvqEnMyb3QKv5/TYw2w6mUWMwIUkyz36yjnsqqpl7z1g+XrGLb9cdJtDbjazCcp76ZA0WSWJc33aEB3gxNCFW9cIzW3DUaVn0y2G2HjnbSMgRYGDnlnSJC8PZUa/2DQ3twvThjYM4L3dnwgI8ySupIszfE3eXy5cgAZZuOWb72iopRIf6EB3iy31jerHvdBZ3j1Jd71PzSvhpfxJGi5UXvttIjIOqgyTJMlW1RqJCfHjghn7sOHaO2WMSmj0WwLSJCRiMFswWK7fP6IuLswOP3K0OAlw3Qg2s75uzpH61Yssw/S9hkSXSKouIdPPBWfvngrZgPw/O5ZYC0KdDC+4Y14tDJ7OwyBItwu32I38p/3u/an8b9iDJzp/CYrby+n2LSD1xnjufG0ffkR148d0bWTx/B+27RNI6vnn38j/Kzj2pJKXkMXFM58v6qv1RnnpiNJ9+sY2O8WFMGN+FJUsPEBTkyYmUXESdiLubIxpRREHB3a3pG+/3Sw+w8Lu9AJSX1zJoYBtWrDxM544RTeQCsvPKMZmsaDUi7VoH46DXcbCykKcXbsDJQceEuDiskowiK2TnN5SrWkb6MWZgOzW4qv/ZudwSFv9yhK5xYYzq1bzOk8Fk4aNlu5BkhbKqOsb0b8uxMzlk1wtEyiYJyaoGawu+28PuA2l8/tZNjUxXr4SEdhHMX7EXSZIxyxIfLN3J+H7xrN1zGllRKKms5ZMVu8kpVnuG5q/aj16noarOxPnKSr7dlkgLfy86BQepDvdA++ggcsurqFWsaNx1eLg6svqt26iuM9lKNhXVBg6dOU/HmBD8vFz59tnpnC+sIDLIC1EUqK4zcveby8kpruC5W4YzqEtMo/Me3asNB5OyUIDnbx1By1D1+Vr/yynyiip54OhyfnzvNnzdXRBFAa0oIlkksvPLCQ/zwdfblUl94zmelMPkQR24fnBHLkcNRsq6luHn6IaDY/Mvxc89Mob/fr+XsCAv+vX8fQHxX8H07d+QXFmEt4MzG4bfzdHSHNKrSxkXHo+r7sqkHS7gFeSKlAwIAv7hHjg46lBE1X/v02W7mTqqi60kacfOX4U9SLLzpzi2N42je1Ix1pn55PmV9B3ZgehWgTz31pSrfqwzqfm88vYaLFaJA4fT+fqTW676MRK6RpHQtWEa6YlHRjFh1ieUV9ah02pY+PEtONZnMMaN6dRk+6KSaiwWCUEQKCqq4u77vqGmxoQsKwQGeHD/vUNsU3EP3D6Y1+etw8vThWcfHs3J8wX88smPAFgkmRED2nAmLR+TWeL2KQ1j1UtWH+bLpXuxWmWWrD3Cpy9O5f53f6SovIaNB1OIDvUlNrxp75Bep8Hb3YWKGgNWSUbQCzw0YwDPzFuDLMLMiQksW9EgO5CeWUJZRS1+Pm6czSnhkQ9WodeKvP/QRJuK9I/bjrPrRDqzRnenQ72ydatIf354ezZTn/kWSZFxcXLgw+W7kBUFvU51re8VH8mRlBwsVglZVstNRWXVLN13HEVRyC2rYmLPdrTOD+BUUTHptZUYsGCwWNl24hxHz+XRNSYUHw8tO4+d4/3vd1BcoWoy6bUaPFydyC2p5PHpg2gVrgY7O4+mk1VQhtFs5aPlu5oESUMTYukSF4Zcb7i6bMsxxvePJzO3FElWcNBrKSqrJibCn6WPz+DrDYfYtDUJQSdQnFVOUXIJyfuz0Go0TJuUwKwplx+Ffz3pJ/YUJ6MVNAQ4ejLAvw23HficAmMFUyJ6G8zqXwAAIABJREFUcV/sCPx83Hj83uGX3c/fhVmWOFamGtmWGmv59MwuPk/eiygIbMlLYUHf6b9rfxIKsouILCucKyjF2VGPIArotBo8XB1t5U47dv5K7EGSnT9FSKQfiqLg6Kwn6iKhyPKiSh4d/BJleWU8tfh+EkY0DSh+L2azFUFQS19Gk+VP7+9KUBSFmlqTTZzQZLYybuylr2XWjN4UF1cjCDBjWi/WrD9um0zLzSvntTfX8NOy+wGIDPPh87dvsm2bXVqJRhSQZAUPF0fiIgL4/JWmjcKV1QYsVrUUmFdYyczHv6WiyoCoA/RqebA5NKLIM7OG8sD7KwFYv+cMO9efQasoeHs6M2tiDyaP6MSjzy8j+WwBHduF4VsvXLlg9X7ySioRBPhh81EevnEA53JLePeHHZjMVo6n5bH1o3ttxwr0cef7V2eSmJKNySzx7pJtGM1W/Dxd+fb5afi4uyDLYDCZSUzNxVGvZcaIruTV1bA+MQWTxcqHa/YQHeyDRZYpqzHg5drQUxTq22D18fKCjbb+I1Abvs31wdeCNQeYNFAtXcXVN5076nUktA5v9h55uzvz3vfbWbb5GIpVJj2nhIdvHsRXK/fRu1MULesDrjA/T56ZMYTB8dFs3ZPC5i1J9c3qClarzPFT2ar3OFBZZWDuh+uxWCSevG8kvj7qPdUJmvrnSkAriEzb+wElJrVXbGHGTmZG9cddd/k+qr8TvahhenRXvjt3mAS/CL5I3ouMgqwoHCzO4mRZHvHezYvH/pqCimrWHElGqv87O5aZz+GMHOa/cCOJp7MZ0K2l3Y7kL+TfIAFwtbAHSXb+FMGRvny0+mHOny2ka/+Gxsqdy/ZRkFGIxWTl62d/uCpBUvu2ocye0ZtTp3OZPb2pa/y1QBAEXp0znkXL9tO3RwwRoZfvjfDycuG1lybZvp/z+Bi+XrSH3NwytFoNwUGel9x2ROdY1hw8Q355Fa/eNOKS626e0J0jp7JJzShCFAVb5kcnCTw9c6gtc9IcT36i+ouhKJgNFvRWEYtFIr+wCqtV4qFnfiArtwxPD2deeWqc7Y2pY0wIO46dQ1GgXZQq7WCxSMj1ujk1BhOPffQzr981Gm39yHugtxujerYhMSXHJphZUlHDTS8uRpJkag1mRFHg2dnDGNZd1b95ecZwvN2dWbQtEZNVotZgxqHeouKR8f1w1GlpFeJH4EXj92EBnhjNFqySjJuzAwO7tGTjgRQcdFr6d2qQaYgO8WXZq7MoLK+hdbg/+09lEurvSUW1gaSMAoYlxOLl7kx2YYWaDZTh5y0n+fG9W5k0tGOjRnFQfzd6dYwiyNudzZuTbD93cdZz+4yGEfnFKw6w/0gGiqLw/vzNGAwWggI8eHTWdQQ7e+Eg6lmXd9QWIAFoBRFnzf9+Y/bznUbyXMcRKECXVW9Sa1Ub1c2yxE07vuXYhCevaD+1v2pwN1klTp8vpH/rKGIu8/tsx861xh4k2fnThEb5ERrV+IWsdfcYdTzZ2YGuwy8//n6lCILA1IkJcGk/zWtCQqcWJHRq8dsLm2HggNYMHNCatLOFpJ0tpF/fS0/ouDk58O6tYxBFsVHWpMk6F0e+fG06b325mTXbTqLIqn5Sl3ZhjOx5eckFQQQUBX2FjEYGBxct7q6OXH9dF1auO0pqehGgZu0Ki6tpEa72lQT7eaDIqgFuYVk1r32ziVU7T6HUd3gqijodlpiaS0KbxlmazrGh3DisE4s3HMEiyZRUNHYFeOaLdSSm5PDkzUPU57hvRzYcSaGyzsiTkwcR4OmKIEBUoBqgbjtxllnzlhIT5MO8O8bx4cOT2HH0LK3C/Wx9RPdM7ENJZS1RwY2D2kAfdwJ93Hnyk9XsPZmJJMu28/9p50mWvHQzSRkFIAooooIiKXz90wF0GpFlm48RHuTNgpem22QXCkurOJKSQ0LnFhw+molGI3Lv7IG0uUgx29/PDa1WBAVSzhZQVFyNXq8lrmUg9w0byXvJazlanqHauyDi5+jOe11mohV/v+faX8UFyxVBENR/wA8DZ3PLrsUUGdWyp0G68mxvdKAP/xnRk0827MdgUbdbtPEIG9aeZOHrNxHg8/er7f+/wp5JsmEPkuxcE1p1jWb+ibepKKoittufNzj9pxPTMoCYlpe3p9hyPI0nv1mPIMBHd04goVXjpvfPluxmy94Ubp6QwNhB8ew+fA5JUl/NHPRa5j427jfP44snp/D0x6spKlNtLmpqTTz94Cg+/3YnmdmltnUXjGwvcCApE6skoQBHUnI4kJTVZOpMlmXC/Jt3vJ89ujuHz2STnFmEtT4wAdXiT1Fg2e6TrE1KJSbYl4/vnsDGl26/5DW8sWI7ZdV1nDCZ+WzNPkSLwqSBHQj1b8jSebg64XFRoGmxSvznnRUcT8tl9pjunDyXj8FkselBWawSxeU1fLR8F9V1RhDqPcckhZ+2nrC9Z+QVVXI8JZdOcaHsOHKWd7/dajOlnTquK34+bowc3FgQdeKozri7OlJeUcfx0zmUldeBAB4e6vmFOfugE7WgwOzoAcyOHnjJa/+7kBWZr87uJKOmmP7+bXni0Gr0oobF/W8mxkMtYyootqAToG/A7/u7HxIfw3trd3Mh7SjWKVRbjCxYuZ+tB1MJ9vNg/gs3NjK/tWPnWmMfFbBz1ZHrXygDI/2JS/j/0UtQW2ti5+4UCgor//A+1h9JwWyVMFkkvt92lBvu/4rH3liJyWwhO7+c79ccJrewgje+2IRVkomJbMjeVdUYUa7g019suD9LX7/FJkAoCgKFJVVk1XuDgapj5OXhzPmcMlWvp7yW9ZtPoamTQVGYOCCeId1aNdtI+8mK3WTkqcHW2r2nuf31H9h4IBlnRz3/fWYas0Y39mnz93bDUa8FJ5Eqg4nT2UXsTsq47DXEhfrhoNUgyQpLNx5l8cYj3P+u2vCuXOImJGcVciajEElW+GbdQVuTuU4rMmlAeyKDvIiPDuKHzUexWGX0Og13T+iFVhQbfai2WCViIvx4+K0fmfvlRqpqjJgtkqqHNaojk8Z0bjINKIoCZ9IK+GLhLk6dyeXmG3rw9AOj6JOgqo23cPFDI4h46J0ZE3J5Paq/iy0Fp/nq3E7W553klZOrqLOaqTAbWJ6pyiZUm41M3PIVpWbVP6+jVwjv9fh9KV8XBz0iApo6BaciBa1ZjZdW7zhFda2JlMwiPvl+11W/Nju/QmmwJrnW//4J2IMkO1eVJW/8xEin6dzV5QkMtca/5Ry27kzm+lmf8uo7a2xeU9ea+x9ezKtzVzPt5s94be5qW6P37+GGPh1w0Glw0utIP11ITkEFR06dZ/uBs3i4OaHVanDQa/HzcuXIqSwSk7IRBQFnRx33zuh3SfuLi9lzIp0B936EPtiZbp0iuePmvvTu1hKdTkQQwNlJx1svTOapB0bw6rx1fPXdbu55YjGmUhNag4KuVuZYWh4v3jYCR4fG6t4mi8TGg6nc/NJiVmw/zotfbuBYWi7PzV9Pbb0Y5IQB7YkM8sbDxZE37h3D9OFd8PVwISbYBye9DlCICbl0D4rBbOF4huoP5u7kgAb1jdRksfLClxvoftt7PPXpmibBUpCvB1ZZlUwI9fdke6Kq5CzLCh1jQigorWbfqUxMZitajYBoUpi/dC+xLQLo2jYMnUZEqxXx83LF19OFjNxSjGYrOq2GQF83bpvUk2C/5rNoABu2JmGxSlRVGwkN9mJA71jbh4dP0zZRazVRaqphY/7x33wO/w70YkNQ7evoioOoRS9o8NA5UW6q47GDK7HIkm3NZ32m4KZrXpuq1mjmqcXrGfXaAr7YfMD2XHm5OvHWTaPQS4LtDVQQUIPoei7ng2jHzrXAnre0c1VZ+tbPKLJC3rlCkvak0HXY1elH+j28/eEv1NaZ2Lk3jdHDcugY3/wk09XkfHapbYptx+5URo44T6eOEb+xVWMSWoWx5417QYAXP1jH3jIDiqIQFuSFu6sjX78xg2NncunVOYr5P+zGXG9w2iLUh+nXdWuyP4tVIjW7mMhAb1sPzec/7cNgUpucu4yOZtqwzgB8+sZ0TiXnMaBXK7w8Xdh94CwCAlarTJ3BbBOeRAGrVRW/vBCAigIE+LhTUKpaiAiCwMfLd9syMDqtBp1W/Tzm7+XGsldnAVBZY2DEQ59jlWQ0ZQKv3TuG2DB/QnyaDzbyy6qY+f5Syuon2Sw1Bh6d0IfjZ/OYMrgT9769HEWBLYdTee1bPbeN7WkzxT10+jyiqstJRl4ZGlHAQafBQafDo17vSpIVnPRaxvVpx+otJ7FIEqfPFdAuOhBRI6LTavj02SkIgsCc24bx/qLtxMcE8exdI22imwcTM1i96QSjh8TTo0uDlIS5vs9GVhT2J6az2e0o+YYKnm43ga7eUaRW56Mo0MYjlP9F+vnH8nibkWTVljIzqg+VZhO37FrMFyl7+fbcQcpNdba1HTyDGbTuQ0ySlde6jmV97hmqzUbe6DaOcFcv3lu7izWJyQB8unE/3aJD6dRCVWwf0j6Gli/O4qn3V2E0W/nP1H60ivTnxU/XERboTY/4SMqr6vByb16g1c5V4h+S5fkrsAdJdq4q3Ud1Zs9PB9E7aonuGPm3nENkuA9nM4qwGq28+vpqbrm5LyNHtL+mx7zvniF88PHm+k/FCv5/UOjyQjbo+ftGsevQWUICPImNUnuZQgO9CA30AmD0gLas2nwSgJTMIvKLqwjya3zMO99YSlp2MW4ujqx4bTZODjr6dYwiPa8UAegY09BcHBMVQExUQ89Ur27RTBjVibT0Qm6f0Zc1m0+w62g6oS19mTU6AUEQeOf+cXy97iCDOsdw/eCO7DmRzmvfbKZlqB+HzmTZ9vXETYOb9JF8sHQny7cdRxBUXSO9Tkvvti1sk2zNsfrQGYor1AkwjShwy5BujOzZhsz8cg6dOU9EkDc5hRVYrBI/70wiJauYb59TtXpC/T3UtEQ9oiBgscp4uGqICvZh5qhu7DmRwV0TetOhZTD7j2aQV1zF0B6x/LL3jK2UaaiXnujXtSX9ujY2560zmHnqtZVYLBI796XSplUQwwe1Y/yIjshSw7vO/tPnKIwuAC3MPbWKL3vcSU+/WDx1zkS4/m9OcgmCwMTwhkDcUaMnv64KGQWrIuGg0WGULGgFEQSBuvqm7RePrscsS0iKzBsnNvFxrxsa97Ip4OzQeIovMtibJW/Otn3/4+ZjnEkvIi2rmK0HU9FqRBbPnUmgr72Z2861xx4k2bmqPP71PWSdHod/mA8ul7DjuFpYLBJvzFtPemYxD987jHat1U+jb79yA6vWHuXrr3dRUlLDO/N+YcTw+N/VG5VfWMnPG4/TvnUIPbv+dgPqdWM6MXhgG3btSSWmZQAhwV5/+LpADZYG9bz0JFyblsG4OjtQU2dCI4rodY1LbZIsc/KcWpZSFCN5JZVEh/hy23U96dexJe6ujgR6N4zRK4pCWXUdXq7OKCgYzVbuntXf9njrVkE89qtz6N42gu5tI2zbZ+aX0611OLeO7c7kOf+tvw6RuIiG4EuSZT5atotFv6jmulqNwK3X9WB497jLBkgAnaKC0em0CMDdo3oya3BXHv1gFbtPpKPVaHhgSl8UReDDZTsxma2YLQ2WOPHRwXzy6GRWbD/O5kOptixcUXkNq3ae4rbrenLbdT1t65e8OZvC0ioeemMFoMZXHeNCibqMBIQgYFOoUhRISsknLaOIuOhAEjq3YN/hdAQBKg0G9ZO6FVwtjgiCQAev35d1/Ltx1uq5K643C88dYnRoW6ZFd2FLXiqDglux+OxhjpblABDg5E6+oQotIuGu3gA8PKYvkiyTUVTOzP5diA32o85qRidq0DUz0ffduiNIssyFyrnooCMls9AeJF1L7JkkG/Ygyc5VRRRFWrS7ulYkl2LX/jR27U3DaLLwxvvrWfj5bQA4O+kZOSSeRQv3IjqK+Pu5NRsgldXW8djqDZisEm9dN4Ig94ag4eHnl5JfUMlynYbP355BVMRvf8J3cXFgxLD433UNp1LzmPfNduKiA3hw1sAmtgunzxawbkcSA7vH0KVdQ9lQFAU+f+VGNu46Q/eOkfh4ujTaTiOKTBvWme83H6VLXCiRQd62xy7WUSqprEUAnvpqPUfTcokL96Osqo7C8mr0Oi0aUeSj+yfQIfryooB7T2by2co9mCxWzuaU8NiMwSxYfYABnaOJDlEDC0VReHndD2zYogZvei8z3v4apg/vjKP+tzWBusWEsfzJm6g1mmgdpgZeGo1oi04cdDrG9mmL2WLlTGYhd4xvrHjdvmUw7VsGM2fmUPrc+UGje/lrLJLESws3kVFagUZRDzHviUlN1l2Mk6Oel54dzZwXfsY25KWAVivyzEOjmb9oF44OOk6n5nF6q4DiKvPkg+N/87r/V3mw3UAebNcwiRfnqepnPddpBO56R+qsZp5oP4S9RRnUWEyMDlOn/lwdHXjxhmG27VZlneDJQz8jCALDQuJ4rctYPl66m8SUHP4zuS9tWgWRX1qFBrXkGxboSde2/6yg0s4/F3uQZOcfS6Cfu2p1odcS8iuRRk9PZ774dBZnkvPp3i2q2e3n7z/M3szzKAq8u30Pb13XIOBoNFrUsoCAzYn8WvDCh+vIK6zk3PlienSIpHeXhqyV1Spx34tLMZgsrN12ipWf3I7nRb0Y586XkJiUTXCABx1bN+5lOZdZxNjubXho6oBLHnvb0bM89eU69ViShKzAmfNF6LUaZAWM9de9cNOR3wySLvTkCAhoNCKTB3Zg8sDG/WjHK86QWHUcGV/c2pXh3b0cQYD5Wd9xX8ys37xXAOF+jZ/nOTOHEOTrjq+nC6N7t0EQBGaM6HrZfWhEEa0oYK1vrv/ip3046LVMHdLZtua5xRs5lJ2L5KY2MomCwNn8EloG+TbaV2l1HTPf+56C8hqentGHjcpS/KabqT7gQbx7a8YM6UjLFuqI/MN3qea1JrOV40nZtAj3xc/HjX8beo2WEe5teWbRL9y7exWOOi1Oeh0Db2yFu3PTZu53T21DQgFF4ZfcZPwkV37ZnYrBZOGRD35CFEUER5G37x9Pgj04+kv4p0ye/RXYgyQ7/1jKTEZqfEUE4PopTd3WQ4K9bGUvg8XCjrMZtPL3JcpHzaqEe3mg12hQ6r++mNefnsjXS/fSJT6C1jFB1+wa/L3dKCmrQVHAx8u10WMKXCR2qHBhYG7NtlMs/OkgOQXlKAokpxfSu3MU3vXZpC27zjD3gw0APHL3MEYMamvbR1lFLV4eqkHrxsOq5ACAo06L0WLFw9kBi6SgEWVAQavR0L/Db5cbE9qE88i0gZzNKeGmSwQpTlpHnCKr8RtixinEYGsROlmR/HtuWSM8XJ14cEpDWbDGakAv6mzTWABm2YpBMuGhU++PViPy0WOTmfvtFjLzyzBbJXYfz2DqkM6UVtYy57O1nCwsQpLVJnRFABn4bscxnps6pNHxt504S1FlLYJLHUvqvkTQyogh4DPJxP3tbyfMuWlw6aDX/mFx0n8Kc5dvI6uonOzicvX32Efi3PoCXhs8hjb1GScAiyyRb6iyfa8RBILcPVAUxWbRI9VPzd37zgpG92rNC7eN/Ksvx87/Y+xBkp1/LCt3nMRa36iw83g6sZEBfL32IG7ODkwf3tWW3QC4/YefOJlfAMDq224i3MuTqZ3a4+3sjEWSGNm6scN6XEwgc59u0HkpqKrml+Q0akxmTuUVckuPLnSL+POTSG88Po4NO08THe6Hj6cLyzccpUNcCDGR/ui0Gt55aiI/bjzG8D6t8fZwxmKVeOPzjTaPK1FQS04OF41JJ544b8t+JZ7IYsSgtiiKwiPPL+PoqWxiowP4eO40rh/Qge3H01Hq/wMorzGi12p4887RtAr1wyrJRAT8dn+VIAiM79e01GiWLeQbighxCiTWLYpbo6YwnyWN1kwOHXXZfe8tOktqdQHjQjvh5eByyXWrc/czL+VHHDUOfN7tAUKcfSk1VXHrgXeosRqY2WIYN7VQg5wusWG8/+AE7nxjKbUGM7eO7Q7Awg2HOZaWi4SCt68zkYFenDpfiCAI9IhtOiXZMSoYURBwCTCj0Qg0VNkUMmuzmw2S/j/gWN9fJisgO8qYYg2clg3cvGMhh6571Fb+NlotBDq6U2qsQRHgqQ5DmRbVlR5PRPL2d9tsfXUXWLv3DM/MGmazvrFj51pjD5Ls/KPYefQs732/g2qDiXF927HvlAZRFBjSrRXvLtnOhn1nAFi35zR3TezNwHqn97TiEgwWK846HdkVlYR7eSIIAsPj1MeTC4tZcTyJAS1b0DuqcUpfURRu+O/3lNTW2ko0ezLPc/zx//xpoUw3F0euH6mWeSbe8wWllXVoRIGlH9yKr5crXdqFN+pF0oginu7OVNcakWWFhA7h3Dm1Ly7ODfox11/XlQOJGciKwpTx6kRSbZ2ZxBPnkRWF1PRCikur6RwTys5595CeV8b01xY3ul4BgZB6E9mNh1OZu2QrMaG+zLt3fCPdmsthka08cuxlyswVRDiH8Gr84wwL7EelpZpl2WtRUOjp04WhgX0vuY+kilwePPQdVkVhc/4ZFvW5tBL3Tzl7sCoyJsnMgdJkJjr3IbH8LEbJglWR+S5tByfW1PLAlP6E+nsS4ufBmrcb7y8yyBt9/RvwjN4duXVsD9LyShAFgeighqbtzMIyLJJMTLAva56bTWZFAd+ULKDYVGYLOPONRVd0n/6NlF1kOGxDAONFViU5tRWM2/wFBqsFGRmdoCW7pgJBEIiLCGBE9zjKquqoqK6j1qhu5+Hq2ESs046da4n9t83OP4bM/DKe/HQNOcWVVNYYWbPnNBvfv4uN799FfHQwVqvaV2ORZNLzy3j683VU1QtavjRyCEHubgyMaUH3iMaN5YqiMP3bZXxz8Ch3LV1FYXVNk2OX1hlsARKAXvP7PskqisKexHQSk7Iv+XhpZR0Wi4SiqArahSVV3PToN1x3x2d8vWI/BqMFURRYMHcGoYGeyIpCYlIOub9S+Y4M82H5V3fx44K7ia5X5XZx1tOlYwQajUir6ABbL4xOoyE2zI92LRpKIB1ahtC3fUM56J1l26moMXAqo4B9pzOv+JpLzeWUmMoxyxbSajLZULADi2zl+rDR9PPtjhYNh8qOsSpv0yX3UW6uUwfBFIliY9Ul1wEEO6n9QpIi09FTLRF29mqJo0aHiEjtaT07jp7j+fkbLrmPcX3b8frdY3jx9pHMHt2dwvJqdp5Kp6ymQQdoZ1I6N7y5mBnvLGH5nhMUVFXw+t5FFFVV0dWrPVEuEbR2i2FE4P+evchfRacWDRk00SgilKvedTpBY/tgcagkC4ssY1VkZMAkWzlbXQzA95sT+XD5LnKLK6k1WnDQaZg0oD0/zb31/4WC/9+O8hf9+wdgzyTZ+cdgNFsavUC2jgzA9aIMysPTBqLXaVmzJwlJVhBFwTYtNjwuxpY1+jUK2NSCAVsJ7wKCIPD+hFF8uucAcf5+eDg5MLFD28u+WB8tzKeoroY+IeHUWa2sXX+Cb386CApMGtGRWoOZ8UM70CrS33aMlx4YzYLl++ifEENUmC+fLdlN+vkSFODLZXtJTMrmg+eux8/bFQ83J9uLzJU0lguCwNvPT6aisg4Pd+cmE11zbxvN20u34+fhwkOT+zWasotvEcS+pCwURWmUTfkt/B18iPeI5WhFEgKwMHMFeYZCbo2aglEyYkUCBX44v5qhAX1x0TY19XUSdVhkCQEwSVZkRVY91ZohsSwNUNWhy8zVRBGEj4M7y/o8y9ZjqbySvBmNRsbV+dKTdIIg0KdDQ6P/bR8tJ7e0ElEQ+PK+6+kYFcy+5CzMFisK8OP+kyQtLUQQXdE6OaK77jSLenx4xffo34aiKKoCurXhd7J/l0g2uJwCoE4yU2U24q53pG9ANE4arS27JABPtleb24vKqrHUi7MKgvq/cf3iG/2927HzV2APkuz8Y4iLCOD+6/uxPfEsfTq04PpBHRs97unqxDOzhzFxQHs2H0plYJeWJBUVceeyn3DW6/luxg1EeHs22a8oCHw1dQJfH0xkROtWhHg21V8ZGteSoXEtm/z813x27ABfnjhChcmIVhSRZbXfp7XBC6PJiigKLFl9GFmBzXtT+GXBvbZgq39CDP0TGgK51tEBaLQiVquMLCtk5TX4qz37n5G8/eVmTqcVsHTdETq3DcPP27XJ+VyMIAh4eTbf0xPo7cbbd41t9rHXbx/F/uQsvijZwvVHPuL+uCFMj+rZZJ1VltAIIsuyDjH31Dqi3PyYEz+I4xVnkJGxKFZKTeo1TI8Yz4HyY7Zta6y1uGidUBSFrQVqyXRgQBz/ObgYuT4arDDXYZYlHC9RbuniHcPB0mQEQSSztpC2nhE4aRzQiVqGdWqNPFMgp6iCGwarvzdGk4UV20/g6erEqF6tmw16K2uNavMwCrd9uJxRXWNZdeA0Oo2Is4NONRhWQJFELHU6Bvn3vtTt/9dTXmNg+jtLKCivst1LJ72W7u3D2HBODZIcNFqctWqQ6uvoyvrh9zBywycYZAt9A6Jp6a5mPmeN6U52UQUGk4X46GA6tgqhdeTlDaLt2LkW2IMkO/8opgzpxJQhnS67pk2LQNrUl49u+f5Has0WDGYLK0+e5sH+vZrdpltE6GUbsc+WlHIsO59lx06REBFKQkwoj+/4hRYeXswfMR4XnZ608lLeOrgbqV5R+IJXmAIUeZqICfdFI4pk5JQgW2Ukq4zBaMHZqfnMRv+EGD55YQrzf9hLYWkVD98yyPZYoK87ep2WimoDVbVGlq1P5J7p/S57X/4oOo0GhwBIzSrAIFn4MHlLkyBpRdZhXjrxM3pRi4NGi1WRyagu4ouzP6ERRGRFRi/oyDMUcfuhJ3g49jbujJ7OqtyN9PVNIMBRLZUtTN8H9kjMAAAgAElEQVTHR8lbsChW2nmEICsNWb1AJw8+Tt7C3bEDmJeykmJTJWNDetLLtw0OGh3Px9/EloJE3klewfxz6zhQmsxbndSeI0EQGNmzdaNzfnPxVn7Zn4woCmQVlOHkqOO7jYm4OOr55LHJBPt68O6tY7j1w+WAqp206sBpQO0Nm3/f9aTlFvPs4l9QFJg5uAu3RPXn/yu7T2dQWl2LJCu4OOqQZQv+nm6IbgKOohajbCXQyR2NIFBjMeGi1ePt4MyWUfeRU1tBKw9/2748XZ145/5/robUP5p/kPnsX4E9SLLzr2ZwTDSHz+eiAD0i/pjI5eaUczy0cp2thJBcVMKPeUnk11ZTYTKwISONfqGRTFy5GElREACNIBLk6kaV2Uit2cIt7bvQt3cYrs4OpGYUsf1gGpnZpQyd9SHD+rTm+fuaTnhV1Rh4c/4m8oqqeO7eESS0j2z0eFxUAPuPZYACMZH+Tba/mkS7+aMVNDhpoLN3U62aj1O2oqD2lYgICICElUJjCeGufoQ5BxPo6Mva/K1YFYnFWT/xSvxjDAno02g/mTXFGGW1/HKyIocbIhOoNBs4UppJnqGCb9L3srHgMLJQg0Wxcqz8HOEu/izo/ggaQcRR44CAgFE2k1NXfNlrqqg2YJVkREVg4YbDyLKCrChUVhuY8+labhnbnX4do4nw8yKruBxREIgK9Ca7uAJvN2fC/TyJDfGja0wYWo2Ir/ulJ+/+P9ApKhgR1WZmUq947hrRAye9jjrJzJqcU2TWlPF8p5Hcv385m3JT6OgTyuIBN+OqcyDO054lsvO/iT1IsvOvZnqXDnSPCMVJpyPE44/ZGOxJz2zUY6EoCm18/Ck3GZEVhVZePqRXlGGS1L4mjSCwe/rtBLq4YZEkDFYrq9Yf497lPyArCp3ahCLJCtn1Oke/7DrD03cPbzLWvOPgWbLzKzCZrXy6ZDf9Ehr3VN00PoFWLfxx0Ovo1ObaGqP6OLiycsB/WJJ5gBaufo16g/LrKtDQUKoyyBZ0okSERzmioKARRB6Nu4PTlWmsL9iOHhFXrQtHyk7S2atdozJXB+9wVmUfw6JIaAUNrdwDmRzRlVl7vqLIpPq2VZqNuNW3psgoZNUWUW0x4KF3oZdvG/r6tyOtOpeHYhskHJrj8ZsGc987K8gtqsBS34d2IfOXlFHAnE/XsuiFGSx44Ho+W7+PEB8PZgzoTE5pJUFe7rYpv0Cvf58g5O+h1mDmzZXb2Z+ShckqAQJtQv1xcVQzpK6iA4sHzATAYLVwy67/Y++8w6uo0j/+Obem905IQgo19I6AVFFAQRClY1cs6FpX3Z9Y1rY2xLUsuiqyAlJFVJrSe+8QQhJI773cMjPn98eNCRGQxIJtPs/D83Bnzpw5MzD3vvOW7/sZEjhakk1mVSnRte1KNCkx6EnZvw90T1IdupGk86cnPiiQk/kF/HfnXgbEx2JCEOHvg7mRFWpR/vV5TH7ubrwz7lo6R0awKSONSG8fWgUEk1FeWpf8rUkIcHMpY5uNRkwGA5+cPkh6ZyfeqbDnSDpSStxrf0Q6tom8oO5L2/gwhAA3q5keHc733ggh6NXpfFFCVdVYtf4oiqIycmiHX0xTZnH6Xj5L3QkCqhQbE1r0AuDm7f8lr9aA+R53sxMhpKtXmbOCD1LmMzxiEC93eILFGV+xr+QoR8uSmB4/mSuCXDIF1YqD5w5/iVOqGBDMaDOUMVEueYRZ3ScwdesHZFaX4GH04m+tBrAsYwunq3IAyT173+bjXo9gMZh4qt3ERl2Ph9VMZn5pg0R9o9GA0WDAXtv3TVFVgnw8+cdNLn2lD9fuZu76vVzRJoYXplx9XhuZvxq7jp/lrveX/eA3VbJo22Gu6dYagLLKGqQEP2933IwmegbHsK8ogxivQCI8XMKR9+1YzLrsJK5tnsjrPa//LS5FR+eC6EaSzp+ecpuN8XM/x6GqvLZhK9YqQVxwIIvun9ioH7kOzcJwM5mQSDo1C6d7lMtrMzi6Xonay2LFajLhUFW8zBaM57wRJxUXkuFbjaJBaSL4bjUCkmuubMtNw7sSEeL7w1MCEBcVzPw3b6GguJLEJqh+L165j/9+thUJFBRVcsdklw6RU1NYlrEHozAwOrIbpgs0E/0xcqpLcWgKBiHIramXHShz1GviGAuNmLMtaLEmvHw1atRqKpQq1uZtYX/JMdqeGEpSaC4OLwdGYSTPVlh3rFQlRgw4cXmRSnbYGPni+yiqxutPjmHhFXeTUlFAnF8I7kYzC9I3uI4D8m0l5NYUE+V5fthxyf6jrDx8glv7dOPKlvVGpbvVjLeHlRq7E1XTkNLVx21wrzjKqxxc2SGeFs0COVBykhC3AA5mpLOgfAlaczfWHXAwsX9nOrT49dTYf++s35fM43O+Qlpqm9vVYhCCG/q4hEX3nkjngVnLAXjlnmvp2zGWT/pPJru6jDB3H0wGA7nV5WzMcVUmfp15jKc7X42v5fxKR53LiO5JqkM3knT+0OSVVXIqp4Ducc1xM5uQUmJX1DrFX4Bqp4KiaSiaBhIciuR0XhGFFdWE+v54RRhA1+bNmDN+NGeKS7gusc0Fx/i7ufP5tTexOfMM17RoyYpVB8nILmHyDT0JcPfAaDBgFYJQb08eua0X1TYno4d2wGL+8UcwLMinyd3OS8uqUVWtrg0JwLHSTN4+tYZDxWcRQlCp2Lk5tmmJ3jPaDCGnpJyCXdW42z1QW2sYDQZmdZ/Ae0kbiDYHsnHpWRxOFWuqJ/c/OI2/f7wAv1HpCBNUVNtYsuogRl8rMTcEkhAezrAwV6Kzpknum7kYa6UHHgkaztOwKO9A3Xf1+/O3cCIlF1WTvPzIKLp1bE5mdb2BFe8dQTOPhn3VVE3jwc+/Yl1SCgD7szJ5Zkp3mnsG0yOwFWaTkc+emcKek+m0jg5hyfpD5CnFbI/cgjDClMRE3jo1n20FB1GlilNTcQsBS4AdZ6EHzQL/2l3odx9PRzolmAEkaDCyexsGJsZSWFLFso2HeGPBJhxOl4d11Y4T9O0Yy6yDW1meeozb23ZnWpuuBLl50dwrgOzqUlp4BeJtPr+/m47Ob4VuJOn8YSmqrGbUa3NRNUmriCA+vmscU979nGMZedzQsz0zb3CFSMK8vXhiyJUsP3wM7JKTFfn0im9OSBMSbXvFNKdXTMPE78oqO8+/8RWlZdU8+eBwOkaG0zEknM07TvH+3E04nSppZwuZ9c+b+OL6iezNzcbbZKXS6eD6Vh2wmFyPX7XTSXpZKQkBgb9I+GbS2J7kFZTjcKrcObkfBbZy7tz1IXbNiQRMGChzVF9ynh8S4uaDz14fThwrYkHSPiKD/Bl5ZSK9guPoFRxHUVkVG+QHACiKxtHkHOw5Vko3BBHWTtDF2INMkYxaZqFrzlVc07It36w7Sf/u8bi7WUg+k4+mAYVG5DnCnVaLCZPJiM3uCoF9se4QvTu34ObYq5iX8h3VhW5EKR0x/kA/6f7PV7I+KbXus2/LYv5z+iuEELzc8TY6B8QT7O/F8N5tAXhs8mCeOvQxzkIFNFifd4DDZUnYNIcrFV2AlCCE5J6r+hL4F0/UvnFQJzbsT6aorLru3hTnVfDMzjVITaJqWl37HJPRwPVXtierspz3j+7Coak8t+c7bkrogJvJzIohd5BWUUSsT5Cel/QbI9Cr287lkkaSEMIN2AxYa8cvkVLOvMjYscASoLuUcm/ttieA2wAVmCGlXFO7/WrgLcAIfCilfPnnX47OX4mMwlJUTVLjcHIyq4Dk3EJO5xYhgSW7jvD02MF1ScGTunZkUldXV3qbU2ngaWosUkr2HDqLw6FwRfc4Vq49xJ6DZ1EUldkfrOf1Z8cBUFpeg6q6RPXU2nyXVgHB5FZUMv2bL5HArsxM3hw2nEqHgyH/+4gyu50eEZHMHTX2Z98Xby83Zj5Sr3l0prKgrjubAcGQsPbcGjeAs1WFfJa2jc7+0VzTrNPFJzwHg0GgSbA7Vd5ftJWYiADW7jhJvy5xdE+M5v/uuppvthzjxmFdSIgK4uv1RylIFnSN7sD0if3wUfxQVcn1V3VkwoMfo6gac5ftYuWcu2kbH8bRUzlYLSZsdieaBD9vN957fgLllTYOn8xCk5IRAxMBGB7Uh9fmHcepafzPcJDp/Xrhd06X+b1nsxreF08LNbIGqzCzOmcPCOjs31D7alxUf/YWn8JkkGwp3IFAYBYmfM1elDsrUYXG7XHXc11kw6q8vyKxzQJZ8+bdvPq/9SxafxCTQdCrfQxH03KxKypWswmL2fX8zXtmMtGh/lQ67biZTBhVA94WKxaj6zm0Gk16hZvO75LG/FLYgUFSykohhBnYKoRYJaXcee4gIYQ38ACw65xtbYHxQDsgAvhWCPF9J9F3gKFAJrBHCPGllPL4z74inb8M7aPCuKJVNHtOZ3D/1VfQIiSAQC8P8ssriQ0JYF9aFt1iG1Z95ZVVkl5USufoCExGA5U2O/9Yso7yGhvPjR1KZMCF84MAVm04xhsffAvANQMTaRcfhtEoMBlNNG/magLrcCp8MG8zmpQYTQaeeMDVsXzuoQO8u28XTlVFkZL0cldOT0pJMeV2OzZFYWvG2V/jNhHjFczdCUNYn3eM2+IG0C/ElVA7efs7ZFUX83XWAWK8gmnj2+ySc/3jzmFcM/09ACqr7dz30mJsdoUV64+wbNbtXNWnNVf1cc2fW1hOZY0Dp6Ky8rsjtIwJwcfLnVaxISiqhqppOBWVskobqqqRmVsKuKqcfLzdKa+0cef4vkRHBGCzO3ly+jBimgWQEBOCqml4u1kJ8PSgwm7Hz90NL2tDvakbOrfjox376z6f2eNJzyEelGuVrM87yMb8w7zV9R5a+9R7CDv5x/G/3o9xx57ncUpXmCjI4sddcWPxNnsQYPGlmcevK7fwR+PRyYP424QBgCs1Kb+kkhNn8rh/XD8qqu3ENQuiWbDrufIyW/nm2lvYlZdB/4gWutfo94ruSarjkkaSlFIC3zezMtf+udAtfB54BXj0nG2jgIVSSjuQJoQ4DfSo3XdaSpkKIIRYWDtWN5J0Go3RYGDW1IYq0Ssfm8aDc79id0oGd3+4nPduu57ucS5DKau4jNGz5qFornydcD8fvN0snMguQErJK19t4u2p19XNpWmStZuPY3cojBiUSFpGIQ6niqZJVqw9xLdbT/L4fVejaRpX9Ign5Uw+/r6eVFU7UFUNgQFPDyulthr+uXVjnbhk++BQnrlyENO/+ZKkogKifHxJKi7itk5df7V7NTW2H1NjGzaS1aRW9yBrsnHfiv4+Hgzr05pvd50iNNCHnEKXsSeRKGp9a5eS8mru/r+FlFW4kroVVePjZTspKKrEYBC88NC1hAb5UFZew4xpAzCZjLSJC+Pg8UwQ8MELEwkN8sFUq6494/nFpJwtRAiX2vgzs7/BaDDwxpOjqTapdIoMZ2daBjtS07mhSyItgvyZ1rsrc3fuR629NCkFf4+dzHNp/6XYUYGbMFJkd/WDs6kOnJqCt9mDAnsJhnMkDUod5byeNI9ege15tM20Jt/7vwKmc1TQH5006EdGQqSXL5FeF38Z0dH5PdGomIMQwgjsA+KBd6SUu36wvwvQXEr5tRDiXCOpGXCuxymzdhtAxg+292zi2nV0zsNiMlFQUVkXUsssLqszkk7luhJ9HYrrxzyjqLTOSDAbDYT7NdS7Wb76IO9+ugmAnPwybrq2G0eTsjmWlIOmSRRFxdfXg/atI5hy738pLauhbatwbp7Qhy9XH+K6qzvi6+OOXVHwMJuxKwpWk4nFN4xnXeppNp09Q43ixNtiYcu0O4j0+fFEYCklewszUDSVQyVZdAlsTo/g86UBGstbXacxN3UznQNiaOfXeJ2lZ+4ZzgOTB+Lr7cahpCwWrdnPkF6tCT0nkfn1D7+joLheFqBNXCjZ+WU4FRWrxcSTr3+Jw6liMRvZvOc0OQVlzLx/OMdP55CaXsjytYcYP7IrQf6uxPrTZwux2Z24Wc0s+mZfXb+6jdtO8fBtg0kvLuXehV/iUBRWHjnB5ofvJNTHC193d4qrXYaal8VM6/AQnvKYyNunvqCldyS9gtqwNmcfr51cgqqpPN72RgaHdaF3UAcOlSXTI6AdG/P3YtMcnK7M/Mn3WkfnD4OuuN2ARhlJUkoV6CSE8AOWCyESpZRHAYQQBuAN4OZfY4FCiDuBOwGioqJ+jVPo/MmYOXYIMxd/S1SQH9d0alW3vXdCNG0iQjickQOAqkmklJiNBkZ3bccjwxtWexWVVKKqGpqUFBRVEhTgxXsvTmT+F3uY89kWWkQF0aF1BJk5JZSW1WB3KBw4ksGbz93E1HH1bTusJhMrb5rM5vQz9I+KwWoyEe3nj6q58pUqHA7uXfUlK26a/KPXNfv4Jj46tROb6kQAFqOJlUPvqhPjawoVThv59nIeaTuyydVEQggCfF06UF3aNKdLm/OVzM1mI0aDwdXwFEg+W0i39lEUl1ZRUWkjoza0piga2/ensuNAGmUVNfTrFs+Hi7fjcKrsO5ZOs1A/fDzdmDG1P+98toXqagdJqfmYTQYMBgP9u7tyiuyKUneu/IoqknILaBUWzBVx0Xx15CQSmDHQ1ZKmnW8073d/AICvM3fxRtIS1Fpz+cusnVwV3q3OY2RT7RTYS8iszuee+HFNvc06Ojp/cJqUvSqlLBVCbACuBo7WbvYGEoGNtUmyYcCXQojrgCzg3G/QyNpt/Mj2H55zDjAHoFu3brp9q3NJEpuHsfSh8w0ON7OJT+++ESklRzJycaoaX+w/TlSAL7dd2R2DoWF+xITR3cnMKcFmV5g+pd6Amji6OxNHuwQQv/72CK+/uxajyRVuGDuiC1m5pSxYtot2rZsxYohLLybK14/J7euTo9uHhPJE3/68uHUzTk1F0TSqnU7MBsNFRS53FZylprZjuutBEJQ7bE2+P05NZfzW2ZQ5a/A1u/PFlQ9jbqJm0qV4+LbBhAR4k55Two4DqdjsTgqLK/no5cl8snQHc5fvRlU1WrUIISkt3yXd4FBw1Io4SinJyi0j+UwBBiHoVxGHm8VMVbUDh6IyZVQPrr+qI4F+nqw6mkReRRVxQQGcyHO1Ilm47wgzRwxiYvcOZJSU0T8hhqm9uzRY43vJK1mUvqnOmyiAUc1cxu3Cs6tZmL6GVj4xvND+viZrSuno/KHRf2nraEx1WzDgrDWQ3HElW7/y/X4pZRkQdM74jcAjUsq9QogaYL4Q4g1cidsJwG5c30cJQogWuIyj8UDjZHJ1dH4mQgg6RLlEALu2uHiysrenG889ct1F9wN8snA7iqphMhn5v4dGMPTKtkyc/iFZ2SWs23yC6MgAEltf+BzTOnRG1SQnCvOJCwig45x/42WxsPKmyUT6nJ+z8XDiIGbsXIJDVZDA9dHtaR8Q0fgLr6XSaaPAXoEqNRyaQqXThr/1p5WzK4pKVn4ZzUL9GuSleHlYmT6pH5XVdv7+6gpyC8r52y0DXdc9phfx0SG4WU20bxXBe/O3YrM7uWdSf7w9rdw8thcpZwvRNI3Ne1KQSLbsS3HleQmByWhgQM8Egvy9+PbEaZ5YsRZNk7QND8Zaqy5+ZUIMTlVl8seLUaXkYGYOHSPDuSKuPjz5ZdYOJK4vowCLD//sMI02vtGoUmPe2W8AOFqWwpGy03T2r/dI6ujo/HVojCcpHJhbm5dkABZJKb8SQjwH7JVSfnmxA6WUx4QQi3AlZCvAvbWhO4QQ9wFrcEkAfCSlPPYzr0VH54JU2OxMe38RZwpLeGbMEK7r0rZJx6/bcoLjyTmMG9GFiFBXi5IVaw+x60AarVuGUVpejcEgaNsynOzcUsrKqxv1IiaE4LbOrmTta+bPrfMmfZeWyrSOnc8b3zWoOS93u477diymRnWyJS/1vDGNwd/qybionqzM3M+1kV1+soGkahq3Pv0ZZ7KLiY0M4qPnJp3njfPysPLvmTc22CaEoG+3erXyB28e2GD/1NGu9MSKKhteHlaqahxs2ZuCpkraJoTxr8dG4+fjCvcVV9eABKeqYjaa+HL6VIwGQaS/LztS0lHPSUg/mpVXZyRVKjUMCOnIt7n78bV48lz7aeTaSojxCkP+IInd1/zX1kPS+Quie5LqaEx122HgvG9sKeXTFxk/4AefXwBeuMC4b4BvGrtQHZ2fyuaTaaQXl2JXVGav2d4kI+l4cg4vv7MGh1Nhz8Gz/G/2LSSn5TP7ow3YHQp+Pu6898okggK88PP14MY7/kNllR2DQTDlhp4X9SL9kBvbteelrZuwGIz0jbp4MranyYJEYhQCT5PlouMuxaNtR/Jo25E/+XiAkrJqUjOLUFSN5LP5FJVVsnlfCkaDgWsHJJKdV0Z6Tgk9OkRjbmL/uBqbk6mPfkphSRVWs5FRQ9pTUl7DPRP74evtjs2h4GYxMbpjGw5kZJNVUs7z1w0lOrC+z15xdTUG4eqlJwT0iXPlNL699RuW5W/BJ9DM7K734m60cNf2t8AoaO0XyVtd72FK9AhWZG1kQEg3Yr1+3ebBOjo6v190xW2dPz2JkWEIBO5mE31bxQBgdyqUVNQQ6u/VoAv9D3EqKqJWTTgzr5SBk99i2vUuFQshwGIxEd+iXjfHZleQEixmI73O8ZZcils6dmFkfCs8zGY8LRc3froENefV7qM5XprLpLhujZ7/1yDQz5Me7aPZfjCNKzrHsuzbQ8z/eh8ISM8u5os1hxAIuneI5uVHRzV63opqOzPfX0Veoas6zgH06xZP18QonIrK1BcWcCI9j+v7tmfckE6s35GMompsiU0lIySANpHBBHp7UmV3uN6INTDY4OZ3F3F/lx4sXHocKQOpGl7OmYQ8TuwopmJRILhpHG1TwqBZs0mIDubTZ/7ZZONOR0fnz4VuJOn86YkO8uObR28hr6yCds1CKauyMe7ZTymrsnFdn7Y8NWnIRY/t2CaS6VP68+3WJE6ezcfuUFi29hDPPXItB45lMGpoxwbjX/7HGD5dvIMenWJoGVuvIHzoRCabTp9muXaCUA8v3u9/A37Whk08gz0bF9YZFtmGYZEX7iH3a7JlfwqvffIdLaNDeGHGSCxmE288Oga7Q8FqMfHyf9ehqCpCiDphyArhZP2JFP63Zi+ThzXOqLv3zaUkpRegWcFsh+AALzrUeuROZxWSmlOElLBsyxGWHT6Gorr0nt76emutwrlg4cMTKatxefREtcTgBIdTZc7SbaAIEBKZb6FLQDz/3bAUpACngZr9boCTI6ey+XZbEtdc2bTQrI7OnwFdAqCen98oSkfnd4BTUZm1eDNPzPmajQdOM/qpj7l/1jJstXo6wd6eLo+SEBw/m0eVzaUEvXp3EgDz1u3j7jeXsD/5fC2cscO7cOuEPmhSw2ox0i0xiopqOz07t6B5hH+DsW1bhvPyU2MYM6K+kio5LZ+Hnl3Ce2k7OVtVwt6CTEZ88yHbctN+xTvyy/Ovj78lr6iCvcfS2XGofu1Wi+td6+4br6B/t3gG9kjgsduHEBsTjDQJJPDu0q2NPk96XimKpmHwNHHNkHbMf/NmCsuqmLd2HzaHkwAfDywmI5gFzloDyWgQ2J0qiiZRNI2nF65lYo+OjGzfBl93a10/KqfJ1VolPMSXT6bcA5VGamyuikF3o7nBOk6m5f7cW6ajo/MHRzeSdP4UrNx+nEUbDvHt3mSemPM1GfmlbD92lvdXbD9vbPsWYQT5eGAQgnFXduBkej7vrdjO7pMZPPTu+XUIVTUOHv/XCjTpUhY2Ggy89P4aHn1lOdv2uTrMV1TZyC0ov+DaCosrXVVZRSAU0JDk1FRw9+Ylv+xN+Jl88OUO+t49m4fe+qJOw+lcWkaH4G41I6UkKvx8bSY/bw9eeuA6nr9vJEF+Xrz2+PV4e1hxt5ppGxPW6HXMvHkozUP8uLZPW566fRgWs4lbXl7Iv5dt5b5Zy3n/4RtY9OxU2rcOx91ixstq4aXJ19CtVjRU4NLAmr/5AE9dPYDvnrqDCb074FEJXtLE9UM7sPTtO2geEsDiVQcoq3SJTbaLD2/YJkPqLTN0/qLIy/TnD4AebtP5U1BWZcNeq7Fzru1/Nq/kvLFe7laWP3cLNQ4nnm4W0vNdytsGIfByt543/nhyDja7y9tQVaOx42AaTsVlRGzbn0ZEiC93Pv4Ziqpx16S+jL+uO06nyqETmcREBtKjUwzXDGzL8eQcPAK8+Lr8JAA1ipPx6+ZxojSfZ7pexfWx7X/Zm9IEpJR8uGInmpTsOZHO6YxCWkU37FH24oxr2XEojeiIAFo0C7zknH5e7ix+4WZSsorw83Lj0bdXkNA8mNuv631eFdy5DOySwMAuCQDsOHaWZz9ZQ2FpVZ3HyKmoxIQF8J/pYzmQmkVGURlPL1iLEDCofRwmg4FNx1J5b81OTmTm88Yt1/LEjYOZNqAb+UUVdGhVn0zfNj4Ms8mIENClfRSnMwopr7ThbjVzy1i9CYCOzl8d3UjS+VNwJre47u+dEyLYdyoLo0Fw24j6H7rkrELS80ro174FFrMJTzdXgnRUiB+z7x/NodPZDO91fq5PXmE5JqMBRdUI9PMk0N+T4rJqhIDIMF/2HU5HUVzNWldvPM7467rz2IvLOJqUjRCC+W/fysN3DgXgdFkh61YlI5FEefpztDiXatXJywfXc31se+yqgkBguYig5K+FEIJ2sWGczizEajHVNSQ9F6vFxIDuCQ22SSlZs/0kNruTkf3bYfpBonOgryeBvp5MePpTTmcWsvP4WVpFh3Jl58Yltf9rwXoKSqswGQ2YTQZCA3xws7jCYlaziV6totnzzTYcqqunngCuaBPD5uNpqKpKebW9bq6IEF8iQhpe16DerQgJ9MbhVOncNpIxV3UkJb2QtvFhWC0Nw286On8J/kBensuBbiTp/Cno1SaKdXtOAYrAZnoAACAASURBVDCqbyJvzbi+TngQXAbStJcWIISgZ5so3rinoUhk91bN6d7q/PYaAP17JLBkzUGy88p47M4hhAX58Pw7qwkJ9GLUkI5UVNTwyeIdVFTZmTDKpcR9/FQONTYnbm5mzmYVExTg6kEW7xvEsmE3k1SaTxu/UG5YNxcPk5nuwc3ZmpvG7RsXYTIYWDBkMu0Dwn+t23VB3n9sHMfScomNCMTL43yP2oVYseEws+ZtRALpOSXMmHTlBcd5WM0YBEhN4unWeOMjsUUYBaWV1NgVFFXjTE4x/1qwgTfurf/3m9C3E7uTM6i2O5gxoi+RQb4k5xSSU1zBI6P7/8jstedoWS/I6ePlTue2F/5/oKOj89dDN5J0fjdU2RwAdR6epnBNrzZ4ultIziykV7uYutLtXSfSmbd2L6om0aTE4VQ4lJLdpLl9vNz45JUpDbZ9+urUur97ulv48qN7UFQVi9n1SE2f2p/35m0msVVEXWXW97T1D6Wtv6vybe2Iu0ivLKFbcHPu27oMh6bi0FSWpx657EaSxWyic8umaQIVllShfN/frqTigmOklLUyC4JAX086NeEcM28eRofYCF5duAFVc73eBng3rAoM8vFk3gPjG2x7bPSARp/D7nBy/HQucVHB+Hg1rY+djs6fkd9TdZsQ4m/A7bj8W0eAW6SUTe/H9BPRjSSdy0pZSRUPTZ1Dfk4pDz8/lgHXdABgz8kMHnh7OQBv3X893Vs37W2+oLSSJz9YhZSS1buTWPzsVNLzS5g+a+l5Yytr7KTmFBEbfn5ezc6Dabz96SY6t43kwZsHYTI1rrbBYBBYDPWP0+hhnRg9rNOPHOEiwtOHCE8f1zExiWzMTsEgBFdHtW7UeX9Ltu5PYdXW4wT5exETEcD9Ext6kTRNYjAIqmwOjqTkuAyp0io+XrmTtJxibruuF3HNgi4yO6TnlTBj9hdomiTEz4vc4goMBoGfl/sFx1fbnbiZTT+a73Qh7vrHAtIyizGbjSx753Z8LjK/jo7O5UUI0QyYAbSVUtbUdvAYD3xyudagV7fpXFZ2bjxJYV45TofKvHe/A6CkooaH3lmB3alid6p8teN4k+ctLKtCUVVsDoXU7CK63vEmt/5r0QXHGgyGCwpIpmYU8ujLy0nLLGLZ2kP0n/gm7362udFrePPD77h6ytu8N29Tk9cPcHVUa7aOvo9to++jR0jUT5rjcvLPOWvIyi+jrKKGiSO6ERLgXbfv6Q9W0fP2N3n031/iYTXTp0MMBiGIDvNn7qo9rNtziodnr/jR+eet3UdmfilZhWUkxoZjMAhUTTJv7T6KyqsajJ2zdhd9nniH4S98RHm16yWztKqGD9btYu3BUxc9h6KqnDpTgFNRqa5x8O95jf/31tH50/L7qm4zAe5CCBPgATQtFPAz0Y0knctKm47NEQKsbmZ6DWhNeZWN1btP4lTVujEjeruSp0sra7jj1UWMmzmX5MyCH503JiwAVa1/6iRQXFZd99loEHi5WQj196JZkA/7T2WSW9wwPPTIS8vqQjrfs/DrfY26rsLiSlasPURllZ2FK/ZSUfXTvMFBbp74Wz1+0rGXm+jwANwsJqSUhAX51G0vr7KxZpergm/roVTyS6t4Y8Zo1s2ezlM3DwUhEIJLqll3jIvAajHhZjHRvXUkfl7uuFvNeLlbz6tC/GzLATQpKa2sYW+KS+vqkblf897qnfxj/hp2nkq/4DkKiqs4116uPCfRW0dH57dFSpkFvAakAzlAmZRy7eVcgx5u07msRMWG8NHXD1FSWEmNFa55/AMUVXOFq0xGru+XSI/WLi/KF1uPciglB1XTmLVkC+88OOai85qMBtwsJqprS/UFDWVuVE1SaXNQWZv39OL89XgYjPx9zJUM7NMKDw8rxaXVDeY0m4x079A4j46Ptxt+3u5U1Tjw9XHH4yfkVV2MvQfP8NRLX+Dt5ca/X5pAWMj5lWe/BW88NobN+04THxVMVFi9qKaXu5X4ZkGk55UQ4u9NkI8HQgh8PN1IjA3n6Vuv4nByNpkFZQx94D3uHduX0f3Plz8Y2actMeEBSE3SPi6cgZ0T2JuUQVSoP0s3HaZzQjPaRLtyu4Z3ac2ibYexmE10jHHlcpVX21A0DbPJQEVNvfFzLDmH3YfOMLhPK0KDfAj0c1UrWswmZkwd8OveNB2dPwCXMScpSAix95zPc6SUc+rWIYQ/MApoAZQCi4UQk6WU/7tcCxQ/7Hj9e6Zbt25y7969lx6o84fg/S+38+FXu5BAp/gInpw8mNjwwLpQ2GufrmfBloOA4OpuLXnhrhE/Ot/J9HxW7zpJiL8XTlVj/YFkTqTno6jnCyMKVeKVo2A1mYhs5s9H797Cy3PW8vX6owghePi2wSS2DCcmMhCj4eIO1+zCMvafyqJ3YjRmYeBYcg6JrSLw9vzlEoDvf3IBh45lYjQKbpvYl8k39PpZ8505W0hWTgk9usZiNv86UgNORSU1u4iY8ACs5vPfxQ4lZ3H/G8uosTtxs5jZ8v79jZ77uic+Ir+0EqNBsPT5mwkL8EZKSU5JBf5e7iRlFTD7623EhweSXVxOfFgg94+4AqPBQHFZNWPv/QCHU8Hb041V/72HqhoHp9LyaRMXhnsTKu90dC4HQoh9UsrL1qjRPay5jJ/80GU519HXH/rRaxNCjAOullLeVvt5KtBLSnnPZVkguidJ5zdkaLeWzP/2AA6nwrRh3WgRFsiZzCJCg3zwcLdwcN9ZLGUaGECUKZecr3VUCK2j6gUQ+3eMZcqL85FSQo2GaoIQNzcS20Wy9/BZkAoOh0LamQJsNgeP3zGUm4Z3JdDPs1FVTvtPZTL9jaUIIfDzcuOzf0xCWgwYjb9sFPuKHvGcTHa1yOjY7ud1pE89U8D0B+chhKBH1xY894/Rv8QSz8NsMtIqKuSi+5sF+2IQAnermYTmwU2au6i8ytV42GxkV1I61/VqixCCiABXyO+hj1dSWFHN0Yxc3r9rDF1im5GVX8qHS3cQEuCNJjWkhBqbE1WTeHlY6dJOL/vX0anj9+M7SQd6CSE8gBpgMHBZPSW6kaTzmxEXEcR3b9yNJiVWs4mnX/uSrXtT8XS38NnsW/D1dseY4RrrZj3/Df9gUhbVNge9O8Sw4/AZ/v72Snw93fjg/8YTFuRDi7AAVr18O8u+PsD8/+1A1TT69Yviqekj2bv/DI/+Y5Erf1DCq2+t4f8ev5YWkZdWkgZXWfsDs7+o81IVlVUzbuanOBSViCAfZt03Cm8PN1ZsPcrcNXsZ1CWev08cdMGE8UsxfnR3enSOwdPDSmiwz6UP+BHSM4oQQmCzOTl1Ou9nzfVzCPLzYuHzU0nOKKR7m6YZKC/fNYJZS7ZwtqSEF5Z/R3J+IY+Mqq+s8/N0p6SyBqdT5fFPv+GBkX1ZvHwvp87mY7WYiIsJITu3lDtvuqJOR0tHR+f3h5RylxBiCbAfUIADwJwfP+qXRTeSdH4znE6VotIqQoNcVVHb9qXicCgYDYKU9EJuG9+HJ19egdVqYuoPQkzr95zi2f+sBgFThndn55Ez2B0KxWo163YlMWWES9TR28ONSWN6YsFAWXkNk8f3BsBsNiAQyNpXppzarvVNQZxTaj5uYEe+2HIUu1MhJauIsf83F5PJQI3NiQRWbjvGhMGdiQk7v+dZY4iNdnlbCosqOJ1WQKfE5rj9hNBQ7x5xdEiMJO1MIX+7d+hPWssvRVigD2GBTTf6+nWIJau8gtdWbMLmVNmdnNFg/3/uHsOH3+5m6c6j5JVV8szn6+joEYhAoKqS5KwCnE6Vxd8eYMxVl5Zp0NH5S/E7U9yWUs4EZv5W59eNJJ3fhOoaB5NnfExRSSU9OrXg1X+MYfy13fh06U4iw/1pHRvKtIfm4nAq2B1ODh7PIMDfE7tTIdDXk+R0V9m2qklOnsnjyq7xnEp3VcB1ad0wJGUyGpgwrmEfrtdmr8VgFGiKxGo1ceOY7k1avxCCvokxrD+QQv8OLXh0/AAqa+xsOpiC0WCgrLa6zc/bHZtDwWQ0EOjj+TPuGJSWVTNt+keoqkZ0VCD/eXPqpQ/6AVarmX89P+5nraMplFbW4G41XzAvSdU0auzOC/bLuxTDOrVk6Y4j5JVW8ODIfnXbk3MKqbY7uH1ID1bsPo7B7ArDvXTndXz21V7MZgOL1hxwVTs2UlVcR0fnr4tuJOn8JqScLaCguAIpYcf+VHLzy7hjYl9uuakPJqOBopIqsvPK6sa//t/veG3hJjQpefzmwdwwuBO7j56lssbBPeP64mY1s2rbCSxmYwO9nouRm1uGUtuk1m5XmLdwJwP6NV7AsaC0ku/2JaNoku/2n+ZAcjbP3Xo1AMs3H+Gf877FoagEmo08PnEQHeMi8P6ZP8q5+a412+xOTqfmX3K8qmrY7U48fiFjQEqJpslG51x9vuEgry/ehLvFzGdPTSQy2K9uX0W1jQn//Iy8kgqmDevOfaOvaPQ6SsureeXdtcRJT+Y8NgZ/X5dkwpYTaTz88VcA3HNNbxY+PIkjZ3O4sl0sPh5u/G3qQADaxoWTmlHImCG6F0lHR+fH0QPyOpcdxamQtTsFajWJjEZBflElANl5pUx/cgHPvPEV52bvqAaBU1VxKiorNx0l0M+T/86cyOcv38yaHSeZ8MRcUjILSTqbz7yv91xyDY/97WqCAjwxGoXLsAq+tGF1Lr6eblgt9e8YMz9aXff3Aec0by0sqyaxRRgh/l5Nmv9CJMSG0rtHHN5ebky/dcCPji0treamae8zctxs5i/a+bPPXVxcyfib3uGaq19l1apDjTpm8abDKKqGXVHYcfxsg30HU7IpqaxB1SRLNjVuvu/5ZNEOtu9NYcvhVN6fv6Vu++EzOTgUFZtTYfepDGJC/Lm2e1t8PBom4Q/q0ZLbx/YhwPePoUelo3M5EZfxzx8B3UjSuezMeWIB7zw8D/ORDFBUmkf4k9jK1WR01gfrOXIyiyNJWXVhcYvFyA1DO9U9VEN6tOTbXUms3n6C7IIyPlu1D5ujtvpNyjpxwOSUPDKzii+4hqGD2rHks3t5+dkbuOfOQfzf49c26RosZhOBvvXhs4LSSmYt2sSWQ6lMe3Fh3Rp6J8YQFuDNppwUbvr2U/57cleDeaSULDx9gFcOrqfI1lBF+ocYjQae+ft1fPX5DG4Y9eMVwQcOp1NZZUfTJEtX7G/StV2InTtTqKioQVU1Fi7Y0ahjbhzY0aVfZTbRp11Mg32JLcLxsJoxGw1c07NNk9YSFOBFVYiBilADS06fJLfUJQo6tld7IgJ8MAjBruQMtp4406R5dXR0dH6IHm7Tuexkp+bjqHFgsjmR3u6U+HuxYXsSqiYJD/XBajGhSYnZZMCpaDgcKkvWHQCLQABfbDpKVr4r0XriNV1xs5gwGg3YHa4k6eUbjuCpGVm6dC9SwkvPjCUuNhiLxYSHe0ORx+5dW9C0bKR6WjUPIbugDEWTOFWNeev2s3DDIZASKcFsNPDiHcNRFJXpW5diVxWOluRyZXgc8b6unmXrsk7xzwPf4tBUjpfk8W7fsTy3fy0VTjvPdh1GsPtP80C1b9cMi8WEqmoMG9zuJ15hPR06NMdoNGCxmBg4sG2jjrnxyo5c3a0VbhZTXePf7/u5+Xu589WLt1FWaWuyl238dd3415btADg1jRkfrODzRyYR5u/NDb3b8/Y323CqKnPW7qRvm5gmza2jo8PvKnH7t0Y3knQuO3e/Momy4kpSc0upaR5I25ZhvPTOaiQwcVR3HrpjMJ4eFhZ9tZ8jJ7OQEowIMAjMJmOt8aQigYKSSj57YSoHkzJ59dP1VNS2lThwOB27XUEIwfIv97Frbxomk4G3X59EfOzF9XuawjO3DCOxRShvLq4P+aiqhpeHFbXGTqf4Zgx44F3crWZ8elgpMblyoLzM9TlCdtXlAZNSw64pfJy0mxVnj6FJDYvByKw+TdMxUlQNVVEJCvRm0dy7Ka+wNTmUeCEiIwOYv+AeystraNas8RV6PrWimlJKnvjwG9buPcXgzvH8666RWM2mnxSGNJmMXNEmhm21nqKk7ALeWbWD+4b3oVt8JGajEZMRBnWIb/LcOjo6OueiG0k6vyqF2cV4+Xnidk7ycGRCGG9vnImUEqei8v68zew+cMZl9BRVctt4VxLvgN6tOJqUzSvvriGqWQBDB7XF7lTp2iaSf364FrtDoVmwL9mFZQzr0wY/bw+enbMabw8r40f34LWzq/H0sFBQXFlbCaexc3fKL2YkuVlMjO7XnreXbavTS2oTHcJr91yHm8XE/W8tR1FdFVyTfbpiiTfSMySKMI96o2VEVFvSyos5U1nMwx0GsDH7NEYhMGAgoIk93HLzyrhrxqdUVtl59MGr6ds7ga07kmkRHUjnjtE/+3q9vd3x9nb/SceWVtbw3f5kADYdTqWovJog359e7Tf7tuu4/Z0lHEzLRgIH0rIA6BAdzsonb6HSZicurHGaVzo6Og25jG1JfvfoRpLOr8bHzy5hyVur8PBy4/1d/yQw3L/BfiEEFrOJKWN6cjarBIfDyaCOLVCcKstWH+A/n22lTVwo/VtHsvVYBtmZpUyozcWZ0rs9sxZu4sPknQgBH82cyIm0XMqraigpr2bVnpOsXDSDk6dymLdwB6eNBqxWE317J/yi1+jlbuXN+0bxxdajjO6bSJ/EmLp9HXuGckTNxFTgxtWdW5MQGVS373hJHo/s/JJyp41iWzWjYhKJ8PBhQnwXzAYjVYqDifFdmrSW7btSqKpx4ETj86W7Wb3uCMdOZGMQgrf+NYHWrcJ/qctuMr6e7sSGB5KeX0pksC/+P9HY+h6z0cgbt4xk+n+WU1JVwwMj+9btC/XzIpSfnyivo6OjoxtJOr8a6z7biuJQcNidHNl2igE39DxvjK3ajrvFxHMPjuCOgS/y4qL9tOzYnJ0OG5pBcPBoBie/PISxysHcLanMf3oFvQe3Ze/mJGrsTkSMN84AK2t3nCQ6IgCjwYAQkmB/L2psDh58fCE2mxOr1cTCT+7C52f8OOfmlfH0s8vRNMlzM68nItxV0t4nMaaBcQRwoCid/1VvR3aEjkHNGhhIAM/tX0tSWUHd52VpR3io/ZUEu3txY1zD0nSHU2HjliRCQ3zomNgcKSVLVuwlI6uEKTf1JrhWjLN9YjOqPUETRpIqSjGUl2JQVTwsZopKKi94TQ6HwsGDZ2nRIoTgJobljqfm8ulXu+nVvgWjB57foPZcDAbBvCcmcCavhJhQ/x/th9dYAr09WfTI5J89j46Ozg/QPUl16EaSzq/G6OlD+fiZJXj6uNPpyvoKptSjmeRlFuHu7c7MWz4AKbn7mTFUllbjdCgc2ZmCISEQzcsKEozVDoSqgV1BNRjYuzkJW40TIcBU5UTxt+DlYWFkv3ZYTEYqaxxc278ddruCWhsGcyUM1/8wq6rG2x9v4PTZAh64dRAJLS4dglu4aBcpqflIKZn32XYef2T4RcdmVpciENg0Jxk1JZwuz6fAXknPoBgMwkAInhhVgSYkFpOBYHdv/KwXNuD+9dZqNm8/BcDLM8dSWWXnw0+34nAqnEkvYvYrEwCwelgwWY04nCqalEgBgRHeDOgUR6/ucRec+7HHFpJ8Khej0cAnc+8iIKDxIbC/vb6c0ooath8+Q2J8GPGX6MFmMZtoGdm0Pm06Ojo6vyW6kaTzq3Hj30Yw8vZBWD2sdQKEJ/ak8si1r6KpEquvJw6HCsDR3SmYzEactaX87qeLUDwtxEQFUWAyEdwqmLzsckBwxVXtOHUki+oaB0W5ZXiVKfSf2QIhBMP61BtjFrOJpx+/lpWrDnHt8I54eVpRVY19R9I5k1HIV98dwWZXeG7W18x765ZLXk98XGhdlVZCfL1RVeao4buckyT6RdDSNxSAYRFt2ZSbREpFIZNie3DjpjkIBGOiO/NUh+Hkzc/H1yJwU83cNaEfo/t2wmwwXvC86ZnF2O0KVouJrJxSfH3cqX/Vq3/liwzxo3u7aLYdTMVoEJhMRh6/92r6dGrRYL6DJzNZ/t0hhvZuzamkHOx2BTc3M9nZJU0ykiwmo0uWQboa2uro6PxJ0D1JdehGks4vzom9qcx6cB6R8aE89t6tDRSaN32xB011PYH2ajuYXP8Fz57KpabKXjfOaDJy96MjGDymO54+7lRV2Lh9+OtUVdiorrQz56u/cd/YtynKKUOokkPbTxMbH3reWvpd0ZJ+V7Ss+/z6nG9Zu/kEqqohpUQIccHmues3HCc9o5jrR3XBt1Z0cOTwjkSE+6FpGl27xNSNvWXrJ5ypLAIhWDn4Xpp5+GExmnitu6v9x8K0PUgJNs3J/qJ0AHy83PFOq8RkNNA9MrpBxdsPefjeq3jlrVWEh/oxdEBbrFYTt03pR3pWMdPG96kbZzAIXn/0eqSUnEjNw91qPq9hr1NReeCVpdgdChv2JDN9Wl8+X7CTDh2jaNMm4qJruBCv/m0Un361h8E9EogO/2k96TRN8tGCbZzNKOKBOwfh7eWOENQZozo6Ojq/Jfo3kc4vzuyHPiM9KYe89CK2fLmfITe5mtNmJOey6tOt9QOdChgMYDCQdjKnbnNETBAxrcPZseYIc579go59ErjhvqGUl1QjJexcfxKAwaO6kJ6yGqPRSOfeFw4nfU9hcSX/99qXJKXm43AoWMxGVE1DSkjLKKSiwsbzL64gv6CC0dd15v0PNqIoGoeOZPDmqxPq5unS2VUltvTMfv5zajNDI9qSUVWCTVNwN5rJrymnmUd9+w0pJZ0DmtPSJ5TcmjIeTbwKgFeeuYGv1x4mIS6UVglhP7r2VglhfPTvhp6uG6+/sLrTyk1HWbv9BBOHd6Nt3PnzCqgTugS4enhHJtQ2/W0Mx1Jy2HYojQFd4/n77JWUVtRwKj2fAd0SMBoMrNh4hCOns5k6ogdR4f5omiT1bAEhQd4XzAdbvHIvny5yiVMeOJlBOQoGIXj7yXG0T2ia0aajo/MLIPXqtnPRjSSdX5yoVmHknC0AKYloUZ+DUphTisHwAzF6TQODAf8gb0qLKtBUjcKcUiY9OIw3HlmApkkO7zzNmLsH1R0ipaS6ysbAER25Ykg73D2tePv+eEL2/C/2cOxUDlKTmEwGTEYDDqcr1KdJyXsfb2Tf0QxUu8qyL/YBrrylqnO8W3VLlhrPHFqJKiXzU3fzSLuhzE/bTa/gWDoFNG8w9v5dC9mUewpfiwcvdR7NyvcP8a+kVdx352Cm3NR446Qx5BaW8+rH3+Jwqhw8mcWGj2Zg+kGfNZPJyL+fvJGVG48wqGdL/H0aLzNQXmXjnpcWY3cozF+9D6dTRVE1svPLqKy2czanhDf+twGbQ2Hz/hSG921LWW4FW7YnYzYb+WjWNOx2hYhwvzpPUXZufX++EpsdtTZq9/XmY7qRpKOj85ujG0k6vzgP//tmtq7cT3h0MG26x9Zt79i3JRGxIaQezQTAaDKgmk0IYOpjw9mx+gg71x3FYVc4uD2ZhA7NOX0kk/j2kS7vUkIYZ5LzCGnmx7hezyOEYPK9gxkyussljaQWzQOxmF2/wA6nSrXNWbcvKiKAVZuPIx0qAggM8CI7p8ylDO13fo6OQBDm7kuRvQqjELTxC6fQVsWSM/vpFdyCoREuRWpNaqzPTQKg2FHFvbsW4JfvhiiBWe+tY1D/xjfUbQwWswkhXKrkbhYTBnHh7kiJ8eEkxjdODmDrliTee+872rdvzq13DUDVJBJwOhWu6tWG73YnMbJ/Ir5e7kBJ3XFllTYWrN6PUCQWp4bDqfLAPz6nuLSa8BBfPn5rGiaTkVsnXsGmHacoKa1GIAGByWRgcM+WF1uSjo7Or43uSapDN5J0fnEsVjODLlDubzAYOHMiu+6zZrGAdD2PX83dyvTnxnJw2ymEEIyY0pf4xEiKcstIT87lriGvoBhNBAR7U5hbVpvXJPl09rfMf289k+4dzE13DGhwvrKKGsorbDSP8GfkkPYEB3pTVlHNi2/XN6M1mwxk5JSg2hQMtV8MJaXVmM1GbDYnqWn5512HEIJFV97B5rxkOgdGsTB1DxWKDYCH9yxh98gncDOaMQgDFoMRh+byWElA8dHwdrOS8AsJWp5LgK8H/35yHDsOpTG0d+vzvXY/gddfX0V5eQ2lpdUMG9aeJ28dyjdbjzN+WBf6do5l5l1X143tkBDBI1MH8eHyHeQWufqpyXO+bXPzywHIzi2lsLiSsBBffL3defHJ0dzz4mIUpytpf/TADnRP/Pnilzo6Ojo/F91I0rlsqKqGVluSDyBVDYTAaDaS0KE5bbrEsPT4y4DLoCrMLeW7ZXtIPpyOIowgBCVFlRjOCSEZjAKnQ2Xd8v0NjKQzmUXc8dj/UFWNKWN7csuNfejVpQWTZnyEqrl+uLu2j6K6xsGJ07kIo0AIicVsYuiQduzZm0ZqWgH33FUf5jsXf6sno6Jcekbdg2L4JMWVVyNxVbu5ubuSwR9NvIqXjqzGJAx0CYji8buGUZhdQbcuLS4474Klu5m3cAfdu8Tw9GPXNkh6bwztEyJ+0TBVVFQgp0/nARAa5kvniBiG971477Zr+ydy7HQOyzceASkxV9cbSQmxISSn5tOlQxShwT4AbNpximdfW4nDoIFZgBBk5JbU9XjT0dG5/Og5SfXoRpLOZcNoNGC2mnDalfqNAsbfdxUTHrgKKSXH9qThF+hFs9hgnpjwLtlnCjEaDRjMRpf2j4ROfePo0juBxO4xzLxrLuWl1Yye0qfBuZYt24PDrqBKyfptSdxyYx/KKmo4m1lcN0bTNPx9PbBajGgSbpnciyu6xhEXG8KkJiQzDwxvxe0JV7As/SA3RHUm1N2nbt+k2J5MbNEDcU7oq1XUxRO153yyCU2T7NyTQkpaPi3jfzyp+9fm5VduYsP64ySdymX//jOEh/s1uJbvsTmcvL6USwAAIABJREFUrN+TTFSYPw5FxSAEUsD3Jp4Q8P/s3Xd0VNXawOHfnpZeCEkgdAhNeq8CEkAREGxYLyIWUNBrueq9Xst3Vey994KKBaxIFxAUpUsPHQIkoaQQ0qed/f0xIQRISJ9J4H3WmsXMOfuc/e4skrzZZ5dJ4wbQrVNTLEWWC1j99z5cLgNtO3nPNVsPsHTtLuJ6ySM3IYRvSZIkvOq9Px5nxusL2Lv1IEn7Urlq8lBuuN/zyOaTZ39h1md/4LA70YbG5m/FcBtYLCauuzOOGR//gctpkLDjCFPf98z26ta/JUtmb+S32Ru4dGxPzBYzv8/bxIKP/sBoGgoWE+Ou8jz6CwqwYbWYcbo8j78270jCbDJjNpnQboPPf1hFv54V2xT1/vbDuL/9sGLPFZdUlKR1y3rsP5CGxWImpl546RdUs4AAG6tX72XFil38utBEYKAfcXFn9iQ9+vZc1mzdjwYevCmOhSu343JrJtx0IetW76NLh8b07Nr8jK/FlSO7sWzlLtKMIss/mBRm6UUSQtQAkiQJr2rQPJp7XxsHgCPfyfI569mxPoE2XZuxacVu7HkOT0GtceTaUWYTLpdBvZg6BAb5k5tjZ9gVnj3NnA4XS37ZCMDu+GSS9qfRuEUUf/+1C5NLE7TnOGaziYsHen6pWyxmvnxjAtNmrqReVAhf/7yWfLtn5W6twc9mYde+I7Rs5rtVod947no2xScR2yyKkBB/r9WbnHSMZb9vp3v35rRufWrvVXp6Ni6XgWFocrLzi71+/6F08h0u/P0srNqyH8Pw9Pqt2LqfD567ocR6Y5tF8d5L/+CGf39WONtwynUDGdi9YsmqEKIKyOO2QpIkCZ95dtLHrP0tHsPtpl7jSAJDAzCZTSfHLRkG2u0GPxuHElL4fMm/yc7Mo26053HW8fQczCaF29BYrGaevutzDu45SpsuTbBaPT1G4/859JQ6G9YP5793D0drzfHMPNZs3M/A3i35ZdFmGtYPZ0Cvqt0At7z8/Kz07NqsUveIj08iMTGdgQPb4u9/5kKZpzMMzZQp08jJyeeLz//k628mFy6gCWAv8nhUldDD88itF/PcZ4uIbViXq4d05o+/92DWmrgyfD0bRocxamAHFq/awfWXdue6S7uXoZVCCFH9JEkSPrNny0FcBduQHErwbPYa0TCCjLQcDENDwYrYjVpEc+kN/fDzt+JX5Jf+9g0HMKNxO13kHnORlJWP1rB9/QFadWjIq9/dXeLAZ6UU9088mUDdedOgamypd3z44W/MnbOBnBwHFouJ35dtZ+rTY0u9TmtNbq4dt1tjMhnk5zkJCzt5vmHDOhw4kIZhhqSMLLJz7QQHnrpCeJc2DXl68kgSktJo27we3790C7l5TprE1Cm1fqUUD90ylIduGVpqWSFE9ZOB2ydVfituISpo9K0XcfpwnfSkdAy7A+VyERwWwANv3cQHSx4muuGZv2w7943FViRpcheMNQLIOp5X7plhNZ3WJf/kSk3N4ruZa8jMzMftNrDbXRw8mF5i+aLMZhOPPjaGJq2jGXZ5F25+4itGTnmPvYmpADz071GMnzCAvAgLX8xfy/j/fnHGPfYlpnHrY9OZ+v4CHn51FpHhwWdNkAxDs/5gMkcys8sUoxBC+MK59VtE1AopSels+nMnl98+mGvvuYQWHRoRHhlMw9iCvde0RhuamdtfIu7KXiXeJyQskP+9fzNWPwtW26kbrI65qX91NsGrUtOyGDv+XYZe/jK//7njlHN5+Q4Sk9IJDvYjKMiGn58Fm81C06aRPPDgiDLXsXJPIvsc2fzw1xaOZeaSlpHDjAXrAcjOs7N6fzJOt4Hb0CQfPc6BQ6cmYAcPH8OkFPl2J3sPppZa36M/L+SWad9z6ZufsT8to8xxCiGqmfbiqxaQx23Cqw7uOsxdQ55Guw26XtSOJ6ZPYfx/xgBgz3MwoffjHDuayeCrit+b7HTtuzfns98e5lhKFg9c9w72fAc2fysjb6jaLT986fe/dnHseC4ul8EH036nX++WWCxmMrPyGH/nJ2Rn5zPowjZ89PFtbN6cSJcuTU4ZU1QWqzcfIN/uwmo2ocwKs9lErw5NAHj87Tms35Z4SvlnP/yVdx+/tvBz3y7N6dO5Gdv3HeHBCaU/Nvtr7wHynC4CrBbiDx2haV3fz+QTQojTSZIkvOrZ2z/EkefZEmT1ws0c2HmIJq09W2T4Bdj4atNzuN1GuR6VRUSFEBEVwvvz/0X8ugS6Xdgaq+3c+a/duUOjwoUVkw9ncP8j3/Lw/SO568HpHDuWgwaWr9jFow+MYtCgim11MuW6ATz1/nwaRIXx4IQhhAT507xhXQDchkaZFEqDNjRms6JO6KnbwFgtZp65d3SZ67tvaH/+98sSWkTVITo0mEEvf4ifxcLH466gcYQkTEL4VC3p5fGGc+c3iajxtNYkxCcVfjZbTCTEJxUmSYXHKziWKLpBHaIblD5QuLZp3CiCJ/87hken/oTT6WbT1kRee2chqWknx/NcPabsM8K01qxYsZvs7Hzi4tphsZi5qGcrLupZ/Ey0J6eM4K2vfmfp6p1gVjRvFMkjRbYjqYgxndsxprNnaYa7vp7FkcxsFDB99Ub+M7z2D6IXQpwbZEyS8BqlFKNv92zzYbaYaNujBb2GdfRxVDXb5vhERl3zBo9N/YkWzSIxmRTXXtkLp/Pk9i4tW0Rz200Dy3zP337bxtSnfuK1V+fz/vtLSi0fHRFC/chQlDLhdGuOpmcTFGADPAnXG18u5fK7P+D7XzcAkJaRwx1PfMOER77k4OFjJd43Izcfh8vNvtSCMg7N2qV72LbncJnbIoSoWgrP7DZvvGoD6UkSXnXH09cw8amrMZkkPy+LOQs2Yy9YJqFZ40g+eG08AHsTUrj7oa9wuw0euOuSs97D7TbQWhduB3L4cAZut4HLZZCcVPqg6e9+3cDMhetxGm7MJsXEqz1bwBxJy+TWx74iLSMHgFemLWFMXCe+mbeOzbuS0Ybm/Rl/MvWfowBISDvGLxu30S+2KWsSEnlr6UrCAvzIyvcsIKotsC/5GPc9/T3zP5lSga+WEEJULUmShNedTwnSb39s56Mv/qB3txbcPSmuXFuUAAwZ1JbFy+IL3l9QeLxFsyhmfX03/3tuFvc98g3jrunLjdf0OeP63buPcO+9X+JyuXn66bF07doMs8lEdHQoNj8rk+709OxprTmUmklEWCD+tlMXoEw+ehyny41SiqF92zBveTwffb+CiLDAwgRJAfXrhmA2KZo3rIvN4tmQOLZxZOH9b/joWzLy8vjoz3WE+ttwGQY5dqdnCxJ3wU0UWM6j/x9C1Ei1pJfHGyRJEqIaPffqXPLtLlJTNzIsrh0XnDb+qjQ9uzXnu88no7Um/LQZa3sSUli1bi92u4uPvviDG8b2RimF1po9e44SFhbAr79uIS/X01Pz4w9rSUnJ4rPP/sDhcGEEmnn3hz959p7RPPfxr8z5fSshQf58/cJ4wkNO1nXT6F6s3rKfwymZuJxudu1Pwe5wkWd3FJapFxnKJ1P/gVKKSwe0o254EHaHiwu7xQKw62gamfl2DA2g6dwohkXb92B3uQgP8CfP6QKtMGvodEHDin2xhRCiikmSJEQ1iqkfTvLhDFCKyIjgCt0j7LSZZIX3rheGn82CSSmaNYks7KX6/PPlfPvNSgCmTBmKzWZBa82QoR3IyszDMAw0oHLdrFqzB5fLzS9Lt2BoTUZWHlt3H6J/19jCemwWMweS0nG5DX5fuweTSRHgZ6Vlkyi27k7G0NCqaRRhIZ44lVL07tSs8Po3lvzFO8tWoYA6Af7cM6QfS3bsBTx/sPaNbcLqPYlkH83FnKU5nJJZoa+TEKJqqLMsXHu+kSRJiGr0xvPXs3zlbtq1iSEqMqRK7x0S7M8X79/G3oQU2rdtUHh8xV+7sNtdWK1m7A4XX38zBZfLTWRkCE6nm/nzN7FjxyHPPXIVB5KPcaJ/XWtNbKPIU+qxWs342SzgcGGzmrnjhgEsWrOTpMMZGBrcZvh7bxIbdyXRudWpvUCp6dl8+Psaz70Bp8tN35hGBFitrNx7EJNS3NCrM0+NHMrDL83isCuT+26Jq9KvkxBCVJQ621YHNU2PHj302rVrfR2GEDVCYmI6xzNyade+4SljnVau3M1TT/5EREQQr70+jrp1g0lJz2LSo9+QfjyXccO7MeOLv3C5DLAoBg9uR4bVzfL1e7m4X1uenDLyjLr2J6ez/O89tG1Rn3te/wG70w1agwvPn1pKERLox5K3ppCRlce/3vyZY1m5mDNc7AjIxhHsiS8iGYIzFV+9exsOs4HNYiYyOMhLXzEhah+l1DqtdQ9v1RcU2VhfMOY+r9S17pN/ebVtFSE9SULUQlu3JPLgg1+jlOKqq3pyy60n1xbq06clc+Y+cEr5JSt3kZaRg9PlZvnWBK65vi/fzliFW2vy85289PBVuA0DcwmDpps2iKBpgwiOpGedHNOpFBQZ4x3o71kWYNbyLcTvO4zLbWAzFGHJblSAQjlBuzT4WTialkW7co7PKosN6Z6VwbtENKryewshzj+SJAlRC23fnoxhaJxOF+v+TjglSSpOl7YNMZkUfjYLg3q24sbRPXE4XRw7lsOk2wYDlJggFVUvIoSnJo7g11U7iI4IITTIH6tZkZPv5LIL2wMQ27AuZrMJq8XMoE4t2LPxEIeOHgetsflbGR7Xngta1Qdgf2IaexJS6NujBQEFSVZFfZ+wnic3zgfg8c7DuapZ10rdTwghJEkSohYaHNeeuXM3kp6ew22lJEgAbVrUY8Ybt5KZnU9sE8+YozsnVmzsT1z3VsR1b8WbM3/no1krCA8O4Osnb+LzeWv4cdkmRvRrx7sPXs3x7Hz6dWzOj3PX8+5nS3G5NT26NOO+ScMAzxYrt9//OaBo07Iebz5zfYXiOWF9WiJ2t2fLm7/TEiVJEqKCastCj94gSZIQZZCYlE52tp02reuXe62j6hAREcTHn9xe5vJ2h5MFf2wjONBGs0YRZeo1Ks2sP7bichvk5DtYsWUfXy1ch9vQ/Lh0ExNG9qJjrGcw+WWXdOLQkQyOHc9j8oSTCd2JWX/5+U72HUitdDz967Vg+dE92EwWbmvdr9L3E0IISZKETyXvPcqP7y2iQ99WDLqip6/DKdbGzQd56NGZKAU3XtuHcdef+gvYabj536pF7DyeyhO9htEuItpHkZbszc+X8cuSLZhMCsPQXHlJl0rf84pBHfl8/lqCA2z0at+U6DohZGTnERxgIyz45LIFNquFu249s9eqS8cm9O8Zy5btydx16+BKxfLt3nU8s3khoJna9TKah9St1P2EOK9JT1IhSZKE1zlcLu79dg5bk48Q/tshHKuSWDh9OQ1aRNOqc9Nir9Fa88GrC1i9fBfjJw9m4NAOXot367ZkXG4Dt9tgzd8JZyRJ8/bv4Id9W8lzObn/z9nMv+wWr8VWVlm5dgzDAExk5drLfX2+3clHv6zEpBS3XNYbf5uVyVddyA2XdCfY34bFYuarJ8axaU8y7ZvXx1qwBcrZWMwm/u+ByyrQmjOtSztIvtuJAv5OO8hlTWRPQCFE5UmSJLzuz937Wbn3IHlOJ8faB9FgpQYUhsso8Zrd2w8x5/u12POdvPDYj+Rk2RkwtB3BIcUvtFiVhsW1Y+7CTWRm5nHLuAvPOB8dEIzWGj+TmZjAql0Lqarcc9NFGIYmONDGtSO6lfv6D35ewTeL1hd+nnyV5+sQXqTHKDjQj34dmxd7vdaal9/9leWrd3PT2L5cOfLkeKH0nFxunv49R7NzeO3KkfRp1rjc8U1s0591aQcwK8X4Vr3Lfb0Q4iQZk3SSJEnC65pF1kGjCbBa6RATQ/urw+nYrxVtuhf/CxagTt1gz4xzmwWX08U7L85lzg9ref2z23G73Nj8rCVee4Ld7mTFHztp2jyK5rFlfyQWFRnClx+VPP6nT/0mvHfRFSRkHuPqlt7r4SqPiPAgnrp3VIWvN7TG0wev0BXoi993IJUFv23F7nDxxkeLuWJEl8KxXb9s3c6e1HSchsGLS/7g+1tuKPf9W4ZGsXj4P8t9nRBCnI0kScLrmkdG8MOdN7I35RgDWjXFZin9v2FkdCivT5vIotkbmPXtKux2F3t3Hua6i18kKzOPMdf0YtK/hp+xeW5engN/fytKKf7375ls2XQQrTVvf3obTZtFllBb+V3UsAWcw1uOTbq8H6aCpObWUWdupHtCemYux7JyadGg7ikD3CMjgrFYzJhMiujIkFPO2cwWnIanF9GE7wfFC3Hek56kQpIkCZ9oHhlB88iIcl3TLDaaW+4eys74ZDat24fbZZCZkQvAz9+uwmI1c/u9lxSWf+Olecz+cR0tWtbjjQ8nsG9fCvn5TvwDrCQnpp81SdJa89eh/QTb/OgcWfWLHnqb0+nm11+3EBzsx4ABbco9Q89tGGTm5nsW2XYbbN17iGlz19C/U3PGDPSM/9mblMbNU7/CMDTdYhtQzxbATWP70rhhBKEhAbz4xNVsjE9k9NBOp9zb4XZhMSlchsbQJT9yFUIIb5MkSdQqJpOJy8b2ZPuWRJxOF9rwJDRaw46tSaeUnfvzerSGpIPp7N19hPv/M5I3X55P67Yx9OwTW0INHm9vWsHbm1diGAbP97+UMS3anTWxcDhcvPjSXA4cSOP++4bTpk3NSqzef28xc+duBBR2u4thw8r3WPCjWSuZ82c8AEH+Nub8FU9mTj5/bU6gQ2wMsQ0j2bg7CcPQ2J0uVsUfwP+Ym+27DvPF27eyfd8Rpjw7EwVkOx1MGntybNeo9m2ZuWErKVnZPBA3oApbLYQoNy1jkoqSJEnUeIcPpDHznUW07NiYS2/sx4VD2pGb6+DooQz6DW7Lq0/8THZ2PhPvu4Q1S+L5a/5GugztQEDdQLKO5xESFkDTZlEEBNr44ru7ylTnuqNJ5Lk8CxPe98dsvtq5kW+GX1/4yOl0y5ZtZ/nyndjtnmTpow9vrbL2V4UjRzJxOFyYzSZSU7LKfX2AnxWTydP2QH8rNou58MHYiZlsA7vE8tncNRxJy8KWb4ACs9nz+HPTTk8C5XS5+XPDPiaNvZCFf21nxoK/ueyijsyeOK5K2imEEFVJkiRR4z1564ck7DiEzc9Kw+ZRdOrXiktGn5wd9db0O3A53WxcsZOpt3+Ew+5i9l+7cftZsdjM6AAr38xYxc3jLyzzY6YHug1kV0YqiTmZaGB9ShKHcrJoGBxabPl69cIA8POz0KBBnUq3uapNnjKU3DwHoSH+jB5T/tltt4zqTZC/Da3humFdGd7nAn5ctole7ZrQpJ6nvXXDgvj5+VvRWjN/yVa27z7MdZd71r4a0qcNMxduIC0jmzvG9icv38kT787FbWji9xymS9tGNI2peV83Ic5L0pNUSGl99q+GUsof+B3ww5NUfae1/r/TytwBTAHcQDYwUWsdr5S6EXiwSNFOQDet9Qal1FIgBsgrOHex1vro2WLp0aOHXrt2bVnbJmqRtMPHSU5IoV2P5phPW2PnziHPsn/nIax+Vh58fRwXjjy5EGJ+rp3/Xv82O9bvR5kU7oJlBNyN6kJYgGenezx7sT76yGgGD25X5pi01lw3/2v+TkmibZ1ofho57qwrVW/YsJ/k5Azi4trh71/6bLvzWUJSGtc99Fnh5xaN6vLV8zf7LB4haiql1DqtdQ9v1RdUt7HuMOI+r9S1+st/ebVtFVGWniQ7EKe1zlZKWYHlSql5WuuVRcp8pbV+D0ApNRp4BRiutZ4OTC843hH4SWu9och1N2qtJes5zx1NSueOuGfRWtNtUFse+/C2U84/9vFtTHt+DqsXb+H5u6ZxYNdhbrh3OACfPDOLbesSPAUNDQp6D+3AUWB3ckbhPbSGF16cR9euzQgPDyxTXEopvh5+PYdysqgfGFzqVh5dujSlS5emOBwuEhJSadSoDpYyLKp4PsrMycdqMeN0uQFIPnrcxxEJIQAUMiapqFI3cNIe2QUfrQUvfVqZzCIfg04/X+B64JsKxinOYQnbD6G1Jj/XwZZVe84436BZFL2HeXaYdzndzP96ReG5Bd+sOKWsQnH745dzNNuOy2VQ9Oma3e7kl1/WUx4mpWgYHFqYIB3NzebT+LVsSTtcbHmXy83ESZ9yx52f8c97vqS0ntrzVcdWDRg7rAthwf7UDQ/i0YnDfR2SEEKcoUy7XCqlzEqpDcBR4Fet9apiykxRSu0BXgCKW9XtWuDr0459qpTaoJR6TNWEXUOFT3Tu14rYjo0wW0zk5dj55NlZZ5TpcmEb/ANtmC0mLht/cgZUUOipvUIms2LpT+u4c9JgIiND6Nq1aWGipBQ0a178tP+3N62g3ZevMGnJj+w8lsKWtCM4DTczdm1i9r5thcnOVXO/5Nm1Sxk7dzqHcjLPuE9qahaHDmXgcLjYufMwubmOin5ZvGbjjiRmzP+b41l5pReuhOPZecTvOYzLbaCU4p//uIgF709hztt3MLRvm2qtWwhRDlp751ULlGngttbaDXRRSoUDPyqlOmitt5xW5m3gbaXUDcCjwPgT55RSvYHc0665UWudpJQKAb4HxgGfn163UmoiMBGgSZMm5WqcqB38Amw88Oo4bhs4Fafdxcx3FnHDvcPxD7AVlomIDuWLNU+Rn2snOOxkYvT4R7fx0Ng3cNpdALhdBl++PI+mbeozY/F/AThwII3FS+Lp0rkJXbueuTfcsWM5vD3rd/LqaRYf3M1viXswKUX3qAasS0lGATlOB9e27kxKXg4Ow42/2UKGPZ+YoFMHckdHh9G1S1NWr9nLRRddQFCQX+E5w9Bs3nKQyLohNGxYMwYp7zqQwuQnv8XQmi9mreaXd+6olnoysnK55oFPcThddG/XhJcfuKJa6hFCiKpUrtltWusMpdRvwHBgSwnFvgHePe3YdZzWi6S1Tir4N0sp9RXQi2KSJK31B8AH4Bm4XZ54Re2xfvkO3AXjU8IigvArZuCzxWo+JUECaNutGT/vfplt6xJ4+Pq3cOR5pu0n70stLNOkSV0m3Fz8+jsOh4vbbv8YoydoE7i0gdKe58W7jqfhcLsxKUVyjmfa/NsXjeHVDcsZ2qglbetEnXE/k0nx3HPX4HK5zxiP9NZbvzJ/wWa01rz+2j9o3bp+2b9A1WTLzuSCLUcgNSOn2urZm5iG0+km3+5iXfyBaqtHCCGqUqmP25RSUQU9SCilAoBhwPbTyrQq8nEksKvIORNwDUXGIymlLEqpyIL3VmAUJSdd4hx3LCWT9x//vvBzu56xKKVwOlxMf3Uenz47i7yc4neuT05I4Y4hz/LAFa+i3Qb+gTb8A23c8fTVzPplPSuLGeNUVGZmHllZ+ThDNJg9z+VsZjMR/oFM7XMJfWOaMKRxS25p55mAMaRxS2ZfdjP3dj37cgLFDdjesPEA+fmeJG7nruLHNHnb0L5t8LOaUQpiG1fdNi2n69AyhtbNorGYTdxyRcnbmgghfE9p77xqg7L0JMUA05RSZjxJ1Qyt9Wyl1JPAWq31LOAupdRQwAkco8ijNmAgcFBrvbfIMT9gQUGCZAYWAR9WvjmiNtq8cnfhe5PZxPiHRgLw44e/8e1bv6INTW52PlOevuaMa997/HsO7PQkHE6Hm2vuGsY/7h/Bk0/9xJ9/7kIpxYABrWnQoA43XO/55ZyRkUtKShZhYYE0bhzBFZd359PE9Rxt5enJahFal3ljJvDe5pXsPZ7O2FYdCfPzr3Q7J00czLPPzaZ+vVAGDWxb6ftVhZAgf35+exIJSem0i63anq2/tx3klWlLaNcyhn/fMpT3H7+uSu8vhBDVrdQkSWu9CehazPHHi7y/5yzXLwX6nHYsB+henkDFuatjn5YEBPvjcrm5/p5LaNras6WH22UUzpM8sf7RCS7D4Pfd+7BFBGCxmnE53VhtZvpc3JG98UksX7QVl9kEChau2oYFE8ezcln22w6ysvJQSmGxmHjxxeu4884hjHNeyJhfPmd/VgZdomLIdtp58e/fcWvNu5tXcmObLtQLDKlUO3v3juWnH0v8VvGZsOAAOrep+t15n3h3HkfSskg6epxB3VvSv2uLKq9DCFHFNLKYZBGy4rbwuTpRoXy++gnycuyE1gkqPH7VpDjycvLJz3Mw/sFRp1zz8KwF/Lp9D0ZdNx0vb4WymHj6/rE0janLA1e8hjqYhqoXRl4DK4cHg2GF10yb8OsDdVdp/DM0JpNi+/ZDdGjfCBOKhKwM3Nrgu91bmNKxL3X9A8l2OrCZzYTZKt+T5Gsrtu3n62UbGNmzLZd0r/7ZZA2iw8jIysPQmui6lUswhRDCFyRJEjWC1WbBajv1v6PN38ot/x1zyrHV+xP58M81xB8+Sp7TiVkp1kc60Bpe/nMFb1w9ikYt67Fz0wFMSekkXt8Iw4/Cv4zs4XBoqImYvxXNdR2GxHlW4PYzWwj38yfH6cBqMlPHP4C5oyfw56H99K7XGH9L7V5B2+lyc8/7P+NwuVm5fT/dWzUiMjTorNdk5ebz6CfzyczN54mbh9MkOrxcdb50/+UsWrWD2EaRtGpy5iB3IUTNpIzSy5wvJEkStYbWmklf/0Su04nVbCIqKIjQABtJGVlorYkIDADgrmeuoVPfltStF8auKAePLF+IWZnIdzkxFGBRDBnfhacuHFZ4b7PJxNzRN7M0cS/9YpoSZLURZLUxpkXZtzGpyZRSWMwmHC63530pq4cDzFi2kRXx+3G7DV6ZuZTXplxerjqDAv0YM7hTRUMWQgifkyRJ1CoBNit5TicmZWLGrdcRExrCz5u2kWm3c223joBnqYC4Kz0bq3YGrm7dAbdhsPjAbh7/azEWZWZChzOHxNULDOHa1p292RyvsZhNfHLfNcxdvY2LOsUSHhxQ6jUN64ZhMZuwmE00ia74uk4mASUOAAAgAElEQVT5LhffbN/E4exsAq0WxrbpSExwCEdzsvk8fgPt6kYxooUsJilEjSFjkgpJkiRqDaUU08dfw08b4+nbogkNwjwLOV7eufTeHg30qt+YlTfcWc1R1lxtG0XTtlF0mctf0rMNgf42snLtXNKz4knMU3/9xswdW3AYbhTw867tLL7uFm5f8BNbUo9gM5uJDgymR/2qHzwuhBCVIUmSqPFWHTrIB5tXc0nTVlzTphP3xfUv1/UZ+Xlc+sM0UnJzmNipJw/1GlhNkZbd5u1J/Oe5nwgKtPHG/66hfnSYr0M6g1KKgZ0qPyMtJS8Hp+FZXkEDxx35AGQ7Hbi1BhTZjpq/fYsQ54uatIZRwTqNHwEd8PwIuUVrveLsV1WdMu3dJoSvaK25eeF3LDq4h0dXLCIh89gZZbYfSWFPanqJ91h7JInj9nxc2uCr7RurM9wy+2TGXxzPyuPw0UzmLt3q63Cq1f/6xxHXpAUdIqPpG9OI9y/2jG16d9hohjWNZXKXXgxq3KxC917+9x4++3kV6cdzqzBiIUQN8jowX2vdFs8Iim3erFx6kkSN52+2kOtyogCbybOSdbbdjs1s5ufN25g6fykaePXKEQxpE3vG9d3rNSTYZsNhuBnbuqN3gy9B7y7N2LQtCYCO1bBGUU3SIDiUjy+98ozjrSMi+XB4xfdw27L7EI+8ORuXy+CPdbv5+MkbKxOmEAIK1kmqGV1JSqkwPAtS3wygtXYAXu12liRJ1GhKKWaMuoHvdm1mQMPmNAgO5adN8Tz6y6/4WS10aRhDvsuFAlYmHCw2SarjH8Dy6yZx3J5PVODZp717y3Wje9KlfWMC/W00aRjh63BqpaycfJRSuA2DzOx8X4cjhKh6zYEU4FOlVGdgHXBPwYLUXiFJkqjxWoXX5eGeFxV+nr5mA07DQDtdhPr7EepnI8Bm5fruJU83t5nNNSZBOqFtKduApGRkc99bP5Nnd/LCHaOIbVh9e6tVBafbTXzaUVqERxBi86v2+vp0asb1l3Ynfs8hplzn+3FmQpwrvDgmKVIptbbI5w8KNrU/wQJ0A+7WWq9SSr0O/Ad4zFsBSpIkap1runVi25HFmJRi0Y49mE2K23p2oUVkzeyRyczMw8/Pgp9f2ReknLMynhe++o2cPAcaePfnv3hp8ujqC7IK3PDLDLakHCXEZuO3G24lyGqr1vqUUkwaW75B/EKIGiVVa93jLOcTgUSt9aqCz9/hSZK8RgZui1pnbNcO/H7vRP7RswsuwyDP6WJD4iFfh1Ws2b+sZ+zVbzD26jdJTCx5cPnppk5bRHZBguRnNdOuWX201mgvjxXQWmN3uUotZ2jN2kNJ5LmcZDrs7D+e4YXohBDVQnvpVVoYWh8GDiqlTqxBMgSIr3wDy06SJFErRQQGML5XN1pHR9K4Thj3XNTP1yEVa9asv3G5DBwOF6tX7ynzdQ2jwvC3WbBZzfzfhEsY0LoJl135OiMvf5X4ggHfVU1rTdLxzMKkyOF2c9X0r2n/2hs8+uuis15rUoqJXXpiVopeMY1oE1GzHw0KIWqNu4HpSqlNQBfgGW9WLo/bRK1VLzSYnyf+w9dhnNXoMd14842F2GwWevc+c1B5ST7597Us37yPDs3r06ReHV55fQE5OXYAfvhpHe0uqPoZcffOmcvCXbuJCgpi3s03kXAsgx2pqWjgm42beGroEJRSJV7/cN9BPNx3UJXHJYQ4f2mtNwBneyRXrSRJEqIajRrVlUGD2uLnZ8VmK/u3W2iQPyP6XFD4uV/fliz4dQsA/fu1qvI4ARbs3IXTMEjPy2VHaioXREURGRhISk4O/Zo0OWuCJIQ4Nyhq1mKSviZJkhDVLCSk9H3SStOnVyyff3I7htsgJib8jPO5uQ4WLN1K4wZ16NGlWYXquKZjR77etIlGoWG0i4rC32pl4S03k5yVRdPwM+sszrGMHEJCArCY5Um+EKL2kyRJiFqiXnRoief+78VZrN98AGVSvPLEWDpe0Kjc939y2BAeGjSAQKsVU0GvkZ/FQvM6Zdvc9vl3FzB3yVbqR4Xw6cvjCQyo3tltQohqoHWNWUyyJpA/94Q4BxxJycThdKNQpKRlV/g+wTZbYYJUXvN+24rbbXAkJYude49UOAYhhKgpJEkSogbKzrHzz/unc+2N77Jp88FSyz9y7wjat4lh6MC2DOxTPWOWSuNn9XRMu92yArYQtZnS3nnVBvK4TQgfc7nc/N/jP7B1ayK3TxzMyJFdWPJbPDt2HsLhcPPmO4vo0a0ZickZ3DlxMA2KGZPUpmV93n3BtzP9goP8Che/FEKIc4H0JAlRzbTWzFm8mek/rCI378y9GbdsSWTDhv1kZeXz3ruLAWjePAqFwt/fSmiIPz/O+ps//9rJsy/M9nb4ZWa1ejYftlhMpGfk+jgaIUSF1ZDFJGsC6UkSopotWBbPqx8uxnAb7DuYxqP3jDjlfKNGEZhMnoSoTZsYADq2b8Tbb4wjNTULh9PN1m3JmEwmgoOqf0+0irrq0m68PW0pAX5WenVp6utwhBCi0iRJEqKa5eTa0YbG7dbFjtWJjAzhk09vJyEhlc6dmxQej20RTWyLaLTW/Oue4SQfzuDKMd29GXq5jB3VjYsHXYC/nxW/cqwJJYSoWWrLeCFvkJ9kQlSzUUM7sT8xnfRjOfzz1rhiy0RFhRIVVfwUf6UUw4a2r84Qq0xYFawJJYQQNYUkSUJUMz+bhfsnDvV1GEIIUToNGNKVdIIM3BaiFsjOtXPvKz8w/n/T2ZecVqZrth4+yier15F8PLOaoxNCiHOTJElC1AI/LdvM6vgDbEs4wivTl55yzjA0b874g8nPz2R7gmcRx9ScHK7/8lteWrqcsV98g5YVdIUQZSWz2wpJkiRELdAwOgyLyYS/zULTmFO3CVmxeR8zF69n7baDPPLOHACy7A4MNE7D4Fhefm35eSSEEDWKjEkSwou2bTqIyWyiTfuG5bpucPdWBPzTSkZWHkN7tTnlXFhwAFqDxWyiTqhn4HTziDrcO6Afc7ft5M5+vSq81YgQ4vwjs9tOkiRJCC+Z+/1a3ntpPgD3Pj6auEs7lev6Ph2aFXu8Q2wMz991GbsTUxk9oEPh8dt69+C23j0qHK8QQpzv5HGbEF6yZf1+7PlOHHYn8RsOVOm9+3Vqzk0jehIuU/CFEKLKSE+SEF5y7YQBbN1wELNZccWNfX0djhBCFE8mehSSJEkIL2kaG8202ff6OgwhhBBlJEmSEEIIIQrJwO2TZEySEDWEYRgsnrOROd+twel0+TocIYQ470lPkhA1xLwf1vH+ywvQWpN0IJ2J91/i65CEEOebWrTQozdIkiREDZGemo3bbWC4DdJSZCsRIYTwNUmShKghrvxHXw7uSyEvz8Ht9/muF0lrzbTP/uCP5Tu5aVx/Bl10gc9iEUJ4lwKUzG4rJEmSED6WeCSDf78xC7PZxAsPjqZ+ZKjPYsnPd5KQkMK3M1bhsLt45plZDBzUFiUrdgshzkOSJAnhYx//vJI9iakoFF/MWcOD44cUW87lNtiVlELjqHCCA/yqPI7Nmw/y0IPfoLWBUgqbzUydOsGSIAlxvjF8HUDNIUmSED7Wtmk0S1bvBKBNs3ollrvn7Z9YvzuJQD8bPz55MyFVnCj9unALDodnVl2v3i3o17cV/S9sXaV1CCFEbSJJkhA+ds3FXWnaIAKL2USPdk1KLLdmx0FcbgMFJBxOp2PzmCqNI25IO379dQtaa668sic9e7ao0vsLIWoHGZN0kiRJQviYUoo+HZuVWm78xT34dP4a2japR9vG0VUeR5cuTZn53d0ABAf7V/n9hRCitpEkSYhaYsqY/kwe3a9axwhJciTEeU7WSTqFrLgtRC1yeoL0965EHnx/NgvX7vBRREIIce6SniQhqsGBhFR2bkumz4WtCQ6pnt4Zt2Ew5Y0fsTtd/LF5L51aNKB+REi11CWEOF9okDFJhaQnSYgqlno0k7smfMTrL8zlgcnTqq0ehcJi9nwLKwVms6eXyeF0MfmZmQy89Q2+nr+u2uoXQohznfQkCVHFUlKyALDnO0lOPFZt9ZhMio/+NZZZK7YysGMLosKCAdi0K5n4vYexO1x88P1fXD+8e7XFIIQ49yjpSCokSZIQpdi74zBT75tOQJAfT759E3Wjz74idtt2DRh6aSfWrdrDhDviqjW2No2jefC0mW7NG9bFYjYR4GelS5tG1Vq/EEKcyyRJEqIU095cSPLBdExmxZwZq7nprqFnlNFao7Wnd0cpxT8fGuGDSD3qhgUx88UJHDh8jPYt6vssDiGEqO1kTJIQpbigcxP8AqxYrRZaXtDgjPP7E1K5asQrXDb0BdavS/B+gMWoExpI59YNsVjMvg5FCFHbaO2dVy0gPUlClOLa2wbRpmNjAoNstOnY+Izzi+ZvJisrH4CZX62ga/dmXo5QCCFEdZCeJCFKoZSia5/YYhMkgB69W2Dzs2CzWRgU187L0QkhRBXSoAzvvGoD6UkSopI6d23K599OxuFwE9Mg3NfhCCGEqCKSJAlRBepGVnwRR8PQ/DB/PenHc7lhdE+Cg/yqMDIhhCinWjJeyBskSRKiktwug8SDacQ0rIPNVv5vqXnLtvLOl7/jdhskHcngiXtHVUOUQgghykuSJCEqQWvNfVM+Z8/uI0TXC+ODabdjtZZvRpnD4UIDhtbY7c5S6/vz9x0opeg3oHW1bnYrhDhPSUdSIUmShCiB1poPX5rH0nmbuGJcP8ZOGHhGmfw8J9vjk9AajhzKIPVoJjEN6xSed7sNpn28jAMJadw+OY6GjSLOuMeouI4cOnqctIwcJv9j0Flj+mHGaj77cBkauHXiRVxxTa9Kt1MIIUTxJEkSogRHkjP45ZuVOB1uPn1tIaOv74ufv/WUMgGBNuIu7sDiBVvo3LUp9WJOHbi9fOl2fpixBrvdSWpqFm99MOGMeqxWM5PHnT05OuHg/jQcDhcABw6kVbBlQghRMiVjkgpJkiRECcLqBOIfYMNsdhMaHoDVVvxjtP88NoYHHh5V7MKNAYE2AMwmE0GBlR+QfePNF7I/IRWl4Mbx/St9PyGEECWTJEmIEgQE+vHeD/9k6/r9dO0Ti8lU8rJiJa1s3bNPLPc9NILEg2lccXXPSscUFR3Kq+/cVKFrc/IcfPPLWkJDArjqki6YTDKeSQhRDOlJKiRJkhBnUTc6lIGXdKzw9UophlzcoQojqriXP17Mor+2YzaZ8PezcFlcxdslhBDnA0mShDhP5NudaEOjlSYv/+yz6IQQ5ykN1JLVsL2h1G1JlFL+SqnVSqmNSqmtSqkniilzh1Jqs1Jqg1JquVKqXcHxZkqpvILjG5RS7xW5pnvBNbuVUm8omcssarils9dz28Uv8vELc9C1sDv6gVuHMOzCC7jy4s5cPqyTr8MRQogaryw9SXYgTmudrZSyAsuVUvO01iuLlPlKa/0egFJqNPAKMLzg3B6tdZdi7vsucDuwCphbUH5eBdshRLV7+aEZuJxuZn3xF3Gju9G8bUyJZbOz8li+OJ7YNjG0uqCBF6MsWUR4EI/fdamvwxBC1GAKLbPbiig1SdKeP5mzCz5aC176tDKZRT4GnX7+dEqpGCD0RKKllPocuBxJkkQNFt0gnNQjmZiUIjwy+KxlH7nrS/btOgxK8c5Xd9CoaaSXohRCCFFVyjQmSSllBtYBLYG3tdariikzBbgfsAFxRU41V0qtBzKBR7XWfwANgcQiZRILjglRY7387RRWLYnngq5NqVPKXm2Hk49ht7vwD7CSeiRTkiQhhKiFSh2TBKC1dhc8MmsE9FJKnTFdR2v9ttY6Fvg38GjB4UNAE611VzwJ1FdKqdDyBKiUmqiUWquUWpuSklKeS4WoUuF1g7lkbC+atKxXatkHn7iSprHRDBnRmU49mlV/cEIIUVW09s6rFijX7DatdYZS6jc844e2lFDsGzzjjdBa2/GMaUJrvU4ptQdoDSThSbhOaFRwrLg6PwA+AOjRo0ft+KqK816Pfi3p0a+lr8MQQghRCWWZ3RallAoveB8ADAO2n1amVZGPI4FdRa41F7xvAbQC9mqtDwGZSqk+BbPabgJ+roL2CCGEEKIypCepUFl6kmKAaQXJjgmYobWerZR6ElirtZ4F3KWUGgo4gWPA+IJrBwJPKqWceFZeuENrnV5wbjLwGRCAZ8C2DNoWQgghRI1Rltltm4CuxRx/vMj7e0q49nvg+xLOrQVqxlLEQlSh3Bw7jnwn4XXPPgNOCCFqHFlM8hRlGrgthCibhF2HuXHQs4yLe555M1f7OhwhhBCVIEmSEFVo7e87cTpcuJxuFny/ztfhCCFEuSmtvfKqDSRJEqIK9RnSDv8AGxaLiTH/6OvrcE6htSYnx+7rMIQQotaQDW6FqEKNmkXy9R//xe0y8A+0+TqcQm63wT3/ms627YcYOKAN//fIGF+HJISoqWpYL0/BxLG1QJLWepQ365aeJCGqmNVmOWuCtHVdAt++/xtHko55Laak5GPs2nMEQ2uW/r4dh8PltbqFEKKS7gG2+aJiSZKE8KKjyRn895aP+fz1hTx443teqzemfjgx9cOxWsz06NYMm006kYUQxfHSGkll7K1SSjXCs/7iR9Xa7BLIT0ohvCg3Ox8Aw63JOp7ntXqtVjMfvTuB1NRsoqPPvjNQano2U1+Zg9aax+4fRaQsZSCE8J3XgIeAs2+YWU2kJ0kIL2rWuj433XsxHXo25/G3x3m1bovFTP36YZhM6qzlPv92BRu2HGTj1kQ++/YvL0UnhKgRNN7sSYo8sTdrwWti0VCUUqOAo1prn00Vlp4kIbzsqgkDuGrCAF+HUaJGDcKxWc2e9zF1fByNEOIclqq17nGW8/2B0UqpEYA/EKqU+lJr/Q/vhCdJkhDiNGNH9yA60vNIbmDf1j6ORgjhdTVkxW2t9cPAwwBKqYuAB7yZIIEkSUKI0yiluKh/G1+HIYQQPidJkhBCCCFqNK31UmCpt+uVJEkIIYQQhWrLliHeILPbhBBCCCGKIT1JQgghhDhJepIKSU+SEEIIIUQxJEkSogr9tjieqU/8RPzWpArf48DBNCZO/ox7H/iKjIzcKoxOCCFKoQFDe+dVC0iSJEQVSU4+xovPzWbpknj+/cDX6Ap2WX/48TJ27T7Clq1J/DjLZwvNCiHEeU+SJCEqYe+eoyycv5mcHDtm08lvJ7O54t9aLZpH4e9vxWIx0bRx3aoIUwghyqhmbXDrazJwW4gKSk4+xt2TpwGaWT+t4633bub/nrqSVSt2M/Kyrih19j3SSjJ+3IW0jK1HYKCN7t2aVWnMQgghyk6SJCEqKOVoJgrIz3eRlJjOkSPHef+dxWRn57Nm9V7CwgJ54umrqVs3uFz3NZkUAy4seTuQxIPpBAX5USciqJItEEKIYtSSXh5vkMdtQlRQx05NGDykHQ0b1WHKPRcz89tVJB5MJz0th0PJGezccYgfv19TpXXOmL6CSeM+YNzVb7F7x+EqvbcQQohTSU+SEBVkMin+9dBItm5J5MH7v8LtMjCZFEoplPKMS4ptWa9K61y2OB6Hw4XFYmLj+v20bFO/zNdqrcnNdRAYaKvwo0AhxHlAepIKSZIkRCX9uXwnDrsLgA6dGnPr7YPIzXUQEGCjU+cmVVrX9eP78/RjPxIaFsCAi9qW+TqtNf959DvWrt1H165NefHZayRREkKIUkiSJEQlDY5rxy8/rcPlMrhxXH86dqraxKioCwe1Zc7S/6AU5Upyjh/PY93f+zC0ZsPGA6Sn55R7rJQQ4jxwYp0kAUiSJESltWpdnx9+uR9taGx+1f8tZTKVvwcoNDSANq1j2LXrCLEtoqhTRwZ9CyFEaSRJEqIKWK1mX4dwViaT4o1XbiQlJYuoqJAKJVpCiPOBBm34OogaQ2a3CXGOm/71CsZN+IDZczdQv35YpRa6FEKI84n8tBTiHJaalsW0L/4kMekYb76zmLw8x1nLH03N4s2PlzB/yRYvRSiEEDWXPG4Togx2bE1i3o9r6R/Xjp79Wvk6nDILCvTD5mfBZFYEBNiw2c7+Lf/IMz+ya+9RrDYz0ZGhdKvGQehCiBpKlgAoJEmSEKVwuw0emvQZ+XkOFs/ZxGez7qVuVIivwyqTgAAbH75zM39v2E+vni1KfdTmdLnRWqNQuFxuL0UphBA1kyRJQpSBPuUvq9r1V1ZMTDgjY8LLVPap/1zOp1//SevYevTs2qx6AxNC1DyyBMApJEkSohRms4ln37mJ2TPXMGBIO+pGhfo6pCqjtebdz5axbMVOxo3tw6hhnXj8X6N8HZYQQtQIkiQJUQbtOzehfRWvnl0T7E9M58e567E7XLz0zkJGDOkoywMIcb6TMUmFJEkS4jxWJywQs9mEv5+FOuFBkiAJIUQRkiQJUQNs2ZrI4iXxxMW1o2P7Rl6rNyw0gI9fvYkt25Pp3b251+oVQtRg0pNUSJIkIXzE5XKjlMLhcPHAf77Fbncxb+FmfpxxNwEBNq/F0TCmDg1j6nitPiGEqC0kSRLCS1wuN3+u2E1UZAj5+U4efuw7zGbFc1PHYhTMJjEMXfheCCG8T0tPUhGSJAnhJa++sZAlS7ehtaZ1q/o4HC4Alv2xg6lPXMnceZsYMbwTQUF+Po5UCCEESJIkhNfs2XuU/HwnNpuFpo3rsmPHIVCKAf1b06VzE3r1aOHrEIUQ5zsNGLLB7QmSJAnhJf+cMoznXpxD/Xqh3DlpMBPGX4jJZCI8PNDXoQkhhCiGJElCVLETq3Mrdep0+nYXNODzT24v/BwYKI/VhBA1kIxJKnT2jZyEEOWy5s9djB7wDDeMeIXDyRm+DkcIIUQlSJIkRBX6+tM/cNhdHD+Wy7Jft/g6HCGEKD+tvfOqBSRJEqIK9R98ATY/Cxarmc7dm/k6HCGEEJUgY5KEqEJX3diXnv1bERTkR92oEF+HI4QQohIkSRKiijVpFunrEIQQooI0yIK2heRxmxBCCCFEMaQnSQghhBAeGrSWxSRPkJ4kIYQQQohiSE+SEEIIIU6SMUmFpCdJCCGEEKIY0pMkhBBCiJNqyUKP3iA9SUIIIYQQxZCeJCGEEEJ4aA2GzG47QXqShBBCCCGKIT1JQgghhDhJxiQVkp4kIYQQQohiSE+SEEIIIQppGZNUSHqShBBCCCGKIT1JQgghhCigZUxSEdKTJIQQQghRjFKTJKWUv1JqtVJqo1Jqq1LqiWLK3KGU2qyU2qCUWq6UaldwfJhSal3BuXVKqbgi1yxVSu0ouGaDUiq6apsmhBBCCFFxZXncZgfitNbZSikrsFwpNU9rvbJIma+01u8BKKVGA68Aw4FU4DKtdbJSqgOwAGhY5LobtdZrq6QlQgghhKgcjWxwW0SpSZLWWgPZBR+tBS99WpnMIh+DTpzXWq8vcnwrEKCU8tNa2ysTtBBCCCFEdSvTwG2llBlYB7QE3tZaryqmzBTgfsAGxJ1+HrgK+Pu0BOlTpZQb+B6YWpCQCSGEEMJXtCwBcEKZBm5rrd1a6y5AI6BXwaOz08u8rbWOBf4NPFr0nFKqPfA8MKnI4Ru11h2BAQWvccXVrZSaqJRaq5Ram5KSUpZwhRBCCCEqrVyz27TWGcBveMYbleQb4PITH5RSjYAfgZu01nuK3Cup4N8s4CugVwl1fqC17qG17hEVFVWecIUQQghRDhrQhvbKqzYoy+y2KKVUeMH7AGAYsP20Mq2KfBwJ7Co4Hg7MAf6jtf6zSHmLUiqy4L0VGAVsqVxThBBCCCGqTlnGJMUA0wrGJZmAGVrr2UqpJ4G1WutZwF1KqaGAEzgGjC+49i4845geV0o9XnDsYiAHWFCQIJmBRcCHVdUoIYQQQlSA1jImqYiyzG7bBHQt5vjjRd7fU8K1U4GpJdy6exljFEIIIYTwOtmWRAghhBCFast4IW+QbUmEEEIIIYohPUlCCCGEOEnGJBWSniQhhBBCiGKo2rTItVIqBdhf8DESz95w57rzoZ3SxnPH+dBOaeO5oza0s6nW2muLBCql5uP5unhDqtb6bOsu+lytSpKKUkqt1Vr38HUc1e18aKe08dxxPrRT2njuOF/aKSpOHrcJIYQQQhRDkiQhhBBCiGLU5iTpA18H4CXnQzuljeeO86Gd0sZzx/nSTlFBtXZMkhBCCCFEdarNPUlCCCGEENWmxiVJSqlvlVIbCl4JSqkNRc51UkqtUEptVUptVkr5l3CPu5VS2wvKvVDk+MNKqd1KqR1KqUu80Z4S4qtUG5VS/1NKJRW5x4iC41al1LSC67YppR72ZrtOi7Fa2ljW672lOttZcL6JUipbKfWAN9pTnGr8/zpMKbWu4Lp1Sqk4b7armDir8//sOfGzp0jZfymltFIqsuBzmFLqF6XUxoLrJ3ijPSXEVi1tLDh2UcF9tyqlllV3W0QNoLWusS/gZeDxgvcWYBPQueBzXcBczDWDgUWAX8Hn6IJ/2wEbAT+gObCnuOtrSRv/BzxQzPEbgG8K3gcCCUCzc6yNZbq+trezyPnvgJlnK1Nb24hn4+wGBe87AEm+bl81tfOc+dlTcK4xsADPmnWRBcf+Czxf8D4KSAds51gbw4F4oEnB52hft09e1f+qsduSKKUUcA1w4q/Li4FNWuuNAFrrtBIuvRN4TmttLyh3tOD4GDwJhB3Yp5TaDfQCVlRTE0pViTaW5P/bu5fQOqo4juPfHwRL2wiNi/rKorYaFRGhWivS4KIFlz4XtYuKbi2Im1YQRAkIilgXFReWulSKqBUrLbagLUWtGG2S0uKrEOOjxQeIEVHbn4szF2/DJN7kzrlzvfw/q8zMPZPzYx75z5m5GQNLJfUBi4E/gV8r6u6CZMjYbvssMuRE0p3AKWC6qn62o+qMtj9tmjwOLJa0qHHs1iXDtuy1c892YCuwp2megQuL9faTihQzwFMAAAOFSURBVKS/q+73fGTIuAl43fZk0f5MWcPQW7rudluTYeC07S+K6SHAkvZLGpW0dZZ2Q8CwpI8kvS9pTTH/cuCbps9NFfPqtNCMAFskjUnaJWmgmPca6Q/q98Ak8Kztn7P1vjVVZ5xP+06qNKekfmAb8GTebs9L1duy2T3AaN0FUqHqnD1z7pF0B2nE79iMRTuAa4HvgHHgYbv2F4BVnXEIGJD0ntLt4c35uh66RS0jSZIOAJeULHrMdqNyvw94pWlZH7AOWAP8DhyU9IntgzPW0QdcBNxSfHa3pJVV9r8VmTO+CIyQrt5GSEPKD5KuTs8ClwEDwGFJB2x/XU2q89WUsdX2lakp5xPAdtu/pQvivGrK2Pjd1wFPk670s6ozZ6fkyihpCem2Wtl2uh34jDRqswp4V9Jh21lGsmvK2AfcCKwnjdR/IOlD25+3myd0r1qKJNsb5lpe3C66m7RDNkwBh2z/WHzmHWA1MPNENUUaEjVwVNI50ntoviXdZ24YLOZlkTOj7dNN63kJeLuY3ATss/0XcEbSEeAmIEuRVFPGVveDytSUcy1wr9IXD5YB5yT9YXtHm3FK1ZQRSYPAG8Bm21+1GeM/1ZSzV849q0jPVB0rCvdBYFTSzcADpMccDHwp6RRwDXC0klAz1JRxCvjJ9jQwLekQcAMQRVIP69bbbRuAk7anmubtB66XtKQ4AG4jPUQ305ukh7eRNARcQHqB4VvARkmLJF0BXEWmA7hFC84o6dKmybuAieLnSYr775KWkkbTTmboe6tyZGx1P+ikynPaHra9wvYK4HngqVwFUosqzyhpGbAXeNT2kWw9n58c+2xPnHtsj9te3rRfTgGrbf9AOvesB5B0MXA1mS7OWpQj4x5gnaS+YsRpLXCiE2FCfbq1SNrI+cOk2P4FeA74mDSsO2p7L4CknZIaLyncBayUNAG8Ctzv5Diwm3RQ7AMesn22I2nKtZPxGaWvr46RCsJHivkvAP2SjhfreNn2WP4os6o841zta5RjW3abHBm3AFcCj+vfr2wv70CWueTYZ3vp3DObEeBWSeOkkZltjRGbmlSe0fYJ0vYbIxW5O21PzNUm/P/Ff9wOIYQQQijRrSNJIYQQQgi1iiIphBBCCKFEFEkhhBBCCCWiSAohhBBCKBFFUgghhBBCiSiSQgghhBBKRJEUQgghhFAiiqQQQgghhBL/AHYaMhQchFFiAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
Tutorial: Calculating liquefaction probabilities from a single earthquake
+
The OQ-MBTK has several models for calculating the probabilities of liquefaction and the displacements from liquefaction-induced lateral spreading given the magnitude of an earthquake, the Peak Ground Acceleration (PGA) at each site, and the susceptibility of each site to liquefaction (which is based on local geotechnical characteristics and a soil wetness variable or proxy).
+
These functions are quite easy to use and the calculations are very rapid.
+
Functionality for calculating these probabilities and displacements given a large number of earthquakes is being implemented in the OQ-Engine, but is not yet available. However, the functions below are easily incorporated into a script that can iterate over the results of an event-based PSHA, though this will not be demonstrated here.
The HAZUS model calculates the probabilities of liquefaction given the magnitude and PGA of an earthquake, the liquefaction category of the site, and the depth to groundwater at that site.
Liquefaction probabilities using the model from Zhu et al. (2015)
+
The liquefaction probability model by Zhu et al (2015) is based on a multivariate logistic regression. The dependent variables are the magnitude and PGA from an earthquake, and the Vs30 and Compound topographic Index (CTI) at each site.
It is clear from these plots that the two liquefaction models produce highly discrepant results. This is a warning that they should be implemented with caution, and calibrated on a local to regional level if at all possible. Both models may be calibrated by adjusting the coefficents for each variable relating soil strength and wetness to liquefaction.
+
Unfortunately, the tools for these calibrations are not implemented in the MBTK, although the functions used internally in the MBTK may accept modified coefficients.
Displacements due to lateral spreading associated with liquefaction can be calculated given the earthquake’s PGA, magnitude, and the liquefaction susceptibility of each site. The model currently implemented is from HAZUS.
+
+
+
+
\ No newline at end of file
diff --git a/contents/sep_docs/tutorials/liquefaction_analysis.ipynb b/contents/sep_docs/tutorials/liquefaction_analysis.ipynb
new file mode 100644
index 000000000..35ede3c80
--- /dev/null
+++ b/contents/sep_docs/tutorials/liquefaction_analysis.ipynb
@@ -0,0 +1,526 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Tutorial: Calculating liquefaction probabilities from a single earthquake"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The OQ-MBTK has several models for calculating the probabilities of liquefaction and the displacements from liquefaction-induced lateral spreading given the magnitude of an earthquake, the Peak Ground Acceleration (PGA) at each site, and the susceptibility of each site to liquefaction (which is based on local geotechnical characteristics and a soil wetness variable or proxy).\n",
+ "\n",
+ "These functions are quite easy to use and the calculations are very rapid.\n",
+ "\n",
+ "Functionality for calculating these probabilities and displacements given a large number of earthquakes is being implemented in the OQ-Engine, but is not yet available. However, the functions below are easily incorporated into a script that can iterate over the results of an event-based PSHA, though this will not be demonstrated here."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "from openquake.sep.liquefaction import (\n",
+ " zhu_liquefaction_probability_general,\n",
+ " hazus_liquefaction_probability\n",
+ ")\n",
+ "\n",
+ "from openquake.sep.liquefaction.lateral_spreading import (\n",
+ " hazus_lateral_spreading_displacement\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "plt.scatter(hazus_liq_prob, zhu_liq_prob, c=event_pga[\"pga\"])\n",
+ "\n",
+ "plt.plot([0,1],[0,1], 'k--', lw=0.5)\n",
+ "\n",
+ "plt.title('Example liquefaction probabilities for Cali, Colombia')\n",
+ "plt.xlabel('Hazus liquefaction probability')\n",
+ "plt.ylabel('Zhu liquefaction probability')\n",
+ "\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "It is clear from these plots that the two liquefaction models produce highly discrepant results. This is a warning that they should be implemented with caution, and calibrated on a local to regional level if at all possible. Both models may be calibrated by adjusting the coefficents for each variable relating soil strength and wetness to liquefaction. \n",
+ "\n",
+ "Unfortunately, the tools for these calibrations are not implemented in the MBTK, although the functions used internally in the MBTK may accept modified coefficients."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Lateral spreading displacements"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Displacements due to lateral spreading associated with liquefaction can be calculated given the earthquake's PGA, magnitude, and the liquefaction susceptibility of each site. The model currently implemented is from HAZUS."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "hazus_displacements = hazus_lateral_spreading_displacement(event_mag, event_pga[\"pga\"], sites[\"susc_cat\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAI/CAYAAACF0oasAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3QVRRvA4d/sbek9gZAQAoQSeu9VqihFigoWEAVRUbH33j4VC3axK0oRlCICIkV6lx5KgEAKhPR+2+58fyQGYxKKVGGec+45uffO7s5uDuE9M++8I6SUKIqiKIqiKJXTLnYHFEVRFEVRLnUqYFIURVEURTkFFTApiqIoiqKcggqYFEVRFEVRTkEFTIqiKIqiKKegAiZFURRFUZRTMF/sDpyJkJAQGR0dfbG7oSiKoigXxObNm9OllKEX6np9unvLjEz9glxr83bHIill3wtysXPgPxUwRUdHs2nTpovdDUVRFEW5IIQQhy/k9TIydTYsirog1zKF7w+5IBc6R9SUnKIoiqIoyin8p0aYFEVRFEU5fyRgYFzsblyS1AiToiiKoijKKagRJkVRFEVRSkh0qUaYKqJGmBRFURRFUU5BjTApiqIoigL8lcMkL3Y3LklqhElRFEVRFOUU1AiToiiKoiil1Cq5iqkRJkVRFEVRlFNQI0yKoiiKogAgkehS5TBVRI0wKYqiKIqinIIaYVIURVEUpZRaJVcxNcKkKIqiKIpyCipgUhRFURRFOQU1JacoiqIoClBcuFJXU3IVUiNMiqIoiqIop6BGmBRFURRFKaWSviumRpgURVEURVFOQY0wKYqiKIoClOQwqcKVFVIjTIqiKIqiKKegRpgURVEURSmltt6tmBphUhRFURRFOQU1wqQoiqIoClCy+a5aJVchNcKkKIqiKMolRwjhIYTYIITYJoTYJYR4oYI2o4QQaUKIrSWvO85Xf9QIk6IoiqIoxSTol84AkwO4SkqZL4SwAKuEEAuklOv+0W66lHL8+e6MCpgURVEURbnkSCklkF/y1lLyumjhnJqSUxRFURQFKI5GjAv0Oh1CCJMQYitwHFgspVxfQbMhQojtQoiZQojqZ3rPp0sFTIqiKBdQgdPJrqOpuHT9YndFUS62ECHEpr+9xv6zgZRSl1I2AyKBNkKIRv9oMg+IllI2ARYD35yvzp4yYDrbpCshxEghxP6S18i/fd5SCLFDCBEvhHhPCCHO3W0piqJcegqdLvp+8g3Dv5vBqO9nXezuKEoFBPoFegHpUspWf3tNrqxXUspsYBnQ9x+fZ0gpHSVvPwdanq8nczojTH8lXTUFmgF9hRDtKmg3XUrZrOT1OYAQIgh4DmgLtAGeE0IElrT/GBgD1Cl59a3gnIqiKJcFw5BM+G4emSn5OPPdbExMxlBbUChKpYQQoUKIgJKfPYFewJ5/tAn/29sBQNz56s8pAyZZ7N8mXfWheM4xU0qZRfFwWd+SG/STUq4rSer6Fhh05t1XFEX5b/hh6ioOf7CFKiuzMeUbjGrdDE0NrCvKyYQDy4QQ24GNFMcTvwghXhRCDChpc1/J7Nc24D5g1PnqzGmtkhNCmIDNQAzw4UmSrroA+4AHpJSJQASQ+Lc2SSWfRZT8/M/PFUVRLjtSSn76bAVCB3OhTh2nBw927nixu6Uo5UjAuEQGPqWU24HmFXz+7N9+fgJ44kL057SSvi9m0pUQYuxfCWFpaWnn6rSKoigXzILNe0gNEegm0HSJ49cDXNfgcX6cvIzM9Dwy0nIvdhcVRTmFM1ol9y+SrpKBvy/xiyz5LLnk539+XtE1J/+VEBYaGnom3VUURbnoDiWl8/C8haQ19yCxfyCap1aa1DD9oyWM7P8uIwdMYs3y85Z6oShn5AImff+nnM4qubNJuloE9BZCBJYke/cGFkkpjwK5Qoh2JavjbgXmnPXdKIqiXGL+2HoAtwUQAsOmcc0NbUu/C6gWgNPpxuV0s/L33Revk4qinNLp5DCFA9+U5DFpwIy/kq6ATVLKuRQnXQ0A3EAmJUlXUspMIcRLFCdrAbwopcws+flu4GvAE1hQ8lIURbms9GvfgEnr1lHgZdAsuAr3jLuWHj2asPSXbSycvRkhBFabmWuHtb7YXVUUJPwnR38uBCH/Q8taW7VqJTdt2nSxu6EoinJGpJQUudx4WS0A5OcVMbTjKyAlEnji9WF069fs4nZSuSQJITZLKVtdqOs1bGKV0+aHXZBrNYlKvqD3drbUXnKKoijnwbrERB5dvIjogAA+6T+wNFhyOt08Nn4KhqcFXDqaSycqpupF7q2inGBINcJUERUwKYqinAfPLVtKUm4u6YWFfD53NbZEJz37NaGgwEHikXQQAqxmRt/fi1p1TwRMUz9awurFuxhxTw869Gx4Ee9AUZS/UwGToijKedAoLIzkvFzIdTP/+5VIXfLr7C18/dN4rFYLUkLzVjWpWi2Qge1eomq1AO57uj/TPl2O0+7ifw9MZc72l/hr1yjDkAhB6XtFOR9UDlPlVMCkKIpyHvyvV2/6xNThw/eWUmjkIQCHw42fnxdfzxzP0eQsatWpwp2D38dhd3EsJYu9O5MRgMVqwhrpy57E48RGVWHBlr08NXUhIb7efD/hRkL9fC727SnKFeeM6jApiqJcSRIT0pkyeTlxOxJP3fhv1ickMvSLqcxdvYPUYznkR9pw+GiEVvNlzHXvsWPTIerUD2fThoP4VvXD6mFBCEGLDnV4a9pdNLqpBckxntz+5gyW/Lmfyb+vx60bZOUXsmznAQAcdhdLZ29m77Yj5+PWlSuURKCjXZDXf40aYVIUpQyX003q4XTCa4ZiMpsudncuGsMweOC2z8nPszPj65V8+8sD6N4GWc58avuEn3Rq7JHZC0nNy2ev+zgBGAgEVn8PclNycRS5ePv52TzmbeW5p2YipaRG/Sq8+vqNhFTxA8C1woojQUcTgm3xKTT0DyQxLRtN02gUVZVpm7az5Nu1pC1JAAlvTr+HOo0jK+2PoihnTwVMiqKUcrvc3NPxGVIOplGnWQ3e/v3pKzZnRhoSu92JlBJDwoHcYzy1/UuklAyK7MBddfpXemxEgB+ZBYW4hY4104XFIencPZb1iTux2sxUCffnzdd+we3WAcjJLeKRx6ZRs2YoTzw5gDHXtGP34ePYLCYOz9/D/q1JhFrghQ9H8t2mrfy6ax+uABchISaC0w2OHkknukE4cWlp1AoKwsdqvVCPSbkMqVVyFfvvjYkpivKvFRXYSU/JrPT79OQsUg4cx+VwEbfxAEX59gvYu0uLyWziuYnDadqqJmMn9GbmjPXo8y04Cl2sST95Ve7JNw7ivi7tCcwwo/la8GgQyPxjCTh9TLhyCjj85yGyEtJBUpzb5HRz5HAG69cdYPWqfdSNDGX+q7fTr2EM6515ZNf2QZeCrIRMjubk4XC7MVlM+NUIoHX3WNr1bMQtM2cyYsYMen/1FQVO54V5SIpyBVEjTIpyhTiWcJy7WjyCo9DJzc8OZcSTQ8q1CYsKpmGHumxdvpvOg1rj5et5EXp68RQWOnjuqZmkHs3msacG0rpjHVp3rMOUr1eybUEiGFYsbhj1WK/SY+yFToqKnOTk24nbe5SO7WPYnZaGSWhMefomth05ypNLFuOWGqYUN/4OJ27NhDdg8bER4GPjUGIm2Mw4XW5yiuwcOpJOzagQflyyrXhLFYsJw8dK66tiOf67g9ygQmpFhPLS4z3xtFgwpGRTcjKS4lVOR3JyiFV7byr/glolVzkVMCnKFWLrsl24SvYtW/TV8goDJk3TeP2Xx3DanVg9Ls9pHSkln6/ZxP60DO7t2p7qgf6l3y1dvItdO5JwOt18MGkRH39+OwCaECDAopm4JqoDPaq2ACD5cDr3Dv8Yu0vHWcUbk0nj22lriKvuwC0Mftmxh7t7tMNiMeN2u5FNAvE87KTIJbHb3ZizizicmosGCIeONdKPiZ8sRmiC5+7vRzUvL/IKHGCCsQ/24aPXfmHDin0IAbd+1BlPi6W0f7c0acaUHdtoVa0adYKDMaQs7reiKOeECpgU5QrRqk9TPH08cTvdXDeh30nbXq7BEsDSfQf5cMU67C43B9MzmXnHiNLvakSHIAR4eFio87dikkOHt8OtG7icbkbc2qn0881r43E5ddzSQHcbON0Gcd75ONwCa7Yk3ZzPR28vJThfJ7RdGC/e1huv0Qb3Df0Ap9ONMIniApaAQFIgdTBpSCn56J2F5CdmYQmwIhC8P381jTMtOB0ubB4WUpOzoFVNAPYcOc5vP+8ixDDRp1ktek//ikPZWTzctiP3tGh/gZ6solzeVMCkKFeIkGpBTEv6FKfdiafPiak2KSU/f/I7ezYd4qZHr6VGvWoXsZfnn1krTt3UhMBiKrsKsHHTKN5+/xbS0/Jo175O6edWq5lbR3cpd65mbWuDAM0laVIvnAR7AanBRZgKdTyOFtDIvwo7MlOREqLzvIgNC4UwePKdEWzfcJBu/Zvx8uM/ciw5iw79G7Fm3xH0fB1Ngo8B+U4da1Hx6JZpbwH3fzCS91+aS2R0CF37Ni7tx9pdCbjcOroh+WHzVhJ8MpEI3t60ijHNWmPV1J965XQJdKnSmyui/hUpyhXEZDaVCZYAtq/exzevzsFR5OTAziN8sf7li9S7C6NLTDRP9ulGfFoGt3cou+9n0sE0bJpGdHQoK5bspk3HGLx9PCo916qV+3B728BTEhkWyJP3Dqb7u59T7dcUzAU6CUf2YKkbghCC9s2jS49r2z2Wtt1jAfh6zv3oboPB06cS7yfwy7PwWL/utAsM5/4bPqaw5JiqAT5UjQjk7SljKShyYrVZSs/XKTaa735aiyvdjvNwInJI8e/Y6ung8NFU6kREnJuHpyhXMBUwKcoVzuphASSaJrBYLads/18nhOD6Fo3Lfb5u6W5eu/97AHSbBc3Lhr+XFR8MmnWsw9inB5YrsWCzmdFMGlJIbDYzVfx8mDPuZh6a9gYuqWPLd/L0uL6ERQVRJ7riHeCFEJgtJqr5+hKfkYEzSJAr3MxKjefZ70bxwxuLyckp4nhCOrde9TrO2CDyTZJbB7RhzLCOZGfk88htnyItBn55Ar3QTWRCDoUtBF47Db5Zt4SXP7z1nD9H5fIkAUMtoK+QCpgU5QoX26oWD0wayb4/DzPozqsudncumq1r43E63SVL/QVOTcOVlE66lBw7kkGnq5vSsCRn6C+DhrTGMCT2IidDh7cDoE5YCC99PobvJy2izVUN6Nil/mld/+1+/fhp1y6EDq+uWoHT7WaOnx8rvhnL47d9TvK+VBDgTivAHerBnGU7GDOsI2vX7+NQY28kktwig+o7QCxw4/2rBGHGt++VtdJRUc4XFTApikK3wW2IrBXKyh/X0nlIW8Kirrwl6ceOZIAEk0mjVc8GxB9IQ1gEuRl5SCRBYX5l2uu6wbwf1lCYUcDQMV3x9DyRKN+0Qx2adqjzz0uclCvPycLHfictIx+/+h4cb24trac0eFRndm05jNXDQmGwF55H82lWqzoAwTWDEQKkpiF8zbz80fV4+diY/Mav+Ph6cP9zA8/yyShXGlVWoGIqYFIUhazjOUzo9Ay6W2fGxDlMS5p8RVX4drt01i+NA8BkEgy6qR05UqduRDB/Lt9D3SZRhEcFA3A0KYsdfx4mPyOPb99ehNutM3/WRhoPaUKcrYCmUeE80q8rmnZmz+/R4R+REZ+KAPz2CRoMrsc97doC0KZrPX7e9DxCE9w19AMSs5zsWLyHnYMP07p5FCO6t2B1XAL3X9uJRo1rAPC/z0efuwekKIoKmBTlUrN3YzyT7v6MGg0iefCzcRckr6ggpxBpGLidbnIz8pFSXlEBk9liolWXemxbF09IeACPfvQrbsMgJNCb6W+PLn0WBfl27r75U3TdwGzWMKREdxvkZBUyMzEet02wLzWDjnWj6VQ3+oz6kJqYCRKkpxUkeM5Oo9E1J/KezJbiFX1SFueZFCv+PT06qBsMOuvHoChIqVbJVUY9FUW5xEwc/RH7Nx9k5az1rJy57oJcM7JOOCNfvIE6LWvx1NQJaNrl+achv8DBhs2HyMsrv+XL+BevIyqmCjZPC84CJ0UOF0mp2ei6UdomN7sIl0vHYXeRp7uwd69GdrtQZIg3JqfEohXXUAr28Trjvt39wnUEhvqieRevyktMSGfvruRy7Z6fdBO9BzRn7EN9adQiGiieHszJLkRKWa69oijnhhphUpRLTHjtKqQcTAUpCatx4XKJrn94INc/fO7zXb54Zjq/fbOCa+64is5D2/HF87Oo3bg6I58aeEEDM103uOPer8nOKcTb28bUL8ZitZz4Ezj942Uc3HMUAdRuEkFKgJmb+7fGbDZR6HSx7chRYquFMfTm9iz/bSeyWRA7j6UhfMzE9K7ONfWrsPR4IkObNyK22omRIbdLZ++uZCKigvDx9cRk1iocves9rA29h7XhxUdnsHHNfjw8rUTHlF9ZF1EjmAdfHFz63ulwc/etk0k+kkn3Po149Hk11KScHUPlMFVIBUyKchH9/v0K3hnzCeG1q/DOipfwDfThyR8msPSHVUTEVKVRx/ocP5KGt78X3v7eF7u7ZywrNYefJi3A7dKZ9uZcVvy6jeQDx9m1Pp7Y1rVo17dphcd9/+Y85n+zgqtv6cwtjw04J30pLHJyPC0X3ZC43Dq5uUWEBPuWfh8VE4bVVvwncWD/FgwoqegtpWT4x1NJzsrF02ph0cOjGXXXVXyxcAP7F2QB0K59bV7fsgaHrrNv5QpsZjNDWzRC0wQvPDyV7ZsTkA43er6DwFBf3pt1L0GhvuU7CTz9v2EcOZhGWLg/Xt62U95XwoHjpB7NQdcNlizcoQImRTlPVMCkKBfRt89Nx2l3kXoojXW/bKbXLV3x8LLR744eAEx/YzbfPDcds8XMg5+NQwhBh0Gt/zP1krwDvPAJ9MZe4MDLzxP/YF+OHc5ASvAJOBEASik5uDOJ4PAANE3ww1vz0d0G095ZwIA7uuMfXHFwcSZ8fTwYNqg18xZupVf3hmWCJYCBIzsRHhWMEILW3U6UAnDpBgeSM9Ds4La6SM3Jo2ZoEKP7tCamWjCaJli0ez8iS0d4g0savPrrMnTD4Oq6MWzfnIC9yIVW5ARDkp9TxMble+gzrHWF/dQ0UeHI0t/lFtoZ+dY0jiZkMmFEN0LD/DiakkWXqxqc9XNSrmzFm+9enlPyZ0sFTIpyEbW+ugWLvloGmiC2bdll6DnpuUx/Yw4uhxsp4fVb38dsNdPxlzY8/u19F6nHZ8Zqs/DpxlfZuWYfjTvVByFY+N0qoupVpVG7mNJ2HzzyA0tmrMdk1pj02+P4BHiRl1WIZtLK5BCdrbtu78Zdt3er8DshBG0rCDisZhPebjMOw43JKdh75DgWk4nIIH+6NqnNjLXbWfjnPjQX+GtmCk1uDCGJjzvKTU8txI3EbDYRVC2QnNRcNJNG4zY1K+hBeS63zjNTFrLtj4M0iKzCc4/2x8/Xk5W7DpG7JAkfu8GXLyxgzsJHKCp0Ehj83xuFVJT/ChUwKcpFNP690fQZ1Y2QiCCCqgaW+e7dcZPJz8ovfS80DXuBg4QdRy50N89KQJg/nQadGE25YULfcm02LN6Bo8iJh5eVgzuTaHN1C5bMXI9hMjHzk6WMffa6C9nlcqJCAjh8PAspJU/O+A1hgrduvoZuDWrj62FDUDwyRLZOuNtC86618D0GeVbAZsXrUBbZWXmMfrw/vYa2xsfv9IpJLty2l5W/78GcobM5NYFvf1jD+Dt7ULdqCFphcaaJcBlkZxUQHhF4yvMpyqmpVXKVUU9FUS4iIQR1W9YuFyxB8X/AoiQpWtd1DMOgWkxV7vtozIXu5nl308PXYraYCKseTMurGlIlKgSLpwdmq4WAkLOfjjtbk+8byoPXdaFFw+o4pY7DrbNizyEA+jaryzNDehCkWzFn6uhFOu1DqzE38QCGRcMwC+xVvHG7dNYt3lFpsCSlZOHqXXR58ENueHUKOQV2wvx8kJbizXeFJggsmcasUz2UvoOaYzJrdLkqlqrVAi7Ys1CUK5UaYVKUS9T9n4zlwLYEkvcfQ+oSs83MQ5/fRYP29S521865vrd0ou8txUnWulunfstoht/XG/8gH3rf0PYi9w4O701l7lvL8QnywifcjMlq4vp2xQnrQggGtGrA3h0p/Jq5G5DYPSU5VjeeGoDA6jIwW0z0u6lDheeXUvLEyM/YtuEg5gALh9voLPlzP4M7NebBEd1YMGcrHdvU4cahbUqPeejJ/jz0ZP/zf/PKFUXtJVc5FTApyiXK5mklJf5Y6fvohpHUb3tm221caI4iJwlxKdSoXw0PL+upD6jAa/d+x+Y/iqtuf7jgEUymU//x1g2DhNQsIoL98bCe+z9rn7z7G+lpeeTmFvHMoD5cM6hFuTYPjexB7w6xhAX5Ijw03lq3lnyTpLbuzQfv346fryfelYwuZaXns2NLApmNPDEsArNbp2GNKhQWOvh64u+4XDpzD2Zy64gOJOfkcuvMmRQ6XXx63UCaVK16zu9XUZTyVBipKJcoq4eVZlc1xmI1E92oOu+uehmr7dJdHafrBuN7vcZjQ95lfK9X0d36KY/ZtGQXYzs8z7sPfFea3B23+RD2wuI91BL2HD2ta9/54U8Mn/gDg1/7FrvT/e9vohKxjSPw8LQggFp1qlTYRtMETetFEB7qR1VfH+bcPJyqf+RS8OsRbu8/Caer8ucREOyN+aoqZLT2Iau5D/XbRHBwWwq5uUXobgPdbVBU5OL+cV8ybuIPHMnK5nhBAe+vWQsUj1DF7UgkIT61zHk/m7uW9ndOYvzbs3Cfw+R5RbkSqREmRblECSH436KnSUvMoCC3kDubPYzN08aLcx4lJCL4YncPgLysAlIOpRHTpDp52YUcTUhDdxscO5xOblYBgaF+Jz3+rfFfk52eR1pyJl0HtaJ511jueGoAHz/3E+HVg/APOHVytFs32Lg/EYD03AIS07OpUy3knNzfX8Y/dDUdOtcjJMyPmrVPvuT/L84cJ+S5ANCdbkb2epM2XevzxMQbyoyaLdi1jw9XrCOgdTXM6ckYUrJ122GO7zxEuw51GH9/H2b+vIEDGens355CUZoZrbMXNrOJ9lFRAMyasoavP1qKNAwee3kIXXo1AuDzX9aj6wZb9yez53AqjWqFn9PnolyedKkKV1ZEjTApyiVM0zSq1Ajl+5dmciQumQPbDvHze7+e9+tKKdn4xx42/bGn0u02stPzGN3+OR4f+i4vjZ6Mf7AP3a5rjWbS6Dqo1Wkla1erGYrN04qUEBoZBED3gS15/J0RHNoUz5PXvc1PH/520n6aTRpD2hcHCI1qVKVmlaB/cccnZzJptG4fc9rBEkDN2mHUjK0GUiIEOF1u1izdTfzftjuRUvLI7AXsT8tge+IxrqlTlzZ+4VTZa+BwuDmaksU1A5rT8a5W2EPMSA28juvcH9qEKTcMY3SrlgCsXb4Hl9ON26Xz2RvzS8/fLKYanjYzHjYLNSpYWKAoyulTI0yK8h9Qt1VtNiz4Eykhpnmt8369ed+t5ss3FwCS2MYRHNl7jEG3d2XY3T1L2xzZexS304290Mm2VXtJ2n+M8a/fyMPvjzzl+Q/tSuLr1+bSpGt9+tzckdqNo4isfWKqa/f6eFxON9KQbF62i8H39C53jlW/7+J/j/9IYLAP7343lieuvwqLyXRO7v8v6Vn5HM/IJ7Z2lTPejHhH8jGOdfShWq0Yjv4SX7JprqRK5ImATghBmI8P6QUFaELwRLeu+FlsvJk8j5TkLB54pB8AAxrUY3q77eT7ZXFb6xbcMbxrcRmDEp261WfXn4eRhkQvcJZ+/sGDQ4hLSCU6PAhfL4+zfBrKlUAiVOHKSqiASVH+A65/ZCAxzWti87TSqFPsvzrHsYTjPNH3ZeyFDl6a8zgxzSsvnnhwTwp2JFKXbF+1D8OQfP36PPrf1gUPz+Jk7vqtalK7cXX2/plA1YgA7m7/ND4B3ny2+bUyVbwr8tLoyRxNSGP76r08+81d1G5cvcz3vUZ0Ysn0dRTkFXHTIxWvBPvh0+W4XTrZmQWsXhrHgBvPfjXde2vWMnXbdq5v0pihtWIZ9dh3SCnp3KwmsR5etOhcj7pNqp/6RMCzPy9m//EMPDQTzWOrkJeSx12PX0NAUNlnM/32G/l9TzwtoyII8Sn+7qnnytadCvPxYfHY20rfb99wkLitR7hqQHNCq/ozYER7juw5yt6th7nz6RP7AVrMJprEVPu3j0NRlL9RAZOi/AcIIWjZq+J9107XvI8XkRJ/DMOQfPfij7zw86OVtpV+3hgle9eZLRpakQMff6/SvdaguIr3xDkPAdA/+HacdheFeUUc2pVE444nL33g5WNDMwmklHj5lB/5qBIVzGu/PMrEF2YzffpGHmkQgY9v2Xymjj0akHQ4HSEEjVrUKHeO5Qu28f0ny+hwVQNG3dfrlCNE2UVFfLhuPW7D4JP1G4iyeyGlxO5ws3TVHjZtT2Xah4v5dvWz+AWeuqJ2dEggiVk5ANzz+mBa1IiosF2ojzfDW1X8u53x4wZWrNjLsOtb06F9HQ7Fp7JpTTzT3v8d3W3w20+b+WLhQ5hMGve/MrTMsWnHc3nl6VkYhuTpl4cQVtX/lH1WFABDFa6skAqYFOUK0bBDfeZ8sBAENO3e8KRtjx/PRVKcuzNwXA9iIgNo2rEumlbxH9KBd/Vm5rvziahdhbotTr7th6PISaseDfEP9ePqmzpSr0V0he0mv7uInX8eRjNpzJm+gf7Xt0EAviVL828a153OvRvi6++Ff6A3P/+5C7vLzZAWjbCYNCY+NQu3S+fn5DV079eU6EpWt/3F22ol0MODApcLT4uZbq3rMHvBNo6kZGJNyMYwJIYhsRc6Tytgen3Y1SzcsZfqQQGVBksncyQxgy+/XIHT6eb5F5JxNPIk6M+C4mk3iwnhcJOfW1TmmPidicyavIyW3WKJO5jOnpJ8qSlfruBBVbNJUc6KCpgU5TKxZPoaJt37FRG1qzJx4RN4+3uV+b7DwNZMWvMKjiInDdrVPem57hzfk/Tnf8kXtkkAACAASURBVKYg346u67Tv2xSLpfL8oDtevoGRzw7BbDGdciTnq5dn8+u3KxGaoPVJNoutGhFYWkYhv9DBjQPeRQjBKxNvpFnLaACiahUnYU9Zt5W3Fq9ESkjOyuXhPp0JreJPRloumgb+fwtwvnt7AX/M3cL1d/ek9/UnpvEsJhO/jLyVDUlJtImMINjbmwi3mezjTgzNTM1GkYRGBLFzcwLdqwWc8j49LGYGtTh5YHoy3l42hAAEGCZwF7jRpUR36Xh4WYltUI2bx/csc8xTt35KbmYBqxZuZ8gDV2MpqUlVo1bov+6HcmVRm+9WTgVMinKZ+OaFWTgKnSQfOMb6Rdu46vr26LrBG6M+YvvKOO54bQQ9hncsc8y+zQdZ9M0fePh5sXVtPDXqhnPt6K40aF2bBrHVWDx/K3NmbMQ/wJvrb664SvVfLFYzOzcn8Ow932LztDDx6zFE1Ci/vL8grwhDNxBoFObZKz3f7eN7UjOmCt4+NpYvi8Pl0sEwePWZWdxyexf6D2nNkbRsnpuyiNS8HIwcO7qPhfT8AgDemXIna5fF0aB5DQJDfABISUhj5sdLcDrcvPfYdHoMboXJXBwIZmYWsHnDAZo3jSLEuzjA2rf3KPYiFx4+Hlh8PNm0aj9/rjuAh5eVDj1PBEPJh9I4GJdC62718fCyncZv69SCg3145+2b+G7eehYmJWD2NNG+ezRJ+48z9v7etGpbu9wxrpIaVG6njs2t8/TLQzAMSbtOl3bBU0X5L1ABk6JcJlr2aMTS6WtACOqVTIvtWr2Xtb9sxl7g4IP7vioTMOlunYd7voS9wAGA5udD/J6j/PHbDj6c/zAAssCOnp3P3rX72F4zmPCaYYRWq3x5+vQv/qCwwEFRoYPFc7Yw6r7yq9vueG4Ihm7g4WVj8LjiEZKlMzfw/iM/EBDiy2sz76dqjRBMZhO9rm0GgJevJ6v+2IvbbpCdWcAnk36jbce6vDl7GTs3xBO06ADhBmjBvrR9oXipfUCwD1cPbV3m2r4B3pjMJqxC4BvghVZSD8kwJHfd+SU5+XbwMDHt63EE+Hsx7r7eTH5/MfUbRmBPycbt0nG7dL58exGtutTDajVzPDmL8de+A0Ct2Gq8NXP8mf/yKlG/fjiv1B/Eg3mFpObmsfZAIsPv6kqdqhXXmWrRuR6rF2wHIDUpk+H3ln/+inIyEqHqMFVCBUyKcpm4d9JI+ozsQmhEEMHhxUFN1ZrFU1Ye3jaiG0aWaS+lRHefqP4svT2QVYNxATOnrmfMhD78/v4CDN1g7cz1bJ63BaEJPlr+NOHRFU/xtOsWy7YNB5ESbD4e6G4Dk7ns8L5/sA+PfHhbmc8mPzcTe76dY/l2Huz3Bj/seqPM981aRjNrwUPcPOBdCgsdaJqGh6eVyJAAvI4VgLu4VpSRWcAXz/7MoJs6VThl5hvgxXvzH2Ln+gO06dGwtI3brZORVUBWDSvSBHe9/xNTn76Z3lc3offVTQA4mpjBHX3fQtcN0o7nsnvLYZq1q82xpEwQYC90cnj/sXLXPBd8PW30fetLCuwu3vl1Jb/cdTPRNcr/Dm579NrS6ujDxvUA4PtPlzHjq1W07BCDKcSb9RsPMOLG9tx4Q7vz0ldFuVypgElRLhOaplG/VdlpmrDqwXy88TUO7ThCy95NynxntpgJqBVOWnwKmoeV6s2iOXw8HxDk5Dvw8fPE08dGYZ4dqRs4ipx4eNtIiEuuNGC65vo2+AV789rLc/l+2jqOHMvmsScHnLLvVaKCyDmeCxQXxKyIp6eV9768g1XL4mjZthZ+/p48eF0Xqhgmfr7/BxwFDix+XoRGBJUJlqSULDi2gAP5B7gu4joia0USWatsAUqr1czw0Z346I+NIGBvUhouXUfqkr27kqlRK4zw6sG07Fqf7RsOYjKbiCopYtmwVU3a92rEjvUHuP2Ja055r5XJL7ATH59KvbrheHqW3YfPpesUOV2gFY+GzZixjlbd61ErIoTo8BN1nSJqhvL5sidL3xuGwZRPliOlZMO6eFyBHuR5ST6cuoIbrm97xrWllCuD2ny3YipgUpTLzP4th3j5pvfxDfLhpZ8eIiKmKh4+HjzY53/kZRXwzHd3l07ZZR/PRbPZQEKzRpFYknMoLHAwalx3TCaNt395hBVzNiMNyezJS6nVMILmXStP1AYocuoIswm73cWe3SkVtsnNLOCT52ZitVkY+/xgbrj/al657VMMt0FAlcqXv0dUD+KGWzvyxQs/8cKsDQy+uyejxvXkliGdSDqQyr5tibTpUbZ/cXlxzEmZg9NwklyUzP+a/K/Cc992Y0e2ZaaxZtdhru/aFIvJxISxX3IwPhWbzcLXP43nufduYs/2JPC18Pq8FdSpFsLtfdrw6DsjTvpMTsXpdHP7mC/Iy7MTGuLLV1+MKVOY0uF0U98SQHxGJl4pTuaylzkb9oGXxq19W/Pj/C00rh/Bm48Pwmw+kZyvaRoxseEkHkrHYjOTUc1MoYdEE4JN8Um0rnN6NaUURVEBk6Jcdj5/ejrHEtJIS8pg0bd/cOMjA/htyioO70nB0A2+eflnXv3pQQBiW9Zk19r9aGaNek2qExDkQ3h0CLViipfgFxU6iY87Ssuu9Zl14J1y19LdOp+99guH9x9j3NMDqVG3Kp271mfRwu0kJ2Yy/v6yOTS6brB/RxJzvljGyrlbEEIQVMWPmx/qx8CxPdi37TBjnh9y0vtLPZLOnM+W4nK4+fz5n+g3sgs2Tys16oZTo+6JvdKSs3PZdTSV8CoaSBAIrJq1wnPqbp09O5N5/saeBAb7IERxjag9u5IxDImUcDQ5i5h64TRsUYMRr39PXOJxVuw8SO1qIXRvUj4B+0xkZxeSnVWIy62TnJJFUZETb+8TyeOPfTmfQ1k5CENDChOlKSZ2g6nzNuFy6Wzfk8zO/UdpFlt26vWtr24nbnsSNetU4baPZxJ/LAOL2cTRzNyz6rNyeZISdFWHqUIqYFKUy0yDtjHs2RCPNCS1mxQXdKzTLBqz1YQmzIRGBnN395dxF9lJ3HsUm5eNnsPbs2TWBnasicdsMWH1tGIN9uXNu74mPz2PP1fuZfuKOGyeVmI7xxJZM5SmbWqxatEOFs5Yj6PIxZsPT+WDuQ/g6WXlrUk3V9i3iQ9PY+3vO0tXc5lMGt6+nmiaxtgXygZK+5LSsFnM1KhSNsncL8gHm4cVk0nDN9Abi638n7GMgkL6f/wthjCIDgzk6WFjSChIoEeVHhX265UnfmTz2ng0TePJV4aAIWnZuS433taJaV+vwuphIjs9D6NOFTRNw2Y1IzSBBGyWyv+M2oucWKzmMpvtViQ01JceVzVg2R9xXHtNszLBEoDd5S4O3JAITRSv/ZaSatUCCQ/wZff+Y5hMguoV7BdntVlo2rp4RPHF4b0Y8+oPGJlFzH5hIf3nN1DTcopymkRlG2teilq1aiU3bdp0sbuhKJc0KSVblu7EL9CHOn8rInlwRyJJB1N5/e6vMXQdaUiwF6+QM1s0zD5eOJw6Ng8rwe3rkpqRj6PQiSkpE2F3YKI4J0Z4e2IODeDZd0agIXlh7FfoukHTdrV5+asx2Aud2DwtFf5HfGOb58nJLAAp0dxuegxuxf1vDi9d2v+XGX9s452ZKwCYOK4/HRtGl/k+LSWLXevjad4lFv9gn3LX2ZFyjMHzvsPlqaM5BXtHP4xFq7yO1NCr/kdeThFWmxmZ78AioPfQ1tRpVZNJr/+Cw+5GuNy0alCNV74bR3puAVOWbiHM24sNUzbjcug89cb1VIsKLj3n7O/W8NkbvxIQ5M0Hs8YTeBqbEVcmKT2b9+euJjE+nZStqdSPqcqDE3rjb7PhH+TNcy/PZsuaeKJrhPDhp6PLVGT/u2OJmYzq8TqC4pjr1al30qLl+d+bUPn3hBCbpZStLtT1ohv5yqd/anZBrjWm3qoLem9nS427KcplRghByx6NywRLALUaV2f32n0Ybh0QCCFK82RcdheOnHza92lC/9FdScsswF7kAgHSJPh77KMbxQngk1/4iabtavPYOyMY+VBfHp90M28/PYvr2rzAhBGf4Hbp5fp26wN9i89lGEi3m2rRIeWCJYA1OxNwZRfhtfgAH479kszUnDLfh1YLpNt1rSsMlgBiwoJxeekgQPMQHMnLLtdG1w1270omO7uA2+7pic1iQuTbcek6BSaNuD8PExTsgzQAKZG6wZ+r9uKwOwnx82bCoM4U7Ehj385kDuw9yrcfLS1z/tnfrsbQDQry7WxZE19hP09XZEgAr4++hh9eHcn7bwxnwj29+OaV+dzRZyIPDPuQLav2I3VJSko2hw4dB8BtGBzIyMThLh7Ny0zLwy/QC2nSigeozBopaWpaTlFOl5qSU5QryPxPFmNoJjSLhXrNavDE53fwzfMz2bxkJyMeH8jAcb0ACJ+3lc8/XYqvzUx2ShZ4Wrnmpo7Y7S5+nbcNHC5S4pI4nphJ+16NgOLRp99+3gJAwr5UjhxMo1a9qmWu33NwSz57Yir2AgfCpNFjaJtyfczLKeS2Pq3Y/e06TBl2crId/Pj+b9z58rDTvk9Ps4WekTEsTz5IvcBQonwDyrV5+fmf2bj+ACazxhff3skfP25gx4aDCACLmeY9GtKiTS2eenkwH700h4yDObTv0wSbx4k8qOiYKlgsZoSAmnXLbr3SY0AzfvxiBWazCU9/T4YPfZ+AAC9efeMGAoMqDvT+affR42w4nESf2DqE+/sye94WPvlsGUjQk7Mxu3QS9qdSr21N4pOyCA72oUZ0KFJKRkydwa7UVCL9/RltRDNl0mJsHhZM3lbcBggBod6ep+6EoiiACpgU5YpSv01tdm5PASE4uOcoFquFu968GS9/rzJ5Nv36N6Nf/2ZIKdm37QgBIb5UiQxCSsnBHUc4FJdCWFQwIX8rYqlpGq0612Xb+oMEhfkSUSO43PXdLh13Sf6SZhLY/rF8/oOnZ7Jg6hrCo0K4dVhHZr73GwCRMSffB64in3UbQrq9kGAPL7QKpgf/3JKA3e7Cw9PCwQPH8fC2lUwjSkxWE+271QegfZf6tPutHvm5Rfj4lQ0weg1oTnCoLy6XTpvOZbebueXeXvQd2hofP0+eefJH0o7nkpmZz6IF27nxppNXTQdIyy9g+NfT0Q2DL9duZsUDY9i5KwmHw40Q4Bfqi6MgEwn42ax8O/VugoK9MZtNFDid/Hn0KFJKEnNymLdiE26XjqYJYptGsW/vMby8rdRvFHnKfihXFolK+q6MCpgU5QqQlZrN7rX7uGZcb3be803xhwI+fXIaK3/eSGSdqry//NlyAYwQgnrNapR5P3HuwyQfSCW8Zijmf+wv9+JHt3AsKYuQqv5YreX/vHj5ePDg+yOZ98Vy+t7SCb9/jLQs/nE9hi7JSM2hSaf61Kwfgcliom3vxqVt8nMKeeqmjzmWmMEj795Cq+6xFd6zEIJQz8o3yR05uguTP15CrdphNG0WRexbw5n1+XIKilz0ub4NMfXCy5zL9x978/2lRfuYSq8RGl48stWwUSR74lKQUlKnbtVK2/9drt2BlODSDTILi5BScvPwDuzecxRhEdw8oBUfPTsbgA49GhBWxa/0WG+rlf716zE3bg+tIyMYen0En74yDw8vK4+9Pgy3LgkK8cHDs+JVg4qilKeSvhXlMmcvdHBz9F047S5cLh3DyxuT1cqgMd2Y/cEiDN3A5mXljV8epd4ZJADPn7aehTM3MvCWDvQc2OKc9PWth39g+ZwtBFfx56OFj+Dl41GuzcKpa/n42Vk47S6i6lbl0yVPnJNrny4pJTvjkvH2tlGrgmrblR2zdcthfP08iKlTNmDasekQGWl5dOrZsFwA+umqDfwWF8/dndvQo35xYPbNui288ftKvG1WJve/liCLrbSI5j8VOJxggLenlcJ8BzYPc4U5Y8ql60Infddo5Csfm3VhLndP/eX/qaRvNcKkKJe5nLRcCvPsuBzFSdxewVYQ0KJbA3as3svBbYcJrhpAjdiI0mO2rz/AvClr6HpNMzr1bVzunFnpeXzy2i+4XTqTnvmJjj0b4ul99pvOPvjmcEY+3A//IB8sFYxQAcQ0ikQI8PCy0qRd5aM758uUH9fx3Y/rkBJeeWoQbZrXPOUxQgiat4wu9/mWtfG8cP/3AMydsYGo2HBi29ekekQQDWpV5c5ObbizU9k8rx82bcdtGDhcbvYVZhMe5MtLP8/mugax9KtXr7Rd8vFsbn3+e4ocLh69tQdFR3LZuO4AI2/vStMWNVAU5cyogElRLnNhUSFcO64XS39YxaB7r6Zeu3q4nW6eHf4BUkrMHjaen3YfHl7FAY/u1nnm9i9wOtysXxpHbPMogv9RfdvD04qlZDTEajPx0KjPyMsr4qmJwyvMi/n125Xs3niQG+7rQ/U6lU9JCSEIqVo2QVtKicPuKp0+imlcnQ8XPUrGsRwatT27gpH/xp87ErE73GiaIG7fsdMKmCqTfDgDKSVOh5vd2xLZlJ6Bc9deLFYzr9x1DV1alL+/4a0a8+bvq7CaTbSuEUG/b7/DqeusSjhMm8hIQryLpyFXbTuEw+nGrRtMmb8R++Z0HA4Xzz81k58XPASA0+1m2ppteFgtDGnTCJOmcleudBKBoTbfrZAKmBTlMieE4O53buPud05sePvFM9MxpEQIgaEbxbWRThxQmgAuBGgVFF309Lbx7vS72bxqH6sX7WDXuv1ICROf/JHP5z5Qpu3ujQeY/NwsHEVO4jYd5Iu1L5Q7X1ZaHu8+OhVN05jw5o34l+Q2OewuJtwymYT4VAYMb8ddj/YDIKJmGBE1K56GOh+cTjffffg7eTlF3DiwFYeOpOPr40G/no3O6rw9+jdj48q9HDmURlqBE7dNwwBcbp09CakVBkyj2rVkYJMGeFktaEJg1jScul7681/aNY7mk1mrcZkNjvk4KKpnIniPjt/fEtffXbCaaWu3IYTA6dK5uXPzs7ofRbmcqYBJUa5ALXs05qePi0sMNO0YS6O/TW2ZTBpv/DCO32Zuon2vhpUWXIyqHUZU7TAWz1hfsvUIeHtYyrTZ8McevvjfPNxuvTj4qmQE49u3fmXT8j0IAdPeX8ydz10HwN6dSaQkZiIlzP9xI+Meufq0KlO73Dpmk3bOqljPn7GBOd+vQ9cNigqd/PzN3efkvF7eNl788FaklMz7eQsbth1iW04m/r6eDL6qSaXHBXqdCHqm3XgDc+Pi6BUTg6dmJje3CD8/T2pUDeTXSXcy6tMZJC5NwNsN9XrH8Ozoq0uP/SP+EI6S301mYeE5uSflv09XJRorpAImRbkCNevWgK+3vYHL4aJarfJL9mMaRhLT8PSWnN/38lBeGPslHt5Wnnn/ljLfvTrhBxx2FyYvTzp1q8eoJwZUeI7Q8IDSKb6QkpVlR5Myef7BqTjsLoQQuPPt3HnVa7w778FyyeBSSnJzi/D19WTKks1Mmr2KsAAfvn98BEG+Fa9uOxMWiwkECE1Umlt1NoQQDBjckgGDW57RcW6XTv3gYBp260pSYiY3DJiEw+Hingl9uHZQCzxtFjwP2/FJcgJgTiokNKx4NZ2Ukv2OLDQrmDVBizqR7DhyjKpeXsz+chX+wT4MGdXplNu6KMqVQgVMinKFCo0IIuNoNg/3egXDMHj867sJq16+dlJFDsWl8OSIDwF49fu7mbrxBeK3H2HqxF9o37cprXoUT1X5B3mTmZaLyWRhzAtDCa3qX+H5bhjfi9BqAWiaRteBzXE53WxYtR+nw42hCaRZoOW5SDuaxc4NB2hzVcPSY6WUPPnUTDZuPEhU/TD+NLJBQnpuAeviDtOvTcVlB87E1UNaYS9ykp9bxLDRXU7rmL3JaejSoEHkmdeQOh1bNx7imfunYDJpvDn5NnbuTMbpdON2G/z84wY8zRptutTDYdKRAoQE198WyAkh6Fw7mnVHEgn09OJ/M5eRmpNH8NZ8TEmFmM0avv6eXD209Xnpv3JpkoCh6jBVSAVMinIFm/bmXHat3QdSMnH8Vxw8lEn12mG8OuWuk656m/35crLT8gD4+fPlTJg4nEcHTqQwz87iqWv4cuPLhIQHMvH7caxcuJ2GLaMrDZageBqw17C2pCZncXO318nPLeL2h6/GbDbhMAkQAiPMH3NhEXWbRJU5tqjIyYYNB4uLbGZkQKgJ6QLdkDSrHVHJFc+MyWxi6KjOp91+0da9PD21uOjmE4O7M7jt2eU6VWTu9PU4HcVFQH//ZSsDhrfjmy/+wJCSYwfTeO/FOQSH+RLcN4pDjbLQdKjXpgbDr32HKuH+vPTWjXw2dBCHMrPwMlvo++oX6IakyO7EWxbvWm/oxjnvt6L8V6kwUlGuYNXrhmOxWbB4WDh4MIOC3CIS9hxlw9LdJz2uZbf6WD0sWD0stOhSvJT9r/9cpZTFG/sCoVX9GTyqM/UaVy9zfFGhgw0r95GVkV/m8zVLdlOQZ0d3G/z46TLChRNzSd0gs9XMO3MfIuAfOVWenlZaNK+B2axROyAQs5cZwwPuHdaRasF+XAybDiTjcLmxu9xs2J94xse/8f0SOt31Hq98s7j0s/TUHJIPp5e+7351YyxWM1abmQ7dY4mIDGLGnAm8PvFGzLqBw+4i5UgmR6bvo2P16jz2UH92LthHRnoeu7cncku/d0g7mk3t4CDC/X3p07Qumgla3tCMPoNbMmx0Z/oM/s+UyFHOGYF+gV7/NWqESVGuYP3v7EloZDCGbrD2j72sXrgdJNRucPKRmS79WxBdvxpSSmrULa6I/cqPE5j72VI6DWhJaETQSY+fcOvnHEvJxmI18c28CXj7FuckNW9fuzRAyklKIzMrF0uwH+2Gd6J7r0ZERpWdMlx7OJFP12+kWg0vQo/7U7VuMFtcBbgNwfbcNKB4j7vPX55L3JZDjHl6EA1a/fsyAH/Jzyti19ZE6jeKwD+wfDXxmzo3Z8XuQ+iGweirzmxKKzu/iFnLt6Mbknmrd3HnoA4ci0/jyTu/AuDOR6/hmuvb0LlHQxo0icJk1ggo6YPVZqZJy2h6D2rBsgXbKShy4rC7MJLtDGzagAOx8RzanwqAPa+I1Ut2M/iWjhxOzWTpgYMITxPWEBv3j+17lk9IUS4/KmBSlCuYEIL21xZX6W53bQv63NCOKpFBhEUEnuJIiPpHPaWGbWNo2LZsIcnUpAxSEzOp0ySqdIpP1w0OH0xDSolhmFn280aqR4fQtEss0XWq8u3Sx0iKP8ZjV7+GLsCdnc+wwa1o0Komqdn5rI47ROs61YkM9mfsT7OxF7qossGFuQiOHc+BTh5Ii0AvGeX6c9U+fv1hDY5CJw/f8hGvzXuApjHV/vUzy8otZPSASRTm2jFpGl/Pu5+w8LK1o6LDAln0zO3/6vy+XjaqBvuRmVtIgI8HAd4eLFx/AJdTR0rJqsU7ueb64mKWwaHlVzAKIbjnyf7cOLYbj975DRnHsjmyJYE7er3B7U9cy5KZm9BdOsKQNCupYzX+1R8p9HEhTbAk7sC/6rdyeVA5TJVTT0VRFKA4j6hx29qVBkurF+/i6TFfsnrxrtM6309f/MGo9i/y2ND3uL3zixzadwzDMDCZNG67twc+fh5EVfNn8sPf/Z+9846uovra8HNmbkvvoYSEFmpC71IEkaqIiIgKgmLBhh07KioqKopgQUERRCmCdBWQIj30kgQIIaGF9N5umznfHxcDgaBg+9TfPGvdxc2dMzNnDmvlvtln73czbvB7rF+wDQC/AC+atKlLlyFXgc2G9PFh4afr0HSdW9+dw1vfbWDou19TanfibTKjuCCnmZm8piYsZhMjO7aifZJKxsQ9LJi+gaBQPzS3J/HZqQomzF7zGzP/dca8u5DSQjtIj/hbPm/HH7rehaiKwjcv38H7j9zI3PEjMJlUelzXAj9/G4pbpyy/rLJv1nkknsjg7Te/Y/2KvVgtJmJbRuJlNVFaYif9VB4pCWlUrxaASRF0vKYJ9RpW91QYni5BcUqQMCjmjyfJGxj8FzEEk4GBwW9SWmxn4lNz2b35KBOfnEtpsf03z1mzcBfoOhLI1RUeHjmd5x+eA8DQu7qy6OfnqOGj4Chz4HK6SU2onOvTc2hHrP6+WL2tdOrdDKdbo7DMjsPlxuF0U+pw8nbfPphQQBU4/QXWQju31W9C4a5MigvK+HLyaiKjqxHesjZ6gA8y2J/a4YFVzPbyySgsobyaFV0FzILY1lEXjTmRnsfQZ77k9udmMXHxBhbGHeRK+nb6eFlo2zgSXy9PVC6idihtOtQHXefowdN8/NbyirEzP13PkP6TePujH3jozo9ZN3Mb74ydx6Rxi/hpxX7yi+0oPlYURbB4+noiawbw/IyRVO9ZjyMnsxBCMPb+XjTJ8+HeiFieG9jjD62Pwb+ff0oOkxDCJoTYIYTYL4RIEEJc5HorhLAKIeYLIZKFEHFCiDp/wZIAxpacgYHBZaCqCqqq4kJDMSmopnN/a6UkZ7Jq5X46dG5A6/Pygwbd0433nzwNUiLMKm6Xxt4dKbjdWkWe0shxgzmdlI7V28rAB3pXumebbo35bN2zuN06EXXDSCmcS/9u29m6si7qMY1tqxIZMKQdsdXC2Z+Rif9pF9VD/QgK88Nqs6CoCsFhfiDg5Jki8PXCjMJ9fTr8obUYf08/PljwM5H+ftzdux1NW1wsmGYs3s7xM3kAHMnPRYSY8baY6d+q8e++b3hEEGfT6lkfl8yjZQ5OpWQz7+N1AKyatwPVoYEOuiJB01EUgVAUelzXgm0Ld1BaUMb+rUlsKMylzN/MnB93s2LSfVzfqznX97q0UaaBwf8TDuAaKWWJEMIMbBZC/CCl3H7emLuBfClltBDiVmAiMPSvmIwhmAwMDCrIyy7GP9Abk7lyR3ubt4W3v7qPLavj6dw7tqKvm65LnnhgNqWlDlYsFFgUKAAAIABJREFU2cOsBQ8RejavpvfgdnTr3wJFCJ55aDaHDpzi2utaVIgl8FTpTYubcMn5VDvPF+pE0SJqq2ns+c6MrinMeWk+IVaVOXffwpFDZ0hJPEO3Ps3w9rEybfljHDlwiubt62E2m+jZJ5Z1q+Np2KgG9a6wpYqUEl3TUc/Ou3OzunRudk4YHj6ZxYL1++jSrC49WkUjhKBpvWps3JOMw6WhmyUqUOZ0XdF9AXafTEPTJe1qR3Dzfd2Zu3w3bl1HDbQhgePJWaBAWZgVZ7CK70kd6Sdo1bU+Y9+8he+/242Ukhtv60hOUjqH9xwHwGVVUAuclIXCgOc/5+sXhxEZHsjp1GySjqSjWEx06dao0v+Vwf8GUop/TA6T9IRlfymlNZ99XRiqHQi8cvb9QuBDIYSQVxLSvUzEb11TCGEDNgJWPAJroZTy5UuMHYxnwu2klLuEEMOAsecNaQ60llLuE0JsAGoA5WeP9ZZSZv3aXNq2bSt37dr1209lYGBwxUwdt4jVi3YRFObHJysex8fP65JjC3KLiVsTT+PWdXho9CwcDjcWi4mZ8x4gvAq/pV8azFovaJ1yJRwvWsR333zE2hcjcNsVhKpi87bQvm8Lnp/5wG+eX17mxOZlvqJ2KfZyJ08M/ZjjR9K57aGe3PFI74vG9Bg9BZGQj9tXkNnFh6HtWzK+1zUs+n4Ps2dtpqSGyrVXN2HswO6Y1csXIEv2J/Ly92sRwFM9uzK8fUu27Ezmyx92cn3XGAb2aE5JUTm3jfyE5GYgBShuSeTyfBZtfoG0U3nUqR9eseZOu4s9m45Qu2F15szbyrcHjqD5mFCAJ2/tTnCZZPK4RWh2DcWlEdujCe9MH3XZ8zX4axBC7JZS/m3+DhExgfLBBV3+lnu9GLvyN59NCKECu4Fo4CMp5TMXHI8H+kopT5/9+RjQQUqZc9HF/iCXE2G6nJAYQgg/4FEg7pfPpJRfA1+fPd4MWCKl3HfeacOklIYCMjD4f+TU0QxWzNrImsX7cLs0igvKOBqfRstO0Zc85/Eb3iMvswhFVXju01H8tCqertc0rVIsgady6/eKJZfu4GDBKrzUUEaPXIRjx1zitxylKL8Ue5mT1PjTl3UdL2/LFd/70N6TnDmRg5SweOamKgWTKbkIpdiNuQT8j9j5xnyADSsO0ajQQvnpYmyZKo2v8r0isQRw4EwGTpcbefY9wMcbd5JcmMOBlT/TplkUtUIDad6lHkeLUkAR6Cao1yGKR++aQXZmEdVqBDBt3oOoqoLFZqZjL4+BZotGEfy4IZ4Cm4LZDnsST7Ck9Bje7b2p/lM+SEjceOSK18vA4AoJFUKcrwE+k1J+dv4AKaUGtBRCBAKLhRCxUsr4v3WWZ/lNwXSZITGA1/DsHY6t4hjAbcC83zFHAwODv5Bnh0whL7MQxduGYjYRGOJLw2aV+8ilJJzG289G9ahQpJRkp+WjuXUsNjO1agTywCO9KC4qR0r5pzW8/YU16R9xqGgDAoV+NR/nuS8exFHuZMLIjzmVlMGY90f8qfc7n9PHs3G4dDCpNGldp8oxPTs34eeVB9ClRPc1odqhtNxFiWrCZjMjpaRu/SvbBgQY1akNO46fRtN17u/SnuysIo6cyMSFxMtiIiO/hFqhgYy9pzc7J87mjCwjQvUhw+Si9HgOAjh9IpeJY+eReiSDB14YQOurGgBw7Q2tcNhdrNp8hKScHHb8mIR3HYEjxOTpoiwEDZtH/ur8DP67aH/fllzO5UbPpJQFQoj1QF/gfMGUBkQCp4UQJiAAyP3TZ8pl5jBVERKLu+B4ayBSSrlSCHEpwTQUz17j+cwUQmjAIuD1v2LP0cDA4NdxuzQATLrGhNkP0qRN3UoNVxd+tJqv3lqKlPDGwseI7diAxycNY+7kH7mqX3PKXRpjbv4QgFtGdmH4fd3/lHlN3bGd6Xt3MaTdEVzpgtTPg9Ba76bxC92well4dcFjf8p9fo3Nqz0WCkJAk9a1qxzz1Lgbad2mLiabiXQfjWlT1mBLKaJxn2b0v68XQUE+RDeqXuW5v0atwABWPHBODE54cRE+R8sojrQSHRxA67NtX3Lt5ZywlQOC3JQ82F+GkCCFoHmbKHb+nIS93Mn7Lyziq/XPAqAoCgNu7UhSViGJqVkgweQEWc2HV7+7GXdGOc061r/iORsY/JkIIcIA11mx5AX0whOYOZ9lwEhgG3AzsO6v0hKXJSOllJqUsiVQC2gvhKhojCSEUID3gCcvdb4QogNQdkEYbZiUshnQ9ezrjkuce58QYpcQYld2dvblTNfAwOAKeP2bh+h6Q2seemsoJ9MKuHPQFD6dvLqiDD5u1QEc5S7cLo34bUcB6Dm4HTM2jWPU8wNJPHAK7WwrjrhNl7+N82u/01yaxvtxWyh2Ovh+UQ12jo4kZ7sPm6afYPf6i9u2FOeX8sboz3n9nukUXtBu5Y9ww7COKKqC2Wqma+9mVY4xmVV6D2zNNX2ac3vnlgQl5GMqcLBn6X7i41J4/fFveOLFOUxYs4H8svIqr/FrSCl5Z+x8ti/Zg0+mnYgkJ8NaxaIonkjentTTnpi/BHORp0oOCcGNQnhwbH+klFhtZiLqhgGguTXG3f05NzZ7gVAEZrsbpdhB+N5Cvu17E0EWb96asJxb+73Hji1HL5pPid1xRRYJBv8uJKAj/pbXZVADWC+EOADsBNZIKVcIIV4VQtxwdsznQIgQIhl4Anj2r1gXuMIquUuExPyAWGDD2VB8dWCZEOKG8/KTbgXmXnCttLP/FgshvgHaA7OruOdnwGfgSfq+kvkaGBhUTV5mIWeOZ9OkTV0atIji+U/vRtcl1131GromWbFwJ/0GtiKyTih+NUMRQVl4mwU9bvaU5B/ee4LP31pO41a1GTiqG8vmxZGfV8KI+6/5zXsXZBfxWI9XyTqVyxOf3M21t1edYBodHEL27pP4f5vryWgW4NZ0vHxtFWOK8ko4vDuF7avj2fr9PqSUBIT4MmbibX/KOiUcSocgLzQhiE84Te0G1X7zHL8AbwrzPKLt21mb0DVJeno+Z5QsMoqKmTp4QMXY+MxM1qek0LtBAxqFhlZ5vRPHsti06qAnEujSeHTCzfTse068dW5UF5/lKuXSjdvHjHeAQmi4H+PfGUbNyGDenXMfJ5KzuKpnUwCSDp7m4M5UHHYXC6etJ8jfi8K8UsxWEyah8N3S3ZSXuxDA8oW7aN+5QcW9Hv9mBWsSkmkeWZ3Z996CSf1nVFMZ/DeRUh4AWlXx+UvnvbcDQ/6O+fymYPqtkJiUshAIPW/8BuCpX8TS2QjULXiiSL+MMQGBUsqcs4nk1wM//SlPZGBg8Ktknc7jgatfQ9d12vaM5YUZ9wKebadq1QPJyy1BVRUCg33ZuCae7esPgRCUaRAU7mlm++aY2WSl5ZO07wQhYX7MXProZecu7fhxP3kZBWhuja/fWlpJMLk0jWFzv2XvyTRi551BOVkAFjOYPQnjrbs1Iaa9Z6uouKCUO1s/T1leMdJsQjGbkcCOH/bB7xBMx1OymfTmckLD/BhxVzdeun8W+bklaBYVxaKSl/PbkSshBO8teIifV+4npm1dXhs7n+LiclxSR7cINCmRUuJwazjcbobOm4/d5WbKxq183rE/3a6u7LJd6nDywPzlaOiYLSqRtUPp2bdZpbWuGeTPpnGjWbhsN6VR5dw6pSPB5/W3i24aQfR5vQFr1Q3DYjUhBDSIrcUDLw1k2VdbadapPk9NWU5ufgnUsOGb46L3gBYV5zlcblbFeyJOiWeyOJ1fSJ3Q326hY/BvQ/ydOUz/Ki4nwlQDmHU2j0kBFvwSEgN2SSmX/cb53YBTUsqU8z6zAqvOiiUVj1iafuXTNzAwuFJSE9PQdYm9zMnBrUkVnwshmPLlPezcmkzT5pGknczl7XGLkWd7sklJxRd1YKgfOWl5OMudTH91MXnp+Yx6cdBl3b9px2gUVWD1stB5QJtKx45k53AoKxvrmXJK04tQhEA6XaiqYPizA7n1kT4VY8+kZGMvObvF5XShax5bx6yUEtwuNybzldnMTZn0A4cTz2CxqDjyy8nJLEJKiZ+/jRZdGnDTrZdneFmtVjC3jO6BlJJXPrid5MPpHLKWUmrR6RxWi25jplLmdBKUZMfRzwtMAl3A7C82VhJMTrebccvWkH2iEKV5MLYcJ2Wh3uzff4K6UaEcSc9lwU/76NepCT3bN2T44I7MfO9H3nt6Afc+05/a0dVwudw47e6K5sYAfoHeTF81lgXr97IvL5t0nDz6+mCOpGaSP7cUl1sHm8qsxaMJDT9X9WgxqXSKjmJXahpRwYHUDPS/ovU1MPi3czlVcr8ZErvg8+4X/LwB6HjBZ6VA5d+UBgYGfwstuzaiXmwtkhPPENqiLrM+Wcfw+7qjqgr+gd707O9xfD6ckIZiNqHpEiEgonZIhaHlq1/cw+3tXgKpoEvJ9tUHL1sw1WpQgy/jJ1GQXUTtJhGVjkUFBBCcXIrYkoXiliAlvv5e9Lm9E9+8NI9t325l4qrn8fKxEd08ktpNa3lsBXy8IL/Qo+oUwdDIB5iy+TUioi8/2bpmRBBJh84AENumNvFxnia0w+/rzsDhV132dX7hw4krWbVsL94+Vj6b/yCBwb50v/MD3E43FgnZTayYyhTQdcKTNTp2a1Dp/C937GX99iRshYAUmIpdZKWm8szu6ZgcDvI7R+DWJdsPHKdFwwgSth9jyZytaE6NnKxCXp12Jw8Om0ZZqYPRT/Rl4NBzgs9lgmlxe3C6NbYfPcW2Nx6kfmQoNg0cUmLLLSduTQLXDTv33EII7urVlq7ZdRnarBmnswqIT0nn6pb1CfC9tGeXwb8LT/PdP7fS9b+C4fRtYPA/htXLwqTlT/HoXTM4En+ak6fyqRMdztW9YiuN69yjMds3JXHscDr9rmtOvyHtEEJQmFvCjPGLsKqCcrcOQjD00b6Xff/049ms+Hw9MR0bUKepx76g1F3C/oI9LLxvO95bTnh8S8wmT+RICBZO/gF0naQ9KYy5+lXGff0wh3Yc40xKFopZ9bQMCQrEpkrKM3IpL5VsXb6bIY9fd9nzenRsf/y9rWz8fj9njufw0aKHyS8u47S0czqvkLKsMrIyCunUpWGl1jCX4ufVCbicGg7VzeGENDp2bYTNasLhdCMFuPwVhAtAYeSIzozqWzmCpQgB5rNfXCq4fE2o5SbUUjeaS0d36yA8SdyKgF1ZGbg0HSEgV3Owa1syDrsLza2zbH5cJcFkUpWKaOEv702qSrfQILasjkdVlAo3919YfzyFB1YtRwDxGZnErUhGSsmcVbtZ8NrIy15nA4N/K4ZgMjD4H8XLy4KieL74L/xyBLBYTDz3+k0XfT5j/CLWL9qBUATte8QwfOz1NGjm8ezJTsvj24/XUD+mFn1u71zlfZ+/6T0yjuew4vP1vL/6eSIaVGfcnhcoNxWRutUKmu75M1cRSAHlTt2Tw+R0oGs6p1KymPrk1/iH+OCwe9qNKFLH7OtNv5vbsGzK95jMKu16X1lvNLNZ5ecV+8jNKmLzmnhEA18WrN2Pd4aGK0glMFNDEYJuPZvy1IueAp0VS/awYV0itw6/irbt61W63o23deDr6T8TFOJDregwkk5kMeGh6/h8/lZaNI/kk8S9OF2eFqSKr5mc7GKeHT2LrPQCnhp/IyOubYXd7SJhfxr7dp7CGe6FM8RG0O5sVFUhKD6H0iAbviVuMo9lE9IwhLwugaiFLhpf35jWHepjtpjQdUn/wW05XVhIbnk58ngJr42ZQwNvC7Gj2jD42lYVppqPTLiFWvWqERzuT48bW1d6ntTCAnRd4tQ1jmbmIKXE7nRzJqfwitbZ4J+PdnkF9P9zGILJwOB/lOfeGMySuXFERIVUqoS6kIK8Uo4mphHTqjbePlZs3lYURUEoglZdGlaIJc2tcX/viZSVOFAFhEeG0Krrxc1mnXbX2bJ0gcvhYvjMeRxQq1O7uoolvBD3ibPFsKoCLjeoLkxB/ii6htR1dKFw+kQuj43pw8GtR7HYzLwy52Ei6ofj7WtjyMN9sHpb8PH3vuI1iagdQklROVLC3MQE/NM0hARLtoZ+tr1LcpLHdftMWj6fTFmD0+nmUPxplv/0TEWpP8Dwe7sz5I7OZBWUcMdLc9B1iaVEQzlTzrFNx3nlxT58nhhPzUB/QvLgjgGTkU6PJ9bsT9bT5doYrvauQa9+dbhjx1wEIFWY/MOjRIYF8dywjzmVnAXC05j39pBaZJeUsW/FYZJnHWFBppW5Pz5FebmTn3Yc5oa3ZuCoYaLZTw7KSjwvU1IxjUeeM9X08ffijserjhYOaRLDppPHySwr4c1r+vC9NYGt8ak8MKhqYWxg8F/DEEwGBv8jnEnNwuZjJfhsIm9AoA8jH6jaBiA7vQCnw0VItQBGD56Kw+4mNNyP6Use4e6XbiK4mj9ePlYGjOpecU5y/GnKy5wgBBrSs2VUBePnPcLcd1fQomtjAhqFsTsuC12aSUkIJfpEHvJs/kT1iCCad2mE5tboPbI7EfWrMXbQ+2SeyqMwr4Txt39I+97NeOWbhytVjQVXD/zdazR+6nA2r0mgToPqPL/yB3Jcp5BWK17eFmKjwsg4U8iYJ/sBYLV6XLEVReDlZeX8IkGXpvHi5z8Sn5pOrxbR6BLsTjdOReKrS9Al819ewfJtnrac994+jYrVUsBc34+Hhk0j5XgObm8FdytfZKkOwSaqVQ/Ex9vGW988yLezN/P9tiTe/2I9Lz11Pfe1bcMtEzajaTorl+/ljju7sHP7MWa8s5ogTSOviYnscBVLsifda++htMteGz+LlZkDzkUcm94eDvT43Wtt8M9EIowcpktgCCYDg/8Bln6+gS9eW4xQBBMXPUajVnUqjm1ddYDPJyyjeadoxrx5CwfiUnj53pmA5PYxvSgrdeJyukk7mYfLpWHztnDb4/0vukfNumF4+3lhL3UQVjOQ1t2bXDQGILp5FONmPwiA3e3C32qlxOHA260iEBWmiK4yB09+cg8A6xbvYv2yvTRoEUVuRiEupxs0jR0/7mP3+kTaXhPzp6yTl7eVXgNbs23lHuwTt2HTJTUaRxAe4sue1Ey8/b0ICPMFICTUj7cnD2Pv7lS694ypJNp2HDrJ5vhUyh0ulsUdokaoP6cy8unTrB5bju1Fljow+5+rXLu2bzNmTt+A2wSZ7axQR0NszsZtU0jv5I1qglq1g3j1up4EeXsSrL19bfy4P5X0wlLy96SyOS6Zqzs2JDTMj8LCMpAw/vmF1IwIQrp1hFsSmKJx0/0dWXFiO0JVaHPVpSOLBgYGlTEEk4HBvxQpJakHTxIQ5k9IjV/3w9m4bA9OhxtFVdi/OamSYHr/yW8oKSwnL7OQawa1Zc/mJJxOF0hI2JVK9z6xrJu7FbMCcasP0vX6i4pmAY9h4xc/v8DJoxk0aln7V32ZpJQcyD9NoMWb1bfeyY7003SKiGJ3nV3MeGE+mktj1Gu3sP7b7ezbfow1i3cjdUlo9QDuHz+YDx+fhdR1VG8rPv5/foXW7p8O4rS7QFVJP5LOmaQMtGoBFNYJ56f1idw5zLMNFdOsFjEX9N0DiAwLxOXSEJrEnl7MxNduqjC9XN8wgt2bjuA2m/nknR+46+GeDB3RmWZd6nLvimU47GWErC0mX4KpTMdcrOEMBPfaTMZ9NZNO3Rrx8rtDEUJQNyqU3LwSpISIGkGoJoXPZt7L3K+2MH/5TraUZ1L7ZBl16oZxPDkTpURnw+e7mTFrNFlZRTRvZvSLM7gY3chhqhJDMBkY/EuZOW4e372/AqEIpmydQN1mVfc6Axj6SG9eHzUdH38vut5QOZm3Zp0wTiSlIyWE1Qyi101tWb1wJw67iyH3dqckv4TN87diL3My7eVFlxRMAP5BPsS2/+0eZB8cWsdXydsw7yvj6TZ9uem6bgD0Ht6N3sO7oes6I2LGkpte4Ik4BfghFE8113Uju9KmRxNWfrmJpu3r0aRtvUveJ3FnCnGrD9J9UFvqNo245LgLuf7enmxeuovSUicS4Sm1tphQzSqtW1Ze5xP5Bdz57SIcmpvpNw0iplo4UdWCaJopOZFViE+xxr7tyQSG+vLa2PmUFtup26Aam1YlgPBs7Y16pBdN69Vkxe3DeGjA++Q6NVAUrFYTMeFhpDiKMWWUeIw5txylsKCMgEBvxj3en627UqgVEUyj+h5B5uNjpU27unyQsg/NDEdwMGNoP157ZJ5HNAtBRM0gImoappMGBleCIZgMDP6lbF26E0e5E4vNTPyWI78qmNr3jGVJ6vsIISoiP5knsnllyHu4nG6GPdKLdtc2o3pUCABzt3ts1oQQHD14inKbDentTXBU8J8y921ZxzAvycP/+2I+F98Q/KGN7oPbVxx3u7RzYglA01B0jeAgL3LSC6geFcrdL/2671NxfinP3TIFp93F8i9/5ttD76Ca1MuaX52mtZiXMhWnw8Wyz9YhFEHr/i3x8fMiPNSv0tiv9+3ndGEhEvh4exwfDfS0PrlzVHfeeXoB0qSQmFNA0fwdJO7z9N0rL3MiFACB2XLu1/CBuGOeYw430s+G26IQcUpSvisXuwCTxUTd+uHYy13cf+skigvLePrVmyrE0i80b1UbZamKpuuYTCphNQJ4+qWB7Np+jEG3tMfA4FJICZqRw1QlRtzNwOBfyshXbsFsMxMaEUyXQRd/CR7cfJin+73JgvdXAJ4O9edvky2c/D3H409x6sgZUvemUKdxzYpj5wurkyfzMHtbQQgKnX+8naPm1rhZj8HnuIbikEiXzvHE05XGWKxmbnt6AEKAMCn4+9tAlxzde5yvJv5WcwEPLpe7wqXc7dRI3JHM6M4v89qIT3CUOwHIzy7iwWsmMLzlcxzalYLL6eb9R77kyX5vkRJ/CovVzM1j+jD4od7UrRt+kVgCaFcrAqvJhM1k4qqoc1tc3a9vic/VdSmMDmDtzmTKkZjMKjYvM517NqHvoDZ07R3DkBHnqsyatauHxWpGWFTKavpQ4m8iLiOHMrebsggTAd1qMnbSzWzfeJiS4nLcbp35szZfNKfZW/bgEBq6kARJE/XCgknad5L1i3Yy58Of0PWqE/INDAwujRFhMjD4l9J1cEe6Du54yePjb/2A4vxSDu88RqvusTQ4L28JILpVHcw2MyBo2LruJa/TMCYCRRFYbWbaXhUNgMPuQtd1vLytVzzvl0ZMI3FnCsEmC8GNA/Dx92Lg6J4XjRvx/I1cf3cPsk7lcHjvCb6csBSA6rWrblJ7IcHhATwxeThrF+5g4N3d+ejpuZw4dIaM4zlsWrqLa2+9ijXztnMyKQPNrTHzjaX0GdqRDQt34Ch38t7DM/lwQ5UNDSrRq0E0i4bfhlPTaFb9nLP4zyv3oSVmYvUxIa2Srtc2oX3rOpSWOKgWEchj932JUAT6xJU8N37Q2Tn789Wm51m1+iBvf74WhEAqUF43gOI6JhKchTz39Y9MGNATVVUQFnGR4SjAyZPZIECaoCS9BJfTzcKZmwDYuTmJ08dziKoXftF5BgYGl8YQTAYG/1F8A30oLSpHIvGuIjG6z4irqVEnHM2t0bLHpavMIuuE8sWSR8jOKqJRTARHE9IYe9d0NLfOi+/fToerL/Za+jUObkvG5XRj87bw2NS7aNK2arF2JiWLfRsT2fXzEQ7vSuGaIR2IaV+PHoN/e0uprLgcRVHoPqgd3Qe1A2DVnM2kp2YDUKOORyw0aBmFalIwWVRi29dn57oEXJpEtZgJrenZfkyMS0ZRBI3bncvNcrk0Jr2xnJRjWTw6th8xFyRP52UXM+npBZ7nNCm89PVomkTXqDj+5MOzcbjcCAk7d6dUOhchiN99AquPiSKTRnGEwE9asEiB061hMZuoG12N2csfo7TEQc1aF2+TPtyvC+s2JlCkuCmNtNFhyqfEtqlOUWIe3r5Wwv+A9YLBfx/DVqBqDMFkYPAf5e0fn2Pt3C007dCAiAtyXADKSuyERoayZfkeigvL6Xpj20tWtoWE+xMS7mm2umn1QezlHoftFfPjrlgwDX2kN3Mnr6Jhy9o0aBF10fEda+NZOn09BzceQtc1NDx5Rz98tZn1326nbtNa1Iu5uDLtF3atOcj426egKApvLnuKph08pfNjPx7F4mk/IQQ0bF0HgFZdGzP5h6cpzi9FCMHiT9ciAauPlWc+u4fvv1jPtGe/AQmPfDCSLoPaY7aY2LrxCFs2HsFudzHpjRW88e6t+PrZ8D0rTE0mj7EngNViok2zys959EQW9iAFtVxyvK4kp6SUUF8fz/quP8SWjUkURUjym1iRCkSEhdAwSSE+LoVWYZ5xAYE+BAT6VLkGIcF+rPv4CZ5a+gMrDyfhcjqpeVNTnnm0MXWiq2HzvtjZ3cDA4NcxBJOBwX+UgBA/CgvKWbswjrqxkfgH+1YcS0lM48kb38dR7gKXCxXJ1u/3cvfLNxNWRcTifK7qGcPSb7ajazp9bmp7xfMa9ng/hj3er+Jnl9PNa/fMIGnfCe56fiAfPTPX47MkQZa7EDYFRVXQ3BrlJXY2LIr7VcH041cbcTncAKz/No6mHRqQl1nImGteIzezGKEqbF65j84D2tCxdzPqnm0AfOpoBlJKTBYTNWqH4uVrIzEuGUeZEyEEK7/cyPvPfktgqC+PTR2JlNJjXqlL7r1+MiaTwpT5DxJZLwz/IB/e+PJetv+UQPcBrSqaFgOkFxTj2zSInCPZlNayIN2Cr1bt5vHBnkrBsHB/pFsjIMmBO9JCcJ0gnunShVc/nY2m6axesoeR93YnMLhqsfQLqqrQP6YhPyV7mgj3adKAmAaXLgwwMIBfjCuN9OaqMASTgcF/AJfTzdpv4/AL9OGq/i0QQrDks7Ws/PJndE1H13Se+mhUxfid6xJwOtxIKZFSorvc/PzdLo4SvZf4AAAgAElEQVQdOMX0uNd+9V6Nm0cyd8NzaG4Nv4Arbz9yIfu3JHFw21HsZU6+eH0JqlnF5XSjmlXCqofTd0Q3CgpKWT59PYpFpUOfFr96vT7DuxL3wz7PltzNnoazW1fuJT+7GM5GfY7Gp5F8KJ15U1Yx/+BbHNmdimpSmLDgUZL2HqfHTZ5tvFueuI6EbUkIRSE7uwRd0yktslOUXsBbk4dx+lQuiz7dgMvpRggT+3ekEFkvDICYNnWIaVMHKSUZWYUE+HuhCeg7dSaB+0rRg1WkACFh7Z6jBET5EuRl48aWTahdzZ+Uw+lErCpk9NOdaVYjHJMq0HXw9bPh42fjZGo2a1YfoEfPGOpFV69yLa5tGM3bbbvjtLu4un6dP/x/ZWDwv4whmAwM/gN89vIiVs/bhhCCx5zD6D6oLVYvi6faTVGwXtBct1Of5sz/cA3lJQ44W0kmpaS0qPyy7uftc+XJ3pciMtqzXWjzttCwZW1GPnM9G5fuplO/FjRpcy6/6eYHe2G2mCpFyqqiXe/mTF73ElMfn8Xcd1dQq34YO1cfBF1HKCpSSk9fNl1iL3Uwd9JKvvt4NUh4eNIwulzfqiLnK6pRTWYeeAeAr95dybcf/YTJrNKsUzThEcHENo9EdetMHrcYb18bHbpX3p4sK7Ezc942Fn+/Fy+bmfGvDsKl6+gWKKmpYioXoIMMVHj3580oQnAs4Qyph87wS68V/wBvNi7fB3nFoEmq1fRH6jqjb/0I3amzYMZG5q99hsAqeuet++EAn0xYjgAKTxQy4hKtcAwMzsfTEtrgQgzBZGDwHyDrdB4uhwuTWSUnowCAAaO6U5xfysmkDG55rF+l8VENqhPdojYH446BakOVOiYkwmYlNTHtikwez6c4vxRvfy9UtXJIf8+uVHZsS6bvdS2pczYC8wvVIkP4ZO1znDyaScsuDbFYzURX4UAdcgWJyt+8vYwju1JRFMGetTqa042Xr43737uDjYt3sGfDYTCpqJpG0u5jOMo9227zPljF+09+g83LwswdrxEQck6c3fHUdfS97Sp8A73xOk8w9hrYmu79mqOaFBTl3HPP/XANc97/EV1VcNUPRVUVCtJL6Nu0AWucSSglGs4AT3m/X7gX7sxCTIrChi2HcJkVHNVs1KkZTJfeMezZdAQFsKqCiDphOB1udKeOkCA1SdKZbNr7X7zddup4Dm6XhqbrnDyb8H4+GVmF5OSVENOo5q86sxsYGBg+TAYG/wnuf30IzTo1oGOfFvS/owvgqeRa/vV2dm1J5qnBU9G0c9479jKHRyzh8VwKrxOGC4W87GK+mvT975rDh09/w60xTzO6y3jspY6Kz7Ozihj31HwWzY3j8QdmnTOjPI/qUaG07xmDxWr+Xfe+kJr1wrHYzKhmFSEEZqvHr6rvsM4k7z0Buo50OImsH859b96Gf1gAwsuLMyfzkLqkvMTOog9XXXTdsIigSmLpF8wWUyWxBLB81iZ0TccEmMqcBPh50aZFbd4bch2fXt2LmsvTCN2aS/VVmUy8rg9d6kQRUCgoO1RCScMAHNW8OK642Lg3hUat6tCwY31qxEYy6L4e+Pp7Uf/GhjgCVGxdq9Myuuqcrhtv60hsq9o0bBrBXWOurXTs2PEsRjz8BY++soA7J3zDhvhjv3/BDf4zSDxVcn/H69+GEWEyMPgPUKN2KBMXPVbps9yMQspLHbhdGk6HC5fDhXrWN8nqZaFe05qkJJ4BAR2uieHHOVtACJq2u3SrkQtx2l1s/3E/kQ2qs2beNnRNJzejkOSDJ4nt6KlOc7u1ivEul3apS/2p3PnSYOrG1MLL10ZI9QAO70yh21lzT19/G4V5JQigfZ9m1KgdRkmpyyPkhEBqOuhaJQfu38M1g9qy7MuNePla+eiL0SQlppGWmk1AiyhiO9QjoF41OJlLzxtaUzPAj0ZewRw9mAQueXY3TuBwukmIP8WEacs4HSHxTnPz2L1fsnjt03z88nDsz7uxmtRLRocCg3x4+9M7L/q8ILeEhMNnkBLyAiU5WVk88+X3zHz0FppGVq6oPJaYxsmjmXTqHYvNy6iuM/jfxRBMBgb/AVxON3s2HKJWdDUi6oVzJjWbR697B82l4eNvY+hD12I7z2RSCMGHK58iYVcqAUE+REZXo8eNbXCUO2nWMfqy7/v6yI85sPkIUkKbXs3YuTaBgBBf6sWe21KrUTOIx57pz+YNhxl8a4e/ZetHVRWuuaVTxc8NW58TgWPeu4MXb5oEQFDNYMxWExH1wshJL8BsNVGWVYBblyyc+iM3PnAtfpco3f8t7nn+Bgbe1Q2nw8UnE7/n4O7jALw1fRTvfLSaHFUg6ofRuFM0N3Z9A8Wi4oi1oWguAsoExQ4XilOy7Yd4TjYBhEJJlBn/FCcul4bVZsZmvvxf4blZRfgFePHpWytZtWgXQdUCqNk4lFxZAAIQUGJ3VjrnRFIGT978IQj4adEuJsy+73ethcG/CaNK7lIYgsnA4D/AG/dMZ9+mI0gp+XDt8+zecBin3YXUdapFBDHkgWsvOkcIQex50aRGLa+85Dw1IQ17mRObt5WeQzrw8Nu34x/sW6mMHqBXv+b06tf8yh/sL8A7wBvdakPqOtNfWkizjg14Z/FjvHLbh+Sk5VByNgneUe4i+eApWnW9Mp+p8zmRks2rj87B6fRE1qw2M+mnczl+IgcJoOnM+XwjbreOKqFnjUia3B7N/Olb8TrmyUUzh5oxlTrQrApCl4SYLfj62a5oHtPfW8XiuduRqqAwyoqvkJTklzL+jsGYa/ry0cottKgbQbsLtvbST+UiFIG9zMnJ5MzfvQ4GBv8FDMFkYPAfIGnfCexlDmzeFk4lZdC2RxO+enclUsL1I7qgaTqfvbaEYwlpjH7pRhpUkVT9e3h08gimPjmH6OZRtO/d/HdtY+3fksSbD3xJYJgfb857iKAw/z9lbufjdLiY//6PlJfa8fazInUNXBo68MFjs+kzvAuHd6V4Oo8qiudlMXNo94k/JJjiNhzC4XRTGmHDYjNzVd0oulwbQ+yyPcSnZKG4NJp3bMDWnxJRFYV7bulK/UY1yD9WyGL7XiyKgq/JRM0NRTiCTNgKNEaM7c+I2fPZk3qKq7J8mfLOKDB5tu8CfC92dAdYs2IfmltH6p4clfLaPkTYzUTHRODtY+XD0VU3Mm7brTEdejbl6IHTPDj+15sdG/x30I0quSoxBJOBwb+UfRsSKMgqoutN7XnwzaF89Ow86sdG0uaaplisZr7e8zpOuwu/IB+2rjrI6vlx2MudvP3YHKavfe5PmUPba2OZtf+tKzonYWcKezcdocegNkTUDefLiSsozCuhtKScDUt2M+jeHn/K3M5n6Wfr+PbDVUhd0vn6Vnh5WSh3eSwUivNLzwk9IQCJ6uuDrksyjmf9ofv2u7kd3+5NpCjCgsmiEtKzLsnHs7nzoZ4snbaeNRmZLE8+Tote0bzzxED8z/paPTKiO4P7tCIowJvEvScY/+RcAlwW3v7qThJkAVuXpaH7K2zSi1m8KI7PtuzH4XTz9Iie3Ni92UXzuH5IO76ZsRHdJBAhNu4Z0InhvdugqAqrFuwgL6uIG0Z2weeCyJXJrPLsB8P/0BoYGPxXMASTgcG/kO0r9zBh2BQEgvitR3h48p10vq5VpTFWL0uF/1JQqB8SidliIqRawEXXS40/xYQRH+ET4M34+Y8RGP7nRHmyTuUy543F1GkSwaAxfcnLLOK52z7C5dJY8MlaZm9/mZadG5J66AxSShr+jm3BK8XL18bClMl8/tJCkvYe597XhhDdsg7rF+7g8O4UBj/cm3lTVoNLY938bdz78k34Bf2+PKZ6jWrQf3gn5m7Zh5QQf/QMS77YjgDcaQXoUX6gCPYfS8fb95xYEUJQ66yNQrurGrBsy4seTy0hKEqXKApIl8RapJHlduJ0uXFrOovW7b9IMG1ff4iSvFLe+3wUp11lFOWX06FJFKpJZf3SPXzyymI0TedEUgbPThnu8am6IM+s1Olk7bFjNA4Lo2Ho5TU/Nvh3IiVo/8IKtr8DQzAZGPzLyDyVx7efbcCtmtCKyziZePpXx2tujYYtoxj36ShOHs2k180XN6/9/OUFnEpKR1EVxvR8FRQTYz++i+adG/2hub454iMOxR3FZDHjG+RDbNemFfYGLpfGp68u5unJd9D2mqYEhPhSq174FV3fXuZg0r2fknUql8en3UudplWX1w+87xrspU7KS+0Me/p6VFWlXvMo9mw8zIFtR2nUph5vLX3SMy+nmx/nbKWsxI5vgDfev5Iv5HZrmEwqxeUOPlsTh6/Nwqie7TCrnhyuTavjqZbppmdMfUwmlcAiQaLTjZRg87GilrnRfM00r10Nk3rpRNvzLQta1qjB10NuYV1cIjdc1xjvED+WxB1CSjc396zsgp52Ioc3npyH0+Fm2ZKd5HUOJCjByedC4bkXbqC81IFEomk6+bnF3NltArkZRTzx7lB63NC64jqjFi8mIdOTw7RyxAhqBxrNew3+9zAEk4HBv4xX7pnBiaQMhL8fNWsF88CkEReNOX0si8N7UvEP9mXCQ7NQVYWJ8x5i0N1XV3nNhi3rcnDTEZwOFzmZJUhg2gsLGP/Nw6yev516MbUoKnYQViOA1lc1uOy5CkUgJbgcLj56fDazDr1H1+tasnHlfhRVYLF63MhjrsDK4HzWzNnE9pV7cNpdTB3zBZPWvlTlOIvVzB3PDqAot5hlH6/mzMlc1szfDsDsN5fSbWBbqkWGAB5PpU82juPQrhSatq+PaqqcwO6wu5j4xDfs2nmMvOreDL6pPfleblbuPoQiBD5WC8Ovbs2uLUd594WFuN0arTrW5/VP7uRMRgHxCWloms64R/qxa3U8tRrX5Jq+V5YQ3y6qFu2izonDH6fcj9Plxs+nsrjT3Oe8t3S3jpLpwu3SAZ2dO47xyKN9OHUsi5zMQho2i2TOB6twuzXmTv2pkmA6lptLuduNt9nM6cLCCsFUWFyO0+kmLMTviuZv8M/GqJKrGkMwGRj8y3C7NSQSi8VE50EdCAivvMWWn13EmH5vI3UdxWLGaXcBsGr+9ksme9/x4iCq1wvng2fmoaMg8GyPvTDsY9KOZYGXDdXLiqIIxk0ZRpsuDS9rrmMmj+TBTuPQNU/C8YlDaYydPJyGLWtTUljGzaMrt+pYPW8bK2Zt5roRnelz21VVXvP44TNMuGsa3n42BtzZDaEIrF4WalxGdOq126cSvy0JaTsnLFRVxdvPVmkryj/Ylw69qxYxG5bvZdfPR3A53Xg53CxavY/uN8Qg8SRUa2eNOYsLywCPaCkq8LyvWT2QOR/dXXGtppeIiF0pVosJ63kJ91kFJczdsJdGtcIZ8/JANqw5yCqvXHSzin++HV+rhRsHtcVsMTF63EAATiZn8s3UNZ7k9D6xgKddztfT1lM/XudUjDdX1atNkdPB5G1bSVuSyv6Nx3AHW3nqqevo3yP2T3kWA4N/KoZgMjD4F6C5tYpIx8uf3c3sSd+zdfluln36ExsXxjH74MSKL/u8zCJ0TcfpdCPcOormRispx8t86b8ahRC07dUc08uLcdpd2LytPPzuMEZ2eAVd9wgJl9ONxWoi80zBZc358I5knu77JiARFhNOCRPvm8Gn28Zz0z3dLxpfUljG1Gfn43ZpfPhcGlf1bVFl7tCsCYs5dTQDRVVIO57DS/MfJzctjx63df7NORXnlaC7NBQvgWq1oJoU7nttCHe0egGrl5l3lz5JZIOqG9n+QtKOozjPZILVggwOo0OLOjw98Gp8rGb8bDZu79ISgG69YzmakMbJlGxGP93/stbsj+J2a4yZ/B1xyadBAYtZpVbTUGr2CmVe5+spLLfTqlZNlCq8sKKiqzFzw3MkJaQx9dVl/LBkL3c/1Zd5X20mP8SEz0mFoZ9ez8jF3+HUNCxmN5FuiSnbzo8bEw3BZPCfxxBMBgb/cKY9OYtF76+gSccGTNownlr1wxn+aG+2LNyG26WRl1mArktU1fMlWC8mgrCoUNKO56CoAj2/AOnW+W7ySoaM6XPJ5rXB4f5M+OZBdv98iB43tsVkUnlpxj18Nel7ajWozqHEdKpFBNLzhlZVnn8hu3466PGCkhJMiqcBbG4Jh3am0L6K6I3FasZiM1/0/kIatKzDnp8PgYR6sZG07XXp7ayEbUkk7ztOj1s64R/ix7OzHmTG83MJrx1OdNt6tLm6KVOfnYuj3InD7mTN/O2MevHGS15P13W+n7EOdInuclLQx5+H7uuOv7eN526qHC1TTSr3jf17hNIvHDmVzcFj6UgkSIFL00lIzyShKJtGYaE8dFWHirEOu4tZn22g3O5i1P098PP3IjDUj/07UsnJLERKeO+5heS3DMLla8KOYEfiSQQCXUp0iwAB0qxw6/Vt/9bnNPjrkPw725b8HRiCycDgH86SqZ7ebqkHT5Ky/wSN2kWz+ccDYDIhNEmnG9oihOfLXFEUhBAVYkM1qWBSkbrEZFaxWM188fpils3YQMc+zXlm2qhKFVGx7esT275+xc+NWtXm9TkP/K55dxvcgblvL8PtdHt6tykKJrNKk/Oufz4Wm5kPVjzFjrUJtOvZtKLC70Jue6I/DVvWxsvXRkyHi13JnXYnp46kI4HnBryNruus+XozH25+lTpNa/H6krEVY4sLSjl5NBNUj/fSDwt2cNP9PQkMrTonR1EUohrV5ERKBlJIir1h9bFk7g++OJH+/4Pa1YLwsprRHRIvHwshNfw4ZM8FRaG6X2Wh/N28OJYu2onUJZpb44nnBwDQvH1dln7tEeN4usV4tj3NJpqEhnGvbxviszK5M7o5rg5ltO5Qn4BA7/+PxzUw+FsxBJOBwT+UX3Jq2vZpyd518fgG+lCrUU32bTpM8oFTCIsZ1WJGKAqDwu5DURWe/OxeqtUOY8wbQ5j8zHxq1QtnyD3d+P6L9XQZ2A6E4NsPV4OEn5fsovvg9nTsfbFvz59BVKOaRDSowYnE06Bp1KwbxsQVT+MX6IPL6UZz69i8K4uiWtHVqBV9rpeZrutknc4jrGZQxZakEIK2PStv/6yavZFZry2iZsNanEo8SVlxOUFnrRFcDje56fmVxu/bksSXb61AIslOLwShgAS3083+rUe5+ryE5wt5f83zTJ79A18XpGDytdA56q+3QrhcfL2tLH5jFMcz8sjOLeHlaT/gLyUD+sdwU2zTSmNNZhWBJ0pkPs+ZvcPVjXl75t28dN9M3E6NnqHVMbWuRr0awfRoGc014ryk/5i/68kM/k4M48qqMQSTgcE/jNLCUh7t8iKnDp/h4SmjuPmJATTp2JABD/Rm3bdxfP7qYqQO9WJrUS0qFHdhMfYyBwATRnyE2WLinglD+XT1MwBMun8GGxfvYMPCOKZseAWL9VwieGrC6b9MMAF4+VoRisBiNTP6rdsIjwzlxOEzPHH9uzgdLp6dNuoi/6hPXvyW72dvolPf5hRkFpC4M4Va0dX4cO0LmC7RO23q47Nw6YK8kuPIomIActLy6HdXdw7tSOaa27rgdLiwWD2Rtzcf/JKivFJUU+W8LovNTLMOVUfAfsHbz4vnH7qJEYWFeJnNhHj//dGVNVsO88XCbXRrF839t3WpFCX09bYSW68Gb/38Ew6XG4DSLPtF3kqDhrZH03TKSu3UaxdFRl4x1YM9kbWmrWoza/2zZKUVULtBeCVbAwOD/1UMwWRg8A9jz08HyUjNQtd0pjw0A9WkoppVUvYfx7taKM5yJwhBw2a1ePjt29m0eAc7f9yPpmlIXcdR7uTbD37gs1e+4+ob2xG/6RD2UgdWbwsp8Sd57P07eHfMl3j7enH1oN+Xe+K0u1g5ZwtevjZ639L+kl+oL3z1MHPfXkbtJhF06OtJhv4/9s47PIqqi8PvzLb0TgihJNTQewDpHQREBJQmVRFEFMWC2FAQRRFsiKiIICAd6b0jPbQQQgkEQkhCes+2mbnfHxuDCEH4FEHd93l42OzMnbkzu8n+9txzfmffhhOYC6wITbB69q4bBJOlwMraObsRQnBw8ynsBRaEECRcTCblagbB5W+shBNCcPbYJTxLeJOTaUaVJCSjAWGz0+KxRgwY/xjDH5rAwmkbObztNB8Xei35lvDCnGcFCeo1r0JSXBrD3niUhq2rFZs79XvKeN9sAPp3IIRg0lcbURSNpanH6Ni8GhXL3Wwm2bt9HXZGxKBpGv07OyJmVouNzNRcSpbxQ6/X0XdQM56btpwf5kQjSbBs0hBKFoomdw8XyofdPgHeyb8PAc4cpmJwCiYnTh4wwsIrohU2gAVHhZyqqCTEJPHOlIFcOBmHrJNp9Wh9Fn28mjKVSzH75EdkJGby0VPfYM63kJaSi0Bi96ojPPdhX757czFlKwfR5OG6uHm60uKR+sg66Q8jB2nm4+y/9ipGnRetgmfhoivBoU0nWT1nN1En4pF1Mpqm0aX/rS0AAsv4M+aLoTc816h9TZZ8vhnFrlD7d55OJlcjodWCSbqciqePOxWrV+Hg5kiq1A2l5O9EQUJsCi92nUpeRh6SLOHq6UJ4x9oodo0R7/WkRLAvUQdi0FSBpcBKzIm4orFTFj/HzlVHCasbQvWG5QFIjE1haP3xWApsvLdoNDUfujPrhL8bSZIo6e9JWmY+kiTh63Xr/nGVypZg81fX889yMvMZ0fEj8nMstOvZkBc+eJyDu88RGZOI2a7gajIQdy2zSDA5ceLkRpyCyYmTB4zAciWYtHocbz0yxZEwDSDBS989S3CFQL7e8w752QX0q/gCVrMNjAYadazDe4tGMy96GqqqMbL5u6QmZODm4ULylVS+2DWBwLL+ZKbmMKrdh+RlF/DODyNuEiy/JypjFlYtE5uWw+XcdSRsqupY/rIqaEYDBm8Pcgs9hu6UUqEBaIod1aaw7MtNPD66IyZXI4pdITM5m+lrX+Zi1FXKVy+Nm4cL+blm3DxcblpS2r3qKPmFXkdCE9htCuO+GnLDftXCK1CnRRhRB2IY/OajRc/7BHjy2O+sDbYs2k9Gcg5CCBZ/upH3H1DBdGB7NG4Xs6lVKYAXX+2Cn0/xbVsuJWewfeUxYk5exYggP8eC3aawd/0Jqj9UmRkfrMPkrUcLcaN+WBnqVSn9N16JkwcVp3HlrXEKJicPBMdOx3PxSiqdWlTHy6P4VhT/FRp0qMOs41P55uV5xEbGMXRSP8IaXs+tiTuXiF1I4OaKZDIRsf8iiz7fwoCXOqPTyXy5/U2O7YpmypCvWTJtAyu+3Ixd1lO6QklSEzPQVMFP0zdQu+mYW55f0zSmPjuHQ1skag0Jps7AdPxNNTkal4Ridyz9+ft7EP5IQx4d0uKurk1TxW8eawhNsHvNUT4ePQ/NrmCSBHa7xvPTn6TzwBa4e7pSkGtm5YxNePl50G14O2RZpl7LMBZ/sQm71Y6HpysvfjqgSCwlxqbw0cjvcXE3Mf674cVWvf2WOs3DWPnVFgCadLo75+2/k0/fWkFutpns5Byy+2fz9IFfiIhP4KWWTRkcfj1Zff2RM7z/3UY8j2cjaYAQyIqKJEl0H9ycpPgMFLuKPtlO/ZBApo7uXtTS5VdyLVaem7eaxMwcpvTpTMPyf43RphMn/0ScgsnJfedsbDIvT1mJEIIdB8/z9Xt97/eUHghCqpXhgw1v3nLbos82IRn0yJKMABCCn6auJf5sAmM/H4SLm4lylUvh2CSwWxVw1XPtSho6gw6DQSK8ffElTrtXHmH3kv2oQuLIl6UY+/rneJsq8OgzeZyLuEh+jplXvxlOqfJ31/sNwNPXnTdmP8OWRfvpOrglLu4mvnpjGUpuPtgVzDoZSZL56eO1dB7oEGMzX1nAzqUH0OlkDCYDDw9pTbWGFShTuRSXohPIy7Py4ZBZTNv4OpXqhvD5S/M5d/wyep2OVd/sYMhvokvFUbFWWb7Y9gZIEqHVHqxIi6JprD93DilfxSYEQgKr2c6V/BwOX0nAbLczbde+GwTT7uhYrEKjSCoKMHh78Oz4bjz8eDjZmfksXnEIs2xnW2Am/RcuZfmgfpw6dpnMjHyata7KxpPniLqajFVRmLJ2F8tfePK+XL+TvxHh9GEqDqdgcnLfSc9y5GJYbQqpGXn3ezoPPKqqcSU6Ac2uoDMZ0TQNoaooeQUc3BzJ7tURdOjzEGUqBzHyo/78sjqC5MQsriVmIZAQSIyY1JuHn2x+y+PbbQrTnp6FarEBULZGJbxNjl5vnn4eTFo+9q7nfGRbFPOnrKF6k0qEd6hFwsVkvH3dCQkL5uLJOHSKHWyOyj0UFdkgUbK0D6qqodPJmPMsaKqGLEtY8q1Fx/UozN8ROPrV7Vyyn4UfrebUntMIRQU3NzKupnH28AWqNrrZs+lXdq84yNSnv0Wn1/HJlluL1PvF5YxMpu/bx/YLFyi1MhudooGLAb0ssfnIBfSJCm6BOmqHlLph3MDWDdhzOpbM6hqeORr1fAKoWr00HR9ziCoPb1fSKrqQUcEFdBKRyckc2nuOyeOXA3CyWx2qtKrgMMF0k8jXK2SbLXi7OiPATv6bOAXTPUQIwWcjv+XIxuMMndyPDgNv3fj0v06TuqF0a1OTMxevMWZQ63t2nnNpaXgYjZT28rpn5/g7OLw5kqyUbNAE7m4GGrYM48D6Eyhe7oAoaiIL0GVoa8qFBfNGj0/QZB3o9Ch2ldMRl4oVTJqmYS8USwDPftDnruYnhOC7d5aRnJDJqA/64B/kw4fDZ2POsxBzJol18/aima0gBBdOxHHl9BVHLhaAJOHt50FeRi5nDpxnzddbeGx0Z0ZPH4TRpMfL35OuT1931H7jm2HMeO0n9q+JQNZJnD4Rz4Uj59EKm84qVhtbF+9n15L9TN/xNpXqht5yzhvm7MJuU7DbFQ6sP0blerfe7+/mRGIS/RcsRVE1hF1FtmrJlBQAACAASURBVAhAAgRqsBsnryYj2QRuVzTsu2M5WfkSOoPMuuURtO5Yk/LB/kSpySglZWp3rcfgVg2Kjq2TZV59vDWT9+/F7CZ4tkkjEq5koKkadrvKttXH2Tp/H77tA0kKlrmcm83UXb/w/sPt79v9cHLvETh9mIrDKZjuIfvWRLBh9jYQ8MmwmU7BVAw6WWbs0LZ/vOOf4OMde5hz6jiyLDH3sZ40KvPPzcXwC3KUsxtMBkKrlea1Oc9iNdvYvSqCoHIB1G56Y7LyL2siHL5LOg3Zw4DeoKN97xudqaMPX6Qgz0KDNtUxmgy4e7uRn12A3qinZLkAMlKy8Qu8szL6meMWsfa7HQBcjr7K9wcn4Rvohc2moILDQVrTkCUJVdWwF3oFAei8Pajdoir7fj6EBuRm5nH5TAJvPDadzORsZKHSqFMdGrR3eEf5BHjy1pwR5KT356s3l7F3w0kwmpA0h+9QYeoOkk4i5UpasYKp2/B2RO0/j8Ggo1n3B6fNx86TMdgVFaGTMJnB3Nwb/clcLOVM9OvflMWrj6OXJaQsO1mpeXw3fRNxV9KxWRX27ThD17faEpOUhiRJNK50c+PlxzvW5/GO15fx8vMsRBy4QMq1bJKir6LZVMxXc9CV9kUALnrnR4aT/y7Od/89JOlyetFjXTGGe07uPUei4vhhXwQ2D5A0OJKQ8I8TTOY8Cyd3R1OxTghh9cszcekLxEUn0qJHQ9bP3Y1/kA8d+926tL/tEw+xad4e7DYFrVogpeuFElZYSg+wb/1xPh75PUjw+OhOPPnaI3zxy0S2//QLleqX56VuU8nPMdPruQ4MGf/HuUBXzicVPU6OSycrPZepa15m5/JD7F5/givRCVSqH0JItWD6ju3K0+FvYsk1I7m70v3ptvR5rj0IDRd3F3q/2JWvX19MRnI2yBKq3pW5k1cVCaZf8fL3pGzlIIym02AyMGxKXw6uO8aZIxdxczFQt2VVGj1ct9g5t+gRToN2NdHpdcW2ZLkfNPQsgSFbRXGX8Tuez9qfX+ObgxGU9HRnUIN6NClXjoMRF9kycy8FZdw476YiuenA6hChfRrXpmuj6ri7GPHz+GODTXcPFz6YMRAhBBOGz+HIrrN0KFGGKD8Tl9KzqODje68v2ckDgDOH6dY4P8XvIW37NGH5jE1kJ2cx6tPBWM020pOyKFW+xE0l0k7uHcdOz8M9yRVbBR0mSebRqlXv95Tumlc6TOLq+SR0Opkfoj+lTvOq1GlelU9GzWHPqggkWeL1b4fzUJebRUGV+uVZevlLeoycQW6Oyvn4VPYfjaVdM8d9iI2Kd4gpVSPmpMOrKLhiSfItCrPeWkZBrgXFrrJ10YE7Ekyjp/bn2RbvodhUVFli+ui5PNS5Nj1GtsfDy4WvXp5PTMQF6jSvQonSfgx6qyffT/qZoHIBPDn2YTy83Xjrp+vVe3VahLFz+SEUV1ckSeLS1WyO7DjN7hWHaf5IfZp0rgNAvxc7ExxaAoNJT/Oudek+rPVd3WM3z1v7Gd1PQkr54x2jYPU3UVDSjU3zD9DzocpUrlWWDauO8s1nWylfpSTPvdeDDxfupMBqw6WsO50bV6ZR8yr4+nvw/0gcSZKY8O1QFJvCubQM1s5bhtmu8NHm3fQPr/OXX6cTJ/8EnILpHuIf5MPi85+iqRrmPCvD6r1OTkYezR9tyLjvnrnf0/vP0KLuerYfbkvORTcmjqpGgSWHM4m5hIWVRpYfHOFqtdjZte00QaV82PPjLrYu2Eu7fs0ZM2Mol6PiUewqJjcjKVfS8A7wZOP8X9iz+ig2ix2DyUBqYmaxx46zxSKXzUA674FdE1QOvV7d1nVIKyK2R5GXbaZMaAA/z9hE+TqhbFm4D0uBDUmS0Bn0dBvyx0vK507E8dnYBZSqHExqUhb2PDPHtpzk5I5T5GcXkJOei2JT0FRBfGEkqteoDnR/uo2jt9ktvki079uUMpVL8fITM9A0gdAEkwbPxGa2s2d1BHOOvE9AKV90Opm2vcIBSI5PZ9zjX1KQb2HCnGeoEV7hbl+OB4Lgcn7Y/E2gk/COymDhgY0sljcxfeUYvv1iG+YCG1GR8UgeOjRNw2TQ4+fpxt5t0ezaHMW8dYdI8NIY3qkxfVoVH2H7PStOnObtdVsp6eXBt317IEsSbgYDof4+9/BqnTwIOJ2+i8cpmO4xkiSh0+uIjYonP8eM3aqwf+2x+z2t/wxmJQcX/0fpOWI1GZobGzKS2Tf2DJIq0bxZVd6Z1Pt+T7GIqRNXcWhfDMKuokZeQFM1Ns/bzeB3ejJi6kAWvL+Chh1qU7FuCKqiMmPcIlRFRZIl6repRsdi3LYBZElHSPdrZF02UrqkL+VK+xVt8yvpzedb3mDexBUs/3Q9AF2Gt0MIR2+1spWD+Hj1K7gX4yj9W7545Scun0lE1sm06RVOwtlEzh2JAUUjMyWHx194mHMRsVgKbAydcP3eG4y3/1MUWrUUWnoGwtUVYbfDb9qXSLdIUN2y5CApiZkITbDo8828v+DZm/b5J6A36OlcqxIbT1/EUKCg2BT0bkaSrqTjEuhGXoEVya5wZmM0Hi56StYsRYirB4fsKgBXTyaRUdODj5bv4omWde44sv3NvsOoQpCRbyYyMZnVzw7kdFIKzSo+OI2GnTj5u3EKpr+JKvVDKVnOnytnk+j2dJv7PZ3/BHn2dH6MHY4irCB8kCU7SmIyqCURNomIw5fu9xQB2L32GAc3n+LitRysVgWjUYdngCfWPAveJbzw9POgTd+mbF16iKO/xHB81xnqt6mOf5B3UQPZV79+Chc3U7HnqOhRiUHlhxJb4iIdgjrfsG3b0oMs/XwTrkYZTXVUl+lkiWnrXyPmRBzNH6l/R2IJKGpmq6kaETuiseRbkFxdqde0En1f7oanrzsfrX/9ru+R0dVIYCkfslJzcHE18tbSF9m6aD/NutXHv9TNUY+ajSthMO5AAhq0/uctwf6WCSO7cPLhadjc3UDJp37LqjRuV4Nz19L5ak8Eulwb/qeskG/nWlQiZ6R8fCSwu+mxlXDF1SwRWMHnrtIAOlerwtxDR9HJEg3KBlPG15syvvend54TJw8KTsH0N+HiZmLWgUnYLPYHKqn030yaNRZNKKjC4e9jlFzwq2xCClQQiUYGDG52n2cISXFpTH9pITargsnLlUoNKlAmxJ9RY17g5O4zeJfwRNbJ7FkVQdzZRGwWO7MnLOPrtu/yxebXObLjNDUbV8LD+48Tehv7N6Wx/41RKFVR+WzMj6iKhsGgo3FXhzgaML4H7t5uVKpd7q6u5+FBLbj0xlKEEFgLrFjNdowuBlo98RCuHiYOrDtGyZAAQqqXIT/HjJdv8W09fossy8w8OJlT+85SNbwSPiW8qHWb1iX1WoQxc8s4zAVWKtW8uTrsH4VwWD0IkwGptD8vTOmDucBGsIcH9VJ0pKXYqNemOgf3nCW9ljeqp4G0el64ZAmMmXb01yyE+pa44ZBRp+I5eeIKbdpVJzjYkeW0/WQMB87F0ad5Xca2bcZjdarj6+aKj9N36T+Hc0nu1jgF09+IJEk3iKUlX25m47y9tHuiMQNfe+RPH18IgTnP8kAmr/6W/WuOMP+9ZQSWC6Dni12p06p4x+k/Q2m3WviZQki1XOShgIGU9ahNoEsYoxZqmGTDHX3jzkrLxWDQ4X4HguT/QdZd79lkkOCrecMdic3RV5k+Zh7gECFtejcGwMXNSK1mYQD4lPCiQ5+H/vT5PbzdyE7NwWZWCKlemkFv9fy/ixI69W2CalfJTMulZBkfPnvpJ2z5FmaO+YFFk1eSGp+OqqgINzeEXk/73o14bnLv20bHfsXd240mXer/4X6/UrrC3buQP4gYTXren9qXdauO0qFzbbx93Hj64WmkpeQgyzLfrH4J/xKeDOgyjVwLFLhqeEkGTO4SaoIFCYg6dJlL8WmULxtAakoOr72yCLtdZdXPESxbOYbLKZmMn78Jq11h+8mL7Jw8gtKenrz54gLOHrlMePPKvPlJP3Q6Z48xJ/9dnILpPrHuh1388N4KAH6avpF2TzQmOPTO/8BnJmcx6+V5uPu4M2LqQHR6HS+2eJvzERep17YWvcd2o2Gnug9cNZ4Qgsl9P8VmsXPh+CUiNp/gk53vUa3x7ZvA/j8YZBf6l//ypud/1y6rWHYuP8j05+Yi62Q+XvcqYfXL//Ggu6RkGT/e/GYYBzZFcn5PJD18BjNy+mAkoxGhCWwWO3tWH2X/+hPY8goILh/I0+/1+r/PZymwIjSBa2G/PkmSKBUaQFZKNgJY+ukG6rWuTu0W1f6v48uyTLfBjnYmG+fuRM3OASAfyM8qKDRFAhQFWa9n24oj7Fx9lDEf9aXD443QNI3oI7H4B3njG+CFi/sfC6n/AvUblqd+oRXEpQvJJMZnIDRHT74n+0zHa2Blajxflxrxdg6fvEJWZj6STkbWS6AKhEFC6Bx/C8xmG0KApgny860IIRDien8/VTiWZSeMW0zk3hgk4ODOs5w7FU/1us4cpn87AmdrlOJwCqb7xI7lh4oeC1UlMzn7rgTTzJfmsmfZAWSdjH+QD27ebsSejENogmPbIjm1J5rBk/rQ59Uef8l8P/58E1t3nqZT25q88kKn//s4kiThXcKL1Pj0X58gNT7tngimP8uWhfuw2xSQ4NCmk/dEMAE0alcDyW5j26z1WPKtfDduAfNiZrBq1naS4lLJzbU4esG5uJB6JY1rl9MoFxZ803GiLiYxcfZmDNHXkOOy6Plsex4bcd2V+cyRi7z+6DQ0TWPCgtE0bF8TgLKVgzh75KKjPEYILPm2m45dHEd3nWH/ppM8PKAZlWpdX/r68cM1LP50I5KLC8JiAQn0Rj0mFwMGo55s9bpqVRWNbyesoFX3enz7znK2LjuErcCGJMGTr3Sl/8td/4+7+u9k6bxf+PGbXUgeJvSKhr3ARnwbD5TsVE5mpuKVKiPpBCYBkiwzaGw7Nu49TcdWNagQ7HCALxcSwPARbVi95hh6bxOHjl+mSf3yTOjbnl+iLzOojSOKF3k0DqGXodA1PaiMX7HzcuLkv4Azvnqf6DWqY9FjV6NMaNW7a/aZciUVTdVQbAprZ21hzhs/oRR+uIOjH9iKwoqnP0tGZj6btkVhs6ls2HqKrOyCP3W8z/dNptOQNuj0MjazjeXT16Iq6l8y17+S7sPboTfqcHV3ocWj99b9OaRGWWRZxsXdRM3mVfH0dWfWvneZvul1dDoZSXLUggWGlODwttNcvXDtpmN8PH87Vy5eI21/LKlXM/h2wkq6lhvD6098gWJX2bXiMFazDbtVYcO83UXjRn8ygBrhFZA1BVXVeP/p7/hwyExGNBjHvtVHip1z+rVsJg77jg3z9/Fa78/RNK1o24Z5exBCIOtkvAN9eHhYGwa+1ZMlcV+x8MLnmNxMUBj9FEJQkJbNrqUHOLHvPLYCGwiHfcDq2TuLPX/8+STOHr5wQ3Tk30padj6bIs6x8OeDjhYuqkbFh8ojZJCv/9qjKBoaULqCH317NGRwjyYsnvYUw7o3QQjB6g0nmPz5euwl9FyxFHDuahrjP1qFomp0bViNDwc9TLWyJVmx5ihmTwM2P1ckDyNTvh+GX4Dn7abo5F+EhvS3/Pun4Yww3Seada3HspjpnD16icp1Qu46R0aWr2vdzORsNFXDxd1E1xEdWPHpOhCQn5V/1/MSQnBk0wmEplGxXnl+nLAEm1UhwNNEtkXB39cdD4+7TwIVQrBm5iYSLybTd1wPUhPSUQu/uZ4/GsuVM1cpX+vBCvc/1KUuyy99gU6v+8Oy97slLjaFt8cvxa5ovDu5N2FVg/n+zGckxCRRo2lY0X4Va5blhU8GELnvPM271WXK8O+Z98FqFk1bz8Koj3Fxu54TF2wwcW3bebCp6Nxd0HQ6NFXj7LE4LkbFU6NxJTb84BBKnZ50LJtZ8q1EHThP9P6zqDaHO7Q138Le5QdRFZWPhsxkTeYPt7wGTdMcjVkBTb1RtHTs35SVs7bj5evOzN1v4/O7D9uXpvblhynr0Kw2MuKuoQNKlPHnqbd68MnzP2LNtyDrZFr3dPgqLf10Pcs/30iLx8IZPX0QkXvP8naPT0CCfq89Sr9x3f/Eq/FgY1dUek6ch9lqRyklE5AEQi9x0WAhs7Yf3tdk3DGRlZiHkPVoOriSm8vSQ1EMf7xZ0bL8kWOX+Wr2DixWhQ0HopE1GQkwGfTIv1u6PxRxCVWA5KKnYXglDu05T1BpPwKDnJVyTv67OAXTfcTT14Pw37V4uFOefLs3b3T9AE3RHKXgEjTqUp/wTnVZ+dl6hBCUq14Wq9l2x1V5qQmZvN17OpePxiDrZFS7gqYJJBla9WlOt4m9qVyxJHqdjM1iQ5IlDEaHH06+ks++tF2Uci1NLe+bDfJ++fkw341biN3myF1SbNf7hxlMetbO2oLdplD9oSp0HNwaXWGiUUGehTnvr0KSYOibPXD7P8Tan+FOkpHvFqvZxgt9Z5BvMoIkMefbXXw0vT8BwX4EBN+87NG2VyPa9mpEXnYBVrPN0YtNCGwW2w2CKUyROF7ov1MmNACv0iWIiYzH5GogLSGDT576GgkI71Sbxp1qYzXbeKb5e+Sk5yK5uGKULdisCkgSmqphMBkIuM0yTIlgX8bNGMya73eRGpfK168v5tkpfZFlmWHv9OSxke1x93bFaDLcNLb1ow1o/WgDLAVWdizaR8mQEtRr40j+XxEzDUuBjez0XFS7QmZKDnMmLENogi3z99LzuU6cPXQBxa6gKhrHtp/6Vwumywnp5BZYi8JISc28kGWJ55vXYt7qI+hlGa+9Gci5dlR3PTk1PFFUjbwCK5oQ6ArFkKZpaIXROA2Bva6J4eXrkLT3An3qvEHPZ9rQ73lH5Htw/6acPZ+EQRWc3HWOCLvKsYOxfL3kn+ln5eQuEM4queJwCqZ/GFazjdzMPBp0qIPOzw8tJQ0AnV7HuHmjWTdrKzq9DsWmEBudwCs9P+ezdS/fUXXLzDeWEHsqDqGoNy6RCQlPH3fqFJZnH916kre7f4ROLzNt13uUrhLMrITPiM2PQZZ0hF/oyPklCWRnmbEKier1Q6lVvyx2qx1N1YjcHY0kS+gNOkpVCiL+TAJrv94CwNZ5u8lIymLAm47E5oWfrGPzwn2AI6o2/N2e6B/QvnwFuRZS4tMpV7XUDRHA35ORkoOSXQAlDCAEVauVuqPje3i7MXpqP9bO2U3XIS3x8vO4YXt4h9qs/HITAO36NaVqeCXSU3L4fNwSPnzmezRFRdMZOLTrHOeOXcbN04XstFxHY15g3PfPMmfyapLjM9D7eNG8a21GfNDvtnNq1qUuM8bOJzMlh4xrWTTtWo96rRwJ476BXn94TS5uJro8dXPjZRc3I8um72bptHXoDDpKBPuSk5mPwajHt6Q37fo3Y8uCveSk5zHonQfHfPReYNTpcC0Ai4twRPQ0Cb0F2jUKo3vLWriZDGxaeIC5n2wk2MeXVt2bsjsqlsGdwtH95n3YuGEFnhrYnB93HSVTy6VepJ2gsrBu22lsVoX5n2zk8ZHt0Bt01KgazJrFz3PicCwTxvzkKECw2u/jXXDi5P7zYH7yOLkl6deyGNn4TQpyLXQZ2hqhCSRPD4TFyugZwzC6GGk7oDnrvtvK1fPXkDw8uHAqnsE1xjLr4GQ8fG7veePl74HJxwubouAX6EVuRi52q0Kbvs0IrFKaGeMW0X9sFz5//gfsVjt2K3z92gLOx2RQ6ssc9GVUFLPKqgVbyN8rIbm5Iul0xMcks2/lQSRZgkIdJjSBiiA5Pv2GOWiqej0hHDCYDEiyI+KxZtZWdszfxVf7JxFYxv8vv79/hpyMPIY3ehtLgZXwjrV4a27x38SDyvnTplMt9mw+xUNd6zLk6dZ3fJ5OA5rTaUDzW26r2bQKc6M+Ie5MAhMHfw1ASLUy2LLzUBUVvYsJSZJRNfji1YV8sWU8tZtV4eiOaLoNa0XLXo2JPnaZtT/sQREQGXEFY2GELeHCNY5siSS8Ux1KVyx5w3kDy/qTn2NGCIF/0F/XOmPn0gMO3zJJotfznXH39WDj8gheH/A1r306gDaDWrNl8UF+2XyKms2qPHAVoX8VIWX8ebVva9btOc1hcwqSLGE3CUr4uJMWl8HyRQcJb12Vn09NxmDUI0kSQ7s1vuk4kiTRr2djHutcl9613+SKovLt8QRcXY3IOpkSwb5FxqO/Uie8PE+ObMO50wk8OaL133TFTu4nztYoxeMUTP8QLp1JZO+qCKwWO4pNYc/Ph3HRgd2gw+TpQ6fBrQFIT8zi4ac7EHnsChE7z6CZzeTZ4PTBGBp3Lr6X1LW4VGo3qkCpkAACSvlSoVoplk5bR+0WVfEs4cO0MT9it9m5dCaB5MSsonEJV7PQVI2Uj13xHZKHLVaiYH/hL5uqIWRHnkRuthm9QY+makXl0BgNqC5ukG91lJsDNVtWZ/B7TxQdv/9LXTC5GPn5q81kZ+ZgkTQitkbSZWjxbukrvtjI928vQZJlnv90EJ2HtCYvu4CE2BQq1iyL3nCHvgJ3waXTV7FabFjNNiK2Rt12X0mSeOWLwbzyl8/Csaz63qBZWM2OSrcrUVdQc/NBQLXW1blwJgmQKFelFDqdzKTFzyOEKBIbGam5/PryFOSaiT19lcq1yzG65bvYLXZ+nLySxbFfYjQZEELww4RlSKrCo8Pb0rx7A8qF3Vm07E7o83I3PntuDh4+brTo2Zi1C/Zx/uQVVE3j1R6fkpXhyNHb9NN+Hh7QlNCqN1cO/lsIquFPQ9eKRKxMQUOgVyRcjQbG9f+a3GwzW5Yf4dstr1LyN0uoNkUhKjGFyoH+eLpcX1o+deoqqur45qKpgs/WvMTV2FRqNqpwk+iUJInHHwCDVydOHgScgukfQOTBC7wz6BuQQOfmhmyx0+PZjrTu3ZhjO6Jo2KG2o1Q7LZeX2k5Etau4+7jRrc9DbJizA1dvD6qFVyz2+FmpOTzb5C00TRAUWoJvDk2mf8UXSE/MZP+aowx697qAQROgCSRXhzlm00casnnRQWyXdSS/dj2fRhIaIjcPycMdITQkofHid8/yxdj5WPKtGEwGR9K3xYbs44OEowy6eus6+Ja8HqUwuhjo99LDGGTHh7PBaKB+m5o3XYM5z8LUYV+Tfi2LC5FXChPKNb56dQEtejbm6RaTsBTYqFo/hClLX/jTr8nvqdqwAmUqBXExMo7ef8J24c+y8uttRWJJb9BRq2kljm6JBAHlq5Vm2MQnSL6STrNu9YrG5GWbyc3KJzi0BPvWHS/0SpLw9vfA5Goicv8FrGYbql1FCIHNbMNoMnBiVzSrv96KpcDKtStp7FwV4aiyW/w8Ff8Cd+1Og1vRrn8zdHpHU95ylUqiN+rQCR3ZKdkOQy1JQpLubPnvn8rRxESeXrUKoWmEmVwJsLgwakQ7Fs/YSn6uBShsRbPnLA/3bVK0HDxgzlIupGbgYTKy+YWhuBXmG2Zk5CGV8UfJyicorBTBoSUIDi1R7PkB8nItfD1jK5IkMeSplkTsOkdwiD+1G/0zmxo7uT3OCNOtcQqmfwAXo66iaRp2m0rV+iFMnj+yyM2762/yP8x5ZjRNoNhV8rMKGPlRf/q+0o3ti/YzuMYr1G1dnbcWPn9TPlNaYiaqomE124g/n8Soxm+SnZYLOMKz9VpXRTbqSbyUQs+R7Rha+zVH/qkk0anvQyRdTOF05BUkvTv2AgtIEmUrBZGZnEVethmDUUf/8b349NVFaCro3FyQEFCYEyEpCpLRIbbWzN1L7+c63FRV1XtMF9r3a46Lh6koEVsIwbRnZ/PL6qNUbVieU7tOY7cquHi7ORKjgYBgX67GpmApcER/og5dLDqmRTUTlR1JObdQAl1uXGa6W0yuRmbsehtN026bv5SfayHyQAxVapfD/x5UHDXpVJtDmyMBeHPOM9RoVJFZry1EaBqD3+mFh4871X8jnq/GpvBC12moisoTo9rT/okmbFt6EL8AD9z18GLnKRg83WnUPZzkmES6P9OuaGnXy98TTQj0Rh1C1pF+LRuA5TO3Mm7msL/oiiQmP/UtMcfjeHZKX557tyczxv4IioJQFIIrleLdBaPw/l0+17+Ja7m5SIAhxkJ+RDY2nY7tyyP4ZdlhNFVF0skIIZg9eR3X4jN4alw3VE3jVGIy4Pg9ScjKpry/H6diEqlZL4Sm7WuQEJ/B2Fe73NEc5s3ZzfbCyOnp3efIuJaNBLw/exg1G4Temwt34uQBwymY/gG06xXO7jXHSE/O4ek3Hy229UlQaCDDJj7BziUH6PNKN3R6Hf6lfJk3aQWKTeHo9ihijl+iasMbo00Va5ejbZ+mHN5yEm8/Dy6ejEPWSVSqG8oTL3elYu0QKta+XvL/yncjWPrZBjoNasm0kbO5diUN1ejiyDdydcFk0pOXlU9BrgVJkpD1Oo7vPY9qsYPJiCQE3v7uZF5NK2r2KnQ6JFlCNui4EnPtJsEE4PO7KELSpVR2rziC3WrnxJ6z6GUZk6uR0hWCiI2+6rgnIYFUrFGGag3Lc+rABfo836Fo/LRzU0iyJCEBk2p+hI/R965el/zsAlbP3ExguRK06+8o376dWBJC8NKj00lNzEJv0DN339t33NT2Tmn7eGPC6oei0+sICgng1C9nObL5JL6B3pw+dIH1P+zG08+Dtk80oUHr6pw6eBFN1bBZFXatOcZ3O99g6FuPMqD8aJKtjkpGVZIxW1S+3j/phnNVrF2OScvHEnPiMl6B3swcvwQJqN/q/3MJvxVHd57m6PbTWApsTBo8i7JhpRCaQNMEZSoHMfvQxFuOy88xk5KQSUhY0G1fk38CHStVYu/lyxxfexRUgaIqnI9OKirMEBIorkbUXAuXohMB0Mkyw5s1ZO7BYzStWI6KAf68NXM9RrFLzQAAIABJREFU+09eQpJgwfsDiToSx56dZygR6IXPbXr62VSV3XFx2DUNvU7GnGdx5Ja5GFg67xf27j7H4BGtcXO6sv8r+C84fUuS5A5YhBB3ZQDoFEz/ALx83flszdg72rfn853p+fyN3egr1wvlUlQ8eoOO4PKB5GXlk3Etm7JhpRyGiJLEizOGAvDjxBUkxiQhgMdf6kKr3k1uOkeHvg/Roa+jh9lPH/yMYteQjA6zTEmS+GjZ87z88Me/piUhNEG3oS05te+cw6xQknDxdmfce72I3HuWqg0rcGTbaQ7uOUdY3RCqNbgzR22/IG88fNww51koUcaPp9/rTVZqDuWql2V896kodpVHnnFU/Xy4ePRN45MsSdg0K0bZRLot/Y4FkxCCtMRMvhz9PRFbItEZdLi4m2jeI/y24zRNcPViKpqqopccCe8VapS5o3PeDb9Nyv7+rSVkJmeTl5nP5IEzsRV6X+1de5x35o2kUdtqzJ/mgt3uiDCBw+7CYDJgtypIsoRPgCeDX72123bd1tWp27o6AFUbVEBTNcpXv70J65ZF+/nhg9XUaR7GqzOG3LKC025TiD4Yg4e3m+N9JDnuX9LVTHR6HTq9So+R7W55/Kz0XJ5p/QE2s40mHWvx+swhf3TLHmgMOh1TOnVi4CcnSLE7bB/0Nhut+zZh2+rjqCYDXh4mAoK8eWr89Z6UL3dowcsdWhT9fOzsVcxWO64mAxs3RrJq3gEUu8r5M0l89PmAYs9/IPYKMQFW5IoG3E0GPn2mJ7PeX4tdCCKOXoaIOFRVZfQdRqucOPm7kSRJBvoCA4BwwAqYJElKA9YD3wghLvzRcZyC6T/AxxteJ2r/ecrXKIvVYmdEozex2+x0HNCC5z8bfMO+T771GJXqheLq4VLki3M7xv8wkh8mrkAYTaQl5/LEqHaE1Q1l9Mf9WfjJeirWLMPwib0pXbEkGRN7882EFSBLDHihI616NiK4fCAvt5uEQFCzaRgfLn3+jq/Lxc3Et4fe50LkFaqFV7yh79iSWIe79e0iOL1KPsnSs+uoH1qZ8u53loshhODd/jOI2HYKYbGiKio6vY6CnD92P9fpZJ58sSNzX5uLIkvMfH42n+x4947OeyfYrHZmv7eSzNQcnp7Qi7PHLuMZ4IXJzQgCXDxcsGX9Ok9BytUMDm05RW5qNl5erjRuV71onp/unMCORfto3LUeNZtVveV9mDthKacPnOep9/tSrXFlQu4w4XvmG0uxmm0c3BzJ+eOXqdbw+r3/fuIK1szeiatJjyXPgk4vM2nJi3z//moux1wDAVPXv0Zw+UDcPG/tyRV7OgG71Y7VYufIjmhS4tOZ8epCvP09eW5q/7vy1roQeYX964/TskdDQqs5hOAvG05weHs03Ye0uKEdzL3m4Ufrs+DTTUhCUKVaTYa81Jlr6fkUFNh4Y+JjlC57+8rR0X1aMG3+DiqXCySkpCNvUNM0LObbt8IJ8fNByKBWdqNy2WCq1w3hi+WjWThnD1fm/AIIHJ9HTv4tiH9fhGknsA0YD0QJ4WiYKEmSH9AG+EiSpJ+FEAtudxCnYPoPkJmcw9pZ2wgs60+1JpVRFRWb2c6+tUdvEkyyLNP0kQZFP2uahmJXbzIftFnt5GbkE96hNuEdat+w7diuaEDw/aGJGF2uj2v1WEO+n7Acu9nGl2Pn06pXI1Lj05BkCWu+jaTYlLu+Nk8/D+oVRjh+i8nViOk2q115Zivvf3WGdCWYhAAjQ16RiowBFUVlw+rj6A06OnWtc0MEZMvi/RzeEY2QZHQuLlSrH0q1xpVp2+/OKonqNa3EIhcDlnwrp/efu6tr/SM2LdjH5oX7UOwqsacTuJaQiWKxo0fi/eUvEhhSgh/e/5nowxepGl6Rtr0bM7DeGyg2BYvZxtljl6nZuBJz3luOEIJhE3oXKziP7zjNqq82Y8m3MnnAlyy48MUdzzO0WjBxZxORZImSv/mQt5ptLP9yC0IIrIUu9S7uJiRg6qqXOLIjmuDQgBuq4YQQxJ6Kx9PPvchqonp4BUqXDyQ2OoHeo9oxc9wiIraeQmfQEVq9NC0eqY/JzYT375Z9L51JJOpILM0618Yv0Iv8nAJe7PABik3hp6nrmHvsAzQkpr4wH5tV4cDmSJZFTSn2OjVN8P3mw8SnZvHcI00p6euJqmpIEv/XMmGfZ9vh7mGiIMfCY0+3wsXNxNSvBt3x+G4tatAmvDKbT52nZKA/vfs3If5yGk+NutkH67eE+vuy8ukBXEzLoGWl0KLnH3+yKaqiYbcp9B/W8q6vx4mTv5H2QoibjMSEEBnACmCFJEk3O+z+Dqdg+g/w6ajZnNgVjcFkIKh8CQJK+ZIQm0zfV7rddlxaQgajm75DTkYeY2YMpdPgVoDDc2hk0wnkZOTRZWgrRn3Uv2jMsV3RvDfgKwSC47vPMH72MwDkZuaTcCkVCltpqKoGQtC4Sz1a9mxEzPHLjP6deLuXxKVkkqaZsRkFMTkZLImIpF+jOgD8OHsPK5YcQgIK8qz07n99WTLuTBJIIAkwuBmZvPb1u8pDqtKgAjWaVSVydzT93+x5y31ybVbWXDxDZd8AGgVdX7I7vucscz5YQ52mlXnq7R43lYC7ebo48sB0MopdRTVbkRQVFYnje84Qf3E3BzeexGDUE3syDpOrgW5DW7L0y834BHhSo1FFfpq6lk0/7gXAaDIw4oO+N5yjIM/CS49M48q5JCTZgM6g4FPiem6ZEILkK+n4BXnf0uEbYMqyMRzfe5YK1cvgV/J64rvRxUC5sFIkx6cjuRlRCqy4erri5u2KwainaefajvfNb/hpymqWTFsHwNTNbxDWoAIurkZmbH6N2DMJjH9iBvnp2SBJ2K0KK2du5Yc3FyHrZKZufpOwwuhWRmoOY3t9gapp/PTFFmrVKkXjh+s6igckCYQgYstJ6ncs3prj9yzfcoylE9YhNEH8pRRe6tKct56di16v45N5w6lwlxYMOp3Mo0P+WJioisrB7afxC/SiWr3QG7Y9N3c1UfGOPoSLnu9H5aCAm8YLITgflYCbp4myhdVzFQL8qBDgx6HdZ1m75BCdHmtAiw41GfRM67u6BidO7ge/FUuSJPkCZfmN/hFCHLuVoPo9TsH0H8DDx72wNBv8S/ny/YmPUFXtD92/D208QX5OAaqisuyzDUWC6WxELAV5FhS7yo6lB6nVohoRO8/Q46lWpBSaTtrMdpIupwKQEJvC8w9PRVU0GnWphywE3Z9ui07v8EN6+dtn7uHV35oqZUrg5eFCmsWMLEvkmC1F2zIz81EUFVmSyMq6camt16j2nImIxWq28cbs4XedtK3T65iy6a3b7vPMtlUcTU5AQmL5I/2oFRAEwJTn5pKTkU/8hWSadKpFzcaVbhjXtncjVEUlMzWXJp1qM7rNJOx2h0BNupLO0e2nHY7NFjsp8eloqsbg17vzxPMdMbkakWWZy9FXiyoMLQXWm+YWuT+GhIvJoGkInY7G3cLp98r1/KYpw79j/8YT+JTw4pu9795y2czF3cRDnevc9LwkSbw9ZwRrv9tOmarBfD95LVm5NiYP/57Z+yYw8Zk5HNwaRatH6vH6l47IysENx7GabeiNek7vP09Yg+vLe5t/OkB2SjYiPx90MpLJhfSr6QibgizLHN0WWSSYcjML0ITAblXIsuSyZ+VVDqw/TqP2NTi85RRGvUzDDrUJCg3g1S8GFi3JFUfqtWx2/HgQXa4jcT7vWDKrMvdjsyrYrArrFh+iwUOVqNEgFB//v7bCb9akVWxbdgQhBBO+e4p6zasUbYtPz8JiV3A1GkjKzL2lYFo6Zy8/fbsLIQQTvxxI3caOe2QpsPH+2EXY7SonD8dSJ7wCXj531wPTyT+Df2Jj3DtBkqRJwBDgIr9+e3f8f/swayFOwfQfYOysp1kzayv+wX606NkI4I5apdRpVQ2dQYdBCNr/ZsmpeuNKePt7YLPYaflYOJ+8uACbxc7h7VHMO/gex3efIelyKiMm9+FC5BViTsWjaRo2q524mBRm7337nl3rb7GqFtYnLQega6nemHTXP7wNOh0rxwxk8vqdeJpMDHyoftG2YSPakJdrwWDQ0Xdg0xuO6R/kw6cbXrun807IzcGqqrjpDSTl5xYJpoAgH8yFJp8ursYbDCfBsczTqf/11+mN2c8wsd/nICAjIQMASSeh1+sYPvHxIsHq6n79vmReywZNQ9LJlLqFN0+VOuUQhdFBJInDO6M5tP4YTbvV440fn2PfhuMoNpXcjDwun0mgeqOKaJrGiT1n8Q/yIeQ25pKapvFK+0nk5xQ4ihG8PZFlCZOLgbRr2UTsOgPA3g0neG5SLzx93Bn0Vk/eHzgD30AvWvW+0d26QetqrJ6x0fGDqqHXSRj8PLFl5ODibqJlr+v7h1QJ4omRbfllYyTxkZdRcAi41759BqvZiruXKy6F96l5l7o071J8pCk/18LIHl9gNdscy296HY890oDg0n4c2XseSYJfNpxk58oIXN1MzNs9/i9t7hx7OgGL2YbBqOdKzLUbBNMHfTrx4epd1CoXRLOw65WvZ1NSGblqNa56A1X32bBa7MiyxKFDMUWCSdZJ6PQ67HYVWZZvcgV34uSvRpKkssCPQEkcwuZbIcTnv9unNbAauFT41EohxK3LZ+EJoKIQ4vaJe8XNR/xaylT8hF2APYAJh8BaLoSYUMy+vYDlQLgQIkKSpFDgDPBrssZBIcTIwn0bAHMBV2ADMEb8wWQaNmwoIiIi7ujCnPw15GcXkJdVQMmQG7+JqqqGJc9CRmouozt/jM1ix9vfg8UnP3CMyzEzvPHb5OeYqVwvhJSUPNISs3Bz1RNQyod35o4kuELgPZ376oRF7Exx9FZrE9gZX30dZp7fStMSVXg+rPMD20ojIjmBCfu3UyugJO8364C+MN8lOyOPnT9HsPmHnVyKjOOhLvWYsHjMTeOP7z3L9DHz8fZxJe7UZWxmO3qjnle+Gc70UXMQmsaLM4bRvl/Tm8ZuX3KAac/OQdJJqJqg+/C2jJpyYz+53mVGkWdRkJBQzQVgV5FkidGfDyH+chprv99FSFgwn28Zj8nVyFfjFrFt8QGEEHy48qUbkrx/xZxvJTergCFhY1AVFYPJwDPTBpGckMWjT7XGP8ibZztPJflqBmUrBvLF2rF3lAc0591lrPxyM5IEw6cMoFXPcNw9XZB1crHjow9fYPviA9RoUpkzxy5Rs0llWvVoeMt9LRY7M7/bQV6ehedGtMPfz4P4S6k812sGNquCBHSe0I6FsWepFhTI5Pat0Swqox75FFXR0Ot1zP/lzb80ynQ+Mp6pLy3AP8ibt78eekdR0OdWrWFzzAVkSaKXf0WiZ5+kQFPJqe/DVy/2pmFlx9LwhTOJ7Nl8iqZtq1O19t+X8P5fRpKko0KIW78B7wEeVYJE3Zl3nhv3Z9jXYeptr02SpFJAKSHEMUmSPIGjQA8hRPRv9mkNvCKEuH2OiWPfFcCzQoi7T5jlziJMVqCtECKvMCnqF0mSNgohDv5uIp7AGODQ78ZfFELc6uvY18Dwwv03AJ2BjXd7AU7uLe7ebrh73xx21+nkom1jp/XnyI5orp2N54kyI3nm4ycJqV6W/FwzVrON6IMXWJcyi15VXiXfbCc/JpkXOkxm2YXP7qlokZCLAssSMm+fXEqBaiPBnEG7oFrU8PnzJf0Xo66ybdkhmnSsRZ1mVf54wC3IzczH1cOlqGVLw5KlWf/YzX+wvP08aNKuBt+9Oh+hCfavP0ZuZh6evjd+2H79xlLSEjNJi09FsziWhFo/3phZry3EbrUBEutm77ilYGrX5yHKVinFK10/RrXYWfPtDka8/0RRNArAzcNEXmY+slEPOh2qXUWnd+RNjfqwH8Pe6onJzVj02p45EoulwIbRxUBs1NWbBFP8hWTG9PgUu1Wh9cCWXDwcQ5u+zej+9I1R8hnrXyHhUgplKgTecdL0sHcfp1Wvxrh7uRIUcns361+p3qgS1RtVYmj421yLT2Pr4gOUrljylhVxK9ccZeOWU46WP8CE8Y9SqpwfYS0qEBsRz4ARbZgeF0WOxcqphGucz8umbdWKPPFMazYuOUynx8P/UCzl5piZ+OJPpKfkMG7K44TVvP37tkrtsny3ffwdXeuvNChTmj2XLiOA1s2qkVFg5+C5K8gSHImJLxJMlaoFU6nav7cFjZMHCyFEEpBU+DhXkqQzQGkg+rYDi+dD4LgkSVE4tM2v5+l+J4P/UDAVRn3yCn80FP67VSRoEvAR8OofHbNQNXr9KrokSfoR6IFTMP2jsNkVPlv7Cxm5BXRoX5UvFuzEkm9l1ivzWRz3FWH1Qjm1P4ZeoztxLS4dq82RQCt0OgpyLTctKRWHqmqodgWji/GW2xf9uI+lC/bTpHkVXnu7e9ExO5d6DLnwccegHsy/mEiiORME+Jv+/Dd6VdV4tddnmPOsbJi/j7mH3uXw7nNcOptEr6daUqLUHzei/fHjdSz9ais+AZ7M3DoeL7/bN0guUcYPFw8X8jLykAz/Y++8w6uo1r59r9k1nSSUUEKH0HuRjvRelCICgoKIoIAFQQVBRRApYgEFFURBitJ7772F3gNJICEhve02M+v7Y8dASIJ4zvnOe9Tc15ULMrPWmtkzO3s/85TfY2TjTwcRQlCpTmlqNQ0BoGLtUty/m4At0QkGAxZPMwc3nsWRbkciEFLSqm+jPI9RMqQofgV9SIlPo3zNktmMJYB3fx7JOz3nIBRBtbplCArywSfAmy7D3DpO1kcEDId93IvPhi+kcIlAWvTM+TB5+sBVVKeK6tIID09k/qnpuZ6X2WKkzL/QL65c9ZK5bv+jPD5N07I+6fRHks13LT/MzhVHOJfhwCUMGA0K6JCR7mDhgVPs9UiBZn6o5X2obS7GoZvhIKBCYXcl3wtvdOCFNzo8eshc2bUhlCvnInG5NObP2MLsxS/nGBMZlYjDqVL+MS1OXC4N00N9FOPjUrlwPhJrKS/6VK9G9aAiWI1GqgcFESCsnLsdjZfVTJf6/zkh0nz+GvwvygpkRqxqk9MpA9BICHEWiMLtbbqYxzKLcdsp5wE9jzF58kSBcyGEAbcrrDwwV0p57JH9dYBgKeUmIcSjBlMZIcQZIAWYIKU8gNtCvPPQmDuZ2/L5C7HqyAV+PXgOVdNJKvugDLxinTIYTUY+2zA2yyiypTvw9vMgI9UOSMbNe/mJvAT3bt/n9eaTSE+x8faCl2nVJ7tXRNN0Fs13J6ge2HOZ5wY2plQZ95eGWTHTpdiDPngLGr7M7piLVCsQTJBHATJSbUzo/hk3zkZQu2Md3vv+ZSwPGWUJMcksmrKWwCJ+DBjXldTEdLYtPUi56sHUb1MdpERzZSqVIzl3PIxvPl6Hy6Fy6fRtvlz9xz3rNi85hKbqJMelMKTB+1RvVIF3f3glz5wWg9FA3c51ObD6OEhYs2AP6al2jCYDc7eNo0T5IrwxewDNutThwNoT7Fp+hMCgAu62JZmNkKs1KEvXl/POcbR6WvjuyEfcDYvJNefI6dAwmgzYM5xcPxfJ9DWfP/Y11mgSwpLzuRtBAA1aV2HJnK2oLjtGgyAhJjlb9dy/i5SSe7fu4x/kh9XTgurSePe5r7lw7CbdXmzOqx/3yjH+qzd+wp6cjoenGWe6jXc7TiWgeCB93+lGtYblmfP6j7gcLqQi0JqFYDUbOLYhlAF7rlCmfxWcqoYQgrsJyZQqXICd125QLgxmvfEro97vStmKQXmer65Lwq7fo3ARP3wLeFKyXGEUg4LVqFAhF+/OsTO3eO+zdQC8NqgFPTvUzrHehDd+4eSRm7RoU4X3p/YiI93By899y7WGAqePQlABHza8MABbprp7/QrBHJmRU+w1n3z+wxQUQjycZ7NASrng0UFCCG/c5f9jpJQpj+w+DZTKjIJ1AtYCFfI4XoaU8sk1UB7hiQymTPnwWkKIAsAaIUQ1KeUFyFLQnI078/xRooGSUsr4zJyltUKIP1ZDfAghxDBgGEDJkrk/Kebzf4OnxYQiBAZFEOjvzeRT04m8epeaLR/c4t+9PR5eFr7d9S5Xz4RTo1H5J64uO7zxFBmpdjSXxqovtuQwmAwGhdJlCxIdlYTZbKTgY5qw+lu8ebbkg0Tf/b8d4/KxG+iazrG1x9ncsio9h7bM2v/V20s5vuM8RpORwiUD2bx4H7cu3MFoNjJzw1gq1CrFx0teZc33e2jZoy7ema9JSonqyv3h5fq5CI5uP0/TTrUoU6U47fo+xerv9qCm2UjVdU7vuczpvZdo2K5GrvMB6jevxKHfjqKpOukp7v6BwmwkPdXmviZGAw3bVadhu+q8PmsABpOBT4cu4PTey3Qf1gpbuoNZry9m6KRnsiQB7kXEceXYDfYsP0SbAc1o1rNBnp6ZKg3KUbl+WS4dD6P1M/VIS0rHu4AX6ckZ/Dx1DV6+Hjw3ttsTJzIXLVmQ519ry4JpG7l26R5jen7BT4c/eKK5efH9h6tZv2gfDdtVx1OR7Fp2CC8/Dxac/oy4mGSun40AYMOP+xn+0bPZPJ2Xjt9g288H0XSJVNzbnak2UuNT+WLMz8zZMo6s4YqCxcsMF2PR0x3YYlNo6NmMpHIOzEYDLz5dj6e+mI9npAPn+QyuaIl8PnktX/0yPNfzVjWdcZNWcOnIbTx0wZvvd2XLqhO06VaL2g3L0ejpnN6eMxcjcbpUpISDR69zYc0ZkuLTeHNGP4qXKURcbAqhJ28DcGD3ZdJS7SQlpGN3ubD7WUBAfGo6XV+fi8vmolffJrzVPW/5gvS0RdjSl+DpPQRPr+fzHJfPX5X/amuUuD/Kz8pMBVoFLJVSrn50/8MGlJRysxBinhCioJQyLpflDgghpgHryR6SO/0kJ/unSjOklElCiD24840uZG72AaoBezM/dIKA9UKIblLKk7+flJTylBDiJlARuAs8HIgvkbktt2MuABaAO+n7z5xvPv9/6Vq/Ck6XSnyqjYFP18HLaiboMSGBgMK+NGpf/U8do06raiz+aBVCQNv+uZdxfzH/Rc6fjaBCSFG8/kQ/q9JVS7jFKgUoFhPeftmNOJPFhBAKQoDJbCQ1MR1N0zEJSE12e9R8/Dw4v/McZ7ac5uNVb/LC6HbcvBxF/9fa5DheRpqdd579ArvNyZoFe1h+bhovvd+dnsOeZsbwH7h0/CZSSkqUe3wj4ILF/DGajIBG6fKF8CnoR+3mIVSsVSrHWIuH22M24cdXAVg1bwer5u1EU3VUp8r4BUP5dtIqNizch67p6CmpnNp5nupNQihQOHcvz/EtoZQoGUB46C22/7SPIxtO8uP5GXw7/hd2LT+MwaDg6ePBs6M6/tEtyCI1KSOrbU7c/dQnnpcbTruL1fN3I6Xk2PbzKOlpuBwuMlLguwkreGFCT3wDvEhOSKdKvTJZxpKu63wycC6H1p8CRXFLEQiBlNL9u66jGBQCi/vz2tcvcevMLWq2r0lAyUDGdp6NM7OFy6Vjt5k3rTdx91PR7Br1gotzNS4CAZjNRgrnEapVdZ02U78jITUdUcVC0CU7n0xeTYaPGcLusX7DGbxL+zB99kAqFiuElJLzoRHUDinO9kAf7HYXZc0Wtu0+jkvV+GbyaoZP6ol/QR+Klwgg+m4iZcoXxsvbgpe3hQ4da5IQeYX4klAhyoB9XyQS2Jq2P0+DSdfiSU2eDLhISRqP1aMLipL3Q0o++fw7CPcf5w/AZSnl7DzGBAExUkophGgAKEB8Hkv+7n59uOfXf05WQAhRCHBlGkseQFvcMUD3kaRMBgo+NH4v7hjiycy5CVJKTQhRFrebLExKmSCESBFCPIU7HvkC8NWTnHA+/zsoiqB305x6Ov9JSlcpwdJrc7ClOyhUPCDXMR6eZho0Kp/rvsdRqUF5Zu+exJafD1KlcQhtejXItn/UrP4ULV0IR5qNW6FhDB7fne0rjlClfjlqN3c/6W/9aT9pyRlIKZnwzCw0VaP78LYUe6Sq8PLJMFZ+vR2XQwXp7pX2uwijfyFfJi99jRM7z1MypFi2XnC5UbtFZd6a9xKR16Jp068xnj4e+DyihxMTEcemhXuo3KA8jTo9CNFYPS3uJsEGgdXTQmpiOusX7kPqbpkAYTIh0DCYcv9oCDsfwfQXv8Fhd0Gm90V1qqQmuA3I3J5LpZSc2HsFs9VErVzuU1x0Eqd2nUdxONCtFpp3zrtk35bh5NMPVnPrRixFC/nQe1AT6jXNnmwfHRGHt78XtjQ7vv5etBrYmJUzN+ByauxedYJ7kQkMfKsj63/YS5teD/r/Rd+6z7GtZ90GkqZhMBvx9PXEYFRIjYrDPziQcYtf492xK4i4HUdwqUCGNquEwaAwbEJ3vvlwDaqicOx0OJMnrCL0bARCwPRZ/dBbNSOlWwLJsWm06Zr767scE0tCQgZCCqSQpPmCMc3oNiQV0AwK6deSGT11GVu+HsWi+XtZs/I4Ukqmzu5HjdqlOLAplB3GQ1gMCtHh8YzsPBtPHytzN71FWpqd4sGBWQbiqPGdGYVbQ2v+ZxtY4ROJKVklWMm95QyAEB44JSgoqBKSXDYCLPkG09+N/6EcpibAQOC8ECI0c9t7QEkAKeW3QC/gVSGECtiA5/KquJdSPv3vnMyTeJiKAosz85gUYKWUcqMQ4iPgpJRy/WPmNgc+EkK4cCdYDc+UIgcYwQNZgS3kJ3znkwfeBbzwLvD4ZOh/lcoNylO5Qe7GlrefJ8++2prny76O0+bEw8fK6pjvsiVBN2xfky0/7kNzqThsbqHY1V9vo92AppSq5E7Lk1Ly/nNfk5GSgQJUqFuWOs1D2PvbMVr3bYTZasJsNdGkS53cTiNXmveox80LkQxvOQXVpfH2ly9kK31//5nZRN2MwWQxMnXt2+xffxqjycDzb3dBdamkJWXwzKttUF3uXniq052EUYBpAAAgAElEQVS70rp3AzoOakFCTDJn9l6iQfsa2XqvuTJzXJDSbXwZFNo83wT/In4M//R5vHw98PL1oNvwtllzVi7Yy/J5u5ASXv/oGRq1rcqSubswmgz0f7UVv83dzo1zEUhd0rRlDcZ9nncj2J2bz3Hy6E1cTo17kQlcOn2LKXOeZ9qAL7F4Wvh007tMHPgtqck2TGYj784fQtUG5ShfpyyzXluEw+YiOS6VL9/+BdWlMeeNJTRoUx2fAp4UKu5PgULuZHezh5kOLz3NoPd60K/UCDSXRlpiGgkxSdy6GYum6dwOu09SYjoBgd507t+Y23FpbFp7GiEgPDwOp1NFUQTnz0byfP/GUDyI8+ci6ddnLl5eZmbNGUCRoAdevFL+BTAVMuGKdaEbBbF1PfC55cI7WiIAxam7e7plvv3OngnHbndhNBq4ejmaGrVL0bRTTUwWI6mJGcydvAanQ0UxOIm4fo9ajXNP61B1ndW+8dztVRSfNJ3vhuR9/YXiycKEJpQ0RXHbWYxB/skEWB5v4OeTz7+KlPIguT+HPTzma+Drx40RQgwAfvm9h1wu+8vhli84+Lh1nqRK7hwP3FgPb881yUBK2fKh/6/CHXvMbdxJ3KG8fPL5n0V1aUjd/TemOjV0XfJwzVidVlX54fQ0rp0K4+OB8wAQipIZMnsIKcHhRAeS7txnzVe3kVJy4cg1xn47NM/jp6fYUFUNv4AHVX2r5u9m48+HCAoOwGFzIqU7efxhg8me4UDX3TGi7yev4sqp2+7T0CXDPu6d7RiTf3yFPWtO0v65p6j+VHnu3LjHK40+QNd0gisWpXSFIjhsLkZ//SIh9cry8qf9OLvvMv3e6Ua5mg/CgF5+ngyf3p+k+DQ0VSMtKR2jycCty1HYM4UQb1+L5uqlKDavPI4QApPZSMHi/hjNJoSAkDqlszwgLpfKzvVn8PbxoGnbqgghKBbs746iJqYinC50Lyu/zd5IYkwyQhFsXrjb7S0DhCKyKvaadq/L9bMRhF2I5IX3ujO+1xeoNgcSt/I5gNlqZsGJqYRfvku5GiWzqjKrNa3E6V3ncThU5s7cip+/NwlJGZQvW5DRnWeSnJjOe18P4qVhLbFajJhMRsqFBDHlozVYzUYqV3hgUCz6bi9p8WmkJwq2bT3LCw+1OvG1Wtn95lBuxMVz+k4UM3YfJK2cCVtRnadiPLmlOtELmPnmNXdLnaGvtuLjCavwD/CiTQd3qFsIwVNt3B+rURHxrJi3i6DgQCrVzhmu/Z2Y1DSi7iViSlNJDTTiX8I/z7EAnUu8zpq7K6nsV5UyXn/es5vP/zYS/ps5TP8tAnHLCZzCXcB2H7DiLmRrAcQB4/9okXyl73zyeQwBQQUYu/BVdi09SI/XOuSayFyoeACFigfw0crRbPv5IG37N8kWVouJiKNZl1rsXHLAnaidbEMDVB0irsfkeeyrZyMY99zX6JrkrVn9aNG1DqlJGSyavhFN1bkflYjZw4ymanQZlD2/a/KyUSydvp6yNUqy/oe9WdWKkdfv5ThO3RaVqNuiEuAOFe5dfRxNdRuJEVejuHMpEqlLFk5cwdvfvUKzZxpi8vLAmIvMw5ZlR5j3wSoURaClpKEAz4zqiI+XGf8ifvQc3IyVCw9kPTJev3CH0H1XwNOTl97uQLcXHxgQ38/cytbVJwCB06EScz2KQ5tC6dAqhK1LjqBJkOl26ratxtm9F5FAtSYhtB7QnFXzd1OzcQXKVXWnSiqKwpDJz2at3WdkG5ZMW4d0uVjw3jLeXehOwvb08cjhcZy4bDQz3/6F3TsukZrmhNR4FOD+5WgyEtJRXRrL5+6kUbvqeGkav8zeQtV6ZZg2+RkmDV3I5EHfMWxCNzr3b0zy/VSELkGXoOWMGvhZrdQtUZwiupVCTc38dPIMpa1eTHm3G2azEcUgsqpLq9cqycqNb+T5/hn0Vkf6j2qHwag8Vr5DTbBTfGsKmq7jX6MgPtbH5wHWD2hE/YC8ZSnyyed/DSnlF0KIr3HnKjUBauAO310GBkopI55knXyDKZ9/FPHRSRzceJpqT1WgXC5ChLnRsncjWvb+4y+IBu1r0qB99pyu1MQ0RjT7EE3VsHpbKRVSjE5DW/H5OysQuiTsZhxvdp9NSkI6b8zuT9X6D0Qdj+68kBXm27D4IL9M30BacgZWTzOqS8dsNfLDvvdRDApePtkT1svXLEWft7sy/vl5qLpAKAKpamgOJ5qq5dBWAkhLzmB42+kk3k8FgwKajpe3BVe6AyklAUHuZOU3u84k/l4yiiJYePRD/B9qvrt12RFUl4YQoOuA08Xy2ZsQBgOp0fEkxCQzeFRbTGYDJpOBU3su43KqKALu3IjB5XBleXZio5NwOlQMRgNXQ2+zfuZ6pKoSdu42XoUKkB6TgpefJ636NqFs9VL4FfRBKArvdpqGpmr0GNw0z3vlW8ALg0FBdanudjOPwWA0ULdNdfbsueY2PAGTyYBPIW8yEtMwW4w07eiuavzli+24nCpXQsPZs+4ULqeK1CUHt56nc//GBAR4cSc8DpPZSPE8cvJCT91mwtjlIAQDBjfluYFNch2XF9cvR7H8xwOcOxNB+cpFmTy9LxZr3o3Yb1yOxmww4HDpeMRqf+pY+fwNkW6H+N+NzGr/HZk//xL5BlM+/yje6DSdxNhkFEVh4YkpBAb9sbjkv0NibAqqS8Npd+FyqszcOp5bl6MwGA3oThVd1bh80t0C6atxy/l293tZc5t3qsW6hftxuVQKFvTm8sHL6JqkWpMKtOvfjFpNK+LzSG5XxNUopJSUqlScC8dvoqkauiZRPK1oiSlcOnaDk7suUrRsYQqXCMDq8cBLdO1sJGnJGegOJyYfL0ZM6kHjLrU5tiUUp91Fh8Hu5sv3o5JQnSpmi4nlX+/gzo1YBr7dkUq1S+NtNYCUCEXBgMToacaZ6a1CwoWj1ylfPZghb7pFG8uUL8L0N5ai3rvP1gXbOb/rLG98M5Tf5u2kSp3S2DIc+Ph5UrZMIFJ1509Ju4OKFQtxOiKGjASV58uPRkrJ2O9f4cKBK8Rl9s37dfYmxi8emet9aTewGXdu3OPYtnPoEq6fjWDb8qMUKRnIs688nUMjrE2XWly/fo99Oy9Rr2FZvLwtrDx+BVE7iDohxek9vDXg1ri6fPo2JouRuk9XYdfuK0i7iz6vuHNNx07qwaJvdlO0uD8t2+ausHLpwh1UVUPTJKeO33pig0lKyZvrN7Hx0lX8YhwExDu4EBrBsUPXad66Sp7znmoWwqpSR4iKjOel11o/0bHyyeefSL7BlM8/isTYZFwOFbPVRGpiepbBtHvVcVZ+uY0WPevTb8yTKTA/CcEVi9L2+cbsWHkc/yJ+RIXdp1zVEnQd1JQ13+1BSB0pFMxWE2UeESUsU7kYy09PQdc0Lh69wdHNZwBBvZZVaNu7QY5j7V99nJnDvwfgjXkv0bJbHTb+fIiUxHSCCnkR5bAjdclv3+7i6rlIREYGfgFeFCxfjBGf9CWkdikUKUHXkS4XGRlODCYj7Qa6w2SqS+XErgs07lCD62fDqVS/HNuWHcVhd3HmwFU+XjiEUxtPIQFhNtKyfzMsHmZcTpXdvx7Hr6A3TR9JbG/WsQZlKhTmlfrv4bQ5uX3pDh/0n0tKQjrHt5+j36j2HNl6ls8X70UxKkhdElg8AL+CPhjNBnRdomVqEG1YsIser7Zl20/7EECd1jklLDJSbXzQZw7Rt+7TqGs94mJTib6bxOXQL7A53EZgoaIFaNmjLuCWGji6ORSz1czwMe15NVOde+v+S4gz17A7dCIT07PW/2jRMK6fi6REuUK8+sL3OIWCydeT9cuPYfW2ULlWKcZN7vnY90zbjjXYvuUcqSk2XhiSs7z/1JnbTP5kHQUKeDJnej8CM1urhCclse3mTaRRkFTFgv9FBxI450pg24YdvNKkPiUDcj4gePlYmZeHLlQ+/0z0x+dZ/2P5w+a7/0vkN9/N59/l8OYzLJ2xkcadatF/bFcAtxRA6dFoqo7JYuTbfRMp9hg9qT+Dpmq822Mm5w5dA5OJhu1q8OGSEQBcOHKdmxfuEBwSRGpiBo071nys2OOtS3fJSLVRpUG5XHNSPh+5kG0/HwCgZvNKjJw5kJKZSt32dAdHtpyhdOXijOw4Ez09A5me4Z5oNlOyfkW+2/UuU4d9z6FNZxAIdE3DZFCYvu4tipUpxLC677qTq61m/IMLMXXlKF7vNBPNpSE1nfLlAnDZnETfvo9mtqBLUAwKHQc0YeS0vnnm0UgpmfrCXA6tP0mb/s04uO08tjQHQlVRNA2XwwUWM4rFhHQ4kC4N/6L+NO5SG1uag0PrTqCpOm99O5RWfRsTfvkOmqpj9fEgPcVG+erBWcfe9vN+5r29FIfNScESgaSmOjP1k9z7jYqgZfc6vD6jH2aLiWUzN7J81kaQMHLWANr1d4f5HE4X/d/8kXt3EvGKc/DhlN481bJSttf1fJc5xMWmgJQoaXaMZgOjZ/SlfoNyFCiQsz/jw+i6TlxMCoGFfHKET0eM+ZlLV6IwGhWGvdiCPs82ICHDhqprdP9pKSk2OxY7jPSrQuH6xZiwZzcOl0r5QoFsHP7faaqaz3+O/3bzXa8KRWWlL1/6rxzrdKep/9XX9u+S72HK5x9F4061adwpe9GnYlDwC/QmLcmGYlTwyaXZ8L/KjqUHuXjoKtKpogDBFYM4ueM84VejKFGxGAazkZDapXPkIOVGYlwaoYeu4VfIlxJlC+fY32NEW45vP0daYjqXjt3gtWaT+HLfJEpXKYHVy8LTvdxabV0HNWPdNzvceU26RDEaKBDoA8DwKb1JS8rg8skwbEkOHMCRLaFUql2ajEwlcelwkp5io3RIUV4c24kfPlqNSdOo8lQFhnzUh9Xf7mLp51vApaFrOmarKZuxpGk6R/ddwdfPk+p13VVx7//sbsPx47R1uBwaCPD19yIx2h1eMygC34I+JN52G3lJMUnsXHUSxWCg11vd6PlKa3z83eHJUpVLcOHYDd7oMQchoN/o9vR9vT3g1vUCtx5V7ZaVKVqhGL98uT0ryV13udi3+jhe3haGT+3L7Ut3cNpcCEUQeTX6wb2w2Ym9HYN3pDv/af+OC1RuWJrLUbHUCC6Kp9nEJ3P6MXvmZq4eugG6TkaAD59/sR1fHyvLlo3Ifk1Una8/38qN6/d47Y0O/PzNbs4cD6NYcADzfhmO6aGqy/p1yxB2KxYJVKlcjE2XrzJ20zYUIZj/THcUBWoWdZ/DifA7j/UVnDwfzrylB6hbNZgRA5r/f22GnU8+/9cIId7MZXMycEpKGZrLvmzkG0z5/KWRUvLTjE0c3nqO58d0oEW3J9MycjpcnDt4jeCKQRQJDuSLreM5uu0cNRpXyPri/U9gMBowGBR0g0KFmiVp2KYaE3rOQtUl0mLBZDZyeMtZpi5/fN+uexHxfDj0e5wOF9tXHGXk1N64HCotutXJaiBbpmowy67PYWDlN4mNjMfqZSHyWjSlq5RASklGig1PXw9e/bgXL73fjeUzNhAVdp8ydcrSOTNPxtvPi8sX7mJzaGAxYzAoNO1WlyIlAvAu4IXLoRJYshAvT+uHlJJnX21DnWYhxN6Jo1rjECweZmo1q8RPs7eAEPgV9GbQuK7ZXssPc7az+bcTSAnjP+1No4c8MxmpdlS7E6lpJNnsoEtMFhOTVoyiylMVGN5wAnF34vEJ8CbFriNcOpuXHKLfm52yHePSiTA0VUNTdfauPUWvEW0xGBRC6pbli70fcD8ynjqt3eX3Ny7c5dS+y4TULMnlo9fQVJ2YyHiObT9H3zc7ExUWi8XDTIPnG3L4ejgNygZjNhiwl/XEGuVAIGjzbF26fP4jSWk2LC7B5jcGEX4rjhRfneRKXlhjnRgMCna7C6dTxeXSMD/kTdyw6QzbNp/F5dSY9uEaoq/Huu/73USi7yRSsswDj+fgAU1o1KAcPj5WihfzZ9bK1Tg1d7L2schI3mzeBE3TOXPwKkWL+fNeu5ZciI7h5cb12LjzPF/9sJsKZQoza1IvJs7ZRHKqjdt3E2havxw1Kz3cgCGffyKS/ynhyv809TJ/NmT+3gU4BwwXQvwqpfzscZPzDaZ8/tJEXLvH6gV7cNpdzBz9M8271n6ip+QPB87j4tEwhALzD06icIkAugzOu3/Wk/B7YvfDffJa92tMamIa8dFJ9H2rCxcOX0MIgaZpKOAul7+TkPeiv6/tcKFrOkhITkhjxpglIASRYbEMeiu7sfD6nEHMeW0hwZWKUS9Tk+eTAV9zcO0JKtUrx6xdE/h+8ip2/HIIKaHvW52zksel1NEyG8diMGAwCqa+MJcyVYoz/+RUdE0yb8JKZoz8kRVfbmP6qtFIYPrQ73DanIz97mXSM1TAPT89zZnVnuV3bl2PwW5zYTAqRN66n81gOrvzHFJ1AQKZKaZpMCikJ6bj5ePB4gsziI2Ix2A2MLj+B+i6xJ7h4PLJMGo0fqD4/fQz9dm4+AD3o5K4cy2a58qNxmlzUuWp8kxePprSlYtnXdeuAxrx2ie98PC2MnfcMlIS0jh78Cpn9l0ioGgB5u2ZyJ3UNPp+/QtCCFpVKctHPdow+dk2XG2fTKuKZRACkjJsaApkmHVmTVnHmTORSAHGwgbuP+1LfWcAjlvp9OndMJuxFB6VwBcr9mFwaSiKoHARP4oXK8DpA9cpXa4wxYOzV9MJIagUUjTr9wF1anIs4g5GRaFjJfc1+HL8CvZvCkVKyexVo+nT2Z3PNeKnJWTYnFwLi+HwyTDkfRuWDBfSD/x9/3Oe1Xzy+R+lBFBHSpkGIISYBGzCLbJ9CniswfTH7eLzyed/GK/M8JnJYiQwyO+JjKW7t2I5cyQMhy7RJLlqE/1ZIq7do1/18TxXbRxr5u/i9K4LrP52F6PaT8e3iD8vf/IcvgHe1G1TjXI1gylctACVapfC19+THkNaZFtLSsn3k37j9VZTOLPvMvci4klLtlGydEHQ3PlCLoeKy+5i+5KcwrQN2tekRpuaXAy9y6iOM0hNTufA6uNIXXLzXDhRYbGc3X8Fe4YTkFwLDc+aa7GamTh/CL4BXhhNBlxJaUTduMfxbefYvfwwPgFe7F93Gk3TibgaTb9q4xjTbhq2dAeqLlkzb8eDEnYps0Q/H2bYWx0oVa4w1WqXouMzdbPti42MQ6oaCIHRw4LRZMBoNlK1cQipieks+mAlRzaeJjCoALVbVMbqacZoMhJcISjbOoWK+TPonS5YTAquNBupiek4bE7OHbzKkU1nssZN6D6Dyb0/Z2itcdjTHbw990UGv98DTdWwZziJuhnLiI4zuHo3FgHYnC7O3I5iWJ95fPv+Bq4uucDEV39h3NCfCVatCFVSIMyBIhR3bbYuMafpNK9djjkT+7J82UieeSZ7ysatu/HgYcJWxIKhuBd+nYqxJjiOmL6BvPNlHzasOM78mVtISkgnN1qXL8ep0a9yYtRwKhd2e6IunryVeX8h7HJU1thaVYPx9hZ4W9KY+/WOrFY9/sJEyWK5yxzk80/D3Xz3v/Hzf0BhHmq6C7iAIlJK2yPbcyXfw5TPX5oFH/yKVFWEEHzwfd6K2Q+zb92ZTLF9gdXHgxpNKv7RlD/k2I7zOOxOVKfKgjd/xGQx4nRJhLcXc95cStPOtbF6mlk7dxvXToahS0l8Yga6Jvl+8ira9GmIh5e7h9fFo9fZ8MMeHBlOPnlpPqrRBAjqNQ8h8moUTqeK1DVAkBAem+NcpJTsX3caKSX37yZy77Y7/HTuwBWKli2MVwFPug59mh8mryKoVEGadMme01X/6cosOjyJvWtPcXTdcUL3XASgSOlC3Ll+D6Fr6EJBU91hIFXXERYLAkhItNGyR112rTrBtdBwhk7snuP8ylQowvxVuYcgx373Cosm/Uqd1tUYPv15YiLi8Av0wcPbypT+X3FkwykUg8LGnw8RXK0k7303lPLVg7NpQQFEXI3Gnm6nbJXi3Dx7G6fdha5qIKHkQ96ZqyfCsGc4sHpZuHP9Hv5F/ChevggBhX2JDo8Ds4nYu0nUKlKEqiWKcDM2gZcb1uGn9ZtxOVXCwmIxephRXRrlog18OLQzQihUqlmCF3t+RXKyjT5ta/Nq9855vncaVi9FCdXA/TSV195pz7Qbx3BoGopJYem2Exz56hiqS+NOeBwffzUw1zU8TNl1ll75oCez3/6FYmUK0fihhtcT32xC9L33GTu+G/cT3HPMZgN165TO8/zyyedvxFLgmBBiXebvXYFfhBBewKU/mpxvMOXzl+bM/iu47C6sXhbi7yVTtuof52DUbh7Cirk7kFIyaFyXbJVpifdTUQwiWyuSJ6FijWCQIKSOwWjAkeEEITCbjRitJhZMWUuH557Cnu5A6tItgPh7geojlaoFCvmClJgsRqy+nqSmu3Dandy9HcdvN2bRq9I7OO1OhACLX87zFELw9DP12Lf2FEWCAygVUpRJK8dw60IkqqbzYoMPcNpdGC0mkpLtWDKFIqWUnNx5HoPRQO2WVeg0oAlt+zRk78ojBAQVoG6b6pzZewld0wAdiUAYFHeFWaZnLy7a3aJk6rLc9Y8ehy3dQUJiBsNnD8pSHg8q9SB3x2FzoukSTde4GxbDvagkFCRvf5HdiIiLSmRU6ylICUVLF+KZMZ1ZOXcnaDoiPZV7t+9z5/o96rSqxktT+vLj5F+p8lQFHC6NxPupnNh+loQ78WA0IsxmWnarTbFi/ix+pQ/grmA7V+8SJw9fp3RQAe7cisPgZabX842o3ywk6zx+3fkOUkrsNhcpSRn45lEZd3jnJVIu30dxaRxdHcrQl+ryyd59FLBaqeThz5HMe6O5cm2DlSv1n67MslMf59iuaaEYDHaKFEkiOcULsPL68NZ07FDjidfO5+/PX6h4/k8hpfxYCLEVaJy5aXhmmzaAvJsoZpJvMOXzl0NKyYF1p0hOSKPfmI78OG0dpUOKUr1R7s1FH6VyndIsOvQBDpuToqUKZm0/tPUc01/7CSEEHy0eRs1HmpVePn2bGW8soXjpQrw3bzAeXg9aSKz4bD1aUgoGk4ESFYty73Ys1gLeSIORNKfGlqWH2bL0MB/9MIQOiek4HS4ada3H4S1nadPnqSzvEkCJ8kF8vHIMn7++iPioeHxLFMFuNvLiu10xW828M28wnw77AcWoEJLpGZBSMvv1nzi8+Qw9hrXi7a8GMezDXngX8CQjxcYrTSeTmphOcEgxnHYXUkpcdidpQGpSBoFBfqz+ehs/fbwKCYyYOYAOL7TAZDbSdsCDtis3zkciFCWzX5tEahomiwnfgj447Cq9R7ZFCMHqb3Zw8dgN+o/t+kRGLMBno3/m9IGrCCH4cOHLOa6/b0EfhMF9bKlq6HYnRzadYXJiGp+tftAiJP5eEhK3gRVxLZrwr9zCvhLQUJg6aC5Gs4lCwYG0fLYhOoKrF+4wZfgiTCYjr07qDgJMqosGTSrz9uzsn6OKojDlywGcPXqDSa/8iG53UdDPgzbtc+o+3b4Zy5iXFqKqGqPf60K7LrUecwUkSBhctw79atbAbDAQnpBIclUrWrKTZsPqP9F1fBwWc30UJYDRr23m7LlXqFypH1UqFfvjifnk8/fhNHCXTPtHCFEyvzVKPn9b9q05weejf0JKSaveDVkf/uWfXiOgsG+ObXvXnsLpcIGqsuu3Y9m+sHVd591+c3E4VKLD49m1+gRdBj5ovWE0GxFCoCiCvm934+DmUA79nitjNCKsFqTNzsTeX1C+ZklmbRmPyWLkqQ7uViqLZ23myPYL9B/Vjmada+GyO0m8l4TT5sIWm8CqiAfNuJt2qsXcXe9y+0o0DdtmNloNi2X/2pM4HS6Wzd5C3zc64pcpaHgt9DYZaXZcTpWosBgsnmbsyRmgu9urePm4jbWb5yJw2NzG1Fdjl5Gc7KDv6+2yXaPgCkGYzEacDhdCQvsBTanWqAJNu9YhPTmDM3svcWjjaRZPW4cjw8nNc5H8eHrqE92T+1HuVigWDxPxsSk59sdExKFrOopBcYdUFQFScvHYDVSXhtHk1iuqWLs07fs35ciWUOIT3K8TIRBSYrYY0FWBPcPJ3Rv3WPLpOqQucdic4O2N8PGgWPkgxs5/mZjIeDoOyrsQwLeAF1KCwajgF5B7ZeXxg9dxOlV0TWfLmtO5GkwtO9YgLiaZ+9HJ9H+1FQAWo/ujefO160RVNqJLA0uuXaBjnbwVu3ND1XUkEpPivjaK4kfRIkeQMoPyZX3+1Fr5/HP4u1bJCSFeByYBMYA7r8H9LPVELtb8pO98/nIkxqag6zouh4v46KQnmmNLszGu3ccMKDuC07vO5TqmywtNIS0NmZbG/mUHCN17kcMbTqGpGunJNhwZDrevWkp8H5EeeHvByzwzqgNDpjxHi94NKV3FXYUlpURoKrhc4HT3hbtzI4aVn2+ma+BQ+lccQ+jBq6z5fh/h1+7x2ZtLkVJSukpxFIOC1dNCtcY5PWelQorRontdrJ5uL1dgUAE8faxYvSwElQrkfmQ8O5YdZlTrKdy9cQ//wr4IBYqVDERxOSGzDN1pd3HtzG1cTpUB73aneIUghNGAphhY/NlG9EeStp/qUJOSFYIQEkxmA/XbVKNN30YYjAZebTSRL0f/yOzh37v1nRSB2SPvHmaP8ubMflSuW5oWXevQrFPNHPtHzhxIuRolKVqmMKbfG/8Kga5JUpMeJEQLIRgxvR/exQKRJiMYDaCqoKpIs4UWzzbEr5AvPUa0I6ReWaxeFqxeFjx9PajdLISMxFQWTljOpcNXMVlynr/N5WLMsrWM/341/d9px6A32jPlhyE4nSqzZm/h+a6fM/nNZaSm2GjUIgSr1YTRaKBr79w9RAaDQt8hLXhtQjf8Ax+EWK/djyMhPQOTomAxGmlfMef7YMPyo7zYeTY/fAnYZUAAACAASURBVLGN30WIpZTMCt1H19Xf0/z1j2n+3hSOxd5+6PoYUJR8YymffySjgRApZVUpZQ0pZXUp5RPHo/M9TPn85eg4sBnXz4aTdD+FkdOfz3PcrQsRbF24m/odahN3J57z+y/hcqqMbz+Fb0/PoGyNUtnG12xcAQV35Zzq1JjQYxYGo0KhSsHE3UvB19dKckI6VeuXo1lnt6fg0NazrJ6/h1bP1KPHax2wWE0oikL/sV1IS0xnx5L9BFcsRvSdJFIdTmSmh2TVl1tQXRopCWlcOXYDoQjMFhNmi5Hn635Am171+eHUVO7eiKFyg3I5XlvU7ftcOXWL+q2r4VPAE6uXhfmHJrFtyUF+mrSSV+q/h24woms6YecjWXJpBvtWneCHD1bitLsgs1eaLiXvPvs5JpOBIkX9SIxJwrNwAKqqUSDQB6fdlWWU/Y6Hp8XdL04INJfb8HJkOEhLynBrH5k0Rn89hMgb9+g6pGWu98aebsdkNWdpSAGUrVKc2atG53k/y1QLpsOLLZk7+kf3M6GHFcVspEylYjmSvqWURFyPAUlmjpo7BCmAeu1qcGDDaTYvPkCPV1oz9KM+lKpUDJ/MvLVBVd7k3q37xEcncXTjaZo9k70NzdLQUI4vPo1uECzcvIHFe95nzqbDnDoShuN8HCJDJeFuEr98t49X3urAiu1vo7o0PL2yX8f45HRUVadIYE7jJclmp/dPy1F1HS+zmV/696F8wcBsY+7dSWDulA1ICb9+t58GzStRvXYp1l+8yC8/ncTzcjresTrSAN8G7aDhmJfzvLb55PM77mfCv6eHCYjELVT5L5FvMOXzl8PqZeGdb4Y8doyUkrdaTiI1IY21X20BcOsYAVKXbP5uJyO+eJHUhDR8A32y5AiGfNSbpZ+up2iZQoRfiMRuc3Lndjxk2LADZauVYNZ6t1is6tL4dMRiVJfG1dBwvp34GwajgRmrRxNxPQazrxcLTkzlxXoTUFWJNBpRzAJ7ig3N6U4KVwwKT3WoSaOudTm57zKLpm1E13TW/rCPnkNaUK1xzgq+pLhUXmszDalLChbz57uDHwDgG+BNemKaO6woQfE0YDAZMFlMWD0tFC4RgFAERrMRr8IFSElxoEsJqoqaaiMyNR1N1Qnw9kQVCsmJ6UwbsZgPfxyGpmooBoWYiHgibsYgFIXmPerRtLtbFsC7gBcvTu7FhgW76PhiS9r1z7th7MpZG1j0wUoCggow79hUNn6/m5Wfb6b201WZuPS1bEbU7yTGpjB7zE+E7jiblWDu5WHk7fkv07BjzjCXEIKh73dj+Vc7qN+qCh2fe4ptSw9Ro3FFDm0KxeXS0FWdyydvMXjiM1w/G8HFk2HUb12NUpVLkBCTgoagUHBgjrXDo5NIruGHFALNz8SUxds5ePsu5lQNb8AACEXg5+9O8jabjdl0l65cuMPsTzdwwZaErYSFD59pR7cW1bIdI9XhQNN19BQXXkdSmLjzJz6c0ZeKD+UbqepDHb8kWcdYtSoUw32JKVUgDQpInWo+Rcknn3wIA/YKITbxkIyAlHL2k0zON5jy+dvicrhDYL8bSg+zcf4O9q44RGpiOpWfqsDsfR+hKArPvt6RZ1/vSEaqjQ/7fsG9W7GkSwNpGe62IPfvJmatoRgEHl4W0lPt6JmJyJqqMfv1H4m8EYMrJZ11X27GYDGhapo7YVlRwGpGmE0IlxNPXy/Gdf0MTddJS3FgLeCN4mnG6mHG288Te4aDBe+vIDE2hdKVilGrZRV8A33QdR2HzUV0+P3MprgXKVTMn9b9mrBy5gY0VUdRnXQc3IauL7fG6mnhqU61eGveEOKiEjFYLSyavhFd01B1DWk0oNndQpGFSxYkPDwRh83Jvch4fv12F4umbyK4fGGata1KWpINiSD04HUWfrSGAWO7YPWy0HtMJ3qP6cS5Q9eY994KWvduSEjt0jmu/Zqvt6JrOinxqZzZcyErj+jMnotcOnqDsKvRlK1SnOpPlUdKSWJsCounr+fEtrNIhzOzKg96jepA4y55K7v3fKkFPV96oHFVsWZJBtR6F3uGE2E0EljIkxcn9uTc4Wt80H8uUtMpHORLsx71OXP8FgZF4dd5O5m4KLuHr1KhQu57KSWap5Gom/cxpThw+pmxBXtQ3G6kQf2y9H4hd6Px43dWEhebgpcCtkIGFu0/mcNgCi7gx5jmjVm18BBauk58WipLf9jPhzOeY++VMNaeuUSf+tV5eVxnNq04RuvutQmp6g4De1ktWNJ0FASYDJQoWZDRL3TM8zrlk8+j/B9pJP03iMj8MWf+/CnyDaZ8/pYIIZi2dQK/zlrPpSPXsKfZsac/0CXTVI3kuFQArh6/QdydeAqXdJewpyams2/tSQZ/1IfK9cqSkpjG56N+4s71e7wypU/WGoqiMGf9mxzcHAoIFk1dh67p3Dx+zZ1krCg40u30Gvo0m5cfw65K95e9wYBwOJHCQGJssjspORN7SjoTfxpM1QblMFtNrJizmR3LDuNyqBzZHMrquduZvfM9QuqUIfxKFC++352vxi1n/9qTSF0y9ddRFC1TiDvXojEaTDRsX4NSmV4JIQTNe7rzaKSUFC9bGE3TqFgjmHe6zSLiahQmk4GWzzYg7FoM4VejGflJbyYOXoCUkti7iXj4emAyG1CdkHAviXXf7UFKSd9R7Tm29SwlQ4oxsf9cnHYX25cf4dcrM3M0FK5YvzxH15/E6VC5Gx5HpXpluXXxDhYPMz9MW0/Y5SgUIZi5dgw/TttA6MFreHqaQH9Q62z1tNDppaeJiYznxoU7BBbxI7CIH4WK++f5nrCnO0hPsaGpbumHefsnkZqQyty3fsaRmoFudxKRkMKKG/cweHngsDm5fPwGKfFp+D6UW9SrXjV+2XCcqMQUAs6lkxEXS4CAtBB/rBYvYl1Otp+8zsCENIIK+2U7h9W/HCE1xcbvriHdKChstpIbQxvWo6rTh08mrEIIQa16ZUjKsDFm2Uacmsbeq2EcfX8EzwxsnDVn1/kbnIyLxmIW6FbB/TpmHAGCJJeDgqZ8Je98/tlIKT/8d+bnG0z5/G2p1qQS1ZpUwpZu52bobT7o/impuagl+xX2I7D4A5XjCc9/za1Ld1EUwRdbx7t1jH4ekbU/LTmDRdM2YDIbGfxuV/qMbEvi/VR+/HQD2v14AITRgGJQMJoMNOtej67D2vBym09RXZo7SUBRwKAgNIF8yAFWq1kITTs/CDF5+Xo8UC+XEgT8MmsLV07dQgiBxcPMjbMR2DOcmK0mwq9GM3HZaBZ9sJKKdctSr23u+Yy6LqnbslLW2v3e6sSskYvwDfShSdfa9Cz+IBTVqF119q4/jcls5OlnGtCie11+mbmJncuPZo0Z3eJD4qMTEUKge7gNAKnJTPkBN+kpNmxpdopVCkbZdw0JhF+LYfqmcVw7dYtSlYrxWscZuOxuz+Cy2Zs5ve8yUkJamobJYkSaDBQvV5gPl41Cl/Bq2+k4HU40p4bJZGDs14No9ogQ5+/4+Hsx+N3ubFq8n04vNMMv0JvhdceREJPkzonKrEwTQMVapbi4/xKpMS5erPUOn++aSMmK7rCWxWRkev9OTJi4Ck2VqG6FBfxup6NV9saVuYp4pO3t3Yh4Fs3djdOpghDEVbNiTtS4ExrGnefiKVEqZ/ivUbMQvvx+CA6Hi8rVSpBis/8ekcQgHj0CXL17H5ui4vLXEWU8sBUCh+LgyyNH+Kh161yvSz75PMrfTYdJCDFHSjlGCLEB9197NqSU3Z5knXyDKZ+/PR5eVqo1qcTn+z/my5HfcePMbQxGA+nJGRhMBvqO7Y7BYMgaH3c3EZdDxeppJiE2mVIh2fM/fvx0A9uWH0VRBF5+Hgx8qxP+hXzoNbING77ZgZdFYcTMAfgE+hBQxI/i5d1tO979+gV2rz6Jf4AX25YdwQVYfT2wx6cgdZ2GnerwwZLsgo8dB7VACIWb5yMIvxhJnVbVuHr+Di6HC4PJSPy9JF6d2odZry8mqFRBWvSoh6e3lQ9XvZXn9di57BCzhn+PxceTDi+2YND4brTq/RQN29fknWfnMLj+JAaO7Uy/N9xhnDHT+9JzaEv8ArzwL+hOUH5lSh98/b1xqRqnD14j6mYMABYPM0Mm9ODiiVt0Htwcc2ablMhr0Yxq8wmqU6PX6A6UrFQMl0Ol/5udMFtMWblaA9/uyKwxS5ASDm85h/uzTbiNL5dKt+FtGPJhbwxGA1fO3EbXJZpTA13H5dD5bMQirB5m7DYndVtWxtM7u/em18i29BrZNut3h83hFhxVBAaLO0n+hQk9afVcYwZVG4vT7sJpdzG6/af8dGZqVs+9alVLsHb1aG5djmL8wG9JdmgUrRjEmI97snXXRZo0LE+RR6QrPDwtCEUgFIFqBGdBEzJNR1FceHlnTwh/mLIVimT939fDyneDnmHrhWt0rVUZiyn7R3ivRtVZsmAX3uFOEqtYMBbxAilRo3Nvq/JnkFJy7OgN7DYXzVtWRlH+tmGbfP5+/Jz578x/Z5F8gymfvx1pSel8/+5STBYTQ6Y+n1XlVapKMLP2fMSgiq8TfTMGg1Gh1xtd6Tayfbb54755ie8+XE3VhuWomUvbFJPVhKIIhCBbMu9L47vy0viueZ5X+SrF+HzoCdKTbdRsVQ2LnzfeXmb2rTqGEIIaTUNyJDwbDAqdX8zeay46PI4v3lqKX0FvOg1sioeXlUXHP0Z1aZw9fI0SZQtTJJdk5d9ZMnUNuqJgd+ms+34vqlPntenPcS00nKiw+0gp+XXejiyDKS3ZxuRB87l/N4HB47vSe0QbLB5mBk/owfVzEWxaegS8PMFmp9PQp+k+rDU9Xsn+ZXp67yVUl4bLqXJ0cyjzD0zK9dyKlCwIuK8tAqTdCeL/sXeegVFVXdu+9vR0QkJJKCGBAKH33otSBURQEBUEVBABFbGgUhQVRLEgRRCRphSR3ot0kBICJJCEkEp6L5Np5+zvx4QABhR93vLpm+sPTObsvU/ODJx19lrrvp3XRFEUNAK0uhK9paY16dSvKWcPXqUwu6A08Plg/Aq0Wg3VAiuzaP+bD7wOAB/88gYbPt1Bi16N8PDxJKhxDQIb1gBg8ITebP5qD+h0TumCnKLSgOk2gSH+dBvZkZ0/nyc1rYCLp2IorKVj+YHTfPrGRvz8vfl46bN4erlS0dedT5c+x77DV1gTdx2jXkOboCq89krne+QE7qbYYuP9j7aRmJTNm1P70rxJTVoFVqdV4P3FQCt5uuGeI9Eo4B1uxUNqsOeYCY9N4WJAPVrcpUT+Vzmw9wpfLtyLAOJiMxj9Ow/Ecv49/Nu65KSUF0r+PPqfzFMeMJXzr+O7d9azb+VhhEbgXsGV52Y9ec/7DpsDKSVavZZ2A1tyfPMZMhKz6P9ib1xLvOW+3v/WA+d/bvoA3DxcMBh1DBnf/Z73UuMzuBWTRtPO9dGVPP2bCy18NG45Ny/HUZhrRlVUEiMSWRv5BTaLnVr1/TGY9GUCowfhF+DL+PcG8/3szfyyaB8jpj+GEIK5L67k0olIABYfeOseFfO7CW5Zm5SkC84X8k5xfGCDahhMOlRVpXXPhqXHh52MIi+rAFWVbPn2CMMm9ip9r0ZwVSpW9iRTUWg9pDUvzR91z1oZt7JR7Art+jZj3fydqIqZxyf25tjW81iKbfQc1rY0AAJo0CqIdo80IuxkNAOe68TWxQew2xSEEAQ0qsnw1waUHqvRaHjh/cGMeWsgEediWPTWT3j5eJCWlIPFbCM+KsWpg/UHhswNO9Rjzi/1sJitWIttePl48NueUDKTc3juvccJaFSTjV/vo9vg1vgHVr7vHHa7o1QDKSwhmQPJGfgczMFQoJJgzeDEoQgeGdicuRNXEXEhjvEzHmPr02PILiqmUfUqZc7v4LlI5v38Kw1qVeWRoEDCriZitTpYuPgAq5f+cXeoEIJp7wzii7c2o6JCeC5uOTaEi5687MIHjpNSciJjOTEFJ2nrO4oQr95ljklKysJhV1BVlcQEZ+o5L7uI0BNRNGwVSCX/Cn94buWU87+FEOIK90nF3eZhtZjKA6Zy/nUYTHpn6kM4tY1+z4c73mL9x7/QpEsIuWl5LBi7BMWhcHb3RTx93Gn/WGt6P/Pg4MXkYmDUa2W7jpJvpjGh/XsAtOzVmPfXvQLA4U1nuXIqCkuBGRTVmSKxKaXn+sQrj5aZC5yyBVmpuVSq5o2mRDcp/totXD1cmDPyK1LjMrh8/BohberQvHtDrl+Mw2K2YXI1kBCd+sCA6fVvnichOo3EmHQatKnNuFlDObYzlBVzt9O0awOenNiTwBLhTYAGrQJLghpJXnIm5/aH0fqRpqXXYtmRd8hOz6fy7wquQ4+E8/6whQBM+XoM668vQLErHN50lkXTVwGQGJ3C2PeHlo7RajXM/P7F0tcGvZZNX+9HoxFMXzYez7s8/rYvO8iSN9Y61b9dTbyy8BmWzd6GrUQgVArBztUnGPjcHWuX+3ErJo1Xun+IzWLjkRHtOfDDr0gJV09GMmbOkyRGpVC9dmV2LD9MQWY+fcd2x7ukmFtKSVxeAVa9wM+vAm37N+DQgWPYKukxWexO6YdKHlz5LYZLp6KxmG0sm7OVTUPnUq2iV5lzyc0q5K1vd+Iwajhx5SYtqjnTuSaTnuDa9w/YbiOlRLXsY9neqyhWBxpVIr0N2EwaendtSud+D7ZlybbFczlnGw5p5WDKAup79ioTyA0d1pbr11IoLrYx9sXuqKrKKwMXkp9bhFQlo17rw+NjOt8TAP9VIq+nsGnjWeqE+DHs8db3lZgop5y/we0nrds1D7dTdKP4g0Dq95QHTOX86xjz4QjcvFwxmAwMfbWsS3xg4wBmrJ8KwN6Vh50BjN3BlePXUBWVs7tDCWlXl0rVfXhzwHxiriQw7oPhDHrxzs5KYW4Ru787gn/tKnQa7Ow8i4u4BTi7sa6djQYgPSGT6HM3UB0KBlcjdrsdrU5LUKMaf/g72KwOXn50HqmJWTTrWJcPVr/E5i9388OszQgh8PB1B1ViK7LhcDiDr/Ezh7D0vc3UaVyD5p3un3r57cAVwk5GMXrGIMJ+DcfLxwNXdyNfz9hEYV4xBXlm+o3qWBqgSSlZ/fE2LHkFyCILqsXKj/O2lgZM4BSGrFK9Ypm1zu0Pc4pkAkve+YkFk9fgV8ObVr0aOXcqFIW0kp2KBzFq+kA6P9YSD283Kla5N8DYufxQqWSEanfw08I9KA7VmcIToCgqUZfi4U8CpvOHrmK32XHYFc7suYRUJTaLndS4DN5/6mvirt9yzllSdH9442lWhM4DIDO7kLCIWzg8DSQVF+PIddCrSi14VCFqTTiKxcHHb27i46XPIoTA5GqgTuPqZKflcXDzOYKb1qR5pztp3/iYdPRFCg4tqELQvkUQHRrUIiUtjw53CZg6FJW45CyqVaqAS0mdmMO8BnveJ8RnjcKn5B7g6mZk7MdP8njLRtyMSqUov5jajaux5mQorgY9I9o3Q6fV4KKtgECDThhx01VECEFRgYUb11Oo16gaJhcDXhVcmf/5HaFYm9VOVnoequJca83XBzC6GHhsVAfiYzP4dM42Kvq6M3hIS5ITsujev1mpDc/9kFIy7bV1mM02jhyO4PTVWN57ayC+Lve3nSnnvweJ+Dem5OIBhBC9pZR3d4W8KYS4CDw4pXAX5QFTOf86TK5Gnp05/M8PBHqO6kzUxZukxaYTcSaKwpwikBKdXsvlE9eJu3YLu9XBmo+24unjTnzELQa91IsF45Zx6WgEWp0WV08XDCYDN68mUq12FeIikqhVvxqKQ+H1Xh+QlZyDRit48fPRVKrqRfLNdB599sEeZbdupDK938dkm50yBOePXENxKJzafgGbxRlw3X4mElpB3NVEWvduQo8hregxpNUD502ISmHu+BXYLHZ+XnwAWViEwajHvYIbAXX9iLmaBBL87qp/SonL4NCmMzisDtDr0bi6cuNmLuG/xSAdDuq1ql1GNuA2jzzThX1rTmAttmI2O8BmIyUmjRhfD3wruZN6M43o36KxmK1l1MTvJuAB5rADxvdk8bQ1zk48jYa2vRtzfO9VCvOcZsImFwNPTX7kvmPvpnXvxqz+aBuqKhk6pR+ntpzBYrYy9ZuxzHz6G6QqEVoJBj1Sq+VWpoWU+Ey2rPiV8HM38fN2IdVsxcPLxOItJ3BIiS7Lilux3fldUgXFxXaW7H2D+OhUmnUIZsrAz0m8kYZOp+XLHa+VNhaENKtJB30FzqZkI7Ra9u++wqTxPQiufafwO+zcTWbP/JlcvcQjwJuf5o/GxaRHKgkIYWPYY+FsNdenmtaNJV88T6UqFbh4+gazp6xDCKjcrjq/eRShEc5d2OGtGnNwRzRBPq9So7mNIPf22Kx2Xhi6iKICC5WqerLs50mlQfRtDEY9495+jB8+243VroDQYCl2BsjffL6XqOsp6ARc3BeOViv4dVcYC9a8yB9xuztLAufDE2m9ejEdNdVYPXZEeZF5Of8VCCFERynlyZIXHfgLFnHlAVM5/6fRG/RMXjQOgLjwRPasOEirR5tRtVZlwk5GYrMraI06qtfz49NJPyClc5dGoyg4bApanY7E68msnP0zDrsDFAeK1UH4qesc3XyGgpxCFIeCTm+gYZvaaA16AhrWwM3rwZo4P87bRmZKLkJowNUFdw8TWp2WkW8NYs6TX+Lu7UabR5uxb80xpATf6g8u8L4bm8VeWmsDgHQ+1TvsCh+sGs/5X68TGOJPlRoV+XnpYfb+dJq+T3fAzcMFi86GKrTY7QoOu4O3Bi1Aozio06wWn+2fUTrllqUHWfXBL4S0qc2HGyazNnIhz7V8h/yc4tJjLGYbWbecO0vZqbncuBRHow4PLkZOjc9Eo9VQ+Xe7WI+92ItuT7Tl1N5LuLq70K5PU5p0qkeVGj4c3PQbR7Ze4NDmczz7RtldxrvxD6zMj5GfYbfYmTH0c+IikhFC4ObtxvtrJ7Lmk+0U5hVz5WJCSZpXx/5Nv3Hw53NYzDa8fNzxcHXBlmrG6CKwBbvD7VSSEDRpGchVSy5jF++iQbXKrOhUl/xsp6q6Tq+jINdcei4Gg46pHz3B85NWYbM62LztPC+M7oKhpB5OUVTem7QWm9WBXkCeh57EtBzqBlRG7/YS0h7J1C4Opg8ah9De6e6MCr+Fw66gKCrZsdkYKoPQaCiyWJn7wS+cOnwNgNGv9KLhCC/S0nPJzy3CblO4FZ+F1WJ3WuL8jiHPd6bHkBasmL8bN3cTg0o0oarX8OHa1VuoVjsajaBQq7KnWgFH5izio6GP8GjDss0UQgjmfzaCd2ZtJrvYQn5tkBo4W5jMpetJtGjwx7uy5fzX8S9TFbibscBKIYQXTgWRHOD5hx1cHjCVU04JtRrWYMLCMYDzxvT1tPWoEnR6HT7+PsjLSSAEyYk5fLV3Okunr6NmPX9qhFTD5lCRKggV9EbnPyvvyl7M3PAqa+duoV3/FkSGJbB0xkYA3v/hJVp2u7/zvCq5Uz9SVERIu0AAWvVuwvbs7wD4+eu9CJ0W6VA5sukM3Ye1A5yimznpedSo61emBqVOk5qMfW8Iaz/ZTn5qNtXr+lG5VmW+/XAru9ad4ou9b+Lu5UpORj7ff7wNR7GV5bN+xuDuim+tKgx8phPL5/yCqqjYiopBUbl2NpoLh8PJSsmh86BWfDttDarNTuieC1w4HE5gg+oUF1pxmrrpQUoS4rNo0qUBl45H4urlSlDjmg/8TI7+co7PJ68G4L1VL9HqrmJ0cBakb/xqPy26hnB81yXOHwpHVSQKEsUh2fD1foZN7IWL24N3sIASHz89cVeTSne8UuMyaNgumPdXOzW49qw/xTfvbsavli9tezZgy4pfMRh1VPBxJ6XQjsOmYFA19GwRzONtGhAVmkj7rvUICq5K+5mLsTkUolIyuXAziRlLx/DDp7sIblaTlatPYl1+lBmzh+BfzZvKvh54eZiI97Birazh6SUbSIrPpkfTOnQMqOncYbQ6VdmDa1UmqLqzVk1ofTH6rLnv79d7UAuO7r1MQV4xIS1qk3/sOiDwzoKDN5JBBQRsPnOF85kZPN+vNV0fbczxA+H0H9b6vsHSbby83Xj942EAbFh9kh9XHqdZ60BeeaMv3hXd2L75DNusiUipwVJkZ9ra3TzyUTAS0PzuO9qgQTW2bpxCfF4OPX/8DlSJZ7Lmvn575ZTzVynplmtaEjAhpfxLvnLlAVM55dwHjUbg7uVKQa4ZrVZD1yGtOHvwKlJKug5uRc361fho+3QAfpj7i1PBW6Ohftv6dO7fDP/aVWjew2l3cfvPWc8sdtb0CDi16xLNu9Qvk+YA6D+uB8e3OZW7m3ZpyLQVL7LsnZ+4cDicoCYB9H22MxUqe6LTa1E1grzMAm5cTsDNw8TEtu/iKNErGv9xWWPi/s91QWfUkxiTxtGdYYRdvgUIstLyCDsZRcd+zXBxN6FarKCqSK22pFYlHxd3I50GtuDoz2cA4bQH0eqYMXgBWoOOfauPIe3OGzlSohFQuUZFeg1vx971p6CkGFgIiLiUgDAasDhw1h3dRV52IVGXEmjYJoiTuy6V1kH9duAyQsCa+Ttp+0hjRrzWj4VT11BcZOVg+lk8K3pgMdswuhgw6vWoRvCq6I7RRY+UkgObzxEflYJRA43a1cHT15ONX+2jeZd69H3GWec04dORfD/7Z5p2rk/91vdaovQd2YG+I++oan+ybgLfz99FUYGF6tXdiY/P5tkJ3Rk+uhMArVsGlR7btnYNTkbFodVoqOvnS6V67szbMInvlh0hfO9VpCpZuewI7855HKNRz9ApHXl//2GkVIi+no4Adp++xvFfI9H4G/EvNDJgWBtGPv/g1O7d+FTyYPGmSVw8H8vPG8+C6vwc8rLMDB3biaWf78PhqqXAeTA8TwAAIABJREFUaiHh8k0u30zh0MKXmPbB42Xmuno+lsz0fDr1boROf2+B96olR1AUlbPHI7l5IZbJMwfTbVx7Nm/OQBRIJBJVwmenjrM4+iy1PSuyZcAoFKny0rHNZFnNfNFhEA0rVuXc0xM5+FskjXv74V+5bIF8Of9N/LvNdxFC9AcaAqbbD5VSyjkPM7Y8YCqnnPsghOCLfW9zfPsFmnWpT3DTAPxqVSYvq4AW3ULuObZanarObjwBzbqE8Pjk+/t2DZ/8KFdOR2OxONi/4QzpyTl8sO5lcjMLUOwKPn7OtuyG7YJZduZD8rMLqdcqiJ0rjrBt6UFURSXhejIndoby9Bv9mfr1GBZO+YHoK4m83m8eL8waiqKo2Cx2jm05R5cnO3L9YhxdH2uBViOIuZLIuaPX2LHqOHYV5x1T4qxN0mqo36IW4Ox8C2kdxPXzN5FItFqwpOfwxUvL6ftMJ7R2Owqg1etQJKDRoGi0RFxKpPvIThzbeIqGHerRuFM9hBBM+XwU9VsFsu7zPeRlF6Gq0ikYCdhtCuYCCx7ezsJeS7GNl3p8hMVsw6eKF699NpIze8Kw2x1cvxDHgZ/OYCmyEheRRJvejfELrMStGGdAMfa9wXz/8XYC6voxad5TxF5LJqihP1kpuVy/lMDimT9jSc8BVcVgNOBSwZX87CJ+O3CZarWrsGTGRpJjM5i8YCQ9n2j7p9+R/FwzkWEJ2Cx2qlSvyM6z7z3w2M9G9Sc8KY3qFb2o6H4nHVuzpg86gw67K1SvdaerccHpk8iSxIjUSFAFQoK4VYTdVUt6oZ213x9n2DMdSU/N5diBcFq0rV3qJ3c/flpzivWrT2IXktymrti0kkpNKzO4QyPaNg0kJTOfaYt2IFQV0wPq0kJP3WD2pDUoDoUtK4+zYN1LGIx3jg0O8SMmMhUlp4j0vGJen7WBkEENGd+2FauOXkAqEhdVy/qYMFQpSczPo/vq71CkSpFLIQ6NytzQQ6zv+TS3knP5etVR8j0l7i4Gvp86jNr+vvd9yCinnIdBCLEUcAW6AyuAJ4DfHnZ8ecBUzj+S8FORrPtwM236NWfwpH7/LWtUDfBl2F0t/8FN75866jm8HZ4V3bEUWen0mNMM9rcjEZw7HEHfEe0JKmnRb9C6Np/vms7kPvOwWeycPxzBpePXeX/E16iq5Nm3BzG8ZD3/2lXwr12F7LS80h2W2yh2hbCTUaQFVsGuNSBxmv6GtAvGu7In6YlZ9BvXgzef+BJVkez4/iiFKVlYzDY0Oi12e0mFgk4LWi06nZb5W1/Dp+odHZ056yexf/0p/AIr89X0H8kpsiL1eg5tPEPTzvUJPxONVCV6kxGr2QolSukJCdk88c5Qos9EMdh3PB0HteK9HyfT+6n2nNx/lXOHI5zSCiW0e7QxVWreqcHKTsujqMCC3eogOT6TOk1q4l3Fk/TEbBKjUjC5GnHYnLtY7hVcmbflVc7uv0Jw05rUrOtH18GtSueRisKYpm/hsCu06Nu8pINOgN6AXYK9xCZHSrh+IY6UuExsFjur5+14qIAp7GRk6Wfj4mbErihsPxuBQaelf6t7lbC1Gg1NavqVmaPbIw35IP4saZYitrsk8VyJbpRRr0VqQSMFHTsFYk+1EbshAq3Z2REpXXQY3Q2AZOroFRQWWPhx5XFW75hKBe/7d5VdvBCLxWLHXEmLXevMwq06foFOjQIxW220Dwng0wkDuBCVxOBOjdh99hp5BcWYw9Kwmm08O+UREm6m47A7UBTJjfAk1n65l+en39HG+nTxs/z47a9sWHLYeV3SLFyJTWHS4E486leLlYv20b5LCBcCCvglJgLFLMmyO+vbhKpB7w5eFmf6b9v+MIqMzmJyR2weU3ovxOSiZ863Y2jUKvBPP59y/gP+vUVMHaSUTYQQl6WUs4UQnwF7HnZwecBUzj+S9wZ9QkFWIZePRtCoUwh1mv3v/QcqhKBN78aAs6vs52/2s2/zeRwSjmy7yKawuaX1RNWCKhMY4k9UWAJdB7Xk/KGrpTfd7+f8jE4jaNq5HvNHL0Zr0JGYWghC0GNEB+LCk0hPzkWr1zFial/efnopCIFGr2Pk5L4ENarBqojPUFVJdFgCG5b9it1mJzslF0eBpXQd4WoCBD6VPGjQrg7NO9bFr+a9mk1unq7UqF2ZHz/eilScgYaQEp8avlw6fQNPb3fmbppCQP1qzBy9jIvHIkFK4qNSSYxKxWG2AHB650UKcoo4sfcyoSejQaNBo9FQNcCHJu1qM+Gjp+5Z1y/Al55DW3N85yUGje2KwaR3GiBnFSGl5O0V44kOi6dh2zqlauY9h90b3MSGJ/Fq3/nYrXYcFjs4HFw8FA4ChF7v9IyTEmw2XD1d6DWsDfk5BQjhtHZp3ePeOqkHEX89BRwO0Gho3bUei3edZt3RUARQZLHxVJcH6x7dJr2oiDRrEXapcjktjRuJGcTcSOer3v1Ysu04UXEZhCrJjA9uQqL5Sum4GjV9mTitLxohMJttqKrTt89SbIMHBEyKooBNwTVZQV+gorpoadS0Mv0/+h5FVWlfryYv9m7H5KGd2X4qnHnrD+OwKxiTzXjFFHIxLJGEW9lonG41CEXFUmi9Zw2jSc+TY7twaMt5MtPzsfm7YDLqCahcgVfGLCTtVg4xJ2NZ8NNEmtWsxIKNR8gKBiR4RDrQK1qishM4UekG3dvXZde565iN4BFnRqqS4iIbM8at5Odzs8qkA8sp5yG43X1iFkL4A1lA2SeZB1AeMJXzj8TV3cUpAQCY3B6s7fI/zVuDPyM9MdvZjebmis1iJ+7aLU7sCKXNI42p17wWC3e9QUFuEQajgeTYdLZ9exi7zYF0qJzafYlTW88SF5GE0AgwuSBcTKDXs+jX90vXkVJSp3F1EqJT8fb15IlJzp0pIQRaraBe8wAGj+vKhV+v8+z0ARxce4yze8LoPaojR3Zcwmq2Mfrtxwg/GcVXk1fxzWtr+PrIDE7vuUxxoZVm3UKY9cTn2Ipt6FyNVAyoQmGOmczUPFRFxVJsIyc9n9qNayKE08pEaLWgOFBViZuXK1ZVoVbD6rhXcKW40IoQAo1G0LB1EPN+erk0iLwWGselk9F0Hdgc/wBfpswfwZT5I0p/1zcWj+HS8Uj8AnzxD6pMk/vY1dzN1TM3UFUVVZUInQ6p1cCdWoVSw1q12ILqomf7d0fRaqBDv2Y88UqfB+4k/p6nX+3LjcuJuHqY6P9MJxYePIPN7kCjEWTm3/Fus1jsFBZa8PUtW7jsahO0cHhxVmbTK7g2E95ajw0Vj2KBkl2MQVGxBOo5459O5RoVSU/KBq2GxLhMVnx9kMVrXuC9+cPZ9MNJuvVpTFV/7zJr3EYozrYgKUFf4EBaJIWRuUgkVofCrxGxnIlO5JOn+5KVV4SiqihSohiculYJqbngUJElKbiqVX155vWy6WcXNyOrDk4nO7uQ1CIztap44+Fqcuo1SbDZHMyYuo6gVgG43VQwJDkwZBaiunmgumko9oS39+wnyOjO6pkjMUuF45susHPVSQAUh8LhA1c5euQ6g4e2onW72mXOoZz/jH9xDdNOIUQF4FPgIs69tBUPO1jc02b8/zmtWrWS58+f/98+jXL+PyDlZhr7Vh2hcecQWvZu+ucD/ocYHvwq+VklFhQmAzqNBr1Og8VsxWgysPbKJxTkFDHl0U8wF1qZunAUDVvXZtqAeRTlFfP+2pc5ve0c+384iqKoCHd3tC5GPv5pEiF3pSGObzvPggkrqOhXkU+3T8O3WlnhSIDcjHwWTfkenV7HpC9H417BDbvNgcPuwMXNxICqE7Bb7QghCGpUg6SYdOw2B1qD1inomZOPzqhH5+mOtdgOQqLVavDy8WDp8Zl4eLuRmpDFohmbkA4HoUeuIhD0f7YTA8f1wD+oMlqdFqvFxoq52ynMM/PCe0PwruQMHrLT83m+61zsNgee3m6sPzf7D61MHobs1Dxe7TeP7NQ8FEVBVVSEXufUaxKA3oDMLwBAYzSU1HJJ2vRuxOx1k/72upNe+YFzhZkIh6R2joYKbiZeee8x3n5jAxaLnZHPduSZMXdENHMzCxjfaz4Oh0JIy1r0ndyDV7/ZDkhcU2yYCpxBn7mKDrfKLvww81lSErOZ9cZGbFY7QcFVWLL2j3WN7mbh0v3sXnXGmYvTCqRWg62CFmNrH9JzC1A1Ao0QPNe1BS/2asvH6w+TV1hMzRzQ2RQybQ4uno5BtdoxGHRMmz2Err0bPfT6cVGpfD17K9eiUnFoNXh4mrB5GlFVlbouJiKuJqHW8ia9qR6rRkXYVdqmGln1nfMz+XHxIY4fCKfPE61YuuIYdruCXq9l695p99RR/dsQQlyQUj5YYO2/GFPtarLGJxP+R9a6Mfy9/9Hf7W6EEEbA9Fc65f6937Jy/tX4BVVh9Jyn/vzAv4iUko0LtnP5aDjPznqSeq3+2tPr7PWT+PGzXYSdjEJVQacVTq82Caqi4rA5OLv/ChazDcWhsHXZIXoNb8e68Dsm2k071aNJ5/pUqORJ/bZ10Gg099hNqKrK/AkrsdslqYlZnDt4hb7P3d/K5YdZmzi1/TwIgW+1ioz7aAR6g65UbNLNzUCu1anP5OLuvHmBs07K4Gai9bAOxEalkZWYhfOXgGpBPnx9dGap7UzVmj58uOYlvp3xE6H7FBRF4UZYPDXq3tnpNpoMvPzBE2XOz2K2Oi09VElRoeVPvd8ehopVvRjz3hAWTFrF7f0krZQIqaA6JKqUSFUBBBKnHYtvVS8mzS/bVSilZOXcrZw7GM4z0wfQ8Q/sRTISctBpHRRX0nPTYqNCdB6LPt6JNb8YB7B/d9g9AVPCjTQcDgWL2ca1C3EMNOrQaTU4VBV9gAceMWbyCooxpNuQOQq7d4YxdnxXxk3qxY3IFEY+/8cK5r8ny12S3dAVbZFChVQFNCodxlzkxsYgiHNBraRD8dCzbucFjv4Ww1cTB7F70zm27z6DQ6+lRYsAFq4ay2cHj1Ok2Alq/dd0kWrVrcrEWYOZ/Px3YFcoyrfQtkF1Zn8xsvRaCyHot+A7YvPynGrteXdSfiMm9mTExJ7k5xezbOVxAHQ6LRrtv3Y35H+Nf9A+yl9CCOEKvA7UlFKOF0LUFEJ0llLufJjx5QFTOf+nURSF5W+s4eaVBCYsHE1Rnpk1szdhNVu5GRbPj4nL/tJ8Ia1rM+enyaTGZ3J6TxgtuoeQEpvBtuVH6D2iPRUqedKiWwirP9kOQO8RHcrModVpqde2LlOHfEFBThFvLXqWjo/e8YZMT8rGoaig1SKB5ITsB56PVyVPZ7AlBF73SQkJqYKqotFA9yEtqd24Jmf2XyEvz8yIKX1Y+8V+FIeCAHQC7FYbBdlFZTz6dv9wjF+WHnLe9LQaRr83tMxa98O/ViU6921C6LFInnmj31/qgMpOz2PLkkME1Pej1/B29wRaP37utEnRaATVgv1p1DqIQz+ewm614eXthtWgxZpvZsCznWnRsxFteje6JyjdtfYkW1YcpVmH2uxevA/VamPucwn8krAIo4vhvufz6vT+TFi3EwRYfQ2oqXbiotJQ7QpanYYhw9rcc3xIi1oENfDn2sV4jJU8qObhzlO9mhMamcSTHRqx+JWf0CsqeoCarjRuWgMhBIOGt37oa3Q3LT0rsksHqpeW4f3aklZnIVqrg4JkI8mdXKi+J5u8Nr5IICOnkOfeXYc+Mhf0zu/Puchb3Nx4gGv2bGxGydyDv7L0iUF/6RxqB1dl9PhurFp82FnYf9d3VwjB1bQ0Xunfid2/nEdJKuTNj+7Mfz3iFidvxFGpdkU++vwpzp2KoXuvhuj+A++6cv7P8T1wAWhf8voWsAkoD5jKKef33LgUy4LnF1Opug/vrJ/Cub2X2LX8IJYiKx+P+orJi8YiVRWhEbh6unDzahIHN5ymXZ8mNOl4fzXq+MgUivKLCWkVWHrTrhrgy5CXegIQUM+fdn3upA1r1vVj7eVPsBRZy/ij3ebknjAKcopw2BU2LDp4T8BUyd8bNy9XivItzqLvP7CMGDVjCC7uJk5sv8Ct+Ox7bEhUVaWgwIrQOGtU6rWuw4DxvZg4z1k/ZLM62Pztr9gsdnQGI30eb8H132J4fs6wMuuc2hXqfCoVAjSCKg8w/v090ZcTOLEzFKvFzsavD9DnqfZ/PqiEj8at4NqFm+gNeipW9qJl9ztCoMHNapIQlYKqSgwmI2NnPcHFI+GkxmZgVyRLTsyikr83uhIF7dT4TLRaQaXqPliKbSyeuQVVUUlLzEK120GvR7XamdLzA15eMAqBQG/UU6/lnTRpu47BBB2uSFJmHkh4tG8Tjm6/jMOuULeeH48Pvzdg0ht01OkQTHhSDjm5ZiY//jXBTWqQHp3GogNxVPLzIjejgErVvHlvyXMEBFZ66GtzP+JOx1L1UBoAuR4pNOzSkMSCUDT+CqrR+R0yZlgp9nPBqtgxJFixuenQ5VrRmu0UVfMkLy4LgwARqMHf8++JSQ4e0ZaYaynE30xn8oyBpT8/ER/Pi9u2IYTguc7NeKNzZyIvxTOp/wI8qnhxJj+bxNY6tJEahjRpyCcT/tz2ppy/juRfXcNUW0r5pBBiBICU0iz+wpZ2ecBUzv8pFr3yHTGX4ki8fov9PxylVsMaSCnRGXRIVeWNXnPQaDX0H9+LJ98czMTuczHnFPLLor28v3YS7fs3v2e+0GPXmf2cs1vtyVceYcSr99dg+j2u7iZc3R9crP7bvkvO2iJFJSc1h6y0PHxKgiutTss3h95h3sRVeHi7MXRCrwfOo9PriI1MJeZaCnFRafgF+vLkVKcMgxACD293CnIK0el1WM1WRjeeRl5WISOmP8bwqf34atc0zh2JoFW3+lQLrPzAdUa81p9LR6/hsCs07VSv1MakINfM2f2Xqde8FjWCq5YZd9u4FUlpOvBhsVrsTp834TSCNRdYWDjlBy7uv0TFqhXQG7TYbU6TXzcvVzwqe5OWWoBdkZzZe5khLzoD2uNbz/HpC8sBeHfNy7Ts1RhPbzeKCy1otBoUN1ek3gA2G3Hht3hr4KcIjUCr1fL6kufpMsQZCF29kULqzWwcGhWhwC+J1+jYpDoIwctv3d+eJbheVbQ6DYpNwaI6uHImBoe3CbO/nvp1avDBuF74B/j+l3SE1eoYiPjlAlqNoO+Idvj79WdS3Gr0z0oCktxJ6eqgYZ4JtUhPenoBAoFUVPSZhQgJFS5mktnVD6FC3auCjNCrDJh2GL/qFZm5fDQ5xRZCalUhpaAALxcTnqb7f7/1eh1vfVw2PRuRno5DVXGoKqEpKQB88eYG4iJT0CTlYGnqCRIcQhKVkfkfX49y/k9iE0K4UCKcIISoDVj/eMgdygOmcv4RFOUV8UbP2SRFp/Da8pfoNrzj35qnZkh1boTGARL/OlVp2q0hM358laTIZI5vOYPD5kCj1VCphi+VqvtgK7aBlEgJy975sUzAFBkah93uLCwOOxlFnUbV+Oa11dRtEcj0FS+W7mD8EdcvxrF+4R6ada7H4y/0oDDPTOjhcDAYQKMhMzmHZ5q8ybvfvUCHAU6dpyo1fPl8x7Q/nTsmLJ7ctFw0WoHQCNw874gmCiH44sDbHN96nqZdQlgybQ0pN9MB+H7WZnqP7Ih/LV8GjflzNemG7eqw9up8XDxMGE13UlbTB39OSnwmQsC3J97n4uEILGYrfZ/rgsGop17zAF6a8wRXz95g2MSygZ+qqqQlZpfsBt0bNLz97VhWz9tBrfr+tHu0CUtnbOD45jNIVcVcUEyzHo0xebgy5t3BAPQY2pr4yGS0Wg3NOtejINeMEHCyxNQY4MyeS7R5tCmLdr3O+V+vUbNOFd544iunhpPRiLTZS5XJVY3K9XM3SwOmo+ejsTtUNFpAgEMnMBp0zF70zAOvW6++TTm07yrnf4sFKdHmm0l8xA2Hq2CnJp23q7r/lwRLUko+OXGW4j5VMOp1uNeswKbYq4RmFmCXCp3qeDM0tyH2Ijv+TWqyZNlhpEY4fXpKEKrEkGvHkK+SZzZTmOU08E3LyOeZmWtxAK4eBpIqWkDAl4P706tR8EOf49CGDdkTHU2W2cybnZ31WX4BviTHZ4LVTguTL2cL83Gv5sGsXj3+42tSzgOQwL93h2kmsBeoIYRYB3QERj/s4PKAqZx/BGd2XiQxMhlLkZXv3l7/twOmyd+Mo1m3hvj4V6RpN6feTvuBrWAgeFf1IvpiLHqDjvYDW6LVaZnw8ZN88/paNFoNtUKql5mv95PtOLLlHAW5Zp57ayAfjPyKrOQcctLzOX/gCu36NSc1PpP467do3rUBBpO+zBxznv+WnIwCLp+OpmGb2vgF+IBGOK1JbrfD2x1sWLgbvVFH3RaBeD2Et1bs1URe7T4HhDPAGjq1P48+0+meY6oGVGLYFOeumF9gJSLORAPOdJHLQ8g1nN5ziQ1f7MXN3cilQ5dx83Rlydm5parlKfEZWIvtGF0MbPv2MDu+PYxUJWkJmbzw4ZMA9BnRnj4jnKm4mMvxCI0gqJGztf/dUUu4eiaGqjV9+Gb/m6XF6uCsf3pridM301Jk5eqJyFK9PSE0PPHKo7TscaeLa8iLPenQtxmuHiYiL8UzZeDnCGDcjEGc3XsJodHQb0w3AHyqePHok+2wFttwdTdhtzkwuhjw8HPHVmxHlRIXdxOPvXgnyOvZth6b9odisTvQ2hQ8ky0MmVa2Rs2hqOwOu467yUj3kCAiwpNL37NXMOFwc6ZIFSk5Fh3L0OYP34n2R5j0Oiw2O2gEBp2W6m4V0Gk0aNFgOlbIjp/CkIqkm9nGI70bsH/dWRR3A/aq7kjFjuJuwC3FGVhKAdaqrrimF+MwaXGoEouqYMlxYCyCIn94d+EWuix+/aE72HxcXfll5L2F99O/HMXRHaH4B/jSuG25fEA5f5+S1Nt14HGgHc6e2SlSyoferiwPmMr5RxBc4stlcjPSolfjvz2PTq+jx8j7dxf1GtWVNv1aoDfqS4OF/mO6UadJTZJupNHpsZZlxvhUrcCyo3csMQLqV6Mo1ymy5x9UhYykbCZ0eB8pJfVaBjFvxxtl5nBxN5GbVYiUYHI14OntzpSFz/DLkoMENqrBqe3nkVpBWnwGc59bgsnVwKrL80trkR5Eys00hEZgKbJiM1vpN/qPd4qmLnqeGvWqkXErmyde6YPpTwxrVVXlo3ErSpW3VYeK1WIj7FgE7fu34OrpKMbPGsrPSw7SqkdDDEYdikNBVSW5GQVl5ju4/gRfTl6Fw+bAP6gKszZOJfRYJABpidmkJmRRo06V+57LT5/vIv7aLYRG4F/Hj9cWjaFRB2fNWfSleGIux9N5UKtSVfFDm89hLzGwjY1MYcutJYBz1y0tMYu5Y5YiNBre/f5FFu9/kytnbtCkQzA7vjtC3LVkQp5pycJroUw7cYTl/oNx0eupH1iFvUsnoqoSk8EpY6C9T0HyF/tO8OOZMKSUzBzUi6FPtWXNd8dAlZhruGLIApu3RF8gcU1z/OFn8LAIIVg1aTjbzoXTrm4Aft6e+Hk3wFVnINdm5trxy8RJUWKJKDi29RIau4rIsSA8jaS1qYjGJjFctaBRJcKuorgZeP2jJ2jSrjZvLNlJeLyzPkpjB22xivvZbH5e8SsjXn5wyvjPMLkYeHT4n6uul1POnyGllEKI3VLKxsCuvzNHecBUzj+CCpU98arkRXpCBvVa1flvW6cwp4is5BwadaqPEAIpJaf2X+Xa+ViqBftRr3kAW5ceIDo0nqfffIxqte+9gc/8aTJndoVSM8SfmvX9uXT0GlJKLEVWboTF33fNj36axL71p2jQOoiAklb8vqM603eUM7Ar+Pgp8nOKGNfqHaQqURwKuen5VK31x0XArfs0o02fptwIjWPSV6MBiLt2i61LD9KiWwN8/b25ERZH16Ft8fLxwGAyMOKNgX84593kZRc5jW3VEqt7rQaTq5FmXRvwau+PSI3PwGDU833YPNw8XTAXWEiLz8JSZGXcfQrHQ3+NKE2NJd1IZe7oxXQb3JKj2y5Su3F1/GuVLSSPuZJIcZEFnUFb4nqio32/5qXBUtKNVKb1+RjFobBu3naWnpqDm5crj45sz6m9YQgh6PlEm3s67NZ/tovoywkI4Kcv9vDKp0/TfUgrTu6+xNblR7CabZy+fIOsp2pgTkhl9YmLvNDNOYfJcNcO4gMa/hKz87DYHCAlS1YeYseXE2nfvjZvPrscsyqpmATGo3kYcu18/ctGunYOwfVPgteHIbBKRaYOuPOwIKWkss2DOq6+fLf/J8CpzdS6T2NyLQ7OHooAoFv3EKLUIkJ98lHirGiznPYsuiKnKfPscd9hsNnpPSCE89G38LVIcrbEohGCbfvD8GlSjUc63+u/GJ2eyZh1W1ClZOXIx6lf9eEL2h0OhezMQipV8UQIQUpyLtGRKbRqG4TrnzxElPNw/FtlBYCLQojWUspzf2dwecBUzj+C83svkZeRh1Ql6+b+TL/xf/+p9UFEX7zJq13eQwhBn+d78PKXz3PpRBTbVx7FYrbx0UsrGflyL759ewNSSm5ciuPb3+beM4fJ1Ui3Ye1KXzfqEEzzbg2IOHuDcR8Ov++6VapX5NnpA9i0cBcfj/yK1n2aMv27F9FoNCTHprN37UkadwhmwPie7Ft/ivZ9GnP6YDgbFx2g84DmTPhg6H21i/QGHTPWvnLPz2YMXUhWSi6HNpxGOhwoOgNLZv7CO8vH0rmkPuphcNgVXu7/OQ69Ab2Hjo/WT6R67cqY3IxotBrir90q0VdSyUzOxs2zGq4eJroObkVUaKxTRPJ3DJvSjzN7LpUquMdHpeEottOpRz1eXzq2zG7N2X2X+WjcMkAw4rV+jJw+EMWuMmzqncL7zFs5pfpXGYlZzBv/LXM2TqVZx7psuPoJAsrIBAQ2qOYXyUJ8AAAgAElEQVRMnUrn329TXFJkrtVpcPF0wVXRornlYFXyWex5diYNvjfd+SCm9u7IsVORCIeEWDvJt3IIblCNTWfe40ZsOp98sZuU3IxSRfKk2AzqNiqbDv4zju8OY++GM/R/ugMdHnHuykanZ/LL5Qi61glk6eaThEWnoNUI/Ew6pEMBJF/9dIKxg9py/mI8NodCxJVb1PRxp0nzIDwmVuTQolPkZRXiapbsXHeK9Djnuer1WvbvnEZRgYXln+xg55Gr5Ookc7/ZS4cWQbjfFfStOXeJjELn57zyzAXmD+5T5vwvRyTx7boTNG5QjSKTSkFcHud2hCNtCkhJ6w7BTH5nAC+OXo6Ukho1fVj83di/fJ3K+T9FW+BpIUQ8UMRt8Xspm/zxMCflAVM5/whC2tVFaDQYXQx0HNzmzwf8DaLOx6A4nDfXi4ecvl2e3m5IVaLTa6ng48GOpftRVRUhBLduppMcm05uRgE16lbFo0JZDy+dXsfM9a+U+fndKIpKUZ6Z797dgFQlp7adJ+61/gQ1rslbQ78gMzmHbSuOoNHrwaDn4qkYft14GhSVncsyGDi68wNTVb+nNFCRIIVTx8m5k7KPzgNakBiVwtuDFuCwK3yw+VWCmwXcd57s9Hzys4tQFBWdTotfLV887vIwe+79x9n0xR7a9W3Kd+9v4sLBK3Qe3IZT289hsyus/3w33Z9oy+vfjCnVXqrVsDpPTO3H6nk7nXWnFiuJ12+RFp/O4W4N6FtSX3Sb6xdjsVkdSFVy7dxNZq8vq9LdpHM9GravQ9jR60gpyU3PL30v6UYa4b/F0Kl/s3uMhweN70G1oMoIIWhZ4it37mwMC785DJUq0KpZTSZ/NIylRy+wPeUKVrvC6Yj4hw6YAqtUZKhvEMd/vU6den5UL+ko1Oq0/LjqJMkRaWjcDFBkI7hhNQLrlu0uvB8Oh8LFywlU9/fGw8XAp6+uxW5TOFyYimfkeV7o1JpPDhwj32Jl5YkLGDMkWgQORSUr0ANtrgHFVYfe7iCoThWEUYfRqCM3Jo3sqFT0F+NY+Msk+v/UCEeWhVvxmcx6fT0anHXCJbXwuHmYePG9wWyOTkCXZ0djtxF2JZ6O7epiLrJy4nAEQcINk855++lU+/7fsRnzt5ObZ+ZK5C2KK2rwjDKjsSiIks7K08ciGT6ms9NDz2InNiYDRVHRah9ey6ucB/Dv3WF69M8PeTDlAVM5/wj8gqqw9uY3ZKfmEtDgrz9tPwzu3m4odme64XZ9UO1G1Zn5/QvEhCfRa1hb1szeTExUGjgUFLvC2FbvgCIxeZhYG7EANw+Xv7SmuaCYiR3eJy0hE4+K7liLbSgGIwteW8f0RaOxFttKt8ftdjuKQ6I4VISUSEAxW0ptRh6GDzdPZcs3+2nWLYTz+y9zbM8VtDotnQY4u/+2f3uIzOQcADZ/tYe3V75UZo4Vszez5ZsDuFWugM7VnT5PtqVCiShm+Okolry+mrotg9gY+xW3bqQyqfMsFIfKr5vPYDBokRotqiI5seMig17oSd3mtUrnXvvJdqQi0boYqeLvRUZ8BgJxX+uXfs925tSuUMwFxYx6804q0W5zoNU5TX41Gg1zt7zOsrd/JCk6lZfmjURVVZa9v5kd3x9Dq9Hwy7LDrPptTul4IQStf1cnF3Yx3un3ZzKi+njiU9mLCY+2IzQikYy8oocOlgDCzsWSHpPOoH5NeGl6P4QQqFKiEQKjSY/NVYu1igdN6vizcM6IP9TZupvZ83fwW2gcSFj08VMo7jpyK7uQ08iD7Jxc3t15AIPW+V++lBJVI51ZQwHCpMXu44KQ8O6kvgTX8+Pr5WNITc7li9d+JD/PjN3m4MnP1iHd9bikOTAm21G9XdALARLGvz+49FxcTHpUjYJrVjHCpjBnwlo2HHmLuW9uJDI8yXmOXwznwsnrfDt0JctdjHyw/HmatQkqncPLw0RBifq7FAK7lw4Xh0Qqzn+jgcFVqN/An8ZNqnPudAxqQTELpm/gzc9GUE4590NKGS+EaAF0whkWnpRSXnzY8eUBUzn/GDx9PPB8iO6wv4tiVzC4GLCarU7j2xKad6lP8y71AZjw+TOcOxFF+s00p9xASYBVnGcmOjSOZl1C7jv3g4i6EEtOutPQ1mq10/2ZrhzcfI7Y8Fu80vtjZq56gV2rjtOyewMUVbLvx9P0fboDG+ZtJTslh7Z9m+Pu5frnC5UQ1KgG05Y40xa9nuzAS5kFFOaaqV6yQ9Wsawj71hxHSklSWiEnD0fQsUeDe+bYtfIoqiqxF5h5+5vnaNH1zvvzxywmNS6DxMhk2vRpRrPuDfH0cacgp4haDarT5pHGbF58EMXh3Am4rdd0m+DmtYiLuIXeoGX+7rc4s+silWv40PqRsjvmlapVZNmJWff8bP/a43w5eRVePh58fWwmPn7eaHVaJn46qvSYsweusHfdKaQqcagK2el5XDlxnRr1/KlQyfO+163PgGYc3H8Vm8XOiGc6kJmai7XYzuaZzz30tQdIyyrglc9+xmFzELsjnRrtajDz8glsisLKJx5n+DMd2BEZgyol15MzuBabSsPaf26mnpWWz9XQeCwWOyajnriUbNIHVMNstSM1EqFIvFxMLHxyAO+t2YMtKh9juh1TS19eGtoJXxdXdh69yoCujWjbpBYAgUGVCQyqjP/6lxj37BIKqxqxGTSgqCgeYFQkqosekw2GjGpPq3b31ha2aRzAtYgrzpyHojJ1wvfkpOZjtTgwueiRuTb2f/UrUpVIm4PlC/fx1doXS3eIvpg9nL1HwqlRoyInYuKp4OZCQzcv5s/cisOuEBubjsOhoBUSbVYBQsKxQ1d58y99IuWURfxrhSuFEO8Dw4AtJT/6XgixSUr54cOMLw+YyimnhK7DOxB18SaJ15OZ8Pn9b4Q6vY7lp2bz5dTVRF+MJflmGkqJ9UXwXTslD0tw81p4eLvjsDno+WQHWvVuzP6NvyEB1aFQmF3EzNV3jDAHje0GQJ+nO5KTnkelB5juPiwVfD1Kd4cAOg5sycKDM5gy6ltibuXzyVubWLN3GhUquhF1LZn42Aw6PtaSoz//hpuHC8FN702nVKrhS3ZqLopD4YvJq6hYtQKf7JhOUa6ZoCY10Rt0PD6pD6FHr1Gnac0yAcr87W9w7VwMASHVqPD/2Dvv8CjKtu3/7plt6SEhCQRIIBB671V6kS5IESwgiGJDsKCiKKAiggiiAjZEEZBepffeO6GG0EJ6374z9/fHxgASBN/n/b7veXxyHkcO2Nm575mdndk557rO67yKB9D1ubZ/6/MsnuZtiZKXbePA+hMFNgF3wi/QByFAKAKTxUhEiA/v9ZyCwWRgzqnJhZLy0mVCWLj8VQBOH4xn6CMfI6Vk2NjH6PLUw1lc3LiZwYDRc7H6CYSPkRRflY03r5Dj9PrmfbljL7fWJSLxRps0TRJWzP+B8148fYM3B85G03T8w/yoVCua2MolcG/SkQooTgi55GRo57o0KRfFhnefY/+ei4SXCCQwMoC3ft+AS8+iR6c4ikf4AWXvml8zq9hKByBVCnRVPikaUkBwZAAr171Y6H6982JnXt2eQFZyLgi4fj0DR5iRAIw0f6QqjVtUwi/AQl62Helj5tLVdPp2/hxDgzBUXyNTnu/Gk729FXItG3r9nOw2F37+FpxON8XDAjEaVQJji6ObDQi3hj3qwcerCP/VGAjUklI6AIQQnwLHgSLCVIQi/B2oBpUXpjw4YmD2MfHW7KEAJMancHDjCW7GpzBxyLcMfv8xyteIQtd1ls/cTGpiJv1Hdr6LlNwJvyBf5pz8jJyMvAIdzSOda7J71RF8LEaqN61Y6DijyUB46dD/4Sf9a0RVjsTga8ZjdyMlTJu4mqaPVGLa+0vQFYWoKpH8cHACwcUD7/GVGrdkFFsX7mHDvN1cOnGN3Ewru1ccpv8bXQvW8fG30PRPBqAAmkdj+7KDqAaV2DrRaB6t0LL8PyP1RgaJ8clUb1qR1n0bs2DyGlSDSs3mlQtdv3qjCoz+ZjBXz9+i08BmPFlhBG6nGwtw42ISVR8QxTyx9wIul1c7tev343R5qhmJWTmcS0qlcUwUvqZ7vbYAduy+QG6AjqO4AB3MGSpx55IxBAtAEK34c1OX6AreqJBRsOPYZfq0Lbzhr8etMWfBHpbP3Q35+xMbEsjU/OKCQc3rsuzwGQISHFQPLUmffPKhGhQaNavA0f2XmX7iEPuuXQc0dKOdqxWncjglgeLmQD5r3JUAo5mgIB9UKZEeCLziISDZgdMgEAFGvp30ZKH7dvFWGk9OW4Cs7UPkORVrug2BwBFiIC/aTGJNEyaLkVkbR7Nu0QGWrjqONc9JXp4T24kkHBFm5mw4yJgB7XB7NMbN28ilxHTGPNGWb+cP5+K5RKrXikIIwXNPPcL6M5fIzXPQtFgIb/b7igGvdKBO88KvnSI8BP65GqZEwAI48l+b8faTeygUEaYiFOFfQGRMOGUqRvLTRytw2Fwkxqfw4+GP2bbkID9/ugqPy8OthFTG/XqvIPkPGE0GQksEk5dlZd/aYwwY1ZmhH/YmoJjfPV5L545d5cdJa6hWvxxPv/4ol05e473+M1BUlU+XjCC6cuT/6HMkXU/n9/n7qFqvHI3bVeOz759lzaKDbNl4hr07LrB/50X0XAcUDyThciqX4tNoWghh8wvypdvz7cnOtHHjYhK6lFSoHU1GcjYLp6+nVEwY3Ye0LrSqb/7na1ny1QY0DaaOnIdfkC8zNowmosz9iWHS1VReqP8uUkrqtavB2IUjaNO3Cf7BfvgH352qzEjJ4a3Hp5OZmsu7swbTf4S3MuuZD3rzy0fLiKlfjiXJ12hxXqV1pZjCNgdA6571WDN3Nzarkz4vtGXxTzuYvmkv9or+lC8RyqLnBxQ6rn7dsriP7fX22xMS3QdyfTyoqopEElshgoSIZK5kZqHlu4XbHK5C59q4+ADT31mMJsARHYJFEZgMCgNeuu2APaJDM0omSo5ev8zTz7fB/w593WfvL2Xf9nOkVjJhrOGLjpsgPxtbblQkPucWBiWFhZeP0SeqNj2m/4LicOKX5sGiCVy6jsGhIXJdJJxJJKLl3VFCm83F0cs30aXE6dFw1yuGcWkGOVF+KE6N4AQbB0tfB7wGoVdy7Fg9+V5eukTxCHxSPJQLLwbA1uOX2HTkIi5N48UZy2jSNIbnWjQosFoI9vNh4/ThnD99nXf6fYPT4ebFr5fC2kCGtm3AkHb/d4pEivAfiWzgjBBiE15a2B44KIT4EkBK+epfDS4iTEUowr8Iv0AfpPQ+uf+hJ5L5Sm2J14U6KyWH4PDC9TF/4K3On3LjUhICwXdHJxZqTPnJS3NJvZXFxZPXqdU0lg2/7CQnw1ueveqH7bwyufCb9YMw5unZ3LqWjsm0iy+Wj6BitVI8+WIbtm6JA033fhJfMygKSMmJo1dp+kjhzYgBBo7uTo1mlfAP8qV8zShG9/qC0/svoqoqV+MSGfhG1wI38D+QejPTK6wW3tyPNdvG8JYTGDymB92GtC50OwlnbhT4XB3ZfIq4g5eo0rBwn64dq46QfD0Dj1vj58lrqdfSqzfrM7ILfUZ2ocWk2aQdPsmy42dZ+fJTRIcGFzpPZNkw5h+dAMCy73fwy9T1+Hs8aDlOLjQo/NFc1yWrtp0iKt3MzQAn5lALbWLLkubnZEfCFYQQpDhs/DptMJk5Nr5YuB1/HzP92t8biQNYMnsbmpTovhZMDg8+dUux4PthWMy3o1vnz9zk1+934HS4uXJpAYs231b3HNx+Hleek6CjTto1rUL1xsHElAhh6RV/blqvIhBE+gZyOTkNm9OFs6oPpgwPZU7ZwC0LWqZ8OnoRy/ePLZh37m97+Wn+HkwWA4bSBjRFwXMhB3N4IIGpTrQkFxJJwysG3ntqFsPG9sRud6GbVFSzAY8iQVUwKApdGnq/n1B/X1xuL6HK9jhZfeIcRxJusuWNoQXbVRWF4qHe60srZsIWbkY6XcxYt5dn2zYolKAX4T6Q/+jmu8vz//7A9r8zuIgwFaEI/yIq14/hnR+GEX/qOo8+43XTbv14I1JvZnB8Zxynd8XxVLXX+XjZ69RsUXiaCODWlRScNhdmXzNpNzMpHlmMz1/9mcNbTlOydBCZiVnk6iqKKnC7PaiqQrHigQUuc9sX7ka32Xl5+qCHSmXdCafd5bUcEOC0e80jwyOC+GByX/bvukCtmqX4ctSv5Gbn4RsZSvfe97qe3wkhBLVaVEbXdTSPVuDwrdntbPxlF/t/P8avZ6cUmIPqms6gMT3JTM0hNTGTG/FpaB4NW7aVmW8vpOuzrQq96dVsURlLgA8OmxOHy8PrHT7m1a+H0mlgM3Iz8ji06RSVG5QnMiacKnXLoagKZoNK/dZV75nLrd1u/uvJr8T6q88HXvNOXdMRUuCrKbz2aKtC1z8Rd4P1O87icLop6bawdsoLqIrCjexsRq1dh8VoYEh97zEtFujL+GGd/3L7rXrUZe7cPV5yIVReH9r2LrKUl2Nn8axteHIdKGaVgMC7qzctJhUHXk2SejSD5GtulG51ybp1jV5KVVI33CQtLYl2Q2MJCrCQnJmHtbSK/ZSCUGSBlimo2O0HhNkzNrNsySGkWeCy61gyXYQHWLCm2rAB5cqHoTs1atcsxZYF+3HaXXw2Yh4f/vw8s7/dRkioH+UrlmD1hpN071SLoPy+h7UrRBKeCjlGjexyqneflXutA+IT0iheqywhwRb2+dnx6Dplw4sVkaUiFEBKORdACGEEqgM3pZQpDzu+iDAVoQj/C2jcqRaNO9UqeK2qCk+M6kLcvgt4nF4CsuTrjQQUD6BcldtmiEnX0ji2/Sw1mlSkTGwJLp+6Tv221ancIIaLJ66xZ80xnHYXWTfTQddRTEbwsaAYDfz6+e80aF4B4XajOV3k5eisn7ud8Ogwnnir+9/a/w++G8L8GRupWq8slw5fIi81i/odatGgSQUaNKnAtqUH8eQ5MGk6moDJ41fy8bSB+P2FA/X1S0mM6j4Vp91N6fLhCFVF4sbj1shKz2P0418SXqoYR3eeIyfTyqgvnmTCAq9n1dXzibzWYSLSYCaiTOh9b3qnD8bjVAxIo5cseFxuvn5nITcvJLLtt31kp+d624Kc+ozKdcvy7bZ3yc6wEluzzD1zfff0Y/yw+zAtK5WjfHgoUkq+fHcx21cdpWO/Rgx9rwefb97FlbRMRndsSbnQYvQd3obUpCw8Lo2XxvciOLRw0XFYaAAgMZsMlIoIKrjhlw4KYtGA/n/nqwKg88BmrFh7kqwsG6qq4PMnLdnP0zdycFscQkKVmmV4+/O7t/Hiu1354v3l+PubOb77Ih6PTu7hk9xsH0z0mjyMuTq34tKoVjuKH5/rQ9+FC3DaPQijilQEQlXo3qsefQd7ncOvJaSxevkRpEdHlQLdR0FRBP7+Ftw5XrlI32ea075TTY7tOs+WBfvyvc38KV48gDHv3j5fO7Sudte+Ggwq3059mt27zmMPUzl7PZmTv52lzZqP6fpyM0b1agXAhDFLcbk8JCUbGDG8Fct/P0yzsGJIKYtI09/FP0zDJISYBcyQUp4RQgQB+wANCBFCvCGlXPAw8xQRpiIU4f8iHnuxA0e3nkE3Gjmx7zIjO0/m6y3vUiomHKfdxQtNxuJ0uDGaDEiHA4/dReLFRBRFIaJ0CKrh9pO08PUBgwEk6G6NqxeTeOPLpzi86RRn9p7DaXWie3TmT15D31Fd/laUKbZGGT74dggT+k/jwLpjCCEYv+wN6uQ3r02/lYWmaXhcGnqeg8sXkti19SyduhWeMgLYvuII1hw7UsKVuERAoPqYCAsPRJpMnNp/CYNRRUqvt9SirzbRplcDAKIrRTJ7z4dcOJpAnVb3RoMA0hIzOb79LI70bLDnazhNJjx5dpZO/x39dsCI799bxFvfDSOiTOh9NVE1SpdgWv/b4vSMlBw2Lz2Ex62x+ufdhLWPYcHhkzjcHjJsdhYNfQL/QB9GfzHwL49tRmouFw4n8HK/FnhUaN7gX2/tM3rw99iSc1ENCr37N6Juwxhyrd5jEOBnwS/AglAVhK4TJ3P5/rcdPNu7BRGlvLqgq3G30PLs5NqcIL2yKqnmkwqzgmrzmpxuPngBzymFV8o3JM/hROtjZdPqE7RuV5Xh+R5SAMVC/FBVBbPFiK+fiZqNY/D1t/DUgCY4HR40TSc6v7VNnRaVGDn5CZKup9PlyYerMIyOLk50dHHSUnOI23kF6dRRgJXzDxQQpuBivqSn56Hpkvkzt2HLcbDxUhaPtK5Kjbpl/+VjXoT/aLSQUv5hKjcYuCCl7CmEKAGsA4oIUxGK8CAkJaSwf/UR6nWoSZlKpR484G+iTutqrEyezcBa75CdnofF10TStTRKxYSTGJ+Cw+YV9bocbgyA2ddEmUpe4XZwWCAzt7/P7tVHOLHlFIf3J6D/4WKpKGRl2hjz1CxmbRzNzcvJPN9gDB5NRzU93GXtcrjYveoIkeXCqdygfP7xSMVld2OyGLlw9Ap12lRnw4K9rJ2/l8iYcHKtLnJ9vFGlmNgIcjLy+Oyln3DYnLw5Y1BBc1uA+q2qsnTmFnQpqVgzirOHrxBbJ4Ypy0cyfsh3ZKbmem/UCFRVoWXPu9N84aVD76oEtOc5+P6DxdjyHLjtLnavPOzVVOk6iqqgqAolKpUkLz2X7NQcFFUteFDOTr+32e+DEFjMj2JhAeRm2SgWFkDxEG/1nEFRCPKxPNQcOZlWhnaaTK7FBEKg+anMKLmLiSO606zO/YXlD0Jacg4elwezaqRRkwocPH2VN6euBGDqG48x4MW2CLPKN7v2E3A2k+0n93P41+PM2zoaHz8zW5Yfwe3SMPsoNGlXjfDIYkR3iWVfyk06dCvHpV0JnEtOZ+mxc+gKcMT7HbWtU4FVm95k1ck46k78isBgC71N5Ui8nM4bY7pxNSGV+Qv2s2fnBapVK0VQoC+btxwmKMSfqGhvpHDz0kNMe/s3/AJ8aNWj3kP7iM35aQfzv9+Fx6wUuIs7jTDo24WM7dORKTOfpu8HP2INEgQfycViMuDUJWdO3ywiTH8b/7iI3J3VE+2BxQBSyqS/E30sIkxF+K+F5tF4qcFo7HlOjO8ZWHBjNr5/06n7YaAaVF774km+HbuEKg1iqJ2vYyoWHohiUNA9OgazgSfe6Enq9XSGfdyvYGx46RB6DW9Pr+Ht6RMzglyHty0L+caa1y+n4HS4KV2hBB8ueo3dq47w6DOPFBpdklKSl2XDP9gXIQSfPfctBzecAAmT1o5m39qjXDx5DaPFiAfBvC/WEVU9ii/fXICWawUpeeaD3lRsXoWwiCCiyhbnp4krOb7rHLoumfPxCt6efbuXV5X65fjp4DhcDjfhpUJw2F2YLUaEEIz++hk2LtxPZNkwqtYvR262jcgHNBNePGMDG+btQUN4W6cYjQhdgkGhfK1ofAJ8eO+Xl0m5msLU4T+QlpSNMKpERBbjhUleMXxWag66phNSonBB950wGFU6DG7J0d0XeG5UR6pUimJijw5cy8iif/1aDxwPkHQjA7tL8xYvC1BsGi63xpodp/8lwvTO5H7Mmb6Ruk0rULlmGT6ctQ5Xvonqxn3nqF8tit5DHmFa+jnUEzaEBLfTTW62HR8/Mz0Ht+C7iWvwC/Ch/iOVcNhdNC0XRd0SJUHAGfdlruTkt5HxGnmjS4nN6cbh9vDerxvQdJ30DDeLLh1FSDh2/Bpj3umOoio4HG6SU3KYNWEFm1ccRfNVGeXuRdsudVj2ww48Hh2b1cH6lYfxxAazY/1ZpFNnwts9KHtHBPDOdNqqlUdBB6kIXCFGNKMkpb5KijWRPr8tYNezQ8koo6K5dfTa/pQ9rWHNdTJvzi7q1C9Hpar/swrSIvwjkCWE6IrXQqAZMARACGEAHvpHv4gwFeEfgZ1L9nFqVxw9Xn6U0rEluXwigbfajUfqkkmb3ie27r03J5fTjTXHnt8ORWLPc/yPCJPL4cJoNv6lTqJxh5o0/pNbdXBYIBOXv86+348RWDyQRTM2gpT4BvsxbNzj98zRaWBTVny1AWE2El0rlmvxKXR5shmW/OaxDdrXoEH7GveM0zSv8Pr93lM5tfs8tVtV5ePlr3M17ma+yNxEYnwyS79c7xVhm0yAwO3ycHL3eSwWA9Ycb6xmw9ydPPF6V5Kvp/P5q3Nx2JyoBhWDEETGhN+z7eA7PI0sdzS59QvwodMTTZj5+s9s+Xkbw6c8xZrvt5B2M5Perz56V1+6P+DjZ87PHeWLrlUVdG/11I1kK3qSlW/GLuXdr5+hdNUyJMSnoigK4eUiyMuyc2zracb2moKuS16Z8Sydnml53+8L4MTRBBbN24vD4WbS+JX8tOQVHq3mrQyUUuLWNIzq3cQ0JTOXrUcuUrdSGSqWCaN81VKoQSY8bg2Eiu5vwGhQ6dHmoXp93oWES8ns2nSGhi0qUb9FReq3uO0z1L1ldbYdvIhA0LmFVwPkZzKxaNgTzGEzV7cm0PGxuoRHeoliz0Et6NSvEUd3X+CzUfORuuTnLzdhdetYQnyx2d1IXwPGaAseKaleKoLcbBsDG9UoEMQLr4e3V9Okef2jGjcuT7v21bh4MZmXX2nP/CnruFXDl9zyvow+vJtNrSrTumc94m9k4RaCn1cfIr2qH1LTCbyh8f28XXz0Tk+klIz/ZBU7dp6jXZuqvDu6G40ercLmuYdR3DoxtUqSkJCGwGugaXO7sRiNjOvclknfb0aRCnkuxz8vTvL/Cv8wDRPwPPAlUAJ4TUqZlL+8LbD2YScpIkxF+I/HofXHmDhwOppHY++qwzR8tA7HNp8kJz8Ns+zL3xn9070+SD5+FkbOfp6l09bQ6dk2hJYsxvlDlzi88QQt+zaldOyDW1L89OFiFk5eQ0BYAO/PezuIgEoAACAASURBVIWaze9fal8YajWvRK3mlVgwbV1BNVnytfRC1x0yoR+dBrUioJgvR7acQTWotOhZH4Cr52/xbt8v0TWdCQtepkINr6j5RnwKI7tPxW51oVmtSF1yYmcc2em5vPbVs0x76UfKVCrJvu3n0QMCUTUPPqpEGI2YLEY6P/MIj3Svx1tdJ4GUtOnbmOuXk3m161QcVgcmBXo+15pyVUvRovtfV86lJWaye/VRajSNpXyNKJZOX8uWBXvQdZ30xCwunryGx6Nx7XwiY+ffa4fy2PB2OJ1uFs3YhNvlJUooCqqPGYlA0zSsOXYAylQsidnHhMepcWjzaY5uO0udJuVxObwC/C9fm0vlRrGUvY9vlabp/DJnFw6HGwRYLLfJnsPtof8PCzmflMqwFg0Z2darw5FSMuiTBWTm2lEVwcqJQ7ielU1iy2I43RrFVBPrxgxBNSj43jHfw8Dj1hj1zPfYbE6WzN3DrxvfwP+Oyrd6VaPYOOtF777mG2cePnmV0R8vw2g28M1PzxITdXcEz2wxkpWWi9TB5fTg8tiQFhO5OXaEqmBySyb2b0/NOtE83eULXE4Pn+xfyJLtb/P5wC58v/0QdUuXZH96HLpH5/0RXTCZDIwc9WjBNl78oCcrv/sFVHBInS4vzSTWFIDJx4TL6cGQ7ITyFgLP52KyCyqW85LujAwru/dcQErYsi2Ol4a34+1hnWjZpgq6kDSNiUYIwYJTJ1l74QLP12+AIgRdqlXiM30zHl3HVs6HTqWjadgwpii69F8OKeUFoFMhyzcAGx52niLCVIT/aGiaxicDpnuf4IGc9FzW/7i1oImuEIIrJ6+SeiOdsEKMFjsOak3HQV6Pn+y0HEa1HIvb6WbR5JUsz/gJpZDy5Tux/OsNSKOB3GwHb3WbzFPv9mTgm13/ckxh6PhEU1Z8tZ48m52IkoH0inwBk8XIG98Ow2FzUb9tdSx+ZkqVj2DB5NUs/HwtCMhMyabH8+1Y/eN2MpKzAVg6czOjvxkMwO61x7HlOtF1HUuQP24tm4p1yxEY4k9w40C+OzKRvGwb/WqNAUAxm/hi/VtEVSxx1/4tuDCNnPRcIstHMObpWV4ioShoSKo1LE/D/MiWNdfOe32nk3ozg7dnP0f1JrEFc4zsOJGstFwURWHO0U/wC/bzao+EKHAMl5rMdwc/RM1HqhAYcrvqzGA00HVQS5ZMXettGmswYPA14xfoQ0hkMeLP3kSVOrqu89TobpSrWoqfPlrBrYQ0dEUnPTUXoQivfYLFwozJqxkzaQAhhbiwx19O4dz5W+gGBUVKxt9RZXbixi2upWchgbn7jxYQJoDMHBtuTUcYVL5cvpuYqOIoQoCAwBBfAvwfTvv0Z2iajsvl8Qr+NR23+17bA4NB9W4Lr63A+GE/YbC6cIZaWLftDC8904rUPCunkpLRbjiY8ulagoN8qNEohoyUHHSTgesJ6ZSKCOLmrSykLomJCfc2v83Xznk8OhJJ+5qxtK+Z/932KtwjCyAyujhDWzdi9q6D6E4NJVsjXssk0t+M1CU+xX1xH83ClOElpklx3gf/4GBfSpYIJiU1h5IlgguOW5MKd7fieaJGTRooIbzX9wdmGRQmzx/O631b8evmo3RtUoVh3Zr8j453EYpQGP76blCEIvybQ3Nr2PLsBa8rN4pFUcRt40gpiT95lZmjfnrgXNZsGy6Htx2ILcdO98CneL72G+RlWe87pmnXetyZifv187UFUYxC91fT8eSb8O1cfoj5k1eTk5HH+cOXcVqdaG6N1d9txZptIzMlm7F9pzPlxTm8+/gXZKVkI6XkVkIqbqcbt8tDUkIaALVbVMZk8UaF6rW63QC4XssqGM0GjCYDz33QizknJjFlwzt3EUG/QB8q1CiDyWygVLkwSsXcqyXyD/Ylsry3QW/JqFAMRhVFVejQvzEN2lUvWG/B1HXEHYonLTGLz4b/ULBcSklWWi5up6dAS9XisUYMHt+XQeP7Mva3EfR8sQMtHmvA+cOX+WTwLIbVexs9v9TNmmNnWN236V/2ZVw2J5rNibTb+XzV68zaPobLx64gHS5O7DpHYnwKiqLwSI/6vDVrCGaLEd2jkRCXSOcXOyLCQ3EFmtlsyWHkiJ8K/Z5KlgzGbDZi8TNRqUYZwiOCCt6rXCIMX7MRs0GldcXbqV4hBB8P60KlqDAwCFYfOMusFXsZ8kh9utSuxFfP9LjvefEgmC1G3pvSj9oNY+j+VBPWrz5ORnpewfv7jsTTof90uj3zNdduZnD6aALSoyMAU5aTJnVjSMnM5dHZcxm58nfe2LkJT66DrBuZ3mN2OZmaNUoxb9Ob+PuYEFYX2Fwc2B5HSPEARn/cm2ZtqvDRjIEYjX/vOXtE26asfvEpAm9Ib6pHEUz6cQhRMcVxplux5Nwmf1t2xHHtRjqqqvDdzEF8OXUgs79+BkW5f3Jt9keryM6wkpGSyxfvLKZfm9qs+uTZIrL0r0D+P/r7D0NRhKkI/1G4cuoqc95bSJXGsfR/+zFMFhNPvvc4v4xbhJRwaudZhkwcwM8fLMLt8qC5NW/rkZLFHjh3aGQxhCqQmvdKdtpc3Lx0i32rDtP+6cL1Lm/9+AIVG27m+w+WoBhVQiNDMJoLv6wSzlxnZJsJuJ1unnyvFwumrMXj1ji56xyvfvE0SAqiSAlnriN1HcWgYrc6iNsdx4CYl6nRvApv/PACKdfTUQ0q/UZ1xu3ysGbeXnTFQOeBTWnXt3HBNmNrluGXAx/idLgpXrJwobMQgs+XjeDmlVQiyxZ/oB2BLccBmo6KpGW3undpt7LuqEbT73ALFkLwzvfDmD9lDc261uXk/kt8O245iipo1LEm1yesZMi73Yk/kcDOlUdACLIy7bjsLix+Fk7sOEvytTSkLjEYVCJiwuk3qisVapRh8bS1eD0EBAaDivGOXm6V65WjbsvKHNx4EiEE9VpVY5m/lTSbHeGRZLidd322+IwMhq9ehclgYMqsJ7Gn2KharfRd6wT5WNj46rMkZedSNvTu86pNvVha161A85Ffg+bVxnWtU4UyYQ8WmT8IjVtWJrREEKOe/wmPR2fbptP069OAOs0q8vOS/bg9GppVZ+ue8/RsWwNfXzNWXdKqSy1cdjcDnp6Nn66TWkvFHaBgTM9D6CCFwGl3cWLvJV4c15tOj9cn/twtDEaV+vn92Fq0q0aLdl5t1K5tcVy+kES3XvUJDQtASsnydce5eDmJ6pFhqEDbbrUx3lGtWT48lA/e7MrS7cd54pG6RJUJIf7cLaQEk48Jj0XFqemoQRaM+eef2WykYuztSOeN6+ns2X2BBg3LE1Pem7qzW53kZlkLzFutWbZ/+TgXoQj3QxFhKsK/NfKyrJzceZYqjWIpFhHMuN5TuHkpiWNbT1GpQQXqtqtJy75N+fnDRQDoHo2GnepQpmIkKdfSCzq/d3y2zQO2BEJRGDrxSQ6sPYKuS07vjsNpc5F0JRlrtpXRHSZw48ItXv/hRVr08jYyFULw2PD2tOzVkLjD8dRsVvG+4u+tv+3Dlq+x2bn0IAhvpV5elo3I8hHM2j+Bm5eTyc2y8vlLcwAIKxWCLc9B9o1UNE3n5K44zBYjn656s2DeM4fiOX/8Kh6PxrqF+xg+ofdd2w0o5kdh7WR1XcdhdWL2NWPLtWPNzEOUK/7A43TjUjIep9d6IDEhjVrNbouP+7zcgT3rTuJ2uBjxxd2NWZt2qVPQdPfVzpO9OiRFsGPhHoQiEIqg3/C2KAYVXdMx+5mx+FlIvp7Oku+243ZpGM1G/IJ9iapSmvCyYZw+fIXFX21EtzkQfr44XR5e6TSJOfvHYcu183bfGbicbroNa0OFGlE07VKHj2NDeGvuWkx2D2UDg/jlx508ObgFQgim79vHxYwMFCFYdOks77dqxcXTN9i98TQtOtWgQlWv9YSvyUhMWEihx0cIwVcvP8a8zUdoXbtCAVk6diieSR+uoERkMB9/MQC/B6Tn1i09xPb1p+kzqDn1m3nTX3m5DoQQaJrO1cspzBi7DCXEl7Qw71yKKmhQuyzBof7M3fAGWRlWIiKDGTN+OZ78iFNwpkJwBkjd28cwKNiCI9fBgJEdOX4wnlZda9O4TVXMPqaCfm1/4MzJ63w2bgVut8ah/Zf5es5QDp+4yqyfduDOsLItxY5BVTiw4zzRVUtSOro4bTvVICUjD6Mdpg7pQaCfd1/7DnmEpXP3ULVeNMZgXzLsTp56qhklC6lg9Hg0Xn5+Dna7mx9mbSMmwMKbn/Vn3hfrSIxPAU3D7GPixQ8f+8tjWoSHgAT+Ya1RhBCj/up9KeXUh5mniDAV4d8Wu5btZ9LTM7xaB38Lv1z5Bp9AHxRVQUqJT4APUkre7jihYIwU8F73T8lIzEQ1qsw+PoWS5SIeuC0pJSOajeHG+UQCQvwZMKYX5w9exO30sOmXnZQsX4KEMzdw2px8N/qXAsL0B0IigmjW5f4mjgCNOtVmxVcb0HWdx17uwPWLyVyNu8nQ/O7y4VGhzP1sDXvXHEXz6OiaTsmyYUxYPILX24zn/OF4qjWrSEDI3W7SUbERGM1GpIRq9csVLLfm2MnNzKNE9L0ptoVfrGPuJytB1wkN9cXm0nA7Nao2iqHXC+04seMsXYa0oVSFEricbr5+eyFJV9N46dP+vDyxL1NH/UrJqFBaP3Zb6H1kexwn9lxgxvq3KBldnF+m/M6kl3+m9WP1efGjx+8iko8Na83nr81Dy8lD2uxIATfPXKdEVHEmLBrB0W1n6Phkc3KzbHw4+FsSziUiggIwmwQZGXns3Xaeg3suowuB9keQSAg0j47T7iLlZgaz319M4pVUAE7svcTzH3ntGppVKsueT17i6T5fc+7mLRLi06hWozR1G8RQo0QEm+MvA1AjIpz0jDwGTlmAM0BlzrtH2bTwTcx/ctUGsDldLNl9CpnlIsAuadG+Gp+/cLfb+sxpG8lIzyMvz8GOzWfp3LPufc+VpBuZfPPp77hdHs4ev8qK/WNRVYXa9cry+MAmHD98hfN7LuJ0uHGgowGoULd2NNUqeosVLD4mSpTyisu7dKzBoSNXUBTB16/2w51lY/LphYRHFuOFsT1wOd1MHL0Ym9VFYLAP0mwgrEQQ4yf3xz/gNrGz210IIdB1id12d2NgR4DElCxxuzX2bTvLvu1nMRTzB0UwcflONE0nJMiXpZOfRQjB4Fc7MPjVDrz18i8c2n0Ro0kl7lIii66eo23l8nSpfruNkNut4XC40TQdpCThUgozJ6zEkWPL95My8uonfaje0JsidXk03ljyO+dupdLcHM7BpWeoU78cH37yOKpapET5L0Rhz4x/G0WEqQj/lsjNzOPjJ6YViLelhKzkbCaseps1szZSoU45qjSKJScjl9Trd1SV6ZAU720NZFYEl48nULJcBJeOXyHpSgpVGsey6eedRFctTZNu9QuGuZ1uLh27AtJbkVSqQkmMZiMgaDOgObF1yyHwpsxqtqiCLdf+ty0IqjWtyC8XpuF2uile6t7oxKWT19m3/iROl4YQULVRBYZPegJFUfh861iyUnIoFhF0F/Fw2JzsWnOcUZP7EVQ8kNj86rika2m81GIcLqeb3i91ZND7dz95L57hLQyRQpCRbkUqXsftk3sucXb3OVxONzuWHeLX81+wfdlhdiw/jNPhZtqoeUxd8yaztrwDwInd5zm9/yI1msQyfvBs3E4325YeZPbO91n8zWZ0XbJ+wV76vtSOsEhv+sqaY2fp7O2YfMxEVwglbu95FEWh3iPeSFW9NtWo18ab/hnddwZXLybnNwSV2J0Sxcd73L2l+gJhMSNLhuMoZsKclEPFFrFEVyr5h1WV18unEMGEv78ZRfXq3fzyox5D6tajcvEwTKqKbtPp8OF3aL4KCEF2aQsej4aZewnTuF83se3QBYIPZmFQFJbN28e89a9jtzqZ9OZCUhKzKF25JEmJmV4xdextEp9ltbN8/2liSoTSsloM6Zl5jHhnPu78ljpSkyw/dZZtl+IZ2rg+jz/RmLMnrmGJCMTgdFG8eSpXr5QGXWVAjwaFnnvNGseybP5LSF1itbuIqFSSX3e/x4lDV3jr2R+QeEmJlOCwu9DNKhkZeWxZf5IefRoWzFOvYQz9n27G+bhEBj3vFXvXrxXNi4NbMXbrVqRUCIq35n9fkOsneXel17xUcUqcqTlousSg3j6HjSZDAQmbs2IvaRWMbDkfT43IEkSFeKNNPj4m3nq3O7/8uJPkC0mYzAaiKkTQ9YlGfPX+UsqUD0cr60ePr+bSsXpFKoQXZ/fFq9jdbhbZMiiVksOhbXFcuZxChT8VNBThXsj/QH3RX0FKOe5/Y54iwlSEf0t8MuA2WQLo8ExLSpQLRwjBoPG3K5Z0z/2bpEZVKU29DrU4f/gyr7cci1AEZl8z1iwrqlHl0w3vU72Z9ynW49ZQFIGuSTSPRsX6Mcy/OpOcjLyCCNX3Z77g1O5zfD3yZ7YtGc6ob5+jbf/7t3a4dPIaY3p/gaoqTFzxOtGVIwkqpCLrD0SU8YqpffwslImNYOr6293lFUUpMFt0WJ1cPXcToQjmTv6d0wcuI4BPFr6MwejVf5zeexGPR8Pt9LDmx+10e64NoSVuC5cbtq/BzpVH0D2at8dbvreRxdeEZtMg3+jQluvgwIbjeDwaiqpw40oqBzafxqgqhJQI4v3+X+JxezD7mHE5PYDAYXNh9jERXjqErPRcfPwsBN0RFdu/6TQ34lNw2l1kWn3oNKgV/sG+PPbK7XL0P5CZ4jWaFHj3TyhQrnJJcnKc5OU6yIy04LKomDwGHBX9qPlIYyb27oKiKLz51WBGdZpIYtx1Lu3N4us35vHSlNtpwo+m9Of3VceoULFEQdm5EILm0d5KrGFfLsbjPTAIXVKjZPh902gpt7IJOJ4NOmi6TkZ6HlJKtqw6xrG9l3A5PZjMRsZ+2pfw8ECiyt2O+o36cTUnrtzCoCrMHN6LIwevkJyYhcXuAlVBaBrjNmzF6dHYn3Cd8RUac+rENdwujaBQE1F9Myih3SLQEEq96lH3Pb9MJgNDXv2JpOQc6teJ5tOxvTl38joej46m6Yh8hqkYFXThrYgrUfpujZYQggH5/ePuXNbz0docvHqN9VmXsDp0/G7akUaFnCgLIEGRBAdaeK57Ywx/ivC8NbYH33+9hc3rTmC+rhGW5SGzhQFdSk7dSqJcSAj+ZhNt2lWjTbtqnDoUT3pyDs071sBgVJm69FVcTje1Pp2BZhSc27WPT7t2wKPrmFUVke30+jHZXfgWEh0swn8PhBAWvKaV1YCCi1lK+ezDjH8gYcrfwE68XrUGYImU8oP7rNsbWAI0kFIeFkK0Bz4FTHityd+UUm7NX3c7UBL4o8Spw9/pGlyEfy40TePwhhMFr9+ZP4I2/ZuTmZLN1KEzUVSFUd+9QFDxQG/Rjaqg53eaL1+nLMUjQ+j6fAcad/Wmi67F3QAhcFideNwaHreGwWQgN+N2lZGUEtVoQNfc+U+8Cr6BPvgF3TZQjIgOY9uifditTqQumfzcd1SqX4HSFbyEKulqGgHF/PDL98dZMmM92WleEfSq77byyud3a3r+jKBQf2Ztf4/4Mzeo2TS20HVcDhfD6r9D6s0MJCBMJqTJhMXXTGpiZsF69dtWw9ffgtPmwupwM7rPl3y/6/2C99+cOZg+r3bk6LazzPtsDU67C0VVeGvWs2TeyuTw5tP0e70LP45bwoF1J9AVBWE0kpvnYtzQHzBpbkJLBiME6JrEnmsHKREGA8M+eAxVVfhq/Vuc2HuRzb/tY2S3Kbw2ZSCxtaIKPKLMPibqta7KK594U5I5GXl89cav3LiUTHZaLo+90Jaeg1sw8815eDQdxWKmVvOqvP7Fk4REBPH52p3M2XkECZg9ApNTUMUcikFRuJqayYIDJ7CE3o4Crv52E+UaVeTRxxsghCAk1J8nB7fwpnnyoes6Ez9cxv69F8gKUAlAwVnGyJiB7enW4Hb14Z04cfUWqccTMdi98+iKwFrSwvvf/s7Ra9fQPBr4mrh8PQNjfr+1k0evUq1WGVRVITPPjkfXMRoUcmwOrrvy0HyN6CYV1eGm63Ot+coTj0RiEx5+yjyHQ9VRpSQv3YV2ugSG6jfoGNkHgMxMKwvm7SEyshg9etUviEjeSMwkJTUXt0dj36F4NE2nbdfabFp1jOxMK7lOFw4/BVOejjXcTE55A+/u28HyOmUItNxLFKWUnE9PYvTGrQT7WHg8tjw7tsVhL+2LGhlAnuJBKnjd2IHm5UrTr8Pdacg8u5NXPl/GtYspmDSJAIxWnUf1MN5Zu5GzySkEWixseH4Qvvli/hoN7jWhzct1IFwSVEDCt1sOYvB4o4ehx21IVQVNI6xk0D1ji1AI/k0iTEKIMsDPQATevfpWSjn9T+sIYDrQGbABg6SUR+8z5S/AOaAjMB4YCMQ97P48TITJCbSRUuYJIYzAbiHEOinl/j/tdAAwAjhwx+I0oJuUMlEIUR2vQdSdDbsGSikPP+zOFuG/A54/TAnxPr1WrBuDpmlMHTqTA+u87RH6/T6Myg1jeXRIG1TDbcJ05eQ1Zh2ZfNd8LXo3ZtuCPVw/f5Mn3nmMnYv3Ub5OORp1uf3j7Rfoy4SVo9nw03Y6DW5933Rbw061mfPBEsCbzpr9/mImLHiZeZ+tYdFXGzCaDMzY/C6RZcOo37Y6e9ccA6BOq8Jvtn9G8ZLB961mA0i9kUFGcnbB5zUaVSLKhVGlYXmada5dsF5wWCBjF7zK232+xOVwk30HOQRvxCqmWmlvWuuz1Zh9TdRtVZUmj3rn6PysN92yacFekBIFCSYDKgLN5cZhdZJ4OZkh4/twaPMpTmw/C5qO1HQQgn3rTtCwfXWs2VaObo/D6XAz/c1f+WrjO0RXLMG3W98h7VYWleve9tX59v3FbF20Dz2/SvGb0fPRne4Ciwiz2cgTr7QnJL/Ef/+Za6hWQIBulLg8Gj9vPUKv1jV57vtl3MrMwT9IEpg/vzSZ+fLDFZy4mMj6sDSsaTZiDmtkXUijUePyjJs9iKMHLrNj7UkUDcy5Ald0AMOa1KdlTBSTR8zD7Gdi6JjuBATc7n/29q/ryFDcBCsgJHhK+OAKMbLxwHk0i8BY1Y/AK25cLg/fTFnHrcRsEPBI26q8MbYHk57pzOcrdlKpVBhZ5zLwpNqxVjVjr1yCET1b8FSzulS5nMAXe/ZwJi2F45kpRDQMwG9zJrqqYSCaCTUmFxCjTyes5NixBIxGAyGh/jzyx7mnCpQQE1qGxqPNqqCqCsUjAvl+5QjcmkaTL74hS3fh71BwOSUeH0Gy08b6uIv0rXO3g3xaXg4f7JnK4URJalYQfrdcpK3YRwiC0LqluJ5nx+hnwKBKhA4Gt+SyIa1g/PlTN7ztUzxOrt7KwGGQEGDAlOHEkOXEfiKNIwbv74CUDq5nZVMp/P4FCSHFAxgaXpkVp+NoV6sii25cRkowCIFuVlE9OiWiQv+2JUIR/r/DA7wupTyazzGOCCE2SSnP3rHOo0Bs/l8jYGb+v4WhgpSyjxCih5RyrhBiPrDrYXfmgWeP9P5a/fFra8z/K4x/TgAmAQXlO1LKY3e8fwbwEUKYpZTOPw8uQhH+gMliolSFEqTfysTiZ6Z46VCmD/+OwxuOF5T8a26Ny8evoOs6RrMRt9ODalCp3ea2J5DL6eHgltOUjgnnk9/fLVjeeWi7Qrdbr30t6rX/6x5hMTWiqN62Jqd3n0MIQUBx7+1427KDuJ0eFEVwau9FIsuG0a5/UyrUikZVFcpUfLBr+MOgZEw4dVpX4+CG46CoxFQrTffnWrFuzk52LDtA235NC9atXCeafq904OiOOJ56o0uh81WsHc3EZSO5lZBK86510fJTb7ouUVWFZz943OvvZDZSrXkVEs4lErf/Ase2naXlY/XxON2MnP4M7z01i+SEFISi8NXoBSiKoEX3erTr1wQEmH2MlLqjdUp4qWKEl7o73WP2MSIUBTQN1aCgqgpOx21hcd3W1aiS3yQYIDPLhgAUITBoAjc6uWYPH6/dhtySRHG3hrVuMCOWj+T7MSuw2b3p2z37LpLYykDkdhuZuTr4Wzi06zzxcbeYPH6l1xxSAY+Pgo+PiUdbVWP2+OXsXHscHcnKsxf54dsXKV/Ca4QaEeRPSnQuuWYD7cvHcNVu5UJaBpouQYC7nA/KNQ2zQSW8RDCJidk47W5OHLmKR9fx8TUxc3gvdmw5y+SJa7AbJKWDffnwk17ULe+1NHikfFniszK4sNur12vVsgKn8rahlHRzMTqFAV//zM8vPAlScv7sTXSPjiY0NE0nL9fBqeNXmbR4B5lOJ+ZiJnr2qIuUOh7pxqiYScrLw2rQkZogz0/SukxZDiTfBKB6yXuLJvp+t5DkHD9wSNRAieWaC3sxX4QuCbqeg8muoRgEuiJxh/shhKBdc2/6e/fmM0x+bxkAXZ5pgkBgsZgIKWXBduUquknlitNFg4xiHCmWTf0ypahQvPCKxDsxakQXRtEFXZekvjuPC+vPYbAYQCooZgO9nrp/+rwIf8K/SZWclPIWcCv//7lCiDi8QZc7CVMP4Od8rrJfCBEshCiZP/bP+MMkLys/iJME3NvT6T54KLothFCBI0AF4Gsp5YE/vV8XKCOlXCuEeLOwOYDewNE/kaU5QggNWAp8JOU/TWpWhD8jIymT7NQcylaPum/5vRCCrw9P4vTuc1RuWAGLr5kze87jcWsIVRQ8JSqKwpLPV+OwOqnVuhrDpw6ibLUyBfNMHD6H43suIHXJtNWj7tsG4+9i3LwXmfbWQhRVLSjhf/zlDnz11gL8An1pkO9Xs3vlYX78cAl1WlflpSlPPtA1/GGgKAoTlo4qiLrY8xz0LfsKHgRnjl0j9VY2/V/zaoGEEAx4rRMDXrunIwDg7aX3XwHySgAAIABJREFUZudJXDgST7/XuzJt/XG2LNyLxd8Hl8PN4yM6MWRcH4Z91I+b8Sm81PZjXA4Pr0zuzwsf92Vow/dxuzws/WYTn654nVEdP8XtciJUBV3CpVPXGTX9acbPe4nkG+m0fEDrlOfG9SEkPAiX001YqRDKVS/N6K6T0VxuGnSszdhf725vM6hdPaau2EV4kD+Pd6jFjF37UBFkJmRiyHSj6JIqef78suAQecX8ADv4GGj5eG2uZMahaHf83GgaCQlpOPKcuIIN6CFGXh3ZmV5NaqIoAr8gH6TwimFdCvy65gBjBnVENah8+Wx3fly2j42HD7A34TxuHwUl3EzrJrE82b0hDjwUe95AVnoe2Sk5nLmYSF6ASr32len+wzyupGdQ2uBP78AYcgIU0CXZuQ4uHE8sIEyTR//GllXHqde1LN2ebkb3qpV4J3IfN/NycOWZuHE9m4tJaXiS7Wh5TtB0kNCkaUWe7DYNm92FR0pEjDdyatfymHnxTayeTFpHDKVuSE+alCnDjoQEulepzJRHH+XwtZtEBPgTHRLMrvUn+W3WNlp2rkXvoS1JzrZhuSEJOuci6REfMFvQi3mNKSOrlyFn9yWkw43q8mDIc2P0MRKueK/b82du4nJ5kLok+WIqiycPJik9h+yrGXyy92dcYf643R7cFzIZ268x/fs1eahrx+lwkZ1uZfueC1zcfAmhg2b30OupZnTq3YCoQgxZi/CfAyFEWaAOd2exwEugrt/x+kb+ssII07dCiGLAe8AqwB94v5D1CsVDESYppQbUFkIEA8uFENWllKfzP4QCTAUG3W+8EKIa3uhThzsWD5RS3swPsy0FnsKbq/zz2GHAMICoqPsLGovw74/4U1d5tcm7SCnpPbIbz370xH3X9Qv0pVHnuiReTiIvy0qTbvVIjE/C4/Tg0tyYfU2MXz2adx/9GF3TObHtDKd2nr2LMMXH3cRhc2HxNXEjPuV/jTD5B/ny3uy7NYKPPtmcdn0bYzCqnNl/ia9HL+DQuuO47C4ykrJp278pVRtW+F/ZPlBANg1GAwaz0euRKAS/TF5DrxfaFbQauR8un7zKipmbuHLqOlLC4mm/43G6QQicdicgWDx9HRVqRdOyV0Nmj/kNp80FQvDDuOVUqReD5tGRuiQ3w8rSbzYD3rYdioCAEH9e+MirqfHqse7WZFmzbUx4+htSEzN5a9YQhMHA3EmrqdoghkFvdkXkmymOW/gKFv//w957xldRbu3/35ndkp3eCAmEhBZ6DYTeQZReRERUmoINQQ92RY4FRRRRUYoICNJ7L4beew0tBEIK6b3tMjP3/8WEkAgonuc8v8/5nyfXG2XmnnvuPTPZ+5q1rnUtF+q1uF+38mzXCIZ0aILZaEAAAV7u2BUF93g7c8zxSIBruBcnouMx+huxyq68N6k3PXo2Zkh2C46Gx7Bo8hZEkZ2ufZrSOCIMg8GAu02jX/vmPNmuid7nLjWPMe/1JUso7IqOpaiKCweWn+b4jmu8PK4bfXo0prqLhx531wSyXcMiZEIMrvz2TRRDn29HWLNglmw6y5r5+7HbFajiwZpDF8lsakQRgjhHHqv2nEcY9ebCRoNMpZICgcICG3u3nEcCsncm0HFiFSwGE182/ojxy5Zx+lIOfu5uhAX44nBzYDYZkIFGzcJY8+sB8nKLQJKQZYkeLcJpHVED18AE7HcKEGicylxPC7+BLBg8CEXTMJaQk8hQnaypqsZXb65AUVQSYtNo+1hDpvTtxpxfd2GUNSpdLMbmbwaDhMlgoE6TEF55uRtJtzP5fe0pzh27AYogpISw9BvailOHYrAVO3j25a4E+LgT4OPOtO+ikJ0KslMFVxN2m5Ol07eScDyWid88w8xNB8kqKGLSgE4EeJW31sjJyOelnl9RlF9McIOqqGYDsl3BIMu07Vq/giz9TUj/70IX/pIklZXlzBNCzLtvPZLkjs4TJgoh8v6VE5VwlTwhRDa6Lvv+L5W/wN9K6AohciRJ2ovexO5SyWYPoCGwr+RLvDKwSZKkfiXC76rAeuB5IURsmbmSSv6bX5JHjOQBhKnk4s0DaNGiRUUE6j8Ymqbx3cQlnNkbzYgPB+rpGPTS90l9pnPjQjyaKiHsDg6sPvqnhAngyMaTfD7sWzRN6O1Eytx9IaBa3SolrtROJFni53eX4nQoDPmH7n8zfupQpk9cQnF+MYc3nqJNz8alLRYeFt36n8BkNqKqGu89+S1OuwJCYDQbEQgCgv86pfAoUFWNld/vJOV2Bs+/0xf/IG++3PwW7wyaCZKEl687RvOfO3XbCu282eNz7EV2XTBtdcGpaFD6Fq8X4UsCLh6JodOgSBwFNv3yCwGqQli9KtRqFsa107eQzUbMrmbcvFyxFzvQNIG90E5WSs5D17B75TGij8fitDuZ/d4KsnNtpCVmc/nkTRq1qkWDVjV5td1HpCVkUinEj7knvyg9tqjYwelL8YRXr0SgvyeJ6dn89O5akm6kMXHqEJr2b0iAvxdOp8IHW/ehWWQcJgnNLPj+k03UCAugIKeY3evOURDqgWzwxLdtDfwCPKhUJ5AbMSnEZ+ajqhr/GPQdN6ITadCiBl8uf4XWW84w6+P15FbxxOFUmDHndzq1CadL9/rs3Hae1JRcghoG0rBBVTb/chinXeHSuXg27n2Xm1fulLbNMTk1fFxdcXO1cLMwF2uyilEyoRhkJOCl4R3p0lFPYVndLNSqH8ztG2kEVPbivWs7OXQojpHhLZj9zAgSMnOo7O2BxWTEajGxcP0EEuMzqVUniMU/RiELgQZUC/Xnkwk6Gc1zBuAodOXcptoEeVSjeLwDVxdzKVkqC1mW8PCxkp9bhCzLuHm6MKhaAwY2qc1X37+GXKAQ08QT10utcXGYeLxnI6oEehNWK5BWHetwbO8VAoK8qNMoBFuxA5PZwOzVr6I/ToJvfoliz/EYwrKdSJKENSOf2g2rcu3kTdScYo7vvsyaIxdZc+Qiiqphd6rMfKG8x9XVc7exFztxOlRSrqeghPli9nLhiXZ1CK727/nbq8D/CjKEEC3+bECJdnotsFQIse4BQ5KAkDL/rlqyrRyEEJokSW8Dq/7VxT5KlVwA4CwhS65AD/Ro0d1F5AL+ZcbvAyaVkCVvYCvwrhDicJkxRsBbCJFRcjH6AFH/6oeowH8Grp+JY9+6E9iLHPzw5m90GRzJrt8OkhCTQmJsKgCSqwvCbifzThZTh3/HhJ9eKFeJVha/L9n/wL5sslHmiTFdmTJwOsX5NgCEJtBUrVzftxZd6uHMK8CRb+Po9vNsnBvFrx+vxtXdhW+iPqRKzb82tPy7kCTdN+duyiwozJ/qETXZvvwoz0x8vLTs/1/FgY2nWfXDLpx2J+lJ2Xyx+nXqRtRg/pEpRJ+IpVnHen+ZvlCcCopTKbUSeGf+WOZOWUdmSg7CaEQTINn1aFLlku7xXZ5qxYXD1xBC0PRxXQD84YJxfPnqIoxGmeff6cvr04fx/uBvuXDkOqDfk4ehWt0gZFm3MajZKIQrF5KQDbkITWD1dCE/s4A7samoisad2FTyMwvwrqTrxV6bspL4pGxkg0TbwfVYfe4SBChUOZbLrCnr+eX3t2nZXo9o1Th1kfNFd9AAc6YdSUj8vuUc69edRlM1rJKGWsuH0GBfkpNzuHU7Aw04tv8ac7/bSezlJFRF49KJWAryiunUvRG/rzjBybx8ZFnCYjZiNhuxmI389MsYADRNsHvnRSjRMFlc9Whfl8EtuXA6DndPFx4f15ke3Rvh5enC7Dm7yS0qoMvg+kz7YiNSoZOGIQGlpF6SJGYse5mEW+kUeQue2r8EY7LCukOHadO7Eu261sdcRszs6W1Fu5HKkIjJyLJM6051cPNw5aV3epXO6WmqhO3A0yRfjCFNdrA69DTPP/Xg3muSJPHdmtc4vOsS4c2qMe67tdy8k8nLA9pR1Lkf2xIvgR08b2agaYKXPlvFpu9fRJIkjCYD7R/TdYWJcRlMeOpHHHaFse/0pu8zrUlIzmbz3ks4nCq5QjBydEc8fdzo/Vw73npqFnHZhQwe2wU3ixlZkjDIEu6ulvvW2LBlTbz83HDYHOTV8aHQw0ihqrFxy0nO74lm/p737zumAg/Bf1Cft5IKuF+AK3/ixr0JeE2SpBXoYu/ch+iXAKIkSZoErARKfyyEEFmPsp5HiTAFAb+W6JhkYJUQYoskSZ8Ap4QQm/7k2NfQdU+TJUmaXLLtsZKF7iwhSwZ0svTzoyy4Av+5CKjqW+rlE1jNn/mTV7H1590IISG5mPUSdKdOgGyFdg6uOUpQjUqM+vT+SNOvU1ZyaN0fU9Vgsph4ecZIqtSpzNZ593Ns3z+0VahWJ5i4y4mA4PDGk9iK7NiKHUx/cS4zoj78H+uKjm49w5LP19O2T3OefX8gsizz8tSnmDVpKZIQeAT6cmT7BWTDJY5tPUOD5qG8+MUwzJZ/zQ/mLuGSJAlDGfIVUMWXzgMf7U3a3duNzk+2YfcK/R0matlhvtn0D/ZvOM2+bee5eTEBUXJdolYf58lXe9BjeHtyMgvYtuggubk2stJyCajiwzcb3gD0dil7157gmbf6ErTmOJVD/ek0qCW3LiUQf+0OrXs1w+JqLl1D0471mLZpElmpubR6vAm5GfnsWH6U2o1DqNUwBCEEDdrW4cKBK8hGA0UFxRhMBpbP2Eb8gesUV/HCxcXEluhrqEIgmWSKa3lRqZIfQggO7rmCw64w4+W+7D57A2dmMWt+2EtQLR/277+KcKhgkLC6Wvjgrf5ENg5DUVSqVfMj7loKkibYsukcAUHeZCRl07Rdbdw9XZEkia+XvkxCUhZHT9+kTUQNLObyX6Pz5+xh87rTCINMl671eG6M3odw5sxd5LuYsUky7duE4++np5VeH98TgAVfbUO9lYUQsHLOXqbMHVnuvlcPr0yR4sC72IzbknxkBb46uJoGzUL5euEL5dawefHh0pcNfx83XvtkEKqicmL/NSoFexFWuzJe7m4YDDKyJOHudj8JATi84wJXz94mo4qZtZeu0zAziTsZeQgBS3aeYvd3rzAotCkiD97Yth6HUyUrrwhNCAwl5CwuM5sjsfEo5zJxOhQUp8r21Sfo+0xr/LzdsJhNGGQZP283xrzfr5TU/bT9LVRVw1BShOBUVXIKixne6Z6j/vyoE2w8dZkBLRrgO7op4VZXtuy6BA4V73MZyHaNOzkPb4Zdgf94tEOX61yUJOlcybb3gWoAQog5wDZ0S4Eb6LYCo/5kvqEl/321zDbBI6bnHqVK7gK60OqP2yc/YDhCiM5l/v8z4LOHTP3nCtAK/P8KMWdusXzaRga/1I3LR69xesdZ4s7fRJJlhACTqiCKbYgSywBJljAYDfgEPriEfsUXGx643Wl3Env+Fk26NLivg7niUJj/7lL6v3rPAPGLNRM5GXWJGg1DOLfvEpcO69GP2AvxnN0bTUS38uXSfxdTR/yEo9hB4vVk2vaNoEajavQe3YXIx5owd/Iazh6+XuoefuvCbRIuxlE1PIj+L/X4l87Xvk8zcjLySb6dwVOv3ZME7lh+lNmT1xJaJ4hpK1/D9SE/gHfRtFM9Dm08haZpePq6E1DFlydf7UHXIa1Y8MUm9q89UXo+0MXmKYk5ZKTnk5GRz4rvdvLK57p/ksPmZMIT03DYnJgtJpZe+BIXq5lbl+J5td1kNFUgm42ENArji1Wvl9oC1C2jS/IN9ConTpck3URUMhjQNDi44RSxV5I5su0cLjKY3S207lgf9/qezD98CkkRmPIFOQEwf8E+Vs8/CEj0HxrJqxN7cvrgNdSMfPKFRla+QzcyVAWdHmtMZOMw8nKLsBU7mTN7JF99uokDey+DBI+N7kSffs1IT81l6ew9tO1Wn8CqvuzfeYmASp5UDb6/qfOVS0nYbE6MJgO161WhajW9ms5Q5nl9UEq4SZuabFx8CCSJyM51yUjJwWlXCAq9V05vNZqZGzGId6UFKOjO3Nej72Ufoq7eYMnJczRqVQnzbv3rvU0PvQjh+39u4MC2CwgB0xa9wMsjOlE5wBNXFzN9HmtcOkdhsYOlG45jyyhk9497cDoUHFYD9u7BXExKwd1gxGIy0rFJTWRJorlfNfCDEX0jiTp+jRH9WmEoIdxFDidD5izDoaq42ySCLCY0TdBvuB7NMkgSPSr7k5xbyKR3B9x3Xe62MZFliSHtGpfbl5yVx/xf9+AwSXyXlo0EmE1GPAQUFzqRnbrh6d2I7/9GGv6/E9J/UpXcIeBPF1NSLPbqn40pM7b6X496OCpMKSrwb8GHA74mJyOPI1vPoNkdCE1DFNuQXFxA03TBMHprkVdmjsJhd2JxtfDYiE4PnM/D353s5Ps1MLJBJiDEj5vn4xj7zfPMnrAQVdFK5nahZpPQcuNd3V3oOKAFhXlFXDp0FaubGbtdQZIkvAM875v/78I30IvMEsNIT797QtQbFxM4vTcaW5EDVy8rQVV9uHVWJ5BuntaHTfdo5/Rzw9vHileZ8/06fRsOu0LCjVTOHrpG256N/2QG6P5MOwQQc+42QTUrkZ9TiIe3G76VPHnxw/4cWXMUxamy8qtNbJm3mynLXiO4ekBJuxgILuNUvfCfa/SmwiVNYSf1/4bHhrZm289RpfdGtTtJuplG1Orj5Yjen6HDoJZcPxcHkkTV8CBiopNACAyygVee60Sv53XH6Uj3Skz9aD2SwUS1UH+ijl1BaIAQnL50G4AlM3dSXGjH4VDwDvEjP9+G0WTgxVe6svfIFaa9sRIEWBsEUKluAN17NcbT3ZVBQ1tx6EwsP0xYgdOhsObXQzTrUo/jh2MwGA1YXEx0LqmKvIuxr3bj84/X4+vnTtuudUjLL6CShztffTecTetP0yKyBlVD7o8GRnSow+ytb2K3OcnPKmBMx89BCF79fAiPPXXPVqZB/RCGju7A+qX6PWrUuCovdJ9Gv1EdeP/2SZyqxhmDgXVbJuBhNpOeXkBBvo1rFxKxFTuxuJiIi0mlTuMQnh4Yed86fli0l+37ozEUOHDTdGG/SZPwvZKPXNeHFZ+MpKDIRliQL5oQ/HLsFIk5ebz2WGvGDCqf1iu0O7ArCk5VI88ss3X3JEzIpY7pa+ft5cCakyiS4GN/eOHFx4isWvUvn42EjBzWfLsL7yO613FOh0Ac/hYQAhGbibVQRUgyoCG5mCrIUgUAkCTJCrwJVBNCjJUkqTZQRwix5VGOryBMFfi3QNU0QEIIkM1m1OJikMAkCxwlXjruPm4E1wzk8tFrtBvYmsgnmiJJEqd2ncfV3YUGbesAusYmJDyY3LQ8jCYDkxa+Sm5aHhf2R1O3VW3W/7CNrDvZaJrAM8CD7sM70rZfC4oL7OV8mMpi7cytHFx7HFXV8A/xx+Lvw/blx3i5Qcj/qBnnjKiPOLThBA3ahONfRtgdWM0PoQksrmbqNq3GRwvGsWluFAaTgdgrSUirjtLtIZqRP8PG2b+zYMpqAFJvZ/DkBD2a1rxDHQ7vuIAsS9Rs8Nc/OJIkUbtZGLPeWQ4CDm44zbc73gUg+VYamqLiKNbvW05GHgv+uYbHnu1Ax37NiOhcn4799QCxqqis+347mE3IJhPIBmIvJTL74mq0gkJdSF7iAG4wGqjbPOyRP2uTjvUQZguqqvHZi7/g5+tKh77NyHaTmJkbQ9xBM690aEX71uF8OX0YaWm5dOxcjx9W72f7hVSQJfo/qxONlp3rEXctBQG8/+kgVCRq1qmMh6cr3y6O0qNZAnJuZJJkUYjs15rRvVoxc+k+1v9+HheHoptSOlUKC+yl7uC52YVkZuTj6mrGWhLVc3O3UCM8EM8AK0Nf+wmhQIdnm7HlRgwuBiM3EpxUSvXD4pSY8uUmXF3MfPrBAHx93AguiSYt/HJzaUpt/5az5QiTJEk890o3nnulG6mJWbz42HScDoW5n2zE8nxVFDRkWSKwsjfvvLSYpIQsrFYLb77dix+mbCAoxJcOj9+LrGblFuHp7lLasiQpPxtFVVGtBlr3agSZxVw6cxtuFuBbKBPg7UaAt6473Bp9jR8OHcOpqMTn5LBw2GBS8gswyTJ+blYCPNz4R4/2rD0TzXOtm+HtXv5lwcVqRpIk7nT34YZXLofWr2PRwEFEVq3K+mVHWTgrirqNqvL5rOdK7UTm7DzG/KgT+OxMwqgKkCXGNGmEaOiHn7sr289sI7UwC8XHHZCY8F6fR37mKvBfj4XoFkl3DeuSgNVABWGqwP8baJpG+0GR7Fi4D6FqCKHR4cnWPP/xU2QmZ/Nhny8QmoZPoBcxZ25x/dRNfl9ygMFv9MHq4cqKL9cjhOCdX8fTYXBrdi3ax5XjMQghqNmsOl2G6oZzA8Y/wauR75KReE+fl5eez9HNp3h5xsg/XaOXvydIEkITpKfmIReoZKWdILJ7QyK7NXjocUIIFn+2notHrzP64yep36q8NYBfkDf9X74/YlKjQVWmrX+T+OvJtO/bDFc3F4b+ow+vd/+cGxfjMZlN+Af70qR9nUe+zk6Hwspvt5WU90PSjZTSff/49hn6jepApSq++AQ8WmPurNRcZFnv/ZYYm8ozjd8lvGko784dQ0T3RpzefQlbsQNkmehTt7h2IREhBCazkead65F8K52ajavh5uNOUb5Nbz9xVywqSUhGI5LRqCvhJfh+xztY3S283vmfFOUW0bZPc54Y1ZmgGuXF9w67k5vRiRzfdUFvKyLpLS4yknNQHE7WVymGHIkf9x9lYOP6BHl50LjpPcuR/KN3MBWpSLLELzOiyE4rZMRr3WnVpR4ePm4E/sEw0yPUi6JzmciKwBGkE4dqgfqYmPh0bKoKYR6EyRbGvNwd30AvJr0UB0Jj1cKDzJuxE5PJwHeLXiC0RiU+++d6bt5I00XtRQ5QBFvOXMFulbA7VX6/HsuVpHTaKn7E3kpHliXWbjrNiyM6lq6py6AWrF0chXAIrreKx6GqmA33FwycjE5ALanG9PRy5ZsxT/P7tRt0rl0dq8lE7HW92EJTBZWr+bFkzzvljp86Zyfb9kejGATejXxY9urTxDWKR811YHSR6DSyKcFZXrz99GwAbPYHFGHYBS6pKgXmIrZcvso7W3chSbDgqUFEVqvKiLYRdAwMobDAdl9qbMCojkiSxDf5l8nDhhFIyM0lsmpVfp29B7td4Vp0EtHnEmjasjrJiVls+n4vFlnFVsULqy0LYTbQoVdT6tYJ5tj1eM43d8PS0pNfxz9FzeCHu4NX4E/wHyL6/l9ATSHEUEmShgEIIYqkvxF+rCBMFfhbyMnI59qZWzRsXas0tbRx7m72rj2FZDSiKXaE3UFWcg5hDUIIaxDC2vQFrPp6I8unri+tnFKdKgfXHCOsYQi2Qt3LdMbYOVQND8LsakaWJQwGGd9ALzRNKxVnC027b013K+XuQgjB2tlRxF9P4dlJvVEUjdWLjiBcLEiyAeHigiTr5Mm/8p/3lrp05DrrftqFvcjBZ8//xLJrDyvUgPjryWz/7TARnevRomsDwpuFUucPERWHQ0G76wD9gB+fB0FVVBRF5frZ2xQV6tVrkiQx/L3+pWNkWaZO09A/mUUnWIpTJbSe3p2oVpNQug1tw/Uzt0hOyCI7LY/zh65x4dA1PlryKkIIege+pK8X3dJAUzXSErMY3fJDHHYnzTrWo1H7upzYHa0To7vrcTVTs3EIBdmFpN7OoMuQVoTWCWL220u5fvoWmt1BwuVEts6LYtWduaVRPiEEk/rPID4mBavVUrrtbnsWo6sFg60QzSShCfBwuV+rZTQakCUJRdUoLrDx66pj9O/ZlFoNq5KdW8SR0zdpUq8KbiXzh8XaifPUMBaqdKxbjX5Pt6F1ff1aTnimM5Nnb8WnnpXnWtdn6dfb8a/iixmBzamRnpavCyyE4OSRG1SrHoCb1XLv86BfFr9iAylWDQ2QVDDKEjWrB3D81C0EAqOPmZjUDGoH+hOdG8Mxw376rD6Dt8lGgepCmi2fqm7l9X5ZOYXMmL8bJcwLs01l3m+vEFTZl7qVA0qJydDn2rJ+5QlatatdqqUqi50HL6NpenQtPT2f3ZdjqRsYTF7nG2hCUNM7kDMZ6WS39saUUExyPTdmLtvHxGc6A9Crfjizf9xDdpaT9JwsVnqcx6HqjurL1x1l7tE0wmpW4tjhGGRZ5unn2zG8TPNeg9HAoBc6UyulLu9H/U6Yjw996ugvEQ2bhXLxTBwGg4HQEh+l6e+vQUsoxCpDcR0fbM2r4O3ugtnFRGpGHt8s3Yuj2InDqLDz/HVeqSBMFSgPR0m1vwCQJKkmevu3R0IFYarAI8NWZOel9lOwFzvwruTJghOfIUkS6UnZepm6JJd6+STGptLH41kGvPYETbs04OT2c6Wl9neRejuN95dN4NKhq+RnFVCQXciiySv5eO0kivKL2blwD0c2nWJsk0n8eOILLK4WPljxBiPDXy+dQ5Ik6rSsSX52AR4+uqbn2M4LLJ62Gadd4dqZW7TtG6H3XzO74GIFD28r3Ye1o0XXBtT4i/SVh4+bbiRoMuDt/+eRm7cHzSQ3I59tiw/SsmcTjuy4QJuejflw7qjSt+oPF7zEkmmbqNW4GhFdHx7Zuov4q0m83nEKNoeGZDSA0YjRzUqzjuVTgH+FY9vO8vnzP4IkMX7mCIqKFX75bAOubhZ+2PkOs95ezqVjMQigau3Kpcf1GtmRfetP0a53M1RVUJBTSJdBLbl46Br2IgfnDlzl17NTmfvBSg5sv6hrlgwyJpOR1795lhr1gykusJc2JK7esCpGs4zDrhOhgtwiVKeCLJvISsnB1cOFGxfiEUI3wez9TGu2L9iLwWhg4pwXsFTz5feXFlIcbAEh42YuX22YmJjF6egEFIsByduK0dcVi4sJN6uZYpuTZ99chN2h4O/jxvLvRiNJEi3ahhN9+AYeuqfjAAAgAElEQVQCGNClMZH17xHP8NAAVnw5EoBnW00hMzWX2KvJ2MP9sOTLaE5Vtw+QJabvOcbcCxf5adIAjuy5SkiIH/G30lh08DRpJgVsEianxJMtGzK6U0uq+XpRq0Ygh5MS+OHsSX44e5IPBrdhVf5vOHIELtSnT82zFGf68vH4ueRmF/HhrOdo2kaPcppKiKGwGDF4WwkoEdO/P3kNR07eJLJ5GNM+G8KYV7o98JmY/etuCl00TAUgjCC5yNQJ9Kfoah2qmYPp1aI+NT0qY68sUVTXHVsNF8y5glVR5xj+RAsCfNyRJQkXgwn0S0DP2rU4eyoVk8HAtbXXUZwqd5Ky0YRAaCoXzsQxfFQH1BJtlNFo4Nr5eK4eieGXPr0JLKPtmvLNMK5eSqRqqB/evu4kZ+eRabOBpJdrm+wqrlnF2ApyGDtyHrZKLiCBVQKlipFW4RVGx/8y/nsjTFOAHUCIJElL0avw/qyqrhwqCFMFHhk56fkU5hfjtCvYb2dgL3bgYrUw9I0nSLqZSlJMCrfP3gAgv9CJZldYOW0DK6eVVLxJEFDNj6zkbAxGI0azkYUfLce7khdFeUXIBgN2m53xbd5n4Ou9uHUxXm+fEJdGzJlbNGxXlyq1ghjyj76smbEFIQQCwamd55j95iLeXqi3znDYlVLjyITrKQSH+iMZZIxGmZ7D23Lz8h2sHq40eEDX8z8irH5VPlk1getn4+g+TE97a5rGgo9WcfXEDV6YOoy6Jf3N7jYNFgKO7LyIEHBidzQZyTkElFRTVa0VyHs/v/jI13zHov0UFzvBYACDQe+dZjLw4qdDy43LuJPNtLE/I8sSb897Eb8/2Cuc3n2xVBNzcud5LhyPxZGehZJn5tSeaD5aOJYz+69QrXZlgsP0t/n9G04RteoEIHBxs/Dy5/o5HTYnG3/ew7WzcTzzj154+Xnw9pwXGJdVQEZyNoX5dvyDvEv1OHfJEkDP5zqSnZrL4k/WoNoVJJORF5u/R3CtQC4cvIpfkA+PP9ueXcuO0KJLfV75+lmeeqM37t5WrB6uOBWVwP71iYlNofdjTcqld/Jyi5j80iKKk3KQAP9a/ox4uRvNGoZgNhlJzMyhqNiBw6mSmJKLw6liMRsZOLoT9ZuH4WK1EBp+jyz+EYFVfcjKyEcIgdNkoFn7UK4cvonV3UJebVecTgf5RXbOxCUzYrRezHDidiLZaZcQxboGSlYFw5s0JtRPvz/tWtVi1bKr2JwKEnA+KQFbioXstV4YiwTqa83wT6lGatIBVEVjyXe7SgmTh7sLX70/kBPnb9O9Uz2MRgO349I5ciIWJIkTZ+JITcujcmD5KOraPefZvvci5xOSKK5sxuaj0aNJOO8P6MpnC3/n+JV4ZBmuFUfTsl5Vhof24/2OHflx7UGkLBVjppPJH69j+NDWpKbk8sGLPVi96xyN6gQzrHNzhnZsiixJvHD0J9LT8pAkiYBAT4qLHIwc14WY+HTGfbYSp6IyZWQPfhi3CMWpsmHBAZaemFLGxd5Aw2b3yOuoH1aTVlnBI9MFYZaRFQUtOQdJknF4y6gIJCEhC5g1vA8RNf9ay1eB/1sQQuySJOk00Bq9+m6CECLjLw4rRQVhqsAjI7CaH48Na8f+DScZMLYbLiUpDS8/D/65bDwAT9V8ndysErHvH19TBKTH681DXd1N2AptnPn9YuluVdU4vfMCANNHzqL9wFYc3XwKTz8PbIU29q8+SvuBkYyd/jwbZu3QU1p6YBVDGX2H2SQhHA6QZEyuZrYuO4IADAYD2xcfxOFQibkQT7MOdajVqKxB7D04HXojXYPRQJOO9WjSsV7pvu0L97Fu1g5Uh8oXz//Ir1f0NN2ny15lzU9RtOrRiI2/HiTpVjr+lb3xeUg13tqf93F4+3meHt+DyC71HzjG088DNE0nTAKQdOGx2VL+T3fpV5uJPhoDksSKb7by0pfDkGWp9MenzwvdOLjhFKpTZcjEXhzu+gkAmsOBl7cVs8VE68fKV9alJ2WXpgNP773Mqh92MnBcN8wuJmZsK6+FAfDydcfL1/2+7WUhSRL9xnZnx6L9pMZnIBtkUm6nk3I7HSSJ3Mx8uvRrxutf3fPmqhRyL5VkMhr4bcpz2BwKrmW8rFKTc3jp6Z+wZRQgCb0quk5oJXqUuW9VAr14olN99hyN4alezfh+6hauRSfxyqQnaN7qr8nzPxeMZd73O9h88jomNzO1awQy5PGmfDp+ESQIDBEBSF5GWobfe6YaBFUi0NuD1NQsZKeghXcgNULLp4nGdW7J2fgkLEYjT4RHsPpsHEorgcdthRsn/XhqYD3gAEgSyfGZFBbYcHN3IWrDab57bw0Wq4m+nfTnx2nTe+hpMkgaeHu6smbuHgryihnyUjeyioqZsWIfzgIH7rcK0IQVeyULgyMbEuDhRkZ6Hm7nMpE0wfVwO6neV9l/KJ5zF0A2SDT08iLhThrXryfzz4/XYTDIBAV7s3Dh2NLPszv5OjsTr/DUx13Qbtg4VpTGnrQERka2ol7Dqvyw/ACFJQUF63adRWigKhrZDjubz16hXXgYfu73V5LmFdtQDBK2Ou742o0YjibqEU1JI7e2AdVNwi1FYE0s4PNnf2bi1CF07d/8L+9rBR6A/9IIkyRJu4UQ3dANtf+47S9RQZgq8MiQJInxXw9n/NfDHzrGx9tCTnI2qCoo9+uN7qIgu/D+jWX+SDVNMGmRXh0XdymBKQOnIxCsmFaVzDvZWFxNyAZdDNx1eAcUh8InT33Dq9+NZtqI2YhiO7JBpsfozmxbfRIAJb8Qze4AAarZiNXD9f41ACeiLvHpqDmYLSZmbHmL0LrBpCZksuzb7YTVDWbxlFWoqgCDjNXr3hd7vRY1+GiB/sPReVBL4q8nE1I78IHu3omxaSz+ehsOu5PPXlrIxqtfPbD0udeYLmyZv4eMO1lIJv1cJhdTaZUWQE56Hk6bQy/5l8BuczIgbAIePm58t/1tAqr4ElqvCitivy89pkqNQOKv3QFxtxHK/eg1ogNXT9/i+tk4kuPSWfjpelZ+vZnJS8dTu2ko1pLS8LK4cS6OHycuIrhWZVJT8kmMTeHN70cQ2eMeGXPzsrLw4nRizsbxVs+pmExGPHzdyEzJxbeyN7WahpWO3Twviq0L9qEh8fQ/etN1SGskSSpHlgCuXExEUzU0swGTJohoH847nwwq3Z9XYGPhyiME+LizZf5LnD4Wy9RZ+7AVO/nmk40s3frGA69BWbh7ufLmRwMZnJjJ+BcXsmXtKTbdzkQ4nBgAz+s5fDRvNDWC7xE8ySmYWK0Jldp6E9Gs+gPvcf3gQA68Ow6ANecvYTQYMGTa8D2TxzXXGFLbhePh7UZOZgHFhQ7OHLpO0651+PaHTWiKilYkOL7nCoNGB1CzThDD+0dwaP81Ro3tQtSaEyz5dgeaqpGVlsfzH/RFdmi4x+ZhzrFT+YSTkR/2oX0d3Z6mudGDHcIACIxHVbQWGolZqThVf1AlVKuEyWxAqAI0FadTJSvz3t9yUmEOk45vxK4pbFEv0z49nJMFKThUlW/2HuLZlk1o37wGq3/XU/T9ekVQVL0q+7af5UgdA5+s242Hq4Xd7714n8/azNH9mLPzGJ0aVOfktwe56dRfJIwyKD4mbP4S1sR8XJKLcAK/rztVQZgqAIAkSS6AFb13nQ/3vJ080Rv1PhIqCFMFHhlZKdkU5BRRre7Dn69B43vx9eif7ttuMMn4BHiTnZ6L6lTv7ZCgSeeGBNWoxI5f9tzbLuCDXlP5YvsHHNt8GqdTQVM0bpy5BYDJYuSpt/rj6efBnDd/1UWust5g1Orhgr3IjtFs4MIpfbwkS1jMBoptYDAZGDi6I8FhDxaEbpi7G8WhojhVDmw8zXN1g/n8hfncuJSAjIazhOzJZiMTfxz9wDnMFuNDo1cAe9Yc0+0WJKnUQfpBSL6ZhmSQ8Qv2pdPQthzbc4X2vZtRpYbessTpUHipxbsU5dswuZqZMGsMq376HcWpUpBTyKGt5xg4tut981atFUj8Fd3wcPfyo1w5c5seT7chtEyDYjcPVz5aOI6f3lvBpoUHEAIK7RrvPz0LVzczz73dlz4jOpT089Mb+n7x/CwSrydz/cwthMWCJiQ+HTGX1Te+xcV6z+lblmXqRNTgu30flzqB24sduHlZSwXTNy/FM+/9FaWpxBmvLaL1402xetxP1CJa18S/kid3ErJ46e3e9BnSstz+mfN3s+fwNWSDjKe7CxF1quq2Dy4mqvzNXmOuZhP2fBvCriAjSr95a9YOolOj8pGqKe+u4srFRH0NP4+iZu3yKb+s9Hz2bz1P3aYh/Lb1DPtP3UCOtOB9phBTkUZeUQEzPlpPRItQLhyLRZIlwhtWZUfCNVKbGPBLAmEQRHS4V22pVffA5AjEs7o3mbfT9dS1EDjtCnEXkvA+lYHi0KOzJrMBL8s94XxSRgGai/6zYDKaqGVNQ45IZ1ucH6osES3nEtkphOGtmxJzNZnTp28xavQ9LzVZkhCI0vYaZ68n4RpqwSjLeLu6YDEaaRpehcnDuiIbJbq2rQtt69JqUDN6f70Ih1PFrqg4VRWLXP7nKbJ2CJG1Qziw8yIrrtwpfcFSnCqVThZR2M2fEc92YU9MFA67Qv/n2/+t+1qBEgj+Y4wr/40YB0wEgtFtBe5+wDxg1qNOUkGYKvBIiDlzkzc6TkYIwZBJfclOzcPT35PnJz+JqUxriJ4ju9xHmDz9PRg3/XmadWvEsqnrOLj2KLnp+fpOAW36RjB4Yh+eeX8Qz9d6rfSL8PKRa+xbeYR2AyP5ceKCcnM6HQpNuzZk5rh5pWJyWZbx8PXgm90fsXvZYRp3rMvVS0ksnbkT2SDzyuQn+e2LjQTXqMSwN3s99LN2HdKKS8dvIMsSDdvWJj4mBUVREKqqNwEGJJMRSZb5fMw8CgsdvDVrJK3/wiyyLNbP2QN2B0YXM+M+6P/QcTNeW0B6iY3Cxh930rh7E25eSiA3swBvfw8KcwrJzypAcaooDoXwiOoYZRkJgSTLNGkX/sB5+7/yGCd3XUAyyJw8cBUlKpodvx1idcyM+8jbiPf6s2lOFDidCEC1ulKoavzyyXrysgp47q0+bJ2/hzlvL0WxOTCaDMiyhIKeEtQ0wdXTN2naoe5966jeMITqDXViWbZ1CoDFpcy/JTC7mDFZHvyV5eHpyi/rXi9XUflnCKtZiW9+HkXczXTad6n3l+PLYv1vR8Cma45wc6F2owBCa1TijS+HYLMrCATWkrUnJ2Zjtyu4uJpIS8m7jzC98/w8UhKykA0S+cEeGIwyvsedDH28FZsWHUYTAtko031IJM+N70FAkDfefu7Uy3JQ0MKKrZ4rj9eqS2ht3Zrhwq1kFu48ic2hMGnuFrZ9OoastHwKcosY+XZv5n+1HcWpAhKevlYi2ofTuW/T0vXUrFOZ6Kt3ABjweCdcrIGcuCwT5GElRRRhU1US5WI6tAunQ7twRo8pbzwbZPXih9aD+XDHdopjVVrWDuGTkT05m5hM67AQZEli2a+HWL74sP4s2VV6PN6YYB9PRnWMYPOZK4zoGIHF9OD7vHThQVYtPozmakEqsiMJDYTAHFeA+zUfMmo5+OH3Sfi5W7G4/Gvthyrw3wchxHfAd5IkjRdC/PCvzlNBmCrwSLiw/zKqoqA4VDbNjqKowIbRaMA/2If+r/QsN9bN20phThEAwbUCAQk3Lysf9fuS2HNx98295J+rGTyxD0HVAzFZjDhtOilRFY09yw5hMBowmoylompJlpAkeP+Jz2nRsylpCbpmb9CEXjw3eQgWVwvPfjAQgMYd6tGhd1PcPFzx9HGjx9Nt7zv/H9H9qdY061iX4kI7kwZ9T3GRHU8PCxI6URJWF4SiommC9NsZYDGzaOrGv0WYGrcL58LhaxjNBgKCvXnjsS/wDvBg0uwx5UTSVWsHcftyUun1OH/kOpIks/y7nbz86ZN4V/Ji0IRe7Px1P71f6MrGeXu4ceE2EtBjSORDqwBP7jyPYnfiHeBJTpHufF5cYH9gCwk3T1fcPSzkZ5XYIGgaGA2laR6Ak7vOlxpdNulQjyFv9GbjwgOc3XcFdy8rNRs+PNr2MFSpVZkpKydwYN1JPP09eezZ9pjMRlJScoi+fIfIljXw+EO0qSxZyi4s5lZGFo2qVmbiC93w8nDF08OF/o81IfpiAlMnr8fP34NWHcKJT0zjH99vpDjPzrTX+9GifvkKq5Pn4sjOKSS0kjebS1K8AF7+Hny78lUMBpmd+6L5Ys5OhEli+lsDiWwcxlsf9WfWjB2E1w0isk15Dy+A7PR8FKeKxWAipLI3SVkFBPh6MOr1HlQLC2DbBr3/YLsu9coZrDb0rczW3qNIzMuhfZV73R48XC0Ih4bRCZ5WC2aLkTHv9S3d//iQlhzcfgEBvDPzGZq3qV1uPS+O7YKvrzsWixE1xMLUVTEAvPlEc/ZE3yQuI5v3+3YuHR+bk8XehJt0DalBDW89Ute1SjgHR9UiI6+IAE83ZFmifU0zZxLv0CioMjdvpGKzOzHIEnE300vner1nO17v2e6hz8OxIzH8tkAXv2M1AxoU6lVzRdXcuOMniDt6iV3nYjg89ZWHzlOBv4b0X6phEkL8IElSQ6A+4FJm++JHOb6CMFXgkdDhydasmbGZ3Ix8ajSqxuVjMXo3cvP9j9Cw9wby6+SVCKG7UatOlemjf8Rpu993yGg2Elq/KvnZBVzYfxl3Lzeybbml+89EXeDSoSu8OW8cRzedou2ASC4cuMyOBXtw2hWK8oqZf3EGnn4euJe4D/8RQdX+vheLX2VvTu+/it3mxGFzkmN3YDQbkSSJTk+1Yt/KowhNoAJmq5lmnR4cpbibDvlj1GPyonHEnI8nuHoAX77wM1dOxmIyG9mx+ACDX7tHQN/9ZRxvpeVx9VQsmMx6Xz6zgcpl0khjPnuaMZ89DcCvUzfohJISwfhDsG3+HjRVoyCnEIOrFQ1w9bKWW6cQAlXRMJoMfLjkNWa8Mp/qDaoyfuZI5kxeg6pojHhH/zEe9nZ/Lh+NwexiYvwPo6lSM5Bm3RqSFJuGf5A3rg/QO+3fdIZZ762kWnhlPl/6SmkRQVlEdGtERLdGFNmd3E7LIjO7gBdeXICmCfz93Fm8eNwDP192YTFPzFxIUbEDj1yV75/sxYQxemoyJi2D199bipylkJVVwNL1x5lz4zxOg4bZKJi39kgpYYpPzmLs5OXk5ttwUUEuUDE6VWSDhNVqYdaSsRgMMlt3XmD6zO26HYJZYvO+S0Q2DqNx81Dm/fbgNQK8N/MZFs/cRUSHcBp1qM3b764i604u077ayuSPBtCrTGrxbiWd2Whg58pjbNt8nqsxadSuF8S380ZhthjJzy3GnCcQApoGBN53vgYRYbz+87N8NGc7ExduZ1aAGzsPXeFybAoTn+tMk/AqDHtGd6D/eFMU9pKI6tWUDBa+8CR21UGaPQdNaNhVlf4blmBXFb47fZiTz76Ki1H/PpCQsJqMyLKEJgQDFy0jvaAQV5OJZaMHkpiQhcViYvDQVvet8UGw2518/tlGFEUDCTSjTE6EH4qvwJriRFWU0sh0XpEdu1N5aJSqAv93IUnSx0BndMK0DXgCOARUEKYK/PtQKcSf5QlzEUJQlFfMiq824uXvweOjutw3duhbA2jUvh5zJy3m8lG92W1AVT8iejRh7be6A72bl5XWfSLwD/EjNS6NIZVf0NM4JVGkP6Ko0MbxbWe4fSWJN+ePY//KIxTlFxN99Bpx0Qm07dfygcfdhRCCFV9v4cqJG4ycPJgajf7ao6VBy+oEhvgSfz2Fp15/DKubBau7Cz2Ht6VpuzrMeHUBBgn6PteO0VMG33d84o0U3uw1HVuRnY+XvEJEmUo4g9FA3Qg9MhBcI4DoY3oKJ7AMuSsqsPH+U99z82oKktmCkCREYRH2PI1bZ289cM3D/tEbF6sFSZYYMO7hhR/dnmnPtl/24O7thmuVSqQmZTN0wr3mt0UFNsZ1+pT0+AyGTHyCMR8MYHH0N6X7P5x/zxpBcSpUbxTCqgQ9FZuVmkt2Wi4+lbwIKZOCUpwqX01Ywo2Libz62WC+f3s5RQV2rp6J43hUNJ36lRfo3opN4503lgGQE24hF4Uanl6oqobdrnAnOQdNE/eJgwFupmdhdygoCHLc4MvXFrP64hcALD5xlgJPcM8FVQiK3HUjUWRQrRIR9UO4HJ9K7Sr+LN98itwCPYphR2CSBZKrkcqVvZkxewR+/h4IIfh29u+Iu9Mogt6dHtyi54+IaB9ORHs9bfr80G9RFQ1VEpw7F1s65vypW0z9aSuXQhRMRgNvNWrO6n9uosjdCpLE7Zvp7DlwhV+OnMVRkhJUFI1bCZnlznWn+A6FSiGbD1/GqWk4HRrLtp/i2Lnb2OxOPv5pGxtm3ruvY9q34PTtJISAFzu2pEixMebkNHIc+XgZLQwO6oNdVXBqGm7XCpn6+hL6P92GBq1qMuKfS7mdkk3/jg2ZOLwzCTm5aELgUFWSKWbOonvnOXnkOqtXHKFvr2Z0eLzJA6+T3a7gUFRUiwHFXabYz4jwM1A7PADL8Ruc7O6OJU+AJhFZo0oFWfqf4r80wgQ8CTQBzgohRkmSFAj89qgHVzxVFfhbkCQ9vTbm82F/Oq5+mzrcidXbMpgsRp55fxBdnm5PZK9m3Dh7C78gX74dOwd7SRoHQP3DHL7BPjTp3IBOQ9owb9ISHDYnqbfTSLqewqjPhzHvrcU47QqLPlrxl4Tp/IErrPhmC/YiBwnXk1l4/qu//KwuVgtzot5FVdRSYfNd3IpOQHWqCCGIv3qnXBprxQ87ObDxDMHVfCnIKUQIWDNrVznCVBYvffE0dSKq4+XnQWSZ0v5Te6KJu5qM8y6J1DQoqY7b9dshJnw/8r51mS0mhk584oHnUZwqmxfsQ1FUxk4bzrB3+uPh547JbCyNJN1F1MpjpF1LAAFrvt7EmA8GPHDOGxfieavvdBRFZcpvr6I4FD5/7ieQYPLS12jR/V7PslN7r3Byz2VsRQ5mvr2Swqx8MJnQFMGhdcdY9dVGRk4eRMvH9B/NFUsOk52WB5KEXbJhC7NwOT2DEd0bcOLkTYYPb/tAsgTQqGplGgQGcDYhGd9LeeV8qdpWr8amhlfQAhVe6tGGPm0bsvzkBZySoJVrAKuizrJo3ymqyS5kX8iASjoB9TGZUJJ17V3fQS3wK2Nk6upm1r2/gNde7kbrJmEPXNefQah5oJlAhi6dU7kYn4IQgukfrycmyImKGVVROHAnSdft2Z1gMeG0K2w8f43YO5kYZJmgyh4YbYK6EcEMmv4ramg6pipp+FiykSWZWo06Yoo2YJAlOkXU4ujZOMwmA4G+5e0v/KxWvh70BLUq+2M0yFzJu02BswhFqGQ5C8iyv8OEiM/YuiMaNSqZE4VXORl1hXcXjSY5Mw9NE2w+GM17I3vwcttI5h09iSYE41ZvZMVzQ2kYFEheQTHjZ21Ck+HwvO1saBJKQJD3fdfG09OV18b3YPOms/QfEEHjtmFEJ6fRvmYYkzZ9jzBJ2AIkDBpMGd6Dq1fvEBrqj+sfdHEV+D+PYiGEJkmSIkmSJ5AGPLJeoIIwVeCRkXgjhcNbztKiWwNqPkKEZuz05/hxwgJqNa1O2/46oWnerTHNuzXmo/5fliNLD0JuWi4HVx9l77JD1G1Vi8xkC5IEdVvVJi8rH+Hjh9FgwLfGX1eFurq76G7EBvmhdgIPwx9JCcDjz3dkz8pj2IsdDH2zd+n2O7fSWf7tDhx2hdtX7+il/gI6Doh46PxGk5Eew+7XbtRsGKJX0gmBJDR6j+jE0U0nyc8qoEHr2g9c159h3ewoln6zFSEE+VmFjP5oYOm+bb/s4ecPVmAwG+kzpgv1WtVGj5cIzGXSrulJWaiKRuUSL6E9a45TXNLaZvP8vbi5W3CUtHw5uP5kOcIUFHqvIXG12pVxNygk3sxAluDo1rM4ix1MHTGb9clzALh9PRVZ1cutDJreHsU9Q6HJE1V4880Hk0KnqvLdrsOk5hXwzfC+5MZlcb1ePO173xM2P9GgDjX8fVE0jbqBAdy8mkyV3dkU25zEBtrRTDJmCVLteVjyFNyKFXoOaEbW7RzOiCwkCYpKNHqgv0TMmvYMX/+2mwM5SUy9eozmbWpQ0//vVd+990kL5s/aQFitDCo1G8Lon/Qmyw08zPik2SmurPfxG/V4ay7muLBu4UGEquLr50H9mpU5fzsZgDee60x4tQD6TF2IqglEskxITxseZgUPuRhjlZV8MWUwkQHP4GIxEeTryY2EDHq2vSfKzysopufH87GpCk3Cglg08WlqulchxBpATEEi9d2Tcf//2DvPwCrKdW1fM6um904oIYQuvXekCAgIqBRpimIHFLGXbQUFRUFEUBEQrDSRLr33UENNIb2SnlWmvN+PFUoMIG5xn/Ptk+sPZDHzzqxZQ9Y9T7kfg4O7grxIuWDmeIkdSRcIIPNUBv5e7uRoJXRv6YqeTezYjo2xZ7lYUoDJZOBsTi6ph9LZsukkskNH9zSieJoqTQO4gqrplAiddr3q0/3uBrhZzUT6uYTV+18/hm3mTxw2FGNSDUx4YjGOEgU/P3cWLnoc0w1sPar4P8thSZJ8ga9wdcuVAPtud+cqwVTFbaGpGpN6TqWs1M4PM9aw5PR0PH0qm8tdT89RXeg5qkul10sLSzm4LvbqzyaLCf8wXy5nFqA61fLZYa4i5yucP5zA5wem4uHrwQcPzyP+bDpGD3dUVScpMQ/FqZJ0OoXImHCsHpVrYeq2iOLlBY9z4dgl+j3S9d++DleIiA5l6Q3mynn4uCEbZCSHHd3hZPgbQ+g6tP1VgQEug849q4+Qm3YZq5uJLg+0q1DonZtRwMVTKTRpHwN2O7qmY7YY6T2iHePfvXouEGcAACAASURBVJ8D64+x5IOVvDNiFi9980Sl7rKbUVpsQ9d0hHCl3K7gtDuZM2mha3iuU2P57I08X78aI14awPGdZxg/1RVNPLzlFO+MngsSPD97DF0HtaZ936asWbAdIQR3D21HQIgPu389AhLcM7YLWZdyeWPwxxTkFfPEtBF8smoSyRezaNerEUIXnN53nh9n/c6p/ReQPYz4Bl+L2pjNhvI/jTQOD+P8MVcreVTMtdocp+JKU12J8K06GsfSfcdRNI0im4N5YwcR06SiuE/Iucyob3+hxOFEMeu0iYjAbDWhCYHTKLuMLwFhMWA0CdxMBgYPakXc8RROxV4CoOkfXOJrVAsgOdCJTQOTprE7IekvC6YGDfrx0exWgMZb3x/DevoSpmIdc/tIXmjdjsDqfsTUD8fHzUrbV6vTrFM9YvddpM8DrQivEchdUWF4ulloEVONglIbmhBXMyslub7UDnLQyvMMrdxSQByhWA3GaulD03rVaFqvYnPA8lUHKVMUhEHiaJJLiJllI3NaTGZT6hvk25OwGJuxcNIeLp5KRdJ0hCRhNMo0aFqDZY90Jq+ojGA/T3Rd59WxXyMdSKBGdSsBo+rR0OLLlOmLcDpUvE0yhdEmejetTXD4tcHI6386wBfv/Er12sG0G9OOb5a76gazc4u5r2MDkhNyWPndXrr1a0LbTo2J23gQXdEpyrMBkJdXQl5eMaGhlSNWVfzfRAhxpRvgS0mSNuDyYapy+q7izqKpOvYyB7qqo8k6jjLnnwqmm2H6g+mgqqgUZBcx4pXBmCwmdvy8l4uxCQgBmEyu1nSnk9pNazLvtZ9JjEtFaAJV1bC4mWnRtT7P3/0ul86m4Rvozdex0zBbK4uIdv2a067f3zeyE0JwdNc5vHzdibmr4pexj78nr335MG8O/Ahd1Vj09i8MnlgxGvLtv5axet5mnHYFgwxbf9rHjE2vAVCcX8oTd09FU3XCagbw3OcPs/i9FTTt0pDF09dSUlBGUUYeqeczyEjMYfsv++k9ujO3Q/+HO7Plp/3Yyhx06n/tOhiMBmSzCV12CRQhgclsZMwbFeuyDmw6cTV6tGdNLF0HtaZR2zosPfkRqqLhF+xK6czb/w7nDsUTWSeUWRO+5dLZNJAkpj/+FT8lziaqwbWIYPPujXhj5FyQJGSDxFOfjAZAUTUuhUBpkZlLrS3k+Np5aWgfWtepQUT5vLHZK3ezcOMhosIDWPzycNzMJuxFdpwOBSGBrciBpmouAXtdynRj3AVKHA50AZICsWkZ+NZxw6BYiQjyI/NUNrJNxUOFl98bggDOnkql490NiGoUTnxWHjXqVx6hMqZVM15ftxk3k4ludf7cOfxGGA3B7Nl0koOf7MLi6YEkIHFfKu3eeBBft2uF83t2nuPCuQwGPdKJwPLUYJcmta/+u6+HG6O6Nee7nbF4eJgZ2tSXHP081U0FGMpboBTHTvCoeG9mpeeTmZpPrUA/LMUqdh8jdbRrYl6SJHpHvge8B8Avl97G6VBBllBCPVED3YmsG4oEhPi7zis3q5DTR5IQQmBJdfBV//6UlEclkcDH250Niyobh343y+Unln4pj8QLmQhdoAvBtg0n2PvtPhw2Bc0ksf+gjcBafoT4eFJUbKdBhzDO7kuibdtoQkJuPVy7ihvz39oldz1CiCQASZKSgdsaPFglmKq4LcxWEy/Nf5SVczfTc0R7Am5QZ3Azsi7lkJmYTaNO9TAYDJitZsZNHcE3r3zvinjoAl3XCa4eSK8xXVn9xQaEAKO7FWF1QwhBdKto4g4msOH7va7Ik64jCoupVrsWT749iPsjnkQIV8FxTlo+EbUrdwjdKRbNWMevC3YihOD1Lx+mZdeKHXL1W0VhdTdjtznRNZ2X+k1j/IcPUb+F60v00IZYHEWlUO5VdCE26Wo7f3a6a5Cxw6Zw6VwmJ/ZdxDvUD9lqJva3WFfdlKZhMLq62cJqBd/2ef+2cCd5BTaEqjHv9Z8Y99YQmnWpj8FoYPhLA/nhk3UIXVAtOoTOQ1pX2r/PqE5sXXYQTdUY9HgPAE7sOcep/Rfp/kAbls3awIbFO8iOz0SSJQLD/ej8QDsoFytXjEWvJ+lMOpJBRqg6ui5o0tFlwJhxuZhMu43CxhYUE+SUlbHbkcmgyGZX9/1hWywCSM8r4lRiJq3qRiIn2/CNd6KaQErKZeDc1/D0cWfQuM7kZhexdd1JanWuidnDiENTMRgkAvc5QREIA6QF2Hj/xf4s/HwLwcFevDthKcIgIVuNfDVzI7bLJdjD3ZjdJpR17zyK6bqRPIObNKR3/TqYDYYKr/9Vlny5GUOhA83NDSFLODxlnnpnEQveGIvV3cKO3Wd596PVSCUqB/bFM3fBuBuuM+XeLjzRoy1Wk5HPL05CcTg5a69GqPEcsmTCar2PbHshwVYfypwK87bsY8XsrXhcKCM43Jf3J/UmMy2f+0ZVThefyszi7c3bCB0Wg/u6ZBKLS7GFeWA0Ghhx7yeYhMT0+WOJaRCBf5A3teqGkXgug5jGkXj5uuPt58GbHz7A0QOJ9B1U8SFGCMHZk6k0aFaDw7vOIRBEB/ni3r0R+QVlxP5yFEe59Yitlht2PwNpecW4FUoIXXBM5LJr88v/9vWv4v8ct+3SWSWYqrhtOg1sSaeBLSu8VnS5hKmPfU1ZsY0X5z5yVagc23aKmY/PI6RGEHH7ziFJEu0HtsJoMrJl6U7a9GtB38fuZsO321AdKlZ3C91HuJx5n5w5ls+enI/J24O81HwQ4O7jARJIsgxmI9hcT6jJp1PITS+g77jurFuwjRZ3NyKsVtA/eh3Oxl7CbnNiMMoknEmvJJg8vN354uBUHmk8GaEL4vacZUr/GQSFeBNeM4iUcodt15R7Gd1kJj0xh4ioYGrVD6djv2Yc2nyK+s2qs3PVIRw2hbysIkR5jQiajsVq4t0VL9Co/Y2NKW/E3t/jXOJFlkiMS+PdMV/Se2QH6javRX5eKd2GtMFWaueJqcORZZk8eylLEw5RxzuYPtUaENUokmUXZwKuSEPc6WReHDIToems/GoLtrwSFLsTFFcUKi0+C8liwuBuQVdUnpoxiu2/HuX7metp1b0hE2cMxz/EB4vFhF1z4BPohbk8+hgR6E3T2uHsTk1G95GQBByaf5gZO0qYPPV+JEmia5PabDt2EQ+LGVHoZObUNYRG+eOTL5BUgWosRVN1CovtLP58i0toGyQubI1n0ddjCIz0IznjMm/uX4YiNFDhyf7t6HR3Qzr1aMiILlNd10sH3alj05zIio41tZSs+sVsO5tAr4YVfYw8zH+/yLhdv6YkHktGzimkuKE/eU1NGHemsP77fXQb2oY3v9mEw9uA5CFTdiVScxO8rBYuXcyiekIPCsN/wiFXJyJkKZl2B4P2LEAVa5gQ04cDJwpZH3cOrZ0XIYpOTlIBzdtHE3CTCM2UdRu5kJuHm8nItM/vQ85W+X71YUwlCmnnC9CAuZ9uwhTiyejh7Zn5y9NcOJnK5mUHWLNoN/eO6Ujr9nVo3b5OpbWXzN3KskV70HWdAaM7sHr5YX5YsIsWHepwuI6NkmAZr1SJup2iyfOGElMRBgPIko5sNBDgfWN7kSr+Av99Tt+34rbjaVWCqYq/xeqvt3Ny73k0TefDx79m4scPUbtJTWaMm0t2WgGZKfnI6KgOlePbT1OQXYSm6uz99RBG8zUzyuDqgRjLW4H9wvx58rNx7PvtCDtTDrpe83WnUZtoxrzcn/3rYim5XELKuXT8QnwIqxnEhM/G8uynY246YuROMu6V/nzw1CK8/T3o9cC1SMzF45dY8/VW2vZtRts+TanZoBrxJ5JBCFS7k4yEbHLT8vEN8aG0oBSHTcEa4o/F3YJ/iCudJcsyk6YPY3zLVzn02yFURUMyGalZN4ySyyVciE0CVSWmff2/JJYAIqKCyUjJQwgdySBjL3MQu+MMG5fsxWF3ElYjiAWH3r26/bMHfubY5TRMsgF/izttgmpWuL7v/LgJHYEsoLCoFA+L0RVMMsl4eFkZ/tJAtq46iq6DbDazceluEuNz0VSdHauP0v+RzkQ3iqR6dDDnY5MoKyjhyLbTtOjWEIMsM2/C/SiqxqnUTF4YNQ9znsqOhBOMfa4XgSE+vPfwPSRlXCbAy52RAz7jsh9cLrVg6eLBpwP6kHUglaWzf8cpJDRVd/mGWYyusTU1Q/DwslJgtyFVtyCn2KlTPYh9a+JoHhlOTEwodRtXY9+2swAIWUKyu1J9+U28sPsZeGHFej5CcE/Dv/Y5/Bmjx3WjeoNwMi8Xs3FnLEk7k/FJc+Af7E1eQWm5d4FL+L7x5uAbrvHr8sN8v3A3DRpGcGT9CQySRJd7hzDhPVea9VD6HlRdQxEaK1IOci5Vu+rMrlllAkJ88A24+SDlMC8vkvMLEAJCPD1pWS+CPp0bsnfbGT44/gu6Ljh9KRtnSg4n4lLp/lQLUmcfIf5YMiaLEadDYcDDnStMCbjC0f3xOOwKeBpZfigOoWqgQ0JiNumhEmWdvSmxyTjPFaBkadSp6cvjD3chxOrOyYRMera8s59HFf//I0nSbG4sjCTgttMlVYKpir9FRO1gjCYjQleIj03kua5vM3PHvzCYTUgGGYxGTBY3LG5Oxs8YxZK3l5GVnIvT7rwqlmSDTNRdNQA4tfccrw6YDhJENa6O2c0MCDoPaY2u6yz7+DdKCsowmGSmr3+Zmg2qXS16/k+IJYA6jSP5dtfrFV4TQvDSvR9SWmhj60/7+OrwB8zY/AbLZm9g59rjSJpO9qVsEPDMp2MRuk61uuFkpeUT06QGbh7X6lPyMgrISs4tH2EBMoLB47sTXjuE90fPwWI18fKCv+5kPOXTkWz8aT8+/h6s+WoLuen53Df+bua/scxVZK9pnC3cxcmCjTTzv5dixYEmdMwYKFUrRzK8w3250CEIj4QSPHtF8fn4ocRui6N177sIjnQNoI2oV413Rn+B065w4VgyFh8PTO5mJEli6XsruJyRj0111aYIAbNe/pl6rWszecYIzBYjJqOBuyLDiPL2JbesCB9/D3z9PSnML2XCiC/JySxk/JQ+rjl34UaQJZyqxom8HJ5+tAvhtYPJSi9g5ff7aNykOt3vbUpMg3A8yh3C3/x1E2JvBgbZwEW7hhDwwbTVLFwwnk79mrDzUDyqtxlJE3jqbgRH+pAWYgdJ4FQ1LuXl/+XP4Xbo2q4u3647wIViG2p0AGPHNqVzf1c6clD3u9h55CIP39eW6JhQMlMv4+HlhpePq9ZI1wVfzNyIrgv2772AUZKw25yciU2+un7HwHosOLeVUsmBzenAElmIkuKFj9GTBVPHEVUn9JZdmLMG9GPl6Thq+fvRstq1mrT23epTvV44Scl5OCWXI3+pprLgwFFqZbtqax2KztfT17NpxWHmbXyx0tpjn+3J+y/8yGVvMJxxXV+PYC8mvd6fp3dvQtN1GiruJNvzEbKEwSbo0cDlot44KrzSelVUARz+N/+tAlWCqYq/RbchrfH28+CjR+dRkF6Ewd1M7NZTDH1xILOn/ICQJDSDzKfb3iKqUTXaD2hN4slkfp6+ij0rDyGEQNd0LhxNACA9PhsAR5kTR5mTOfveRZIkImPCcNicXM4qRNd0TBYjfsE+t90h9k+RGp9FekI2TTvXQ+jXHmCELnD3cmP0q4MY9cp9aKrG3jWx+If60KjdtSfgGjcYZBwcGUCrXnexb81RZIOM0WggIjqUiOhQ5u5777bOa+uKQ3z5xjKiG0fyr4WPY7aa8PCyMvjRrqQnZPNtWj72Mgc1G0TwxAdDObX3PP2f7sia9MloQiG57DjTW33JrLjdRHsGUdccWmlsykej+vGOmwWnUJk6rC9ebhbcPCzMeGweRqOBpz8bw5JZv6ObzEhCAk0nONSLPmO74SwpY8nUlagGM0armYbtYkhJyCYrq4jCLafZvf443cutGAwGmdnLniH+TAZRdUMxmgwc3nOBgvxSNAQLVu1l4r/6s2rbcXbKuVhMRu5pFMO0t1ayf/d5HHYFs8XIodgknn9nMObr5tEF24yUqIAs0HSB0WTAq9x2wu5QcIR7uNJyQvD5rIcpKHPw1CfLKDLrBHt7MrTljY0Wb4Sm6pw5dom42GS69W9KUOitC5L3nkzC7lQxyBIiyP3qtZ80siuTRnYF4Id52/j+y+0YjTKzfn6KyFpByLJERKQ/OdlFyLJErXqh5KQV8MRr9wKQnpTD5IEzsZY4eP3zkSwxHiXXfBnv2gXU0kOod5MxNkIIHE4Vi9mIp8XMqOZNb7hdYpJL7LvJJhp0qMVWPR1d6GgDq1NvdykX4lyz6pIvZt9wFE+j5jVYsukFHhk6m1xRigD8PS28N+or7ukYw6h37uedIV9gsjvA28qgAVURpTtK+eDk/yaEEIvuxDpVgqmKv02L7g15+evxfPbMApw2hcXvrMDqaXHVHEkSuqqTfDaNqEbVsLpbqN+mDuePJJT/sgSLBzz24QMAdLm/DfvWHiEtPouJsx+met1rT4wWNzOPvT+MFZ9v4O5h7a9GMf6nSLmQybM9pyJJ0LxrA6aunsLqeVto168ZoTVddVTnjibyyiDXQNtpv06mTpMat1xT13Xijyfz3BfjeH7uOPasPkJ0k5pERFfsyko+m46bl5WgiBu3rs//1wqKC8o4cySRY7vP0brHNefpDUt2kZeRjxDw08z1vP39M/QY2oa9Gw5Roptwq6MgYyTaK4j3Gw/g/vcW86PtFIPaNeKVYd2vruPjYcV80U7swQSe2ZVLrU6RnFm0m8IDSUgSfP6imUvnM9CcKiAhm4xkpBWwaOoqImPC0I1mJIMRTRMUFtho3LE+R3acRQgIq17xs7W6mWnY/Nq1i6gbAiaZ3Lu80fwNvLJtO6ufG80Lusr41b8ybvVKAg7k4yhzggROh4qu6ZSWOioIpg/HDeSpjSnkXconIMCTghI7ZxKzWHMwjl59m/DBip04ZB1PxUhwoDc13cwsfn0EuQWltG5Y44bGmbqu893MjVyMS2PcS/dSMyaURfO28/3X2zGUKUiyxIZlh1iw8YVb3guP9mvDc7NWYUKmde0bzwTctvYEilNFkoycOJhAZK0glm8/jr2OB90612bkoDYEh/pQXGTDvdxuY/fa45QWuewqVn+1k49/eJwJ23/GluVgTFgLFEXF9AenbCEEL3+wkn2HE2jdvBbTXx98w4ju8fh0ug9swp4Np2neshavvnIfiw7Fciw9kwmd20I/OxMHz0LoOtXrhFRY4+ieC6Qk5PD97N8pLbHTf0wHVicfxGAykH4yDaELDm89Q9K5TNf9V+xEFDpo1ap2pfOooop/girBVMUdoVn3RiyM+4QBAeNw2JxIsoRRgKLpyBI07lDxKbBRx/rsydmFEBoTVp3BFrOdUrUpHm5uvPXjpKvbqYpGakI24TWDMFuMDH6mN4Of6c3/BpLPZyBJYC9zcv7YJeq2iGLK/Irt5L99vY2yYpfn0ZoF23nuszG3XHPGE9+wZ/URDCYD8/a/S5+xXStts3z2Bha+vcwlwta8RIM2rnSEEIItP+wl5Xw6tRtGEHfYNT6lesw1sXWm6AK7QvYhmSRMBiOtejaipKCMdx6azbkjCeiaH8OXdOLuzvdilM2cSkrA7lRQVI0NR85WEEylZU4OHHRFBpNT8ojbmo9Bc+AtgcVsJKp+GKdOpCEZZCQJDLKMYnegyQbi4zIwWCxoqgZCUJBdyJxNL7Fz7XHCawRSv3lNSops7Fh3gqi6odRvdk0s/Xz0JO+s34qpry9Gu8DuUDEIQVJuPrszk0kqKECyaXgWlCI7dSyeFryDvek7sDl+/hULgr293Fmy/kU0TWfg0NkoukAgePvHTdh1FSXAiKKoWHw9cb+S+i12MmvctxiNBv618FH8q/nj634tpXpw21lWLdyN3eYkJ72AL9e/wPLv9yH08tmCmqDoOuNLIQQFJTa8PawYrpvlV3DxMoEnilEUjSUzN/PB3NEVzv3QjrNYTDKyLOHhZaVN13rkF5fxybebsSbaWCeS6dauLj8u3M26VUcJj/RnzuLHaNapLt/P2oSu63S7rwXeFivTGvbnibc+5wtWs6vFCd6dM6rCsQqKbBw4mogAjsQmkZiYQ1RUxQ7N3ScTeXHeGiQJHhzfhomDOwEwrt11jSJB8OW6yWSl5dO8w7WC792bTjHjpZ9RFRVddXXOntwXz8r9b2IwyDw3ZDYpF7OwlznJiM8EWWLIY93oeX8ratSpbPFQxd/kvyzCdKeoEkxV3FEeeK4fS6euwjfYh9CYcAIDPeg9ugsBYX4Vtntx4dPsuD8Jc+Ba5kkdKUnKxjN1Gt+0fgOz7LotdV3nucGfknwhi9BIf75YP+Uvu1v/VcqKbXz61DeUFJQyac44gm8xuLfV3Y1o0DqaxLhUnvzgwRtu0/aeJuxceRgk19//jCNbTuGwObHKFi4ev3TDCNLe3464PJyMMid3n70qmA7/fpJZE79Fdao0bBfDG988RkRUMCHVrq2xMPFnyu4qwXeOif6BvejXsQvjmr9CRmI2uuqqmdr8cgZDD7uEX9PaEfh5umN3FjGsS8UUjIe7GQ+riVKbEwRIQlDaKgyDr5WXhvem27D23PtYD1ITstE1HTcPC9Me/4bc7GJEueu6pOmoioJQDFisZnoOuTbi5q0nFnExLg1Jkvj0p6eoWS78fjl6EqXcgDMIK3ZFQSpSqObmRbOwMMwGA9YCDVmS0AAjEt+tnHB1XadD5eju80TWDiKiPBJoMMiMfqg9XyzYjtMNNG+ZvBLbtX7j64Ipy+ZtJT+nGNXdwP2LfkGVYWLP9ozr7Dp3Dy8rQggMBhnPckPSth1j2LvzHAaTgahagYyd1AsAVdV44pPlHE9Mp2aoP0tfHYG5PLpjsZpAkpBkCYubiezMQvwDPTEaDZSV2Hn3qcUoThWj2cBXv03E09sdm0PBXKAhaa5TXrP8MPu3nUXXBbnZRcSfy6RR0+os2vcm9jLn1XsjJSkHALvNyfnTqZXuOR8vN+pEhRB/IRNLSjEThs7lsed7M3B426vbXEzLRdV1VE3nzKWsq68XFpZhsymElqcgq0eHUD36mu2HpulsW3kEpcyOjuT6rpZAr+511WV++o9PsXfTST6aWD72Sxc0aR9TJZaq+I9SJZiquKOMen0wXR5sy7M9p5G97yIe3m5M+fqJStsZDAa6DphKRmF9Lp84hY6OqhRTqJQQZHE1LZQW20k4nYauC9ISc1i3ZA/htYJo0aV+pfXuFKvn/s6e1YfRVJ0vX1zKmz9OvOm2ZquJ93969pbrdRzQgugm1UGSCL2F+LrCyFcGMu/lH4iIDqFh2zp88+bPnDueTHh0GPc81IEPH5tPTkouJrMRrwBP9q+P5bsPVjHqtfsIj3J9CWmaTlp+AoEtVEI8Kgqu2p41yLBnIcIFzRs0RFU00uIz4brIRnZyLhkJ2UREhzD/442wM4vR9zbhyXvbk5aRz4Kle6hdK4jhg1sz9/PRzJy+nrBwX3alJ1OQW8orbz/E3c1dYzaCwv0Ius69efGR9zl/PJkfPttI044x5KXmcXT7GR5+vfKsuuz0ApwOFaubmbzsIlbnJfLNkSPU9wnEJEn4JCiIlDIChYTVw0xq6mV6to3m52HDKCgqY9GF1aQk5jJkTEUfofefWcyJA/EIIZjz23NE1AxiT2wCn6/eiwgwE1bflygvLx5q14Rgd3cOnU/lkV7XhFyzjjHs3XQKW7gVp9DRdfjx4Imrgqlx6yimfDKc5AtZ9BnmEhQvvzuYlKRcgkN9cHO/Vnf31qy1HL2YBhKkZBeQmHmZupGuyE2X3o0oK3WQm1XEhQuZPDzkc4JCfZi39HFkWb6aDjTIMoZy3yfV5qRdtWCOXE5DNsq071QXq9HIto2n8PXzIKqO6x7x8ffE57pbo2mbKBq3qMn506k8/mLfSp+FLEvMnTaCHxbs5OevdqI4VdYvP1xBMA3s2IgdJxIoKLExaYjLTPX8hUwmTv4eTdd5cnx3Bg2obBy7fP5WDm89jVBUPPw9yWrgg00SOIzXGg0sVhNd+zdj12+x7Nt8iuad6tGqS91Ka1VxZ/hvNa6UJKkW8CxQk+v0jxBiwO3sXyWYqrjjmMwmdKMB3ceMbDag6ArTzs4kviSRByMH0TfM9XQtSxYifB9jYMRK1mfspUtwCwLN1wphPb3d6NSvKdtXHkIrsjPn+cWYvT2ZMnsMnfo3u9nh/xb+Yb4u52uD4ab1QX+V0Bq37wvV/9Hu9H/UlfZaOWcjK77YhKbonNh2mp2rDqGWOVFVQc36kTwzfQSv3TcDxaHw3furWJ0zn1PH2rH36BZqPFXAz8nv8kL9nyqs/2jUCFr6N8Hf7EdND1ddjCQEwmRy+ULpOt7+XoTUCCQvp5gtG0+iKhrrVxxh3OPdeemNZaSlXWaXu4makYG0b12bj2eNZN/vp9izaBcBkkTCylPQvF6l93aFmCbVeWvBtWn1j7x54+2mfPQg86etoX7TGjRqU4uhs9cggBN5mfRM9uTckSQ0sxGDu5kG9cNp2bwmAA2DgyEY2q94ttJQYYALp1KxlzmxWE188c5qWnWtx+GifJzlXYl67GUuHI/jmR/imL/5Je5r1wj9uhlnvR5oQ60GEYye/iNX6vz7NIxhQ9x5Zu/cz90xtXmuZ3s69Lo2R0+WJWpEVb4PzsRnISsC3STh5+FGzVB/DhxOYM2GE/Tr3Zi+Q1oihOCetu8iBOTlFHMpMYeY+uFMXTyeHWuO0eXepriV1yfNmPwDx3eexV7HH8XLzLGUTF54cwAPP9kNX3+XseSNMJmMldJwf8RokOnZtwmrFu9FUVTKvI1cLijF39eV5vTzdOPbF4dW2OfI0SQUVUXTBFu2xd1QMBXklaBpGrIs0aFHQ7abykjLKeShUIhnTgAAIABJREFUHhW3lSSJN78ad8NC8SqquE1WAd8AvwH6n2xbiSrBVMUdxzvQC1EjFKFqqB4WzhZdJLE0GUWoLE9dfVUwXWF87UGMrz2o0jpCOcFzr8/FlhXEgd9dT91KmZ20xOx/7Nx7juyE2WKitMhGr9scOfJP4bJrcA2dBXAUlmK0mLG4mWnbpwnh0SHYnarLDdpq5tTJVIa92peii2vRhMBiqDy6RpZkmvtd+yK/GJeOh58XpSV2hNWCbJDpPnUITy1ZjUmW8Qp0pzTfRmCQN6fj0shMyEXSBboOJqOMpmo8P3o+548mITlVhC64eDqVtT8fJDDYmzZdby6c/oy7Wkfx+QpXKk0IQZ2AAFKLinAvg/ijKSDA4FCJqBfKx9OGVdh3x/Yz7Np5jkFDWtKwYcWC6SffvI+576zC6VQ5eiCe08eTuX9yL3aaXDPpSo+nY7Qr5OcUEX8hkymrN5OcW8BjHVvw7GDXPRHdIAKrnwfKZTtGk4E6ZVY+eWgxqoeBxT3z6dewLr6KjBAQGnlz4T35ke5Mnb+JyDA/Zrw0CE3ReO3dlSiKxr5D8az6/hk8PSz06NeEzetOYDEbmDDkc5q3j+bdeWMr1HaBK6Wmmg0oHq4o1vJNx5k4phuB5WNr/i6hEX40HNiArfvOU+woY/Hqg0wa3e2m23fuVJcflx2krMzBsAcqu8cDDH+2F5ezitA0nUde7MckPw8UVbuamvwjVWLpP8B/aYQJsAshZv27O1cJpiruOKUlDkrdJRxuZsoUnQARiEEyYJHN1Pe+eRh91/rjHN11noFjOlKzbhhq8YegZ9Gxl86R7YFoqkztJjXoN6rjP3bukiTR9cF2/9j6NyIhLo1v319FzXrhjH6p/1Uzv76PdGXbsv3E7b8IQK+HOjLy5YEU5hVTq2E17DYFtVEtcCoIdyvbtsbhnxnAhdQOtG1u4P46w25xVBdTxszH5uaBZDIhd65BlkHjyy1HcHoJJJOMW0sLzkIdYTHxyfS1SLhqY8KCvPEMdOfZGctIOpOOMBoQikq1WoG4B3gzb9paJEni1Y+H/S3RdAVJklg+YgRH0tKI9vHn+Q1fUFJsA1Wn4FwW638+SLd7m3LpYhYefu5M++A3nE6Vffsu8MvKiUiShFu5i3inPnfRqc9dPD/iS86dSAGgTngA37wylF+W7CVXtXBm1zkatKxFqmojJbsAIcM3Ww4xvH0TFAk8PSwsfHkYGw+do12DGnz8zPfIGhhLNazpDs7vT2DulGUIIRj2dA/GTLpxo0KHFrVZM+/Jqz/b7crVVJssSVxpwpvy5kDGP9uDoR3eRwJOH0kiIzmPan9wtZ88fThfTfuNHQX5KEBMreCbRpVuhd3m5OKZdGrFhOLhea2g/cTBBI4uOoSnpqPU9iEi5NaefxHhfqz86dmrNV03Oo6bu4WXZ1csaL9eLDkdKlt/P0VwqA/NW9b6y++liiqu4zNJkt4CNgFXc75CiKO3s3OVYKrijhMc6oPqaQRdYHA3kpft5JMm75FpzybKs+YN90mJz2bG5B9x2hX2bz7NDwf/hWxqjuqMpWPfHALv2ouX7/NEx4z/z76ZP3D2UDyvDfoYg8nAR2tfomaDG7d73y752UVM6DUVTRMc2RZHYLgfA8d1BVxDcZPPu1qoze5mqrWvjleI59U5fm7uZrr3aMSWXecwqhpb527GYVcoaBHIsZPePPThjW0XdF3w09K9pKVcpszpRJZldDcreoAborgMWZIwyjLIUKQ5UHwlfDfnYddd8+AiqvnxxluDeHbearIuFxNokTEDTTs25v0vxzJ51HycDhWzxUhudlGl46dlFfDB/E14e1p5/fHeeLhbbutauZtMdKpZE4D5qyawYflhvp+zhbISB19NX893s36ntNhGYIQ/QtNB01HMcPcL8xBC8NkzA2lT/1pE5pVPhvPTvO3UiA6mdZe6jL3/c9LTC7BaTXy0chKNm1Ynu7AENB2EhHuOg7dnreXk2XTMZiNfzRjF+HtdNTytOsawcdVRdKEzffx9rP1s21VfrlWLd99UMP0Rq9XEzKnD2Lwtjru71Mf9umvj7etOw2bViT+TgV+gJxZvC6VljgrXLzjCj9dmj+Z5u0JyxmVqR/553dwf0XWdicPnkpmWj8EoM+GdIXTt2RAhBCsW7Xa5pgMNvX24v1dThBAc2H4Wg0GmZaeYShEglwCsHBXas+EE0yYuxWwx8cnyZ64WcGdnFDBl/LcUF9l56+NhrFkdy77d5wF456OhVaLpP8F/b4SpMTAK6M61lJwo//lPqRJMVfwjtG1Wi8Mnk/FwM1OzWgBeJiteJq+bbi+uqxG58neD12RkS1t0zDQKjsRkDPvHz/vPWDlnE6VFNgDWLtjO0zNG/q31Mi/lut6vEAgkEk+l8MMna+nyYCa7d22g1BAOsoxDaExTfuerLcf57e5n+enDNSybtZ42fZqyds1zrJi3jaUzNyAJ8EgqQYkJwGis/EQPsHL5IRbM3w4CRKgnZWYVR3ULsx/vw2+7TtO4Vhi/HYnjXHIOkaHeJIgiRIAZQ7GGSch8+tko/AM8cbOYkA0yxS38aeTwIN3u5OLFLCb+6z5mvb2KoDBfegyoXGv26eJtxJ5JwWiQWbn5OCMH3DhVcyu8fNzp1q8JP87dhtXNjKqo5Jc6QAjSk3OR/TwwOzTc3I3k2hUwSKzcdaqCYAoK9eGZtwZe/Tnf5kRzN2ETXI3yBHi682rzlixbupvgeqEcO5sGOjicKkdPJFOjmkuUPvXKvfQc2JyAYG8CgrzQh9s4vs8VGYxpemvvrT/SsF44DetVdKxOyLsMwIcLHyMlIZvz2fkMeW4BBlni89cfpGF0xf8bblYTdWv9ewOoHXaFlMQc9HLBN+OdVYSE+ZB4LpMjB11WFbJB5pFneyFJEssW7GTJnC0g4PGX+9Hnwdv7PH9duBtV0dA0nb0bT10VTFvWnyA7sxBdFyyZv50yTcfhULFYjGRlFPxb76mKKsp5AIgSQjj/nZ2rBFMV/wjTpgwkMSWPsGAfPG7Djbt6dAiTpj3AkR1nGTSuC+BKw0iWjtz4a/9/hqjGkexZcxRZlmjZo/Ett3U6FBS7godP5VqiK8Q0r0mbHo05sj2OqEaRbFt2AFVRObAlm2odBXqwL8LXB0cjHeGvk6vkkFGcz9JpqxAC9q09yogX+9O+d2OWzd2Comh0GdKKsY/3wGS4cSpmx65zV8qiMCoynQY1p3/vZqTtT2FAdBSeEd58tGwbOpCTVkTLyGCSIi4jhGDuowPxL58xNufpwSzbfYLSxCK2rz2JqurMnbOFj2eOYMbiipFAp0Ph9LFk/AK9CAvywWwyIgFBATcX0QD5ZTb2JiXTolo4od4Vtw0M8eHTX57i1NEkZr+x0vWiJFG9fjjJyXmIrHzsOYX4B1goaRNG//YNbnocTdMpcbiGBssmGXcvK4pTZcIDc0hNyKZ5xxjq9WvEicXbETYdg0GmQ+voq/tLkkRMw2uu7V36NKH62hDSU/Jo3fn2urniz2Xyy5K9tGgTRdO2tSkqtlG7VjDrzp7nxXUbEcD0vr3oW68us1buRVE1FGDnkYuVBNPfwc3dQv9hbfn1h30IWUYyyJSVOUm9lIcqQFjNdOrTiKZtXYaRly5k4bSrSBJcir/9+sKeD7TizLFLGAwGWl2Xtq3fOBKjyYCEROuOdWjWNpqZH64lLMKP7r0a3WLFKu4Ekvjv7ZIDTuGaHfdvFcJWCaYq/hEMskz0X+gOA+g2oDndbtBF87+FYzviWDp1FZIQ9HqoC21u4auUkZDNM+1fx1Zq59nPxtLnkRtHfA0GmTcXuWwXdv56mI+fXYim6pQVWbm7XyzedYrwCXOwIrcR8fhjNRgJNHkRUC2QopxC3Dxcbt/uXm78EPseilPDy/fmAg2gQ6cYzsSloasaTl1n348nEafyObr3IpIk0bxLDDh1JIOEj9nMxbQcVF1gNRsxe19L/4QHeDNhYEcO7L/Irg2nMRoN1I4OrnQ8Xdd56v45JOYXo1sMdGpXh8lju+PlaaVLy+hK219BCMGgBUvJL7NjMsise3Q0uTnF1KkZjMloICOrgCde/gGHU6Vhuygy4jLp2vcuhj3ZncljvyIzqwCh6QSoMiunj8frOnPJG30OTZtWJy4uHX9/D8LDfclIuUxaUg6qU+XgljjGPN+LlF5NuFxQxnOjuxF8C7F3/OgljsUm0fOeuyq5Zl/Bqags3HwYp6oxrldrXpuwhPzLpezeGofTzwImAw890JY4v2Lsqmvu4o6EJPrWq8vgnk05EpeC0SjTvc2dHw3y5Cv3cs8Drfh2/nbq1Q+neataRNUOJv5sBoqi8fAzPa9uO/KZHiTH52Awyjww7vYbJXoOaUXLzvUwW4x4lPtVHdhxlnef/wGrm5nJ7w0msoYrpTjnm3F39g1W8X8VX+CsJEmHqFjDVGUrUMX/DEJNQZR9j2RuhmTt9ec7/C+ipKCMXasOEd2kBp6+7vzy2QbqtqxF75GduHA0EU3VUBWNxNMpt1zn4MZjOGwONEXj1y823VQwXWHnioOkXsyk9/AOZKbk8vAbnZGDl1Hbew26sDMu/AzHyiYzomYHPnx1OQUeniCbeG7WKNzLZ59Z3S1Yb62VAHjw/tZczi/llx8PAKABednFOB0qFqsJs8FA+OlSnFaZoYMbY20YwLx1+2lbrwb1IisLojZto/lo+nAKCsto184lgHRdoOs6RqMBW5mT5LTLaEHuIEnsPJzAS68MwMPj1rVLiqaRWVSCLgSKKjHwyS8xaBIxUSHMfGkQT479mhJZB1kiRVFYsffaQOR5y55h+KAPKUq4jMd9UXi6/Xmd1PSPhvHLjmN8ufMQzyz8lU9G3ktgiA8ZSa6hsZ++tIxZK27su7V/SxxJ5zO558HW2J0qr0750eVVtOY4P15nmnk9i7Yc4euNBxEIyuxO5PKiaF0X6BoousrOnWeJrOGDh8mIxWJibEvXA0WnFrXZOP9pZFnCYv5nfo3Xig7hnY+u2QT4BXjy4fyxlbYLifDjs5//+jBoAL+ga6Lz2NlUXn/lZyRJQiuxs2PdCfatOw6SxOQPH6Rz39uf21fF30T813YivvV3dq4STFXccUT+ONCSEWVLIeBHJNPNUyH/23ht0AwS41KRkAiI8CcjIZstP+0lonYIPUZ0ZMsPe0hPzMHs5U5hXgk+5empP9Ky510sfOtnhC7o99jdN9xGVTR2rj5KdnIOP3z4K6qi0aRjPT741TVjrMhhJGnzDjSHD817RPFiLddDUFZ6AYqiY/F0p8yu/OX3KEkS6YXFrjpcAVYfK0pxGQFBnjRpU5sxE3rSslMMqqrRa0AzDEYDI7rdOvLXqPG14veMtHyeHfs1ZaUOXn1/CB271adL9wb8fjIJhMBkMt6wY+qPGGUDA2PqsiUhAXGmCBQTugxnE7I4digRrdQJHgaQJIYOallh3wLFwem7PVG7uZMsFZFvs+Pv7nbL4+2NT+b99TtAQEmig13nk3jytf68/+wSFKeKweD6EhFCMGf6eg7sPs+oR7sQGenPtElLURWNA1vjmFQuMoQAW6njpsfT9PKaUwGqrjP181H8+vNBatcLZfGvh8kvKMWUV8bBA4nUNBmZ8sH91A++FrV1s5r+9Br+/8Rnn6x3fVEbZXQJ7MV2nA5XZO3wjrNVgqmKv40QYockSSHAFSfag0KI207PVQmmKu48wsHVBoR/r7buf4zMS7k4bQpWdwuqQ0GUt4sIXeAX4kOb+9qw4sstnDyQwMKpq5k4Y0SF/TVNZ+vygwAsiZ+N6lDxCbxx6mbeW8v4/ecDaHYnaDqaolGQV8yuNbE0bF2bI1sKWf1CQwQCz9x7aPm8a7/Jb9/H7A/WUD0qiE49/poYXbT9CN/tOko1oyeqvwmcOoXFxagX8zFajOzZYmfn76d48NlujBjTpcJss9tl19YzlJY60FSdf01fxUj3Ml6bMYywuVv5adEewiI8SUvK5YNJ36OqGr0HtSC8RgBd+jVBkiTsdgWLxch3mw+za9dFTLrAmK2DUNA8TXRrHk2TFjVxt5rQ8m0MGtGWofe1qnAOAe7u1PTzJbWwiBq+vvi63Twdd4Wl+2LRJVf9hqoLokMDqdM0gDHP38ORvRcY+UwPABIuZLHpt2M47AqfvLuaakEu0axpOsUFZdSoFcTjT9/N3l3nGT66w02PN7ZHK8ocCk5F5Zn+HfB0szDh5X4A9LuvBQBTHv76asfSla67/02oqkZiYg7Vqvnjdhu1irciItCHVCkTIUm06Fmf0SM6EXsoEQWo3iDiT/ev4g7yv+9WuyNIkvQgMB3YjuuRcbYkSVOEEMtuZ/8qwVTF38KpaTy9dTXHczL5V7vu9K1VF8nvS0TJHDC3RjI3/fNF/gK7fz3M2UPxDHi8B8GRN26b/ztMmf8YX732E3d1rMuAJ3rwy6frCa0RxOn9FzEYDXj5uiMbZIQs8PKrnP/6Zc7v/PjpesBlGdD1vpb8+vU2mnSoS836FTufUuNzcNgUjCYD9ZvFYLEYOXs6nRkTFmP1sNCtfzMUp46u6yTH5VzdLyomlHv6NUHTdKTydu1LFzJZvmAXTdpGcffAFjd8b2UOhZnrdqHpgstyGYP63sXpw5fI33weAahIGDQdVdVZuGA7K5V0lj06/C+LphZtolj81XZUXSc/TObDLbt4oFljfv/tOEIXXM4t5ttPN5GRkocQsHTOFkwGidIiG2n5ZSz78QCR1QOo3rsWiuIaitawTS3KdqfhTCrFp7odLx93vlvzHKXFdvzKo3yFBWXEHk2i0V2RBAZ6sXLkQyQVFBDl74csSZQU2Xh51Dwyki/z/LQH6NC7YtH+fc0bsO9iMpIO79/fm5gwV/3Mhg0nyUwv4NWJS1m4cgIBgV7IsoTBIKMpGmmX8oisEUBAoBe9xnUk9nwq/Qe1YMDglpWuzfXYCm3IBzIJD/HG7SZ1Ti9Ne5AlX24lokYAHf6iOP5P8NykpcRfzMbX141vF43neFIGSZn59G1d77bSoNcT5OGGJARIEOnpicXDgm4xojlUvp27jUEj299WZLKKKm7Ba0CrK1ElSZKCgM1AlWCq4p9nT/oldqddokxVeGPPZpdgMtVH8vv8jh/r3JEEPnp0HopD5eCm48w/+MEdP0bLHo0rdL89P+cRRtSfTEFOMSazgfkH3sXqYUF1avQb06nS/rnp+ShODUmCnPR8Jvb5kNJCG7qmExTkzlMfjaRVr7sAePK9+/l40nf4BXkzZfZozh1O4LWH5oIkoSgaPYa349zRRJx2J6Nfvdb+vmLBLpbM/h1F0Vjx3R5mfDee1x9dQG5GITvXHqdmnTBqNwivdG4Wk4EAT3cKSmxoTg3v+AKeHdeVN/PzcU8qZfioziz/bi9KiZ3COlaysnPJLSkjxNuTpItZvPX8D5hMBt6bNZLQCNd8uLXf7+PgtjMMfbI7DcpHk9SOCeXr5U8zYO5iVCv4m80smLERoamYzUZkWaJV5xhOHUxAcaroqoYqICejgN/Wn0QIQXpeIT39/UgOCCBr9VlK3Itw2lVsZU72bY7j9JEk7modhTnAk/1bTvPVB7+RU2xH83XHbDLiazaSmZbP0y/2pf79rjTW/i1xpCa6ROqC6esrCaZ7GtelVa1IdFVnx2/HWX3hAH0HtSAlKRdN07FYTeRkF1E7JpQvlj7Ozwt2sXV1LFhMZKTmk3S5gO1LN2Ewyozp04rH+t/aAHXW68s4uDUOo8lIUJgvbfvdxXNjvyIv6TL3PdSecc/3JjDEm0lvVZ6z978BRdGIO50GQH6+4OsN+1nw+xFkSWL7iXi+eHbwX1rP4SljCzPillhM8ulU3NxNyLKEyWTAy8ftqtVDFVX8DeQ/pODy4PYbsasEUxV/i1refggE7kYTDQKuFQQX5Bbz4tDPycsu4uVZo2nV7e8PzHXanK4p5rqOo+w/k+oTQlBSWIau6QhhwGlTuHfMzTuBRr7Qj9yMAiRg2ITerP9uN5qiufyBLmYx/bF5/HxpDgDV64Ty2dopV/fNSMhG0lR02YC3txvRjaszc8PLlY5RVFCKomgIXZCRns/9Hy8hu40V77MaIUkObjY5wiDLvPVgTyZ+8hPu8SVszs5kQXAWejs3Au8OYPgj3Rkwsj2PLVzBpfxs2tWoRrCXa07Y99/sIDMtH0mSWPXjfp6Y3IdL5zP56oPfcNgV4o4k8cvRd64eKzTIh18njeXgpVTk5DK+fnsNdrtCQJgPs79/An9/T2w+BpxFds5tOofFambIo13Isjn5fc9ZsiNNfLZhHw2NHmg2lUKbik+Ah8uzSoKw68aNzHz5F4rySxESaLKEZjai6QJdF/ywYBf33u9K19Vp5ErrWN3MNGt/4+68AE935n2ygeXrDlMcYeJs4WWenHwPS7/ZQeuOMVeH14ZX82fiGwNo37UeO9cdZ/PGWNI7+KJbddyydf4fe+cdHUXVxuHnzpbsppNKEhKSAAm9S0dQulQRRFBERFFERVFRVGxYsGDBLlJEBBGV3kF6Dy3UAElo6Qnp2Tpzvz82lEgx9k/d55ycw87MvTN3dtl5997f+3v3Hj932ftVxuSJLo3a2Al9CSwXOuvLS7EIQK/XMXTclziOZSOA+dM3cfuIG/Hxu77u6u/EYNDRt19TFi/aS8NGkXy6PwG9pmHMdnLi9EmSuqQTX/vKwP1qZBYUMz8zBWu0ieJgPUc3nuTg9mTemz6CAwmnaHtTHXdJlL+Qf7GtwEohxCpgbvnrQcDyyjZ2B0xufhfRflVYfuswTuTn0aHaJQfeTcv2k3n2PA67k6/eWfaHBEz128Zz9/P9ObL9BHc999f86hZC8OLsh/l28jLa9GpCZNz1/W78g3x4qdwmAOCpj4bxzTvLSDuWhsFkICzmyiyzC3Qc0JJ1c7eSdTaXcZ9fO4160AM3sX9XCsnHMnBW9SQfOwhBaR1vHr2vJ7F1rv2QenzuUmxBHtj9DBh2nschNWxOlXNFRThUlafGzKH4bB71vQ18/GSviw+peo2qs31DElJKatd3CbxtqoqqSRw+RnJDvXj+1QW89Eyfi6U4wnx96NugDgdtqRcDnUyHhcHvzMWhaRTq7WAQvPp4V25p6PIqGvdcH0zzqzB7/V5sDpV8H4HRwwAC7n+6J0aTkdjaYQSHXSrJEREdhM1qx+nU8An0pu1Nddi09AB4QOuOlzyQqteqyhcrnyQ3s5Aa9SPYfvg0kSF+lJwrJOnAaTr0bop/oDenigo409oTFJiVlsSa29vRe+ANruXByxBC0OLGeEKr+vGNJZmyCJe3lK/ByOhbL5XvmffVVnZvPYmUkikfrSIrVCEi0JeHXr6VqtUCMPqZWHAylWyrAz+jgmJ3ZReaPX+fJuiv4NEx3Xjk0a5IYPUHH0G6FXOOEynhiUdns3T1uEr1U2q1IwFjvp3grXnYNThx5BwtO9UjttzQ0o2b34uU8ikhRH/gwn/QL6SUCyrbXlzusPz/TvPmzWVCQsLffRluKsHxxDOMu/0jEIJ+w9tzz7hef/cl/a2c3H+K5AOnadfvhusaWeZnF6HolGtm311A0zQ+fHM5y1cdILOZJzqTjlY1o/hk+PUDyRte/IhSmx1TLjg9wRzigRKs597GTQk8buezd1cinBrCqOez7x8murxW2c7Nx3nlqW8RAoaN6kSKtZQlPx1CWBwIm0ToFEwmA69P6E+zqzhbfz7jJ+Yu2U1hsB4upM/rJOZ8DY9iSZ9ujXjiIZcFRXpeEfe+PY+iUiuTR/Uh3GhC4DI3Bdiy4wRvf7Ka2OrBvPH8rWgOle1rDhNbN5yYeFdAW1RYxvncEqrHBl91ZuLpz5ey9eApKLUTsC0DJETEBPPpqnG0ffsz8kpdbu6ehSp3V41H52Fg4dL9REYG8snHd18sWZJ5vphNiSmsyUthU9pp1yxex5sYVP/Sct/CeTuZ/pHLCVttH0RaWSlGg55nbutI/9YNeG/OBr5buw9NSvRSElmm4803hlC9xrWD67+bC8+Ny+/t8ZxcHp84H+uB8yBBEbBm43OV7nPmhgS+fWMFIrm8nI5Bh3egD598P5rgqtevWfdvRgixR0p5fUHcH4ipWqSMHD32LznXyWfH/mVjE0LogLVSymtXi/4F3DNMbv4U4hpG8fmaZyjIKyauUdTffTl/OzUbR1OzcfR1j9m6bB9vPjANIQSvzH2YRu0qOkR/On8La3cmcXfvFvTt0IDtW08gbRrBO4rx8jMy5ZXev3gdX4+8nfGfLiEpsBDNA+w2O5+278ZH323gmCWfauV1whSnCk7tYrs9O0/ikBKckgMJqWzKzUGTEgwKhjI7mkngMEJE2NUfbEMHt2NrThZHz2bjUMv7FWAskUgJy77byY5pW4iOD2PitBGsnHT/NcfwwdSfyC8o47AlnZnTN6IrttNrcKsKy3S+fp74XhaYOhwqzz78NYcPnOWO4e1JTMnAYnfgbXfNGjnsTvKyC5k+ZQ2lRVbQu4QNgfvKWFmwCykEsoqZjMwCDh48R6MG1di2+hBvLNtKiQEUvWDEwKaE+vgwoG69CtfbZ2ALfHzN5JaWsaMgm+yjpxBAFW/X9UVW9cdQPis3vHdLhvdu+Yvv41+Npkm+XLeL1KzzdGxcg2eWrcao0zH77oHUCnGJ46UGpf5QVt2IMV+lVdNfV/Ota52azDTo8VBAaICiUFxmZfa0TWxZd5TQCH/enzYC45/kO+Xm342UUhVCaEIIPyll4W/pw51y4OYPRyv3lwmNDCC+cfX/hPagtMjCliV7yDqT95v72PDDbhw2J3arg8VfrmdE6xd56e5PsVnsnMnMZ87KPZzLLmTSjLU4VY3ouqGoBlBUsJ8qRKq/PFtcOyKEH165F5PJAAh0iiCttIRDHsXYAvTYAnToDTr8A71JshTwxdbd5BbA5HyFAAAgAElEQVSVsmbJfnBoSKOOXgNvoFPreBQBwqEhikopqm6guJqOjxds4kyKS1O5aN8R7vpiHssPJOFpMjJr3GAebNUM1Sxxeko0L0FIoA8mDwPm3DJKCi2cPHiO3RuOXXcMtWqEYDTq0TSNpdO3sOCrLTx/33SgYk3Cyzl5LIPjR9NRVY15X22hpX8gwqFhMBnpcWcbIuJCqdm5Lovm7CBgfQFBaSpP3dAKc5l0pVhLiRSuZcgaNUOZcM9Upoz/Dt26U6hFVjSn5K46jRjWuMkVWYWKItip5fH6wV3syk7nvm4tePWubnSsH+saj58fPtl2qpYq9Gn1/5cJB7D24Am+XLeL5fuOMfG7tZTZHRRYrHy//zAAxVYbAz7/hkxhpThaT1zLKF56+tctm3uajVgjTJxvEYCziidSp6ABq5btp6TIQvLRDKZ/su5PGJ2bCshL5VH+7L+/gRLgoBBimhBiyoW/yjZ2h+pu/lDmTlrIjAnfElM/ive3vILZ65f9b/5oNi7czZcv/kDDtnGM/fCevyQV+clb3uTcySycDic3DWzFk58MR/mV6fi97u3ArjUHUXQKyYfOknUun7zMQrYu30/z7g3R63QoQuDnbWZnyhlWeebiaO9NZKKFEfd1x1CJX94bj6fy2HfL8PE20jQknFY1org5LpY3Nm5COlSKuwTxQdeelPgKHlqwDFXTWDlvF5bcUpeBgZTsyM1kwuju7P1+P7aMQkpqeIEQ2Jwqq3YdI3HaHkY+04MP3l2CJcjA+LMZdKgdg5eHkT7dG/HTruNkahaeHdyFomM5LJ6zE6+aoaSl5ICEmNrX1olZ7A42yyxsUQre3h7oUgpQNYnd5uDtF39k3bJE2neuy7NvDKwQqIeE++PUXOtE4dUDSPgxkSCbE5PZQL2hXZh75ixJZzPwsjsxOwWe+8uYv3c18fXDMXro2V6Si2o24OvnRWCAF2dPZmGz2DF46Knm6Umf3i0JD/K75nUv2XYI/4RCMCpU7+5Hl8aXypnM+Gw9jswySvQ21q8+xIA7r59d93dg1OvKl9kEgd5eFKlOhAOqlhgoKixj3MrV2FXX7KRQBO883g9vz6vbCpSV2vjgvZUkns6iR9cGDB3QCiEE/r6evD6yJy9MWoA0G3GaJPaqBvwLJbbzVgTg5fPXf5+4+VfxY/nfb8IdMLn5Q5n31iKkJklPyeLQlmPc0O2P9WGqDFPGzqa0yMLWpfvodmdbGratXPHT38PZ4xk4y0XBW5bspdudbWnUvvYvtKpIo3bxfJ/8HkII3ho9g8LzpWiaJCI2BF8vE7Mm3sn+pDTaNo7lg5+24Sh1YiiBoJujGXBfhyv6czicpBzPIjI6CM/yMiQfrt+OxeHAqWm0j4thWGuXg/f8oXewNy2DHvG1CPTyZF1SMkKAQ9Mos9gROoFUJQ5vhTJPiRCu19LTA698DZ8qvmTlFuJ1vAQhBDNeX4ZHoQ1Drh0ivDGUB63BgT5888G9ABQXljH4vq9xOjV0OsFzkwdTo044odUCrhgLQHZ6AWPun8r5BjqkWVCmWRk9titHd5+iz9A2PD16FlJKNm84xvtvLueue9sTHOILQMKRs1iivNCyy0jNLkTxM+FRbMPoYcAr0AsB2IwKxng/+jSOZ+XCfTgcDpIOpRM+IB71tAcGvY6pz7gCsTGTbueLiQup0yyaJ94Zgq58SS1h6wlW/rCbbrc244b2lz53XgdLUPJUQOXAumPERH6MzXmOGoFv0Lh5DMknskBK4utVLqvsr6ZD3Vie7teR07n5DOvYnCKbjQkjv2bhhs0s/3I7h1sqoLiW5RpVC2XAqE+wOZw8+XQvlqWcoNhm5+0e3Yjy92faR2tZses4UieYMW87jetH0bCOK4Px5mZx1Jw8gpef/wGL08m9j3eiblgwk15eSERUIE3b1yK/sIwq19EBuvkD+OdImyuFEGKdlLITUFdK+fRv7ccdMLn5Q2nZsylbF+zC6KGnZpNfp2H4o4iKDyPl0FkcdgdvPTiNoc/0odud7X654e9g1JuD+eTpuRezwYKv8dD/JS7MEj310T3sWJlIWHQQNRu6NGCRoVWIDHX5H93atC7LFicigJNHs8nILSIsyLdCX0/dP4OUE1l4+5qY/uOjmMxGboqP5WSOa9mwadSlh3Pd0BDqhl4SGd8UF8uQ5o05mpnN2GFtWDtrJ5sOJRPeKZIH2rVACMFLkwczb+YW2t5cmz4DW7BrUxJTji4kpmFV9m9OAkDRJC/0uxmjvuJXzdQpa1jyQwIIgcGox2jU0/zGeFdG3DVYt2gvhafz8fLzwlrdkxE330Cnpo04ezKH/TuSiYwOJu1cPg5g5dL9nDyeycfTXdmGEaF+SEWgSIGUoFM1VIsDo4+JGuGB3N3rBrYdSGXkbW1pVCOMhG3JZKbn07FbA+afPOV6fgiwlJeiad21Aa27VvRxspTZePnRr7FJycbdycTcGEvXrg0Y0KEh0nHpCXTo2BFaFazGYHSSnDeBYSPnc0OrGvj6e14sNvv/hhCC21pfGq+nXk9uVhGaJnE6VcyaFyV6Db1ewS/ZTl5SKXoJb85dQ36oQNU03tiwiU/79UFqEqFJpAJI11Lc5URFBTFt1gMXXy/9MYETRzI4mp3P6sOn0OsVvnrvHqoGV/y8u3FzHcKEEG2APkKIb4EKOhEp5d7KdOIOmNz8oTz91WhOP92XkMig62aD/RE47E7ef/pbTh3L4OFXB1KnWTQAr89/jGUzNjJr0mJyMwqY8sQ3dB3S9ldpqbLO5LJi1hbqtqhBi589GK9Gz+Ed6TigJduW7aNGgyjCr2MfUBkMRj3t+1y7flvDamH4eHpQUmZDJxQMBl2F/aqqcfSgywtISklmegHRNUIY3bEVnWrXwM9sIszvUskWKSUFeSX4BXghJdisDsZ1vmTM2eD5fjz+s2to2jKWpi1jL7Y/k15Aw451uPOedoy47RRSCPRmI7VrXCproWoaHyzezLe79+GjOTF6GBg6vD0dezS4brAEUK9ZNAaDjvCjNu7q1I4BXdry8iOz2bnxGHqDnvuf7I6m1zH105+w2RzY7c6LbevHhTPlhYEsXbSXTeuOoGUUoTg1cjMKWbEwgREjOjKi36WlsKk/jCYnq5DnRn+Np7RTFmykSa0IYiOu7S4vEAhFwenrAYrgxK6zHM7LpW71EJq3rkXCuuMIRWBxliIl2O16rI4ghBDU+4clRpjNRu64uy2Lvt9Nx8716DasBeuOJ9MprgZL5uwkhVMgINzkTbFiQa8oVK/iSggY8UgXnEBqbgG3D2xJzehgrBY7er1LP/dzvp+zA1XVsAqJtDtRFAPHU7LcAdOfyb9shgl4AZgAVAPe/dk+CVy/Ono57oDJzR+KoijE1P9rvvy3rz7ItpUHsVrsvDtuLlPXjQfA7G2i8+A2fDN5GSadIDgi4KrBUkFuMW8/NB2HzcFTn9xLcMSlWaFnB3xAxulcDEY9H6x+hug6v1zLysvHTJc72vyqMRxNSOGLF76nVqMoHnj19iv0Vkl7UlgzezPt+t1A4w6XBMGKIpg2/g5W7jxK6/rRBPl5VWin0yn0v7M1C7/dQaNmMURGX5q5qF31UgHX3EKXNuntMXM4tOcUNeqGc77MQU52EXpPIzq9jjfeHUzdy4rrXo3dO5L56suN2GwOUlOyGT2uJ3NmbqbNjfFEx7rOJ6Xk+XcXsfLcKdRAPVKvIyJPcOvdbTCbftlzqGGLWD5dOIayEhs160VcHOcF80cPk4Eu/Zpidzg5fiyDYT9bpmwQF06Dp8IZO6Y73bq/jinb6tLlXOUhbZcaL81dSZJajFeGE89zFj768rbrXp/J08j4yXcw4dWFaBIQrgK8ep2OCWN782WVTZg8DBw+mc53M3riV6WUsSP+eLf6v4p7HriJex64lKF94XMV+3B3fM0mrDY7DzzQmS1pZymx2+hV27VE7eXtwdjxl2xG1i47wLsvLkCoGm071+Xxl/vz4aKt7Dl+jkf6t6VO3XCyMwrwskms3jqqhVWhecMrrSvcuLkW5bXivhdCTJBSTvyt/bgDJjf/WEIiAtBUDaOHnvCfLWX4B/nw8frnSdqTSvPO9a/a/vsPV7F/41GklMx8bSFPfXLvxX3WMrtr6UAIbOXLMH8Gbz00g8zTuZw6mkazm+rR8rLZLKfDybgeb2AttbFq1iZmJ71foZBvyplc9h84S7UqfjSJqxjQpJzMonPvxjwwtvs1z71+30menbocJHidOI/BqXHyWAY6X09UQLU5weZk/pztvPjGwOuOQ6dXkLiWbnQ6hd63Naf3bRXtVfbsSGbHluOo1Q145DnxSXNSpBO888UaJjzas1L36+fv85iX+hEa4U9AsA+d+jRBCMHAIdcXTesVBQ+hpyzME71VY/ZHP+Gh19PvsnZPr1jFBpmF2saMzymJqViQci6X2GoVz19wvoTHhn9JblYRo57szlfzdyIMOtAkjdvH0rt7I+IiXYHEY4+4fKZsdieJh9oQHRVEcODVCzP/kzEa9XRoVYvJT3zDcwdOU3xzKGYPIzfFxOJ3lSLIMz9eh2p3IqRk65rD+IT5sjglBYvdwQtPf4dngROdELz68gCatoj9G0b03+Pf6vT9e4IlcAdMbv7BFOUUoZWUAXDbiCvLlYTHhFxcGrOW2di95hDRdSOILHcOrhodjL5cMxQWHVyh7YuzH2LOO8tofGM88U2i/7QxBIX5k5dZgKZJAkIrLjFICVq5Z5GU8mK1+tVfb+Lbd5eRqgNrrRCOpWTRrkksAf6uWab1aw7x7mtLAHj06Z506dHwYh/5+aX4+3uhKILVu5OwO1QkoLbzp0w6iD0j0GerGFQNVRHoDTpat/9l0XzT5jGMHtOVlOQsbr9GwOLp5YGuTGLKk+hUBWuIEWOunX17Tv+mewfg4+/J/U/dcvF1aYn1oibqAna7E2upDd8qrvuj0yu8/fYQpryxjHPJLl+oXZuS6DekNbklpYz9bjkHCjJxIlF0AtUkUC0wb/U+xt/bpcL5t204Rl5OMQ67k49eWYyGBA89hiqePDqkAzE/+1wBeBj13PArPYr+aXz60g+cPZXD+QiN4hQrQsKZnHxe79+NOmGXlqudTpWcvBLAtS6i6AShoX7IFIlOCJQiOw6HBCl59t5pdO7ZiCffvP1vGpWb/zrugMnNP5YVX2++mJm2Y2UiNRpG8d2U1Xj5mbntwU4XM5cAJgyawol9LvHuZ1teIiw6mJ733Ih/sA8Om5Mb+1WcDYlrXJ2XZj908XVO2nm2LtlLWamNE4ln6f9gJxq0rvW7x/DirFGsm7+TmDoRBIT4suizNdRvG0+NBlEYjHom/vgES6auo9OgNviH+Lp0W4/MQHVqGBSBs5o/On8vPC4LEA7sOY3N5tLv7NudSpceDZFSMm7ctxzYf4ZacVWZMmUot3dsxMb9KTjMkrIgsKl6jps1aqY7ee71AcTGhaI6NapFXVu3cwEhBD16X5kRabc5STt3nsjqgdRtGMmjD3dl0pz1SEUgFYlq0jFs0PVnhPZsTiI1KYMu/W/AL8DrmsctX7iXD99Zjtls5KMZ9xFeLYDz2UU81PcDSoos3PlwZwaPckkVGjaN5tX3hvDUiGmUldoYMrIjANO37GHv6TRUoREY4ElN3yqcOZGJMAhaXGWpuW6jKBRFoNcpoEmkKlFsTnRFNlKPZlw1YPovoNb0JyMSVJMEh0QCSRm5DJ/2PdufG3VxidxmcRAY6kt+QRnYnIx8vCu9BrWkftsaTPloNam2AtAATQOHyrqFe3ns1duuqnVy4+bPxh0wuflHsX3ZXr4YP5eSQgvdh3fEYNSj6ATt+zbj8wnfs/7H3QCs+3Ybdz/Th7a9XMLp00fTsZbZMXl5kJGaQ1i0q2RGu/L9KYfOsnr2Flp0a0jTmyo6NUspebzrG+TnFqMJl8Zo36ZjLEh573ebcnr7edL3PpcOZGidseRnF6LoFGYkvk1gVX8ad6hbQbuk0yv4BflQUlCGqmq0jwpj+Nhb8LrM86b/HS3Yvd1Vu2zgkFYAlJba2Lf3NFJKTp7IIjenmCZx1dg45SFO5p3n1unfIFSJvkRFOjSEIggLd2XkbVx3hA/fWUFMzVBefWcQHr8gzr6Aw6Ey8u7PyckpJrZGCFO+GE6fPk3JtVuZ9uN2NAldm0TTp8e1rSeOHzzLxFFfoaoaW1cd4r35D1/z2MU/7EZ1athsDnZtO0m/21uwf0cyNosD1akx/8tNJJ3JY+ToToRXC6BqtSp8verJCn3EBgW4PIfQMbxhEx7s2JLkzrkIISoIvlPyzuNQNeJrhDBj4RhSU7OZ8uICstMKkIoACed+h4npP520KgpkCxSLxCPXjiXcCApYbZeWt7POnWd0n/exWuxg0KP39CAjrQAhBLWjQunaoR4LUvMpTcnFUuZq5+tvRqd3+y27+W0IIWoA56SUNiFER6AhMEtKWVCZ9u5Pnpt/DGeS0nn1ro9IT86iKLeINV9vZu7Rt5l75G3qNI/F6VSRUuK0Ozl9LINJI76guKAUgEffvYvgagG07NaQRj9bYpJS8lSPSSz8dA0v3TGFvIz8K85dmFuMandyIX2kMiaRPz/HzpX7ObDp6DX352cX4rC5CpcWny8hJy2fUZ1e584mzzH3/RVYy2woisJHm18mvE4kwtubIysPk300o0JfUdHBfLNoDHMWP0ZMef01Ly8PmjWLRqdTqBUXSlCwSztj0OuoExrMzTm+BO0rI3xzKfUbRtKy7aXZs08/WENhoYVjR9JI2JFS6THnZBWSnVWE3eogac8plszagsPu5N4BbegbF03giSJ2Lj/M/OmbrtlH0flSpBA4NMn5nKLrni881BekRHVoNGrqEgU3blUDD7MBRSewKrB1cxJvTlx8zT5ua1aPd2/vyaTbujPyxhbkZBWye9URitMvnXv9yRT6TvuGgTPnMm9fImftxYw8spQddzup+WoD4hpE0qBpdfoOalHpe/Vvo1lYKLoyJ4oqqXKolIB9JZgzHFQ94rj4I+Pg7lScDhXVqSGtdhxWB2dScgCYv3QPn87eRM7hdCyFFowK3HJHC6avffo/UTngb0f+RX9/PT8AqhCiJvAFEAnMqWxj9wyTm38MtjI7ilL+ZSkgrmk0Xr7mi/sffGUARg8Da+ZsRVVVFKMRnc41dd+uTzPa9Wl21X6llBeX9pBc+nc5QgjGT3+Aue8sJbZhFN4B3nQd1Pq6X9zH9qZyPquIxu3jsZXZWTFjPd++49IV9XmwK2UWOz2HdaBGg8hL55gxim8mLaJNn2ZE163GzElLOJWUAarG7LeXkbjtBG989yiBYVXwqxrA2TP5gKyUKF0IwaQ3B1FQUIafn+el+1jOy+Nu47O3lhPQ3If7n+heIVuvTv1wEnamgITqsZVfYqoaXoXGzaLZse0oHoUlfPn6Ys6l5PDQy/2x5ZVh1ykgBF/N3ELPQS3x8r5SEGz0M+PQ6xA6BSsKmqZd00H9wMYklFIbJrOR/KwiYmqGEhDiy9cbx7N5/VHefWs5OqeKl/fVHagv3KeO8ZeExU/fP4PMtHwUReHNqcOp1ziKbcmnsTudSGDRhkQmlGWjKYDewLroUxyZ9Zt98f7xSCmRUuJxvJjQba4fHi071WHbjmQ8s0rAZKCk2Iq3j4lm7ePwMBtcn18hEJrGyCdcSQo5ecU4nBpCL9A7BUIIug9o4Xb6dvN70aSUTiHErcCHUsoPhRD7KtvYHTC5+cdQq0k09716B1uXJNCiexP6PNCpwn7fAG8em3wnt9zVlk0LdtO2d1NO7j/FCwPfw+xt4p1VzxJRI/SKfhVF4dUfHmfBJ2to3685oVFXmge26dmENj2b/OI1fvfeMn78dA0lFhW9QYfm1JBOlbDqga6AT6fww8erkIqOjQsS+P7kpWW9tn2a07bPJS1VXOMo9HoFp6qhaZJzJ7Mu7nvy/Tv56Nn5HN93ikVT19OodS0Cq167NAe4goEqVa6uAQqu6seEdwdfdd9zr/QnYXcKH+7bQ99p3/BY17YMbXOlR5TqVFF0CotWHeCDqeuoHhnIA/d2YEfiCWSmxGFzkpPueoje+0QPNt/xycW2RUUWvLxNSCnZuslletmmfRwTnpyHqkkELmdwh13Fw3T1gKlJ65okbDmO5m3gRFERdWwOzB4GDEY9N3WtjwTS0vLpN+AGAKwWO8vm78bP35NOvRtfNQAuLrSgqRJNVXn6/hnc2L8pP606SHignrI23hjTHeDn8mCSThgU2+ia9//fTuH5Uh4b+DHZGQUo5QG3yWygacsa7Fx+AAAjnpjLjSqrBPnwxconGXnTG9gsdpq1iiWqPCAfelsrzqXnY4sPp3FIFeo3jaHWL1hbuHFTCRxCiMHAMOBCtfLKaQxwB0xu/mH0HdWFvqO6XPeYuCbRxJVntj3b7x0sJVasZTbWztnCsAlX99Jp0DaeBtcpoXLmWBpHdyezcs42GraNp1HbON4dPZ1qNavy4pxHMHubOHMsnRkvfY+m6FA8jKhODSFAOlTKSuzE1KuGotdx9lQuDruK6lSxltmuWW+vTfdGvPXj43z95hJy0s4z6rVL2UEhEQEYjXoK80ooLihl0bQN3Ptc31+4e78NvV6HCDVxLCcXi8PJlDXbrgiYVn6/m7c+Wone14TBywOnqnH6TB4ff74Oe5QvFFoxC4WzxTYG9f2A51+5lcee6cV3s7dxc7f6F/VSP87byYwvNmBXNSI7R6LqBNKoA1XD2D6Ed7dvY0yr1nz8zgpys4u4pXdjWt1YGw+TgfHvDWHt+kO8Om8DHy/YytYjp5nyRH/AFSx26lbRgPSTN5ayfvkBFEXhXHIWZpOBBbN3YPYyMmnGfYRGVGHC5DsYd98MwKXJWrXqIADmEviy722kpOZw6MeVlAUpjGjZlCeadfxT3oN/AgmbksjPK0ZTNUxmA5pNEhjqh04IjB4G7FYHwVU8UXSC0mIrnt4e+AV4M33LBLLPnad6fNWLffn5mpn0XP+/cTT/Yf6+wrh/BcOBB4HXpJSpQogY4OvKNnYHTG7+1bTu2YSDW44B0OjG31YJftuSBN64+yPsVgcYjKQePsf6b7eRm5ZP8flSti7ZQ7Ob6/NouwloqoYiJTrFg6DIQErPl2ApsXLrg51o0C4eLx8TyYln2Lp0L2dSc7ktfhw39W/OU1PuvuK8xfmlfPjMPLLO5vHE+3fRtEOdCvtrNYwkYcMRkBBb/8/99V0jJAC9omA2GmgafaWJ57SvNmENNIMCXpqK3iZxKk7OnsghKi6YasNiqWHyYeHsnTgdKl9+up4PPhvGLf0qBl5nT+dhs7mWuw6fSKfnI83QJRSzIiCHZGsph3bsYcusA5BcgsOhcmB3KtXD/Pn0h4fR6RSM/mYURWCxOTibeaUW7XIK80tRnRqaIvl+6gakBpqikG+x8uLbi7nrrna0a16DiJhA0lLzUHQKMdFBpKUX4F/Fi4hqAdSoGUqjRq6ZwIAA7z/ylv/jqNusOkIIDEYdPW5vwZCHO2MyG7CW2dmwZB/pp3J56KX+vPbQV2xbfZA6TaJ5a95ovHxMxNT5/6yh5+ZfRxcp5aMXXpQHTdbKNnYHTG7+1fS+vxON2tfBw9N41aW2yrBv3SEcUocwG0B1IKUktkEURedLkJpG9doRnD2ejsPmQNqd4GFgZsJEgsIDcDpUbBY7S2dtZtyAD9A0SYMWsWiqRlpqDlJKfvphN49PvvOKVOltqxJJT83BZnUwc9JS2nRrWGH/7Q93oUb9aniYjTRoVfM336PKEOTtxeIxd/P1nv3EhlZBkxKlfAkrO7MQA+CblI+mgLOKJ6qPnsJaBqSAMJPCW6P7kLj/DEvm7ELnocfX14OdW0/Qok3NCkthNVtVR9t6CLtQKanvQc3qIQzu1ZnEOd+RcaYUBBRZ7fgCSInm1DiTkkNxkQU/fy/aN46lY9OaJJ3JZtzdna46lgs8/FxvnnvwK9JP5eC02NG8Teg0KK3uS2J6LhPeX8rMt4by9tR7mT11A6HhVeg/pBUZ6QWEVvW7mC0YEvLfLtFRVmLlszeXs2/7Cew2JwKoWS/iYsFnT28Tb3/rsuiwWuw8P+wzpIQTB8+SdTaP8HLrBU2TV2jr3PxN/HtnmIYBH/xs2z1X2XZV3AGTm389UbXDST1yju8/WUPLLg1QFEFoVCB6Q+U+/mFxEQiD6+HoE+TDC1+Nos4NsSSsPUhoVBDRdauRcSoHp8tjEqno8CsvhKs36NDpTSybvhFbYSkoCvs3H0NKMJWLnOu3rHlVX5m4RtVBCDzMRppcxTxSCEHzm66cNVNVjbXztuOwq3S/s+0f5lkz93Ai0w/vRRyGEruduxu7NF1P3D+D/JQ8V5kRKRCqhsNTIAWgCDIVG1NeX8KtQ1rz8Zf38vW0jezcepL9u08x9tle3NTF5cRusTmYOP8n7BEGHIFGHr+5PYPqu5bRPr21N3d/+C1ZZwvxDTDzyJ2dWTR3O8dPZSN0esbcN4Mv5jyI0ajn5Qd6VGo8Jk8P0s6eR1XBGeSD5mtGSInB04CtXPjvdKoEhAfw6HiX3GHeZz/x/ZcbaX5jPE++fccVpWz+a+w7e5zxvWaAKkCVUK43WzZ3Bx17uewiigvK0DSJX4AXHiYDDVvX5HBCKhExwYREBCCl5OkPl7Bh70m6tarNxAdvuf5J3bj5lZTrloYAMUKIy9NkfYDzle3HHTC5+ddTUljG2F6TcdidzHhtIULVqB4fxpSfnq/UAy++WQweZgNSQp3mNahfbljZsvsl/yAvXzMmfx8cNgeePuaLoleAU0fTKcgqdP1qUzX0ZiNSSjrfdgP9Rt5M1WsYQ8bUCeeL9ePJyyykdtPoSo930dSf+GqSKyMvL6OAYeP7AK5ixSvmbEOnU+g+uHUFY8/KkFZchF1VUYQgo7j44lYwiREAACAASURBVPbiIgtSUUDVEJrEI9+Ch0Ggq+VNsd2OPJjPsrOZ7N5ygvZd63H8SDo2qwO9XiEz/ZL9iaZq6IRASIF3gQ7HmnQGj1yA6lCZOPMBvh1zJ6nn8qgREYTJQ8+0TfsoEd4ITaJPKyIro4DI6lfOIq5Ysp91aw4xcHArWra+NBNnMhvw9jFjtdgRngacOgUUQefGNSlw2mnfohbR1QLZefg0YYG+HNmRwvTP1oNTY9OKRPoMbUudJv/dmmY78/bxzrppYDeDzgAKCM1V57DHHS0BOLAjmRdGzkBKeP7Du2jRsTavf/0gOekFBFX1Q6fXkXW+mC0HXHYVa3Yl8dTQm/G9hq7PzV/Ev2+GaRuQAQQBky/bXgwkVrYTd8Dk5h9Nbno+qYfP0bBdPB7lgYjd6sDDfKmYq7XMjup0iayREulwcvpYOvlZhQSVi42vR72WNXl5zsOkpWRz821X99bxDfDmrSVPsuenw7Tv04zl32wjLTWH20d1wi/QG51eQSgGAkL9uOOJW7CW2ugxtB3GXzCBDIkIIOSyosCVoSC3BFXVkJokv9y7KGnvKWa8vpAje08jdDrKSmwMHHX9Jauf82SbdmRmFWDZkEWIwY7aRkOnU3jhrUHMnrqBiPAqbFqQgN3mxJRv46OeXXj+wZk4FB0IQUmRhcXzdqEBAYFe1IwPo3d/V1agpmk8PXImPulF+IR7wskcFq04DeWlYaa9v5wNMSqqJpkytDetakRxNisfFIEEYuqGEV6t4n1SVY1xUxez+ngyXtlODk74njsndSM6oAo3xkZjMOj55LuH2L8rhZp1I1i4dB/ZmYVsWXkIIQRDujbl1emrWZdwArui4bO/EMWgB71EK9OoGvnr3pd/GwcLj6KLsuPj46SkyBtzgJ3m/dvTvlFd8vJK+GHzAd5ctAHZwIvAPYX8tGgfLTrWZurCHazYdoQh3Ztxe+cmBPp5US3En4y8IqpXrYK3+dq2D27c/BaklKeB08D1ywr8Au6Ayc0/loKcIka2fgFN1YitX403Fz/Fk73e5sT+03Qf2p5HJ98JuOq1jXxlAGvmbUdzqJzcl0qjG2sTGOZf6XM1ahdPo3YVl8VKiyy89ejXFOQV8+R7dxHfNIb4pjFsXZnItDeW4LA7OZWUwaQ5D/Heyqc5sisZTy8PLCUWetzV9mKwZC2zkXEmj6haVf+QJZ7bH+lK9rnzOOwO7hnfl7zMAsb1fQe71YFEYvDxpuh8ya/uN9Tbm+gddhL25rIgcSsR4VXo2rcZTVvG0rRlLPm5xWz8MQFwWQwc3X8GHCqg4R/iS5uu9VmzbD+KhM5d69O5VxPWrjxImxvjMJuNJCdlgCbRlTjQCu2AS89iNBlwVvfG4nA5Z8/bmUj7+Bjuv7UN05fsxOYjCesdc8W9e/HFH9i/5TjBCmQ1M2GrJnhzw2aEEEwd0I/W1SMJDPGlU/nS0ZhHu/LCs/NxlC/Hrdl6mG2ZaZTZHDiqCDwNAuGQIATDHu9GlaB/X+HcX0P3qh05kJ9Az69XYsk34BlsZ8mmprz98kI0KbF4KVgamhHBHqhVzfQY1ILMvCJmLd+Nw6ny3pwN9LmxPiajga9fvoszWflEhwW4dUx/M4J/b5acEKI/8CYQQvlQASmlrJQQ8RcDJiGECdgEeJQf/72U8sVrHHsb8D1wg5QyoXzbeGAEoAKPSilXlW/vjktopQO+lFJOqswFu3FzgfTUHDSnirXMTnLiWU4fTef0sQykhJVfb+aRd4ZcFBT3uudGet3jKtBrs9grzEBVFiklezcdw2Fz0rJLfVbM2c7eTcdwOlQ+e/EHXvvGJWwtzCtGK5/NUp2uh290nQhyzuUx8c4PQULi5mM8Pe1BykqsjOw8iZJCC/VbxPLqVw/87vvi7efJM5/de/H12ROZFw0FhSJo17MxdzzSlXMnMvhxygrqt43n5jvaVqpvoShgdeJQ7Xz19koio4LYuGQfLTvVo0nbWoydNJC1C/bQ9+62xMSHsfrHPeQUW+nQpzEjRnemSpA3mqrRc0Bz7h3yGapTY86sLcxb/BjxtapybOdJTL5mrIpA6nT4Bvowee4ocvVONk/7AU1K+jd3la7p07kB75zYiUOTzNq7n9FtWuFvvrSUc2jfGYQGODUCj1iw31iFYtWOSa9nxU+JeDZSafSzpc7bbm/Bnt0p2KvomGk5ifATGBU9VYWZ/OYKHuk2Hh1yEwN73/C736d/OtU8w/mw2btsP1uNEu0bViU3oKV/HGdFOg6bE5NJh9loACN8Oe8RqocGUGqx42HUo1ME3p4eGPWuR5CHUU+tyP9m3T03fylvAb2llFcvufALVGaGyQbcLKUsEUIYgC1CiBVSyh2XHySE8AHGADsv21YXuAOoB4QDa4UQceW7Pwa6AOeA3UKIxVLKI79lEG7+m8Q3i6FZp/oc2HyMYc/dSrVaVfEP9iEvs4DIWlU5tP0EDdrEVWiTm36e9ORs6rWuhU6vo7TYwntjZlGSX8Zj7w+l6lU0MBdYO38XHz83H4DOtzUnvmkMOr2CTq8QEeuqwG63OZg54Ts0u4pOr2fsOy4zyEWfrubbtxbjsNrRNMg85SoBcTY5m5IiKzarg31bjv8Zt4nIWlW5+5m+bFm6l8Fjb6FlV1e23ehWz5KRms3a2ZuJjAunVtOYX+xr7Mu3Mni1y4uotNjC+KGfu5zM5+5kxqbxdOzV+KLYNzstn2IBdp3C8qUHqBEfhq+PmZp1wnA6NVRVw+FQKSq0oKoamcczEBI0uxMfXzMlhRaGje1OtRohBFnsvNO+I5E1QqgZG4qqavh4GAn08qTIaqOK2YS3R8UguEePRsz/dgc6ixOdBQzLcgkYFoPtVAkJSxLZRyKTPx1G3GUp7Y0aV2f6vIfo9dp0nE4NqUBAqDfP3dABc7CZYF9vooN/eRn3v0TryLE4tcfoF++amSg6WcCJoxmMGNOZPL2TmlWDqBboMlX1Mhv55pWh7E06R6v61d2zSf+v/EtnmICs3xosQSUCJimlBC7M3xvK/652Oyfimup66rJtfYFvpZQ2IFUIcRK4IAI5KaVMARBCfFt+rDtgclNpdDqFCbMeqrDti20v8eo9n3FgSxLPD5rCxG8foWG5IWXm6RwebPk8KgLMZkKqBeCph5Sj6UhN8vmE+bw4a9TFvjRN46d5O7Bb7XS9qx2nkzJw2B1oqmT5jI2sn7GOxz57AE1KWnapT+rRdPwDvSgtKkN1qOgMOry8TRSdL+GLcbNxOlSEENRqVoOH3hnKqw9M59SxDMIiAzh1PJNbR3T40+7VgIe7MuDhrhW2aap0/U8WrrFWBv8ALzr2aszmFYkEh/mTdToXAImrhtsFzheXcd9r31BitaGTLj3RnM83kJddhBCCZz8ajK5LKJasUp7s0QG9Xkdcw0gO7nKJf9+f/zAh4f4XhenPPDiL1BOZCCEYN/FWJo3/Hp1e4cNPh1LsLWkSEcb+hFPsSzhFj16NqBYVyIBBLVkwZzuaa4joyjQm9+zOpIe/I8PmRG8ykJfrEq9brQ4c5YFaZl4RHhaBsEswCpwHS5i4ZTntWtbkxbG9ft8b8S9Ff1m5mtFPXT/LLSzIl55Bv80TzY2b30mCEGIesBDXZBAAUsofK9O4UhomIYQO2APUBD6WUu782f6mQKSUcpkQ4vKAKQK4fCbqXPk2gLM/296yMtfixs31MHoYyMsqKF92M5B5OvdiwHTq8DmklDiEHuHUyDiVi2axIBDojXpCfiYaXvrlT0ybMB8pJVmnc+k/qgtH96RydNdJnEXFOEwGfH09qNsmnpE3vUHR+RLim1Tnrmf6sHzGRm4Z3gHfAG/sVjseXh4oVgdGk4F31z7H9tWH2LPhGFaLHS8fEzM3PUdo5NWz5S4gpeTw9hM4HE6SdidTt2UtGrav/Zvv1cSFT/Ld5KXUb1ub+OY1Kt1u3Dt38MCzvfHx9+RwQiqLZm6hQ69GBIdf0oS9Pv8nzugdiNpmAg+VULt6CJmZRTjsKkaTnsdnLaLIR8Hor2PdoSRykjJ46r3BJO0/y2G1gJmphxgR0IwQb5cZZOqJTKwWByazgQXf7MBuc4INti8/xEPP9CQ9LZ8Xx8/HbneybvVBvl04hsBgH8xVfShJLwSnRBflQ52qITzzUj8+eW8VteLDaNGmFutWHuT915egOjXGPt+Hm7rX56ZGNdl97Cwda8ewNvEwVpuDEylZ17olbtz8e/g/cvoWQkwHegHZUsr6V9nfEVgEpJZv+lFK+cp1uvQFyoDLfz1K4I8LmKSUKtBYCOEPLBBC1JdSHiq/YAV4F5f50x+OEGIkMBIgKirqzziFm38ZYyYP5f3HZxEeE0KHWy9pTZrcVI+ajauTdDANYdC59EVWO4pBofPANtz3UsWyKeczC3E6VaSmkZueT0CoH5MXPs78d5cyY8I8outFUq9NPOmncik6X4LN6iBx+0nemPsQg5/sfbEfo8nIx9teI2FtIs07N8RoMhIeHYyqqoCktLCU1+6bypRVz1x3XF+/sYgfPl6NzWIHTcVg0PHZjteuWh/vlygtspCXVcRD7w6rUMC4Mggh8A90BTINW9agYcsrgy2jXodOp2Cw2vEotHEq8RyN2tbifFU/snwd5AdYURyuQscJKw5xLM1KUX4ZjYY35e1Fq7GrKjvPnKVxmg8+3ibuH9uNaR+uJd9DY7tvKb7eBvQOSauOroDRbnMipWvGLKewlGM5OdQODuaG5rGsW3sIKeG+4a4ZvDr1q/HhtBEALF++nw/eXIGmaqBqLPshgc63NGTiA65ZEovVTk5GIWfSzvP4yM6/+j67cePmdzET+AiYdZ1jNkspKzX1K6Uc/nsu5ldlyUkpC4QQ64HuwKHyzT5AfWBDucC2KrBYCNEHSAMiL+uiWvk2rrP95+f8AvgCoHnz5v8nca+b/2fimkTzyYYXrtjuYTYyedVzSClJ2n8ap9XB6pnrCYsNZdBTvVGUillWAx7tQVpyFjaLnXtfGXhx+8CxvRhYvjSz6uvNfPj4LHRGA1JnoO/wG8k4lcv8T9dRt3kMXQe1AiAsNoTelz1wazWMZMT43nz5ygKcTufFunJ6g/6aRpOJW5KwldkBkJqr4GtpYdmvvj9Oh8qoDhMpzi/Fp4oX03dN/MPMLS8wfuDNhPr7kLsnjcT9iVgtds5nFjLlx0f4aPsODu3aCWWSG0p9yU3LQtNcdhA21SWS16TkXFYBhVsz0CmC0vhqlDXzp8BuRa9p3PnUzdzepiEBQd6s3pNEdmEpAR2qknIwg4I4PXMTE3m5Uyd6DmpGamkRbRvFcHvv5hWu8f3vNvLNqj2IKAO+pzQUnULv8sK8cz5ey5ypG6hbL5w3Zz7wh98fN27+r/k/edJKKTcJIaL/qP7KNdSfAqFSyvpCiIZAHynlq5VpX5ksuWDAUR4smXEJtd+8sF9KWYjLDOrC8RuAJ6WUCUIICzBHCPEuLtF3LWAXLklBrfLCd2m4hOFDKnPBbtz8XoQQ1C4vznvBhPJqePt78txXD11zP8A3by7G6VDRG3SMm3wHN9/emvtunEhaag4bFiYQWTOUOs2uLqbuc28HNKdKyuFzRMaHM6D+eDy9TXy47ImrLs8Nf6E/r93zGXabqzxL50GtiauEUPvnlBSWcT6zANWp4bA5KCksw/83psg7HSqZZ3IJqx5UwQjTx+zBmD7tKL3JwsSUQrLS83nwedes2+hWLakTEoxJb6B5aBgzjMuxWe3c+3RPvH3NjG7ViqScHHySVbbrTqAUWdm9dD/WCDNKnC96ncLNzeIIDPZh/YGTvDh7NaomiY8JpqC9F0hJx5gYHKrKiHfnoyJJWJ9N/dgwmjePvXiNP2xIdEm4DAp+kb689nx/ateNQFU1Zs7ehjQb2ZeSS+LOZJq2i/v50N24cfP/QWshxAEgHVfscfg6x07FpbP+HEBKmSiEmAP8MQETEAZ8Va5jUoDvpJRLhRCvAAlSysXXaiilPCyE+A6XmNsJjC5f3kMI8TCwCpetwPRfGKQbN7+Z0sIynuz2GudOZDLmw+F0HtLuV7Vf/8NOkhJS6fdgJ6pWd6U+L5/2EwmrE4lrHE1hbjFCUajdvAYZp3IozCxAOlVc+RHXRgjBrQ+4zCMf6vYWqlPDarGzc90R+tzT/orj67WqxdiPhzPx7k+wldnZs/635Uj4B/nQc3gH1szdTpfBrX9zsKSqGmN6v8u55Cyi4qrywZKxV8zSefmYmfT1yArbhBB0qnFpGe/BF/pW2D+qhSsvpLjYyhcYsWQWkbB4P16nS2kUFsLLb95DFW/XMmJ+iQUpXSVMPNCz/O6h6BWFan5+JCSeRtU0KM/EOn447WLAVFpipcsNcazYcQx/bxMT7+9NVloB1WOCkZp0OZcDSIlf8H/bb8nNf5C/boYpSAiRcNnrL8pXlSrLXqB6eRb/LbjE3Nf+FQyeUspdl9evxBWbVIrKZMklAk2usv3KNQ/X9o4/e/0a8NpVjlsOLK/shbpx81vZteoA6cnZ2K0OZr78w68KmJL2pPL+o7Ow2xzs3XCEL7a/QnLiaT576htsFjt+QT68t+ZZAsL88Q/yZVjjZyjJK0ZRBINGd77m7NLP6TaoJV++thi9QUfT9teezfD0NrlqtukU179/I6NeH8So1wf95vYAhbnFnD6egerUSD2SzvmcYnasP4pOp6Nr/2ZknskjLTWHJu3iMBh/nUeutczGyBFTySmyYPTQ02dwKwpzi7n3qZ74e5mwOpyYDHp6tajDgeR00nMLmTCkC1FVLgnPC4rK8MlyYjNIjDZoUl4W5bPJK1j44x68qngy/b078DQYGHX/dBQN4uv8j73zjq6i6vrwc+a29JBKgNAJvfcmTZo0QVBEBEEUG9Isr4ogYgNFQUWKCAqIqIAUBZFeBekQekkgBdJ7uW3mfH/cGIy0hBKVb561srh35uwzZ2aRm3332fu3S/HxjMEMebotK37cS4dOtalcrdRtPScdHZ3rkiSlbHzzYddGSpnxl9drhRAzhRCBUsqk611PCFGZPJdQCNEPV8uUQqErfevc81RtVAkEWDwsNMnTILJbHaQnZRJYxo+/fdsogMPh+vIhNcmli0k8WON/PPpMe9dWjhCY3UxUqnOlGMGWY0dKidlsokmHWoVe44NPtuW+Hg1w97Tg7nn91hA1m1XhldnDOB8eRY9h7Qs9/93AL9iHhm2qs2/zCZrcX5O1P+xl+dc7QEBsRCK/LHSpajdoVZUJc4YUet7MXBvvTv6JuJRsUIRLKLR7PRrUL4/DqTLg0yWciI2nb7M6DGpQlwPfHUV1auwrf4bYsCCqlg8mwNeT3Gw7oCAEGDNtjB6ziCHdG7JqzlaQEisQdTaRA7mJnG1vwmCXqDujebDVu1SqGsKSVaMwFbJBs46OTvEjhAjBpa0khRBNce2CJd/A5AVcOdHVhRCxuKrrHi/s9fRPA517njKVS/L10Y9IupRCWIOKZKZk8UyL8WSkZNN5YCtGTn/iura1m4cxbOJDbF1xgPPnXFGqX77fw7hvR3B0x0m6D+tQYPzbS15kyce/0LBDLarUveJIHdt9hr3rjrBj9QECQkrw1uIRePt7FbD1Dy6UOj+tezWida9GRXgCd4bdO04z48NfqVIthHHv98NsNjLpm+HY8+QSPpu4EtWpIQTEXkgEIcg2G9kZHs2yJXvoN6B5oa7z/PTlnE5MQAlUcE/SCPL3pHatUADOxiVxPj4ZKWH5nnD2TtuN3WhAAnPnbyOpsglpECx5+TEyMq0YERgScjFlqshMJwtnbAIpEYDiVGnQsAJTVhxw9aQzCdJ9wDvNyYmj0Wxbf5yO3evdvQeqo/Mv5V8kK7AEaIdr6y4GeIu8XAcp5WygH/CcEMIJ5AKP5mlHXpM87ceOQghPQJFSZl5v7LXQHSadewKnQ+XryT+THJdGmx71mTdxOaUqBDH+m2exuJvxDymBf4hru+bMoQvkZFpx2p1sXfYHI6c/wfLZG9m36QSPv9SN2s2rFJi719P3U7Z6GSYMnoPZbKB+yzBysu006dqAMlVCCoyt1qgiE797scCx80ejGNf747xkbZfK9/Pt3mHsF0NpcBs6SsXN51PWkpSQSWZGLvt+P0ervJJ+s5srV+uJUZ3ISMvBaFR4+tVuvDPyW45HJYMQzJuzpdAOU1RCGk4pMfmZ6VKvHGPG9CQ1KZMd649RtX4oAd4eJGZkY4jLxZllQ/q6YzAaSPORWE0aCMH4pev5+pmHiYpOZvfmk9iyspASNJMBoyYJLl2Cd+YPA0VgPJeLCAB3ixGvC1ZXEycBJ6IS0IUEdHT+OaSUA25yfgYu2YFCkSeNNBioABj/3F2QUo4sjL3uMOncE2z48Q9+WbADp93JrlX7cVjtxJ6PZ9GUn6/SV6repDJ+JX2Jv5hE92HtORcezaIPf8GW6+B8eDRLT31UYHxOppWJA2egOVRMmDCoKtNGL0QIwbj5w2nWuS5ZadnkZFoJvkZ1W/LlVIQQSM3VuFVq0tVXbshsfjo//a4+l6IwY/se5u7aR4uK5fjikZ4Y/pbAXblqCFmZVqSEsuWvvk9fP0/enH6l2HXSnCE80X8mTqdK5SqF14p6a3AnPv1pJ42rhfLqYx0RAsY8Ppv0lGwMRgNfrx6FwyT49OUfOW+xojg1Ro57kKW7jrItOw4hQNUki3ceYsSz9zPmuU589dkG1i7fj9HLQucBzRnxmksWYs6sTXAwg9JmSeOaZTkuE5FIpATVTZcS0Pl/yr8kwnQXWItLTDscKFx7g7+gO0w69wSZqVnYs3NdCdHGKzlJMefirhrr6ePOvAPvY8224eHtzqXIBKQExSDw8r1axPH0gch8/aMcp8r+jeE47S69oL3rwwkpG8Co9pNwOpwMeasf/UY+gMPu5Ni+CMpVKUmjjnXo+FhLTu2PoGT5IHatOQyKwJqVy8td3iciPIrnPxlEx0I2wL0bSCn5YvseNCnZcyGK0/FJ1CwVXGDM+A8eZu/v5yhXIYByFW/eKNXH14P53z1LZEQi3kGevDxjFWGhQTzdq8UNe4h1aBBGhwauQpc94Rd4d+560nwFnkkailRwWp2UKxXEB3OGcuzgRS7HpDLtrRUgoE+nauRU8WB7eASzLu3hZEwCnwztyYhXu9FvYAsSEzKoVe+KBFz16qUxmQyYEDRoUJHoQzFkZFpx87YwtG/hImI6Ojr/GdyklGNv1Vh3mHTuCaLPxuV/K6rToipHd55CMSgMGHulr1XkyUvERiTQtGMtzBYTHt4u56h0xWAmffs8J/aep0O/plfNnRCbjMHoUgb3C/LBL9iHlPgMFEVQqkIgh7eewOlw4rA52bRkF/1GPsDEYV9x4kAkiiL4ctPrjPhkMABRZy6zd/NxpCYJKRvA2cMXsGbb+GrcD3R8tBV2mwMhRJGrym4XIQR1S5fkTEIyFpORsn6+V40xW4y0bl9wC1FKyZrDp8ixO+jTuBYmQ8GojJ+/F37+Xgx4ayFnY5LYc/wi1SuUpG39wrVi+XjhFhJTszD6mrE2DcI72AdTCbe89Zho2KIKC77YiMPuRNMkpiyV1tUqsONYJKqqkpGT3y6KkDJ+hJQp2Di3bfsaBAX7YLc7qVe/HL0ebEjk2Xiq1Q7F4nZjWQgdnXsSyb0cYVokhHga+IWCveRSCmOsO0w69wQN2lRn+6oDAHQe2IpJ372AECJfTDHy5CXG9Jzqqtq6rxoT5hfUBqrXqir1Wl27nL9l9was/moLcVFJjPzkcUqGBvDRc/MJKuNHtyfakpmaxeIpq8hSc+g36gEATh26iDXHjpuHmejzCQSUdDkg5aqWYvq614k8GUPlWqGM7vAObp4WaresysEtx3mr/6cYjAY+WvM/wvLENYuLRYMf5uilOKoEBeLtdv1Kvb+ybG84k3/ZhpRwMSmNV7q3ueY4d4sJk10FkwHPIjgitSqHkJiaRRYOss2S9Ix0Ji/dwvThvfLH9OzfjMN7I8nNtjH0xY6ElPPn7OUkLqdk8nLva6/nr9SsVSb/tbevB3UbF10MVEdH5z+BHfgIGMcVt1ACla5r8Rd0h0nnX0NOZi5AfuSnKHTo2xRPbzcij8fSqG0NjHnl4Id3nGLZrE1oqoamajjsKif2RRRpbu8SnnyxZXyBY7N2vJX/2sPbje8jPsPpUDFbXM7Ak6/3ZP7kn6nRsAK1/vYHuHKdslSu49oWmnvgAy5HJFC7ZVXefWIWDpsrUrXx+9+L3WEyG400LhdaJJuEjGycmoamSRIyrl1wIqXE73ASfgfjCCoXQIMqZa457lq8+XQX6lYIYfpXG8kINoAm8f/b/w//QG+mLXi6wLFXe7cr9DWsDifhMXFUDQnE1/3Wta10dO4V/i1VcneBl4AqN9BpuiG6w6RTrKQnZTC69ZvEX0zilW9eoH1/V97O4S3HGNf9fQDeW/MG9dtf1Zj6hqTEpTN5+DykJtmyfC9zdr5FbEQ8rz04FYzGfK0lqShkpWQSdeYy5apeLUi4b8NR5r7xPXVaV+O5jwZiNBbuV0RRFMyWK0nS3Qe2pPvAlje1Cw4NIDjUlUB9f/8W7N9wFCHEPyIbUFR27T/PthXHqGjxoGSdAF7u1rbAeU2TKIogJ8vGyQMXkJokJTaVJTM2En0+gcde7ET5qiHXmR1iIxOZ8ORcNFVSzt+T6HNZKGiUreS45vgcuwM3o/GG+VHXYuCX33MmPRmT0cDmEcMo4VF0h11HR+c/wTmg6A0481BuPkRH586xe/V+EqOTcdgcLJjwA+Byoib0noLd6sBudbBh4bYiz5scn4aqaljtTi6eiKFriSd5ufuHV+/FOxwoAq6lVXnhZCxvDZhB1PlE1izYSY+gZ5g3cXmh1/DFmAU8VPJp5o1bUuT1g0tfadHxqXx78mPqtKp2S3MUJx/MWMeluHSy4nN4JME+4gAAIABJREFUqlEjSvpe0ZUaP+9XmjwznZdmrsbd00yTdjVQFEFopWCWfrmF7WuOMHH4/BvOv3zuVi5dTCIuOplaZf3xiszA7VwGP325jdTEgtGs2Zv/oOnbX9Bl6nzSc60AZKTl8N3XO9i+6fotZJyqSoTvOTwaxOEsk8Lk7dtv44no6NwjyGL6KX6ygcNCiDlCiM/+/Cmsse4w6RQrNVpURSgCi4eZlr0ak5maxeYlO/OrzhDQcZAr7yQjOZOx7SbwVO0xRBy9eMN5y4aFoCIQBgO4WUBCaly6yzNSVQyKwMOiEFSqBCHlAji6/RQJ0QUFYSf0/wxNy/stVgRSUVgxa0Oh7iv5Uipr520mOz2HZZ+uJSstu2gPJo8SQT74/E3Q8t9KuTL+uFmMICUhQVdENzOyrazbexqAXUcjSUjLZuJXw/j+4DuM+uARBAKhiJuqaNdsXAGLxYTF3US9FlXw9ffEzcOMh7cbnj4Ft86+3X0ITUpSc3LZFxkDwLtvLGPR3G189PYqDu299jZsoj0DS6AdoYB7QC6ZqvV2HomOjs6/m5W4WrX9Dhz4y0+h0LfkdIqV8jVCWXD2c1Li0nDanQwo+wyqU0VRFExuJro9dT8NOtQBYO1Xmzjx+xlUp8qXryxk8m/jrzuvwWjA7G7Gmn2lKgqjAZG3pebIzsFht5OVkgUSPh/5NRZ3M899PIg2DzXFw9ud1KS/RC2EwGQ20LBNjULdl3eAFz4BXuRkWvEN8ML9FvKwrseB/ZFMHLcUb293ps0YTMmQqyvY/gmmvtmXHXvPUbl8EGVLX6k+83K3EFYmkIvxqZT08ybAxwMhBN6+HlSvX54xH/bnxIELXLqURv/W7zN0dCe69mty1fwdH2pC2UrBaFJSo0EFWnauw5E95wmtFMTa73ZTq3FFwvJywbrXq84PfxzFYjRSv6xrqzUr04rq1DAZDWRlXfl/cepYDAf2nKdtp1oEhfoSaPEixZaNUZp5475/tt2Mjs6/gXs1h0lKuUAI4Q6Uk1KeLqq9uIGK+L+Oxo0by/379998oM5/ggUTf+Dbd5aBhNqtqzNq1nDK1wzNzzeaMXIeq2asA6Ddo60Y993oG8537lg0W1fsJyDYB9XuZNe6o5w9Go3qVJGqiszIBLMZNA1Ul2aZ2c1EmSohzN73Pp+N/ZbfFu9EKAovfDiA6o0qUq5aaQyG6wdi4y4mEr7zNI071sFgMnB63zlqNAvDq4TnHXpKMObFhYQficZgEDwxrC2PPX57ek2RMcnExKfSvF5FTMa7I87ocKpEXEqmQil/LNeIJB0/eJFxw7/BmmvHzd3Eyv0TCz330LbvkRSXhkFRmLvpNYJK+yGl5FJaJv6e7kScjmf+l1uoWCGIuJhUKlQOYuhzHTAYFNJSshjcczp2uxMvb3eWbnqVbKeN05mXqOkTirvRfAefgo7O7SOEOHA7DWqLintIWVnl8VuWKioSxz4eW6z3JoToCUwFzFLKikKI+sAkKWWvm5gCeoRJ5x+k7cMt+Wn6GuxWB4+88iDlapQh6mQMweUCcfdy5/DmY/lj1bwmuDeiSu2yVKl9RZSwWdd6jHrgQ+xIVKmBpyd+oQHUrF2aAxuOYs2yYrc6uHA8BmuOjRc/HsiDz3TAv6Qv3oVweMJ3nea17pMRisDH35sZu95GKEq+lMGdomWrqpw55WqoXbdeuZuMvjHno5MYNn4xihA0r1eB90cX6nOiyJiMBqqVC77u+ZCyfiiKwM3DTKUbJH5fi9TETJx2FcUiOLTnHJ36NEYIQRk/17bgpHHLSEnJ5szJy3zw8QBq1yvL5ZgUvp21maAQX1TNpeRtzbWjqRpeJjca+ReqqlhH5/8H/504SlGZCDQFtgJIKQ8LIQr9y687TDr/GBVqlWV54nw0VcPsZubd/p+w+5cDeHi7M+/ENHwCvfPHWjyu1gU6tvsMuVlWGnesw/5Nx3hnyGx8/L34ZO2rBIcGUDYshIUH3uXnBTv4/rP1aKpGg7Y1ePWzwRzcfopxPaeg2RxITWPaM3N5fdEIylcrXai1SykZ328aTocr9yo1Po3hDV/HYXMQUj6ISStexquEB78t3M6P09fSumcjXvhkUH70rCg8/GhzGjethIenhZIlb2877kJsMkIIcm0OTkXG39Zct0NAkA+zV44k8kwc9ZoVzVl5Y8Zg5n6wmkuX0vjig1+4cD6R4a9cESj1KeFBWloOdruT9yauYNiz7Vk5fwfnT13C7GaiYq3SXL6UxhPPtL/jzq2Ojs6/GoeUMv1vn8OFbpGiO0w6/xgOu4PUuDSCygYCsGfNQey5dhSDQmR4FE+83Z+3ek/B4uHGY288VMB256r9fPTMVwgB/UY9wIFtJ7FbHaQmpLNtxX4efrELAF6+HjzyfEeMRgMZqdk8+mJnAEwmA8LNAjYHSEnchYQir18xKHnldpIewzuy7ust2HMdXDwfz9OtJmI0G8lNTkdqkvWLd/Lg850oG3a1lEFhqFjJFa2Jz8ziVFwiTSuE4m4quhJ1q4aVqF+9DBHRSbwy9J9tLRtcugTBpUsU2a5ph5rEJ2Qw96NfsVmdHPlbQvfkTwawZOHvrP35EEmJmXwyZQ1VS5UAIdBUjTNxqVjNgmUbj9KrT7HtBujo/De4t5W+jwshHgMMQogwYCSuBPBCoTtMOv8IuVm5DKs1huRLqTTuUo/3fnmDfmN78N17PxEaVoqqjSsxvO7L2O0aDtVG+O4z+If4Ybc58Av2JeJYNA6HE82pce7wRVp2b8D58GhXi4+/KXYbjAYefr6gc/DZK99hsJhRLWYsRkHf0d2LtH4hBE17NGLX2iM061Sb56c+Tk5aNrvXHMJUwouM1BwQ4BvsizUzF6PJgH/w7UWHUnJy6T5zIaqmUTnIn2VPPXZzo7/hZjYx7X99bz7wDpGRloObuxmz5eqPGlXVsObY8fQuulhkmy51+HXZPpLiM3hyTJf842cSksi22xkwuCW//XoExaBQMsSXNz8ewLJvdmDwMPPjtnAMTg1Pz8Kpmevo6NwzvIhL5dsGfAf8BrxbWGPdYdL5R4g4GkVSTApSSvauPUT8xUSGTHqUQRMexmA0kBKXRlxkAsLNDaFKvhiziNmvfY9UJSOmDaLHUx04uPk42Zm5DHmrL+6ebmxetheT2Uhgab+bXj8uOgVHthXsDmx2WPLhatr0bVbo9SfHpbFzzWFUp8audeEc3xvBK/OeBWDdtzv59KXFOOwqljIBPD/lMWo2q4Knr8ctPy+A2LR0nJpKrsPJqfjEm45XVQ2b1YHHHXIMpJRoqlbobaxVP+5lzvT1uLmb+WLh05T6Sx+3rIxcRvSaTmJcOg8/3ZYhLz1Q6HWkZeTwwfwNeDUvy3vDO+Pn43qu285F8uKyXxACRrZpwax5wzh54hLNW1bB28edZ//ncorDGpUj8mISvR+oX4S719HR+a8jpczB5TCNuxV7XYdJp9hxOpxEnYzJf28wKiTGuDSRLkfEM/q+N3n/sWkohjx1bimRgNOu4rA7+W3RTvxL+jJ905vM3fseW5fvZXjLCUQej+H8sWiWzlh/0zWM+WQgAaX8XHIEbiaC8tS2C4u3nycWd3O+AubUUQvzz7V4oD64W8BsIiUpi2pNKhfKibsZNUOCaR9WCV83C692vO+GY9NSsxnU61Me6vghPyzYddvXTknMZNB97/Ng7XGsX7a3UDa//HQAp1PDbnOyf/f5AudOHLhAemo2mqqxZsmeIq1l/k972LX/PHt2nmbO4itCk4djL2NXXQ7l7gvRhJYLoFPXOnj7FJR4aNeyGkMHtMLvDlYy6ujcK4hi/CluhBAbhBAl/vLeTwjxW2HtdYdJp9iZ8/JCZoycz5+SFmWqlqZmC9c22oyR8zm+6zTHfz+DpkmkzYbZrNDzqfbgdILTSZs+jdm+Yh+bf9xDXFQSy2esx5ZjRzqcSJsdoboSsc8fuUjsubhrrqFD36YsPjaFd1a8xPDJj/H6gueLdA9mi4kSXibXVr+UJMdnMPe91ezdfILRPaYiVA00SaO21Qku48f+LSd4qc80fvpyc4F5pJT8umgH8yatIC3p2r3Y/sSgKEzr1529rz7P4GYNbzj2yP4LZGVZ0VTJyh/+KNK9XYt9W0+SlZ6Dqmr8OGdroWx69WuM0ahgthhp3KJygXPV6pXD3cOC0WSgQ68GRVpLoJ8XHqdT8DiexK4vtpEUnw7AI/XrUMbXB4MmOHwgml3HLxRpXh0dnXueQCll2p9vpJSpwPXLef+GviWnU+zEnovDnmvPf58Wn872pbvRVI2QisFYPMxoqsRoNuK0ObFl5LB6xjqE0ehyMOZtIS7W9X++74jOWDzMGIwK1rQsNLtkzZyNmE0GVsz4DSklk356iUp1y2N2M+LuWTBfplHHOjTqWOeW7qNSjdLERR1FNbthz7Xx09wt/Lxwp8tx0yRGk4HXPhuE0+Hknae+wm51cO5oNI3b16RcmKuUfvevR5gzfhlOu5Pzx6IZP384s15bQnZGLi98NBD/W6yKq12/HGazEdWp0bFbvVuao8B8TSqiGFzOT9vuhZuvZ78mtOtcG4ubCbPZ9VGjSQ1FKPj6e/LN1tfISM0hsIhCnI/1aMSSl5YC4LA5Gf/SEmYueoZSvt4MqlaHGat3oWoqc9ftoVWtCkWaW0dHh3s56VsTQpSTUkYBCCHKU4S71R0mnWLn+WlDmJyUwYXj0dhy7dRoHsbUYbMAeOSVXoz4/Ck8fd35afoaju86jZQSIQRCUbCYjZjczDgdTqSEpMtpzNr+Fsf2nGXGi/PJSnP1VTyy/SS2XDtCEayet5X9O05jNBr5ePVYKtUKvSP38fJXz/LLlxuZ8+piRAkfJKA6VTy93Mh2qtRqVJ5+FUdh8bDg4e2O6lQRAjy8rjhtdpurkawmJQ6bgxWzN7Jl6R+oqobJbOS1r4YXaU2qU8Xp1AgI8ubbn0eTmZ5LUEmfmxvehDIVgliw7XUy03IoXT6w0HZ/bodJKXnvxEK2JR7mvsC6jK81BLPFVGRnCcBoMNDo/poc2HQCaTRwLiqZr7/dyZOD7qNRlVBMBgNGA3SoV6XIc+vo6NzTjAN2CiG24doVvA8o9Ies7jDp3FWSYpPx8vPC7S86SqFVSzPjj8lIKXHYnXz12rfs++0wSElidDKD33oEgPseas6J3aeZNnwOodVK03FQW+xWJ/Xa1eSTEV9jy7VTqkIQ8dHJtO/XDB8/T6YOn4tXoDcPj+3BtGfn4uHjTnJSFk67iqZK9m48dsccJou7ma5D2zFv3Pc4M7NQTCaq1CvH+DlDsbiZefPh6TgdKjLbRo8n2+Hp70XdFmEElrpSSt/mwUbEnI/nUkQCT7z+IPs2HHXlbgkF37/oUBWG+NhURj70GdmZVka/148WHWuye/0xyoeVpF7zyjef4CZ4+3rgfYuJ6+mObHYmHQXg9+RjpNoz8bfcuiM38YvBvDRqMcePxeB0M3D0WCwAdSqWYtXEoWTm2qhcqmh5aTo6Oi7u4dYo64QQDYHmeYdGSymTCmuvO0w6d435by5h6dTVeHi7M+fIVAJL+xc4L4TAbDEx4PWHiDl9CbvVwX39muN0OFk98zfmj/uOqo0r07xPU/ZtPsnl6FT6vtAJgD4vdGbuhGUsnroGoaxl+rrXOHsshiybSnpUCltWHmDZpdmcORjJkmlriTAqWNzMtOh6+9tTf8XTx4O3l7/Euq+30HVoe5p0uTJ/nVbVOBcejdGo0K5vEyrWvOKonQ+PZuoLX5OVnkt6ciYdHm5GcKg/3Ya0xWgyYs220W1I2yKt5Y/NJ8nJtWEzKyybv40NP+3n5KEohCL48NtnqFa37M0nuUv4mDwo71GS2NwkQtwC8DXfXoNho9HAW+/25dXxS0lPz2X40Db554JLeBFc4r/RwFhHR6fYUYEEwA2oKYRASrn9JjaA7jDp3EXWL9iK0+7EbrVzbMdJ2vW/ugdabrYVN08L474fw5PVR/FOv4+p2qQy4TtOIjVJ+PaThG8/CUIQeTSKryf8SMsHG7N/2ymsOfa8nnCSrcv2ULZ6GQxGA4pBIaCUL9ZsG690/QBrjg2Lh4Vvjk7G2+/WK6Pio5N5Z+gcNE0yfv5wSlUIAqBJl3oFHCWAE/vO8/M32zG6mal/X7UCzhLArDd+4MLJS/nvN/6wh8Gv9cK/pC9dBxWsgLPbHOz8+RBBZfyo0yIMKSU//biXmKhkBg5pTWCQK1JTq2lFkmv6IZ1wPiEXQ0oOOFXcLSZSE6+dUG6zOzl0IprK5QIJ8i9aROv0kSiWzt5Co7bVeODR5jccqwiFzxuNJSYngVCPYAzi9utN/P08+WrGkNueR0dH52/coxEmIcRTwCggFDiMK9K0G+hQGHvdYdK5a/R58QHmj1uCp68n9TvUzj9+/sgF4i8m4e5t4c0ek0FKnp8+lMzUbBw2B0e3nbh6MilB01CdsG/dYWzS9QdXkxpCVfHwstDp0RaYzEayM3PpPKAl9lw7qtNVMac5VRTlSiGrqmp8+eaPRByP4dn3+lO5zs2jL8u+WE/E8RiQkiWfrGXsZ09cd2xclKsFiS3XTtzFZC6eiSMlIZ16LcNQFAW/YF8URaBpEpPFhH+wDz7+146KfPrSYnatPQJIJi58jixV8s2XW7HbnURdSOLjLwYDYPJ1w+BhxhCVDU6JJiCwXACtWlahSbvq15x79HvLOBOZgKIIfpj+JP5FKLWfMGweGSnZ7N92iur1y1Ox+o1VzM2KkUpehWs9o6Ojo3MXGAU0AfZIKdsLIaoD7xfWWHeYdO4a/V/tTc/nuriq2AwuscMTu08zps14NFVi8bTkV8sd23kKo9mAIy8J+k/K1Qwl/kIiIZVDiL+UDpqk9YONOXM8lpzkDOJPR2E0G2nWtR5CCNr3bZpva7aYeP2b51j79Va6P9keT18PVFXj8LaTRJ25zLrFO7Hl2PnwuXnM2TnxpvdTqXZZzBZXO5LKda80wc1My2b32iOE1S9PxZplAGjdowF7N4QTdSaOnk+1Z1T3qQhF0Ll/c56b1Jczpy+jmUyY3Iw88UoPHhjYEqPp2oKQ0efiseXaMbuZuHwhCe+yAflfAOVfvgmGBpegSe1y7Es6g8UORoPC6Lf70LRFweTno+HR/LzmMB3a1eB0ZDxWmxM3i4mYuLQiOUxmsxGE68uoyaz3ZNPRuWe4RyNMgFVKaRVCIISwSClPCSGqFdZYd5h07jgn9pzhk6dmEVqtNK9/OzLfWQLY+sPvaKrrt9GWbcs/Hnk8itxMa/57g9nAMx8NptOgtnj6epCdnsOQaiPJzswhMyGFL3e8xXONXiE+r+/R4U3HqFSn/FVradWrMa16XekXNuPlb9mydC9OpwoChCKu2dh364p9xJyLp+eT7fANcEV+Hni8NaXKB6JpkgZtrkRsXus9jZiIeASCObveomTZAMwWE6/NHgbAmkU7kVJiy3FwfK9LwNGnhCfJbukIo4G6LcMKVM79nRenDGDa2G8JKRdA+4eaYHE3MfTptkRHpfD40Nb54xRF8MnYPsgxkjMnL+PmbqJ8xaACczkcKq++/iM2u5NtO04z9Ok2fLt6Hw1qhlKziH3u3pr7JD/O3sx9D9QltFKhpUwKoEnJp9t+JyI5hfGd21PC7AaCfBkCHR0dnTtITJ5w5UpggxAiFbhYWGP9U0nnjjP9mTlcPBFD3IUEti/dQ6fBruTlqFOxrJm78Zo2kUejXC8ElKkcQoU65di1ci+zxy6gfvva9H+1FxlJGUgJu1fvB6DjoLZcPBGLwajQ4CZaSsmX03hv2BzOHY3CnmPHbDHhlBKJIPpcAlnpOXzw/DckXUqjxxOtmTdxOU6Hk/DdZ5ny05j8eerf53KU1n2zle8+WMl9fZpy+WIi9lwHbh5mki+nUbLsleosKSU1G1WgQvXSJF5O46nxvQGY9PVwfvtxD5VrhhJ2k+3AsHrlmLnpjQLH+l4nZ2hrwi52Je2le+lOVCtR+6rzIs9JdL0W9GxXm0G9m1417nocSY5l6+VzdC5VjcljvyM9NYfzkYm07FIHg0Fh7c+HOHEilkcfa0Fo2QA0TRJ5Lp6gkr74+LpfNd83ew/y+UGXsOaRqRfx2ZqJUARTPnucmnXuTDWjjo5OEZD3dJVcn7yXE4UQWwBfYF1h7XWHSeeOU65GKJfOx4OUlK4Skn88KTalQB5RPgL8QkqQFp+GpkoSY5IZNOFhPnpyJpqqcWTrcfqN7eEaiERqkpysXO5/rA33PdQMd293vP1uXBW1dMZvnDoQ4RKUNBtQVAdOh4bBzQ1Nanw16SeO7DiFU5Wsnr8NKSWqUyM7I/equTRNY/pzX6GpGqtmrefpDwfxyzfbadCmOjWaVCowdtLgmfyx8Rg+JTx5acYQVn+zg49Gfcvwt3rzaF7F350iyZbM/MjFOKSTU5ln+abp5xhEwa0yo9HAx1Me5dd1R2nbpholShReJiDdnsvArYuwqU4W7N9N6YRsnE6NyzGp5GRZiYpK4YvPN2C1OdgYGUGHHnVxHkhh9/qTmMwGZi5+Blu2jVLlAvOb8UZl5InuClBPZWK3OwHYsPaI7jDp6OjcEYQQ/tc4HJ73rxeQUph5dIdJ547z6oIR7Fi2h1KVgqnZ4sr2cP32tSgTFsL5w64IqMFoQFVVBDD0nf7sWrmP3av3Y7c6OLQlnKqNK3H2YCRhDStSpmopKtYpR+SxKEIql6JfxVHgdDJoXB86DWzNzeq7KtQojclsAgH2jBzsOa7tPw0oXSWUjUt+x6m5oi5+wd5cOhWDEFDC9+qtMiEEwWUDSE1IRzEoVGlQntRPc/n1hz+o26YGrbu7mrpqmsbuDcdBMZCebuXtQbNQ3Mw4nJKZ45fTtueN25sUFZNiQghXUpFZMSOu062pZo3S1KxRuOTrzZdPMPXkrzT0L8+Iap3R8vr65XpqtO1ejx3rwuncu1GePlMKSMgNNpCbbGflgv043DX8s2zYFfjfE1+SFp1MybIBzFz7MkaTgdGtW/Lr+bMk5+YgXPn5GI0G2nSoeWceio6OTtG59yJMB3Dd1bU+FCVQ6RrHr0J3mHTuOGaLifsHXt0cVlEUIo9F57/XNA2k63/r6pnreeGzJzm0Kdy1VfRsF6o0rEhybAoXT8QwrOZonHaVgNL+JKdZXX+4hcKiD9ewZNpvDHy1B/1HdS1wvYyULDLTcihTKZguA1sTWMqP9ORMpg6dmT/GhORSVApOp4ZQXJV36QkZGIXEmm0j4ujV29tCCD7//R32/nqYWi2rsXbx72SnZgMw5bn5NDk9FYu7GUVRMLtbcNidkOdoSFXDzcNC5bzk8DuJr8mHcTXGciTtGC0Dm6LcgdL9t8NXku7IJTUum16hDXmvcXdWXDjKkKrN6PBwGK+82y9/bK06obw4ujOzf9tDwuUsAIzZEjQVnJL4qBSE3cnli0kkx6dTMtSfEu7uLGjalVdGfosVgVQE3fo0pEGTire9dh0dHR0AKeUd+UDRHSadYkNVVTSnlv9eaq6vMQaTgaqNKlGzeVVWpS8EXM5VUmwyGxZt5+yB8zjtrvBDSlwqRh8vUIwIQDEacNidbFjyewGHKepMHKO6fYjmVHlkZBcGju1G4/tr83Sj11AloAgatKuJFQOnD0fh2rh3CWl26NeM/WtNRB6P5pnJj13zXnwDfeg0yCWWWKdFFZbPcuVmaZokMy0Hi7sZgKcm9GbOhOUYjAZqNqjAU5P6knQpnYZtrl2YsXThTr6bt51Gzavw+vv9MBiK5vRU9a5MVe/bV/X+k4peQZzOuIwESnuUoGlgJfpUqHvd8V271+fIpURWxR8FKfGKyYW8BO7K5UOIOHSB+q2qElzGD4Bdvxzig+Ff4TAoUDYYpOTS/rNoWmcURe8NrqPzT3Cv5jABCCEeAlrj+q6+Q0q5srC2usOkU2wYDAbMbibs1oLSAY+98RAD3+yLlJLjf5ynRKA3ZSoH82rHScSei8sXo9RUDalJGrSrScOOdanTsipvDfiCjLRsej9zf4E5V3+1GbvVgaZq7Fh9kIFju5GRnEnUqUuubSuDAU0xUsLPE4ubGSklj43pSrPOdalYswz9R3Yp9H0161SHh0d0YsP3e+jyWIsCrU96DW1LzyFtXNfMo0rt6yd5z5+x0dXCZecZIs7EEVbIrbO7xcymg1l/PpyLq6IJTz9LmUeaFriXP7E6nGw4cobyQX44HE4UIZCAIoWrGhEY+nI36jepWEA+4cCW46gOFWG1o5yJBk1y+Gw0v/98kNYPNr7qOjo6Ojq3ihBiJlAFWJJ36FkhRCcp5QuFsdcdJp1iZW74J3w/eQXnD18g5uxl+o3tyaAJDwMw/92VrP56G3arA4nAkJ6KpmoYTQYen/AI33+yBqdD5cKJS7z308sANOxYm80r9rNl1UEeGNQag9HAtpX7+XnGWoS3N0JReGRkZwA8fNwxWYw4bK7E4pMHIjAYXM6Y6nSyZPJKmna8urKsMDw5rjdPjut9zXPXcjCuR1j10lyMSMRoMhCSF4X5J/EwWjj2+Un2bD7BFqMBd08L7XrUv2rcK4vWsOeMq9JxQtd2bN58AtWhMej5DhzceZZ6jcrTqEXlq55Fz2Ht2bXmMBnpuQgpkVKioKIUMbKmo6OjUwg6ADWkdCnYCSEWAMcLa6w7TDrFSunKIYyd+xwAdqudHcv/4PS+c1RrUoWjv591aTOpGhJwGC0Is4ZmNFGyUkk8S3iRk5VLp4Eu7SGH3cnmn1wSA+eORhMbmUjZKiU5uPUEaBKZnoEwGenwkKts3mgy8uX+ySyZ+jPBZQNZPuM3rDl2hBBIpxOLu5nzRy5S6QYRoLvNR18O5djhKCqFlcTb5+oy/LvFpdhUtm0/RaNGFalaNaTAuZTkLFSnhpSQ/RetrL9yISEVq8OJu9nIwT8iMCfaUFUKC7n+AAAgAElEQVTJgb0RTPvqyetet2LNMkxb9z+ebfcuDpsTIQTDxvehRfcGd/T+dHR0isC9uyV3DijHFe2lsnnHCoXuMOn8Y7w3YDr7fjuCpklKhZXGo4QninBVriElOFUQCpjMXIpMZNGJqWSlZRNQyhV5SU/KdI3XJEaTwruDviD6fDzVm1bB7OeDIyuXIZMeKXDN0pWCeWnmMKSUZKRkcXDLCVr2qM+6r7dRqmIwLXvc2cq1omJxM9Go+e3lIJ08Gk3sxWRad6yJW14u1Y3QNMkLLywgO8vKooW7WPL98/j6XpEbyDUZ0CxGMBnA49rzvf1IJyYt20iVUoE8VL8O+9afwmCA+9rVuOn1S5UPpHP/5mz/+RB9hnegz/OdC3+zOjo6OoXHGzgphNib974JsF8IsRpAStnrRsa6w6Tzj3HuUCQOh4YQgtjTlxCKILByGdKSM9GcEk1VUYDQKiF0e6INFndzfjI1wKn9ERikhmpzkG2zYcvIQSoGTh24QFi98kxb++p1k6aFELzw0cD898MmPny3b/euM23tDlavP4zHrmSMBgM7Nhzn7c8G3tROSklOtisipCga1lwHvr5XzpcpH0BUdAo4VRIiE8nOyMXzb9GvhpXKMO2RblyMSqZq1VIs+OF5cnPshJYL4GYIIRgxZQAjpgwo8j3r6Ojcee7hpO8Jt2OsJwro/GP0frFbQSFLRSElNQcVgXTY8fJx45X5zzH3j3cILnv1H956bapjdjO5olFCcVW/CQFSkpmaXeQKs387Ul7/UywhPYuF2w+SlZyDQ9OwWR3EXEgq1LwGg8KbEx6kYqg/3e6vxaj+X/BY+8lcOBcPwMvjevHEk/ehJGSw7ItNjOg57ao5LlxM4rmRC5ny8VomTFpJQKD3DZ0lTdM4uS+C5Li0Qq1RR0dH5w6wH1dl3DbgMi6l79+llNvyjt0QPcKkU+wkRCdxOSKePiMfICs9l72/HSY1JQevAG9io9MQRiN4efFT7Oc3nMe7hCdvLxnB6w9/BhIcTjX/m9GDQ9sUw50UDwkZWfT/8nuSs7L5+OFudKoVln8ux+4gITOLkt5eeLlZsIYqkCopZ/Fk5Js3jC4X4Oj2MySevsy68Bg01SX9sHrxbka+1ZtMm419Z6NwOlzSDnHRKcReTKJM+cB8+5jYVIQQWK0OIi8k3vR608d8y47VB0AIvtj0BqUr3lovOh0dnTtMXn/Oe5TtwH1CCD9gPbAP6A/cPBSP7jDpFDPRp2N5tuGrSE2jYae6vLv6dYbm5RnZcu0MbTqB1KRM2vduVKj5ajWtwjf73iE1MZOXe0/DmmPH4mak+7B2d/EuipcNJ86RkpWDQ9WYtm4n7atWwmgykJZrpfusBWTabHSpEcaKsYM4eCGWJm+Wxc+zaAnjB3efx5brwGgyIISCwWCgQYsqALwx71eOXozBD4mQIIVk+tsr+Wj+U/n2zZpUomnjipw5G8/oF2/e8uXQ9pNYc+y4eZg5dzRad5h0dHSKAyGlzBFCDANmSik/FEIcKayx7jDpFCvv9J+GPdcOwB+/HOTiyRjK13D1DLO4m/kufDKqqhVpO80/2Bf/YF/mbB3HiX0RNGxTw9UG5R6hcYUyKIpA2CUZu2J4Y98cRs4ZyMB5P5CcnYMENp4+z0e9H6Bz3aq3dI0nx3Tm43HLCQn144U3e+Ht4065Si4nRpMaqqcJWzU/3CIzMbiZ8fXzLGBvMhl4e3yfa019TYa80ZsZr35H2bAQAkr6MLDqKMxuZt5f9QqldOdJR+ef5d6NMAkhRAtcEaVheccK/cdGd5h0ig0pJRfCo/LfG4wKF8Kj8h2m/OO3mHsUXMaf4DLX6rH436aivx+zunTh7ZELIdHKMZHB5O82IjekYKhnwumpMLhp4cvwpZRsOx5BZo6Nro2qYTIYaHV/LVrdX+ua498b2o1Pl25j7/E9KDYb5SsHMXbSQ7d1T/c/3Iz7H24GwNuPfkpSQhYCyc9zNjL8OurqOjo6OrfJaOB1YIWU8rgQohKwpbDG91ZWrM6/GiEEvUc+ALga79ZoUY2m3f/ZMv5/O8eORtOn61QmvbacsNJBKIqg79NtMSQ4MDgh+ICDlmklGNO+VaHnXHfoDP/7Zi3v/riJaat23HR8ST8vwhIceJxNRU3LIul0DB6eFsDlfM19bxWDW03i50U7AUiJT+elblN4scO7XIpIuO68manZOOxOYqNTEYqCVBT2/naEMwciCn0vOjo6dxaBq0quOH6Km7zk7l5Syil57yOklCMLa69HmHSKleenDeXZj5/Q+4QVknW/HMaep0xepmEFPlsxCoDIyERGHvkWVdV49ekbt3FRnSpSkt+S5FJyOqqm4VQ1opNuXqX289fbWP31NlRAsZgY/PqDACTEpjK6+4ekptsAmD1xBd0GtGDFrA2c3BeBpmkseG8lr88bDkDsuTg2ff87DTvUIvyPCBZP/QXvEp5kp7oa9SIh+mwcb/T6kGWxs4v8rHR0dHSuhRBiupRytBDiZ66x4Xgz/aU/0R0mnWLn/5OztH3VPha8v4rG99fm2ff6F6lNCkC7+2uyZcNxJJIOna60balYMYiVS0fxwVNzGffAFPqPfqBA8+E/OX8shlf6TsfpUHn7m2eo17oaBqEQ4uuNm0FhbC9XNaGUkoTYVEoEemFxKyhOGReVjNOuIoSgbd9mbF57lMWztlDC10Lq5TRwd0MIQVAZPxSDQrlqpTFZXM2RK9Qokz//mPvfISMli6XT1uBdOhCnQyU325r/TAQuhQiD0YCOjs4/yL2Xw7Qo79+ptzOJ7jDp6NxFPh6xAFuunaRLO+nQrznVGlYokn3jZpVZsnIkUoJvCY8C5yKPx7B/03FsuXYWfrCKR0Z2cbV5kZKIo1H4BHizeflecrNcEaBV87cRZVGZufZ3bHYnHtEZLD6zhDcXvsBnr//Ixp/24+Xjzuz1r+Lr75V/nUdGdObQ9lPER6fgcKpEnLiEzerAmpHjGmC1EVwhmM9WjUEIQcdHW+Bf0he71UGzrnUBuHjqEtlZVqTm+iSuXjeUXctjsGYJfEoHYssrBBCKoFaLMHR0dHTuFFLKA3n/bhNCBOW9vrn+yd/4//NVX0fnHyCkfCAWdzNCQEAp35sbXAMfX4+rnKU/5za7mXDztBBWr3x+pGbx+ysY034Sw+q+QmgF1xiTxUj7hxpjsztR83SWVCHYtz4cp8PJbz/+gdOhkp6SxenDUQWuY7IYiTkXT26Wld1rjyA1iZuHmQrVQkBTwemkQuVAfPIq54QQNOpQixbd6qMoCoveX8Gzzd5E08CnlB/PfjgQe1YuAFKTNGhVlRJB3gipodnsxBdCx0lHR+fuIaQslp9ivSchJgohkoDTwBkhRKIQokjK33qESUfnLjL151fY/ethqjWqSGBeD7w7hZevB1/+PpELJ2Op0bhS/vHdvxzClmvHZDFiy8plwd63UR0aASG+OJwqa1fv5eSJaHwOJmDxdif2fAIy14q0WEDVKB9WssB1TGYjZjcTEjCbjQx5uSvbl//BpTOxSKeGVFWO7TjJ8d1nqNWioKxBclwa33+8BgCpaqgOlTqtq2NxM3F46wmEIujxdAdGfj6ESY9MI/5iEi9Mf+KOPicdHZ3/3wghxgKtgCZSysi8Y5WAWUKIMVLKq9sXXGueG7Vb+LfRuHFjuX///n96GTo6/wpiIxJIT86iRuOKBXKj/vj1MO89PgP/EF8+3jiegFIlSLqcxkt9ppOWlEXfp9rw4ydrcDpUFHc32vZtSnZcMn/8epj2jzTntfnPXXWtmHPx7NkQTtU6ZRnXcwp2qwNMJlAEOF1J6V4lPFkeM5P05EzeHjST9KRMnE6N+Ig4yNuKM5gNGBWF+UemoDpUTBYTfiVvLfKmo/P/ASHEASll4+K6nmdgWVnjwTHFcq0D818qlnsTQhwCOkkpk/52PAhYL6UslC6LHmHS0fkPcmJfBG88OgOEoM/T7Xjifz3zzzV7oD6rk78qMH7n2sOkJGbgtKvs236Gh1/qwbJZm9EEWHPtTFo65oaCoaFVStKvSkkSY1KuHNQ0hNGUnx/q7uWSGli/eBdnDl3A6VBdCdyKgmIQSKcTp9WBwcNMYmwK1RtXvqPPBOBoxGUA6lYqdcfn1tHR+c9i+ruzBK48JiFEoVWOdYdJR+c/yOnDF1E1idPu4NCO0wUcpmtRu2llDAYFxU2hZdc69Hv2fuwOjbTETIa94bItjGBoUKg///v6ObYt20NgaAA+gT4YjAZyMrLpMshVcVe+RhkMRgNGk4HmXetz9mAEcREJoCi4e5jpOKAV1Rq5thCjTl8iMjyaZg/Uw83T7baeyarfjzHle5cG3f8ebc+DLWvfxEJHR+f/CfZbPFcA3WHS0fkP0q53I35bspvUhAyGvHZjZwmgSp2yzNs+nsy0bCpULw3A028+eEvXbt27Ca17N2HehKUs/mAlPv5ezNrzDktn/MavC3Zw/yPNmbxiLBkpWTTpWJufv9zMvPE/4nSqNOpQmxGfDAbgcmQCI1pOQAgIa1CRqRvG3dJ6/uTI+cvY7M7817rDpKNza/wTopJ3mXpCiIxrHBdAob+p6Q6Tjk4hiI1MJCsjl6p1yxZZS+lu4Bfkw+zNbxR6vC3XzqbvduDp40HZsJBbbj/zV35btB2nQyUny8qBTcf4aeZGNFVj7YLt9B/9QH4i+gND2xJ3MZH0pEyeerd/vv3lyASEAGu2jQsnYm57Pa0rhLLn2AXMFiNPdC62lA8dHZ1/OVLKOyLupjtMOv8osecus+LTNdRuXYN2/Qvf3qM4Cf/jPG8Omo0Q0P+FTgwY2bnAeafDycyXv+XiyVie/3gQleuU+4dWen3mvr6Edd9sRSgKmqrR85mOtz1nt6HtWDr9Vzx93GnYrhZBpf1IT8nC09sdn7/oOJktJp75YMBV9vXa1KB59wac2HOWZ6YMvK21rF1xgFnT1mOQkpHjelK+5J2tSNTR+X/FvRdhuiPoDpNOsWO3OXi3/yec2R+BpqmkxWewbv4WyoSVIqxhpWvaSCmZ+8b37F1/lMFv9qFNn6bFtt6TByJRnSqqU+Pg9lNXOUw7V+5n45Jd2HLsfPT0l8ze826xra2wZKVmozo1DAbITs8psr01186Sz9cjFMGAEZ2wuJkZMqEvD73QBQ8fN4wmIzO3jefkvgiqNayIyXzzjxaD0cDrC164ldu5ivDD0disDoSA40ej6dC1zh2ZV0dHR+dPdIdJp9g5sP4IhzaFY822oRgUpJQgXD3Prse5wxdZ8/VWl1My/CuyM23c92AjvHyvFnS803R4qDHrf/iDjNRsBr3c7arz/iElQLoEHgNL/zsjG898OBBNk3j4utN7xI17z12LxdN/Y9U323Ft+cOQl7sD4BNwJZLk6eNB4/uvnTckpeTz135gz/pwBozqQs8hbfLPpSVm8Hr3D0i+nMYbi0ZQv12tIq/v0SdacfxwFIpR8NCjzYpsr6Ojc4V7MIfpjqA7TDrFTmjVUkiJS6G6YSWCygZQp01Nqje9fksMv5K+CAQmNxNOu5NZry1h7YJtTF//BqpDxex288pQm9XOnvXHKFc1hIp5ic+FITCkBF9tu35Cct37qjP+uxe5dC6eTo+3LvS8xYlfSV/eWHTr0RxNk0gJQshbCtdfPH2ZTcv2Yrc6mD1+GT2euC8/F2zLD78TdTIWp0Nl3pvf8/nOd4o8f/lKQSxcVeim4zo6OjpFRneYdIqdstXKMOvAFKJPXaJx1/qYLTd3dgL/r737DpOi2Po4/j0zG1mi5AySgyJBQBQDiIAB8GJAucYrqK85Y8Zw9V5zQlFUzCLqVVHBAAoIBgTJUYJkkCjsLhtmpt4/ZsAFZtnAhF34fZ6nH2e6q7pPDbvj2erqqlqVeOb7exn//lQ+f3Ui2Vm5LJ+7hgsa38DOrRn0ubI7V/7ngv0W9s3KyCa5TBJmxoNXvM6CX5fjcDz3xS3Ua1IjYm06tsfR0CNipytxLrqpJ+YBwxhwbf4N3b5pJ39t2Um9ZjX3GhxfuXoFEhK9eDzBRXrzHktKTcKXG+xd9Hi18K5I3KmHKSwlTBIXdZvVpm6z2kWq06BFbS4feg6/z13DnCmL8Rvs2JKOCwT47KVvSUj0MujfA/aUf+Hmt/ny9Ykc2boOT0+4h5VL1pO1K4eUMkms+2PzARMm5xyzJi+iTLkUmrVrWOx2lhS5OT6++/hX0sqncvzpbYr8pJ/f70jfloELOPy5fhYvXsno4d/R8ZQW9Dy/MxDsRbqx938JBBytOzWiYqU0Lrj1DOo0rkG5Smk8/O7VzPt5Gb3/uffg/twcPwlpKfhy/AQ8Wt5SREomJUxSqng8Hs4c1I3FizaQuyuHQFY2jmCCs3jG8r3KjntzEs451i7byIp5q7nhv+fz4r0f0/ioOnQ4ucUBrzPqyS8Z9fRYXMBx47OXcMq5nQ6YZORk5/L0dW+wesl6rn/6Ypq2bRCB1kbOqw99ylfv/4SZkZOVS7f+xxap/nvPfMWEj34FoEy5VCZ8Mp2d2zOZPnEhzdvWp37Tmiz4dRmBgCMnK5ffJi3C5eSwZOYfjPjlIX6ftZIh/Z4EjMy/Mrjkrn57zn3yOZ346q0f2LpxO/8aem4kmy0iReU0hik/SpikxFu/YiOjH/uMxu0acsagHpzQuw270rP5c902juveiqevfpX0vzIZ/MgF/Pr9An4cN4e2JzQl7Yhy7NyWQbkjylKvWS1Sy6YwckrLQl1zwbRlZGVkQyDAY/96ibGvfcdj44bsd8tvtx8+nc6PoUVvn772DV6aOjSCn8DB+3PtNnKzc/EmeNm8YXuR66eWScY8FnqdFHwKLpQ/JiQGv0Y69zya0c99zaZ128AXwG+GNyH4ee1OpnKzc5k2fh6X3NWP7z/+hc9enkCvf57A8J8ejExDRUSiRAmTlHhDz36cFfNWkZSSRJ0mtWhzcitOO+/vJ6FemPIAvlwfs6cs4eFBr5GT7ePrtyYR8PmD42YSvHz03Ff8886+hb4Vdem9Z7Ny0To2Lt+AAxZOW8rmtduoVrdy2PLVQ/uTU5OodWS1g25zpF059B/sysiibIUynHFx0Qemn39dD1LLJuOco+/lJ9HtH8cy9r0fOeaEptRuWBUITqY5ctpDOOcY//6PLJn5B/2vCz6Rd2LfDox59Xu2btzOJXf2JSsjm8cHj8DvcyyZvZrWxzejTqPqEW2ziBSTepjCMucO/MmYWQowGUgmmGB95Jy7f58yVwHXAH4gHRjsnFtgZgOB2/IUPRpo55ybZWYTgZrArtCx05xzfx4olg4dOrjp06cXtm1Simxet5V1SzfQqkuz4IKteQw6+hZWzl9NUkoid7x1HV37d95zLCszm7sufJFFUxZiQCA1FQDz5+JxLjiY2OfHcAx5/SpO+kfh529yznFbr0dZOG0pDVvX5dmJ9x9whuzZUxaxfsUmTu7fkZQyyUX7AA4zqxatY1D7IViligA0aFaT4RPujHNUIiWPmc1wzsVs6vq0ynVd69Nvism1pr1zS0zbdrAK08OUDXRzzqWHVvWdYmbjnHM/5ynznnNuOICZ9QGeAno5594F3g3tPwr41Dk3K0+9gc45ZUCHuT9XbeKKo27GBRztT2vD0I9v2+v4A5/cxsh73ufnL2bwyMBnGbhwDf+85xwAXnvwf8yfOA98PszjwQw6ndGBrZt2sGLeashKB+dwwFPXjqTNiS2oWKVcoeIyMx4bN4TNa7dRuValApcTaXNCc9qc0Jxsv4/f/9pEg3JHkOjRU1/h7NyWTmJqMj6Cn/OG1VvjHZKIELzTrjFM4RX4SIoLSg+9TQxtbp8yeRe1S9v3eMgFwKhiximHsBXzVuMCwSkA5v6wcL/jtRrVoPOZwT9CfDk+xr06Yc+xr0d+D1lZ4PPhAgHI9TPovr5s3vAXPmd4Uv9eVzE7I5uxIycWKTaPx0O1upX3JEtbN/7FZ69PYunc1WHL5wb8nPX1q/T99nXOn/AWBfXgHq5adm5CnytOoXzZJI6oWo6bntx/6RQRkZKkUM/wmpnXzGYBfwLfOud+CVPmGjNbBjwGhJtB7nzg/X32jTSzWWZ2r5WEFU0lLo45pRWN2zXEm+Bh184sXr3z3f3KtO3empS0FLwJXvr8398zVael5bn1FQjg8XqY+OkMBt3Xj8o1KtDmpJZ4khLBDEvwUr9F+KkMRj09jrMb3MBDlw7nj4VrWDrrD3y5fr55/0cmfzZjT+Jzy9nP8tq/x3Br/2fZtH7/wdMbd+1kdcZ2sv0+5m5dT7ov5yA/neib/+MSPh32NTu27IzqdXZuy2DxrJX4fX7MjMH/uZDRi57g3d8e5qSz2kX12iJSBM7FZitlChzDtFdhs4rAJ8B1zrl5+ZS5EOjpnLskz75OwKvOuaPy7KvtnFtrZuWAj4F3nHNvhTnfYGAwQL169dqvXLmy0PFK6bF+xUYua34D/lw/GHy+8539xgH5cn1kZWRTtmLann0Lpy3ltp7/JjfHB8nJwUHdZjRoeyTDvx0CwOqlG/j+o2kcfXxTjunafL9rb9+8kwta3Y7LzsGb4MUCPjweDy2Pb86iWavAjKv/fR49Bx5Pv6a3kr0rl+SURJ4ecxMN90nAAs5xxeQPmLRhGWfVa8kzx53997FAgPk/LuGImpWoXUIGOK+Yt4r/63wvAX+AI2pV4v1lz0XlOn9tTWfQiQ+Tk+2jzfFNeOCNK6NyHZFDTazHMJWtXNe17nVjTK71y3u3HnJjmPZwzm03s++BXkDYhIngbbeX9tk3gH16l5xza0P/3Wlm7wEdgf0SJufcK8ArEBz0XZR4pfSY+d28YLIEVKhcnuTUpP3KJCQmULbi3j+yLTo25vOtr7NwxgruPPtJsnflArBuxaY9Zeo2rsHFQ/qEvW5OVi5X9/gvgaxscAF8WT6M4DIgKxeuISfHh8frCT4qD9z54qW88+Q4Op/WmgZhllfxmPH6SQPIDfj3G7/04i1v8+1bP+Cc48kJ99KkBMzVtGDaMgL+AABbw/SYRcrKxevJzfGRvSuH2VN/j9p1ROTQYWavA2cCfzrn9luoMnRn6lngdCATuNQ591u04inwlpyZVQ31LGFmqQQXgFi0T5m8i4CdAfye55gHOI8845fMLMHMqoReJxL8QPJLwOQQt23jdl68/vU971uf0AwzIzcnl7cf+pDX7nqXXem7wtZdt3IzV/X4D7ec9ST+9F2klEkipUIaVz10Dl++PYVp380/4LV3bs8k/a/M4C27smWxsmkkpiRRoUo5rnv6Ytqc0IxOPY6i3+BuAHQ6tTXPj7uNgTf1PuAUBeEGe8+ZvIiszGwcjt9nrijMRxN1J/XvRHK5MliCl4btjozadZq3a0Cj1nXwJni58MaiL/4rIrFjLjZbIbxBsIMmP72BJqFtMPt31kRUYXqYagJvmpmXYII12jn3hZk9CEx3zo0BrjWzU4FcYBtwSZ76JwKrnXN5p2FOBr4OJUteYDww4uCbI6XRnEkL9rz2eD1c9nBwAPDHT3/JqEc/IRBwZO7YxXUvXLFf3eFD/8eqpX/ikhLx5eRy/uBuXHTPP3j0/97gx6/m4PEYXXoeRa36lTkvNCfQ9k072Lx2KxWqlKNOk5r0uexEvnh9Ijk5fvB6qXdUY4Z9O4QPXxrPmlXbOO28TpStUOag2znokQE8dvlwqtevQtezCz+9QTSVrVCGdxc/xaol6yM+O/mcqYt56Y73ada+Idc9dRFP/C823fwicmhwzk02swYHKNIXeMsFxxb9bGYVzaymc259NOIpMGFyzs0B2obZf1+e1zccoP5EoPM++zKA9kUJVA5dR5/UkjLlU/Hl+hl4T3/qt6wLgN/nD44LdA6/z79XHb/Pz7RxM0lNTSQh0Ysvx4c30cNxZ7Zj+fw1TP1yFv7QraZJn/yK1+CvTTuYPGoqO7dlYF4PCYleHv3iDgbd24+BN/XihtOfYP3KzTRr34DM9CzefGwsfn+A0S+O5/SBXahco8JBtfPYnm34cG1U/wAqlnKV0mjVqXHEz/v4la+xae1W1q/YxHGnt6VTz6Mjfg0RiTBHaZq4sjaQ95HlNaF98UmYRKKtUvWKvLvyJXbtzKJ85b/nSDr3lrPI3LmL7MxsLntowF51Hr98GFM/mYY/EKDeMY3xeIw7X7uNuk1rc2vfp/Dn5OI8HvD7cbuyCABfvDweIDj9gHN4PMbi6cto1bkJHo+xfvUW/AHHtx9O4/xrelChclky07NITEqgbMXUWH4kUfHbd/P57OXxdDv/uCJN4FlcNRpUYceWnTgXoGrtSlG/noiUOlXMLO9cjK+Exi2XSEqYpERITEoksXLiXvuSUpIY9J9/7rVv9qT5fPDYZyyduYKsjGy8CV7++HUxLgAj7x7FfR/eQp3G1VkyayW5OT4sN4cA7P0Iq9dLQoKH2o1r0O28LsHrJydSrmIZdqVnk5DopfwRZRn21W3MmrqE1p0akZyy/yD00iQ3x8f9A54lN9vHb9/P56jjm3FE9QP3mKVvz+CxK15m57YMbn1lcJGf7Bv63nVM/vRXGrSozZGt6x5M+CISQxaI2aU2H+RTcmuBvF8udUL7okIJk5QazjnuOfNRsjKySUxKoFKNipSrlMbGPzbhnKNitfIAXPufARzdpQmVa1Tkz5WbeO7Gt/AmeMjOzMYFHOYxel92Ctc+ddGec3u9Hl4YdzvTJy6gTZempKYlk5qWzMl9D407xx6PkZCYQG62DzMjIbHgGcg/HzGBGePn4vP5eXnIuzz44c1FumZa+VR6X3xicUMWESnI7jHUo4BOwF/RGr8ESpiklElJSyErMxvzenjh50eoWrcK49+eTPr2DM4YfCoACYleuvUP3XI6vik9Ljwevz/AL+Nm8uKt7+JN9NLv6h77nbtyjQr0HHBcLJsTM94EL0+MG9gy3wAAACAASURBVMJ3o3/iuNPbUv6IsgXWqVG/Kt5EL94EL7Ub1Sj2tXOychn3/k9sWbeNlDJJ9Di/M1VrVWLLhu188dpEjmxdl66HSGIqckgoIWOYzOx94GSCt+7WAPcTXG2E0HJsYwlOKbCU4LQCl0UzHiVMUmqYGU9PfpBv3ppIu+5HU61eVQB6XHxSwZWdo3WXpryz6KkoR1lyNTq6Ho2Orlfo8ief25nUcilkbM/k5HM7F1whHy8/8AnfjP4ZX05wEeTvP5nOiMn38sA/h7F09ioSkxI4onoFWnWO/MBzESm9nHMHXDMp9HTcNTEKRwmTlHxzJi/gwyfHcHy/jvS6rBuXP3xhkerv2LqTK4+5jW0btnPurWfxr0cGRinSwlvw6zIeuHg4aeVTePSjG6let3K8Q9qPmdG5934PyBbZtk078OcGB0W4gCP9r+CcWrvSs4KTZlrwtYiUDFp8N7xCrSUnEi/OOe4+4xF+/nwGz1/zKmuX7n97evmclaxalP84v/lTF5OxPQO/z8/YEeOjGW6hvfvEl+zYms6GVVsY/8HP8Q4nqq5+sD8du7ekces6HN2lCfe9NgiAu0dexXGnH8P5N/amffdWxTr3L1/NYtQTX7B9046CC4uIHAT1MEmJl5yaRFZGNpiRmBx8ki5jRyaJyYlMeGcyw65/HQfc/f6NdOlz7H71W3VpRmq5VHKzc+l56Skxjj68die3ZP4vS3EOWh4bvRm2S4KqtSoxdOTg/fY3aFGb+98pfm/6ounLeOTS4fhyffw0dibPfnfvwYQpIhCah0ldTOEoYZISzcx4ctKDfPvmRNr1aEO1ulX49u1JPHXFcJJSk2jRuQnZu3LAYNb388ImTOUrl+OdFcNI35ZBpeoV49CK/fW/+lSO7tKE1LRk6jQu/oDqw1n69kzMDL8vwM5tGfEOR0QOcUqYpMSr36IOV+SZj+mzYV/hy/XhcJStlEZaxTKkpKVw1lWn5XuOxKTEEpMs7dakTf0DHt+yYTsPXPIyWZnZ3P3qFdRvtv9ivyWJL9fPsvlrqNOoOmnlUqJ+vfbdW3P2Naex5LflXD703KhfT+RwoTFM4SlhklLnjMGnsmzWH3g8xo+f/orX66Hv7b2o26x2vEMLa+e2DJJSEklOLfzkl+Pfn8pLd31AZrYfHLz13y+49/X9b2uVJHcOeIHf564hrVwKr06+h9S05Khez8y45J6zo3oNEZHdNOhbSp3el3dn1JqX6Xdtb/w+H1mZ2Sz8aUm8wwpr7BuTuKD5LVzY4lbWLttY6HrPXPMa6VvTIeBISk6kSZv6OOdwMR5b4JwjJyunwHKBQID5vy4ne1cOGTt3sX7l5hhEJyJR4WK0lTJKmKRUqlClPGffcDoNW9enZqPqXLrPWnMlxRcjJ+HL9ZOTlcuv4+cVul7NhtVITvKQEPBx89P/pEP3lpzbagj9m9/OwhkrohKrc46Nq7aQk50LBJdTueHkB+lTdRDP3fDGAet6PB76X9Udr9dD646NqN+sZlRiFBGJF92Sk1KrSu3KDJ/5eLzDOKAzLz+ZF29/j6SURDr2OKrQ9Z4afy/TvppF82MbUbtxDZ6/8wMydgTnLxrz+mRatG8Y8Vj/c8UIfvziN46oUYHhUx9g7bKN/LFgDc7B2Ne/57pnLsHM8q3/r7v68K+7+kQ8LhGRkkAJk0gUnX7JiXTt257klCSSUhILrhBSrlIa3S84fs/7Tqe2ZvzoaQAc16vwiVdRTP18Br5cP39t3smKBWs5snUdKlYrz7aNf3HMSS0PmCyJyKHB0KDv/ChhEomychXTDvocHbu3YsTkuwn4HTXq7T8reObOLCZ88BO1G1en3ckti3WNXhd35cuRk6herwqNjqpLcmoSr854lE1rtlLzyGqFOsf2TTsoVykNb0LBi/uKiJQmSphESolqtY/I99gjlw9nzg+LMY/xyP9uolXnJkU+/7VP/JPL7z+HlLQkPJ7g8MaklCRqF3KeqGdvfodv3/+RanWOYNj395BaNvpTC4hIhDmniSvzoUHfIoeATWu2BgdrG2xZv73Y5ylTLmVPslRU40f9hC87lz9Xb2HpnFXFjkFEpCRSwiRSAqVnZjP4oQ/oc+MIZi5eU2D5W1+6nObHHskp53Siy5kHv2BucSQmBr9OfLk+0rdr5m2R0spcbLbSRrfkROLM73yMW3Mf63fNp0u1wbSqeAbf/LSIhSs2kJPr55l3J/DEzavJ8a2gasX7SErYf4bwJsc04Jlv7opD9H8rWzGNzJ1ZADinAeIicmhRD5NIlDnn+PqLWXzw9lR2Ze4/CeT6zHmsyZxFdmAnU/98CYBGdatgZqQkJ3LacSvZlj6S9F1fsWHL9bEOv9ASK5aFpEQSyqexfXtmvMMRkeLSxJVhqYdJJMomfDWXF54Yi9/vWLl8E7ff32+v4xWT6mDmIZEUqqU0A6BN09q8dv8FbNqWTuvGi9mw7U3Ai8dTPg4tKJw+l57Iq/8eQ0paEu1ObBbvcEREIkoJk0iUZaRn4QIQ8AfYGZp8Mq+yiVUY2HAkW7L/oE6ZNnv2N6lXlSb1quJcAxyPketbSaVyl8cy9CLpe9mJnNKvPSmpRZtzSkRKltI4vigWlDCJRFnvPu1Y9cdmtm3N4OqbeoYtUzaxKmUTq4Y9ZmZUSOsfzRAjpnylg59zSkSkJFLCJBJlSckJXHfb6fEOQ0SkYA4IqIspHA36FikFMv7K4O4zHuGajnewcmHB0wwAZObMY+OOEeT41kY5OhGRQ58SJpFSYOyICfw2YS5Lpi/npRtH7nUs4AI8veAbrvhxJAu2rwMg17+JJRv7s277f1i8oS9OM/eKSGHpKbmwlDCJlAI1G1XHm+AhuUwydZvX3uvY1D+XMuqPX5i2ZQW3/zYaAH9gJ84FcOTiC2ynVH47iYiUIBrDJBJDC35egtfrodmxjYtU74SzOzH0f7ezY/MOTjqvy17HKiSl4hwkmJdKScFB1ymJR1Kz4i1sz/yS6uWvxUx/G4lI4egpufCUMInEyJcjvuWlm94ABzePuIpuF3YtUv0Op7UJu//oSnV5ssP5/L5zI2fXbbdnf43yV1Gj/FUHE7KIiIToz06RGJk3ZRHZmTnkZOUy78fFET131+pNubxxVyol67F+EZFoUA+TSIwMuKMf86Yswpvgpf+NZ8Q7HBGR8PSQSFhKmERipH7Lury9bFi8wxARkWJQwiQiIiJ7aNB3eBrDJFJCBAIBxr8zmS9e/pbcnNx4hyMiInmoh0mkhBg7YgLDb3kD52Dt0vVc+fjF8Q5JRA43pXRSyVhQwiRSQmzdsA1/boCAP8CWtVvjHY6IiOShhEmkhOh/05msWrSWXTuzGPz4RXGLwznHs1N/4pvff+fa4zpzevNmcYtFRGLLANNTcmEpYRKJs3XLNvBA/yfwJngY+r/bqFavatxiycrK5ffNm3n11+lk+Xzc8uU4ejdripnFLSYRkZJAg75F4uydhz5ixdxVLJv1Bx88/lm+5fw+P7//tpyMHZlRiWPerFWc0/Nxbrt0JC7gSPZ6qVa2rJIlkcNNIEZbKaMeJpE4a9LuSH74+Gecg8ZtG+Zb7p6zHmXuDwtJLZvKG4ufJa1CZGf1/nbcHHKyfZANp++sTtt+LejRuGhr3omIHKqUMInEWb/relO3eW28CR7adjsq33KzvpuHL9ePmbFq0TpadGoS0Ti6ndaaCePm4HCc36sDHY5RsiRyONIYpvCUMInEmZnlu7BuXufd3pf3H/2EJu2OpHHbBhGPo037Bnww9macg7LlUiJ+fhGR0kwJk0gpcdlDF3DpgwOiOqYorawSJZHDmuZhypcGfYuUIvsmS3N/WMiD5z7BxNFT4xSRiMjhQT1MIlGwatFaFv+6lOPO6kDZipEdnL2b3+/nzl4Pk70rh1++/I2WxzWjWt0qUbmWiBwuHGgMU1jqYRKJsM1rt3DNsXfw7NUjuOXk+6N2HTPDm+jd/Q5vQvB1TnYut3YbyplpA/n4mS+idn0RkcOJEiaRCNu0JrisSXZmNuuWbYjadTweD09OfIB+15/OQ2PuoHLNSgAs+HExi6cvI3tXDm/e/0HUri8ihyZzsdlKG92SEynA8jkreeCcJ0gtl8LDn99JlVpHHLB8846NOfWik5jxzWwu+/cFUY2t8TENafzM3nM31W9Zh4QELylpyRzVtUVUry8icrhQwiRSgJH3vM+6pRvweD188fI3XPrAgP3KOOdwzuHxeDAzbnhxUBwiDapUvSIjFz/LmiXrad5RcymJiESCbsmJFKDlcU1JSUsmMSmBJm2P3O/4yoVr6F/1cs4qexEzv5sbhwj3V7FqBVof35yERP1NJCJF5FxstlJG36YiBRgw5GyadWxCmXIpNO+4/+za49+ezM6t6QB8+MSYA87WLSIipZN6mEQKYGa0635U2GQJoEPPNiSlJpGUkshJ53WJcXQiIhHkwAKx2Uob9TCJHKQ2J7XiraUvkJOVQ82G1eMdjoiIRIESJpEI2P1If3EEAgHGvPg12zZu57xb+5BWIToTXYqIFEopHF8UC0qYRA6S3+dnzZJ11GxUg6TkxCLX//atSbw65B38uX7WL/+Tu969IQpRiojIwVDCJHIQnHPcdOK9LJu9kmr1qvDK7CdITCpa0pSzKwfnHIGAIzszu8DrTf10GmZGl77HRnUhXhE5TKmDKSwN+hbJh3OO4be+yfm1BzP6ic/ClsnKyGLRL0vJ2ZXDxj82sTk0y/dufr+f1+95j6H9H2ft0vVhz9HrX93od21vug/syg0vHXj+pv898yX/veh5Hv3nc3z6/NjiNUxERIpMPUwi+di4chNjhn1NbnYurw15j77X9CI5NXmvMqllU+k28AQmvPMDbU5uSfUGVfc6PuXjX/jfM2PJ3pXN5rVbeeHnR/e7TmJSIoP+e1GhYlq9eC05WblgjlWL1hW/cSIi+TCNYQpLCZNIPipUKUdKWjLeBA/lK5cjMZ/xSUPeup5bX/u/sJNEppZLBcDr9ZJWvsxBxzTwnnNYuWANZsbAu/9x0OcTEZHCUcIkko/Usqm8MudJ5k9dTNvurfF48r+Dnd+M2sf2OoabXr6SNb+v4+zrTj/omKrWqczTkx8qVt3Mnbv46KnPKV+5HH3+r+cB2yMihzH1MIWlhEnkAKrUOoKTzj2u2PXNjO4Du0YwouJ7/rrXmDhqKl6vh+TUJHr/q3u8QxIRKTWUMIkcJrLSs3D+AAGPkZVx4KfxROQw5YBSOAt3LBTYJ29mKWY2zcxmm9l8M3sgTJmrzGyumc0ysylm1jK0v4GZ7Qrtn2Vmw/PUaR+qs9TMnjM9Hy0l3HejpnBZ8xsYccc7uFLYZX39sCs45cIT6HP1aZxxZY94hyMiUqoUpocpG+jmnEs3s0RgipmNc879nKfMe8654QBm1gd4CugVOrbMOXdMmPO+BAwCfgHGhsqPK2Y7RKLuiUuHkZvj47MXxtF9YFeOPLp+vmXTt2fww8c/0+iYBjRt3yiGUeavUvWK3PHmdfEOQ0RKMMPpKbl8FJgwueCf0umht4mhze1TZkeet2n7Ht+XmdUEyu9OuszsLaAfSpikBKtarwpb1m7FPEal6hUOWPbO3v9mxZyVAAyf+Th1mtaKRYgiIhIlhRrDZGZeYAbQGBjmnPslTJlrgJuBJKBbnkMNzWwmsAO4xzn3A1AbWJOnzJrQPpES69mpD/PTmOm07NKMStUrHrDshhV/kr0rh5S0ZDat2aKESUSklCvUc8XOOX/otlodoKOZtQ5TZphzrhFwB3BPaPd6oJ5zri3BZOo9MytflADNbLCZTTez6Zs2bSpKVZGIqli1Ar3/1Z36LeoUWPb2N6+lQau6nHrRSbQ5uVUMohMRiRDnYrOVMkV6Ss45t93Mvic43mhePsVGERyfhHMum+AYKJxzM8xsGdAUWEsw+dqtTmhfuGu+ArwC0KFDh9L3Ccth6diex3Bsz3BD90REpDQqzFNyVc2sYuh1KtADWLRPmSZ53p4B/J6nrjf0+kigCbDcObce2GFmnUNPx10MhF+sS0RERGKnBPUwmVkvM1sceqJ+SJjjl5rZpjxP418R8c8jpDA9TDWBN0OJjwcY7Zz7wsweBKY758YA15rZqUAusA24JFT3ROBBM8slOLPDVc653auT/h/wBpBKcLC3BnyLiIgIsGf89DCCHTVrgF/NbIxzbsE+RT9wzl0b7XgK85TcHKBtmP335Xl9Qz51PwY+zufYdGC/sVAipV3mzl1k78qhUrUDP0knIlLilKyJKzsCS51zywHMbBTQF9g3YYoJLSYlEkEr5q3i/NqDGVjvKsa+Oj7e4YiIlGa1gdV53uf3RH1/M5tjZh+ZWd1oBaOESSSCfh03k9zsXHJzfIx77bt4hyMiUmTmXEw2oMrup+BD2+BihPs50MA5dzTwLfBmJD+LvJQwiURQl77HklImmYREL2df3zve4ezFOUfGjsx4hyEisttm51yHPNsr+xxfC+TtMdrviXrn3JbQE/kArwLtoxWsFt8ViaA6TWvx4cZX8eX6SU1LiXc4e/h9fm466T4W/fI7J57TmXtG3RzvkESkpCo5cyT9CjQxs4YEE6UBwIV5C5hZzdCT9wB9gIXRCkY9TCIRlpiUeMBkad7URbz/6CdsXBm7iVjXLdvAspkrcAHHpNE/kZOdG7Nri4gUh3POB1wLfE0wERrtnJtvZg+G1q0FuN7M5pvZbOB64NJoxaMeJpEY+nPVJoac9hC+HB+fD/+G91a+FJPr1mhYjZpHVmft0g20OaklScmJMbmuiJQ2JWsWbufcWGDsPvvyPqV/J3BnLGJRwiQSQxk7dgHg9wdI35ZeQOnISUxKZPjMx9m8divV6lU5YNmtG//isevewjnH7c9fQuUamh5BRES35ERiqGHrelz60ACOOrEFQ/93W0yvnZCYQI0G1fB4Dvxr/96zXzH359+Z98tS3ntG88mKHFYcJWqm75JEPUwiMXbOzWdxzs1nxTuMfNVqUJXEpMQ9r0VERAmTiOzj7EGnULVWJQCOP71NnKMRkZgrOTN9lyhKmERkL2ZG1zP3Ww1JROSwpjFMIiIiIgVQD5OIiIjsYaVwQHYsqIdJREREpADqYRIREZG/qYcpLPUwiYiIiBRACZNIBH3/wVT+fcEzLPh5SbHPsXrxWq5ufzu3nHI/2zf9FcHoREQK4ICAi81WyihhEomQ9cs38sRlw5j4wVSG9HwIV8xu7dfufJelM1cwf+oiPnvhqwhHKSIixaGESeQgrJi7km/fmkTGjkw83r9/nbwJ3mKfs+FR9UlJSyYhKYF6LepEIkwRkUKK0bIopXCclAZ9ixTT+uUbue64uwEY8+JXPP/zo9z30a38MvY3zhh0KmZWrPNedP+5NDqmAWXKpdLu1KMjGbKIiBSTEiaRYvpz9WbMICsjm7VLN/Dnqk28cttbpG/PYPrXs6hQuRxDP7mdyjUrFem8Ho+HE87ulO/xNb+vJ61CGSpVq3CwTRAR2V8p7P2JBd2SEymmo7q24JQBx1O7SU2ueWEQHz43ljWL17F1/XbWL9vIkhnL+fT5sRG95ugnPuPKNrdw0ZHXsHTmioieW0RE8qceJpFi8ng83DziaubPWc0d172N3xfAU7UStuUvzBMcx9SoTYOIXnPS6B/JycolISmB2RPn07htw0LXdc6RmZlDmTJJxb5dKCKHAfUwhaWESeQg/Th5MTnZPgBan9GRyy7tQuaOXaSWTeHoE1tG9FoX3PkP/n3BM5SvXJau/fO/bbcv5xx33zKK6dOW07Z9A/7zzIVKmkREikAJk8hBOqVHK774eDo+n58LrziJozo3jtq1Tji7E19mvouZFSnh+Wt7Jr/9ugIXcMyeuZKtW9KpXKVc1OIUkVJq9zxMsh8lTCIHqXGzmnz0zW24gCMpOfq/Uh5P0Ycelq9QhqbNa7J0yQaObFydSkeUjUJkIiKHLiVMIhGQmFj8eZdiweMxnh5+CZv+3EHVauXxeHQ7TkTCceAC8Q6iRNJTciKHuA+e/Yorugxl3NtTqFGzIl6vfu1FRIpK35wih7AtG7bzzpNfsnb5nwy/ZzRZGdkHLL9pzRaG3/Y23777Q4wiFBEpHXRLTqQQFk9fxtjXvuOEfh05tmebeIdTaGXKpZCckoTX4yO1bAqJBYyxeuC8p1k66w+SUhKpWvsIjjm5VYwiFZESQ9MKhKWESaQAfn+A23o8TFZGNhPencKbi58p8uzd8ZKalsIL397J7KmLaX9KqwLXuPPl+HDOYRi+XH+MohQRKfmUMIkUgsv7F1cp++OrRv0q1KhfpVBl7x11I28/9DGN2zak/alHRTkyESlxNK1AvpQwiRTA6/Xwn3F38fnwb+n6j45UrlU6epcKwznHa0M/YsqY3xhwy+n0+mdXhrx5TbzDEhEpcZQwiRRCq+Oa0uq4pvEOI+JWL9nAmBHfk5OVy3M3vcNpFx5frHmeROQQojFMYSlhEjmMVaxaDm+Cl+QyRqWq5ZUsiYjkQwmTSAkw/+ff+X70T5xybueY9mSVP6Iswybdy4Jpyzj21NYxu66IlGDqYQpLCZNInPhyfZgZudk+7jzrMbJ35fDN2z/wwYrnSS2bErM4ajWsRq2G1WJ2PRGR0kgJk0iM+HL9/Pz1HKrUqkhWehb3nf8cXq+HB0ffQCAQXIogEAgQ0BMqIhI3Tj1M+VDCJBIjz9/xPpM/m4FzjsYtapGTlQvAlDEzGPrBjYx7YxK9LjmRtPKpcY5URET2pYRJJEZWLFhLVmYOSSmJ1G1Wk8UzlmNmdDmzLW1OaE4HzXskIvHmgIAW3w1HCZNIjPzfI+fx5PVvUa1uZQY9eC4X3dEHj9dDxSrl4h2aiIgUQAmTSITtnhXczPba37xdQ0ZMuX/P+zIxHNgtIlJoGsMUliZdEYmgX7+eTZ8j/sWFja5nw8pN8Q5HREQiRAmTSAS9/9gYcrJy+WvTTiZ9+Eu8wxERKTrnYrOVMkqYRCLo+L4dSEpJJCHRS5sTm8c7HBERiRCNYRKJoP7X9+bYnm1IK5d6SC3SKyJyuFPCJBJh9ZrVincIIiLF5ECT54alW3IiIiIiBVAPk4iIiAQ5cE4TV4ajHiYRERGRAqiHSURERP6mMUxhqYdJREREpADqYRIREZG/lcJJJWNBPUwiIiIiBVAPk4iIiAQ5BwE9JReOephERERECqAeJhEREfmbxjCFpR4mERERkQKoh0lERET2cBrDFJZ6mEREREQKoB4mERERCXEaw5QP9TCJiIiIFKDAhMnMUsxsmpnNNrP5ZvZAmDJXmdlcM5tlZlPMrGVofw8zmxE6NsPMuuWpM9HMFofqzDKzapFtmoiIiEhkFOaWXDbQzTmXbmaJwBQzG+ec+zlPmfecc8MBzKwP8BTQC9gMnOWcW2dmrYGvgdp56g10zk2PSEtERETk4Di0+G4+CkyYnHMOSA+9TQxtbp8yO/K8Tdt93Dk3M8/++UCqmSU757IPJmgRERGRWCrUoG8z8wIzgMbAMOfcL2HKXAPcDCQB3fY9DvQHftsnWRppZn7gY+DhUHImIiIi8eI0rUA4hRr07ZzzO+eOAeoAHUO31/YtM8w51wi4A7gn7zEzawX8F7gyz+6BzrmjgK6h7aJw1zazwWY23cymb9q0qTDhioiIiERUkZ6Sc85tB74nOD4pP6OAfrvfmFkd4BPgYufcsjznWhv6707gPaBjPtd8xTnXwTnXoWrVqkUJV0RERIrAAS7gYrKVNoV5Sq6qmVUMvU4FegCL9inTJM/bM4DfQ/srAl8CQ5xzU/OUTzCzKqHXicCZwLyDa4qIiIhIdBRmDFNN4M3QOCYPMNo594WZPQhMd86NAa41s1OBXGAbcEmo7rUExz3dZ2b3hfadBmQAX4eSJS8wHhgRqUaJiIhIMTinMUz5KMxTcnOAtmH235fn9Q351H0YeDifU7cvZIwiIiIicaWZvkVERGSPkjSGycx6hSa5XmpmQ8IcTzazD0LHfzGzBhH+OPZQwiQiIiIlTmgo0DCgN9ASuGD3SiJ5/AvY5pxrDDxN8In8qFDCJCIiIn9zgdhsBesILHXOLXfO5RB8Cr/vPmX6Am+GXn8EdDczi9hnkYcSJhERESmJagOr87xfw97Lq+1VxjnnA/4CKkcjmELN9F1SzJgxY7OZrQy9rUJwrbpD3eHQTrXx0HE4tFNtPHSUhnbWj+XFdrLt6/HuoyoxulyKmeVdT/YV59wrMbp2kZWqhMk5t2fmSjOb7pzrEM94YuFwaKfaeOg4HNqpNh46Dpd2FoVz7kATU8faWqBunvd1QvvClVljZglABWBLNILRLTkREREpiX4FmphZQzNLAgYAY/YpM4a/5348B/guWuvSlqoeJhERETk8OOd8ZnYt8DXBSa5fd87N32fi7NeAt81sKbCVYFIVFaU5YSqx9zkj7HBop9p46Dgc2qk2HjoOl3aWWs65scDYffblnTg7Czg3FrFYlHquRERERA4ZGsMkIiIiUoASlzCFpjifFdr+MLNZeY4dbWY/mdl8M5trZin5nOM6M1sUKvdYnv13hqZPX2xmPWPRnnziO6g2mtlQM1ub5xynh/YnmtmboXoLzezOWLZrnxij0sbC1o+VaLYzdLyemaWb2a2xaE84Ufx57WFmM0L1ZphZt1i2K0yc0fyZPSS+e/KUvcXMnJlVCb2vYGafm9nsUP3LYtGefGKLShtD+04OnXe+mU2KdlukhHHOldgNeBK4L/Q6AZgDtAm9rwx4w9Q5BRgPJIfeVwv9tyUwG0gGGgLLwtUvJW0cCtwaZv+FwKjQ6zLAH0CDQ6yNhapf2tuZ5/hHwIcHKlNa20hwUe9aodetgbXxbl+U2nnIfPeEjtUlOAh3JVAltO8u4L+h11UJDr5NOsTaWBFYANQLva8W7/Zpi+1WYgd9m5kBKrCOfAAABEdJREFU5wG7/+o8DZjjnJsN4JzLb56Fq4H/OOeyQ+X+DO3vSzCZyAZWWHBEfUfgpyg1oUAH0cb8OCDNgnNRpAI5wI4IhVssUWjjwdaPiii0EzPrB6wAMiIV58GIdBudczPzvJ0PpJpZ8u7f3XiJwr/lofbd8zRwO/BZnn0OKBc6b1mCCZMv0nEXRRTaeCHwP+fcqlD9P8NVlENXibsll0dXYKNz7vfQ+6aAM7Ovzew3M7s9n3pNga4WXLV4kpkdG9pfmCnWY624bQS41szmmNnrZlYptO8jgv9zXQ+sAp5wzm2NWvSFE+k2FqV+LEW0nWZWFrgDeCC6YRdJpP8t8+oP/BbvZCkk0u08ZL57zKwvwZ7A2fscegFoAawD5gI3OFe4xcKiKNJtbApUMrOJFryFfHH0QpeSKC49TGY2HqgR5tDdzrndGf0FwPt5jiUAJwDHApnABDOb4ZybsM85EoAjgM6hsqPN7MhIxl8YUW7jS8BDBP+qe4hgt/PlBP9q9QO1gErAD2Y23jm3PDKt2luc2ljY+hETp3YOBZ52zqVbdNaR3Euc2rj72q0IrjB+WgSackDxbGesRKuNZlaG4K23cP9OPYFZBHtzGgHfmtkPzrmo9HDHqY0JQHugO8Ee/J/M7Gfn3JKDbY+UDnFJmJxzpx7oeOiW0j8I/nDutgaY7JzbHCozFmgH7PultYZgt6kDpplZgOB6QYWZYj1iotlG59zGPOcZAXwRensh8JVzLhf408ymAh2AqCRMcWpjYX8OIiZO7ewEnGPBhxYqAgEzy3LOvXCQzQkrTm3EzOoAnwAXO+eWHWQzChSndh4q3z2NCI7Bmh1K4usAv5lZR+AygkMhHLDUzFYAzYFpEWnUPuLUxjXAFudcBpBhZpOBNoASpsNESb0ldyqwyDm3Js++r4GjzKxM6JfhJIID8Pb1KcGB35hZUyCJ4OKKY4ABZpZsZg2BJkTpl7mQit1GM6uZ5+3ZwLzQ61WE7tebWRrBXrZFUYi9sKLRxsL+HMRSxNvpnOvqnGvgnGsAPAM8Eq1kqZAi3kYzqwh8CQxxzk2NWuRFE42f2UPiu8c5N9c5Vy3Pz+UaoJ1zbgPB757uAGZWHWhGlP5QK6RotPEz4AQzSwj1RHUCFsaiMVIylNSEaQB7d6XinNsGPEVwbZlZBMc7fAlgZq+a2e4FFF8HjjSzecAo4BIXNB8YTfAX5CvgGuecPyatCe9g2viYBR+JnUMwObwptH8YUNbM5ofOMdI5Nyf6TclXxNt4oPpxFI1/y5ImGm28FmgM3Gd/PwZeLQZtOZBo/MweSt89+XkI6GJmcwn22NyxuycnTiLeRufcQoL/fnMIJryvOufmHaiOHFo007eIiIhIAUpqD5OIiIhIiaGESURERKQASphERERECqCESURERKQASphERERECqCESURERKQASphERERECqCESURERKQA/w89l6kAsswohAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
The Strong-Motion Tools module contains code for the selection of ground-motion prediction equations (GMPEs) and the subsequent development of a ground-motion characterisation (GMC).
+
The main components of the Strong-Motion Tools (smt) comprise of (1) parsing capabilities to generate metadata (2) capabilities for computation and plotting of ground-motion residual distributions (3) comparison of potentially viable GMPEs and (4) development of the GMC with the final selection(s) of GMPEs.
+
Here, we will demonstrate how each of these components can be implemented, in the context of aiming to develop a GMPE logic-tree approach GMC for Albania.
+
Please note that this documentation assumes an elementary knowledge of GMPEs, residual analysis and ground-motion characterisation. Therefore, this documentation’s purpose is to facilitate the application of the smt by user who is already familiar with the underlying theory. References are provided throughout for useful overviews of such theory!
The smt provides capabilities (parsers) for the parsing of an inputted dataset into metadata for the performing of a residual analysis, so as to evaluate GMPE performance against the inputted dataset.
+
The inputted dataset usually comprises of a ground-motion record flatfile. Many seismological institutions provide flatfiles of processed ground-motion records. These flatfiles often slightly differ in format, but generally follow a template of a .csv file in which each row represents a single ground-motion record, that is, a recording of the observed ground-motion at a single station. Each record contains information for (1) the associated earthquake (e.g. moment magnitude, hypocentral location, focal depth), (2) the associated site parameters (e.g. shear-wave velocity in the upper 30m of a site (Vs30)), (3) source-to-site distance metrics (e.g. epicentral distance, Joyner-Boore distance) and (4) ground-motion intensity values for various intensity measures (e.g. peak-ground acceleration (PGA), peak-ground velocity (PGV), spectral acceleration (SA) for various spectral ordinates).
+
Within a residual analysis, the information provided in each ground-motion record is used to evaluate how closely a selection of GMPEs predict the expected (observed) ground-motion. The ground-motion records within a flatfile will usually comprise of earthquakes from the same region and of the same tectonic region type. This is because, if for example, we are trying to identify the best performing GMPEs for Albania, we will only want to examine how well the considered GMPEs predict the (observed) ground-motion for earthquakes originating from Albania and potentially the surrounding (tectonically similar) regions if we need supplementary ground-motion records to improve the dataset’s coverage with respect to magnitude, distance etc.
+Parsers are provided in the smt for the most widely used flatfile formats (e.g. ESM, NGAWest2).
+
In this example, we will consider the ESM 2018 format parser for the parsing of a ESM 2018 flatfile comprising of earthquakes from Albania and the surrounding regions. We will then evaluate appropriate GMPEs using the parsed metadata in the explanations of the subsequent smt components.
Herein we provide a brief description of the various steps for the parsing of an ESM 2018 flatfile. Note that we use the symbol > as the prompt in a terminal, hence every time you find some code starting with this symbol this indicate a command you must type in your terminal.
+
Following the geographical filtering of the ESM 2018 flatfile for only earthquakes from Albania and the surrounding regions in this example, we can parse the flatfile using the ESM_flatfile_parser. The currently available parsers within the smt module can be found in oq-mbtk.openquake.smt.parsers.
+
+
First we must import the ESMFlatfileParser and the required python modules for managing the output directories:
+
+
> # Import required python modules
+> import os
+> import shutil
+> from openquake.smt.parsers.esm_flatfile_parser import ESMFlatfileParser
+
+
+
+
+
Next we need to specify the base path, the flatfile location and the output location:
+
+
> # Specify base path
+> DATA=os.path.abspath('')
+>
+> # Specify flatfile location
+> flatfile_directory=os.path.join(DATA, 'ESM_flatfile_SA_geographically_filtered.csv')
+>
+> # Specify metadata output location
+> output_database=os.path.join(DATA, 'metadata')
+>
+> # If the metadata already exists first remove
+> if os.path.exists(output_database):
+> shutil.rmtree(output_database)
+
+
+
+
+
Now we can parse the metadata from the ESM 2018 flatfile using the ESMFlatfileParser with the autobuild class method:
The flatfile will now be parsed by the ESMFlatfileParser, and a pickle (.pkl) file of the metadata will be outputted in the specified output location. We can now use this metadata to perform a GMPE residual analysis.
Following the parsing of a flatfile into useable metadata, we can now specify the inputs for the performing of a residual analysis. Residual analysis compares the predicted and expected (i.e. observed) ground-motion for a combination of source, site and path parameters to evaluate the performance of GMPEs. Residuals are computed using the mixed effects methodology of Abrahamson and Youngs (1992), in which the total residual is split into an inter-event component and an intra-event component. Abrahamson and Youngs (1992) should be consulted for a detailed overview of ground-motion residuals.
+
We can specify the inputs to perform a residual analysis with as follows:
+
+
Specify the base path, the path to the metadata we parsed in the previous stage and an output folder:
We can specify the GMPEs we want to evaluate, and the intensity measures we want to evaluate each GMPE for as a gmpe_list and an imt_list within the command line:
+
+
> # Specify some GMPEs and intensity measures within command line
+> gmpe_list=['AkkarEtAlRjb2014', 'BooreEtAl2014', 'BooreEtAl2020', 'CauzziEtAl2014', 'KothaEtAl2020regional', 'LanzanoEtAl2019_RJB_OMO']
+> imt_list=['PGA','SA(0.1)', 'SA(0.2)', 'SA(0.5)', 'SA(1.0)']
+
+
+
+
+
We can also specify the GMPEs and intensity measures within a .toml file. The .toml file method is required for specifying the inputs of GMPEs with user-specifiable input parameters e.g. regionalisation parameter or logic tree branch parameters. Note that here the GMPEs listed in the first .toml file are not appropriate for our target region, but have been selected to demonstrate how GMPEs with additional inputs can be specified within a .toml file. The second .toml file provides the GMPEs and intensity measures we use for running this demonstration analysis.
+
The additional input parameters which are specifiable for certain GMPEs are available within their corresponding GSIM files (found in oq-engine.openquake.hazardlib.gsim, or for ModifiableGMPE features in oq-engine.openquake.hazardlib.gsim.mgmpe.modifiable_gmpe). Note also that a GMPE sigma model must be provided by the GMPE for the computation of residuals. If a sigma model is not provided by the GMPE, it can be specified as demonstrated below.
+
The .toml file for specifying GMPEs and intensity measures to consider within a residual analysis should be specified as follows:
+
+
[models]
+
+[models.1-AbrahamsonGulerce2020SInter]
+region="GLO"
+
+[models.2-AbrahamsonGulerce2020SInter]
+region="CAS"
+
+[models.AbrahamsonEtAl2014]
+
+[models.AbrahamsonEtAl2014RegJPN]
+region="JPN"# nb currently a bug for specifically this gmm in the SMT where the user must still specify the region param despite the class name differentiating as regionalised variant (will be fixed!)
+
+[models.BooreEtAl2014]
+
+[models.BooreEtAl2014LowQ]
+
+[models.YenierAtkinson2015BSSA]
+sigma_model='al_atik_2015_sigma'# use Al Atik (2015) sigma model
+
+[models.1-CampbellBozorgnia2014]
+fix_total_sigma="{'PGA': 0.750, 'SA(0.1)': 0.800, 'SA(0.5)': 0.850}"# fix total sigma per imt
+
+[models.2-CampbellBozorgnia2014]
+with_betw_ratio=1.7# add between-event and within-event sigma using ratio of 1.7 to partition total sigma
+
+[models.3-CampbellBozorgnia2014]
+set_between_epsilon=0.5# Shift the mean with formula mean --> mean + epsilon_tau * between event
+
+[models.1-ChiouYoungs2014]
+median_scaling_scalar=1.4# scale median by factor of 1.4 over all imts
+
+[models.2-ChiouYoungs2014]
+median_scaling_vector="{'PGA': 1.10, 'SA(0.1)': 1.15, 'SA(0.5)': 1.20}"# scale median by imt-dependent factor
+
+[models.1-KothaEtAl2020]
+sigma_scaling_scalar=1.05# scale sigma by factor of 1.05 over all imts
+
+[models.2-KothaEtAl2020]
+sigma_scaling_vector="{'PGA': 1.20, 'SA(0.1)': 1.15, 'SA(0.5)': 1.10}"# scale sigma by imt-dependent factor
+
+[models.1-BooreEtAl2014]
+site_term='CY14SiteTerm'# use CY14 site term
+
+[models.2-BooreEtAl2014]
+site_term='NRCan15SiteTerm'# use NRCan15 non-linear site term
+
+[models.3-BooreEtAl2014]
+site_term='NRCan15SiteTermLinear'# use NRCan15 linear site term
+
+[models.NGAEastGMPE]
+gmpe_table='NGAEast_FRANKEL_J15.hdf5'# use a gmpe table
+
+[models.HassaniAtkinson2018]
+d_sigma=100# gmpe specific param
+kappa0=0.04
+
+[models.KothaEtAl2020ESHM20] # ESHM20 model
+sigma_mu_epsilon=2.85697
+c3_epsilon=1.72
+region=4# Note that within the residuals toml we specify the region here, whereas in the comparison module toml (below) we specify the region for all ESHM20 GMMs uniformly using the eshm20_region param
+
+[imts]
+imt_list=['PGA', 'SA(0.2)', 'SA(0.5)', 'SA(1.0']
+
+
+
Adhering to this formatting, we here provide the GMPEs and intensity measures we consider within the subsequent analysis:
Following specification of the GMPEs and intensity measures, we can now compute the ground-motion residuals using the Residuals module.
+
We first need to get the metadata from the parsed .pkl file (stored within the metadata folder):
+
+
> # Import required python modules
+> import pickle
+> import openquake.smt.residuals.gmpe_residuals as res
+> import openquake.smt.residuals.residual_plotter as rspl
+>
+> # Create path to metadata file
+> metadata=os.path.join(metadata_directory, 'metadatafile.pkl')
+>
+> # Load metadata
+> sm_database=pickle.load(open(metadata, "rb"))
+>
+> # If the output folder already exists delete, then create output folder
+> if os.path.exists(run_folder):
+> shutil.rmtree(run_folder)
+> os.mkdir(run_folder)
+
+
+
+
+
Now we compute the residuals using the specified GMPEs and intensity measures for the metadata we have parsed from the flatfile:
+
Note that here resid1 is the residuals object which stores (1) the observed ground-motions and associated metadata from the parsed flatfile, (2) the corresponding predicted ground-motion per GMPE and (3) the computed residual components per GMPE per intensity measure. The residuals object also stores the gmpe_list (e.g. resid1.gmpe_list) and the imt_list (resid1.imts) if these inputs are specified within a .toml file.
+
+
> # Compute residuals using GMPEs and intensity measures specified in command line
+> resid1=res.Residuals(gmpe_list, imt_list)
+> resid1.get_residuals(sm_database)
+>
+> # OR compute residuals using GMPEs and intensity measures specified in .toml file
+> filename=os.path.join(DATA,'gmpes_and_imts_to_test.toml')# path to .toml file
+> resid1=res.Residuals.from_toml(filename)
+> resid1.get_residuals(sm_database)
+
Now we have computed the residuals, we can generate various basic plots describing the residual distribution.
+
We can generate plots of the probability density function plots (for total, inter- and intra-event residuals), which compare the computed residual distribution to a standard normal distribution.
+
Note that filename (position 3 argument in rspl.ResidualPlot) should specify the output directory and filename for the generated figure in each instance.
+
Probability density function plots can be generated as follows:
+
+
> # If using .toml for inputs we first create equivalent gmpe_list and imt_list using residuals object attributes
+> gmpe_list={}
+> for idx, gmpe in enumerate(resid1.gmpe_list):
+> gmpe_list[idx]=resid1.gmpe_list[gmpe]
+> gmpe_list=list[gmpe_list]
+>
+> imt_list={}
+> for idx, imt in enumerate(resid1.imts):
+> imt_list[idx]=resid1.imt_list[imt]
+> imt_list=list(imt_list)
+>
+> # Plot residual probability density function for a specified GMPE from gmpe_list and intensity measure from imt_list
+> rspl.ResidualPlot(resid1, gmpe_list[5], imt_list[0], filename, filetype='jpg')# Plot for gmpe in position 5 in gmpe_list and intensity measure in position 0 in imt_list
+
+
+
+
+
+
+
Residual distribution plot for Boore et al. 2020 and PGA:
+
+
+
+
We can also plot the probability density functions over all considered spectral periods at once, so as to better examine how the residual distributions vary per GMPE over each spectral period:
+
+
> # Plot residual probability density functions over spectral periods:
+> rspl.PlotResidualPDFWithSpectralPeriod(resid1, filename)
+>
+> # Generate .csv of residual probability density function per imt per GMPE
+> rspl.PDFTable(resid1, filename)
+
+
+
+
+
+
+
Plot of residual distributions versus spectral acceleration:
+
+
+
+
Plots for residual trends (again for total, inter- and intra-event components) with respect to the most important GMPE inputs can also be generated in a similar manner. Here we will demonstrate for magnitude:
+
+
> # Plot residuals w.r.t. magnitude from gmpe_list and imt_list
+> rspl.ResidualWithMagnitude(resid1, gmpe_list[5], imt_list[0], filename, filetype='jpg')
+
+
+
+
Residuals w.r.t. magnitude for Boore et al. 2020 and PGA:
+
+
+
+
+
The functions for plotting of residuals w.r.t. distance, focal depth and Vs30 are called in a similar manner:
The smt’s residual module also offers capabilities for performing single station residual analysis (SSA).
+
We can first specify a threshold for the minimum number of records each site must have to be considered in the SSA:
+
+
> # Import SMT functions required for SSA
+> from openquake.smt.strong_motion_selector import rank_sites_by_record_count
+>
+> # Specify threshold for min. num. records
+> threshold=20
+>
+> # Get the sites meeting threshold (for same parsed database as above!)
+> top_sites=rank_sites_by_record_count(sm_database, threshold)
+
+
+
+
+
Following selection of sites using a threshold value, we can perform the SSA.
+
We can compute the non-normalised intra-event residual per record associated with the selected sites \(\delta W_{es}\), the mean average (again non-normalised) intra-event residual per site \(\delta S2S_S\) and a residual variability \(\delta W_{o,es}\) (which is computed per record by subtracting the site-average intra-event residual from the corresponding inter-event residual). For more details on these intra-event residual components please consult Rodriguez-Marek et al. (2011), which is referenced repeatedly throughout the following section.
+
The standard deviation of all \(\delta W_{es}\) values should in theory exactly equal the standard deviation of the GMPE’s intra-event standard deviation.
+
The \(\delta S2S_S\) term is characteristic of each site, and should equal 0 with a standard deviation of \(\phi_{S2S}\). A non-zero value for \(\delta S2S_S\) is indicative of a bias in the prediction of the observed ground-motions at the considered site.
+
Finally, the standard deviation of the \(\delta W_{o,es}\) term (\(\phi_{SS}\)) is representative of the single-station standard deviation of the GMPE, and is an estimate of the non-ergodic standard deviation of the model.
+
As previously, we can specify the GMPEs and intensity measures to compute the residuals per site for using either a GMPE list and intensity measure list, or from a .toml file.
+
+
> # Create SingleStationAnalysis object from gmpe_list and imt_list
+> ssa1=res.SingleStationAnalysis(top_sites.keys(), gmpe_list, imt_list)
+>
+> # OR create SingleStationAnalysis object from .toml
+> filename=os.path.join(DATA, 'SSA_inputs.toml')# path to input .toml
+> ssa1=res.SingleStationAnalysis.from_toml(top_sites.keys(), filename)
+>
+> Get the total, inter-event and intra-event residuals for each site
+> ssa1.get_site_residuals(sm_database)
+>
+> Get single station residual statistics for each site and export to .csv
+> csv_output=os.path.join(DATA, 'SSA_statistics.csv')
+> ssa1.residual_statistics(True, csv_output)
+
+
+
+
+
We can plot the computed residual statistics as follows:
+
+
> # First plot (normalised) total, inter-event and intra-event residuals for each site
+> rspl.ResidualWithSite(ssa1, gmpe_list[0], imt_list[2], filename, filetype='jpg')
+>
+> # Then plot non-normalised intra-event per site, average intra-event per site and residual variability per site
+> rspl.IntraEventResidualWithSite(ssa1, gmpe_list[0], imt_list[2], filename, filetype='jpg')
+
+
+
+
Normalised residuals per considered site for Boore et al. 2020 and PGA:
+
+
Intra-event residuals components per considered site for Boore et al. 2020 and PGA:
The smt contains implementations of several published GMPE ranking methodologies, which allow additional inferences to be drawn from the computed residual distributions. Brief summaries of each ranking metric are provided here, but the corresponding publications should be consulted for more information.
The Likelihood method is used to assess the overall goodness of fit for a model (GMPE) to the dataset (observed) ground-motions. This method considers the probability that the absolute value of a random sample from a normalised residual distribution falls into the interval between the modulus of a particular observation and infinity. The likelihood value should equal 1 for an observation of 0 (i.e. the mean of the normalised residual distribution) and should approach zero for observations further away from the mean. Consequently, if the GMPE exactly matches the observed ground-motions, then the likelihood of a particular observation should be distributed evenly between 0 and 1, with a median value of 0.5
+
Histograms of the likelihood values per GMPE per intensity measure can be plotted as follows:
+
+
> # From gmpe_list and imt_list:
+> rspl.LikelihoodPlot(resid1, gmpe_list[5], imt_list[0], filename, filetype='jpg')
+
The loglikelihood method is used to assess information loss between GMPEs compared to the unknown “true” model. The comparison of information loss per GMPE compared to this true model is represented by the corresponding ground-motion residuals. A GMPE with a lower LLH value provides a better fit to the observed ground-motions (less information loss occurs when using the GMPE). It should be noted that LLH is a comparative measure (i.e. the LLH values have no physical meaning), and therefore LLH is only of use to evaluate two or more GMPEs.
+
LLH values per GMPE aggregated over all (specified) intensity measures, LLH-based model weights and LLH per intensity measure can be computed as follows:
+
+
> # From gmpe_list and imt_list
+> llh, model_weights, model_weights_with_imt=res.get_loglikelihood_values(resid1, imt_list)
+>
+> # OR from .toml:
+> llh, model_weights, model_weights_with_imt=res.get_loglikelihood_values(resid1, resid1.imts)
+>
+> # Generate a .csv table of LLH values
+> rspl.loglikelihood_table(resid1, filename)
+>
+> # Generate a .csv table of LLH-based model weights for GMPE logic tree
+> rspl.llh_weights_table(resid1, filename)
+>
+> # Plot LLH vs imt
+> rspl.plot_loglikelihood_with_spectral_period(resid1, filename)
+
+
+
+
Loglikelihood versus spectral acceleration plot for considered GMPEs:
+
+
+
+
+
+
+
Euclidean Distance Based Ranking (Kale and Akkar, 2013)
+
+
The Euclidean distance based ranking (EDR) method considers the probability that the absolute difference between an observed ground-motion and a predicted ground-motion is less than a specific estimate, and is repeated over a discrete set of such estimates (one set per observed ground-motion per GMPE per the specified intensity measure). The total occurrence probability for such a set is the modified Euclidean distance (MDE). The corresponding EDR value is computed by summing the MDE (one per observation), normalising by the number of observations and then introducing an additional parameter (Kappa) to penalise models displaying a larger predictive bias (here kappa is equal to the ratio of the Euclidean distance between obs. and pred. median ground-motion to the Euclidean distance between the obs. and pred. median ground-motion corrected by a predictive model derived from a linear regression of the observed data - the parameter kappa^0.5 therefore provides the performance of the median prediction per GMPE).
+
EDR score, the normal distribution of modified Euclidean distance (MDE Norm) and k^0.5 (k is used henceforth to represent the median predicted ground-motion correction factor “Kappa” within the original methodology) per GMPE aggregated over all considered intensity measures, or per intensity measure can be computed as follows:
+
+
> # Get EDR, MDE Norm and MDE per GMPE aggregated over all imts
+> res.get_edr_values(resid1)
+>
+> # Get EDR, MDE Norm and MDE for each considered imt
+> res.get_edr_values_wrt_spectral_period(resid1)
+>
+> # Generate a .csv table of EDR values for each GMPE
+> rspl.edr_table(resid1, filename=EDR_table_output)
+>
+> # Generate a .csv table of EDR-based model weights for GMPE logic tree
+> rspl.edr_weights_table(resid1, filename)
+>
+> # Plot EDR score, MDE norm and k^0.5 vs imt
+> rspl.plot_plot_edr_metrics_with_spectral_period(resid1, filename)
+
+
+
+
EDR rank versus spectral acceleration plot for considered GMPEs:
+
+
EDR correction factor versus spectral acceleration for considered GMPEs:
+
+
MDE versus spectral acceleration for considered GMPEs:
Alongside the smt’s capabilities for evaluating GMPEs in terms of residuals (within the residual module as demonstrated above), we can also evaluate GMPEs with respect to the predicted ground-motion for a given earthquake scenario. The tools for comparing GMPEs are found within the Comparison module.
+
+
> # Import GMPE comparison tools
+> from openquake.smt.comparison import compare_gmpes as comp
+
+
+
+
+
The tools within the Comparison module include Sammon’s Maps, hierarchical clustering plots and matrix plots of Euclidean distance for the median (and 16th and 84th percentiles) of predicted ground-motion per GMPE per intensity measure. Plotting capabilities for response spectra and attenuation curves (trellis plots) are also provided in this module.
+
The inputs for these comparitive tools must be specified within a single .toml file as specified below. GMPE parameters can be specified as within the example .toml file provided above for us in residual analysis. In the .toml file we have specified the source parameters for earthquakes characteristic of Albania (compressional thrust faulting with magnitudes of interest w.r.t. seismic hazard in the range of Mw 5 to Mw 7), and we have specified some GMPEs which were found to perform well in the residual analysis against Albania ground-motion data. To plot a GMPE logic tree we must assign model weights using lt_weight_gmc1 or ‘lt_weight_gmc2 in each GMPE depending on if we want to plot the GMPE within GMC logic tree #1 or #2 (up to 2 GMC logic trees can currently be plotted within one trellis or response spectra plot at a time). To plot only the final logic tree and not the individual GMPEs comprising it, we use lt_weight_gmc1_plot_lt_only or lt_weight_gmc2_plot_lt_only instead (depending on which GMC we wish to not plot the individual GMPEs for - see the .toml file below for an example of these potential configurations).
+
+
### Input file for comparison of GMPEs using plotting functions in openquake.smt.comparison.compare_gmpes
+[general]
+imt_list=['PGA', 'SA(0.1)', 'SA(0.5)', 'SA(1.0)']
+max_period=2# max period for spectra plots
+minR=0# min dist. used in trellis, Sammon's, clusters and matrix plots
+maxR=300# max dist. used in trellis, Sammon's, clusters and matrix plots
+dist_type='repi'# or rjb, rrup or rhypo (dist type used in trellis plots)
+dist_list=[10, 100, 250]# distance intervals for use in spectra plots
+eshm20_region=2# for ESHM20 GMPE regionalisation
+Nstd=1# num. of sigma to sample from sigma distribution
+
+# Specify site properties
+[site_properties]
+vs30=800
+Z1=-999
+Z25=-999
+up_or_down_dip=1# 1 = up-dip, 0 = down-dip
+region='Global'# get region specific z1pt0 and zpt50 ('Global' or 'Japan')
+
+# Characterise earthquake for the region of interest as finite rupture
+[source_properties]
+trt='None'# Either string of 'None' to use user-provided aratio OR specify a TRT string from ASCR, InSlab, Interface, Stable, Upper_Mantle, Volcanic, Induced, Induced_Geothermal to assign a trt-dependent proxy aratio
+ztor='None'# Set to string of 'None' to NOT consider otherwise specify as array matching number of mag and depth values
+strike=-999
+dip=60
+rake=90# Must be provided. Strike and dip can be approximated if either set to -999
+aratio=2# If set to -999 the user-provided trt string will be used to assign a trt-dependent aratio
+trellis_and_rs_mag_list=[5, 6, 7]# mags used only for trellis and response spectra
+trellis_and_rs_depths=[20, 20, 20]# depth per magnitude for trellis and response spectra
+
+# Specify magnitude array for Sammons, Euclidean dist and clustering
+[mag_values_non_trellis_or_spectra_functions]
+mmin=5
+mmax=7
+spacing=0.1
+non_trellis_or_spectra_depths=[[5, 20], [6, 20], [7, 20]]# [[mag, depth], [mag, depth], [mag, depth]]
+
+# Specify label for gmpes
+[gmpe_labels]
+gmpes_label=['CA15', 'AK14', 'B20', 'L19', 'K1', 'K2', 'K3', 'K4', 'K5']
+
+# Specify gmpes
+
+# Plot logic tree and individual GMPEs within first GMC logic tree config (gmc1)
+[models.BooreEtAl2020]
+lt_weight_gmc1=0.30
+
+[models.LanzanoEtAl2019_RJB_OMO]
+lt_weight_gmc1=0.40
+
+# Default ESHM20 logic tree branches considered in gmc1
+[models.1-KothaEtAl2020ESHM20]
+lt_weight_gmc1=0.000862
+sigma_mu_epsilon=2.85697
+c3_epsilon=1.72
+[models.2-KothaEtAl2020ESHM20]
+lt_weight_gmc1=0.067767
+sigma_mu_epsilon=1.35563
+c3_epsilon=0
+[models.3-KothaEtAl2020ESHM20]
+lt_weight_gmc1=0.162742
+sigma_mu_epsilon=0
+c3_epsilon=0
+[models.4-KothaEtAl2020ESHM20]
+lt_weight_gmc1=0.067767
+sigma_mu_epsilon=-1.35563
+c3_epsilon=0
+[models.5-KothaEtAl2020ESHM20]
+lt_weight_gmc1=0.000862
+sigma_mu_epsilon=-2.85697
+c3_epsilon=-1.72
+
+# Plot logic tree only for second GMC logic tree config (gmc2)
+# Note this additional GMC logic tree config is simply for demonstrative
+# purposes of how multiple logic trees can be plotted at once!
+[models.CauzziEtAl2014]
+lt_weight_gmc2_plot_lt_only=0.50
+
+[models.AkkarEtAlRjb2014]
+lt_weight_gmc2_plot_lt_only=0.50
+
+[custom_colors]
+custom_colors_flag='False'#(set to "True" for custom colours in plots)
+custom_colors_list=['lime', 'dodgerblue', 'gold', '0.8']
+
+
+
+
+
Trellis Plots
+
Now that we have defined our inputs for GMPE comparison, we can use each tool within the Comparison module to evaluate how similar the GMPEs predict ground-motion for a given ground-shaking scenario.
+
We can generate trellis plots (predicted ground-motion by each considered GMPE versus distance) for different magnitudes and intensity measures (specified in the .toml file).
+
Note that filename (both for trellis plotting and in the subsequently demonstrated comparison module plotting functions) is the path to the input .toml file.
Response spectra plots for input parameters specified in toml file:
+
+
+
+
+
Plot of Spectra from a Record
+
The spectra of a processed record can also be plotted along with predictions by the selected GMMs for the same ground-shaking scenario. An example of the input for the record spectra is provided in the demo files:
+
+
> # Generate plot of observed spectra and predictions by GMMs
+> # Note we use spectra from a record for the 1991 Chamoli EQ in this
+> # example rather than from a record from an earthquake in/near Albania
+> comp.plot_spectra(filename, output_directory, obs_spectra='spectra_chamoli_1991_station_UKHI.csv')
+
+
+
+
Response spectra plots for input parameters specified in toml file:
+
+
+
+
+
Sammon’s Maps
+
We can plot Sammon’s Maps to examine how similar the medians (and 16th and 84th percentiles) of predicted ground-motion of each GMPE are (see Sammon, 1969 and Scherbaum et al. 2010 for more details on the Sammon’s mapping procedure).
+
A larger distance between two plotted GMPEs represents a greater difference in the predicted ground-motion. It should be noted that: (1) more than one 2D configuration can exist for a given set of GMPEs and (2) that the absolute numbers on the axes do not have a physical meaning.
Sammon’s Maps (median predicted ground-motion) for input parameters specified in toml file:
+
+
+
+
+
Hierarchical Clustering
+
Dendrograms can be plotted as an alternative tool to evaluate how similarly the predicted ground-motion is by each GMPE.
+
Within the dendrograms the GMPEs are clustered hierarchically (i.e. the GMPEs which are clustered together at shorter Euclidean distances are more similar than those clustered together at larger Euclidean distances).
+
Hierarchical clustering plots can be generated as follows:
Dendrograms (median predicted ground-motion) for input parameters specified in toml file:
+
+
+
+
+
Matrix Plots of Euclidean Distance
+
In addition to Sammon’s Maps and hierarchical clustering, we can also plot the Euclidean distance between the predicted ground-motions by each GMPE in a matrix plot.
+
Within the matrix plots the darker cells represent a smaller Euclidean distance (and therefore greater similarity) between each GMPE for the given intensity measure.
+
Matrix plots of Euclidean distance can be generated as follows:
Abrahamson, N. A. and R. R. Youngs (1992). “A Stable Algorithm for Regression Analysis Using the Random Effects Model”. In: Bulletin of the Seismological Society of America 82(1), pages 505 – 510.
+
Kale, O and S. Akkar (2013). “A New Procedure for Selecting and Ranking Ground-Motion Prediction Equations (GMPES): The Euclidean Distance-Based Ranking (EDR) Method”. In: Bulletin of the Seismological Society of America 103(2A), pages 1069 – 1084.
+
Kotha, S. -R., G. Weatherill, and F. Cotton (2020). “A Regionally Adaptable Ground-Motion Model for Shallow Crustal Earthquakes in Europe.” In: Bulletin of Earthquake Engineering 18, pages 4091 – 4125.
+
Rodriguez-Marek, A., G. A. Montalva, F. Cotton, and F. Bonilla (2011). “Analysis of Single-Station Standard Deviation using the KiK-Net data”. In: Bulletin of the Seismological Society of America 101(3), pages 1242 –1258.
+
Sammon, J. W. (1969). “A Nonlinear Mapping for Data Structure Analysis.” In: IEEE Transactions on Computers C-18 (no. 5), pages 401 - 409.
+
Scherbaum, F., F. Cotton, and P. Smit (2004). “On the Use of Response Spectral-Reference Data for the Selection and Ranking of Ground Motion Models for Seismic Hazard Analysis in Regions of Moderate Seismicity: The Case of Rock Motion”. In: Bulletin of the Seismological Society of America 94(6), pages 2164 – 2184.
+
Scherbaum, F., E. Delavaud, and C. Riggelsen (2009). “Model Selection in Seismic Hazard Analysis: An Information-Theoretic Perspective”. In: Bulletin of the Seismological Society of America 99(6), pages 3234 – 3247.
+
Scherbaum, F., N. M., Kuehn, M. Ohrnberger and A. Koehler (2010). “Exploring the proximity of ground-motion models using high-dimensional visualization techniques.” In: Earthquake Spectra 26(4), pages 1117 – 1138.
+
Weatherill G., S. -R. Kotha and F. Cotton. (2020). “A Regionally Adaptable “Scaled Backbone” Ground Motion Logic Tree for Shallow Seismicity in Europe: Application to the 2020 European Seismic Hazard Model.” In: Bulletin of Earthquake Engineering 18, pages 5087 – 5117.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/sub.html b/contents/sub.html
new file mode 100644
index 000000000..849e45051
--- /dev/null
+++ b/contents/sub.html
@@ -0,0 +1,409 @@
+
+
+
+
+
+
+ SUBduction (sub) module — OpenQuake Model Building Toolkit Suite documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
The Subduction module contains software for the construction of subduction earthquake sources for the oq-engine. The components of this model can be used either independently or within a workflow similarly to what is described in this section.
The modeling of earthquake subduction sources starts with the definition of the geometry of the slab. The mbtk subduction module contains tools for the definition of the top of the slab. Two are the approaches available. The first one, the most comprehensive, requires a tedious process of digititazion of the profiles describing the position of the top of the slab versus depth along each cross section (see Pagani et al. (2020) for a description of the methodology). The second one uses the geometries of the slab proposed by Hayes et al. (2018) (dataset).
+
The result of these two procedures is a folder containing a set of .csv files each one describing a profile. In this context a profile is a curve that lays on top of the slab and, generally, has a direction parallel to the dip.
Herein we provide a brief description of the various steps. Note that we use the symbol > as the prompt in a terminal, hence every time you find some code starting with this symbol this indicate a command you must type in your terminal.
+
+
The first step entails the definition of a configuration file. An example is provided herein
+
+
[data]
+
+# Path to the text file with the coordinates of the trench axis
+trench_axis_filename=/Users/kjohnson/GEM/Regions/paisl18/data/subduction/trenches/kerton_trench.xy
+
+# Path to the pickled file (an instance of the hazard modeller's toolkit Catalogue)
+catalogue_pickle_filename=/Users/kjohnson/GEM/Regions/paisl18/data/catalogues/locations/PI_cat_filt.p
+
+# Path to the Slab 1.0 text file with the coordinates of the top of the slab
+slab1pt0_filename=/Users/kjohnson/GEM/Regions/paisl18/data/subduction/slab1pt0/ker_slab1.0_clip.xyz
+
+# Path to the Crust 1.0 text file (see)
+crust1pt0_filename=/Users/kjohnson/GEM/Regions/paisl18/data/crustal_models/crust1pt0/crsthk.xyz
+
+# Path to the Litho 1.0 text file (see)
+litho_filename=/Users/kjohnson/GEM/Regions/paisl18/data/crustal_models/litho1pt0/litho_moho.xyz
+
+# Path to the file containing the focal mechanisms from the Global Centroid Moment Tensor project
+gcmt_filename=/Users/kjohnson/GEM/Regions/paisl18/data/catalogues/focal_mechanisms/GCMT_20151231.ndk
+
+# Path to the file with volcanoes
+volc_filename=/Users/kjohnson/GEM/Regions/paisl18/data/volcanoes/volcano_list.xy
+
+# Path to the text topography file
+topo_filename=/Users/kjohnson/GEM/Regions/paisl18/data/topography/GEBCO_2014/pacisl_topobath_nf.xyz
+
+[section]
+
+# Length of each profile [km]
+lenght=700
+
+# Spacing [km] between the profiles along the axis subduction trench
+# specified in the ariable `trench_axis_filename`
+interdistance=100
+
+# Azimuth parameter. When equal to a real number in the range [0, 360] all
+# the profiles will follow that direction. Ortherwise, if `None` the
+# profiles will have a direction perpendicular to the trench axis
+azimuth=None
+
+# Maximum depth of each profile [km]
+dep_max=700
+
+
+
+
Create a pickled version of your hmtk formatted catalog:
+
> pickle_catalogue.py ./catalogues/cac.cat`
+
+
+
+
Create a set of cross-sections from the subduction trench axis:
Create one .pdf file for each cross-section with the available information: e.g., earthquake hypocentres, focal mechanism, slab 1.0 geometry, CRUST 1.0 Moho:
+
>plot_multiple_cross_sections.pycs_traces.cs
+
+
+
+
+
This command will produce as many .pdf files as the number of cross-sections specified in the .cs file
+
+
Digitize the contact between the overriding plate and the subducted plate in each cross-section. The information in the command below corresponds to the longitude and the latitude of the origin of the cross-section, the length [km], the azimuth [decimal degrees], the cross-section ID and the name of the .ini file. For example:
Once launched, by clicking on the image it is possible to digitize a sequence of points. Once completed the digitization, the points can be saved to a file whose name corresponds to cs_<sectionID>.csv by pressing the f key on the keyboard. The points can be deleted with the key d.
The second approach proposed is simpler than the first one. At the beginning, it requires to complete point 1 and point 3 described in the first approach section. Once we have a configuration file and a set of cross sections ready we can complete the construction of the set of profiles with the following command:
<output_folder> is the name of the folder where to write the profiles
+
<file_with_traces.cs> is the name of the file (produced by create_multiple_cross_sections.py) with information aboout the traces of the cross-sections.
Now that we have a set of profiles available, we will build the surface of subduction . The output of this procedure will be a new set of profiles and edges that can be used to define the surface of a complex fault modelling the subduction interface earthquakes and to create inslab sources.
+
This part of the procedure can be completed by running the
+
+
Build the surface of the subduction interface using create_2pt5_model.py. The input information in this case is:
+
+
+
The name of the folder <cs_folder> containing the cs_ files created using either the procedure described in the first approach or first approach section;
The output is a set of interpolated profiles and edges that can be used to create a complex fault source for the OpenQuake engine. The results of the code create_2pt5_model.py can be plotted using plot_2pt5_model.py. Example:
where <configuration_file> is the configuration file used to build the cross-sections.
+
+
+
Classifying an earthquake catalog using the top of the slab surface [incomplete]
+
The create_2pt5_model.py code produces a set of profiles and edges (i.e. .csv files with the 3D coordinates) describing the geometry of the top of the slab. With this information we can separate the seismicity in an earthquake catalog into a few subsets, each one representing a specific tectonic environment (e.g. Abrahamson and Shedlock, 1997 or Chen et al., 2017 ). The procedure required to complete this task includes the following steps.
+
+
Create a configuration file that describes the tectonic environments
+
+
The configuration file specifies the geometry of surfaces, along with buffer regions, that are used as references for each tectonic environment, and the catalogue to be classified. Additionally, the configuration includes a prioritylist that indicates how hypocenters that can occur in overlapping buffer regions should be labeled. An example configuration file is shown below. The format of the configuration is as follows.
+
+
The [general] section, which includes:
+
the directory distance_folder where the Euclidean distance between each hypocenter and surface will be stored (NB: this folder must be manually created by the user)
+
an .hdf5 file treg_filename that will store the results of the classfication
+
the .pkl file catalogue_filename, which is the pickeled catalogue in HMTK format to be classified.
+
an array priority lists the tectonic regions, sorting the labels in the order of increasing priority, and a later label overrides classification of a hypocenter to a previous label. For example, in the configuration file shown below, an earthquake that could be classified as both crustal and int_prt will be labeled as int_prt.
+
+
+
+
A geometry section for each labelled tectonic environment in the priority list in [general]. The labels should each contain one of the following four strings, which indicate the way that the surface will be used for classification.
+
+
+
int or slab: These strings indicate a surface related to subduction or similar. They require at least four configurations: (1) label, which will be used by treg_filename to indicate which earthquakes correspond to the given tectonic environment; (2) folder, which gives the relative path to the directory (see Step 2) with the geometry .csv files created by create_2pt5_model for the given surface; and (3) distance_buffer_above and (4) distance_buffer_below, which are the upper limits of Euclidean distances used to classify hypocenters above or below the surface to the respective tectonic environment. A user can additionally specify lowerdepth to bound the surface and buffer region, and low_year, upp_year, low_mag, and upp_mag to to select only from a given time period or magnitude range. These latter options are useful when hypocenters from a given bracket are known to include major assumptions, such as when historical earthquake are assigned a depth of 0 km.
+
crustal or volcanic: These strings indicate a surface against which the classification compares the relative position of a hypocenter laterally and vertically, for example to isolate crustal or volcanic earthquakes. They require two configurations: (1) crust_filename, which is a tab-delimited .xyz file listing longitude, latitude, and depth (as a negative value), which indicates the lateral extent of the tectonic environment and the depths above which all earthquakes should be classified to the respective tectonic environment; and (2) distance_delta, which specifies the vertical depth below a surface to be used as a buffer region.
configuration_file is the name of the .ini configuration file
+
distance_flag is a flag indicating whether or not the distances to surfaces must be computed (i.e. True is used the first time a classification is run for a set of surfaces and tectonic environments, but False when only the buffer and delta distances are changed)
+
root_folder is the root directory for all paths specified in the configuration_file
+
+
+
+
+
Separate the classified events into subcatalogues
+
+
The user must decide the exact way in which they would like to separate the classified events into subcatalogues for each tectonic environment. For example, one may want to decluster the entire catalogue before separating the events, or to decluster each tectonic environment separately. View the following link for an example of the latter case:
Creating inslab sources for the OpenQuake Engine [incomplete]
+
The construction of subduction inslab sources involves the creation of virtual faults elongated along the stike of the slab surface and constrained within the slab volume.
+
+
Create a configuration file
+
+
[main]
+
+reference_folder=/Users/kjohnson/GEM/Regions/paisl18u/
+
+profile_sd_topsl=40.
+edge_sd_topsl=40.
+
+sampling=10.
+
+float_strike=-0.5
+float_dip=-1.0
+
+slab_thickness=70.
+hspa=20.
+vspa=20.
+
+#profile_folder contains: resampled profiles and edges
+profile_folder=./model/subduction/cs_profiles/kerton/edges_zone1_slab
+
+# the pickled catalogue has the hmtk format
+catalogue_pickle_fname=./data/catalogues/locations/PI_cat.p
+
+# the file with labels identifying earthquakes belonging to a given class
+treg_fname=./model/catalogue/PI_class_segments.hdf5
+label=slab_kerton1
+
+# output folder
+out_hdf5_fname=./tmp/ruptures/ruptures_inslab_kerton_1.hdf5
+
+# output smoothing folder
+out_hdf5_smoothing_fname=./tmp/smoothing/smoothing_kerton_1.hdf5
+
+# this is a lists
+dips=[45, 135]
+
+# this is a dictionary
+aspect_ratios={2.0: 0.4, 3.0: 0.3, 6.0: 0.2, 8.0: 0.1}
+
+# this is a dictionary
+uniform_fraction=1.0
+
+# magnitude scaling relationship
+mag_scaling_relation=StrasserIntraslab
+
+# MFD
+agr=5.945
+bgr=1.057
+mmin=6.5
+mmax=7.80
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/sub_tutorials/make_trts.html b/contents/sub_tutorials/make_trts.html
new file mode 100644
index 000000000..0b44d7739
--- /dev/null
+++ b/contents/sub_tutorials/make_trts.html
@@ -0,0 +1,275 @@
+
+
+
+
+
+
+ Jupyter Notebook example for preparing subcatalogues — OpenQuake Model Building Toolkit Suite documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
# for each label, create the subcatalogue
+tot_lab = np.zeros(alen)
+for label in (aaa):
+ csv_filename = "cat_TR_%s.csv"%(label)
+ f = h5py.File(treg,'r')
+ tr = f[label][:]
+ f.close()
+ if sum(tr) > 0:
+ tmp_lab = tr*1
+ tot_lab = tot_lab+tmp_lab
+ catalogue = pickle.load(open(cat_pickle_filename, 'rb'))
+ for lab in ['month', 'day', 'hour', 'minute', 'second']:
+ idx = np.isnan(catalogue.data[lab])
+ if lab == 'day' or lab == 'month':
+ catalogue.data[lab][idx] = 1
+ elif lab == 'second':
+ catalogue.data[lab][idx] = 0.0
+ else:
+ catalogue.data[lab][idx] = 0
+ selector = CatalogueSelector(catalogue, create_copy=False)
+ print('# earthquakes in the catalogue: {:d}'.format(len(catalogue.data['longitude'])))
+ catalogue = selector.select_catalogue(tr)
+
+ print('# earthquakes in this TR : {:d}'.format(len(catalogue.data['longitude'])))
+ # Sub-catalogue
+ csvcat = CsvCatalogueWriter(csv_filename)
+ # Write the purged catalogue
+ csvcat.write_file(catalogue)
+ print("Catalogue successfully written to %s" % csv_filename)
+
+
+
+
+
+
+
+
+# earthquakes in the catalogue: 16553
+# earthquakes in this TR : 10999
+Catalogue successfully written to cat_TR_crustal.csv
+# earthquakes in the catalogue: 16553
+# earthquakes in this TR : 1212
+Catalogue successfully written to cat_TR_crustal_deep.csv
+# earthquakes in the catalogue: 16553
+# earthquakes in this TR : 1933
+Catalogue successfully written to cat_TR_int_prt.csv
+# earthquakes in the catalogue: 16553
+# earthquakes in this TR : 626
+Catalogue successfully written to cat_TR_slab_nht.csv
+# earthquakes in the catalogue: 16553
+# earthquakes in this TR : 296
+Catalogue successfully written to cat_TR_slab_prt.csv
+
+
+
+
[11]:
+
+
+
# also make a catalogue of unclassified earthquakes
+tr_undef = abs(tot_lab-1)
+catalogue = pickle.load(open(cat_pickle_filename, 'rb'))
+selector = CatalogueSelector(catalogue, create_copy=False)
+print('# earthquakes: {:d}'.format(len(catalogue.data['longitude'])))
+catalogue = selector.select_catalogue(tr_undef)
+print('# earthquakes: {:d}'.format(len(catalogue.data['longitude'])))
+# Sub-catalogue
+csv_filename = "cat_TR_unclassified.csv"
+csvcat = CsvCatalogueWriter(csv_filename)
+# Write the purged catalogue
+csvcat.write_file(catalogue)
+print("Catalogue successfully written to %s" % csv_filename)
+
+
+
+
+
+
+
+
+# earthquakes: 16553
+# earthquakes: 1487
+Catalogue successfully written to cat_TR_unclassified.csv
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/sub_tutorials/make_trts.ipynb b/contents/sub_tutorials/make_trts.ipynb
new file mode 100644
index 000000000..c1a30f44d
--- /dev/null
+++ b/contents/sub_tutorials/make_trts.ipynb
@@ -0,0 +1,177 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Jupyter Notebook example for preparing subcatalogues"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import h5py\n",
+ "import pickle\n",
+ "\n",
+ "# Load OQ tools\n",
+ "from openquake.hmtk.parsers.catalogue import CsvCatalogueParser\n",
+ "from openquake.hmtk.seismicity.selector import CatalogueSelector\n",
+ "from openquake.hmtk.parsers.catalogue.csv_catalogue_parser import CsvCatalogueWriter "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Configuration files\n",
+ "cat_pickle_filename = '~/model/catalogue/csv/catalogue.pkl'\n",
+ "treg = '~/model/catalogue/classification/classified.hdf5'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "crustal\n",
+ "crustal_deep\n",
+ "int_prt\n",
+ "slab_nht\n",
+ "slab_prt\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Reading TR hdf5 file and creating the list of tectonic regions\n",
+ "aaa = []\n",
+ "f = h5py.File(treg, \"r\")\n",
+ "for key in f.keys():\n",
+ " aaa.append(key)\n",
+ " alen = len(f[key])\n",
+ " print(key)\n",
+ "f.close()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "# earthquakes in the catalogue: 16553\n",
+ "# earthquakes in this TR : 10999\n",
+ "Catalogue successfully written to cat_TR_crustal.csv\n",
+ "# earthquakes in the catalogue: 16553\n",
+ "# earthquakes in this TR : 1212\n",
+ "Catalogue successfully written to cat_TR_crustal_deep.csv\n",
+ "# earthquakes in the catalogue: 16553\n",
+ "# earthquakes in this TR : 1933\n",
+ "Catalogue successfully written to cat_TR_int_prt.csv\n",
+ "# earthquakes in the catalogue: 16553\n",
+ "# earthquakes in this TR : 626\n",
+ "Catalogue successfully written to cat_TR_slab_nht.csv\n",
+ "# earthquakes in the catalogue: 16553\n",
+ "# earthquakes in this TR : 296\n",
+ "Catalogue successfully written to cat_TR_slab_prt.csv\n"
+ ]
+ }
+ ],
+ "source": [
+ "# for each label, create the subcatalogue\n",
+ "tot_lab = np.zeros(alen)\n",
+ "for label in (aaa):\n",
+ " csv_filename = \"cat_TR_%s.csv\"%(label)\n",
+ " f = h5py.File(treg,'r')\n",
+ " tr = f[label][:]\n",
+ " f.close()\n",
+ " if sum(tr) > 0:\n",
+ " tmp_lab = tr*1\n",
+ " tot_lab = tot_lab+tmp_lab\n",
+ " catalogue = pickle.load(open(cat_pickle_filename, 'rb'))\n",
+ " for lab in ['month', 'day', 'hour', 'minute', 'second']:\n",
+ " idx = np.isnan(catalogue.data[lab])\n",
+ " if lab == 'day' or lab == 'month':\n",
+ " catalogue.data[lab][idx] = 1\n",
+ " elif lab == 'second':\n",
+ " catalogue.data[lab][idx] = 0.0\n",
+ " else:\n",
+ " catalogue.data[lab][idx] = 0\n",
+ " selector = CatalogueSelector(catalogue, create_copy=False)\n",
+ " print('# earthquakes in the catalogue: {:d}'.format(len(catalogue.data['longitude'])))\n",
+ " catalogue = selector.select_catalogue(tr)\n",
+ " \n",
+ " print('# earthquakes in this TR : {:d}'.format(len(catalogue.data['longitude'])))\n",
+ " # Sub-catalogue\n",
+ " csvcat = CsvCatalogueWriter(csv_filename) \n",
+ " # Write the purged catalogue\n",
+ " csvcat.write_file(catalogue)\n",
+ " print(\"Catalogue successfully written to %s\" % csv_filename)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "# earthquakes: 16553\n",
+ "# earthquakes: 1487\n",
+ "Catalogue successfully written to cat_TR_unclassified.csv\n"
+ ]
+ }
+ ],
+ "source": [
+ "# also make a catalogue of unclassified earthquakes\n",
+ "tr_undef = abs(tot_lab-1)\n",
+ "catalogue = pickle.load(open(cat_pickle_filename, 'rb'))\n",
+ "selector = CatalogueSelector(catalogue, create_copy=False)\n",
+ "print('# earthquakes: {:d}'.format(len(catalogue.data['longitude'])))\n",
+ "catalogue = selector.select_catalogue(tr_undef)\n",
+ "print('# earthquakes: {:d}'.format(len(catalogue.data['longitude'])))\n",
+ "# Sub-catalogue\n",
+ "csv_filename = \"cat_TR_unclassified.csv\"\n",
+ "csvcat = CsvCatalogueWriter(csv_filename) \n",
+ "# Write the purged catalogue\n",
+ "csvcat.write_file(catalogue)\n",
+ "print(\"Catalogue successfully written to %s\" % csv_filename)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/genindex.html b/genindex.html
new file mode 100644
index 000000000..5d98486b2
--- /dev/null
+++ b/genindex.html
@@ -0,0 +1,189 @@
+
+
+
+
+
+ Index — OpenQuake Model Building Toolkit Suite documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Welcome to the OpenQuake Model Building Toolkit’s documentation!
+
The OpenQuake Model Building Toolkit (oq-mbt) is a suite of tools for the
+construction of components of a Probabilistic Seismic Hazard (PSH) model.
+The main contributors to this suite of tools are GEM Hazard Team members.
+Contribution from extena users are very welcome!
+
oq-mbt code is hosted on github at the following link
+https://github.com/GEMScienceTools/oq-mbtk. It is developed in close
+connection with the
+OpenQuake engine, the
+open-source hazard and risk calculation engine developed primarily by the
+GEM Foundation.