"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5)\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, we'll load another file that has the geologic descriptions for each unit as well as the HAZUS liquefaction susceptibility category for each unit. (The file also has the geotechnical parameters that are used for [landslide analysis](./landslide_site_prep.ipynb) but are not used here.)\n",
+ "\n",
+ "The liquefaction susceptibility category has been estimated based on the geologic description for that unit, as well as the location of the unit with respect to water bodies (rivers and creeks) from inspection of the geologic map. The guidelines for this assignment can be found in the [HAZUS Manual][hzm], Section 4-21. If you are uncertain of how to proceed, please contact your local geologist or geotechnical engineer.\n",
+ "\n",
+ "[hzm]: https://www.hsdl.org/?view&did=1276\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
unit
\n",
+ "
friction_mid
\n",
+ "
friction_unc
\n",
+ "
cohesion_mid
\n",
+ "
cohesion_unc
\n",
+ "
saturation
\n",
+ "
dry_density
\n",
+ "
uscs
\n",
+ "
type
\n",
+ "
description
\n",
+ "
susc_cat
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
Q1
\n",
+ "
33.5
\n",
+ "
1.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.20
\n",
+ "
2091
\n",
+ "
SM
\n",
+ "
silty sands
\n",
+ "
old wetlands
\n",
+ "
m
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
Q2
\n",
+ "
27.0
\n",
+ "
5.0
\n",
+ "
50000
\n",
+ "
0
\n",
+ "
0.40
\n",
+ "
1734
\n",
+ "
OL
\n",
+ "
organic silts
\n",
+ "
swamp deposits
\n",
+ "
h
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
Q3
\n",
+ "
33.5
\n",
+ "
1.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.30
\n",
+ "
2091
\n",
+ "
SM
\n",
+ "
silty sands
\n",
+ "
river channel deposits
\n",
+ "
vh
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
Q4
\n",
+ "
33.5
\n",
+ "
1.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.20
\n",
+ "
2091
\n",
+ "
SM
\n",
+ "
silty sands
\n",
+ "
levee deposits
\n",
+ "
h
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
Q5
\n",
+ "
27.0
\n",
+ "
5.0
\n",
+ "
50000
\n",
+ "
0
\n",
+ "
0.25
\n",
+ "
1734
\n",
+ "
OL
\n",
+ "
organic silts
\n",
+ "
floodplain deposits
\n",
+ "
h
\n",
+ "
\n",
+ "
\n",
+ "
5
\n",
+ "
Q6
\n",
+ "
38.0
\n",
+ "
6.0
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.30
\n",
+ "
2091
\n",
+ "
GP
\n",
+ "
poorly graded gravel w/ sand, no fines
\n",
+ "
active alluvial fill
\n",
+ "
vh
\n",
+ "
\n",
+ "
\n",
+ "
6
\n",
+ "
Q7
\n",
+ "
32.5
\n",
+ "
1.5
\n",
+ "
62500
\n",
+ "
1250
\n",
+ "
0.25
\n",
+ "
1887
\n",
+ "
SM
\n",
+ "
loamy sand
\n",
+ "
point bar deposits
\n",
+ "
vh
\n",
+ "
\n",
+ "
\n",
+ "
7
\n",
+ "
Cono
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.15
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
alluvial fan
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
8
\n",
+ "
Qt
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
terrace deposits
\n",
+ "
m
\n",
+ "
\n",
+ "
\n",
+ "
9
\n",
+ "
Qc
\n",
+ "
31.5
\n",
+ "
3.5
\n",
+ "
20000
\n",
+ "
0
\n",
+ "
0.15
\n",
+ "
1887
\n",
+ "
CG
\n",
+ "
clayey sandy gravels
\n",
+ "
colluvium
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
10
\n",
+ "
Qd
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
old alluvium, terraces
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
11
\n",
+ "
QvT
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
T-derived Quaternary (terrace/coll./fan)
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
12
\n",
+ "
QvK
\n",
+ "
31.5
\n",
+ "
3.5
\n",
+ "
20000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
1887
\n",
+ "
CG
\n",
+ "
clayey sandy gravels
\n",
+ "
K (diabase) derived Quaternary
\n",
+ "
m
\n",
+ "
\n",
+ "
\n",
+ "
13
\n",
+ "
Q/Kv
\n",
+ "
25.0
\n",
+ "
7.0
\n",
+ "
85000
\n",
+ "
15000
\n",
+ "
0.25
\n",
+ "
2091
\n",
+ "
CH
\n",
+ "
silty clay loam
\n",
+ "
K-derived saprolite
\n",
+ "
vl
\n",
+ "
\n",
+ "
\n",
+ "
14
\n",
+ "
TQplp
\n",
+ "
36.5
\n",
+ "
5.0
\n",
+ "
100000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2244
\n",
+ "
NaN
\n",
+ "
volcanic-sedimentary rocks
\n",
+ "
Popayán Fm.
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
15
\n",
+ "
Kv
\n",
+ "
33.5
\n",
+ "
5.0
\n",
+ "
1000000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
3000
\n",
+ "
NaN
\n",
+ "
diabase
\n",
+ "
Cretaceous diabase
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
16
\n",
+ "
T
\n",
+ "
33.5
\n",
+ "
5.0
\n",
+ "
100000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2600
\n",
+ "
NaN
\n",
+ "
sedimentary rocks
\n",
+ "
coal-bearing sedimentary rocks
\n",
+ "
n
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " unit friction_mid friction_unc cohesion_mid cohesion_unc saturation \\\n",
+ "0 Q1 33.5 1.5 0 0 0.20 \n",
+ "1 Q2 27.0 5.0 50000 0 0.40 \n",
+ "2 Q3 33.5 1.5 0 0 0.30 \n",
+ "3 Q4 33.5 1.5 0 0 0.20 \n",
+ "4 Q5 27.0 5.0 50000 0 0.25 \n",
+ "5 Q6 38.0 6.0 0 0 0.30 \n",
+ "6 Q7 32.5 1.5 62500 1250 0.25 \n",
+ "7 Cono 36.5 3.5 0 0 0.15 \n",
+ "8 Qt 36.5 3.5 0 0 0.10 \n",
+ "9 Qc 31.5 3.5 20000 0 0.15 \n",
+ "10 Qd 36.5 3.5 0 0 0.10 \n",
+ "11 QvT 36.5 3.5 0 0 0.10 \n",
+ "12 QvK 31.5 3.5 20000 0 0.10 \n",
+ "13 Q/Kv 25.0 7.0 85000 15000 0.25 \n",
+ "14 TQplp 36.5 5.0 100000 0 0.10 \n",
+ "15 Kv 33.5 5.0 1000000 0 0.10 \n",
+ "16 T 33.5 5.0 100000 0 0.10 \n",
+ "\n",
+ " dry_density uscs type \\\n",
+ "0 2091 SM silty sands \n",
+ "1 1734 OL organic silts \n",
+ "2 2091 SM silty sands \n",
+ "3 2091 SM silty sands \n",
+ "4 1734 OL organic silts \n",
+ "5 2091 GP poorly graded gravel w/ sand, no fines \n",
+ "6 1887 SM loamy sand \n",
+ "7 2142 GW well graded gravel w/ sand, no fines \n",
+ "8 2142 GW well graded gravel w/ sand, no fines \n",
+ "9 1887 CG clayey sandy gravels \n",
+ "10 2142 GW well graded gravel w/ sand, no fines \n",
+ "11 2142 GW well graded gravel w/ sand, no fines \n",
+ "12 1887 CG clayey sandy gravels \n",
+ "13 2091 CH silty clay loam \n",
+ "14 2244 NaN volcanic-sedimentary rocks \n",
+ "15 3000 NaN diabase \n",
+ "16 2600 NaN sedimentary rocks \n",
+ "\n",
+ " description susc_cat \n",
+ "0 old wetlands m \n",
+ "1 swamp deposits h \n",
+ "2 river channel deposits vh \n",
+ "3 levee deposits h \n",
+ "4 floodplain deposits h \n",
+ "5 active alluvial fill vh \n",
+ "6 point bar deposits vh \n",
+ "7 alluvial fan l \n",
+ "8 terrace deposits m \n",
+ "9 colluvium l \n",
+ "10 old alluvium, terraces l \n",
+ "11 T-derived Quaternary (terrace/coll./fan) l \n",
+ "12 K (diabase) derived Quaternary m \n",
+ "13 K-derived saprolite vl \n",
+ "14 Popayán Fm. n \n",
+ "15 Cretaceous diabase n \n",
+ "16 coal-bearing sedimentary rocks n "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "unit_table = pd.read_csv('./tutorial_data/cali_units.csv')\n",
+ "\n",
+ "unit_table"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's make a new table with just the information that we need, which is the liquefaction susceptibility category (called `susc_cat` in this table)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "liq_susc_cat = unit_table[['unit', 'susc_cat']]\n",
+ "\n",
+ "# set the index to be the unit, for the join below.\n",
+ "liq_susc_cat = liq_susc_cat.set_index('unit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We'll do a database join on the two tables using Pandas, which will let us take the attributes for each geologic unit and append them to each site based on the geologic unit for that site."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
lon
\n",
+ "
lat
\n",
+ "
unit
\n",
+ "
susc_cat
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
-76.540896
\n",
+ "
3.350158
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
-76.544763
\n",
+ "
3.350644
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
-76.528079
\n",
+ "
3.346550
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
-76.529860
\n",
+ "
3.356627
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
-76.527918
\n",
+ "
3.351601
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " lon lat unit susc_cat\n",
+ "0 -76.540896 3.350158 TQplp n\n",
+ "1 -76.544763 3.350644 TQplp n\n",
+ "2 -76.528079 3.346550 TQplp n\n",
+ "3 -76.529860 3.356627 TQplp n\n",
+ "4 -76.527918 3.351601 TQplp n"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "sites = sites.join(liq_susc_cat, on='unit')\n",
+ "\n",
+ "sites.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We also need groundwater depths at each point. A high-quality analysis would use measured data or at least values interpolated from a map of the water table depth, but we don't have that information available. Instead, we'll just estimate values based on the geologic unit. These units are somewhat spatially arranged so that the groundwater depth probably correlates with the unit, but in the absence of any real data, it's impossible to know how good of an approximation this is.\n",
+ "\n",
+ "We'll use a simply Python dictionary with the unit as the key and estimates for groundwater depth in meters as the value."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "gwd_map = {'Q1': 0.65,\n",
+ " 'Q2': 0.3,\n",
+ " 'Q3': 0.2,\n",
+ " 'Q4': 0.3,\n",
+ " 'Q5': 0.2,\n",
+ " 'Q6': 0.1,\n",
+ " 'Q7': 0.15,\n",
+ " 'Cono': 1.75,\n",
+ " 'Qt': 1.,\n",
+ " 'Qc': 2.,\n",
+ " 'Qd': 1.25,\n",
+ " 'QvT': 1.2,\n",
+ " 'QvK': 1.2,\n",
+ " 'Q/Kv': 2.5,\n",
+ " 'T': 3.,\n",
+ " 'TQplp': 3.,\n",
+ " 'Kv': 4.\n",
+ " }\n",
+ "\n",
+ "sites['gwd'] = sites.apply(lambda x: gwd_map[x.unit], axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5, c=sites.gwd)\n",
+ "\n",
+ "plt.colorbar(label='groundwater depth (m)')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Zhu site parameters\n",
+ "\n",
+ "The Zhu model was developed to use parameters that can be derived from a digital elevation model. \n",
+ "\n",
+ "One of these, the Vs30 value, can be calculated from a DEM quite easily, as long as the DEM has a resolution around 1 km. First, the slope should be calculated (which is very easy to do in a GIS program), and then the Vs30 can be calculated from the slope using Wald and Allen's methods [(2007)][wa_2007].\n",
+ "\n",
+ "The `openquake.sep.utils` module has some functions to calculate Vs30 from slope, and to get the values of a raster at any point. We'll use these functions to get the Vs30 values from a slope raster for each of our sites.\n",
+ "\n",
+ "[wa_2007]: https://pubs.geoscienceworld.org/ssa/bssa/article/97/5/1379/146527"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "slo = sample_raster_at_points('./tutorial_data/cali_slope_srtm_1km.tif', sites.lon, sites.lat)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAI/CAYAAACbG7YfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3hN9x/A8fe5M0NkSCIRIvbeau9Rs1RVUUrVaosqqmqUorRVq+2vqtRoS1uq9ihq1Kq9xQoJkhCJ7OTmrvP9/XHjkiZWKSrf1/Pkee4994zvOR43n3zH56MIIZAkSZIkScqNNE+6AZIkSZIkSU+KDIQkSZIkScq1ZCAkSZIkSVKuJQMhSZIkSZJyLRkISZIkSZKUa8lASJIkSZKkXEv3pBvwIHx9fUVISMiTboYkSZIkPRaHDh2KE0L4Pa7rtWjsLm7E2x/LtQ4dN28UQrR8LBe7i/9UIBQSEsLBgwefdDMkSZIk6bFQFOXS47zejXg7+zcGP5ZraQPP+z6WC92DHBqTJEmSJCnX+k/1CEmSJEmS9O8RgIr6pJvxWMkeIUmSJEmSci3ZIyRJkiRJUiaBXcgeIUmSJEmSpFxB9ghJkiRJkgTcnCMknnQzHivZIyRJkiRJUq4le4QkSZIkSXKSq8YkSZIkSZJyCdkjJEmSJEkSAAKBXcg5QpIkSZIkSbmC7BGSJEmSJMlJrhqTJEmSJEnKJWQgJEmSJElSriWHxiRJkiRJAhwJFe1yaEySJEmSJCl3kD1CkiRJkiQ5ycnSkiRJkiRJuYTsEZIkSZIkCcicIyQTKkqSJEmSJOUOskdIkiRJkiSn3FVyVfYISZIkSZKUi8keIUmSJEmSgMyiq3LVmCRJkiRJUu4ge4QkSZIkSXIQYM9dHUKyR0iSJEmSpNxL9ghJkiRJkgQ48gjJVWOSJEnSv8aUmsH5w+HYrLYn3RRJkriPQEhRFBdFUfYrinJMUZRTiqKMz2Gf1xVFiVUU5WjmT5/bPuupKMr5zJ+et22vpijKCUVRwhRF+VJRFOXR3ZYkSdLTx5SWQe/yQxnaeBwjWnz8pJsjSTlQsD+mn6fF/QyNmYEmQohURVH0wC5FUTYIIfb+bb8lQoiBt29QFMUHGAdUx9HjdkhRlNVCiATgG6AvsA9YD7QENjzc7UiSJD2dVFVlwivTiYuKB+DErjOoqopGIzvmJelJuuf/QOGQmvlWn/lzv3PKWwCbhRDxmcHPZqCloiiBQF4hxF4hhAB+AF588OZLkiT9NyyZsopDm44733cY1EoGQZL0FLiv/4WKomgVRTkKXMcR2OzLYbeOiqIcVxRlmaIohTK3BQFXbtsnMnNbUObrv2+XJEl65ggh+HXaGud7/8K+9JrY5Qm2SJJyJgBVPJ6fp8V9BUJCCLsQojJQEKihKEr5v+2yBggRQlTE0evz/aNqoKIo/RRFOagoysHY2NhHdVpJkqTHZtuSPaQlm5zvr1+Oo51nT5ZOXU38tURuRMc/wdZJUu72QP2yQohEYBuO+Ty3b78hhDBnvv0OqJb5OgoodNuuBTO3RWW+/vv2nK45RwhRXQhR3c/P70GaK0mS9MRdCr3Cpz2+QmT+Cax30TknF/z86Up6lBhEj1KD2bP6wBNspSTdktsmS9/PqjE/RVG8Ml+7As2BM3/bJ/C2t+2A05mvNwLPK4rirSiKN/A8sFEIcRVIVhSlVuZqsR7Aqoe+G0mSpKfMX2sOZZlV2aZvM+dr7/yeWDKsWDOs7PwtpxkHkiT92+6nRygQ2KYoynHgAI45QmsVRZmgKEq7zH3eyVxafwx4B3gdQAgRD0zMPO4AMCFzG8DbOHqPwoALyBVjkiQ9g5p2r4/e6FigW6p6Md6e/jpf7v6Ydm+35PrlOBSNgtHVQNv+zZ9wSyXJEbPnth4hxbFo67+hevXq4uDBg0+6GZIkSQ9ECIHZZMHFzQhAamIaHf17c/Prd+SiQTTuXPcJtlB6WimKckgIUf1xXa9cRYP4ZZ3/Y7lWxeCox3pvdyLXbkqSJP0Lju04TY/SQxjZ9jPM6WZnEGQxWxnR4mNu/xu0cNlCdziLJD1+qlAey8/TQtYakyRJ+hd8PeR7Yi7FkXg9mcWfrMBmsdGsWwPSktO5cjbasZMCfT7pRtEKwc7jFk9ezu4V++k2piN12z/3hFovSbmHDIQkSZL+BSUqhxBzKQ671c7Sz1cjVMH677aw8MwXGFwNCCGo0qQ8ASF+vODZk4AQP96d1YefP12JxWRhcrcvWZvyAzerD6mqiqIoyGpE0r/p5hyh3EQOjUmSJP0Lhszuw4j5b+Ll6+ZcOm9Ot5DXJw8LT89k+rbxjFv2HgvHLsGcbuZa+HVO7w9DUUBv1JHH05WwIxEAbF+6h7Z5XqN7sYHcuJrwBO9Kkp49MhCSJEm6gyvnrrJo8gpO7wt7oOOO7TjNoHrj+P37P7l++YZze/5gX3qXH8bxHaGUqFqEQ5uO4embF4OrHkWjUP35Ssz8cwI1WlUhLSWDoY3GsWvFfhZPWo7NaicpNpm/VjsWjJhNFv5YtJOzBx6sbZJ0NwIFO5rH8vO0kENjkiRlYbXaiYlOJDDIG63u6fmyetxUVWVIo/GkJqWzdOpafjgzHVUIEq4nU7R8obsOUU3p9Q1x0QlcPHYJFAWEwOhmICEmiYx0M9P6fovR1chHL09DqILgMkFMWvMBvkE+ACiKgsVkQaNROPXXWYpVDiH6wjU0Wg2lnivGuu+2smH+ViJOXAIB0/8cT8lqRR/Xo5GkZ4oMhCRJcrLZ7LzdfQ7RUQmUKB3AjLm9cu2cFKEKMtLNCFWgqoKLJyMZ3/ULhCp4oV9T+k66c62w/IX9SIxLwWa2cnN5WM3W1di9cj8GVwP5g32Z2m8ONosNgOQbKYxs+xkh5Qry/vy36D6mI+cPX8TgYuD0/oucPXQRjaJj7K9DWfXNH/y5bC8WsxXVYsXFzcDVCzEUrRjMhWOXKFSqAG4ero/lGUnPpqdpRdfjkHv/3JOkXMhksnAjNuWOn8fGJBMdGY/VYuP0iShM6ZbH2Lqni1anZdySd6nUsAz9P+3K8q82YMmwYjZZ2Lv+yF2PnbhiGK+NeQmjmxGtXod3oA+71xwGRYPNpnLpXAw3riWCoqBoNVgsKpfPRLN/wzH2rD5E0YqF+THsfzTqWo/T+8JQbSo2m524qHiuR97AkmFFp9fhHeBFzdZVqd2+Ou83m8CwRuN4o8xgTKmmu7ZPkqRbZI+QJOUS16ITeav7HCxmK937NKBrr/rZ9skf6EX5ysEcORBOg6ZlcHM3PoGWPjnpKSbGd/2SmEtxDJ/bj+daVOK5FpVY/Okqjv55GtWuomgUuo960XlMRpoZU2oGyfGpnD10kVqtq3Dx+GW0ei3/2zOB0L1hfDFwPqpdzTxCwWax4erugtHNiJefB5dCHaUWLWYrKQmpRIRGElK2IKu/2ey8jkajUKNVFRKvJ5MSn0rhMkG8O6s3Lm5GVFXl5K4zOBLkCqIvxFCsUsjje3DSMyM3rhqTgZAk5RLHDkVgs9mwWu1sXHM0x0BIo1H47OvXsJhtGIzP5teDEIJfZ64nIjSKHqM7EBByq5jztqV7Cd17HkuGlVnv/cjXuyYAoGgUUBT0Bh2t32hE4061AYgKu8bABh9hNplRFA1anYafpqziRnQidpudbb/upfuIduiNOszpFtw9XVFVgSklg4w0M3qjzhkEAbjkMfLVOwtRFIUPFr6FX0EfUhPTEULQf0o3Zg35gf2/HwXgrandnUkaNRoN7Qa0YM2sjZSvW5qQcoVQVRWNRnb6S9K9PJvfdJIkZVO9VjFcXY3YrCodutS8677PahAEsHf9ERZ/sgqzycKVc9F89edHzs+CSxdAURRc3IwUrxzi3P7y4FbYbXasZhtdh7/g3H5oy0msZht2q4qiCGwWG1cvxjo/vxEdz6xhPyJUQYkqIQyZ3QedXsvAumOxZFizzb/KSDUDjmDtm/d+JPG2Ycx5Y5dSqEQAZpMFo5uBmEtxkBnLhh0JZ+OCbWj1Omq0qUqfCkOJOneVnhM7021Ux0f49CTp2fPsfttJkpRFPj8Pfl43BIvFhqubwbldCMHyn/dx5mQk3fs0pHBRv7uc5b9Pp9ciECgaBZ0+61dghbqlmLpxFHFR8dRsVdm53WDU89qoDtnOVblRWefrcrVLcDUilhvRt/L8BBXLT+ie8wgh8AnwoljFwgCMXjSI43+G0rhrHT5+9SuuhcdS/6UaHN5ygrQkk6MQq7sL3BYIWU0WBn/9Bl8OWkjBEoE0fPlWMHtw41GsZit2m8qabzYReS4aBHw/dgmdhrXDYNQ//IOTcgkFu8hdPYm5624lKZfT6jRZgiCA44cvsXD2Nv78I5SP3l/yhFr2+FRvXpG3pnSj/ZvNGPPjgCyfXTl3FYNRT+GyBdmxfD9pSel3Pdfu1YcQQkWj1RBY1J8v/xyHRnvra/XcoXB0Bh1GVwPPtajo3F6rdRX6fdaNEpWLsPDUNNYlL+DqxRjSkkzoXXQMnNmTCcuGYLzt38qvUD4CCvszY9tY3praHYPLrc+ea1UFo5sRRVG4Fh7jmOiBY+XbpdDIh3lckvTMkz1CkpTLGQw6EAKNRkGvf/a/EhRFodXrjbJt37v+CJN6fA04cghpdVo8fT1w93ClcqOy9P/01WxDWUZXPRqNBgWB0cWAb6A33+ydyKD6H2HJsKLRaRm54E38g32dvUE5tUen1+FXMB+Xz0SjKArpKSa2Ld3LxJXv8f34ZSTHpXAtPJbuJQZjcNGTkWam83sv0GNsRxJjkxje9CPM6RZ0Rh3WDGuW8y8Y8zOT1416NA9PeuYJQM1lfSTP/reeJEl3VaZCQYZ+2I5zodH3nDv0LDuyPRSL2QrCMWncZrE7s0JfDY+l/ovPUa52ySzHtH+zOaoqyEjL4OV3WgMQUqYgE38bxqJPVlCzZWVqt612X9f/YOFbbFq0E42i8O0HP2M1W9n6yx5+PDuDEa0+4crZq6CA3a5it9rZsGA7PcZ2ZN+6w6TEpwFgt9lxcTdiNlmcZT08vPM8qkckSc8kGQhJkkTj58sTHOLLzq2nqd+kDP4Bnk+6SY/d1fDrIBzDhzVbVibs2CWEECTFpTjn+NzObldZM3cLqYnpdHq3NS63pRqo3LAMlRuWeaDrm01Wlk5bR+yVG2i0GoQqMKVmANBxcCtO7jmH0cVRiiM1KZ2S1R2ZpP0L+95MXo3OoOOTDaNx83Tjm6EL8fByZ8ic/g/5ZKTcRi6flyQp10mIT+PdPguw21V+/XEPP68fkqsyStusNvZtcCxL1+q0vPj286QlpVO0fCEObT1FyWpFCCziDzgCphO7z5KSkMb3E37DZrWx7rstPPd8RaIuXKdszeL0ndzlgZeuv9f8Y2KvOHqghFCp0bIyXUe0A6BGy8qsipuLotHwZvWRpCWlc2TrSU7uPkvlRuXpMLgNB34/Qu/J3ShfzxGAfb553KN6PJL0TJOBkCQ9ZU4mRjLp5BqK5fFnXMX26DX//n/T9NQMhCqwWe0kJ5kQwlEiK7fQ6XVUb16BY3+exi/IhwmvfonNaidfoBfzjnzmDArTktJ5u85Y7HY7Or0OVVWx21SS49PYsuQvEBARGkm1ZhWo3qzCA7Uh5lKc87VQIeF6EsUr35pXdHOFmxDOudCZ/04Kb01/nbemv/5Qz0CSAISQq8YkSXrCxh1bwemkaP64dorNV089lmsGBeejZ/9GlCgdyOjJL6HRPJtRUFpSOgf/OEFKQlq2z975oifBZYIwuBowmyxkpJmJvnAdu83u3Cc5PhWrxYY53UJ6ign3vK5otBo0Og0KCjqDFqEKvP3zPnDbBs7siXd+T+ezv3I2mrMHL2bbb/yyITz/Wn36f/oqFeqVAsBut5MUl5yZWVqSpAche4Qk6SlT0M2HyPR4hIBAV697H/CIdHqtDp1eq/PIzzt//G9sWrSL1r0aUr99db4b+yvFKgbz+ocdHmvmY7td5a06H5Icl4JbXlcWnpyaJb/OL5+vJfzEZQAKlixAUlwyrwxpjU6vIyPNzOn9YRSrVJiXB7di+6978fB259yRcDQahfJ1SlOqWggHN5+kZc8GWVaI2aw2zh64SFDx/OTxdker0+Y47Ph8jwY836MBE7p8wYFNx3FxNxJSrlC2/YKKBzDs237O95YMC29VG0HU+Wgad63HiO8HPcrHJuVCqpwjJEnS47Iu6hgTjq+koJsPC+r0Ia/elU+rdmJD1HEKueejik9hrpoSyaNzwUPv8qSb+8ASriex/OtN2Kx2lsxYz44VB4gMi+HU3vOUea4YtVtXzvG4xZ+tYd3CP2nVoz6vjWz/SNpiSjERGxmPalexWmykxKeSL9Db+Xlw6QLoXfSAQts+jWn/ZnPAkXBycOPxXLsUh4u7ke9PTOX1sR355fM1XD4TjUBQs2Ulvp/wG5YMK3NH/YLRxUCLng3QaDSM7/wFx3c46pTZrHZ8Ajz5ateEbJOvbxrz0yAun47CP9j3vqrIh5+8QsylWOw2lS2Ld8pASJIekAyEJOkJmnV2C2bVRpQpgR0xZ2lbsDKuWgMvBVcHYMGFnXxzbgs6Rcu4Ci+CAk0CyjyWeUOPgrunG3m83MlIN+Pm4YJnPg+uRsQhBHh4uzv3E0Jw8eQV8gV6o9Eo/DR1LXabnV+mr6ddvyZ45vN46Lbk8XLnpYEtWL9gO0271MkSBAG8+PbzBBbNj6JAjRaVnNttVjsRN4uiZliIjYqnUMlAOr/XlpByBVE0CrtWHcRqsTn3nzV8EXa7nXrtn+P4jtNkpJlRFAUhBCnxaez//Sgtc8hlBI66YTn1BN0uNTGNdxtNIPpCDP2ndMWvYD6uhsfQ4OXaD/GEJOlm0dXcNWvmv/FtKknPqPr+JVkZeRgFhQpeBbN8lmBJY8GFnVhUO0KB0ceWoddo2RFzlklVXn5CLX4wBqOe2bs/4uTe81So48jBs+H7nRQuHUj52iWc+301bBFbfvkLrU7Dl1tHk8fLjZSENDQaJcscnYfVd1IX+k7qkuNniqJQq1X2Hiq9QYfBVY/FZAUUwo5dQm/QERDiR63WVVg3bxvbl+0FITC6GbBkWFFVwfnD4cx5/yesFhs6vRbv/J4kxqag0WmoUP/+ltZbLTam9vmWQ1tOUKJKEUb+MIC8PnnYt+EokeeiEQJmD/+J5THfYkox4Z3/8Q2lStKzIneFfZL0lBlRrg3za/dmTaN3KZzHN8tnH59YTYrV5HyvQcFkt3I+NeZxN/OhePnlpd4L1fDM54FnPg+6DG1N7dZVsuyzf+NxzCYLql3l4olIajSvgBDCsZz/i41PqOW3BBULQG/Uo9FqmNZ/Ln2rj2Tv+iMAuOd1RUFBo9Vgs9hw83ClXvvq6Aw65z3Z7SoJ15N5Y+IrLDo3k6Bi+e/run8u28uO5ftJiU/j8JaT/PTpSgCKlC+EuG3pWFJsMj4B3rkq5YH0b3GsGnscP0+Lp6clkpQLKYpCWc8gfF2yD/1oFAVN5qRFu7CjIgh282F0+Rey7ftf123EC+j0WvIH+1KtSTnyB/uiN+jQ6bV4+T/8sNjD+mztCPpO6kzF+qWxWmxYMqzs33gMgIYv12TQFz1x93TDblOxWWyUr1OSHb/tdx4vVEdl+r/WHiKPl3uO1xBCsPWXPXTI34+3ao4mOT4V3wLezjQGGo2Cl58j0WXRCsG0eL0hWr2W+i/VIH/hZ7tQriT9m+TQmCQ9pcaUb8fZpKtcTo9HBQyKlnEVO1DJO/hJN+2Ra9WjAa16NAAcZSJK1yjGq++1xdPXg+e713vCrYPwU5Esnb4Oj3x5cPNwQavT0qZPE8ARzDZ/tR5nDlzgj8W7EQhUu4opzew8Xqt3rBRr27dpjucXQjCi1Scc+/M04Fg6v2vlAVq/0Zg3p77GhvnbqN2mCp2GtnEeM/SbPgz9ps+/eNdSbiRrjUmS9NQwavVcSY93vi/m4Z9tHtHTxmyyEBEaSeEyQbi4Ge99QA4+6T2Hg1tOAjBr5zi02nt/KdvtKpHnrhIQ4ofR1XDP/R/Utx8sJi46geT4VN6a0o3WbzTOts+Aaa/R5JXa+Ab5oNVp+H7iclShEljYl0krh+PhnQd3T7ccz58Qk8SJXWdvbVCgVLWipKeYmDf6F6wWG9cvx/HqyBeJiYxnZNvPMKVmMH7ZEEpWK/rI71eScpPcFfZJ0n+IUaOjRr6i6BUtxT38WVinLwbt0/u3i92uMqDhBN5vN5WBDSfc1yTng3+cpG/ND5n5zvfY7SoAofvCyMjsTbm5WuteRr4whYH1x9HvuVGYTZZ/fhN3UKZGcVzcjSiKQtEKOffIaTQaytUuSf5gX3wL+PC/nR+BTRB59hq9yg/H8req8Lfz8s+Lb1DmKjYFytUuyfkj4STHp2Kz2rFb7ZhSMxjSaAIjWk0m+mIM8dcSWTR5BeDoUQrde47wk5eznPfHCb/S2rUrH7T8+JFOOpekZ8nT+60qSbmcoih8U7Mn10zJpNky6Lzza4waPTOf60Z+lwfPXPxvSElIJfridYpXKkxKYjpXw69jt6lcjYgjOT4Vb/+7F2+d+vY8EmNTiI2Mp8FLz1G1UVn6fvwKs97/icAi/nj63nt+kN1m59gOx5BSfEwiVy9eJ6Tco+05GzC9B7XbVsWvgM99n9uUmuEMPlS7So/SQ6jZujIjfxiYpZfrz9/28dMnKwkI8Sf+WhKqXeX4jjOc3htGzdaVGTD9NVb8byOXz0Zz7nA44CgMq3PRU7lROQCWTV/Dgg9/QdhVPlg8mIaZy+gXf/wbdpudk7vOcP7wRUrXKIEk3Ytd5K5J97JHSJKeYhpFQwE3L+ac387F1FjOJl/l5/C//vXrCiE4sDWUg9tC71i2ITEuhV5VRzGi3VQmvDYLz3x5aNSxJhqthoYvPYeX372DtQJF/DG6GhBC4F/QB4DGL9dk5Lx+RIRGMqrDdJZ/vemu7dTqtLTKzMlTqloxCpUKfPAbvgetVsNzzSs+UIBVpHwhila81XtkybCye9UhzmcGM+Bo/5Q3ZhNxKpIzB8Jo0LEmZWuVQKfXYjZZuBoeS+veTWjRs6FzRZiiUXjpnVZM2TCSlwa1BGDP6oNYM6zYrHa+Hfa98/zl65bCxd2Ii7uRgiULPOxjkKRnkuwRkqT/gLKeQeyKPYcASns++l/0f7dm4Q7mT14DQJlqIVw+H8OLvRvS6e1mzn0unYnCZrWTkW7h2I4zRIZdY9D07gyf3fue57948grfT1xOpfqlaNGjPsUrBlOweIDz89B9YVgtNoQqOLTtFC8NeD7bOXauPMCnb8zG29+TL7Z9yMAZrzkLkz4qN64lEheVQMmqIQ+8NP3c4XDQaSlVszjn9l9ACIEQgoCQWyu8FEUhX6AXCTFJaDQa+n3SFXdPV6b1/47oC9d492vHs2zcuQ7r520lLjqRlwa1oMfYjlnKk9R/qSYnd50G4SjpcdMnG8dw/tBFCpUOuuNqNUm6nUCRCRUlSXr6vF6sHqU9A3HR6qniU/jeB+Qg5soNRnf7BrPJwrgFfSle/s7Ziy+eisKcYQEBx/ecR1UFCz9bwwu9GuCSORm5zHPFKF4xmDOHwgkI8WVAvY/I4+XGnH2TyOOV86TgmyZ2/5qr4dc5tuM0435+h2J/m3fT/NV6bFmyl7QUE92G55wu4KfPVmGz2EiKTWb36kO0698sx/0exOJPV7NuwTZa9mhA0y51GFD/I4QQ1GpVmSJlC1K1STlKVi1yX+eaOWghEaFRGFz1FCpdgMTrSbw97bVsPWUzt49jz5pDlK9TEu/8jqHEkd+/nWWffIFezD8x1fn+2I7TnN4fRtOudfEL8qH9wJZcCr3C6b3neXtmL+d+eoOesrVL/dPHIUm5ggyEJOk/QFEUavsVf6hzrP1hF9ERsQhV8NOM3xk7r++dr6d1VFNHAb1Rj6JAHk83DMZbXxkGo56p60cA0M6/PxazlfSUDCJCIymfmUX6Ttw8XNBoNQjheP13+YPz8cmKoUx7ex5LZ6znvdl9sgVXddtVJ/L8NRSNQvm62a+3fdleFn+yijovVOX1cS/fs0cnJT6Vnz5fg91mZ+mM9fgEeiGEwJxuYcfyA+xceZCfp63lx1NTyeuT567nAkdx1KvhsQC8O6s35WrlPD/HJ8Drjsvql325gV2rDtJxYEtqtalCxKkrHNx8gsVTVmG3qWz8cScLjk1Bq9Uy5Ns3sxwbG3mDSa9+iaoKxvz0Dv7BvjleQ5L+Tn2Kkh0+DjIQkqRcomz1IqxZoANFoWLtu0+ajY2Mz5x/o6F974YUKxdEpbol71gtvt2bzfjtyw0UKOpPiSohdz232WShevPyePl50KpnQ0rdYfn33DFLOLnnPBqdhtVz/qBtnyYoiuKsUdZ95Is06FADD293PP082LRoJ2aThZY9G6LTa/m83xxsFjsxl+No3Kn2Pef3uHq4kNcnD6a0DFzcDNR9oRpr524jKuwaNpsd1a6i2gUZaeb7CoTen9OXHSsOEFjE745B0N1cOXfVWcj1433/w8XdgGp3DK/ZrHaEKkhNSMtyzPkj4Sybvo7qLSpxZn8YZ/ZfAASLJi1n6G0V6yXpv0JRlCFAHxwpjk4AvYQQGY/yGjIQkqRnxNrIY4w/tobC7vlYULdXtmr1tVtUZPrqoZhNFspUu/vwTt+xHYh7eyHpKSZUu53aLSqiN9z566LPhE70HNMBXWbiwLuZP24Z6xduR1EUqjevcMf98hf2w+CiByA1KZ1XSwxGURQm/jaMyg0dtbqCSzsmAK+avZl5Hy5FCEHM5Tj6TOyMX1A+blxLQNEoWVaf/TBpOX8u20fnYW15vnt953adXsc3e8ZzfNdZKtQtibdfXnwCPLl2KRYBFC5TAL8gH07+dY7GBWvd8z6Nrgaav1r3rvvcjVteV8c1FECAJcOGRqNgs9pxcTdSqmoRXhvdIcsxo9p8SlJcCrtW7KfT0LboM59f4bJPd/4p6enxNBVdVRQlCHgHKCuEMCmKshToAix8lNeRgZAkPSO+Or2VDLuVy2k32BFzjjYFK2K3q3z+zo+c3BvGG2Pa06RD9SzHnDt2mc1L92J00VqIP1wAACAASURBVHNk51lCShegbc/6lKlWhDLVQvjj1/2smr+DvD4edHor5+Gbm/QGHSf3nGPsKzMxuhmZuuGDHGtqpaWko9pVFI2G9OQ7/2HXe/zLFC1fEDcPV/78bR9Ws2MS8Ce9ZtF95Iu80LcpURdimP7md9yIScBqtYGAhGtJAMzc8iF71h2mXK0Szrk3URdi+HXGeiwZVmYOnE/TLnXQ6rQAJFxP4uAfJ6lQp6Rz2f/5IxFkpJlxcTdiMOo5uPkER7aH4uJmpE7bqs62Rl2I4eKJKzzXvAIu7v8skeTf5Qvw4vPfR7J0xjr2rjuCVq+lZsvKXDoTRf9PulKtafYg0mJ25CqyWmzoXfSM+ekdVFWlVpuq2faVpP8IHeCqKIoVcAOi/40LSJL0DKjjV4x1UcdRUCjvFQTAqf0X2Lf5BBnpFmaNWpolELLb7Izo9CUZ6bcSEF4MjWbHmiN89ftwAFRVIGx2zh6O4Pie8wSG+OJXwPuObVgyfR3pKRmYUs1sXryb18e+lG2fvh93Rtgdldo7DmwBwJalf/HVkB/x9vXgk9XvEVDYD61OS7Oujh4VNw9Xdq8+iNVsI/F6Mt9+8BM1W1Zm9vuLOfnXOee5tXotJaqGAI4kha17Ncpy7bw+edDqtBhdHUNsmsx8PqqqMrDBeEfFe62Ghcen4OXrQb9PujB39BJKVy9KWrIJm9WOzWpn/kfLqN68AgajnutXbjCg3kcAFK1QiOmbRt3PP9d9KVWtKB8uGkTi9WTiouM5sj2UbiPa33GYr1qzCuxacQCAmMuxdBvVIcf9JOlOBMpTk0dICBGlKMpU4DJgAjYJIe6cT+MfkoGQJD0jPqzUlpcKVyW/a178MxMuBhZ2TJB1cTNQuHTWZfdC4MzmfDub1c5v326jz+j2bPplL0LAnt+Pc3B7KIpGw6xNI5zn/btarStzbOcZhBAY3Q3YbXZnj8tNnvk8GD4n60TtOaOWkJGawdXUDIY0m8TP52dm+bxywzL8evlrupceiinFhEarwcXdSGARR8B0M3Gh3WpnzshfaP9m8xyHrjy83fnfzvGc2H2Gmq0qO/exWe3ExyQhVEfOpNEdpvH1zo9o3rUuzTODsavh1+ldbRSqXSU2Kp7QvWFUbliGa5fiAMhIN3Pp9P1lwn5Q7l5uvF5xOKbUDOaNXcq3+yZRuExQtv16f9yF8JNXUFDoPMyx2u7Hj39j6dS1VH++AgYXA/t/P0qX99vT+b1nr3iv9J/jqyjKwdvezxFCzLn5RlEUb6A9UARIBH5VFKW7EGLRo2yEDIQk6RmhUTRU8M7aU+BXwJuvN44g/HQ01RqVzvKZTq/Fw9ud+MyhpOCSAVw+dw2A5Bsp5PFywzWPC+mpGQhVYDZZcXEzEHEm+o6BUJs3GpPXx4PP+81lybR1RJ2/xnuz710YNCA4H0mxyYAjUWNOXN1d+HL7OHatOki1puXJ65OHfp90xTvAi5+nrMacbkFn0OFX0CdLECSE4NcZ6zh94AI9x3QkpFxBCpYIyHJug1HPq8NfYPGU1SDgwvHL2Kw2VFVw7lA4hUsXILCIP9WbV+D4jjNo9Rrn/KRytUtQu20VTuw6S++Jne55r3eSlpRO2LFLlKxaBNc8Wed32Sw2Z9kRoQqWfbWBmi0qEVw6iOBStxIlBpUIZMGp6c73qqqy6OPlCFWwf8NRBGAz25g3+mdeGdb2gXMjSbnDYyy6GieEqH6Xz5sB4UKIWABFUZYDdQAZCEmSdGenEqN57+BSPPWu/K9mNwoU8cPFzcDQ9jNISUxnzNzelKrsyEWUdFvQUbFOCQwGHWmpGfQc8QJarYbpq4awY81hhAor522naNkgqjQofadLA46eEUWjkJFm5uyh8Bz3SY5PZfYHP2EwGug3uTOvDGvDpNdmodrVu2akDiqWn85D2/DdmCWM6zSDju+0pOt7L/DKkDZEnovm3OEIarSolOWYY3+eZtGnqzCnW4gIjWLBsSk5nrvbB+04dySCg3+c4IW+TdDpdQxpPonwU5EYXQ3MP/wJ4xYP5MzBi2h1Wr794GdCyhWky7A2jJj7cCuyLGYr/WqMJjUxDd8C3sw99EmWFXrmdAvBpQs4e5w2/bCTTT/sRKvX0mlQS1Z8tYFydUoxceV7WZJKajQaSlQJ4fKZaAxGPWkpJgAUFI7vOE2lhmUfqt2S9C+7DNRSFMUNx9BYU+Dg3Q95cDIQkqRnzIzQzUSmJ3BVSWLllcP0KdGAjUv2cuncNVS7yg9T1jLppwEAlKlahFMHLqDRaihduTBe+TwILJyPImUcvQymVDNhJyKp1rA0v53OHkDYbXbmjF7CpTNRvPnpq4SUCaJeu2ps/mkXUWExvPXZq1n3t6ucPxLOqtlb2LFiP4pGwSfAk+4j29O+f1POHYmg36Qud72/a5diWfnNJqxmG3NHL6FN7yYYXQ0ULlOQwmVu9YjFXI7j/JEI3D1dQYBGq9xxIrPdZufMwYsM+V8vvP3zoigKQgjOHrroXLJ+NSKW4pUKU65WCQY1HE/Yscvs+/0oIWWCqN2mygP9G/1dYmwyibHJ2Cw2oi9ex5Rqxj2vq/Pzya/P4sq5q9mOU212ls1Yh9Vs5dSes5zeF0aFelkD1enbxnF6XxhFyhfivWYTiTgVid6oI+Zy3EO1WXo2CQH2pySPkBBin6Ioy4DDgA04Asy5+1EPTgZCkvSMqeRdkOMJVxBAqbyOeUElKhRCp9eiMerwLeDN280/xWa1EXkxFqOrgWYv1+CP3/Zz4q8L6PRaDC56XFwNTBn0AymJ6RzZeYbjf4VhdNVTploRChb1p1LdkuxadYjff9iBOd3C5/3m8vXOj3DN48KUtSNybNvn/efy17oj2Mw2hCLQarS45XVFo9HQ/5OuWfa9eOIyBldDltIb4JhjZHQ1oNVq8fBxR2/M/jWWeD2Z/jVGoaqCoGL5GT63H2FHI3ihX84r3yb3ms2hP06i0SqMXPAWIKjWtDxdhr3AL9PWYjDqSYpNQVVVNBoNBlcDikZBgHOJf04y0s3ojfosRVZz4hfkQ5NXavPnb/to/UajLEEQgNlkRqjZ53MFFs2PX4AnZ/aHodVpCSqefZWewcXg7PkZNrc/QxtPwJJh5edPVtK8e305PCY91YQQ44Bx/+Y1lDsVVHwaVa9eXRw8+Mh7xSTpmSKE4K/Yi3gaXCnndWv+yMXQKCIvxPDZwB9Q/zZJWm/QodEqmDOsGF30+Bf0ITYqgQyTo8wGOCqeq3aBolHQ67V8OK8PGiH4qMuX2G12KjUow6TlQ8lIM2N0M+T4C7ZzscHO4TiNVkOzrnUY/EXPbBOq1363lTljloCAsYsHUr1Z1qXisVHxnNpzjiqNy+VYof7c4XAGNxqPqgpQYF38vLvWIesUMoiUhDQMLnpUVUWn09HitfqUrFaELwd/j9nkWFlXtUk5Jq8YRnxMEitmbcInwMu5tH/0wrcocFu6gJXfbGbO6CV4+eXl653jnEvy/4mr4ddZ8NGvXD4TTfipSEpWLcLgr17HwzsPnr4eTOw8k4ObjxNStiBf7ZmIwcVwx/P0LPWu8/1nv4+kSpM753KSnjxFUQ7dYx7NIxVS3kOMWV75sVyrb6ldj/Xe7uTp6P+SJOmRURSFOv7FsgRBAEXLBnH6UESWIEijcQQrVosNq9lG7ecr8MLrDYi7mkhGugXFec6bRwhUu4o5w8qcj5ZTqUFpPpjXn9fHdmTk/DeZPmA+HYLe5t1mk7IU/7yp55gOzgBJIAgs4p8tCAI4sPkEFpMVS4aVLwZ/T3xMUpbP/YJ8aNSpVo5BEEBwmQKOIAjQarXOUhe3s9tVTu8PIzE2mV7jOmJ00QMCm8VORrqZ0/vD8PbPy+1/LB7ZdgqzyYJPfk96j+9EXFQC5w5HcOHEZX6YvDLL+VfM2oRqV0lLTufQ1lM5tvN+BRbxZ9T3A5i9bxLTNo1m4IwezB/7K29Uep/BjSZwcPNxhCqIvnidiFORjvuz2bl8JsqZWyj+WiKevlkzYl+Tw2OSJAMhScpN1i/a7Xxdqkph5v81liYvPYeXbx76j+/I2Hl96T26Pf3GdsDDy42Awr4YXPToDTra9WpIy1frOI+PjojjemQCtdtU4eV3WuKW14VNi3YhhCDiVCSXz2af09Ls1boY3Ry9FQoKzbrUzrZPSkIanYe2RpeZyfrG1QSWzlz/QPfp4mqkVusqaHVaQsoVJLCIX7Z9Jvf8mg/afsYblUdQs2UlSlYrgiXjVvBWtWl5qjYux8gFb+JfKB+KAnXaVsXoequ3JaRsEHqjDhdXA0X+ltunaZc66I06dHodbnlc6F56CAPqjSXhb0Hd3YQdu8TyrzdyPfIGAGvm/MGoFz/nvZaTObTlJDarnYjQSEpWK4rOoCNfoBfBZYIQQjCs6QTerjGKt6qPZMmUVXQv/g7dir6DRn/ra9/b3+u+2yJJzyo5R0iScpEyVUI49td5wFFhXq/T8eb4l3DL65plHkvLV+vQ8tU6CCE4d+wyXr4e5C/ogxCCi6eiCD8TjX+QN76Bt36RajQaqjevwLEdp/EJ9Moxq7TNYsNmcQQbGq0Go1vWycv/G/oj6xf+SWARP7oMa8OvX2wAyDZP6H58tGQwideT8fTzyLFG2tHtoWSkW3BxV7h48gou7i7OSdI6g5barR3DA7VbV6FWq8qkJqZnK/za/NW65AvwwmqxZlut1mN0B1r1bEgeLzfGvTKD2Mh44mOS2LR4F52Htrln++NjEhna/GPsNjvLvtjAT+dmcmrveczpFhSNgrunK2mJ6QghyOPpxsLTM/AJ8ESn12FKzeD0vjCEKrgWEcu677Zis9jQaBXKPFeC84cv4urhQpkaxR74uUrPNsHTM1n6cZGBkCTlAgmxyZw+FEHL1+o6AyEUmDNhBTvXHqVgMX++XPdelt4OcAyz3Vxqf/P91BXvEnXxOoEhvuj0WYe1JiwdzLWIOHyDvDEYs08idvNwZdg3vVk9ZwutXm+YrXjppkW7UO0qN6ITqVivFCFlC6LTa6nZ8laQkZqYxsj2nxMTEcfw7/rxXPOKOd6zoijO0ho56THmJeaOXkKR8oWoWK80pasVZdn/fic9OYMWr9WneKWs932z2OvfVW1S7o7X8CvoA0DZWiU5e/AiQkDx257n3aQmpiNUx1BdclwKQgi6Dm/Hmf2OVX6vDG3DV4PmAwp1X6yOf6F8zmNd87jQ+JU6bP1lNxXqlaJu++rMGvojLm5GPvhhAHarHe8AT1zdXe7cAEnKJeRkaUl6xmWYLPSsOQ6L2YrN4igRodEqtH+jIavm70C1qxhdDXy2dBClqtzfL2mAdT/s4vef/6J974Y0e7nGI2nrtLfmse3XveQL9OKbPRNw83DNts+GhduZNXwxFpOFwmWCmHNg8iO59v0SQhC6Lwz3vK6E3GcxUyEEx/48jYePO8UqZn3GJ3ad4cbVROq9WD3bhO5fpq1l96qDdH2/nbO22YqvN/LdmCW45nHhoyWDyeudh+AcskwDpKdmgBC4ebiSnmJyrLbLYU6W9PR63JOlC5f3ECN+ezyXG1B6+1MxWVr2CEnSMy7pRiqmVDNWiw0UMLrqQUDVhqU5ufcCF0OjyBfgmaUEx/G/zrNm4U4atq9KvdbZV5AkxCYz+6PfsFnsfDH8Z+q2qoTrIyg2OnTWG/T88CU8fT3uWO2+eOUQFMDF3UiFeqUe+poP6pdp6/hl2lqEEIxbPIhqTcvf8xhFUajcKHvywkNbTzK+8xegwOo5WyhcpgDl65aiYPEASlUrSpdhbekyrG2WY9Z8txWb1Y45w8Lls1fxL+jDd6N+pln3ejToWMu539WLMQyoPQZTagbvfPUGibHJHNh4lJ7jOslEipJ0GxkISdIzzj/Im9av1WX7ykO0e6MBJSoEY7PZGNfzW1S7QKfXMm5eX1wyh8XsNjsfdp+NxWxl3x8nKVO1CPkCsg4xubgZ0et1IMBg0DKsxWRSEtIY88PblKpWNFsb1i/YTui+MDoPbUOhkoHZPr9JURR8/1bUVQiB2WTBJXM+UYnKIXzz10TiohOeSCB0fOcZzOkWNFoNZw+H31cgdCfRYTEIIbCYrITuO8+pv86xYcGfGFz0jFz4FrVzqBrftncT5n24BIPRQMX6pelfZQRWs5VDfxynQr0yzuHAfRuOYk63YLfaWTptDXFR8ZjTLYx/ZQbLY+YCjozWa2ZvxuhmpNUbje+Z70h69gkU1Kek6OrjIgMhSXrGKYrCm+M78ub4js5t8yevRrU7hsVVu0pSfOrtB6DVacDsWNml0Wb/UnR1NzJz7TAObT/NruX7OLXHUQF+av/vmHsw61BV6L4wvh35C2aThdB9Ycw/8mm28yVcT2LGwAVoNBqGfN0Lz3yOZfFmk4XBjScQcSqS9m81560p3QAIKh5A0D+YQP1PWcxWfpy0kpSENDq+04JLZ6LI4+XO893qPdR5m3atw/6Nx7h8Npob1xKwZtgQQmC12Ag7GpFjIPTSwBY061oXF3cDGq0GnV6L1WxF0WjQ3jZnq3rziiwcuxTVrpKakIYlw4pGq8kyL2vBmCWsnr0ZRaNgNVvpMLDlQ92PJP0XyUBIknKhqg1Ls2LuNmw2O5XqlaR8zVurh7RaDVOWvcOmJXup3bIi3neo/RVcIoDgEgFsXrjduc3NM+uqqv2bjvPdh0uw2ewoioLmDj0OP0xaycE/TqIo8PPna3nzU0eW6bMHLxJ90dFrsva7rbz52av3lQnZarGh02sfWdbkdfO2sWr2H9jtdkxpGfx0dsYjOa+bhysTfxvqvL9DW04SdjSCvPny0Lp3kzselzffrWBm2paxbF2ymzovVMPoaiA5PpW8PnkoWDKQny9/zfBmEzl3KBxFgSpNyjN0zq26aPt/P4rVbAUFkuKSH8k9Sf999lyWWUcGQpKUC1WuW5L5u8ditdgoEJI9x07xCoUoXqHQfZ3rnS968FHXr3BxM/LhogFZPpvUYxZmkwWtXku9F6vTa2zHHM/hF+TjnBPkF+QYGrsafp2Pusx0Lhe3WWz0rT6SL7ePyzaJWghB8o1UPHzc+e2r35n/4VLyFfDmfzvH37WI6/3SG/SgOHrXcirp8bAUReGFvk15oW/OJUDuxGa1UaRCIfpV6UbU+at0CX4bc7qZATNfp03fpri6uzgTaAoBlgwrfgXzZb4XXDkXDThSH1SoV4YzB8LwDfLht5nr8fb3pOOQNnK4THrmyUBIknIpvwLexF9L4v3207DbVT74tjd+QT73dWx4aBSjXv4CgMm/vsMv52cSduwSP3++ltqtKztLYnj6ehB/LRGtTku/SZ3veP7Ow9rgG+SNRquh0cs1sFps7N94DEuGIyuyyMwSHRsZz8k957Lk7BFCMPblGRz84wQhZYMIP3kFISAhJonDW0/SpHOdHK/5IFq93oAMk5nUhDQ6vdv6vo65eOIKdlWlRKX7X4n3II5uP8WYdlPQ6rRM3fIhJ3efxWKyYLPaWfHVBoxuRmq2ruyYJJ/JfltWcUVReK5FZY5tP4WnX16+fnchcZHxKBoFi9mKTqfFwycPrd5o/K+0X3o6CUCVeYQkScotfpm5gVP7whACpg5YyIUTVyhUMoDJvw7GNc+dc8ys/HYLibGOoZQVs7fw7hev8X6bz0hPyWDz4l3MP/IpvgW8mbZxJDtWHKB87ZJ3DbK0Wg3Pd6tHzOU4upUaRmpSOr3Hv4zOoMNqvvWLXGfQUrJKkSzHmlIzOJBZYiIiNMpRD0QI7HaVcrVLPuQTymyfTsvLg+5//syOFQeYNmABAG9NeZWW3R9uLlFOVs3alBkoWtn84w7av92CH8YvQxWOUhtfDPiOfIHeBJUI4PKZaDQahXK1S9A1ZAD5g32ZuGo4E1e+R+S5q7i4G+lZ6l3sNhUUR7JLgWPivCQ963JX2CdJUhaFSuRHb9RjMOq5cPIKackmIkKj2L/55F2Pq9akLAYXPQYXPVUblwHIMgRzswfHL8iHjgNbUKpa9uBl/6bjJFzPWm5iz9rDpCWbsFvt/PrF7wQWy+9M2qgz6Phy2zi8/LMOdbnmcaFyw7Lo9FoKlQp0JHJUoPeETuQP9v3nD+chHN99DnOGBbPJwrEdpx/4+P8N/YF2vn2YOXC+c1tcdDxRYdec75t0rev4t3PRU7f9cwQVD2DJlVl8umEkWp0Gc7qF6AsxHN9xmqpNyzNsTn8Obj7OjegEQveep3uxd4i9coPg0kH4F/Klwcu1UDQKdds9R8vXG/HKsLa07NXoUTwO6T9Fwf6Yfp4WskdIknKxtm80wi/IB7td5a/1x9i99jAAxSrcPVFgg/bVCcmsaVW4lKO466QVw1j97R/Ua1/dmVH5ToY0m8S1y3HoDToWHvsM98xJ1lUaOQIahCD5RgoJMUnojTrqtqpM41dqZVspdvTP0yyZvhYPb3f8CuajYPFAoi/EoNFqCDt2GQBVVZk76hdC94fRb3JXytUq8U8eVRapSemc2htG6epFnCvcbvfim005sPk4dpvKK4NbPdC5k2+ksH7eVuw2lc2LdtJjzEtEXYhhVLspALw5pRttejehfocalD1XAq1O65wHZXAxULF+GVr0bMS2X3aTmpyOOd2CKTWDZt3rc3znacJPXAHAlJbBrpUH6Di4NZHnotm79rCjLpqHC+/O6vOQT0iS/jtkICRJuZiiKNTKLF9Rq2UlWnSrS/7gfPjfI5ABCP5bPqBytUpkCzJiLsUSc+UGJSqHOIfa7HaVS2eiEUKgqirblu2jUMlAKtUvTUjZgvx4aiqR568you3n2G0qNoudlwe3pmzN4sRFx3Ng03EqNShDYBF/xnWaQUa6+db1Lseh1WlQuNVDdWTbKdbP305GupnhLSfz+e+jHioYSryRQu+qo0hLMaHVallwZDL+BfNl2adg8QC+P/bZPzq/u5c7/oV8SbieRN58ecibLw/r5m3FarEhVMHOFQdok7miLF+gd7bjFUVh4Bev0/WD9gxv/jE3ohOIOBVJr3JD6fdpNzb94MgmjoAqjR05kN5vORlTagYAu1cfZPg/arn0LMiNc4Ry191KknRHWq2GCnVK3DEI2r3uCGM6f8nudUfu63y/fb2RnpVG8H6bKbxR9QPCT11BVVW0Wg29xnUkj5cbhUoGMnf0EsZ2msm2ZXsB8PB2p0yN4tRtXw1wTIZe9uXv2O0qA+qOY9bwRQyoN85RMsI9a200g4ueDgOep2DxQI5sD2XJ9LV4+XtiszrmGdltKl/cNtz0T4x6aQZpySYQjjk0a77b/lDn+zutVsOsvyYyYdlQZu+bjE6vo0nnOnh4uaNoFNKS00mKS8nx2POHw5nebw5bf9mD0dVAhXqlcM1jJD3ZxNXw64QdjSCgiB86vZbaL1SlaMVghBDEX010nqN59/qP9H4k6WknAyFJku4pLdnEZ/3mcWhrKJ/1m+cIBO5h84+7HH9eAgkxyQxqNJHRHaYD8MqQ1iy79D8KFPHHbLJgtdgIPxmZ5fhmXeo45yHVblMFq9lKSnwqFpMVi8lCekoG783umyU3kUaj0LJHQ65GXCclPpUFHy0juFQBAov6O/cJKvFwiRjjIuOdrxWNQvna2XuXrpy/Rt+aH/Jm3XHMHrGY9Qu28SB1Hd08XKnUoAzueR1pAoKKB1CtWQUQcP5wBLPe+9G578KxS3klqD8z3v6OQXXG8PvC7UzpNYupfWazedFOEq4no9Fp0Gg0LP9qA8Glgxj36xCKVSrMhaMRKIrCu7N64x+cj7b9m/H2jJ4P8XSkZ4GcIyRJkvQ3Wq0GrU6D1eJYUXR74c6LJ6+wadEuarasRJXb6mm9NKgF0wfMB4EzD9CR7aHYrDZncdEeYzpw5fw1XFwNtH+zWZZrVmtanjn7J2G32Qkqlp9Vszejqo7hLrtNZc+aQ7Tt25QSVUI4e/AiikbBv5Av3vk9MboZ0Go1eAd4AYIrZ68CoNNr6fZB+4d6FsNn92buh0sJCPGjy9A2lK1RLNs+i6es5so5xzUjTl3BoNfg6u5C41dq/+Pr+gfncwZTO1fsZ/BXvbhyJpqfPl0JwIbvtnLzd4tqVxHCkR9I0Wto0rUOu5bvJy0xnaPbTnHojxNYzVZ+nb6OxRe/omWvxrTsJZfJS7mTDIQkSXKKj0kir08e50qtm1zcjUxZPYzda49Qt20VXNwcQ1KqqvJeq09JTzaxfsF2Fhz91Dlv5flu9WjQ4Tk0GoUP2k/l9L4wmnWtm6XCeqESgczeM+GO7QkofGvV1/oF27nZqSKEYNEnK/HJ78W0TaM5e+j/7J13eBRVF4ff2ZYeEkIKvYbee+9FESkiXRAFBEFQijQRBKnSRIqAVGkiRXrvPUAogRBISEIIgRBSSM+2ud8fGxbWJBQ/C+i8z5MHdvbO3DsTyJ6ce87vF0bo1QgadayFo4sDSy9M5eaFMCo1KI1Wp6Vplzoc/fUcvlWKULTcywlFPkEIgWyWrcFfjRYVqNGigvX92wF32fnTEWq0rEC9NlWRJImSVYpyds8VDBlGhFEgBDa1TC9L4NlgzCaZCvVL0XlYGzZ/vxezyYxKpUIICL8R+bvFWv6o3qoio1YPYvdPh0BA+8/eIuZuLEF+t4HMtngB+jQDvXy/YNH5qeQr7s294AcE+4eh1qip1766zfdK4b+BENJ/rkZIelG6VpIke+AEYIclcNoshJiQw9iOwGaghhDioiRJPcCm7q4iUFUIcUWSpGNAXuBJjr2lECLmeWupXr26uHjx4ovvSkFB4ZWZP2IdB9afwd07Fz8e/9q6LZMdj2OT8dsfQOnqxRjc6BsM6UZ09lqWXZyKV0GPLOOFEBgyjNg56LK52suxd+Uxfvh8FXJmaz4S2DvYUevtSoxdPej5J2Np2bd3snsl242MND3DWk0jPPAe3b98l55jsmaTOhYaTGry063Cdz5uChtLWgAAIABJREFUxGezPmDnT0dY991OzAYjTd6vRf8Z3V8psDi0/hQ/DFkFEvSd3IW2/Vtwbu9lNs7aRcueDXi7d2NSHqfSq9TnpCSk2Zy7NeYnom5HU6RcQeszN2QY8D90jSJlC7Bhxnb2rTwGWLJ1n87uhZObI7P7LUE2WbJulRqVZebBcS+9XoW/BkmS/IUQ1f+u+fKXcxMDf/3zda+yY1z53X/rveXEy/yv1ANNhRApkiRpgVOSJO0VQpx7dpAkSS7A54Dfk2NCiHXAusz3KwDbhBBXnjmthxBCiWwUFP5BIkOi2bXiGAd/OYvJaCY5IZWQqxFUblA6x3OGvj2D+IeJqFQqRi8fwKENp2nQvnq2QRBYOpn+aBCkTzewb/VxcuVxZX3oD/z45VoCzwSTGJdMRpqesGuRL74IPFcgMieCLoQRFRqDELB10YFsA6GMDNtMz+4Vxzm6yQ+vgh4kxqWg1WnI55v3lbMrty6GYdAbEUJw80IYbfvD+unbuXPjHj9+GUHlRmXJW9SLyo3Lc+q389bzSlYvypD643l0Lx7vQnlYcnkGarUKnb2OOm0sBejl6pbk4JqTlsyQBFeP3+D09gvWjBLA9dO3Xmm9CgpvKi/8nyksKaMn1tTazK/s0kjfAjMgx87LbsAvf2CNCgoKfyGj35tLfHQiKrXFFNUtjwslqxSxGRMeeA9HF3u8C+VBCMGjewmYTWZ09lryF/dmwLRuJCekIoT404xOn7Bg6M8c23QOSS0xbFFfxq4aiD7dwJSeC4kMvs+Qeb3/1Pme5V7IA/TpBgDKZFMLBNCwQ02ObzmPbJaRVBJCFqQlZ5CRZsDe0Q4hBEXLPV+XKTs6fv42V08GYTbJdBvZlkdR8dy+EoHZZMbOUceje/HkLerFkAUfE+QXQtz9BPLkd+fxwyRiIuMy13+faT3nExZwl0Hf97YUXAMtejZEn27gyPrT3L5yhzPbL9r8VJckiZLVi2a3LIX/AOb/2NbYS/2KIkmSGvAHSgALhRB+v3u/KlBQCLFbkqScAqEuwO9/nVopSZIZ2AJMFq/SVqGgoPCnYDJabBQ0Wg1TNg2hTI3iNkabWxYeZM2MHQgBUzZ9TvnaJRj6Qy82zNpN3Xcqk56awZDGljqfzl+0psfotn/KutZ/t5Mt8/ehs9di0BuRVBKH1p+iUcea2DnomLR56J8yz/M4tcMfsAQGZWuWyHbM8AW9qdKoDFqdhqT4FJZ+tRHZLPCtXJhWH9THzdOVEhULvfLcPoU9WXphmvX11A8XWi0vCpbMR/l6FvuQxNgk4u4nABAblWBzjYoNynJ+7xUyUvXM7reE9eELAEsRddsBLQkLuMvNC6EIBEjg6OzA+I1fkJ6aQcWGZV55zQoKbyIvFfYJIcxCiMpAAaCmJEnln7wnSZIKmAMMz+l8SZJqAWlCiGd1+3sIISoADTK/euZw7ieSJF2UJOnio0ePXma5CgoKr8DkjYNp0K4ag77rRmRwNB/XGMfS8ZutHUp+BwLQpxsxGc1cPxsCQLNOtVjmN4mPx79HkN9tzGYZfboBv/1XnjeVDc/7vcdkNLFm6jZSk9JJjLN4mglZcOX4DS4eupZlfFJ8ClN6LeTbD+bnqLHzR2jbrykqtQqtvYb6batlO0aj1dCyez2avF/LOl4Igd++q1w7GcS33eYx5t0Z/DhyLUlxr742IQTf9VnM6e0XUWlU2DnqaNOvKSqV5cf3tVPZb2F5F87DwLkfImSBnaOOApkCmGaTma/encG7uXrj5uWKSiWBsHTUzTw4DhcPZ2b0XkTXggM5vzerZlRqUtorSQEovFkIQEb6W75eF14p/yWEeAwcBZ51H3QBygPHJEm6A9QGdkiS9GwBVFdgw++uFZX5ZzKwHqiZw5xLhRDVhRDVPT09X2W5CgoKORAfncj1c7cxm8z4VirM2GX9aN6lNgtGbiAmMp7dK48TGRKNEAJnN4v9hYOTHU3et/w3vekfzpdtZ7N80lYatK9Onnzu2DvZ0XNs+xfO/Tg2iY8qj6JNnk849MuZHMcVKpUXjU6N2fDU+NNkMOP4TK1PUlwKfvuusPKbTZze4c+ZnZdY/e2WP/pYsnDjfChqjQoE3MjsuHoRLu5OlnOAX+fsJvrOIy4dCWTH4kPMG7zSZmzI5TusnbaNO4H3srsUAHdvRnHitwuYjGZkk8yQeb1568NG1vdrtKyIzl5rfe3o4kDhsvmZsW8sRcoVYM6xCXy+oA8Tt1h+Vw32D+PayZvo0w38OmsXzm5OgCVLpNGq2bn4IBmpeowGEzsXH7RZy7dd5tAhd28+rz9OMWRV+Nfwwq0xSZI8AaMQ4rEkSQ5ACyy1QAAIIRKBPM+MPwaMeFIEnZkx6owl6/NkjAZwE0LEZhZgtwEO/Sl3pKCg8Fxi7sXzaYNJyLJM9ebl+Wr5J4Bl+8e7YG7iY5IsGjyerpzc4c+5vQEApCWn457paTWt70/E3Isn+PIdPHxysfLK9JeuDTq/P4D46ETMJjPrv9tB8651re+ZjCa+fGcGQX6huLg7YTLYfthWbVbO6iifnJDKh+WGk5ZpDfH0+lf/0HO5ExTF3MGryJPPnZ6j2/F153kkxFjWqdaoiX+Y+MJrSJLEnP1jOLH1AuVql2BSt3mkPE7NvA+LpciTDjqD3sjwFpPRpxtYM3kr49YPpkG7GjbXS0/J4Ov352DUG1FrVBTwzUuzbvVsnrV3YU9+jVrMtgX7SIpPocuItrh757K+71ulKL5Vntb75PfNi9beYkxbsloxBs39kG2L9lOpUVnGvzeLuAePkVQSGq2alr0bW88zZBg4seksALcvh/Mg7CEFSub7Q89a4XVGUmqEsiEvsDqzTkgF/CqE2CVJ0iTgohBixwvObwhECiHCnjlmB+zPDILUWIKgn159+QoKCq9K+I17yEKQkWbg2ulg63FJkvh+/2guHg6kTI1i3At9yMyBK63bICJTGBHAzdOV2PsJGDKM/DR+C/EPE/n46/deav6ytUqgUknYOWip26aq7dqu37N2gSUlpCAhgUqFWgU9xrSn+8in9UdRodFkpGfV5nl0L95GtPFlWThiHbf8wwm/fo+MVAOxDxIQssA1tzOVGpSiw+8EH3PCp1AeOn/xNkIIJm4ayu3Ld4gKfYghw0ClhmVp7/0JGal6VGoJ2fx0i2nN5K02gZBBb2TuoOU8jIgFLCKSJqOJgJM3KVK2AKEBEexYcohmXevSoENNuoxsx/KvNjCzz2L6f9eDwmULYDSYMKQbrKa2AK65nVlxfRY7Fh/k1oVQ4qIfM/THfty+fIeEmCRMBosdyaqbc/HM/7QLUGunpWrzilw7cYN8xX3wLqJk6BX+HbxM11gAUCWb4+NzGN/4d6+PYdkue/ZYKpD9hruCgsJfSuUGpSlWvgC3AyLxzJ+bn6ftoMfINqjVKlxzO9O0Uy0Abl26k2lfYcnK5C/uZRVanLThM7qXGwlYxAbP7Q146UCoQAkfVgbM4PGjZAqXts0o5C3mhVarQY/BEgQBzm6OvNWzARtn7eL8vqvM2DUKeyc7fCsXoVDp/NluK3UpMpgfjk/I4lb/PPIW8yL48h0AytcpwbUzt0CCHqPepd0nzV76Ok9Y+OU69q89haOLA0vOTMTN05W2efpau9CeDYI0OjW13rb9Mfvbwv2c3Gbb0h51+yEj356GSi0hSSrMJjMXDwZQrk5Jrp26ybb5+zAZzcRGxTF5+0g+rTmWtOR0BszsSbuBLa3XMZtkfpmxHaPexOUjgfwWu4wi5QugtdNgSDegUkv47b5Mm0+eBn+SJNFlVHtqv1uN1n2bcf92NEF+t6nbrjquuV1e+fkovJ5YTFdfn/qdv4P/Vv5LQUEBOwcds3d9SbFy+Qm9dpetiw9xeuelLOPqvlOZOm9XoqCvD/0mvs8Ph8YiSRKJcSksm7AZO8enukBdhr790vM/CI9h09y93A99aN3iSY5P4cDak4zrOIeURFtxQLPJzOZ5e9GnGwi+FM5nDSYQERTFgbUneRAWg0r99Ie2vZMdAOlpes7sznpPz2Pw7A9o06cxLrmdiAp9yMIT45m6ZSi5PFyIjnhEyJU7nN516aVrY45vvYBRb0KfbuCWfzhAjlpKPb/qwMcTO9kcU6kkVE+2wH73uSSbBbLZsg6zydK2H3gm2NoBmBSXwoUDV9Gn6zEbzWxftN/mfI1WjZRZbK3RqlGpJDRaDdVbVEStUaHVabF3tLM5x2/PJca3m87yMeuZ238pn9Uaw4LByxjWKNvfiRUU3hgU/XQFhf8oDk52loyPIMuHHoDOTsvoJX2zHF82YTNHt5xHUknUbFGBD0a1wbdSYcCyLbVp3l6KVSzIWz0bZjvv2A5ziL7ziF3LjzD30DjyF/fmk1rjSIpPwZypavws6c8YvMpmmcjgB/zw+SpyebhYsyuSSkKr09D6o8bsWHoYjVZNjeYVX+l5aHUajm05T9yDx5zacQmnXI5sX3IYsPirPQkYGravwbCFHwGwe+UxTvx2kc5fvE21puVsrte+f3PWfbcDdy9XCvh6E3o1grFrP2Pt5K1UaFCKLfP2YcgwggQanZbYBwmMfmcGMXdjGbG0H+0HtkKfbuTG2WAuHwu0ySCpNCpUSJhMZjQaNQ/CY/AunAe1Vo1slilbx5eqzSqgs9MimwXv9GtG9J1HJMYmkZaczsROc3FydaB5j/q8+0lz6zbiF4v6UrBUPnL7uNG0ez2b+4kKeYBsFhj1BiJuRCIyLTqiw5Vu3n8b5v9YjkQJhBQU/qOMWtKX7T8dIX8xL2q0KJ/juMexyYRciaBc7RI4Ottj72RnMfNUSVRpVNoaBJlNZvrX/pq05HTUGhXeBfPYmLA+wZBhzKw7kjDqjYx4axoJMUk5L1SSkCQy28UFZrPMvZBoOg1tTcDpW+jstUzc+AX5S3jj6OJAp6GtsXOwe65FSE7kL+5NyuM0hJDZu/qE9bhslpHVEoYMM7cD7gJwPzyGJWM3YsgwcuN8KNvvL7S2tINlS+39Ia2IvR/PoLrjkWUZSZIs4/1u89n3vdi28ADehfJg56CjZ6mhiEz7kJ+/3Ur99jWp3LA0NVtVxL/BU+WRBacnkq+YD6NaT7OYyUrgXSgPJSoXISH6Mef2XObigQDcvd3YELGI9JQMTmw+x8cVhqNSSbjmdiEtKZ20pHT0aQaKVy5ivbZTLkd6jX8/22fT6qMm+B+4StyDBEYsH8i+FUe4sO8KH03u+srPWUHhdUIJhBQU/iPcD4vB3smO3JkdRbk8nOmVg/jho6h4DBlGPHzcGFB/IvrMv/909hv6TOhIbu9cODjZ8W6fxtZzbl+NID2zg8tskrPN7gBM3DiEDbN2UalBaTzyulsDi9/jUyQPFeuXxmw206JbPfKX8GFEq6lE33nE40dJTOj0PbXersTEX4fadFHl9nb7I4/HsrYNgzm1058iZQvw/ZBVhAZYCrftnewoXb0o0RGxDJrZHXi6zaVSSTg623qYmYwmZnyyjFv+YdRvUwVZFujTDDZzrZm8lV/CLAKHn1QfYw2CAFxyOzOo7teEX7fMr9aoMZvMaHUavAvmwcnVge/2jmHT97s5tOYkCz9fxeg1n9FpeBu2zLMYs+5ZfoQPvnqPCweusnjEGuu2WUbq0y67K8cCX/rZOLk6MmX3WOvrQfM+fulzFd4cBNJ/rkZICYQUFP4DbP/pKCsmbkVSSczYNpRSVZ+2U5/Zc4XlE7dSsV5JBs/qTsDpYCZ0XwhA92GtSUvJwKg3cT8sBqPBhL2jjm7DWmeZI18xb5xcHUhPzcCrgAfVmpXLMgagRKXCfL3GYpKqTzfgnMuR1KR0NFq1RSvHbAmgDHojwxZaPmwP/3KaIxvP4lu5CLH3E6ydTef3BXDx0DVqtHi1bbCccHC2p0W3epzdc4XI4GjUGhU+hT3xKuhB4LlgHF0ccfeySAh4+LgxfdtwLp8IovF7NW0CocvHgrhw8BoZqXoObjyHT+E8RN2OpkGHmhzbdA4hBBrdU+2fZt3qsXrSZmvwmPgoifthz3pQCwqU8GHID71x9bAUJju6OHB0/Wke3nlEYkwSZ3f4U79DDfLkz01irCXDNqnzXPKW8EaWM4NSCdp80pwtP+xBklRUb/nnPDcFhTcZJRBSUHhDEUIQ8iAWd2cHPF2dnzv2xPaLGPRGVGoVV0/esgmE5g75mZTENOKjH9P0/VpcOhaEQW8EAYHnQ2n0Xg2O/OqHVqfBb38ADXJQWHZxd2LFlencvXmfUtWLPVdXSAjBzYth5PJwZvG5bwk8E0zFhqU5vz+A5eM3YTbL9JnQiaObznH5WCAH1pxEyII8+d0ZOPMD5n+xCiEstTtOro45zvNH8T8SaKnfAe6HPSQq7CEIMBmSObLJjw9GWTJpZWuVoGytrNYb+Yp5WYO1lMdpzNw1kiJl8gNQ8+1K+B+6jtlo5seRa/loQie6DG9D5cZl+abz9zx+lGSxFJEskgVgybA9jIxlZOvp1GlTlQm/fI4kSRQpV4C4B48RQpCvhDdqjZrF/tP4ZcYOtv6wl8CzwTy6H0+RcoUIv3YXIQR7Vx7jp8sziYmMpUIDxUZDISuyUiOkoKDwJjB/zxnWnriEJMGaId0omS9PjmO7fP4Wkz9agpOLAw3a2QYy+Yp5EnHzAUKAZ353WnStw4F1p9GnG+k0uBUpiamc2u5PRpqBxWN/zTEQAotGTfm6JV+49tVTtrF10QFks+CTyZ1p268pAC171Kdlj/rIskyvcl8S9yABWRaQuW0kSRLv9GlCtWbl2bX8CGVr+WYbiDwh8FwIfnsv07hTbYqVf3m/rzZ9GnN6pz8pSWkIs0AIS/Cm1amp/DsPrvthMXzVfhYGvZGJv35BiUqFyV/cG5/Cebh3+yFqjYqrJ2/i7uXK5J4LSX2cRpGy+S2t8YCdvY6PJ3WmVLViLDr7LQPrjrd6hukcdBQs6cP9sEfoM7e0zu+7QmJsMrnyuDBq1UDO7b5MgZJ5raKJTq6OVG1egY0zLRJvsZFxDP2xLxM6zsaQbkSlkshX3Jt8xb1f+nkoKPybUQIhBYU3lKOBoWQYTdhp1Fy5E/XcQKhmiwpsu/sDkiRZMzUP78Uz6eOlGPVmeoxsQ41m5fApbLnGhqCZgCXwCLkSgd4kQKcld373P2Xtl44GYki3ZFyWfrUR19zONO741GXHZDRnZjqenqNSS3jkdSf2fjw+RTzp+22X586RFJ/C6HdnYEg3smPJYbbcW4Rao36p9RUpk58Nt+Zg0BvZsfQwkkqiWtNyOLk64pk/t83YXcuOEB0RixCCX2btZNyazwDoMbotM/svR8iC25fvkByXzI1zIZhNMmnJaVi+DRJau6c/hgNO3iQ9VQ8qFZKwBGDO7s4I8QgBaHQaipYrgD5dT/eS40mOT+HLn/rZKEcDVGxYBo1OjclgRqPT4FnAg5ErB3LxwFU6DHoLBYWcEALM/7Eaof9W/ktB4V/EwFZ10GnUeOVyplmFrFmRi6H36LNoEyuPWDIPKpXKZrtqy+LDhAfdJzL0IREh0datG8AmYIoMjbFYMgDJien8v5hNZpp1qWP145JlwZ0btqKIOjst3Ua2wSIsLeHq4QxIBPuH8/O3v73UPCajyVqAbDKYuHEuhE9qjmVSj/nWtvuEmEQG1h1Pj1JDueF3G6PBxNzPVjK81VTCrkeis9Py/uC36DioFUXKFMgSBAFUqFcSnb0WOwcdlRs97ZJr0rEWXvncMOuNnPztAvoMIxqtBntHHfXb1eDt3o1p+F5NOn3xtN6qfL1S2NlrLc9GpcJkNBNw8hb6dAOSRk3BUvkYvfJTzu6+YrHuMJr5dc6eLGvaOm+P1Z7E2d2RQqXzc+tCKIfXneLnb7c8rRlSUFBQMkIKCm8qLSr50qKSb47vD125k8S0DK5FRFOrZCHKFrDdCilRoSA6O0uA41sx522jkpUKZVpi6Kie2Q6vTzcgywIHp6z6Qy/i6y4/cONcCA7O9nj4uOHk6kC7/lmVm3uN7UCbPk2IuRtH0IVQVn6zCQCfoi9n7ZDb243hi/tyeMMZ2n3agoXD1xBxI4ro8Eec+O08LbrX5+C6U0Tcuo/ZaGbVxM206tWQY5vPoU8zMOfT5Sw4+c0L56nzTlW+PzIOo95EyWdqr45v9SMlMQ211uJGX79tNao1LUdqUjrehTwY1mIqkkpCFjB6eX/AUoC9JmgOB9efZP4Xa2wnEhARFMV3/X5i6MKPUGvUSJJEo45Z/arvBd+3/j0xNgWjwcim2bsAuLD/CvduPaDQM4GvgsJ/GSUQUlD4l+LiYEdKhh4BONtlDVhadqmNTyEPzCaZyvVzruspUMKbZSfHE/sggZKVCxMScJeRHedhNpn5amlfaj1Hgyg7rp26Zek+Az6f9yFlaxbPdtz98BiunAjiwr6rBJ0PoVm3epSr7UvTLnVeOEdacjoqlYomnerQpJNl/IE1J7kfHgMC8hX1AiyGpGqNCq1WTbk6JblwIABDuhG1Vk2ezG3AG363UakkStd4uk6jwcScQSu4ExjJ4Lm9KFvLNiCNf5jIrP7LMOpNqNQqvl43iFLVilnf/7L1dGsx9qXD123ORYLrZ0Kwd9KRkWrJXD1R8TbqTejstRQtV5DV12eSmphOvmJeWe7/w286c2zTOdKTM0AIOuUdQMHS+XgUGYejqwOehTyynKOg8ASlfV5BQeFfwYqBndjpH0TlInkp5JlVWyctJYM8ed04s/cqyQmpNHi3So6dXh4+ufDwsegPndx1mYxMTZzdP5985UCo67B3WD97FyWrFqVklcJZ3j9/IIBtiw9x/WwwslnGmK4HAXuWH+XoxrMUq1DwuYXPFw4GMLHrPFQqFdN2jqRcbUuQ8uXSfvy28IDVdR2gSuOyzDvyNckJqUiSxNcd9yOEQKfTMGpZf/asPMaS0RsAGPx9L+q3q47WTsvZXZc4s9PfkjkauILJW4fjnMsRZzdLB5smM1sDYOegtdkyAwi79lQ7KTkhhYSYRNy9LM/31LaLnNl1yUZ3qFCpfOTK48LVEzcplOnPlsvDhVwe2Xt85fZxY2vMMmZ8uJBjv54lLTmd+jVrMGxxP4qUK4iDk/1zvkMKCv8tlEBIQeFfipuTA/Epaey8GIRv3jy4OT1VWg4LvMfw9nPRp2daPGhUnNkXQJ+v2uH5goLoum9VYseKE8hmmVbdXpyd+T09Rr1Lj1HvWl8bDSa+7bmQW/7hfDzxfRYMW4sxs/VcCAECq1N7ekoGR38999xAaN/qExj1lvOPbTpLudq+xD98zGcNJhB3/zGSBKe2X6Deu9Wp3boKRcsVBCAy2NI5p9Vp8CniiYOzPTf8blvqcySJ3SuOMWfgCtw8XRm64CMQmaKKkkS/6mPQaNX8cGwCBUvmxdXDmWk7vuTs7ss06VTbamEBEHMvnjz5cpOaGJV5j7B53l76TbEoNHsWyI0wC5Asa/Es4EGfiZ346r3ZmE0yB9acpNdXHXDzdH3uc1arVTR6vzZndlwEoH6HmpSrW+pVv10K/zEsgor/rfJhJRBSUPgXYDSZ2XHxBrkc7WlWoQSSJLHu5CU2nQnALAvMssyU7k+7hS4cuYFBb7IGGkaDmRM7/AkLvMfS4+OeO1fpqkVYf2UKZqMZF3en/3vtV0/cJOB0MBmpepaP34xaq8ZoMKHWqPAq4EGrnvV4HJPEzqWHUKlU1H678nOv91avBvjtvYxKpaLx+7UBOL3Dn4Roi8igEBDsf4eQyxFsmLmTTRELuOUfjlqjYur2EQT7h9Oks+W8LsPe4ca5ECSVipi7cchmmdSkNBLjUpi6fQRRt6PZNG8PRr0JSZK4eiKIgiXzAlCuti/lavsihODh3VhyebggyzJ9q462bos94dR2fzzyuuPq4UKzrnUoUNKHsGuRgMR7g1riW7UoGq0GWTbi5OaIUy5H7gbf58iGMzTsWDPHwLBuu+p8vtDieF/zBc9NQeG/ihIIKSj8C/hu+3G2nQ9EAr7p0oLWVUtjr9VaPLokcHhGxRigzlsV2bjgAOkpeusxISA16eW6whyd/7ytlQIlfQCLjUXJqkXo/fV7nNh6njrvVKHMM3U5nb5ojVaryewgy5kaLSsx79gEfvh8FRtm7qSArw8XDgZYemSfaZYSsiAjVc+GWTvZuuAACPhsbk/qt6uGY6ZPWcGSeVlxZQYAP0/5jU3f70Gj1VCxfim8CnpQrrYvkkrF95+twNHVgVq/CzbSktNZO3U7O5cdxt7RjvHrB1uFFp9Fo1OzcuJmVCoVoQERhAc+6aITuOZ25sTW88iyjJAF3gU9ELLg09pfYzbJbJyzh19C55ErT9ZtssPrT/PD4OVISMQ9iOfDCZ2yjFFQ+D1mlBohBQWFN4wHCUkYjCY0ahUxiSkAdKlXiaTEVCLCYuhbv6rN+EK+PpQoX5Br524DoNZY3NWRIPxGFEXL/rGOouSEFBxdHVGrbVPrl49bLCda9qhn06YP4FMoD4tPf8PdWw+o3KgMOjstJbLpYvPweXkPsfXTt3PrQhgqtcSlI9cxm2QcnO0ZMKM7x7f6cemwxWNLrVET7B9u3f76ZeYu5gxcgb2jHSuvfYfbMzU4vb7qwNsfNsTZzQmHZwLBFt3r0fj9Wqg1KhvT1Q0zd7Jm6jaEEAhZoNaoiX+YSP32NTi57YKNt1iuPC48CIsBLTbv+RT2pH776lw6HIhKpUJnryVfcR8MGQarHYcQgvDAyCx1SGDpHjMZTJjNMneDorK8/zDiEXEPEihTy/e5SuAKCv9m/lsbgQoK/1JGd2hM9RIFaFK+BJ3qWPyjTAYTR8fs5NaC03zZZg5m89N0SEaa3hoEAXjmc8egNxH/MIk1s7Pq0rwM84evoYvvMD6p9TUZqU8zTY+i4pnQ9Qe2LjzAiNYzMp3nbfEp7EnNlhWt7fz/L/mKeaPS/YdHAAAgAElEQVRz0FpazFUSWjstefK789aHjbh9OcI6rlDpfHwyvZt1iy8q9CFCttQibf1hX5brehbwsAmCnqDVaWyCIIAdSw4hm2XUGhWSSsI1txNVGpVl7KpPGZfptfaE4Yv7UrVpebR2WmLvJ1iPP7wby7k9VyhVvRilqhclfwlv3hvUEmc3JyrWt9T7eBXyoFyd7Lv+2n/2FuXrl6ZUtWJ8/DuX+LCAu/St9CUjW05lSP2vObvL/3mPVOE/gsDSNfZ3fL0uKBkhBYV/AQU83Fg+0HbbIzYmkfQUPSajGYPeiFFvRO1oaaO3c9BRrFx+wgKjQIJaLcqzb/0ZQKJs9aLZzJA9hgwj5/ZdpaCvDwfXnUE2y8RFP+b21Qir1YbZZLaOf1LE/FfT+5v3KVq+gEWrKK8bNy+E0bCDRW/HJbcTSfGWrFnNVpXIW9iLlIS0LAHas4rPf4RmXeuyffEhHFzsmbV3DMGXw7l3O5qyHiWoULcU7l6uJMQk0bRLHbwKeFCoVF4uHr5m+STKxJBh5Ma5EOZ+toLk+FQAhrWYwpZ7i/huz2j06QZ09tocszlunq7MPJC15ishJpGg8yEgwJBh4NaFMKb2mM/so+MpWbWYzdjQK3eICLpH3XY1sHd8dd0oBYXXHSUQUlD4F2A0mTlzK4IiXu4U9nTn7qPHdF3yKxpfFzwfGOj6aXObDzFJkliwfxSBF8LI5e5EQV8fmrxXA326gQq1c/bu+j2TP1xEwKlbCAHVm5Xn/MEAcnk4U6zC060tn8KeDJnbi9M7/XlvYMu/ZQtGrVbRtEtd6+tnP9wHz/2QcR3nAODu7YrWTkP+Et7E3k9Aa6chPTkDk9HM5nn7aP9pyz9cEN53chfafdoCQ7qBH0eu59qZWyBg+s6RzBuyksexyag1KsrUKkGHvANQa9RoNGrMJhk7B61VouDU9ovWIAgs9iNGvQk7B52la+0libufgEtuJ34cvoZ9q47h4eNG3mJeRNyIsgSBkkTa72rE7gRG8kXD8SBJHPj5BNP3jv1Dz0LhTULpGlNQUHgDGb56F34hkQgEvw77gNM376A3mkipkBvvVp50GtQiyzmSJFH+GTHDUpWzavq8iPDAKDLSDNg72tGsWx0Gze5BLg9nm3ZxgOZd69C866u32v8VOLo6WAuWl4zeQIW6pZh1YCzfdPqe2AfxpD5OAyzq2bev3qFK43J/eK6IoCgmdZ+PQW+0tNs76ngQHkPEzfsIWWCWBetnbMdkNCME1GhVkUoNSrNh5i5rIKR1sN0udPVwsuoVvSxLR61j24J9CDIzdMLixfblik9xcnVk1YRfKVe3JJV+V2f0IDwGSSWRkarnbtC97C+uoPCG898K+xQU/qUERj4k3WBEQiI8Jp76ZYpgp9WgVavoUq8iZrPMj+M2M6LD94QE3H3xBV+Sz7/vhXehPFRrWo6aLSvi4eOWJQh6EVdP3qRLiS8YUHcCCTGJf9ransWgN/Lz5K0sGb2e8/uvWo8LWfD94JWc+u0iNy+GERv12OJ2n8kNv9D/a16/vVcsrfICtHZaqjUvT/121Sldw5KhklRQsYHFIFWjU9NzTHs6DGxJs6510Og0ODjb4ej8VP8JCXqOfY9RbWbwjkdfBjeeSEaqHn26wbrdlx0H157EZDRjNlqCICRw88qFb9WilKhShMk7RtJtdPss2boarSpRp0018pXwYdjS/v/Xs1B4c5CR/pav1wUlEFJQeEM5HxLJvsu3MJllxrzXhDwujlQrlp96pQtT2NOdI9/058g3/Xm/TkX8Dl7jwMazBJ4P5bvBP/9pa6jevDyrr07n6zUD0epeLgAKPBfC2unbiQp9CMDKSVtJjEshKvQhRzf7/Wlre5Ztiw7w69w97FhyiMjgBzg4P90mTE5IRat7xpU+0+gVLF1V/w9v925krTUSQlC0bEHCrt3lw687UuutSggZjm/2o2TVYqy9MZvimd1yn0ztytLzU1h3ay49x7RHa6fBJbcTi05NxMXdiYCTtzAbzdy+fIftiw/SpeCndC34KXuWH8l2He/2b46kkkACnYOOPlO6sjJwNg7O9uxbdYx1034jNSkty3karYYxa4ewKuh7qres9H89CwWF1xVla0xB4Q3keGAYX/68Gwm4HB7FmPea0ryird+VvU6DfWZw4p7HFSEEWp0GD+9cWa4XHnSfaQNW4OTqwISVn+CWjSbNH+HRvXjWfreDwqXz0eHTFsRHJzK6/WyMehMbv9/LmuvfUblRGcJv3EPIglJVX75Q+1WRJEsyxNHZni1RP7Js3EaCL4XTb0pXfKsU5eimc9y8EErHwW+xYfYukAWHfzlLv8ldcMn9fO2inChWoRBt+jZl59LDCCG4cT6EzfP2goSNhcaNcyFW7SLLWiWrh1j1FhXY/nAJkiQhSRKGDCOSSkKYBZIkkRD9GEOGEZPRzK6lh2jdp6nNGs7u8ic5PoW5xyYQExlHUmwyVZtVQK1Rc2TDaRZ+sQqz0UxE4D3Grh2MECJLZig9JYOzOy9SrGJhimQqcSv8OxECzK9RR9ffgRIIKSi8YUTFJ7LiyAUMJjOyEIRGxz13vNlkpmSVwny9vB93g6Np0blWljErp24n8vZDVGoVQ96ZCQJGzOtJxTo5u9u/DFP7LOHmhVA0Og0u7k6Uq+1r1b8x6k0sHvMLo5b2o0bz8uTK40KBEj6vdP2MND2zBywjJjKOoQs/pkjZAtmOaz+wJRmpetJTMvhgbAfUajXFKxbm0pFArp26RenqxZm+c6RlXQYTe1efIC05HWc3R5sA5feYjCY0Wg2piWmsn7kTRxcHugxrbd0ePLntAg7O9tRtUxW1Vo3OTsuVjCBLUGqnsXbRlalZHLVGneM8z7bml65RnBm7R3Jq20WadK6Ns6sj+1YeBSFoO8C2Fiwq5AFTeszHkG5g19LDqDSWAEqlVjFq9SDSUjIQQiCbZRJiEulZ8nPiouIZsXwATbvWs17nqzbTCLl8B4All2aQr/irfZ8UFF5nlEBIQeENY/Cy7YQ+jENCoqBHLka2b5JlzJ2YBAIiHuCVCtP6LEOtVjFj8xA69Ms6FsC3YiGunbuNQW/i0T2Ljs2SCVv4ZlV/DvxylmLlCpCUkIpnPneqNiz90mtVqSSEsAQ9C0esZ9XV6TRoX40Tv11EpVJhZ69DkiSrMeqrcnDdKc7tuYwhw8j8L1Yz+8BX2Y7T2WnpNe49kuJS2LH4IFGhDzm47hQAq7/dQsP3auJdKA9g0QRafPZbgs7fpmxt3ywBij7dwPQ+S7h0+Dr6dAPtBjQnPSWDIxvPolKrcHSxp8PAllw8dI1ZA5ZhMpqp0qgsk7cO40F4DDf8bmM2mRn50yf47b9KoTL5adIxa3D6PCrULUWFZ3zDfr33I4YMI85uth1ulqBTZP7djPmJeoHRzIX9Vxj8w8dE3ooiLiqBktWL8fOkLZiMZtZN+c0mELp78z76ND32TnZE33lkDYSS4pIxZBjJkz/3K61f4fVG6RpTUFB4rTHJsqX4VquiSYXi5Ha2zVjEJafSdc46ZCHI4/cIkelrtX/DWXyzUWwG+GBEa7wLefDDlxusx3wrFuKr7guJCosBAWqtGpVK4utl/ajWuMxLrfWzWR8wqNFEZLNACJm7N+8zcnFfSlYpSmpiGu8Pfstm/P61p9i1/BjvfNyIt3o2yPaad27cY/IHC3B0caDtp82RJAk7Bx15i3q9cD3ffjDf4mpveiouqdaocXSxt9kScvVwzmKX8YSjm85x8WCANZuz86fDT1v1BciZwpXJCZaWd7PRbC1kzlvUi58uTrVeq/QzFiL/Dzp7HTr7p630cfcT+G3BPopXKsznC/twbONZrh6/YVmiEDg4O9Du01ZodRo+ndULgLtBUaydvBWdg476HWpYx66dvAUXdyc0WjVVm1cgJTGNnydt4sa5EC4dDEClVjFsaX9a9mr0p9yLgsLfjRIIKSi8AZjMMppM24p5H7dl4d4zHL0Wyi+nrnLgSgj7v+5j/RB/lJSKWZbRm8zEFnTAMzwRYZZxdMl5i0eSJKo3KYtaq8ZslrF31PHZ9C58WHMCcmYtilFvQmev5eG9+Jda882LYYxqOytzAtCnG5nedylLzk6k46CWWcanJKYxf9gaTEYzC4ZHUq9NFVzcs9bmrJq4mcjgB6jUKqKCoxm/YQhx9xNo0uXF7fnJCanWIEitVaHWqOk/vTsflB6OnYOO2QfGWk1TcyLk8h0bYchqzSrQf1o3HF3sccrlSNv+zQFo2KEGIZfvcPfWffpP7/bCtf0ZmIwmxraZwZWjgUiSpVOtSLmC+BT1ZOH5KaTEp1Kmtm8WFWyAQmXys/rW94T4hzFv0Ar2LDtC32nd2DhzO4Z0Izp7La37NGNM66kYDSZk2fIcZbPMobUnlEBI4Y1FCYQUFF5zZm4/xprjl6lY2IeVgzpT1Cs3n7aqw5FroRhNZh4lpSALgTozECqVzxMfdxfuPnqM7GGxgxACfvvpCJ0+bZajQGBuL1embBiE/7EgmnSojkajZvzyvqyZtYcCxb0J8g/Du6AHzTrWeKl1+x8JxJBh4FnB5sS4FIIuhFGzZcUs43V22syshkUt+dkMx7OUrFqUS0cDQViKkas3r5DjGgLPBnP7SgRNOtfB1cOZ0SsGsGzcRrwKeVC8YmGqNSvPgqFr0Kcb0KcbOLjuFB9PzNmYVJZl9qw8Zn3t4GxP/0yLjoEzP7AZq9ao+WRqV/5OQq9GEORnsU4RwiK+GHwpjLCACIpVKET3MR2sY/XpBlZ/s4n01Aw+/rYLLu7OuHvl4sqxG8RGxSOEYHa/pSCe1nRdOnINSSUhm2UkSUJkbrt1/OKdv/U+Ff46BK+X/cXfgRIIKSi85qw/eQWAkAex3Lr/iPKFfDh8LQSBQAKalC+OhIQsC1QqS2eRnUaDAFQaFWqtGiELNBo1WjsNK6ZuZ8eKE9RuWYFRCz+06RAqX7O4rchilSJMXjfwD627YfvqbJi9C5PhqcWGRqumTM3st4N09lrmHf6K8wcCqNmiQo6qyd1GtsW3alEcne2z9dgyZBiIDH6AEDCm7UxkWebg+lMsODmRImULMHnrcOvY5PgUIm4+NSPdu+o4733WCjdP12znVqlUFCqVj7u3LIKI+nQ9Z3b603no6xEIFPDNi4OTHUKWcXBxwDO/O3duRKHWqLLU8Wydt4ftiw4gZBmz0cywJZ8AUKlRWbYt3G8VnZRUEkIIdPZailcszPtD2xByKZx3B7QgNSmdqs3KkytP9s9LQeFNQAmEFBReU57UrNQrXQS/kEhcHOwp4unO5Ut3uBX2EJBQqyQkoM7YBagkFVPbtyC/uytfd2rONxsPUMQrN5980J59a05Rv3VlkCQ2LToEAo5v96fxe9Wo/ZyMyv9DwZJ5yV/cm4ig+wDkLeLJjB0jcHFzwmgwYTZZtuBszvH1oaDv044kWZaJiYzDM39ua9GyJEnUaGGbUdr/8wlWf7uFvEW9uBcSTVpKBu5elg9no95E3IMEm/FXjt1gxTebAMGjZ7b6jAYTV08E0eg5xctzD33FsnEbObDuFGqN+v9Snv6zccrlyMobc4gMvk9sVDzTey0EIXird2Na9GxoM1aj0yBJgCTZaEDVal2FWQfH8VW77zDpTVRqXJZceVwoXCY/ddvVoF77mn/zXSn83bxOYod/B0ogpKDwmpGSksGQIWuIvBvH4MEt6VutCjXcvOjwVhUO7b/OT0uPYlJB2fp58cmbC5NZJt1gQpdoZuq439BqVHzSvwm/jfoQgDnD13Ny1xWO77zC9zuHodNpLZYPQHjg/b8sEAJwcLJHUkno7LQMmNYVr4IeRNy8z7A2szDojYxe/DH13qlic86P435lz88nqfNWJRIiH3HD7zYFfX1YcGpijqrV84euzgx4HluPxUbF83bvxgSdv02TrnUx6I1Wd/spHy4kKS4Ftda2I0xnr6V8vVI8D0cXB4bM603nYW2wd9Lh9g9kQ45tPsfaqb9Rt001PprYySar55TLkdI1SjBv1XKLqjUWO43fawN1GPwWZpOZtKR0StUoTkxkHF4FPQAoW6cka2//QExELIXLFci2pkhB4d+CEggpKLxmXLp0h+gHFquHefP2o1ar0GhU3Al8iIO9Fr3eiCRJ1LTPw+cftuLg1WBO37yDfZoJIcvo9TIbN/rx46LDNG5SlltnQ8hIM2DnoCP8RhRfzO7OrM/X4OhsT6N2Vf/QGg0ZRnavOYWDsz0tu9TK8YPyq5UD2DB7N4VL56VmK0sW5/SeK6Sn6RGyYPuyYzaBUEaqnp3LjyOE4Ny+AAyPkxGyzL3b0cRExpGvmLfN9YUQ3LwQirObI0lxKVaNIoAGHWrSY3Q7+lQdzdopv3F+zxVm7hsDQG7vXKQnZyCpJKo2LcuDsBj6fNuZ6s0roLO39fbKCZ/CeV7pmf1ZCCGY2W8pJoOJbXcP0LRLXYqUy6qf1HZAC079dh7ZLNPx89aApS4oPvoxPkU80Wg1dB3ZjtGtp7Ft4X4kSWJZwEw8C1iCISdXR4pWyL7LUOHfiwClRkhBQeGfpVSpvDZ+V2azjNksE3UvngnfdCA4OBqVSqJJkzKsW3uaAgU92DGqN7GPkpkxaTvpGUYexSQhBBw7eoMvPm/F8knbKFDci1otyuPobE+DNlVQqaUX/qZ//Xwokz9ZgYubI9M2DMLDJxd+hwLZvvI418+FolKrkGVB6x51sz3fs0BuhsztaXOsZvPybJy3H5PRRMW6tvpBdo46ipTJx4M7j3Bxc6JYnWKc23uFklWL4V3Y02Zs1O1oPm8yieSEVCSVhKOzPTVaVcRkMDPgu+545vfg2ulbyGaZjFQ9wZfCrefO2DWaI5vOUqpaMauGUVToQ3pXGEFGqp6Jm4ZS4QWZoX8KSZLwzJ+b+OjHSCqJXDmogBetUIhN95dYXyfFJdO30khSE9No/kF9vljUl3O7LhF4JtiqEXQv+IE1EFJQ+K+gBEIKCq8Z3t65mDz5fb76ahOmZzIcw0e0Jn/+3Cxb3peUlAw6d5qPPrONu2atYkyZ0pl16wdiNsv07bOMmJgkXFQSDyNi+X7nMLzyuZMQm8zAFjNISUpn/LK+VKxT4rlrWTNrD4lxKSQ/TuPQ5vN45nNn/phfMRqMyGaBRpJIfpz6SveXt4gnAoEsCzYvOkSnz1pi56DDZDSTEJPInF0jCL1+j6Jl8+PobE9qUjqOLvZZtnaObfYjJdMpXsgCg97E6BWf2owrW6sElRuV4drpYD6a8L71uJuXK+8NamVzvYPrThEfnYgQgl9m7XxtA6Ezu/yRZUGJKkUYMq837tlYpjwh8tZ9Dvx8nOCLYWjsLArYRr2RE5v9KFenFPOHrMBkNKOz11KxYRnK1395sUyFfy+KoKKCwj/Apet3Cb0bS6uGZXF1tv+nl/OPU71GMZb+1IfFPx4mNDSGj/s0olSpp/o2dyNirUEQwHm/MNatPU3PXvVRq1X8uPgj/M/d5rt+y/k14C5blhzBZDCTr0geHt1PQJYF67/fR8U6n2U7vyzLzPpiHTcvR6DWWPR2SlctwvXzYZiMZoQsyO3tSo0mZWn3UcNsr5ETsll+InaMbJYRsuD49ot8N3AVQpbROegwGUwM/q4brbrXw8nVgbTkdLYu2I9rbmfa9GuKSqWiSpNy/DJzJwa9EWc3R4Yu+tgaBEWFPmT6xz/i4GTP2NUDc+wCe5ZKDUqzZf5eJCRqt67ywvH/FHMGLCM5IZXER0kkPEzkp9HruX7qJr0ndabDZ08FKg+vP8Xs/ksw6Z927SFZMkrtBrbkQdhDTJlF6yWrFWPCpmFZjHNTE9MY//4cHkbEMmrFACoogZLCvxAlEFL4x7kZGs2IqVuRheDo2Vss+vbvEZ973SlcOA/TpnfJ9r01a05bTESF7bGIiFhGjmqDvb2WwoU8QGTqyWS2sEdHxqHWqtFKEjWa5dztdHLnZY7v8LeIKaokFu0ZQSFfH4qXzc+ty3dIS85gxPcfkPcP1Mm4uDsxZmkfDv5yjta96mPvZMfC0b9YFZmfmJGun7OXVt0tNg+LvlzL0V/PoVar0NppeLt3Y8rWKkGBkj6EXYsk5XEa03ovZs5BD0pUKsy8ISsJ9g9HrVHx26IDNtmgnCheqTDzj30DEjl6lv1TmE1mjm/2wyzLGDPb2jPS9DwIf8i1k0FkpOpZMe4Xm0Do3O5LtkEQlmLwgbN70bpvMxJjk9g0Zxdmk0zQuRCGN53ED6cmEXAyiMcPE6nXvgbHNp0j+GIYhgwjP45Yy6Jzk//W+1b4BxCKjpCCwt9O/ONUi3KxwURMXMo/vZzXHrNZJiIiDiGeeHkJi2O0WebMmRCOHr1Bq1YVKVDMiwETO3Bqz1Wi78YRfS8eYZYRQtB/Ukfe7p59XY/RYGL2sPXIZkuUVaiEN4UyW9pd3J349ucBr7zmC4cDWTNjJ2VrFqdG83LcD39ELg9nCpfKS+j1yCzdYGqNCu9CHpjNMmq1ivSUDGSzjEolkZH61LXdKZcjSIAAk8HE0V/Psm76dq6fCbaOiY9+zM0Loc+1szi+xY+Z/Zai1qiZdWDsK9/fX0nU7WhWTdrC2d3+GDOeZgE1dmqObTyLIcOi+lympu02Z8cvWuO3+zIZaXq0dhpK1yhOqRolaNW7MQDO7s7WoArg1sVQ/PZcYnL3HwCJq8dvUKFBGQSW74chw0ByQmqOgpwKCm8qSiD0FyKEYMyxgxyPCOfL2vV5r/TrozfyOlGrclHaNC1PUGg0Q3pnbwr6Z3Ar4RFOWh0FnHOuqXgT8DsXyuPMuhxnZ3tq1izGmTMhGI2WDzUfHzfr2Ld71KNgCR+++uDHzCDIkh0KvBCWYyAky8LmA3LAtx1faX1CCH76Zgsx9+L5dEpnPHzcmNZ/GekpekIC7rJ79QnLlhhw+9pdIkOi0acbrefn8nAmNSmdW5fusHPFMdr3a8pns3uhs9PimtuFd/o+/Tcy7ufPmD90NWd2+aPWqLl2Opiwa3et2SWzWebQulMc3+zHnEPjKFGpcLZr3rPyGEaDCaPRxNndl/CtXOSV7vmv4uaFUIa3nILJaLJuJz5Bo1ET5BeCbJaRVRIRQVFcPX4DtUbFriWHadS5NoXK5if4YhhCFtRpW533n1GAVqtVDJzTi6Wj1mM2mek2uj33QqKRzTJGvYmDa0+yb/VxHF0dSE3M4H5YDMu/3sgXCz7+m5+Cwt+JQNERUvgT2R92m19uXAPgyyP7lUAoB9RqFUP7NPtL55h28Sgrb15EJUn83LwLNb0L/qXz/ZXk9rD8Rq7Vqila1JMxY9ui1xs5eiQIn7y5qFTJtuX59N6rVj0ZSSWh0app/r6tKN6Ni+Gkp2RQtVFpdHYanFzsSU3OQKNV450vN/ExSeT2ejm9nEVjN7Jr5QkAwoOiWH5mIu6erhgy4jCbZExGy3aNKtOqwfiM8rSkkqhYtyRn9lxBRiblcTp3btxjTNvvSHiYhFqjouZbFanWzKJ95OblytfrBpMUl8L8YT9z6rfzFiFKleUHuZAFcubrmLuxOQZCbfo25fqZYLRaNfXaVn+p+/w7OLPL36rwjASOzvakJWegUqvoMLAVW+buRq1RYzbJJDxMZOmoddwNikKfbuDUtvN0+bItd65HIqlU2Qo/thvYinYDnxaNpyamcfHAVWLuxvE/9s47OopyjcPPzJZseiCkQUILndBD7713pImACoiiIgoqioqi0gQVFUGUjtKl994JCSG0QIAkhARIQnrbMuX+sSEhJkC8FxS9+5yTczY73zfzzeyenXfe9ou7cRdFUki3yOjs9ID60G7fNmz8k7EZQk+Rm+n5zd1E4f/Lwn6WOH47mp8un0bFGkUJir/1jzOEcnLMhIbepHJlL6pVK82X0wcSHZVI6zbV2bo1FHd3J7p0LazfBdC2byC7fjuJxSyh02upUL001erlGwTHd4Yxe/wKQOC5V9vz/IQufLPtHQ5sPIN/gB8T+nxNVnoO/V9px8j3ejx2rbeu3c17HR+TTOq9DGZvfpuDG4I4vDmEmKt3qVynLGWr+jB4fBdGN/8UU4413NXrpdYMHt8VBDA42NHv1fb8OHElyXfTAKt21pKpG/IMofu4uDtRtooPOjsdCPDyZ89xamcY4aev4+BiT73WNWjUpc5D19yyT0MatA9Ao9U8Uzf7aoEPhPNUWHZ5LmvnbsPdpwS9X+1IndY1CNoZypYf96DICnci45Hl/ErDHmM60H5oCxxc7IuVMO7o6sD07ZNRVZWP+swmaOc5GnauQ0pCOrHX7uD7QNdvG/9ebDlCNp4YfatUZ1FoMEk52XzSoi1GyUJ8VhZlXVwLlQLbeHrMPnc4L6qgFUV6V6zxt67nv2HChFXciklCoxFZsXIsdeuWo27dcsycsY1Dh8IRRYEPPuxF8+aFtbeq1CnLmvPTGVr/Q7LSjdy4FEfQ/su06mmtjIoKj8NillFkhWvnYwAoXb4UWelGFny8gexMI5JFZu/a08UyhMbNGMxrbb9AssjIsszct1bQrGsd+oyxCr7On7yWa+djqNOiKh6lS/DCpO788vkmvMuWYtikHji5OvDBT6Py9lenVTUOrD2Rl/AddTGGM3vPc2jdKVr2aZhX4TX0/d6U9vdEp9fRsm9Deo8trHD/KByc7f/U+L8C3yoFDY+dSw7Sun9jKterwI7FB/lp8m9UrOXH+B9e5ttxi8lMzcbgYEfLfo1o1LUeJbxcH1le/zAEQeDTjRORzBaiLsbybpcvMWWb+em9X+k5psOTOj0bNp4JbIbQU8TT0YkzL45FVlWyLGZar/yFFKORbv6V+abjsyHS+P/AzYx8z9ybtZuTYszhXk42dUr5PFOeugfDW4cOhbNn9wU6dgpgwoSuREUmIEkKdnY64uPTcHV1YPu2UA4duozZLKPXa7uRcSwAACAASURBVElMzHjoviPO3SQnywSAxWShYo3Sedu6DWvBmYPhZKXn4Ovvye8/H6Ji9TLsWXMKY7YZQbCGL3uMaPHYc7gaGs03b6/Eu2wpEm8nI1lkQg+Hc/7YVbLSs0lPzkIySyiKQmyu56j/ax3pNaotWp2myAeEDkNb4FvFhwntpqEo1v5Dnw2Zh9lo4cjGIJacn0Wp0iXRaETaD7ZWmd29mci73WaQnWHk0zXjixRn/Sfwx07ayz//nVXTN/P1gY9Z9MFqcjKNXDoZgVYjoigKensdbp4uHN1wmkNrT7Jm1mbSkzIZOrkPvV4tvmG4e9lhvh67iFJlSjBt87uIoojB0c7mEfo/wNZZ2sYTRxAEtIJA+L1EMsxmzLLMrsjrf/ey/m9IMebQq0INll0JAeDXiFDmnDuKAHQpW4Uf2/T7exf4ADNmbOP0qeuoqookKSiKys4d5xk5shWvvtaB5cuO0rBRRSpV8kaWFb75ZjeKoiII0KBBebp0KTo0BtaqH61Og1mR8ClfCl///BtsSU8Xvt36Dsu/2s6GBQcAa5L1fcVxP39PZq59A0eXx3tM5k36lejw24gakbb9GxIXGU9E6E0AUhIyGPBaR66G3sSUY2LEB73z5v2xf80fKV/dF/V+r4DcXjj3Kcp42rPiKIm3klAUlVUzt/DlpomPXfuziFanpfWARhxeHwSCtTJO62jH3egEnNwcyErPBkXl3MFLiBoRr7Kl8K1ahrvRiQBEX4oFYP7by+k5tmOxPdG/zdyEIiuk3csgIvgGC4K/5NrZaBp0CHhq52rDxt+FzRD6i6jj6Y2vswvXkpN4IaDu372c/wsSsjPpsGURJllCIwjIqsqdbGt5vgocuR39t67vPgcPhnPieASRN+IxmST0eg3OzgZMJgk3NwdcXOxp374Gu3ed50xQJGdDomgQWAH3Us6kp+Wg0Qi8P7knhkdoZFVvUIHxs4Zw5Ww0/UYXrMzbt+EMa3/Yi4OTIU/aQ6MV+WrjW1w7H0OLrnWKZQSB1XME1kaJwQcu5Za6C9RrVY1B47vg7ObAjPXj//Q10tvr8CrnQWpiOgYHOz5cOY69K47Rok8g7j4lCo0PaF4VrZ0OAQjs+PREZf8KJv70Cie3h2LOsYAADdoH0LhrXW6ci2LlF78XaE4Ze+0ut67eKTBf1IqU8ff6U+H41gOasOGbHYgakYBmVfEu54H3HyRObNj4t2AzhP4i7HU6dg8egUmWMGiLJ+po43/jckoCkqJgkmUEwEGrw1GrI9FolWV4o3bR5eN/JbdvpzBr5jbMZgmDQUulSl74+ZXk9Tc6ERoajZubA6IocOjQFaKj72E2SyxYeICfG47ixx9HEhR0g1q1/HAqRjfudn0Dade3YEWULMl8886vyLKCTq+hcYeaOLrYM3R8Zxxd7KkU8OcaC3Z9oQVRl9egKiqmbDOmHDN6g45WfQKxd7Tj1O7zePmVpGzV0mSlZeNS0qlY+xVFkfnHP+PCiQiqBVbEzcOF2s0f3uW4ftuaLDg5jZws00Mrxf4xqCpqbv6zTq9l/HcvkZNpwqOsB75VfLgXl0y9tgGc3BaCqqiFpiuSgptnwTyhSyeuEnY4nLaDmuKTG347vukMwfvO02tsJ178bBAdh7XCpZRzsT8jG/8ebKExG08NQRAKGEE/hgSx6lIY/arW4O3Gzf/n/auqSpbFgpP+2al6KYqjZ66zeO1xvDxcGdS9AfVqPp0KrsZeflR2LcWllHgm1G5BE59y1Hb3RlIUDBptsZ6Qk4zZ6EQRF/3Tkf3QPCB6qtVqWbDwRQRBIDIyga9m7wCgW/c6tM/tAm0w6PLK40uUcKRz54eHw4qDqBFxKmFVbreYZcpV8WbYO93+62T+zkObIUsyKYkZePmV5Ju3V2E2WfjxwzWs+WYniXdSkSUFWbLKdHQY1IRxXw7C4Gj32H07ujrQpGvxvallKv078ln0Bj3TNrzNtl8O0HFoC1xLOfNSnUncu52KqBFYdG427j5uDK3wOunJmSiSgr2TAY1OJDPFavRfOHqFm+GxlKvuS2JsEu93nY7FbGHLj3tYHTOf2Ig7TB/+PWajheObzrA2dgGeZd35qM9XXDp9nYadajPl1zfzPH42bPybsBlCfxMrL55j5qmjAHwXfIr+1WpSztXtMbPySczO4ssjh3C2s+ODlq3RCCID16/mfHw8zfz8GFUvkFblyj9z1WmqqvLx3K2YLTIRUYmcDo3i+08HU7OKz+Mn/0nstTo2dx9R6H2dqCnW/M2Rl5h0YgcaQWB15+epU+rJr9HL25VPpvbl+LEIbtyIp1fPubz6ansQrB2jTSaJQwfDOXY0ArNZwte3BK+80u6/Pp4xx4yqqNjnGh6CIFC6XCnS7llDhmvn76dO86qPFWN9GKIo0mNkawB2rTyW56HITjeSnW4sNH7fmlMc3BDE+DnD6DioCYqicPlMJO5erpTwcCmWgfT/QL22NanX1moMR12+xe3IhLxrO7L6BCrWKkuzXoFYTBZC9l4gJSENre6B73lu922AnEwjqqqiyCpZ6dnW14oCub8V95tRfjroG84dDgfg1PZQrgRd/8cmndsoPio2iQ0bfxGbrobnvVaxGjZ/xhD6/MhBdlyLQBQEPB0dcdLbEX4vERWV47diCIqL5e0mzXklsNHjd1YMpv+0h13HLtO1ZQ3eH/3nypIfRBAE3FwcSEjKyPs/ISmdmjx5I+N/Zd2NC5gVa1htf+y1p2IIATRpUglRFDhw4DJGo4VFiw6ybPlYNm44w+3bKaRnGPOaECYkZHD3bhply7oX2k94eByzZm7HIsnIksKAAQ3p/0DjxPCz0Uwe9D2KovLxz6MIbFsdAL9KXlw5G23VLVOtGlbFJeTgZU7sDKPrsOZUqp3fyHH5zK2s/mZXgbEarYjBwQ6dXkPqvXwpFVlS+OnjdbTu04CfPl7P3rWnMBstCILAsIndGfp2t2Kv59/O2rnbWP7572g0IqJexJRlQlYUrp2N4trZKDQ6TZ6QrSiKvDhtIPtXHafd0OaUy9VPK1utDC9/OYStC/diZ29H8J7zNOxchwkLRnFmVxj937Je77DDV6zNKXMNJJ8Knn/beduw8TSx+Tn/JkbXzc/VcNTpqFLyz4lXxqVnIKsqFkVh5YUwvjpxDIuc36HXoigsPhfyRNaanJrF9iOXMFtkth2+REp69v+0v4VfDqVb25poRAGTWeK3LcFIDzSBe1YYUa0BOlGDg1ZPt3JPV3W7fHkPRFHAYNAREOCHi4s9P/8yinnfDUcj5j+deXo6c+rkdW7FJBXax7xv9xATk8Sd26kkJKQzf/5+OnWcwTvv/IokyRzeHILJaMFiltj564m8eeO+GEjNRv6IGhFJlvn8lcXMfH0Zr3aYwfFdYQ9dc9LdVD57cSE7lh/l3X5fW70KuexYfjT3JgouJR3pMqw5L7zbk98uzmRF6HT0f0jszskycfj3YM4du2pNClatXaE3/3zwoce/FXGHK2du5FeT/YtJvpvKoXWnWPvNDiwmC5JFpmqDCpB7ze87fmWLNeToW8WHARO6M+S9Pvx8fjZD3++DqqpsW7Sf2S//iEajIT76HjfORTN1wBxkSab9kBa8v2wcletVYNMPu5FMZlBVRI3IrF2TKeld/Ac1G/9sFIS/5O9ZweYR+pvo7F+ZsJdf41z8XQI8vXCx+3MhgAcjXveys1FUFXutlqEBtfnl3FkA0k3Ff7K/j6qqnAqLRlFUqpT3YNG6E1gkmVIlHEnPMOLu5oiz45/Pl1FVlY27zhEXn8qwPo1ITMpEznXtX42M52ZsEv7PWFVKR7/KnB/8FhpBRK8pXjituFxPTeLlA+swKzIL2/SjtqcPS5aOIS4uhZo1y+SNq1TJi7ff6ca5czdp1aoan0/bxC+LD7FixTHWrX+zQKWYp6cLERHW3jxarYgkKciyypXw21y/Fk/NhhXZsfI4INB5cBPA6v25ePoG4SFReSERi0ni6LZzyLLC7DdX0Dyi6I7MiqLmGSH3BVrv02lIUzYuPICLmyPzD36IWynnAtsnfD2MJV9sRlFVUhPT0Wg0lCpTgpc/6stXry/DlGNG1Ii06dcQgLVfb2f9tztp2bchr88dzvmjV/io/1wQYMikXgyZ1PN/+DSebSxmidEN3seYZcrzDCLA3egEwFoV5lbKheS7+f2y7kQlsG3RfoZ/MiDPoxOy9zwLJq7AnGNm36pj1tuQYM1BEsSCN6Uzu8NQZAVBFGjYuTantofiVc4DT7/CnkgbNv7p2AyhvxFXgz2ty1X4r+a+2bgpL23eiKzmaikBbctXpHX5CiwJC0VRVfxLlMQoWYpdpRaflM7EWb8TFZuERhSRZCVv3x2aVaVfx7pUKe+JViNiMkuIooBOazUQ0jONbD10gfKl3Wlev2KhfR8+fY35Kw9jschERMVjkfK9Bzqtho27zyFLMjWrlqFbm5p5SZlZOWZ+XHkYQRAY+3wrHP9i+QP7p1DhZ5Qs9N6xjCzJKisxK/QwKzsOplQpZ0r9wWAA6NChJh061CQz04jJZEGSFFAlTCZLAUOobDl3OGZ97etXEmcne65du4udnZZ7MfeY8/aviBqRwLbVadS+JqYcM2PaTSc9yRqm0tvpMJusmmSyoqCz01LK5+FeAI/SJXhv/otsXXyYxNspLJiyjrGfP4coirw0pS99X2mPo4s9ervC17BN34a06dsQY7aZAxuC8PIrSb2WVq/bhutzMWabSUvKQJYVUhLTWfzJOlRFZc+Ko/Qb15krZ24gWSRkSeHsgYv/akMo5kocmakFvbCCIND5hdasnrUZjVaT97mBVa9NtshkpWWjKCoaTX7uj5rrQVIVFXtXB/qM68TNS3EM8H6FAW93Z+j7fQAY9mFfrp65gVanIfTAJYJ2hXH2wEV+PP3FX3TWNv42VFvVmI1nHKNkIdVopGXZ8igPhAQ0osicTl1ZdSEMjSCgqCpXku7x3LrVbBr0fIHqpIcxZ8kBrsfcA0BW8sNsCODsaKBuNWuOQdD5aCZ9tQmNKDL/40H4ebvx/tzNXIi4jUYj0r9jXaLikkhNzybHZCGgcmkCa/hhtsgoikropVhro0mNSBlvN27GJbNpjzUEs+PwZZJTMxnRvykAi9ccZ+t+q3CtKAq8MbwNWu2T9c48KTItJuIy06nsVuqRHasTcrIwyfnq7nWLmXvk5GTgrbe6sHlzCD171cfV1aHA9kaN/Fm//gyoKh071qJ69dLcu53CdxNWMXPsElSs+Tin9lzkauhNHJwNpN3LwGyyruXdecNZMn0Ld28lo9VqaNGtDmM+7vvINTXvXo8fJq8hJSGd5PiTNO1aJ8+gKVEMbSuDg55uLxTuWG1w0LN+/knWfrcHrU6Dh6876UkZ6PRaSni50n5IM/asOkZ6UibDpzw7TTGfBjo7HaJGzPPYgdXD2mpAE7q82AZ7JwPbfz7Akimr8Sxbim6j2nFyawgDJ/YsUOXVsEtdRkx9jo3f7iAzNRuf8h6U9HJj/dztmI0Wln2yjoHv9ECr01K9cWXW31nIuUOX+KT/16iKijlXD86GjX8bNkPoH0RCViZdVy0n02xiSM2CZdNTW7XDTquld9Xq/HYxjBspKSiqyqXEBFov/Zkdzw/Hxe7RIS03Z3t0GhFJUXB3cyIjy4gkyXRoVhXPkk7M+mUfL/Vrwsxf9mK2yIDM18sPcOnaHRTV+uMsyQq/bg8usN/ouGSOBF3LddFbjTdVVZEVuJuYXmCsIivE38uXitDrtYiCgKyobNgZyt6jV1gy+wW8ShVPCf2vIsWYQ/vNi8iWzLTz9Wd+64cbEH5OrvSuUIPtN6/Q0a8S79RtVezjdO1Wh67dig5V1arlx8qVrxIdlcjHH28AoIKPG5Ycs9UzoLPeFGVJYd7kNczbPpHazSoTcugKPYa3oFXPelwOjmTr0qNIFpmwE9fycnniohIIPhhOw7Y1KF2hYAjT07ckWek5KIqK+3+ha/UwDm0MxmKSEAWBAe/1xMFex/Ylh3iv+0ze/fkV2gxozO7lRzi66QwBzao8cxWST4qyVUvz2pxh7F1xlKshUdY3VXAvXYKEm/dYPWsLjbrUZUvqEnR2OgRBYPC7vQvtRxAEBr7Tk55jO9LPczQ3wm6ycNJKDE4GRI2Ih587mj88ZNRpXYNhU/pyNTiSYR8+2ii28e/AJrFh45nl6u1Edl6JwCRZsCgKO65H4KTXY5JkDDotA2paW98npmTyvG9tjjjd5NCtaABSTUaCb9+mXYXCIav73EpPo0YrP0r7uOHp5kTlch6s3HaG+tV8cXI08PmCXZgtMjduJXI7Id94uRmXkpfr8yjSs4zYa7WoiprnyVJVFZNZKjCuTg1fRg3K76k0ckBT7PRa1m4PIS3DiNFk4XRoNL06Prx/zqJLQcw8ewhBgGmNOzG4cl3Sc4xEJ6VS3ccD3RPO9wEIT03AKFswyhKH4iIfOVYQBOa06MGcFo8XMP2zJCSk8dFH6zHlenliw+PyukVXr1+ea2G3QBAoW9kbjUZk2vKxBSqDkhPS88ZnZxiJvBxH5Vp+vNl9DhaThRVzdvDr2S/Q22lRVZWlX25GFAV6jWpDi271KPsE2yAMfKMT3078FUdXB1r2asDmBXuJCIlElhUmdf2SlHjr93DnkkN0G9mG8jX/XPPHfxJ+lX1o1KVuniEkCAIGRz2TOk4jIyWL3csO83PYbLzL5xupZpOFayGRlK/ph+MD3sNLJyKQc3ONZFlh3vHPiIu4Q0CLaoWMSUEQeG6CTRfRxr8bmyH0D+DM9VheW/Q7AHoXEZOLwMi69elRpSrHYm7SulwF9BoNKZk5DP9uDRZZwdnejhHt6vLrxfM46vTU8374DSopJ5uu65ahqCp+Lq7sbjWSXq8tJDElk8NB1xk1ILcDswoqKir5bUlaNvVn296L1s2CmterRPhDRYCoEXnnjU7MmbfHml+kFUisCUY3KHlBxT4ZVAGqBHhT0s0xb56dXsvIAU3R67Qs/O0oOp2GwAfKtO+TZTLz/u+7SczMIsQuBklVQIGpQfvo7ledLt8tJcdsobavD8tGDvivP4uHUb9UaSq6uHMp+S5jajR+4vsvLuvWBuUZQVqtSO0AP0LvpqGqUKF6GV58vxfxt5Jo3i2/MWFmWg4ZKVmUruDB8R35VWKu7k7YGfScP3UdU44ZWVJQVTAbzejttJw7dpUtvxzCmG3m7s17HFh9EllW+GLtePxr/e9NMjsNaUa7AY3RaEUEQaBsVR+0ei0aVSX1AYFZQRD+K4X1fwqXTkbwUZ/ZKLKCd9mSOJVw4pVZz/Pr9E1kpecAuZIme8LoNqodYm4Y/J22U7l5ORYHZ3uWXPkG+9wih+Q7KejstFhMEj7+npTx96aM/6ObT2amZrFg0goEQWDk1IEE7TpHaX8v6rSu8XRP3sbfgs0jZOOZ40pcArKiYpFl6jh5s+CV/nndo4fWyk9mzTKZkRVreCojx8SHLdsyNrAx24LC6TptMU0q+TFnZI9C+UJ3sjKQVYUcSeJGajLd1i0j3ZifnNm4Vjk0osCtu6kM6dGA/u8uRpRUVI1Aty61uC6lcOnibcylRJQUGckeypd1IyUxm7suJkokaXilbWPeDNmJm5OKXRpk+woYS6ggQFolsMuNpi2KDuX57EaUciiY/zK0d0O6tqmBvUGPITf5VlVVJu7fxc7IazQo6UNYxB3Msoy+vBaLYAYVfFQXopNSyDFbyLFIhNyMy9tnpsnM0WtR1PDxopz7/1YabNDq2NZjJIqqPjI/KCvbxNlLt6jm743HU5AuaNasMidPWkV9p07tS0CNMvz02e8oisrwid1wcnWgRmB+gn5sZAJvdvsKWZIZOK4DHZ5rxL51Qbh7u+Hi5siE3nPR6rQEtqlO4u1Ueo5siVOud8G1pBOKoqLVaZAtEmm5Ic313+/mvYWjntAZqXw+7HsizkYybs5wXp87nO8nLENQrRVrPhW9+Gz9BFyLSDL/t3AvNhkBAYtJ4s6NBHT6ZHYvPcyR9afyKrtUWeanSSu4G5XAqOlDkWWFq8E38toQxEcn4le1NJdORhDQoirNezck9todJiwYXaw1LP9sPQd+PQ7A+SPhJN1JRQCm73ifgEdIndiw8U/AZgj9A+gZWJ0doVdJTMvknV6tHiqh4evuylvdm7Pj7FVebt8QrUbEy8mJH3aewCIrnIi4yeVbCdQqV/Dpr6a7J30qV+dgTBQlDfZcTkpEHyDQ0OjBi20bUbm8J5XL5zdTe39SZ34+HES/RgFMPLKLGDUVSw0FvUaDxRMMWi3xOhPJHiZUINsPDqTdQgaSaoFdCpT0ckCUrWX/sgMk1QFFDzpnkWspSYUMIYASro4F/o9JT2Pb9auYZJlj8TG4ijoMopayRlfC0xIRzQLly7lTzduDun6lORMdy5iWDfPmj1i6jsjEZARBYOcbI/Fy+XOGSWaWifW7QvHxcKFTy+oIgvBII0hVVUZ/8CsJSRloNSLrfxiN0xPunNyhYwDVqpdGoxHx8XHjwqnrnDlwGTcPZy4HR7F9+TGcSzjQtm9DGrSuxoVT11FkBbNJ4tDmsyw69CEvvt+T4Y2nkng7BQBZMpOTZeKH3e8WOFbFmr58uvI1rp+PwdnVgR/e+xUBqN/2yXkJgvddIHjveYxZJj4d9A1+1cpYw6uKil8VH34OnVnkvKy0bBJuJVGuRpk8D8k/leZ9AgneG8aB345jMUlYzBIRwTeQpfwKMEVQMWabiDwfDVjFbwdO7MXGb3dQv0MtylYvw5fPzyNoZyiCILDg7EwuHAnn6IZTePi64/aIxHaLWeLMnvNIFhmtTkNOhhFzjhk7Bz1rvtrK0Y1BjJj6HA7OxRPmtfFsY+ssbeOZxM3Rnt/eGlKssS+0bsALrRsUeK+GnxfXbt9DqxHxK+VKeo6Re+lZVPAsiSAICILA9NadAZgbdJyotFRwURnUqxEdKhV+2usXEEC/AGtO0jfnT2HJVYQ054qb/tZrIAM2rb4fJUMFXgiow+m4WBAFTO5g56Dl2ybdORV3i/re3hy4GcW+yBvU8fahgXfpYp2rp4MjLnYGsixmSjs5M6VDa5Kyc/AvVZIXl21AQub5RnXQaTQsGdG/0PzIxBRyLBL2Oi2309KLbQipqkpiciZfLdrH6XPRaDUiBjsdrRtXfuQ8RVGJuZ2MqlpbBtxNTKOS45Pv1uvrWzLv9ZIZW0lJzCAjLZsvxi7BbLSWWR/Zdo6PF42iUbsarPhqBxaL1SME4FzCEZ1ei8Us5TVEHPFu0flMdVtUpW6LqgBUC6yAIitUqPHoXJ3dq46x5PNN1G1ZlUk/vlykfpXFLHH59HWc3ZysUhKC9frdjUxAo9Wg0Sr0GVd0h/PUxHRG138fU46Zpt3rMXnZuMdftGcYrU7LOz+9QuiBiyTkNtLUaDW0G9yUvSuOoqoKziWcKeHlyugZw/LmjfpyKKO+HJr3//kjlzFmmTA42rF76SE2fLMDyWzhavANZu6a8tDjh+6/wL1Y63G1dlqmbnibH95ahizJhOy9QAgXkCWZ17998SldARs2ni42Q+j/gF9eHcDZqDgq+5TCaJHoN2sFZlmmT8MaTBnQvsDYtxo2I8DDC0edjua+j1ft/q5jD2afPoqiqtzJyuTVug2p61maaS06MC/kBDXcPZnSrA0V3EqSkJnFZ8cPIQDjGzWjZ+WqVHBzY8DG1aBCozK+rOhV/Pwde52OvUNGcCkxgXrepXHQ5ferOfneWCRZxsnwcI/L5M6t+PbgCVpWKk+dMsVL8lVVlfdmbuJUaBSCICArChqNSGYxZCk0GpGXn2vGL+tOoCgK3yw9xPdTBxbruMXBbJZYNGsnKUmZjJ7UlSthMTiVdMLOXo+qqhgc9HmGECok3E7h9L6LZKRm41LCgcYdAvLW+dXG8RzcFEyj9jUJaORf5HVYNms7l85E8tIHvahevzzlqhbPgJ3//mpMOWZO7Qrj6tkoajTM3/8vn21gy88HsXc0YMwyodGKfLF5Eos++I3oy7GgwuxdkylTyfuhHogb52MwmyyYcswE7T5Pwq17fD9hOS7uzrz+9XAMDsX3wl0Pu8mJrSG06teI8rkG3tFNZwjaFUavsR2oXLd8sff1v9LlxbasnGatBqwaWJEXpw0m/mYi2ek5fLDyTcpUfvR3eNT0ofzw1lL8a5fHt7IPAtZGmKasR393reK1AgZHO2o2rUqNJlX44dQXrPryd36dsQkUFeEf7nWzURDV5hGy8W8jKSOb1cfC8CnhTO1yPkiKgskisf/C9UKGkCgIdKqQL7ipqCoWRcZOU/CrYpIlUo1G2patSNuyBavRjsXeRBQEDg4ZhUGbP69nlWrMPHUUkywz5fA+elWuRlxGOiIC2bKFm2mp/FncDPY09ytssBl0WtA9/OudaTQx7+BJ0nKMnI+LL7DNIsusC7mITiPSr17NAjlV2w9e4niItSpMI0LNyj4EVClN55bVi7XeRnXLs3JzEEaTxIWrcY+f8CfYte4MuzcGI1lkIq/e4W5sMoqkoNXrmbZgBJ5l3Fg6cxuXz0RRtV452vUL5IXpW5AsMsYcC1dCowlo5M/i6VtQFXjpg144OhfdciH0WASbFx/GmG1m+qtLWH7602Kvs0KNMkSH30YQweuBTsWmHDPrv9tjrSbMtvasMTjYIYgic/ZO4czuMEpX9CpQHaaqKpEXbuFc0hFPX+u+ajatTJlK3kReiOG5t7vzwzsrOLM7DI1OQ4WavrTs2xA7e7tCeUWRF2O4eDyC5r0Dcfd2Iystm/FtP0MyS6yauZllF79CkRVmjVqI2WjhxLYQNsT++NDzVBSF1TM3E3cjnpFTn8PD1x1ZVhAE/qtw3ZD3++Dk5kBWWg79xnfF3tHA7L0fF3t+p+FtaNG3MUfWn6JMFR8GvN2DpkGnMwAAIABJREFUW1fjeOmLoY+cV6ayD/NPf8HN8Dgadclv3fDcOz2QZRmL0cLQybbSehv/XGyG0P8Bn6zZy+nrMei1WnzdXfF0deLWvVRGdXi0IOvdzAx6bFhBqtHIl607MrBaLcDaM6fz2qWkGHN4vkYdprbIN6aOxd5k9K7fUVXr6+86WkMqqcYcolJT8sbJirX6rH15f7pXqsKFxHimtSpolD1NopJSSMnOQVZVIu8lsyb4PEMaWX/kvz94kqUnzyIgkGk082Lz/FBj5K17eRVzep2WuR/2x/FPeBiqVvSidrUynLscy4h+TYock5Vp5NCO85Tz9ySgQfm898+evM7iubup06gioyZ2KVTq7OBksOYpaUQki2yVvRAEJBVCz0QTuzSGU3svotNpiAq/jZ1BR4/hLVj7wz7c3J2oGViRX7/dze7fTgGgN+h45ZOCN7jsTCMTen9NTMRdRFFAoxVxdc83KFRVJT4miZLerkV2lAaYsfFtQg+HUyHAF/cH9Kv0Bh1lq/oQfysJQRCwmCXsneywdzag02tp1rMB8h806X6dsZk1c7YBMHv3B1RtUBGDgx3zT0wj8mIM73WdQVZGDgjWZOMN3+1iydR1iBqR2bus4wGS41OZ0O5zFFlh1YzN1GlVjcZd6yHdb++gQvCe89RvH/Cwj7YQW37cy7Kp61BVuHXlNqO+HMKHPWei0WmYs/9j/Os83uP6IBqNSJ9xXR47TpZkTm4Lwd27BNWbFAzXftxnFlfP3ABg3okvqBBQuLpPVVWunrmBo6sDfrlePr+qpfGrWppT28+ydcFeOr/Yhlb9GjP8oydfgWnDxl+NzRD6P8DFwQ6tKCIAHi5ObJs80hrSecxT6f6YSDLMJiRV4adzZ/IMoXPxd8i0mLEoCr9HXKahjy+Hb0XxYq0GxGWkowJGWSIm3erhiUpNocfaFUiKQttyFdAIIsNr10Obe/zZ7R//4/6kqebtgau9geTsHERBIM1ozNuWlJWDpCgICCRnFZQ2GNIzkIsRtzGZLEyb0PNPGUEAWo3I11MeffOY9uYqLp+LQRAEvlo+msq52mMzJq0hPSWbW1GJNG1XvYCRBNCuZx0kSSY1KZMmbavx+nPzrTdyVeXOzQRCDl+xdgg2SSTEJqPICiPe7cHAcR2xs9chiiLRV27n6VkVpUJ//uR14iITAWvOTuP2NRjyZue87TNGL+LEznO4ebiw8OhUHIrwKBkc7Wj6QPn+fQRB4KOlY9m2+BCl/b345dMNpCSk88VLC/nl9DQ+HfwtJ7edpc2AJkxe9hoAp3aEYsoxo9VruXQiIs+wAdi15DDpyZkFjpF0JwVUq0cmZN+FvPHpSZkoqorZZMGcaOHwhiBObDtL4651Ob3rHHqDnsCOtfEu78G7P7+SFxp7GIlxyexedpj7zd8Tbt3j9+92YsoxQw5sXbiXwE51CGhe9ZGJyv8NP769jD3LD6MqKp/+Pon67Wvlbbt9Ix5TjhmDox2Jt+4VaQitmb2FVV9sABU+2/wu9dpajb+cLCPTBn2DxSxx7tAl6raugYv7v7da7/+ZZ0kQ9a/AZgj9H/DZoE78VuYcnq5OdKpjfUIsjuRG09J+aEUNKtC3Sn4lUH3v0pQ02GOSJLr7V+WdAzsxyhIHbkZy7PkxHIu9SUx6Kh81a8vFe/FciL+LrKqYZJmrSfc4OOzlp3WqBcg2W5h3wKqy/ma7Zjjo8z0UOo2Gza+9wOc7DuJssGN4k/p52ya0b056jhGdVsPoB6rMADxKOvHTY0IJ/yvxt1MxmyQM9jruxaflGUKlPF3IybK2BbCz1xVohAjWm3uX/oF5/3/w1WA+H7UIVVFJjU0GVUUQBbRakVEf9cnrImz/QOVaSoK1BF4QBXzKlyq0tiq1/QqovQftv0zQ7jCadqnDBwtf5viOUCSzTEZyJtHhcdRo5I+iKJw7coWS3m6Ur/bwPCJFUZjY8yuy0rMRRQFVtcqq2Bl03Ludwpnd1h5HR34PYtzXw3Ep6cTwKf34/IXvKeHpQusBBfs3BXaszZaF+/LWq9Vp8pLADY4GWvXL94iWr+HLoAndObb5DLci7iBZZARB4N1FYzAZLTg622PIvU4t+zSkZZ+C34sHyUrL5pVGH2LMtPb40Wg19BzbkTL+XgTtCkMQ4OjG0xz47Tj2TgZW3vgOnf7J/RRfD4vGmGVCZ6fj5uXYAobQpCWv8eOEpVRtWIkGnfLDXJHnbzK1/xzsHPQ4uTlgyjYjagTO7DqXZwhpNCIanQaLWULMfW3Dxr8B4cEftSIHCIIBOALYYTWc1quq+slDxvYH1gMNVVUNFgShPBAOXM0dckpV1bG5YxsASwF7YAcwXn3MYgIDA9Xg4OBHDbHxhEk3mUg3G/F1LtiwTlYUsiwWErIz6bF+BUZZwt1gT8hIa4VOhtlE+9WLyTCbqOXhTWxqOnczM3DS2+Hj5MTCrr0p71biqa79qz1HWXbqLAAjmtSnftnSfL3/OK0qlWdip5bPrCTD5dCbzP9yG5VrlOb1j3rlGSxpKVkc3B7Gnt/PEhVxlyZtq/HJvGGF5oeeusGcDzfg6mxH7KVbmI0WtDoNb899nq8n/ooqq4z/aggd+he+me/feIa5b6+yJoLLCr1GtuLVzwpW3A0MeJ+MNOtNXjWbQZYRRIFxM4YQc+0OW385RLmqpfl2z2Ts7PX88N6v7P3tJKqqMOP3d6geWLjDeU6mkYzUbF4M/ABZsgq+jp46gPhbSfQe0w53bzfGNv6Quzfv4VfFh++PfVqsPJvFH69l4/e7EQQY/eUQWvdvjKOrPaJGfOj8y6evs/+349RoUpnw09eo1aIarfsX3STTmG3ip8m/kZmWzdiZQynp5catiDu81uwja2K6qjLgjc7sXHKISnXK8eYPLyNLMmMbTEaWrOXoq6K+p4Tnk2sIGRF8gxkjf6BU6RJ8su6dAl2lH8Znz83l2KYgRFGgzaBmnNgagjHLiM5Ox/Ttk6ndyvogdD00msPrT9GsdyDVG1V6zF5tPAkEQQhRVTXw8SOfDE5VvNW684f/Jcc63nH2X3puD6M4jyEmoJ2qqpmCIOiAY4Ig7FRV9dSDgwRBcAbGA6f/MP+GqqqF/eDwIzA6d/wOoAuw88+egI2ni4udHS52hcM/GlHM2za7bRcOxEQSm55G/aU/8FGzNlQq4U6G2USOJBF8N47roydQc9F3pJtNpCeb6LVuFWGjxj1VY0QUhLwO16IoMHHDTrLNFmJT0ugSUIVaZR7dTbc4REQlsPPQJVo09KdBQOGO18UhIzUbe0c7tLlP2DXqleP7dYVLvl1LONKkTTV+/moXqqJycn84GWnZOP/hRjf/i63cu5tGUjyQG+Zq3bsBC6duxJLbdXr78qNFGkLt+zXEr5IXk/rPQ5YUtiw5wpiP+xTQoHJwticjLQeNToOqiMiyjEYjIkkyr00fwktT+mHnoM/7bC8H3cCYbUJv0BF54VYhQ+jWtTu82XE6FrNE634Nibxwi7b9G9NrdLsC4344MY24a3fxreJT7GTjlz4bSOsBTXB0tce7nMfjJwA1GleiRuNKjAiYyN2biexZeYwylbypVEROz5aF+9iz4qg1d0lV+WDZOHwqelKzaWWuhUbz/OQ+rJmxicyULK6cucGtK7dp2rMBgyb1ZMfPB+jyUpvHGkEZKZl8OuBr7t1JZvLy16kaWLiK70GqBPqz+OLcYp3rfWq2qMaZPWGgqrTo25jUhHTO7r+AbJYIO3QpzxCqVK88leqV/1P7tmHjWeexhlCul+Z+oF2X+1eU52YaMBOY9Lh9CoLgA7jcN6YEQVgO9MFmCP2jMMkSM08d4V5ONh3K+fP+4T1kSxY+PX6QM8NfpY6nD6dv32JMnUBi0tMwSvm6YllmU55Ux+OQFQWLohSoQHuQhUeC+Pl4MO2qVmRG3855N+DX2jRBI1pfv9KqMfvCbxCXmoYKuDs+/in5seuSFcZ9sobsHDOb9oaxYf5oTpyN4np0AkN6BRZLGHbZvL2s/eUIbiUd+fH3N3Fxe/S6PLxdMdjryLTICAJs/e0UoihSrbYfdZtYb5BVA3xJvJOGMccMDvbo7XUc230eU0Z+HlS7vg9/CCtb2RvXkk6kp2RSKcCvkBDne9+P4L2B80AQqN68Gj5lXHEp4UT3ka0B8kJI9xkzbSCzxv6Cp19JWvcrbHyFHLyMZJaQzBLRl+NYcHRqkevS2+mKzGl5HP5FSLKA9fMrqodR3nZJzvulU/6QpL1v9XH2rTrO1eBILGbJahQikJ2Rw/pvd3L59HVQrQngNZpWIWTveYC8ireRnw5k5KfFa52wb+VRwoOuYTFJ/PjOCr45PLXQmLhrdzDlmKlY++EJ2BazVCAEl3QnhUsnruJS0pmuL7WlSoMK2Bn0VAn0x7mkI+Gnr+HgYk/751sWa502/j3YyueLQBAEDRACVAJ+UFX19B+21wf8VFXdLgjCHw2hCoIghALpwBRVVY8CZYDYB8bE5r5n4x/E6vDzrLochkVRSDZaQyUOWh21PbzRaTSs7jUoL48ly2zG1c5AhtmEIAh817HbI7sw3+dWehq91q0kw2xmTvsu9K5SsExdVhS+OXAcVYXdl64xukVDKnlay6gNOi3j2+cLuK586Tn2XL5GHV8fSru5kGkyM2bF71y+m0CTCn58M7CHtew+l8SMLObuO4aHsyNvtG1KRoaRrQcuUqWCJ03rVUAFJCn/Bhl66RZfL96P2SJz4eptfplZOGz1R3asO4MsKaSlZvNyt7nUCizP5K8GPzRnRKPVUK9pJY7useq7/b78BFmZJnQ6Dd+vH4dfBQ8mTOtLy84BHN1zkf1bQnH3cCY5MitvHwFN/Okx4uE3N4O9np8OTiYuKpFyRYiomk0WNFoNxmwz1y7cYubaNx55jnVaVGXVxVkP3d64U21WztqKJMlo9VqS7qYWqCb7X1FVlbvRiZTwcsXgYIdkkXi/+0wuHL9K77EdeW3OC4XGzxu/DGO2GXtnAxazhQ96z8bNw4XBk3oS0KwK34xbgsVkyZujt9NyfMsZzu6/QN3WNbAYLQiiQPzNRHyr+HBiSzAupZyZMXI+479/mYoPMc7AmisVGRaDZ1l3XNydKVfDF1EUMTjaUaV+hULjg/eEMXXAHARgzKxh9BzbqdD+pvSaSfDuMFo/14QPf32L7IwcRteZSFZaNqqq4unrzvzgGRhzewrVaV2TzSlL//uLbsPGP4hiGUKqqspAXUEQ3IDfBUEIUFX1IoAgCCIwFxhZxNQ7QFlVVZNyc4I2CYJQ888sUBCEMcAYgLJl/7vQg42ng4PWGv7QCAIe9o7sHjiS66lJNCuT/znd98446vXsGTKSc/F3aFLGr8hwW1HsibpOptmMpCgsOhdcyBDSiCKVPdyJTU1Hr9Hg/Yju0CUdHRjcMD9BdNfFCM7F3kFRVQ5FRLEm+DwjmuYnTX+ydR+HI6LQaTSUcXNh97owrkcnotVqmP/ZYKr5ezHnw36s3RZChxbVcHI0AAKqqmL5gwfhPlduxHMs+DptmlShUjkPOvWtz+/LjiNbFDLMOZw9cYOzJ6/TuPXD9ZsatarKiX2XkWWFrEyjtUxepyE71+Oj0Wpo3KYajdtU442Pe6PRiswYt4zQo1fp/VJLsjPMzHl7FaM+7I1bbi+duzFJXAm9yeHNIbQf0JAW3eri/xA19xqBFajeoAKXQ6Jo378hmWnZOLk6kJWezcqZW3FwsWfwhG7FTgD2Ke/B85N6svDDNUScjeatztNZEVa0dEZxWfTBb2xesJcm3erh6OLA/tUncHS156cz07kXl0zEWauK+5aFe3n1q2EFQrSXT11j9/IjVo9QLhmmLDJSsvh63C98e/ATHrTh9QYdxmwzqqKSmZpN9SaVyUjNQm+n47nx3RnoOxZVUUlLSCctIZ25ryzk+5NfFLluWZKZ0nsWF45eQafX8s6isWz/5QAdXmhJ/fYBNOtV2KMWdugSFqMFVVU5uS2Es/svkJqQzsSfx1Kmsg/3YpM5d/ASAEc3BpGZmkVqQhqmbJO1azeQnJDGsIpvYDGZ6ftmN8Y8wojf8uMetv98gD7jOtP1pbbF/1Bs/EOwSWw8ElVVUwVBOIg1n+di7tvOQABwKPfHxBvYIghCL1VVg7HmGKGqaoggCDeAKkAc8OCvrG/ue0Ud8yfgJ7AmS/+Z9dp4uvSvWhOzLHEvJ5uXawfipNfj5/LwfAdPR0c6VfxzCZYtfcsxR6NBEAT6Vy3ahv5t1GBCYuKo6eP1yE7Sf6Syl3teaE4UBJz/MFev1VpvkALotRrSM43IiopOgIwsq9Hh6mQgNDyWMxdimPNhP0YPakZEdAIvDWha6HhZOWbGfbIGk8nCmm0hbPvlNV5+uwv9hrdg9uR1XA69iYqKbxHVWg9SytvVmk8kQPlKXji52FOvqT9VahU2XOwM1kq5KQtfAmDDTwdYv+AgsqQgmWXe/2EEC6ZuZOuSIyi5N8WQw1cIaOSfZyT9kaD9l/Cr7EXMtbvsW3eG03svsvjYxyycspb9606jEUUcnA30f61oCYyiSE/OV5O/d/vPN9Z8ELPRzIZ5u1BVldM7z6HRarCYLGSnwaIPVjN8Sl9c3J1IS8qkRuNKeUaQoih88cIPHNv88IIMURRxL+3GG9+MIPJCDPXa1sTdpwQT2k/L69p96fhVpq1/m3u3U7BYJAKaVyX89HUsJgt6gw5Pv6I/X1mSeb7iGyTftZ6/Iqt8+cI8JLPVINv+035Kersxffv7VKhVFlVVuXDsCrVb1eDA6uMYs0yUqeTDjkX7sFgkfnhrKa/OHUEJb1fK+HtxJyqBCrXK4ujqgKOrA51HtmH3ssNIJgmP0iW5E5UAwLaFex9qCKUmprNg4goki8y81xfTqn/jYiVj27DxLPNYQ0gQBA/AkmsE2QMdseYCAaCqahpQ6oHxh4CJuVVjHkCyqqqyIAgVgcpApKqqyYIgpAuC0ARrsvRw4LsneWI2nj6iIPB8zaLy4J8cVdxLcXLEGLItFnycir4xO9rpaVW5cMjgcdTx9WHVy4NYG3yeumVL07duQbHQz3q2p1xJV0yZFuLOJ/LK4JZsP3SBgCplCKxl9XptPXCBzNxwwsQvNiLJMgO61sfXp2BF3MWrt1m5KQiLRUIFzJKc1xywRCknpn4/jDNHIyjr70mZco82hOo18eedL/tzKzKRDr3r4eBowNm1oNxE/O0Utq8OonrdsjRtl+9FM9hbvXiiKGBw0JORksWWxfn9bsBaOv/HvKD7RIXHMevNFflSHVhzTzJSraG3op4jVVUlaO8F7Ax66rYq7Om6dyeFkAOXETUiiqLQ+hH5SzmZRma89CPRl2LxLu/BgPHdaNipdoExd6IScSrhSE5mDs4lHOnwfAvWztmO2Wxh/5rj3IlOYPhH/diyYB8dX2hZYN7pXWF5/4saAQdnezRaDZmpWZTwdOW9xWOZ0ncOMVdu41fFh9FfDkGjERk7cyg/vLMSWZIJ2hPGZ8/P4/yRK1Ydvy2T0GhF7sUmk5KQRodhRYclb4TdJDk+3wiULFKhMcl3U5ncfTqrY35k6cdr+H3eTlRV5Yvtk6ndsjpH1p9i15ID2Gn03I6M59XA93BwceDHkJlkpWRRprJ3nuH35vejePP7UQAsfHcFG77eDoDHA92+/4jB0S4vX0qWZNKTMmyG0L8QW45QYXyAZbl5QiKwVlXVbYIgfAYEq6q65RFzWwGfCYJgARRgrKqqybnbXiO/fH4ntkRpGw/B1c6Aq13RUg//K3X9fKjrV7RGk4u9gZcaN6Dv2J8wmSUcDHp2Lh2H9oEE22b1K7J573lkWSEnN2dk9bZgurcNoELuDUVVVd76fD05RguCANX9vWhYpxz7jl+hc6sa2Om16O10NO9Q/Khxq861uBF+m1d6fYskKUz8sj9tuuWH/T4cs5TbN5PQ6bV8+dNIjmwOQavTMHRCFySLTGZaDv3GtEUyS2i0IpLFenNr1z+QrkObkZyQTujRqzTqUBODvT5vv2aTlBcWMjjoEUSBDv0bUcLDhVc+H4ijsz0OLvb0GpVf8bX22138Nnc7qgpvznmepl3rsXLWFrR6Lc9P7MH67/Zw/fxNVEWlRY/6vLdw1EPPe99vxwnZdxGLycLd6EQunYzgi02TmD5yPnb2emZse48P+35FRnImOjstHyx/nYBmVfCvU445YxZhyjGTlpjOt28sRTJLfP3qLzTuXBfnEo54lCmBm4cz6UmZ6A06Oo9oxciPBzDE/01kSSEzLZvku2lEXbyFLClEX44jNTGNkl5udH+5HTFXbrP9l4MgCMSE38ZstCBqRC4cv8rgiT2hIVw8foVh/m/i6GLP7L1T8Hqgkq20vxf2jgZyMo0PPX8gz3MXdvgyxmwTWr2WiOAb1G5ZnZb9G6Mz6MhIyuC7NxfnrsFETHhsXj+gPyJLMkE7rKr0eoOOj9e+/dBjGxzs0NnrMGWZ0dvrSY5Pw6ei1yPXa8PGs05xqsbOA/WKeL9IkRtVVds88HoDsOEh44KxhtRs2HhmkSQFJdddIsmyNafiAWdJozrlWfPdy4Rfv8sHX1mfCUTB2rTwQe4bD6oKKek5rN12FhU4Fx7Lx290e+jxszKMSJKMawnHvPfWLznKttWn8fEricloQVVh57ozBQwhY44l74b587RNXAmJyj2+ypiPH5DNcLRj6pJXOLgpmM6DmlCrSSViIxMY2346iqzgV8mL8tVKYzZaeGPGIKrWLceoKX0IO3GNwW90LJBH5OjiwCtfDCL1XgayRSYzNRutTkPkxVsYc8yIokDU5Tiu/oe9846Oqm7b9bX3lHTSIJSEFkoIHULvCIj0DoJSpAgICqiA0qUoAlJEUKmCIL0XaVJCL6FDQkIgCamk9ym7nD8mTIgJ6HuO33deda61XJKZvX+7DcyTp9z3rUiObjqHIAjo9FqKl3FDq9MiiALVGvhaMxZmk8SpHZdxdnWkRbf6CIJAGd+SBfpzFFlh94qjpCakI4gCRzeesfa9iKJoFYts2bMhYTcjeHIviqGz+jCl01dIJglVVTEZTYATens9a65/SWRwDJVql0NvbwkAazb34+bp+xhzTXw36SeKebqQmpBOpTrl+LDlHDKSs5i2eRzvzemHnaMdOr2WSnXL8+WQ1Tg42VHtJbmAjTN3kpmSRWZqFid+DmTwjHyNJmc3J7aEf0tUcAwPLoey7vNt1vcq1PQm4n4MWp2GuXs/AWDElwOZP3AF7l6u1skuQRBo2tViCRP7JIFtX+2jdMUS+DcuaLXxMkkxKcQ+SbB4vBlMFC/j8cptAT758X3WT99OvTdq4t/YpiX0T0MFW4+QDRs28vF0d2LmuE4cC3xAv8710RWhpuvl6YKXpwuLP+vFkTP36dSmBmVfKo3FPc+gXVM/jp59gKyoZGUbkRQFSVKIjEkptN4LHt2LZsqwdSiKwicLLBmfzPRcNi4/gSwpJMalo7fXIUsKXd4uKPg357t32fr9aSpWLcWhH3+zvh4d/rzQcQJaVyMgrznbbJI4eyAIOW8aLiosgZinSaiqwsaFh/hk6Tu06FwHrU6DtghT2183n2fVZ78giiKKrCBqRHqPbY+LmyMeJd3oNaY9u1Yet+o7hd2J5NbZYBBg+Ize9HhJO2jd7N0c23IeEDAZzMQ/iefCgRt0HNKKoxvOIksWP7WAdrW4cy4YFZWazfxoN6A5u1YcpW5rf6uflyiKjJw/wLr225924+cv94GqsmbqL3y+yaLb5OjiUEgocOaW8Sx+fy1ndl4mMzXfciU+IpGcTAOSSWLb4oM061ofB2d7tn61nxrNqjJv90Rm9lzCjO6LGLPkXbq+34G0xAzLziqoRfTTu7g7U6OZH67Fi+Hi7sz+VcfwKlucz38ej95eV0AIslYLf3Y8+6HwInkM+2IA787og0area1elyHbYA0eS1Xw+sNSV5v+zWjTv9lrt7Fh4++ELRCy8a8iISOLEw/DaFDeG//SXn9qn3bN/WjX3O8Pt2sW4EuzgIJigRmZuQybvBlJlnGw11OxrCc9O9RmwerjADx+8pyJQ9eQmZTNx/N6U6N+vg7MlTPBGPN6cQ5tu8ovP5wlKyMXewc9kllGb69lw9GPETUiTs4FS4eV/cvQf0QrPhu+ATMa0IggK0iSjCzJRfYAZaXnMKb9QlIT8xuXnYrZI5lkVEQ8vCy6SB/3XE5yQjqiKLDhwkzcX/LK+vXn80gmGUGQLX1HZpntyyxV78y0HFKfZzBsWk90dlp0Oi03zjzIs2wQiAlPwGyU0Oc1eD+PTsZksIzqPwoK5+DqE6iKytN7UTgWcyQ3y4CTqwNvDGiKb61yuBZ3QRAFPu+2CFmS6T0u3wPt97h4OFtEIM0SudmFPdVeRqPV0KBDLc7svGx9TavTUMzDmdxMA3p7ndVyY+vCA5hNEiHXwzmz/RJmoxlVUTm/9zpd3++ARyk3osPi0Om1eFcuuqR0++wDZvZYDAK8M70Xb0/u8drz+z2hQU/YsfgAd88+pHL9iszZ8yl2L5U3f0/YrQh0dlqMOaZ/mcOUjSJR4Q8MJ/5x2AIhG/8qBq7fQVJmNqIocGLCe3i5vHrc/q8gJT0HSVYwmmTMksLquW/zODIRjSiiKDKkGggJTgFFZeXcA/yw/yPrvi071mL/lktIJpkSpYoRfCcKRVapGVCBjr0DqNukUiFV6ajw56gqlK/sxf0bEUiSjKKoaJwcUDKyCb7xlKBzIZQq54mXj0eB/p/QO1FkpeeiyApanYZx8/vStGMtrv32EJPRTMe3LZNwiXGpSCYZvZ2W7ct+5VloHEM+7061AF9c8kp4gigiCqDVW75gAVDh/uUwKtcux4hZlpJQxRo+LHx/LYqicnzrRe5ffsyE5YPZ890JqjeqRG62ERc3J3xrlLVmLQCqNazEzd/uk5tfMwg0AAAgAElEQVRpYFDlCaiqyuR1o7l/8RFJeVm2XcuP8NnGD4p8Lh2HtCI6LI6rv95GkhTCbj3l15/O5TVgdyqkXN1+YHPCbkcQuOcaDdrXxNHVkaPrzyBqRGq18KP/pC4A1GpelYdXHqO309Hgzdqc3nUF2SQzYHI3ACZvGMvGmTso7etFmwFFZ1WCr4RhNkkoskLQyft/OhBSVZWvBq/k7I5L1tfuXwjh6pGbtOrb5JX7Ne0awN7lR4h5HM97C97+U8eyYeOfhC0QsvGvIikrG5MsYydoScsxWAOhg3eCWXPhOl1r+jGmddG+Uv83lPf24K3W1fn17AM83Jx4FpdK1Ype9O1Ul+2HgxDstQiA3kFHhSoFMwS+fqXYcWE6iqRw/2Ykl0+HgB4atKhCh571Cx0r8Ng9lkzbDcCk+b1p07k2h7ZfJSMthzIlnIh9bNGa2fX9KR7djkIUBVw9nfH0cuWDBf3wq1cBUWPJCaiKSnamAY1WQ4f+lvshmWWunw2mWcdahN19RrW65Tj2cyDGXDO3AoOZv+Mjbp55CIAgQuueDbGz12M2mflt11VcPV1o0b3gebfsHkDFGt6MaTkXk8FMREgMs97+loyUbK4ev8OgyV25fCiIZWMvImpEVEXBo4wHrsVd0Oo1KIqKbJZQVTi05jd6fvAmx38+jwDUf6MWvycnM5dZfZYS+/Q5TbvWJzEmlbinzwm5/picvOxOCW8P2va3BH2KonDlyC30DnrGLBzE2K/fAeC37Rf5VRQw5piIe5Jfbpy352NCb0bgU6UU45rPwmyS0em1HPz+JA7O9vg3rsLUn4oOzl7Q/t2WnNgcSGZqFkNm9Sn0/q3T95k3cAVuJYqx+OQMPPPKsLHhCVzcf73AtioqT+5FcePkHd6e0oMylQrbyji5OrL6+sLXnpONfxf/Nvf5PzRd/W/CZrpq4/+VU8GPWX3uCu2qVWZcG8tvyZKsUHf+SiRFwU6r4dC4IZTz+GuUjSVZYdK8Xdx6EI0KNKtfkcWf9wYsjdJhEc/x9XAlKyWbZu2qv1aE8GloPDlZRqrXK1dkz8eymXs5vjcIgDqNfRk3vRvlKlnKf4YcI1dO3Kd8tdKM67ioQHYFwKeSF2vPTufLsRu5+OsdhDxhSJ2dloU7xlOmQgnGtPvKWjZzK+7Cl1vHML7dAuQ8P7MqdctjNpqJi0iyZjREjUjnoS0Z9/WgV/apqKrKlyPWcOnILdoNaML5g0HkZhktDuda0SIWaJZAyRM4VMG9pCtNu9bHkG3g4kFLT9MnP4zkjQHNiAyOQZZk7J3syE7PoXLdCtZjH990jlWf/Iwx14RnGXcyU7MLSAFo9Rra9mvKR98OQ2+nY9uig2xfchgVlfFLh/Bm3ui7MdfE+w2nER+RiEYjMmvbRzTpXHCm5B2/iSTFpIKqokoWe4tJP4yiwZt1cCvxevsVRVFIik7Bs4x7oTLmRy1nEXL1MVq9luHzB9B3YhfSkzKQzTIfNPqczLRsNBqRHuM7Us7Ph2/Hr8OUa6acvzdr7yx57XFt/Pfxv2266lSltFrt2+H/K8e62fnL/wrT1T/nXGjDxj+E9v6V2TvmXWsQBKARBdwdHbDTaixmsvZ/3aj+r2cfcO9RLCoW49fyPp5cuxbOrl3XyE3Lxc4E1Wr60LpT7T9UYk6NT+fq8bvEPE0s8v2eg5vhXtwZnV5D8O0oPuy/mojHCYBl7LlNzwAqVitDt6EvJoyw/v+FeOKYL/pQp0kV9HZaFEXFmGvmyon7PLz+hJyXxrqzM3Op4O/N8Jm9EDUidvY6qjeqxIoT0xg4qbN1bUVW0NvpCgRBsqxw8VAQ9y4+yju+wPQNozmS8AMeJV2txrDFPJwwmyx/FnUa3IoXs3p/pT3P4NTWC1w8eJM+H3Vi+5OVvJFXairv7012Ri5jGk3nkw4L2LHksPXYFfK8yuyd7AhoV5OBU7qjeakBXlFUzu25yvoZOwCIeBiNMdeE2SgR9SjWul1GShYJUUnW6wnce43M1Gxun3mAIU9sc/6eT/BvVAlVtniWmY0S347bwLgm0/n9L6CyJLNi3Ho+ajGLRzfCmdlzCcOqf8yYgM+s9+AFDTrUxs5Rj0Yj4t+4Cmd3XWJQhQ8YWm0CUzaOY/7BqeyI+ZER8wdRskIJrOpORcSht07fY1yTaaz9bEuhc7Jh49+CrTRm42+Nqqp8c/s8x6NCmVCnOV0r+P/xTlgMYy/HR1HZ1RMfZ1d2jx7E6ZBwGlX0wc3xrwuEtFrLlI8oqvj5lqRVnYp8NnWHZSxfUdHpNJy/8IjFiwe+dp34qGS+GLkOk9HMiR1XGLegH2ajROse9a3GoRWrlmLbuc8Z0mExz2PTsHfQEf0kkQqVS6KqKjmZBhxd7Bk7tw/Dp3Vjx8qTxEYkUqFaabq82wIAZ1cHgi+HWgxbAY1eS/NOdShZ1gPnYo6YjRl4lHRl5IweqKpKnw/epH6b6jyPTqZmkyrYOeip09KPn+ZJgIqrlytDp/UscC3rZ+3i6IYzqCp8tmE0TV/KpORmGpBNEkgy6XGpoILOXsfMLeOo0aQKYxpOIyk2FWc3JzKSLdmpo+vPMGhqwT6ah5dDkcwSsqRwZtdl+n3cBY1GxC/Al28D55D4LJn67S2ls9CbTwk6dQ+/Br4EXwtHMsskRCVy9ddbDPikK7FPnqN30NO8awBBp+5Rt40lc6fVaaxBW4chLRlZ+1PSkzPR6bWsu7uEqOBojJk58FL2zZBjxGQ0YzZJ6O101tcPr/2NE5sDMRvNLBy6ipiweADinj4nLjyBcv75VoyDZ/ahced6uLg7U6ZSST7vvNt6HncCH/De3LeRZYWbv93Dq6wnY5cOJfRGOAMmd+fYT2f4/uNNVKpTga+OTmPBO9+SkZTJs5AYmnZtQM0Wr7Z2sfHvQMUmqGjDxt+KsPQk1j28jkGWmHThMF3KV3vtqPALRp3ew/Xn0QiCwMnuI/EuVoyBjer84X6vw2SSMJkknF+a4OrYsjrpmQaSU7IY3KsRd+88QxAEZFlBECz7JMSn//HaRrNF0VeF9JRsFk/YAgI8e5LA0E+7FNh2/MzurJi9j7IVihPQ3DIK/uXItVw8fAu/+hVYcuhT1s/Zy8ltl1BV6D92irXJWVXUPNf1PC0eVBaOXEOF6t58f3Iqiqqyeuo2Fr+/jh1+pfn6wMeoisrXI9ZgyjUxec0ostNzQLHMhmenZBWaWHr64BmGHBManYZnj+IKBEJ3zj207vsiQaERBXLSc3FycWDTw294HpWMRisyxP9jFEUlN8vAwyth1GmVHwS/MbA5h9b+RmJ0CtFh8QwoPw6TwUT1plX5YuckKlT3sd7XHu+346PlQ3Fwtue7SZtJT87kzpkH3Dp1D8/S7qy+uoCEqCQ+bD7TqtMz8fuRTFgxjMhHcTTrUg9UlYzkTFRFxWQws2zMGm6dfkDe1wogUKlueTKSs+j3cZcCQdCzR7H8mGdbIYgCXmU98a5Uihsn7lChZlm8qxTs6xEEAb8Glaw/d/+gI3fPPUSr19Kqj6W3afmYNZzbdRlVVVkeOI/OIyyyBB+1mElupoHHt55y9WgQxhzLxJxkknDzen25zoaN/x/keZyuw6I7qALDVVW9/Pq9/jNspTEbf2tcdfaogJ2ooaSjy58Kgp5mpHA+LoJcWUJWFMIzkv+fzyMyMok+vVfQp/cK9uy5RlDQU3bvusbYMRvx0OsZN6Q1xVwcaNiwIpUrl6RkyWL4V/emWDEHevcpaKSpqirrFhzkoy7fcOtCKPFRyWSl51LupWZqs0nCbJQ4ueNaoXNp1MqPWjVKc/9cMB91XUpmeg4XDt5EVVSe3IsmLiKR2+dDMOSYAJWw25HWfe0c9MzcNIZiHk5odRoks0zs00Sun7rP6d3XcHFzJHB/ELKsEBUax0D/yUzs8CW5WQYks8y+1SfRvxT4/L4XCeD9BW9T3t+bmk2q0GloqwLvPX+WjKqoCIKlX0ej06DVa6nRtAqZqdlsnL2Ly0du4lnGnfrtamLvZIdWr6WcX5kC65Tw9mDY7H7YOeqRTBKZqdkYc83cDQzh8uGb1u1m9FjEnH5LGVlnMoZsI5PXvs97c/oiSzKGbCMxj+MZ0/Bzwu9EIggChmwjDy+H8n79qaz8cAM3jt1kWteFTO44H09vixChqM3X+lFVi2VJs671+frXaWwNX0nPcW8V/Ow8jEajEVBlGUcnO8pX8+bmb3exc9QxfeuHHFx9nB8+2ZyvQfQ7mnYNYE/ienbFr7XqJt2/+MjqJP/kbv7zrd3SHztHPYqssHrSZmsmydndGZ+qZQovbuNfiMV09X/jvz/JCuCYqqrVgDpA8F99xbaMkI2/NXNvnAZAQGBNm15/sLWFQxH5f48ctDqalCz3/3wely8/xmiUkGWFH74/jU6vxWS0qD4vWXyUVq2qYW+vY++e64SGxqMoComJmSiKyo8/nKZjx1o45AUQD6494fDmCxhzTXw5ZgNmswwINGjrz7PHzwv0jKQW8eWoqiqBh26jqiqJsanERyZTr40/9y6FUrpicRxdHOg2og0bvthLqfLFada1oF9cw/Y12Ri0gLN7rnH1+D3uXLD08pQq70lM+HMEUcjLHFkyN5IsW8s/yXGptO3bmNPbL/Eo6Cmj5vcvdH4Va/jw45V5Rd7HyT+OYsMXu6nftgZjFg4kISoZV09nHJztmf/uSi4fvomoETm05hRl/cow/efxVKlbAfeSBc1+o0JiMOYa8a1VlvC7zzAZTHn9RSplXwqaHl0Lx5BjxN7JjuiwONxLuuJTtTQepdys02DPnyXj36gyVepXJCo4hr6fdGHN1F8wG8w8vfcMrV6LZJJxcXdiwnfDEUSRao0q8V6NT8hIyqTHuI588M2QV352GnSsjWcZd5KiUxizdAibZu/EbDCj0YjsWXqEYz+dRTKZeRYay4JDnxW5hr1jQcPgsUuHsGTE93hXLk3znvmB9vhv32Nk7QdkpmSREpcKgM5OS/12hSfsbNj4/40gCK5YrLqGAaiqagJMf/VxbIGQjb81F+IiMMoSjlodCblZVOePfY9alK7A6ntXUFH5tF4r9Jr8ZtnE3Gw0goCH/X9mJOnnZylfCAJoNKJVCFGn06DTafj++1N07lwXg8Eywl6wMbVg1sSthAuoKjq9FnsnO0ypOZgMJmLCn7P7/pf0rfk55jxHcp1d4b/CgiDQtmcA5w7epKSPB+WrlmLWpjE8fRCNZJZ5r8EMTAYzWr2G1OcZ2OVZSaiqStDph2i0InVbVaPz0FZ0GNiMs3uv41HSlYC21bkVGGKtWamKYsnACYKlEVeFpJhUBFHgy/2f/kf3DyyGqkmxqYz+ciAN2lvcd0q9ZEBrNJiRJQVZkol5nEDck0REUaTm2vcLrJMUm8KHLeegqiqlfb3o8+Fb7FhyCEVVEUWRhKhEosPiCGhXk+EL3uan2Tup3qQqhmwjqQnpXD9+m5S4PPNTAdr2b0qpil4sOTkTsEx0XTt6m+vH71DO35vosDhEjUjfSV1o2DE/qNwV/QOqqmLINpKRnEkxz6JNgy/svU5STApms0Tg7iv0/bgrP376My4ezpSr7gOoqKpFvuDP0uiteuyMWVPo9dCgJ0gvBdJ6ex0fLBtKx/feKLStjX8v/0V98xWBRGCjIAh1gCBggqqq2X/lQWyBkI2/Haqq8jjzHAY5nQm1m/D1zfP4uRX/05md+iW8Cew9GoMkUc4lf0z+eGQoH54/iCAIbGzXl2alyhfY7+HDaL768hDePh7Mnt3LmsEB2L7tCoqioNWKlC3rQXx8OnZ2WlQVMjJyOXzoNocP3earhf3onFkHk0miabMqXLwQSoc3axVYy8fXi3mbR7NsynaS49JwcXfCkGPivc+7obfXM2XlEBZ+sAlRK+JXt7z1niz9ZBuXjt2l54jWfLr8Hd6f3RNnV0dyMnIZ03IumanZ+FQpZR0Xl0wyWRk5ZKZl41nKjX0//MbmhRa/tLFfDqDjO83R6bV0yBNSBAi/G2UJfFQVBAHVbEZnr8OluCvGHBP9JnVGEAT2rjrBgythvDO1O755k1p/xNcj13DzzAMEQWDuzgkFen7AMkX2IhsFloDk0qEgZvVdypLj063bJceloWIZcY8KiSXiQbT1Pcks8+XgVWi0GkqU9aRNn0bIZpmQ64+ZNzAYnV7LB8uHggA6vZZGneoyef3YAuchiiLzD0zh9rkHzOr1DYqk4FnGnXYDWxS6poj7z/ioxUwkk8TEH96n49DWr7h6AcHSpUrvjzrTdXQHdHotsY/jEUVLCeGtYW3+1H18HTWa+VHM0wVDjpFGb9Vl0LTer/Uhs2Hjf5jigiC8rImzRlXVlyN4LVAf+FBV1auCIKwAPgNm/pUnYQuEbPztCMs8w+m4xaio+Ll34NG7/3n2wcuhsKL0gYiHmPK0avaFPygQCCmKyqefbMNolIiLS+PEifv06JEvDqjTafKmw0QGDmzKuXMhXLgQWugYn3+2iypVSrLi28HodFqaNbN8CW1afITLx+/xzsSOtOxaD5NJIvV5BiajhCHHxO77X1nXaNGpDquOTSbiURyN8xzrYyOSCDx0E5NRYtu3JxgwvgOuHpZrDL0dSU6WAbNJIu7pc+wc9Va1Zzt7PU4uDgA8uf8MU64JVYXvJv9CWmImAyYW7GfxqVLKWvYTBIGOQ1tTs2llWvRoQHZ6DrfOBXPxYBCb5u/FmGMi/E4kP91d9KeeSWJMCiaDGTsHPcnxaYXeT4hMtmoTqXK+UdeDvAmxF95nVetXpOOQllw6fIvk2IJebnYOOhRZxZBjJOZxHFsW7EVVVIx5U3ICAt6+pZi8fizPo5LoNLztK8+3mIclc6fRaV6pC3T16E3MBhOypHB07akiA6G2A5uTFJPC86gkBucJKL5opj676zLGXBOKrHJk7Snavt38dbewELIko6qq9d44uznx06MVGLINOBX7z7KeNv49/C9OjSX9gY5QNBCtqurVvJ93YwmE/lJszdI2/nbkSCmoKMiqmWypaE2d35NtNvHuye202PMDF2MjitzmXb96VqmVo5GPuBQXyYmoMCRFISvLgDGvsVRVwbWYQ4F9J0/pQt++DRn1flvatK1ORd98H7Pf928/e5bC9m1X6PTWIgYM+I7b18LZt/YskaHxLJpo0XOpULU0okbE3lFPzUYF/csAyvuVpnX3+tbeEM+SxXB0tsfeUU+p8p4kxqZwavc1JnRbSkxkEu5exRAEKFOxhHXcHsBklAi9HYnZJDHo0654VyqJIAhIZplNXx1AUQo6gzbpWJtyfqURBAG9vY6GHWvTfmBzNFoNH7SYw8pJm1k2fiOqqiKKQoHG6T/ik9XDqd6oEq37NrJ6d73MuG8GU6lOOUpVKIFWX1D7JzMlP1MuCALjvhmCi5tDIW0cRVFp2acRriVc6PnBm1RrWAl7JzvsnexwcLGnXrua5GTksnHmDh5eCUP30nTXCww5RuYPWsHCod8xZGYfhs3px4KDUzEZzawYt453K3/InH5LyUzNpmn3Btg5Whq6e7zC+0yjEXl7ag8+WjUC95L5Gcqn96NIT8xAq9Wit9fRoldhxfOD359gWLUJrJv2i/VaVVXlp9k7GBMwhS7O79LVZQi3zz0scDxbEGTj74CqqvHAM0EQXpg9tgMevmaX/ytsGSEbfztquHXhuSGMXCmF1iUnvHK7R6mJ7Hx8l9bevsRnZ3I1IRqzIvPuqR0c7fYe/u4FTVeblSqPRhCRVAVJlRn22y60okjtu85k3EnH1c2B9LRcatTwpnUbi97KhfOP2LnzKu071KRX74bY2WkRRYEhQ1qQnW3g+LF7lC3rSUxsCpkZFqE9jUZk166rSJJCRnouwaEJCKKA3k6H3l7LoIBZtO/bkHVnpxPz5Dn+ARUKXVtsRBIhtyJo2LY6Lm6O2Dva8ePpzzmx8yo/LznK2A5fI8sqiqzw5GEMP1+bQ+C+G6z/Ym8BJWVFVpjWdzk6vZaS5YqT+jwDeyc9kqTg5umMKdeMvVPBRlyHvOBLQLCqShtzTGSl5SBLMrJOw0crhvDsUTzdRhXde2LINqKz1xUIynxrlWPpyelFbg9QsWZZ3hrahlUfby7wum+NsoWapVVVJTI41qJDZKcFAcwGSyDb6M3aXNh3naPrz9Jz3JuMWDCQ8tV9KJaXQRvqP4n4p89JjkvlyuEgWvYuGIAcXnOK83st03rrZmxn86PlrJ+5naATd0lJSLP2Sv3y1T5GL3qXXfFrkUwSji4Fg+fUhDTMJgmvssX5PRkpWXzUbAayJOPg4sDSs3Mo7+9TYJu4p8/5bsIGUGHn4oM07lyPWi38ObX1PNsW7n9pYk9l/edbWXlpwSvvrQ0bL1DV/zodoQ+BrYIg6IEnwHt/9QFsgZCNvx060YE3y3z+2m1UVWXA8V9IMxn4KSQIVQUlrylZBbaH3mF2w3akmQy42zlYx+6nBrTm2zuXKO/iRlhaEsYME4nXk0EFo1HCt5IX3660TABJksy8efuRJIWQkDhWfXcSrVbDsuXvEBmRhE6nZf2GkQx+93vMZktmRRAgN9eEkvclJWpEmjSvQrMDk7hxNpiNXx1CUVT2rz9HrxGtqdm4UqFrS0vOYnynxaiKSvHSbqw9Ow2AYu5OZGfmYjJJkDe2rdFpLE3XjnaU8HZHEAS0ei2OLvZkJGdZtIkAWTLxLCweRVZw9ypGVloO6clZfDVqHV/8Mg5ZkhE1IglRyUSFxSEALXsEWL3DnN0cGTarN4fXnabTsNa8+U7LVz6bncuP8tPcvXiUcmXV+TkcXnuGncuPUq9tdWZuGV8gOHpBakI634xZy53z+RN/jsUcmLzmfRr/ztrCcp8F3v9qIL98fYBGHevSeURbjv10ljot/blw4AZmkxlFVgm+Fs57c/oRdvMpDy+H0vCtupT39yY5LhXJJFGirGehtaND4/I/Z4rK8g/WE3TybsHjiwKueeUyvZ2ugG5Q8NUwlo1ew9N7USDAx2tG02l4wYAxOz0HWVYwGyXMxkymvjmfufunUDUgPzsom6UXPep5x7Fk3/av/LWQbEGV+hULXYcNG38HVFW9DfyP2nDYAiEb/1he9PvIRYxAbA29zaGIYNJNBuoVL8POt95BFARGVW/EqOqNyDIbGX1mH8/s0nByziE706LJkvTSuLooijg46MnJMaIolkkwWVZYvOgIkZHJyLLC/n038jRl8kUCX5QwBAEcHXRMHvsTYnw6WanZ2DlY7CjsHfQ4uzpiyDWxdu5+UhIzqOBXmnotquLi5oQiKxgNZuKikpDMEtfPBFOitBvtejVg16rfkGUFjUbgrYFN6TqkBfYOepq8VYdPVg4lKS4VURTZOH8/iqwgy7IlUMwLikr4eJCTZcCYYyI+KoldK4+zcd5+ylYtRcvu9clMzUFRVG4HhrBh7j7endwVeyc7+k3oRL8JnbhzPoRVn26h/cDm+AUU/gLe//0pFFkhIzmLW2cfsuXrA6iKyq0zD3l4JYwn95/hW7MstZr7oaoqKfHpbJq3m+snCgYbfSd2plm3gFc+/17jOtLrpXJU1foVGVT5ozz9JAHPMm4M/6IfdwODmdFjESoqpSp40bJ3Y4JO3UPUiOxcfIhZOycVWLdiLYvX24vnGB2WHxghgEdJVxq8WYd+kwoKXb5gbr+lJMXk9S6psOubQ4UCodIVvRj2RX92fXOItMQMkmNT2TJ/D3P3TebK4SBObD5H1/fbM3rJYA79cIoOg1vh19ASNDsWcyxwfj5VS/PBsmGvvE82bPye/0Dj5x+BLRCy8Y9EEAQ2t+/P2gfXCHoeQ45sJkfKLwlJqkKKMReAO8lxxGVn4u1s+Q0+zZjLoafBfFyvJQElvMnomMviRUeIjk5h7AftrGuIosCq1UMJPPcIBFi39iyqCk+e5PctGY0S/fs34tChW+Tm5h8fLEFRanIWuqeJlokhwJhrZvr3w6jRqBJ6ex07V5/i5K5rmE0SV07eZ9/asyzdPwG/+uWJDInnvc+7snLabgIPWQQTv/zlA0qX9yT6SSIarZbG7WtQvuqL0X6Blj0C8o6t4l2pJLIsU7Vueab2Wsaz0Hi0Og1tezUg/EEMkcExjFs8iJkDVqKqKs+jU3Bwsken1yCZICU+jQNrz1iybxPe4trxO5StWpqZfZdhMpg5sfUCuyO/K+ShVqVeBa7+ehuTwUzM43iqNfDl6YNo7Bz0rJu5kyf3nyGKAt8cn8bG2Tu5dfahtaH7BfaOdnQZ3pb4yEQe347As7Q7nmXc8fIpnMF5QW6Wgez0XGRJRqPT8P3l+WSmZrHqi10WzSdFJSo4hh2LDyKIAiaDmeBrjwuNvnd6rw27lh4m8ZlFiDMhIv956/RaUuLTObvzMu9O703J8iUKnMOe5UfITMkq8Nrvy3ov6P9pd8r6eTN/4HIEAeq2rUFGciZz+y/DbDRz5fBN9iVvoPdH+QHXxQPXCb4SipAXe6tAdkYOmanZuHsVfRwbNv7t2AIhG/9YGnj50MDLhxyziYepzxn5227SzMZC23nYOVLKMX+KbOipXYSkPUdA4FCXoVRxK868+X2t72dlGVi79gw6nZaRI9swcFBTUlKy2bD+LC/3FouigFYr0qp1Nbr3CGDY0DVIUkEtmN83UtduWoUWXfK1aBxd7BHyxqctTg0CW5cdJ+RmJIJgUYJ+fM9iWaG31xEZGs/0H4ezadFhqtQuR0Dror2jFEUl4I3q1pLg25M6sfTDTRTzcKJZt/r0HNPeum3TTnU4u/c6Or2Wtn0b0bp3A35ZcoRT269Yt5nYbj7J8WkICNYGa1VRC5RosjNyyc0yUKZiCesEfmRwLF8fnkJo0FPKVyvDuFZfWNWOf1l8iKBT91BVyEzLQmenRVVUfKqU5otdk1BkhTGNpmMympHNMjq9lqkbxtKyV+FGa6wg4nMAACAASURBVIBiHs6890VfDq89TZcRbXEt7sKYBp9Z+3qszwTwC/Dl4eVQMlOzea/GJyw7O5ty1Sx+X3p7PZ9vHs/sPt9gzDViygtwRa2IRpvvP/Z7lfPosDg2TN9WoEcLIPhKGNGhsUUqOzftFsDKS/Mx5prwb1yFrLRs62dG1IiFPj9P7kZa19fqNMiSQnpiJlvm7ubD70YUeV9s2Pg9/0U6Qv8r2AIhG/94HHV6Gnj5sKvTu8y4coIHKfFoRQ0ZJgM6UcPomo3RiPl9KXE5GRhlGUetjue5WVRxK9jMum7dWY79ehdBEHB2tmfYsJZ4eDjRf0ATDuwPwsXFnvHj38SlmAMeHk74+FisF2bO6sGpk/fx8HDi6NG7mM0yDnZ6JJ0GzDJN2tdkxprhBY7VaVAzREEg/EEMEaFx1G9VjUe3IjAbzWh0WpLj0xk7tw/fTNpCqXLFad29Ho7O9sxeP+qV9+PUziss/XATdvY6Og5uwdDPuvNG38Y0frM2U3p+w7B60xn8WTcGftwZgInLB9NrbHtcizvjXtySNRs9vz/F3J0xmyWCTtwhNk+F2c5Bz8i5/bl/OYyuI9qit7f0xjwLjeOjtvOQTBJ9J3airF8ZJJPEoKnd0dvpqNmsKgCDp/fimzHrALh06CZoRJAU6z/MPcZ2YMS8AWi0GkKuh6MoqrVh22ySWPjeauwcJ2DMMRHQvlahBuV+E7vQb2J+BsWYa8zvp9JqUGSFwbP60G5gC4b6T8JsNGM2mvmwxUy2hK20erLVaFqV3bE/8uReFFPfWkBGShbelUvx8Q+jOPnzeZp0rY9XuYKfG0cXBwRRKKCFBJaAxsn11VNcvrXzZRyc3Zz46tdpBO6+Qrt3WqK3LziV12nEG/w8dzdg0UzS6rWgquRkGV65/p9FVVWuHb2FIdtIy76NrTYiNmz83bEFQjb+caSbDCwKOodeo2FK/dY4aC1fxlXcirPjrUG02beGyMxUNKLIiBqNGOpXv8D+K1p2Z8GN0zQs6UPT34kqAuj1WgRBsIyQvzTGPWpUW0aNerXuTNWqpflmya9kZxupU7ccer0Wd1khMDwBwU5HrSaVCjUKazQind8tqB0TF5nECsMOXD2d6fxOMxyc7Nh4cRaSWebO5TB8KpagZBFNvi/YuugwqqJiyDFxYM1pJJPE+EWDCL0VQeyTRFRVZdfKE9ZAKCs9hznvrCIxOoVhM3rS78OO2DnoGTajJ2G3Iji85pR17c7vtabHmPb0HNuhwDFvnnmAZJYsJb4jt1hzdX6R5/aykjSA+iLDpoKcpyGk0VruedWAirTs0YArx26RlZoDgKARmDtwJRqtiHflUqy+VLSVxwvm7ZvMjsWHqN++Ji7uzvjWLkfFmhZhzp4fdGT38iMAKJJCRkqmNRB6gW+tcrQb1ILDa06REJFI0Kl7CKLA9q8P8PV7qyld0YuvjnxOMQ9nPEq58c3p2Zzccp5f1/4GokCNplUZufCdAmPzL5ObbWBev6U8C43j03VjqNOmBrVbVad2q+pFbu9Z2h2NTmMNDnV6LcZcI+f3XqH9uy0JaF/7tffjdZz8OZBvx61HACIePmPonML2KTb+GfyXTY39j2MLhGz841h88xw7Ht9FFASK6e2ZVLeg4q9ZkVEBrSDS3rsSRyMfEZeTwaCqdXHW2dG0VDkOdx32yvWHD2+Nk5Mder2Wvn0bFXgvPj6N6OhU6tYthzbvCzsnx8jcL/YTHp5AVpYBRVF5FpXM9h3jMRnMVKxYAr29js7vNPtT11e6fHFGzezBpkVH2b/hHG+P74AgCCwYu5HbeSKOq49PoXT5wmPZAFXrlSc+Msnyg4q1lFOxhg96Ox2KotAwT6gR4M75R6QnZaEoKnu/P0W/D/MbkMv6lcajpCtJMak06lib0V8NLHCsxJgUZLNMk0512brwIIqcQ+/xHQncew1Drol2A5paAxuA6o0r06RzXe4EhtB1ZFv2fXcMs0FBEAXK+3vT/+Ou1m1FUWT0oncYPm8AD66EsnLCT7gWL0ZCZCKGbCORwTGoqvpaI94azfyYu88PQ44RY44J1+IuXDt2m6SYFIbO6Uv56t7sWHyINv2b4l2pVJFrmPP6ixAh5GoYdwJDMBst5amo4Bgu7LvGm0NaMbffUoth6+LB9J3UhfTEDKo2qFTo/AL3XGHVhJ/wa+BL0+4NuHs+GGOOiW/Hr2f9/aWvvBawlOM+XTuGJaO+RzYr5OZlggQE0l9h2gp5Rr+fb+XigRu8M703Hd5tVWib6NA4JJOEIis8C4kFID0pg6CT96jZwq9IGQAbNv4O2AIhG/849Bot4ouMzUs+Yi9Y/0ZfVt27TOOSZUky5DDl0lEkVeF0dDjudg50KFuF3pVqvnJ9e3sdQ4cWHg+PjUll1Kj1ADRs6MucL3oDcPLkfe7cibKMtech501o6e119BldtNaOZJZJjk+jhLe7tQwRGRqPo4s980dvJD4qmbtXHlOtXgXqtahKyM0IDDkm7B31RIUlvDIQmrR8CJEhcUSFxlG9YSVGftGHwAM3WDd7D3VaVGXAxE5UrOFt3b56w0potJbjpydnceO3BzRoZwmU7B3tWHNtASnxaXj9Lgt16+xDZg9YAcBHK4byS9gyZLPM6Z2X+e6Tn0G1lMxGfNHPuo9GIzJn20fWn/V6DTuXHUEURKasHW3V+gE4+OMpvp+8BUVWEAT48Nth/DBlq7VHRlVVDq35je6j8/udiiLmcTzjm83AlGui47A2nNp6HlWFB5ceMXROf56FxuHjV5qDP5wkKy2LzsPfwC2v8VhVVaJD45HMMqUretG8Z0PuXXhkKYEJlhJY8TLu3A0M5tbp+xiyjXw/aRP7kjdQqoJXoXNJfZ7O/LeXoyoqV4/eonqTqqCCvZMdletWeO11qKrKxf3XWfvZVmRzfrOaIEDr/k1p1bfJK/eNfBjNwdUnMOaaWDrqR9q/07JQgNZnYmceXX9MbpaBEV8ORFEUxjb4jMzkLBRFYcjsfvT9uGuBwPY/5dGNcHYvPUyVAF/6TOxSpJSCDRt/NbZAyMY/jsn1WlFMZ4edRsuI6oUbZ6u5l2Blq+4A7Ay7iwpIisK159EoqsqZmCfUK1GG0o4uDDyxjQcpz5kW0JZh/vmj2llZBg4fvo13GXdatrKInj7Nmx4yGMw8yPO3SkhIJywsAVVV0es1SJKMKIr4+hb+EnwZk1Fi3FuLiH+WTN3mVZm3aTR71pxh85KjCGAt0ZgMJuS8BuxRs3rxw6w9VK7lQ70WVYtc99qJe9y5+Iih07pz92Iorp4uODrbs/LTX8hKyyEzNYfOw1pZAy9VVdn89UGMBosFhaqobFt61BoIAVYxxt9z/eRda1Dyw9RfWDJ6HaUrlqBB+1pIJhlFlkmISnrtfRg8vTctezWylpZe5vDa36wj/6oK2xcdQpbyAwBZknkU9OS16wPcOHEHs1FCMstcPWKZvjMZzMRHJDKr12IiHkaDqlr7lM5sv8Ta24sBSI5N5f7FEADi8zJRDTvWQRUg6MQdzCaZLwd/x8Kjn1lkEZzsqBLgS3JcKic3n6Nqg0oFnN+jHkZbAigsYpiNOtejwVt1iX/6nCZd80u4siQTFRxDKV8vHJzsATj4wwnWTt2KKTffnNvBxZ6xS4fx1rA2PLkbSVZ6DlXqV2Tft0exd7Knxwcd0Wg1uHm5ImpE7Bz1eJRyQxAEstNzeHz7KVUbVMLByR7X4sX4+vgM69omg4nk2FTrM9g0Zyd2jnp6ju9E5MNoFg1bhUdpN3qO70Ts43jeGNTitb1Qqqoypf08cjJzObvjEteP3WLa1gm2abf/ZVQEW2nMho2/Ow5aHRPrFjbALIqevjW4lxxPdHY6NxNjSTcZLGUzUcPlhCgepSVhUmSW3blAuVh7nkYk0qtXQxZ9fZhbtyLQaEQcnfqi02kJD0/A28ediKdJVKhYAllWmDRxK0lJmYiiwJgx7fDyKkZsbCod33p1r0bM00SmDviO5Ph0AG6cCUaWZC4dtwQWL7IzAIIoEvEojgZt/HmjZwBv9Hy1rk5UaBwLRqzBZDCzd7Wlr0dvr8PZ1YHy1cpYDFVRC2SS4iKSOL3rKpIpf9ot7E4kD69ZGpX96lcoNB7/gjffbcmJLRcw5prITrdIFcQ9TST8bhTFvd1JiEzi8e1IDDlGq1VIUVSo7lPk611HtWP1Jz9b9XKadK7HuT1XyUrLxrOMO/aOdgya0v2V676gYce6bJ67G0VR6D2xM5cO3sCYY2LCqhHM6r2kkDhhVEgscU8T2L38KA8uPaJEWU8So1Mo5uHMxlk7LQ3ckpxvDqvTkJtlZO3dJUQ8iKbeGzUY33g6USExaHUavrv6JRVqWIxp/ZtWpXrTKty/+AhBEDix6RxjvhlSIBt0+8x95g1YTnZGDh6l3Fj/YCkOTvbEhScgmfOzjsV9PFhxfh4lfDwJOnWXOb2XIIgC5fx9eHovEkEUEEWBziPbEbjrMoNn98PF3YkmXepjMpgYVedTstKyKeHjydq7Swo1R+vt9YxePJgNM7blebUJeRpN8N2EjYQGPUGr03Lj+B1Ejcjp7RdZdu6L1z6Lly1Rbp9+QP/S71OjuR9Lz86xNWfb+B/DFgjZ+Fej12iY1+RNAELTEtkedodWZXwp6+zK5bgIDJKEVhCplebOl2sPoqpw5XI4Gq2IJClotRqiIpNZu/YMkiQjCAKyrPDgfgxnzwaTmZmLLCtotVpq1iqLRiNSvkJxnJ3tX3lO2787YQ2CAJyKOaDRahj00ZvMHbUBFzdHGr5RnePbr1hKL6X+3G/MplxzIe8tVVWRzDLzto3nxm8PqFjTh5LlirNn1UmObblAp6EtcXRxwKi1ZJ7MRgnJJPFZr2VotCKV65Rj8cF809u9q47z09y9VGvoy4K9n/DzwyUMqTGZTGO+F5gh20hKnqlqSkI6j+9EUrNp0RksgPiIRESNUKgHpfvo9rTp25hLh4NwdHGkSZd61G5ZDa/yJTi55Txndl7m1C8XGZpnZPoqylQqybbI1ZgNZqZ3/5qn958hCAJOro7M3jmJn+fuITMtm7uBFlVrvb2O45sCObXlPIZsI24limFnryMjJRPZrOSXxQQVVKjd0p/wu5FM77qQKvUrUrdtDdKTM5Aly8j/y7pCejsdn6wdw+h6UywB64ojDP9yoFWZWpYVpnddaM20pSdmEBMWT+W6FRgwpQcRD54hmWSmbhpHiZc0lUKDniCZJWRJIfFZMpJZRhQFcjIMfDV4JRf3Xwdg+Py3rX1W6UkZmI0SMWFxGHNMOBTxme09oTPt3mnBj5O34OTqSK8POwEWEcfgK2HIsowgiJgMZu5fDKG761AmbxhLyz6Fy3SCIPD18enM7Lm4QD/Tw0uh3DsfQp3WRTeI2/jr+ZdNz9sCIRs2XlDVrQSzGlr6SWRFYfrVEyioaASRclnOxOX96xAbm8rq74exevUpypXzpFx5T0wmCVUFUbQ40YOKu7sTX8ztw+ZNF2jarDIhIbGs+u4kqgrz5vWhQcPCZqoAslTwn6HqDSzqzAGt/TkQainJ7FlzxqLFg8qZ/UG0yRNKzEzLIS0pE59KXoV6PCrXKceIWb3ZsvgwWWk5+FQuSQlvD36cuYvDG86x/MRnOLs6kvo8g43z9yFLCmtn7kZvr6N4aTe6jWzL2lm7UWQFs0nCbILg608IOv2A5LhUWvZowLoZlozI3fOPuPHbfSpW9yE3u+DoduSjGOq08Od2YDAOznb41iz7ymdydvcVvhm9FoBZ2ybQ8M2CmbTbgQ/Zvvgw9dvVJHDfNa4fu4OiKMiSgizJbF9yiP4fdynyS/xlXthgPL33zJKhcrIj/ulzajTzsypLH11/mu8m/EQZ35I07lyXvSuOorfX4VrchYSoJCSTjEYr0rxHQ94a3paQq49p2i0A31rl6OU5HLPRzJN7kdwNfMisnR+zceZ2qjaoxMaZ2zHmmpj+ywTKVCpFibLFKebpQmpCGqIoMqHlTKJDYmnRqxH13qiFVqe1BkKV6lagYt79c/dyZeGvRXu1vTmkNWd3XCIzJYtaLapxbrdFA0rvqOfR9XDrdkfW/sbDK2EM/Kwnbfo3I3DPFbqO7vDa++davBhTNn4AwI7FB/hlwT7qvlHDYiLr5crB709w5XAQqBZRy/kDV3DM2DjPmLdglse/SVV2x68lNjye9/wtWlGiVizUf2bDxl+JLRCyYaMIXkycpRsNaAWBds39uXE8DFVVadPGn/Lli/P1128DsGHDOchzfarmX4bWrapRxtud+vUrAFj/P2P6LquD/fnzj6gfUBFRLFyL7/JuMy4cuY2qqtRpVoVPlg5izdz9BJ0LpqK/N50GNcW9uAtanQZFFElPzuLx/WicXOwZ32kJkiTTbUgLRs7oUXjt91qjtdPyLCyec3uvExOeACokJ6Rz58Ijmneph4OzvdULDcBkMJMcn4aDkx0tutUncP8N63uKrDC91zdodBqObw4skHHSaERKlvOk/dvNObY50Pq6IAg8uBIGQG6m0Trq/YL05ExCbz6lRpMqXDxww/qlf+3YbQQBfl6wj8ad6jJoag+WjllPbpaBU79cpJiHE4YcI3aOeuwc9aiygmuJYpY/qyonfj5PZEgM9g56ajTzw9XTmR3fHKZe2xp0Hm6RPfhg2RA2zNxJ3dbVqda4SoHz6jziDTqPyG9sX/jrNDbO3EF2Rg4+VUsT+TCGIbP7WifbAl7q/an7Rg1uHL+DRqPBt3Z5PEu7s+S32ayfvo0Hl0NRZZUN07czY/tE7Bz0DJrWi2/HrUdG4XHQUwBObTlP4O6rKIqCZxl3uo19k3em9S70jIvCs7Q7PwR9zc3f7rF3xdEXT4K0hDT6T+7G9x9vBlUlOS6VhMhEgq+EsituLZM3fFBorXvng0mKSaFln8ZodQW/QjbO2I4sKVw5HMTj25FMXD2STsPbcu3YTZS8AF+RFTbM2M6ORQco61eGby/NR5YU5vReQlpiOtO2fETlehXZEfMj53Zewr9JFUpVfH1PnY2/kP8+09X/cWyBkA0bRSAIAvs7DeZo5COaly5PTc9SlF3lRlpaDg0aFMzklPXxyNMWgnr1ytO3X6Mi1xw4sCl37kZhyDVz7NhdEp5nsHDhANKSs5DNMp55Ja4aDX354dRUMlKz8atbniM/X+TAxkAUWSEqLIELR2/zzqSOTFj0NssnbyPs7jM+7fMto2b2QJYVTAYz54/cpmW3eoTcjKB1t3poNCLh959x/eR9Dm04ax2Zf4EoClTL8wWzd9RTvaEvIUFPURUVUSNgzDWzfNLPdB7SEo1WRJYUi16NyRKkyGaZB1ce07Z/E87vu071JpWp1bwqgiAwceUwqjX0ZevXB0lPykRRlLyeEosIYnamAZe8aTBDjpHRjWdgyDHhWcqNj1e/x+UjNzGbJEKuh3Ny63lys4w8vf+Mxm/VpYyvF9GP4xGAEfPf5qc5uyjv782Hy4fy5P4zKtUuR1JsKiHXwln1yWaMOSYQLBkgeyc7MpKzuPrrbXyqlGL1pE3EhCcwYdUI2g/64x6zjJRMQq4/xmQwU7JCCQ6n//TKbWdsn0TojXBK+5bELc+MFaBctTKWYEKnUrZavrL0xpk7ilzHlNe0nhybypZ5e+j/aXeeRyURuPsy9dvVtvqNFcX2r/ezbeF+i8WIRkSSZHz8yvDWsLYEtK9DQmQic/p+gyAI2L2iZ+vmqbvM6rkYWZLZvewIywK/KGAoWyXAl/DbEZiNEs8jE5nW5Svq/R/23jo6ioP9375mLR5CAgkEAiQ4BHd3p1gLRYoUlyItULRo0QJFW6TFXYoVirt7cAjESIh7sr4z7x+zLIQEaZ/+nvfpt3udw2GzO7Yze3buveXzaRxIl7Ht2LngIFgk1I5qDv9yAkmUiAmLo3eJkYgWEW26DovJwqoxm/jh5BRePo9h1bebMelNOLs7sejsdPwD/ey9Qnb+duyBkJ1/JBbjDUwZy1A4NETj8uX/k334uXkwKLCG7e8SJfLnuFzTZoG4uzuh15uoV1+2tLh26gHXTz6kVY/aBJSRR9HLBhZk2bLeDBm8DqPRzPVrIQRdCmZKn9Xy+PE3reg8VC7N+RbJi2+RvCTGpKDXZrUFsZhFgi49IzYiGaPebH3OQumq/uTO60ZcZBKtetRmXJdliBaJgxvOkxmbgl5nRKEQsgVBKrWS+QdG4/XGVNb0rV9xbOsl8vvnZdnozSTFpoEEp3ZfpXzdEjy8+hxJApWLI7qUdBAlkCTCH7yg49BmPLsbQUffodT5pDKTNw2j+Rd1uXjgBteP3UVCsApSQs1WFbOIKCbFpJKZpsNkMPMyNI7iFf3x9PEgNiKBiMcvcXRxwGSVIXDN7cL8PyZw5fAdSlQuQqFSBWjUuaZ1OylIkkTvUt9gMVuo1CzQ2sAsgihhsE6GgVxefHT1GdEhsRh1RjZO2/VRgVDQmYe2bTi7OmI2mTm2/gxqRzVNetTLcsNWKhWUfivDBNCoax3WT9lJUnQyN44F0WtqZ1n2wfF1cFHrk6po07QEnX2YZV0HJw0IMLLud2SkZLJ1zl42PVueJdB6k1fj+yCrWUuixO5Fv1O9ZSV0GXqqNCvPlJ1fc+/cI1r2bcTJrRdIS8ogKToZfaaB3tM6E/4oytZrFHwzhI3Td9F/dnfbPhacnMqWWXvYNmef7blHV4PpO6sbtdpWZd13O6jZtgoRDyM5ueU8ZpPldT+QAEq1Eic3uQx3aPUJTNbzq03TMaTyOBxdHJh1aALl6uZsHWPnb+Jf1iRkD4Ts/CPRJ/UDKQWL4QpKTXWU6rIfXun/EYIgUKNmMUBWfd6z+jRHt13GbLJwet9Ndt2fY+vXKVgwNwEBeXn6NIaGjUpz48wj28103ez9KBGpWL808wb9IjdiP4kGQaBR11qEP4klNjIJpUpBt+HNmNDtZ+v+oduI5gSU8mXt+cmIokTw3Qi2LzuOyWgiKSYFS6Y+m8eVV34PylQPoFL90tk0h1zcnShU3IdtCw5mKZN5erlw58Q93D1dmbVvNIVLFWDKZ4u4eeIeAKH3XxD+MBKLKIGg4PLhO2QkZ3J+33VunbyPZBFRqJX4BvhQvl4phszrnmW/+f3z0qRrbc7vu0GHwU3ROKopXb0oqYnpSJLEpE3DeHorjMDaJWwj+027Z1XeDrkbwcj6UzDpTbZjv3kkKOuXu9kCahXOuZxp+nkt0hJSQRBwcNZQtUWFj7ru4Q8jrR8AqNayIhum7mDvksMggDZdR/uhLT+4jcSXySTFpGA2WXh6I4SQexGE3Alj4pYRbJi6k2e3Q7l/8TEdR7TKEggVKl2AYUu+RCEIaNN1iBZRVgvP1MM7AiFZWkD+HIoiICgoXjmAPmW+QbRYqNwkkB4TO9FvdneObTzLshHrMBvNtl6e26fuE/4oymZEJSgEdOlZ+78cnDR0G9+R4xvPkRCVhEKpwNHZgYIl8jO0+kRiwuN5fO05P56dSkD5Qvw8esPrlSU5oL958i6XD96g/qc1ObnlvE0SQZIkdBl6JrSaxb6kddnKcnbs/FXsnyQ7/0gEhQuSRf4lKQjv1ib5bzOh6wriopJsmjNGvYmwxy+5cDiI6k3KUrJiYZav6E16mg6NRkV0WAL7157FZDAjGoxcOnyHy4eDCH/0MqsnlcHEssOvp7MkSaJYuYJEBMeQO487nw1uAshBmVIpULJiYTr0rc/Ns4/pNbY1J7dd4urRuzTtWovTe65h0BrpM7kDDy48Zunwtaz4egPLzk3l8qHb6NL1VGxUhmndlmLSm1A5qPD08SAjKYP4F4mIFhG91kByTCpFyxWy7VdQCiDJhq4u7k6YTCJFyhTAxcMZbboOQQCFUiCwZnHm/zHBFhw+uvaM22ce0vCzGvgG+DBqaR9GLe1je6/f/jqYO2ceks/fmwJFfShfr/R7r8H9i4+RRClLAJfTL1zRbMaSqWXf0t9RqpTU7ViDLmPbU7yy/0dd6x6TOhF8OxRnd2fa9G/C2omymKNCKZD0Mtm2nF5rICMlkzy+ntm2oXZUU7RCYZ5cf06ttlUYVfc7TEYzjk4a9DqjrX/q4eWn+PjntTndRzyOYs34Lfx8fS5Tdn7NzgUHafR57RxFGm0ohGwuvwnRySBKGHUmrhy6ze2TDxi3YRhJsamIZhGLRZSvkwAvnkRbH8vbyF/Umz4zsttsOLk6sjlkOcmxKcRHJuFX0hdXDxdZRFQCo8HExLbzKFHFH9EivYrNbJ8H0SSyaOAqfIvmY8X1OegzDZzZfol9y48Achn21PYLnNt1lfbDWlCtRcVsx2DnP+Pf1iMkvD1O+79M1apVpRs3bnx4QTv/5xHNEZi0u1A5VEfpkF3l+f8vPq8wkbSk16PiSpUCtUaFXmfEwVHN5uszSE/RMrLtQrQZekb90I2yVf0Z03Y+mSk6pmweyuU/7nB8y0UsFhEJuawy57dvKFP9df/H+QM3WTB0LZ75c/PD/tHk8c2d4/GkJKSx4pvNKNVKvlrYE1cPZ0xGeQTeydWRtnkGYLaWmgICC/LiaQwmoxmlSoGgEBAtEkqlAoVSgUFnRBBAqVKSK48bKy/PxM3TlZiweJaN2oAoitw+/QCFQqBN/8a0G9wMX39vlColBp2RNRO3kZ6cyeB5PcjtI/dDJUan8GW5MZiMZtw9Xdkeuuy9lhgfQ2J0MqPqTyUxOlk+h5acv+Mk0WJNjcjUbFuFmQfG/+X9jqwzicdXnyEhkaeAJ+5eboxaOYgJrWejzzTQfWJHen73mW355LhU+pb+GrPJTNnaJWk/rAVTOvxge/3NQNjN04UVV+fw8nks0zotwKA3ElC+MCtvzvvo41s+aj0HfjqW7fm8BT2Jj0qymc9+9nUbekzsyNKv1pKWlI6njweCQiA5JpWbJ+5isYhoHNSMXTuEBu9Rq36beoho+QAAIABJREFU0PsvWDZ8LY+uPcNisuDm6QKSHGwVLlOQR5eDUTuoZNsX62eySKAfq2/L52TLrN84/9sVWvVtzOpxmzEZzKgdVOxNWJvNfPb/EoIg3JQkqep/a3+ORQtIfnOH/Ff29azLd//V9/Yu7F1ndv6RKFSFcHAf/bcHQZIksebKdfrv3Mu96Jg/vf60dQOp3rgMDk5qVGolao1K/lKXQLTImj1XT9xHrzViMYvs++UM+YvkZcv9H9gXuZzKDcsweNbnjF7Rl9l7vmZv+FJ+C1uaJQgSRZH5g37BoDUSExLLdWtZKic2zNzLpd9vcn7fdbYv/B2QlaBfjUO7uL8ei3ZydUK0BgYWs4hCoaBG6wp45vOwWYIAFCiWj3V359sanPMVycusfWMoUqagrKNkFnkeFI5f8fw2uwUHJw1f/dibCeuH2oIgkLMlkiSrKGem6bLpHP0VvPLnpu/3XZFEbEGQSq1E7aCWA7xXcZb1gUKpwKdwHoav6J9tW5IksWbcZgaU+4YLe6++d78xoXGIolyiin+RSMjdMJZ99Qu6DD1mo9w/9CYRDyMxm8zoMw08vPwUlUaFUi2fLxcPZ1w9Xhu8pidncvjXU1RuWo7+c7vTondDpu4e/afOiy5dZ3usUL4ONhOik0EClYMKtYOK3YsOMbTGRHpM7EihkgU4seUCR9efxWQyseT8DCo1DiSgQmFKVMlZ/uFd+Af6MWxxH9ukZGaqlsA6pdmXsI4l52Zy1LiNQxmb8S6c17aOSf9aJbvHpE6svDmfRt3qIlj7r1RqFQq7DcffjiT9d/79r2D/BNn5V2MRRWafOEPvbbt5Gp/AraiXLLt4hbMhYQz57eCf3l7pykWYvmEQK09MoO/Ediw+OJrJq/pSsW4JRi3ohkceNyrXL2UNkpQ0+zz7L2qlSknJKkWY0281Hf2Gc+VIUJbX4yKTbA3PkgRRIXHvPB6PPG4oVUqUKgW58rhme11h9WITFAKNutSk9ZcNyVvQEwcnNd3GfsK1I3eJjUjAYrag0qiQJPmm/OakEMDhtafZu/yI7PulEOgztXO2feVEgaI+1O9UHc98Hgxb2PNPTQQlxaSwevwWjm08my2A2jJ7LxazBYVSNmtt3qcBCoUcpLnnccfBRYNSqaTdVy2ZunsMG4KXZxFsPLjyKH1KjmDpsDXsXniAsAcvmNllEQad4e3DsPH16sFZ/lYolYTceyGXtwToOKJ1ltfL1C5J0QpFrNYbjvgUzkPH4a0oWa0oQxf2Rpv2OnBRO6gpV7cUgiDQflhLRv8ymPx/cqS8VLVitsfdxnWwZd5eBYtmg9kmupn4Mpmvak1m74ojNguN26cesHDgKoLOPuTJteesHL3xT+0foGiFwvSe1hmVRoVokYh6Fmt7TRAEgm+F0ntGFyo3LUfpmsWZuvt1OfjxtWdsmf0bN47eYfah8Xw+th2Lzky39wrZ+Y+xf4Ls/Kt4GBvH+EPHyO/uyqJ2rTkXEsb2oHvoTGa+OfAH05o3RhQlFIKAq0ZDyMMoTuy6Rs3mgZSvlX3qB2Qj1Mw0HaWrFLHdXPIV8qJj/4YAFC6Rj5rNX2vKFCqej803ZqDPNODpk7Mq9IUDt0hLzsBssrB90WHqvOEzldc3Ny65nMlM1QLkqEX0ih7j2+Ho4sCF/TeICo7NYmchiiJpienygpJEyaoBtO3fmGELewJyL8fupUcw6o2oNCpa9W7A4+vP6Tsje5Bz8eDNLL/wfN5h+Po2wbdDOb/3Oga9kR2LfqfVlw0/aj2AmV2X8OiqXE7xzOdB1eavm5xLVAkg4lEUonVce8Ds7tw+cZ/o0DiMeiOrbs7D28/LdhONCYtDoVTg7ZcHvdbA8hFrEc2iNcvzWv9meM2JDF/eD5Anu0q+EVzUbFuFQmUKEv1cvrk36Vmf09suYjZCyapF6TQyayCk1qgoWa0oj64EkxybwtBqEylZNYBnt8P4cchqvArkJiU2Fe9CeZi2ZwyF32E18rE8vRVqexwTHk/V5uW5c+ZBtilCQJYZeBsJQu+9AOTskXcO/nIfQ8fhrXgeFE74w0hGruhne/5NG5D2w1rSb1Y3Hl97xtBq43HzcuPe+UeYjWYUSgXNezXgm9WD/tL+7bwfiX9fj5A9ELLzr2L6sdM8iosnJDGJvfceUjyPF5IEaoUCSZLotW03SoWCzysGMrB6NUbUmoUu08DeX88wZU0/arXIqmx8+/wTpvddA4LA5181pduIFh91HM6ujji/R633+ol7Nn+v5Pg0EmNSbOPtSpWSn85+x7yBv+CW24XPvnr3PlVqFaH3X/D8bgRhDyLJH5CXz62Cf4Ig4ObpSnpSJiq1EoPWyJcVx5GakEbXMZ/QZVRrlp2dyvVjd6naNJACxfK9cz/dv23HndMPMJssVKhf2qYEnJ6cyZXDtylZNYBCJX2zrWcruUnYMg8fi1FvRBIlBASMehPadB2LBq/h1vG7eObzQO2gxmQwYTGLuORyxjW3C4SCyWDm8sGbfGoNTM7tvsy8XssAmLJ7DFVbVCCXlxvaNB0KlRJ9hs4W5IXei2Bs0xnWpnQFY9cNo0GX2oA8Jh71LBqL9bodXXuKio0DAQVfLc1Z4qFYZX+UGiWiXsSgNdhsPAAKFM/H7EMTKFAs39+S9ShRxZ/jG8+iUClpO6AJ+QN8mPTJPIwGE0jw4slL8gd4Y7GIxIW/3ww3l5cbj64+o5VLT/L7ezNz31jSEtMpXtmf+BeJuHm6ZintvYlao2LCxq+yPf88KByL2YLZZOGRVXBz0aBVhN1/Yc0gyedVtIiE3n/xH54NO3ZeYw+E7PwjkMQ0dIndkCyhaHLNQ+30yV/aTrE8njyKi0OSoHBuD2oU9mNx+9aEJiVz9EkwJlHEIknkd3Mnv5srxle/liVYPX1ftkDoyZ1wTCYLokUk6GIwxcsVYsXkXZSoUIixS3qisvZ8vI/HN0LY8sPvVGpQik5Dm5ORquX2mdc3xISoZHoGfsvkDUOo3aYSAD6F8rDoyIcbe5/fiyAlMQOFUoGgFHBxfz1hJwgCi09M5vy+61SoX5qV47cSbS2zrZ++h2bd6+Ab4E37wU0/uJ+ytUqwJXgJTm6OOLzRuDqmxSyiQ+MQBIFfbs/l1on76LUGWvVthMZBTamqRRmysCf3Lzy2KTK/iSiKxIbFk/eN7M0rJm0ZwfppO/EP9KPWJ1X4efRGzu2+ApI8vl6xUVk0jhr6z+oGQOPudQh7EIlSpaBSo0DSkzMQBIELe6/ZpAWuHLxBjdaV+enmfK7/cZtCZQoyuuHULOrXrx6LCoFHV4NtgdDFvVdtQRCAJEo4OGmYuf/d16nZF/U5teUCN44FZXst6PRD3HK7/C1BkCRJrBm/FVGUUArgkdedE5vPy7pARjOVmwVSs00lDDojfqUKsGrMJhDk9Sym7AFq4stkEq2TcXEvEhhSfSKSWcQ5lxOpCekIAkzeOpI6Hap99DE279WA83uukBKXRv85sqyCb9F8RD+PRZIkilYIIOzBCzy8czH8HYGlnb8BCbBnhOzY+d/DYjiJZHkOkg5T+l8PhKY1b0yNQn74uLpQo7Ds0dSkuNyInMfFmQcxcaiVShoXC0CpUjJkRid+mrwbhUpBkVLZBRWbda7B6b03SU/R0vvbNswavI7EmFRSEtK5ceYRNZsFEvsikfCnMVSsUyKLUN4rpn+xguS4NO5eeELZmsXJ75/3lWOHDVGU2LH4CGqNihKVi5DLy+2D7zX0YSTftJwLCOQL8KHTkKa06FU/yzL5iuSl8yg5M5K/SF4eXnkGgEqjwsnl/f5cAJd+v8n2Hw7i6uFM0NlHuLg78/PVWXjll7NX0SFxGHRGHJw17P/5OAdWnkCSJGLCExg0V77ZterdgFa9GwByVkBQCARYx/Intp3HvfOPyFfEm5U352Zxuvct6sPETcMB0GXquX/hie2cCYKCzt98QpWmr0uSn45oTZ121XB2d+LJ9ecMr/MdggAD5nXnysEbKJQK2gxsBkAeX09a9WuCQWfA2c0Jk8GEg7MD7l5uGHVGRFHE2c2JDlaTUYD6nWuxb/kfGHVGEARUKiWdRrbJds4sZguntl3Exd2JWu2q8vDK0xzPrWgRuf7HHVp82eiD1+FjcHDSoNcaEBQK1A5qfArnRalSoFRpMGiN7PvpGJJFpHG3OjTtWY8ja898cJtyJVhANFsw6k0Y3mhunvXFUvYlrs3WT/YuPPK6s+zSrCzPjd/4FWd2XMK3WL4PyibYsfNXsQdCdv4RKNTWG5rghFLzYdXfd6FWKmlXNmdV2g6BZWhYNACNUomzRv7ybtOzLsUC/YgKjaNOq+xCe175crHq1ATb34WL55Onn0QJ3yJ5iH+ZzJBm85AkiZIVCzN3R/aSgJOrIykJsmCgo7MD7rldGbm4F3t/Oo5/2QJcOnwHSZSIDY9nVt9VODppWH9njq3X511Eh8YjCAJ6rRGj3kTrD/TfjFz6JX4lfImPSuLTr1rg6PL+7YuiyKyeK2zj9wAGvZGgcw+p1aYy9y8+YdDc7uxafJiqzcujcVRjsYiIFpGUN9zFX3Fi6wWWDJdF/HyL+jBtxyhuWSfiYsPjiQ6JpVCpAjkey/Z5+wl7GIkggG+xfHyzeiDl6sjXOfh2KM/uhFG/Uw3yFZEnkk5sPo/JIGeBwu69YH+q3PgrCAKx4fHM6LwQQSEwZddoVgct4O7Zh1RoVJb9y48Qei+CKs0rsOX73Szo+xPf/z4BR2cHSlQpyp74tYgWEQdnByRRsk3Nvcmvk7Zx4KejSBKM/Kk/n37dhk3Td+f4voT39H/9GQRBYOGpKRzfdI7KTcrhXSgP3oXy4OQq24xcO3qbBxefIigEFEqBs7uuvLHuuyd8xq4dQoUGZZjR5Uee3AjJ8prZaGH3ot/pPqHjXz5uR2cHWv5NgaAdO+/CHgjZ+UcgKPKAkAfEKARV+Q+v8BdJ1euJy8igasECCIKAJElcOnqXRzdD8fXPS8mKhdm/9izBd1/QfVQLCrw1ufPdr/25cuw+hUv4UKh4Pu5cfIokSei1Rp7dj8xxn3P2fsORTecpW70Yha1+U6161qNVT1kaID05k7SkDPrX+A5JlLCYLaTEp5HvjTHjnKjWrBzVmpfnWVA4wxd8AUDYoyj2/XSMyo3KkqeAJ8/vhlO/U3VyebmhcVTTdUz28tQ7z1ViOg5OGlnrRpBLQY7ODlRsUIZRjWcQExaPxkHN+gcLcXF3QpuuIzYsAV2mngGzumbb3u3TD2wlqsjgGGb1Wk6jrrU5s+MyxSoWybFH6fmdMHSZetQaNYJCQKVRUeuTKrYgKPJpNN80nI7FIrL5+99YfWseLrmcadm3ERf3X0cQBJp+US+LdtHm73cTfCsEAYFtc/Yy8qcBNO5ejwt7r7J3yWH0WgM3jt7BbLKgTQ/mtx9/p9vETrJHl9MbweM7BuBePo+xNSOv/nYz2yJ+plbbKoxuPB1duh6FUtZvAljYfyV1O9XA2c3po6/LuyhUqgD9rGVCkMteHj658Cvpy6LBa2zPVW9diZS4dK4cugVAvU9r8PJ5LOEPIjGZzK8zlYJcIpvSaQEmg5n6n9Ug6Owj3DydiXwag0Kh4NCaU+Tz96Zx16zq32EPIhnfajaSKDH70HiKVij80e/DbDKTFJ1CXj8vBEEgOjSO4FshVG1e4W85T3b+t0bb/xvYAyE7/wgshjMgJgAi5szlaFy7f2iVP82DmFi6bt6JIEDn8oF816wRdy4+5cC6c+i1RmYPWU+PUS1YPWMfkijx7N4LVp2amGUbjk4aGrZ/PeEVWL0oleqW5OGNUPp/l90NHsDHz4veEzuwe9lR5g5cQ7Vm5Rj7c18UCgUvQ+L4Y+M5ytcpSdu+DTi6+SK1WlXk8uE77Fh8hHrtqzB0XrccRQjVGhWT1madrJnUYQGJ0Smc3H4JSQKz0cyKMZuZtGEo9f5EP4fZZGZY7amYLSIaJzWzD3yLX/H8OLo4oFAqCH8YJesDiRIJUUm4uBfA2c2JBp/V5Ont0By/aDuPasOVP2RLDpCDNrPRQoOudRi9sl+27MqVQ7eY1X0pCALdJ7Snx4QOWMwiXca8LpvGRyUhihJmo5n4F4nM7b2CmfvGUqlRWXbHrLYGL1nF+ALKFcbBUYME+FtLdAC6DD2iKKJUKXHxcEGXrsOoM7Jl9m/otQb6zvq4z2TfWd25uPc6ANo0LS+fx1C8cgB7E9byPCichf1+JuReBCDHHC+evKRk1Xebqb6Lc79d5Y9fT9N2YBPqtJevbdiDSI5vPkf1lhVZN3UnDy89RalSoFKrMFt3uObbLXSf2JEbx+9iNpp5dCWYgiXy06JPA3Ln8+DgyuOkxqejcVJzcPUJW2O1WqNiV9RKMtO0rB63hSPrThMfmciCfiup0aoSLrle96ftW3GEpJgUAHYvPsS4ddld7u9feMy6KTsoW7sEJqMc/Fzcf00OEiWJai0rMvKnAQyu8i2SKOFXwpcV1+b86fNkx449ELLzj0ChrgyCAiRHlI4fN5n1Z7kXE4tFFDGJIpfC5BuRe24XJFFCpVbi4eXKwQ0XbGq/kaHxRIfHkxyfgV8xH9w8slt9qNRKpvyaXajvTSwWkcw0Lb9O34MkSlz6/TZhI14SULYg4zosJCEqmf2rT6FQyhmqm6cfcNZ6Iz207gzt+jfC7x2GsG9js+yQsj7e9sPv1OtQjRdPo5nQ7gfMJgsz93xN8YpFctxOUkwqqYnpWMwiKrUSX39v3HK/nhLqM+0zdi46RM3Wlfj1ux3cOH6X+p1qcOngTQx6I1vn7qNh51qMWT3Aph1UpGxBPhvZivXTd8sRgAgvnkYT+yKBUzvK0KpPwyzH8Pj6c4wGE5Io8fByMDP3jc12nBUalKZs7RIEnXmIJEkkx6XaXot8Es39S0+o17E6Xm8oc3cY3ooCxfMjCFDVat9w/egdFg9ejSjKN+BRqwax5fs9/PHrSYw6IzeOBX10IFSopC8NOtfi/G9XCShfmILF5WunVCnZOuc3wh9G2lSlS1QJIKD8x2VLzCYzd04/oECxfLjmdmFerxWYjGZunbyHb4APn49rx+qxm8lI0bLLKq4Jsnimxfy6t0eXaSCgfGGUSgVKZw2JL5OJj0ziwaWnLLkwg2Zf1EefaeBlSAzTPl30xv7lRnEXd2cGL+jJkXVnAFlENOjcI2p/UgVtuo4Le6+Rz98bjZMGAajaLOcM74wui0iJT+PBpScIyJpfb/bNXT54k67j2iNaJAxaA6EPXmCxiCjtAov/OfaMkB07/3soVIVw9r6IZIlHUOWs5/Of4u7giNmqrOxkndQpWrYgU9cO4PmDSJp+Vp0tPx7hubXEJZpF+tWfBZI8HbT5xkxc3D7cYPwm2nQ9wxrMIPZFIm65XTDojJiNZhYM+ZVvVw/AoDXaxAJNBgsWs8VmQgmyWnXud2gR5cT3e0fz27IjVGxUhuvH7nFuzzWUaiX1Osgq9wdWnSDBOg20e+kRJqwdnG0bv3y3k9+WHcE5lzMqtZKWverbHM8fXAnm57GbKVHZn10vfiIqOJphdaZgMYuc3nlZzr5I8s33wv7rdBjajBKVXysUb/r+N5Bkted8RfKSEJWEgJCjT1frfo25uO862nQdvaa+tq54ZRGiUMj/5hwaz8oxm4h8Gs2Qhb0QRZGfR2/kwM/HUSoV7FlymE1Pl9jWFwSB6q0qZdlX0On7mPSy2CCCrF7dc2pn7p59QGJ08kcHQQBBZx4QExbHJ0OaM/TH3giCgCjKSt6Ozg6IkoQkSQTWKcnCM9M+WmRydo9l3Dh+FyRYdGaqrb9IEiWinsWwePAaVJqcG5eVKoXtczXm18EUr+TP0osziQmLY+GAVaQnZWDUmxhWY6LsXJ+D3MGgH76wPXZycXwdaAPTPl3IzpcrmdVtCY+vPQdg0qbh3DxxlwX9fmbRwJV8f3A8lRoF2tZx93IjPTkTSZKQsOplCQKi9Tj9yxWiZLVilKtXihtHgzAbzczvs5wJm0Z81PmyY+cV9kDIzj8GQZEbQZGzp9bfgVkUcVSr0JnMCMLrm0+leiWpVK8kAIOmdeLayQfERcnBwqsve73WSPDdCCrWKfGn9vn0dijJ8WmIFhGD1kjDT6tzfOtFQu5HMrzhTKZsGcahtWeo2rgsZrPI0c0XaN27HjuXHiUpOoXqLcrjmuvjTWcDAv0Ys2oAAE271mHIvO6kp2TiZ81KVGxYhqObziOJEpHB0Vw8eJM6n1TJso1Dv562lZsmrh9C5UZlba/N77eSmLB4Xjx5SfUWFajYsAzuXm5kJGdSuEwBarSqyO7FhzGbLSiVSrwLZhXlK1E5gNAHL1BrVPxwZCJXDt/Gu6AX1Zpnzxp4+3mx5s78LM8d3XCWxUPWkCuPOyuuzMLLNzdKlZJhi/vYlrly6BZ//HoaSZQwixaSopO5e+4hhUoXwCNvzkFly35NOLHlPEatgW7jO5IQlYhea+SX+z9+9LkHiI9MYHzLWZhNFsIevKBYJX9Wjd6IyWhi9qEJdPm2Pae3X5JLr7fDeHojhFLVi31wu4kvk7l38Qn6TAOOLg5EPI6S7TqsGkEALrlcmLxtBD/0XUlKfCqSKOHl60mf6Z3x8M7FsQ1nad67gS1D4x/oh3+gHwtPTWFgpXEgSYgWyabn8woHZwc6jmiZLbNTtXk5bhx7bf/ydcNpJEWnYNAZcXRxwGQycXDVMWvfG/wyYQtLL86yZXTmHZ3E8c3n8SuZnxvH7pIrjxv+Zf2Y9+VPmI1mwu6/wGyyZJGoOL/nKhM2/alLYicbgl1Q0Y6dfyutS5fgfkwsoUlJTGzSMMdlVGolq09PZMm4HTy794KXYbL9hFKpoHiFQjmu8z6KVyyMW24XzEYzjbvUoErjQI5uvgDIU1mZKVqmbXk9adZhkOwy37JXfVLi0shT4D8LDD3yutuyOQB1PqnCjycmM7LRDJ4HRTC370o2PVqIRx53nt4KJeLxS+q0q8LZ3VdxcXfKVjrLW9CLpJgULGYLPw77Fc98Hsw7NJ6M1EyKli+MWqOi01ctuX36AcUqFsbD2z3L+vP/GM/Dq88oUqYgHnndadu/8Z96PzsXHMRiFslIzeTK4Vu06d8k2zKuHs4ICgFBIeDgqMGnkCeT2sxGrVGx/uky3HOQJihYPD/bX6wC4P6FR/QpMQJJkhi8qDefDP64Um1kcDQDy4+xlZAMWiOXD14nI0XuidowbRdPrj9DFGWbEovFgleB7Jmwt3l6K4TRjWdgMYs4OGsoXaMYJSr7y9N8r+QElALthzanUqNANgUv4cqhW3gXyoOnjwfz+/5MWlIGTq6ONrXyN5FEspZK3pB28Mzvwfbwn3I8rq9XDWRYjUmkxMkTglFPZe8+lUZF3Y7VqdmmMi7uzrb3/+x2GF3yD8TT1wO1Rs3UXd/Q9Vu5r65O++qA3Kfl4u6EQWciT4HcqDUqvN7IFv7LKjp2/ibsgZAdO1ZUCgUTmzT44HIOThq+XSrbULwMS+D6qQdEhsYzd+h6+oxrS9GyBRFFkb1rzpAQncLnw5vj4ZXd5wvkfoq1N2aRlpRhU45u0KkaF/bfxMnVkcB32HqoNSryFvzwTfKvUKiULyqNCrPJgiRKLB6+ntptK7Fk+HpEi0ih0gX49fZcPPK6Z9NFmr5zFKd2XOLoxnME3w4jPSmD8/uu0W1sO9syTq6O1H4rywSyvs7pnVdQqZWUqOwvB5g5jJ+/TXxkIi+fxxJYpySNu9dh6+x9KFVKKtQvk+PygXVKMWHjV4Q9jKR1v8Z0LzTYNkof+fQlZWqVfO/+bp+6b+tNOrf7Cp8MbkFcRDzP7oRRqUm5d+ovnd9zxeaq/orHV5+hVCsRkG1JHl8Nlvu3JFkx+9L+67QfmnOgZTaZ2TRzD3sW/4HJKB9PQLkA5h2ZBMCno1pzdP1ZQO6/6jRC1jxSqpTUaF2JWyfusW3OPoLOPrSVuR5fDWbPksN45c/NmF8G4eLuTK48bnLPknWSTaFUIJpFVColSy/OzPHYQu+/YGS9KYgWEXdPV9KSMmyvWUxmTAYTGkcNa4J+4I+1p/ht8WEyUrVkpGZahS5h+/z9jFzRH5PRzKKBssL0iBX9WB20gOCbIQRavde+nPk55/ZcISMpk3J1SjK68XR6TOpE5Sblcjw2Ox/BvyyitAdCduz8B/gWyUPBoj6sn/c7eq2Rl6EJ/Hp+Mmf23WTTwsOYjRaiwxOYtm7gO7eh1qjwyudBRqqWy4fv0H1MW/pP/wy33C7ZtIIe3whh7fQ9lKlRjN6TOvAsKIJJny1GqVIwZ+83FCmds87Oh4gJi+fQujOUrVmcmq0qMv/QOH7/5TSndlziyqHbXDsSZLtZhj+M4nlQOLXe8D97hUsuZz4Z2JTUhHRePIlGlCSKVyxCYnQK2384QIHi+Wg/uFmOU25b5+1n14+HrQGYiIuHCysuzsDnPZ5WMWHxDKo8DkmSqNqsPFN2fk3jrnVwy+2SzeIhKSaF0U1mkBKbyqRtI+k+vgMAfWZ+zsZpuyhWyZ8Tm8+TlphBzbbZA7VXNO5elwM/HUGXrqfLt+3ZtfAA677bjkIhUKSsH8uvzs1xvSrNKrB28vYsNxmj3oRKpUQCilXy5+mNECKfRiOJIhISugxdjts6uv40iwatlvtlFAoEQUDtoKLHpNeaPV/O+BxndydunbhPrymfZTkf8/r8xOWDN+XSkkqJ0XptRVHi8bVnqNQqDv9yihZ9GjKw0re23ii1RmXzJjObLYQEheNd0CvLsWnTddy/+BjRImLUm/DKn5vMdJ1NkVuSIOjsQwC8fD2JePySzHT5fb4qNUsS+FktWS7uu8a53ZcxGcxMbDOHmm0r8/nY9rZReXdPN3ZGrebJjWeMa/Y9Bp2RSW3m4ODiQNdxHWxZJTt23oU9ELJj5z/ExV1uDFUqFbhAvpauAAAgAElEQVTmkr+cXxl1SoBOayQlIR2PPO9Xgx7XbgGRz2IRBFhzZWaOgomzvlxJfFQyT2+HUbF+KY5sumD7tX1gzSlGLOr5l97DxA4LiA6L58DKEyw+NZkSlf3pOdGdM7uvgMmSbfm7F57kGAi9oseEDpSrWwrXXM4UrVCYb1vN4d7FJyjVSiIeRdFjQge88mct68VHJmEymm0BV2ZKJoOrT6TvjC58MjBnm4+wBy9knaZMAzeO3+XR1WBK18g5i3Zm52ViwxMwG81smLrT1tPSZUx7+Z/vAO5feMzR9adZHbSAAsVynsQrUCw/O6N/AWD3ooOsm7zdllEKtY69v40oivzx6ylyebmRlpSBs5sT1VtVIjNNy/Ujd1AoBJKiU/jl3kJS4tNYOXoDLrmc6Ti8dY7b2/HDAVvTsFIhkMs7FxufLs6iY/TkxnO2zNqLQWsk9H4Eu6JW2V67+scdm2ZTnc41CShXGL1Wz4sn0Vw9dAsE8PbLQ/jDSHQZeluA8rbA49xey9mXuNb295bZe9k0czcOzrKMgkqtJDUxHY2DGqMkZ/0AAsoXZmKbuQxe0BNduh5BEFA5KDEbzUiSnLVq0kPW0fLwyWULvjJTtZzccoF75x+z+fly236VSgV58nsiWY/RIopo03Ss+247n49tl2PgbecdSHbTVTt27PxJSlUqwvif+hDyMIpW3WsB0KhjVeJfphB06SkProfQu9Z0Zm4cTPla7258jQ6Lt9lRxL9MxsvXg4XD1nH9+H18A7xJiU8jI1WLQqnAZLSgVCvxzPe6uffVSP2w+d0/qqT0Jgad0XazeyX2l7egF1O2DOfKH3eoUL8ki4dvIDNVi0suZ9r2f7/aryAIVKhfGlEUZSNNs+zHJlpEjm48x+XDt9kavMQmWilaRPpM/Yzk2FTiXiTwIjgGi8mCNl3PT2M203ZAkxxvZuXrl8bRxQF9pgG91sA3jWYwYkVfWn3ZiLSkDK4fuUPpGsXxLepD6ZrFbSPhVVtkVwl/UyHbnEPw9/b7A0iNT5N7egQBlYOKoYtz9sC6d/4xJzafQ59pwDW3C7tjf0GpVBATFsfcnstwcHbgM6vXmkded8ZvHP7e/TfuVpcN03aCJN/4Ryz7MksQlJGSyY75BzAZzAgKAbfcWUuzjk4a9Bl6BAG0aTpehsRSorI/IXcjaNC5JiH3Igh7EEHNTyrj7uVKgnU4wKgzZdlOrjxyj5ckSawet4W9S/9AFCV06XqALGWxwmUKYDGLVGxUlhObzqPXGpjbZwUz945h9bgteOb3oFjFIhxec5LWA5vabGQCa5fEwVlj+1wiyFNubxNyLxyfwnnInc+DkDvhmM1m/Er42oMgOx/EHgjZsfM3ULNZIDWbvR79VSoVdBvRnCe3w6wu8hZ2rzyJm4cz/qVfu7DHRCRw+8wjytUujl/x/Dy/F0HVxmUpVdWf4DvhXDh4C4PW+LrHwvqdrlAo2Dz3INWbl0OpVmIxWchM1XFk0wXyFvCk2+jsHlfvY9r2kWyZd4CytYrz/F4EGalaqjYtR9Vm8r/TOy9jNppRaVSYjCYWDvmVmXu+wcX93Uq+EU9e8nXjGRh0RgpadXkkSQ4yUuJS+bbVHPL6eXHr5H3SEjMYs3oAM38bDUD4w0hGNp6BJEr4FMrzzpvZ/QuP0WXIN12sGYdlw9fy8lkMJ7detBmAbny6hNLVi7Em6AebS/rbzPljEjt/2E/1NpUpXLogkiSxePAqTm29QKt+TRi0oBe/TNjCi8dRDF7Ym4IlfOk6viPxkYmYjGZGrOj/zqmzvAU9kawyC75FfWyTUfmKeLP4fM59Nu+j7aBm7F9xlJT4VJQqJY5v9SVtmLaLq4dvIwhQukZxJm7OGlgNW9KHRYNW4+Lhwu1T9zGbLRxZd9qmEo4kq3KXrV2S+Ucn83XDaei1Bow6k03Oof3Q5nxu7f2KeBTFwVUnbJlQkMfdXXO7oNcZAYkuY9rR7It63Dp5j+ObzqHSKPHI646XrycTNr0+vibd62U5VpVaxYorc7iw7xqCIDeHXz5wk+bqrnz2TVsGzpPH9r/vuhij3kRseAJfzvicAyuPUbZ2Sbnfyh4M/TnsPUJ27Nj5u2jfrwG3zj/BYrIQdPEpX7dfxIqj31LA3xuDzsjg2lMx6E02M1GzyUJUSBwKhQIfPy/5hvmmAav1f9EiEvE4irEr+3Lz5AMeXH2GQWdEtIhs/eF3uoxs+aeyQsUrFWHa9hF833MF144GIQgC03aMpFJDueE4IToFi0W0ZU2e343gwv7rtOhZ/53bPLPrCpmpOiRJIvT+C0D+JZ+3oBeiKHL3/GNUGiWSNYDZseB3Gn8uO7kXLlOQ1ddn8+RmKJUbB+a4/YSopCy2HK8QzSK7Fx/O4hi/ZvwWxq0fRr4ieW1+Y29Tsloxvts52vZ3YnQyxzacxWw0s3/FEYoEFuLgz8cwaA2kxKex/MocXD1cmLB55HvPbVJMCg+vBDNgfk9Es4Xa7aq+d/mPYWyTGWSkZKJQKPjs6zZUblrONn3l6uGCSy5nFEpZGygyOJpNM/fQY2JHfKy2LGEPXmA2mklPSJezSghI1g+XQhAQlLKg49ldV5AE6DzmE3RpWjJTdRzdcJaGn9eyaSAB5PbJhVKlwMHZAWc3Ryo2LItLLie6je+AUWfEYpab7AEqNynH6NWDiAmLo+07Sp5vU6h0AbqX7khCVFKW5u69S/+wBUIeed1JiklBNFvY9P1utKk6jqw7Td1ONeyGrXbeiz0QsvOvJjIllVPPQqjrX5gAr79/CqtS3ZLsfTyfHlWnkJqYgaOzhpiIJAr4e/MyJA69Nd1v1JtQOShxcNLYVKI98rqz8uI0Lhy8xd0Lj7l29F6WX9zJ8elM7PQjqy5NJyokjkG1ZOHCnMoGOWHUm7h44Ab5/b0pVU22cIgNT8CoN6FxUBN8O5RKDctwZOM5Dq09hW+ANxkpWjKsI9YBgYVIS0xnXr+V6DMNjP1lUBb/s6rNyrF78WFEUaRE5QAeXgmmWMUiLDoxmeldl5AcmyqXxpAzaA0618xyfN5+efD2e90orcvQs2b8FrQZekx6M+f3XrUFhgqlAoVSgXchLzJTtHImyKrODLIv2p8lVx43cvvkIj05E08fD7zyewCyyri7Z85TgG+TlphOn1Ij5VKRIAcZa8ZtYequb6jR5t09Vh8iISoRs9GMg7MD1VtX4uaJe0zttBBBgJn7v6XHpE4olAq2zN5Lanw6R9ad4fxv19gauhwnV0dObL6AySCvX7tDFbz98lCmZnHunntEzTaVeXDlKSF3wzm6QZ46EwQBpUpB3Y7V2Z+0lpNbL9Desy9unq7UaV+VyOAYRq8eRMSjSLbPP8DF/dcpU6sEufK6c3zTOXLlccevlFymOr75HIsGrcHF3YmGXWpna2p/Fxum7WTL7N+yZCssZgujm0zn658HsODUVAZUGIvFbEGXrkelUWHUm3l05ak9EPrT/LsyaPZAyM6/FrMo0nH9VrQmE4vOXeLCsAG4Omg+vOKfRKlSMuqHbqyevpfSVf2pWFcWXczt7S6PIltEVBoV3Ua1Ii4ykUFzXhuSehf0otOQZnQa0ozORUeRbvXhesWL4Bi59FTUh2lbvuLCwVu06lUvx2yQJElkpGhlHR1BYP7A1Vw/JisRzz34LVcO3yb4Tph1dN7Mptn78Cvpy9KR620moL2ndKJk5QDyFvTEr0R+1k3bxe3TDxBFibVTdjJxwzDb/srUKM7GR4sw6o14++VBrzXg4KRBEATGrxvK0Y1n8S3qQ5kaxclIycQ3wOe953Hnwt85su5Mjv07AeUL4ezmyOTto4gLT2DhwFUkRCYhiSL5AnwYsqAXAClW8UpPq1TB+1CpVbTq14SbJ+4yaP4XlK5ZkrFrhxH1PIZPBjf/4PoA0aFx6DMN1gsAoiQhGkwcXX/mPwqEJm4ZydrJ26jSrDylaxRn/pc/2xq2T++4SKVGZen8TVv2LD5sKx0a9UbSrXpBnUa2YtXYzbjkcqJa8/LoMw1UahJI6RrFQBC4feoeUcExtv298o3TZegx6Iz80G8lokVEn2lg3/KjAASdecj4DUNRKBXoMw3ERSTw06gNHN98DkGAr1cOpEn3uuxZfBiz0Yw2XcexjWfROKg5teMSotnClB1f2zJHr/b7Kut0cNXxHEs29849YlT9qWx6vgyzyYzFZEGhVODg7EhmmpbN3++lYqPAv+TXZuffgT0QsvN/gjPnH3P3fiSd2lWmYAFPnoXE8c347UiSxMLZn1OieHbncqPZQobRaLPV0JqMfykQMupNqB1U7+1DeLuHCOSMz5y933D58G3cPZzZvuAgSODs4sCgudktG1r1qse+lScRFOBXPD8RT6Np27ehbbqsWrNyVGuWXTvFYpEblie3/4F75x9TsVFZZh/8lojHLzFo5ebslyGx7Fl2BJBLS6IoIRrN3D3/GCcXRzLT5PHmoxvP023MJ8SGJ7BgwGr0WgNKtRKVIOToDv+mWOObU3Au7k606tOQn0dv5NTWCwxZ0JPfV58gISqJT0e1yeJb9gonV4cs98E3b5Lh9yMQLRLLv1rL5O2jKFDUh5CgMBQKBd4FPUlPyuDWyXt8124eoigxYkU/WvV9v1hj0JkH7PxhP/pMA3N7LWfD02U06FLbtm+zyYxKnfUrNCEqkfN7rlK+QRmKVihCsUr+aBzVGDINIMgijiq1ilZ/UigSIPR+BOd2X6ZmmypUa1mRai0r2l5r0acB53+7CoJAc2u50snVkaUXZ7B+6i6eXH9Oiz4N8LZKEXT8qiWt+jbi5vG7zO21DEmU2DB1J5lpWpzdnNGma1Eolag0KixmC6WqFyUtMYN2Q5pjNplzPD5JEqnRpjJNutfl2e1Qhv7Ym00z92DUGUCCJUPXULV5eRp3r8PzO2GYdEa2zdkr23VYM3frp+5kys6vkSSJ2T2WcW7PVRp3q8O49UOp27E6h9ecBKBk9WKEPYjAkClnVPWZehycNIxY0Y+lw9YiCALadJ0cOP27kht/D/YeITt2/llcvR7C93MPYhFFLl4Opka1AG7eDifNevPevf8GE8e0zbaes0bN9y2bsu76LT4rXxZvV1ceP4nm+q1QGtUvRcGPUPXdMHs/23/8AzdPFyavHUT5P2mxUaFuSSrULcnW+QewmGQfsVirm/fb9J36KS171sM1tzM3jt9DpVJSr6PsKh7+KIoJ7eZjMYvM2jeGYhVko87I4GhG1p+OLlOPaBGRRImgsw9JTUhn1LI+LP5qHX4l8nP5wA1MWgOCUoGzhxNIAhonNa37NqRex2qMazMfJInGXWoS8eQlw+tMQZ9pQOOkpuNXLfEP9KP+pzXe+14TopK4sO8a5eqWomiFIuxZcoiT2y4iiiKJL5MJvhWK2Wwh4nEUU3Z8nW39TiNaYdQZ2TZvvzxObfXkUqoU1skzi61PplDpAjg6OWA0mLh2+DY3jgZRtUUFWz/R4sFrKFW9GP6BOauBWywWNs3YhT7TgCBkDeIMOgMj60wmJCicrhM60vf7boAcHA2vNYnU+FQUSiWbni8nOiQWyWIBJFw9nNn4fAUqlRIn1z/nSWc2mRlVdzLadB27Fhxge+TqLCWlig3LsjtmNYIgyH5uwO3T9/mu3Tw0jmoWnp6Of6Bflm06OGlIjk1FkuRg3mi143glaKjSqBnzy2DKNyjNF/5fYdSbmNllEb8l/MqkrSPYMf8AZWqV4NyeK4gWkXHrh6JxUDNyRT/bPoYt7kO/snexmC0Y9SY+LzCIAsXzo3FUY7T66gnK19nLYpWKAHJf1cX915EkidM7LjFkYU9G/TSA+p/WRJIkKjcphyAIHP7lJGd3XabL2HYoFAoafV6HJUPXYjHL1hu1O1Wjaovy9myQnfdiD4Ts/KOxWERmzjuA2do8mZam4/DRe1isfkiCACEh8cTFp+Gd1z3b+p+WL8un5WWvrJRULSPGbsVkMrNt11V+3z1KNnp8D/tWnwIgPSmTcR0W8cW4tvTIIej6EC171WffT8fISNHiUzgvnQoMQeOoZsyqAegy9FRrVh5HFwd8A7zZOn8/2xfI7uFJcal0GNyM/atOkBidAsDuJX8w3mqWen6vbEoqWkScXB0xGU2UqByAu5crHnndWX19NhkpmXQuMASQJ30WHZtEoVJZhRm3BS8mLTEd36I+TGg7z1busZhFytYqQY1WcnYiM03L5HbziXuRyPgNwyhXt5RtG6MaTCUlPg2FUsH6hz/i4uEi9/YIAhoHWaFaskikJ2dyYd91ytcvnaUXR6VW0XZQU3bM349CAQgCSrUKl1zOeOX34HlQOEq1ElEU6TW1M/6Bhfh10jain8eiUAiygat1XB8klo9cx6QtI3Msk4XejeDJ9WfyMUkw8+B422uPrz4j6lkMkiTx2+LfbYEQQEpcKmajGbWDwJoJW/Av64dgNU31yOuO20f2w7zNq0ACq9npqzLYm6g1KpvOT0ZKJlM6zJcDHL2J45vOMnDeFyTFpPD05nO06XoW9l+JR143ytcvLTcZW0RePI4in78PL59FI1osBJQvhCTK5wBkEUVJgnodq1Ovo2x7MXRRr3ced4Fi+eg6vj3bZu+1Na9HPIrCw9sdSRRxze1KSvzr/q2oZ7G2c5UvwJv4F4nkK+KNqzVD+LZadOv+TSheJYCJbeaiUitZcHIKQxb2Ys+SwzT7oh49v/v0L51vO/8uPq6r0o6d/1HMFhHtK30RoHRJXxTC6y9uSYLnoXGsWHXqg9vKzDRgtAq6abVGWnVcRL8ha0l/NZ6dA7VaZtWj2TL/92xTTG9isYi2Hpfz+2+ybdFh0pIyeHwjBIPOiMVs4eCak2SmakmOS2XKZ4tYMHANE9r/QEpcGpIkEROagElvxmQ0ExsWD0ClhmXQOGnQOKqp0vR1Ca5q03KoHVSoHVQMmNONdfcXsvDk5CyO5i65nClWqQgaRzUFiuXLscTl6uGMb1G5hyd/gDcqtRKFUkGLXvWp/sY52DZ3Hw+vBJMQlcT8L197UEmSREp8GiaDfH4zUjKp274aX07vTJ8ZXZiycxQdvmpBvU+r8/j6M2b1WMqASt8iWsuWmWla+pcfTRffQRgNJiwmizzefn4Gv9xbyLM7YUiixJ1T94kKjkGhUNCgcy0mbBqOg7MGUZQIvRdBqwGNQQDRInH3zENGN56e43XK5++Ng5MDjq6OlK5RPEvTdkCFwji5OKJxVFOz7esJMEEQmLh1FMUqFUFQ8P+x99bhUZxt+/9nZi1CCCTBQoK7u7u7F2ihhZYCheJOoWiBoi2UQpHiLe5SigZ3T4BAAsTdZX3v3x+zbAiElud539/3ePo+OY+Dg+zsPffOzs7ufc11ndd5cnqLH1tm7abflG60+qQJcw9Nfe918XfQOeuYtXciNVtXpceYTvzx6zkSo5Mcz9/84x7d3AfxUZFhhD+L5NHlpw5eF0C9jjWJj0jky2oTWThgFcuH/oLZaCYxOpn75/yJDIqmWrOK/P5qDXnyuTjKVdeP38WjcD6m7xhNk571WHB0mqPD8UMxeG4/Njxclq1EtezcbIpXLoY+3ZjtZuPcriuEBUaiUqtYe3MRK87P5ufr32W7Xt/GLxO3kxKfRkJUMiu+2kD3ke3YFvhjbhD0P4H4f/TvPwS5GaFc/KMQmBLDjwHnqe7hw/DyjdFp1Xz2SSO2/nZFke73D2PY583ZvOMSZrMNq9WGRqPC8z1eX2/CyzPPGxkDMBothEcmcfV6EO3b5NzCPXnt55SrWZyNc/YjyTKehd3R6HL+Wr16EsHEzksxGy0MmNyZnSv+wGK28PDKM0Yt+RgEOLnqKFqmECFPIhE2m0I8zTTy9FYwn5QbS9XG5Zm0figxYfGo1Cr6TeiC2WTh2Iaz2CxWOg9pSdtPmjhes2ytkux4vhKT3oTXe0p9kiTxw/lZRATFKBo3f9N2r083KNkYlUTzjxpk40YlxaQ6/n6zw02SJL7ZPprfFh2kcfe6PLjwmHWTdyCrZRp0rkXIk3CGLhpA8INXXNh7HYDkmBRMehNOrk48OB9ATEgcwibQOmkpVNaL/lN7ULZmSfYsO+J4HbVGhcYp6/xXrF+WOm2rK5o6skTddjW4dvg2STEpgNLV9SbCAiOY23sZGp2GJWdmkZaYTqWG2cudbvnzsDXoJ+LCEvApl119ummv+jTpWY9uee0K30LQekAzvEu/G1z+q2jYtQ5eRT0Y3/RbLGYL53ddpu/k7tRuW43fFx3EbLJgTc7Ab+81Og9tg0teZzJSBK36N8KkN/FZuTHZRCNByeipNCoMGUYe+D1m1Mov6PhFK148CEGlUVOnXQ3H+2raSyl9Xtp/g+AHr+jyVVu8vBV9pKNrT/H83kvK1y2NSqWizafNsgVMxSr6MOP3sRz95TQ9R3fEt7w3Lx6GIoRA66RBCDAbzYoatX0/nbOWsjWz9J7Cn0Vx9eht6rarTsmqSklTn24g7Q0fs/S3mglykYsPQW4glIv/aKSaDNyKD6G6R1G8nPIw+vpeQjISuRb3kmoe3jQqWIqWzSuwZccVQCkb1K9bEl8fD2LiUkAo4oMd2/29AaMkSXw1pAVXbwQhbIKHAeEYjRaiopPJSNXzTZ8fiQiOZfzKz2jcpaZjnx7DW9Osex2e3H5BtSbl3kua9jtwi0y74u7Fw3dAUhai9ORMipYuxLqbC4gIjiYtMYNlIzYiSyq8fDzQpxtIiU/DarHx8HIgOicdi49lZRcCrj3j6e0XWMxWTmy+wMhl2W023tfqbbMpXT86Fx2ZqXrSkzP4EN258MAoLCYLWmcNkcEx1GieZW7ad1IXLh++hdlgYtwbXBGARt3qODR0RjWaqRiQmuHC3utIsoQsy/Sf0t3RSefkosPJ1YnoV7HsXqrwgjQ6Da7uLvhWKErBYp48uvyEPXaSOYDRYObrutPZ9vwnMlIzmdxmPmajmW5ft6NszVI07lEXnYuWhZ+sBEmiSKlCbJ+3j4Hf9kaSJLbN3UvI43BkWebUVj9GrBjMszvBXNp/g+YfNaSMfWF2dnV6p3z4GpIkseiPGexbcYzGPes5gqC7Zx+x+NNVFC5VkIXHv8HV/a/LZCc2nuH8riv0ndyduu2VgCQ9OUOxkLDYCHkczsoRG9A4aRylSlmtonabauQv6M72oJ9Ijk2hUPECzOm1zBEEaXQa3DxcSYxKRqPTkK9AXgwZBgbO7M298/607N+Yhl1r2zWBsgtmBlwNZPHg1ZiNFm6dvM/PNxdx98wjNkz9DUOmkT83n0elVXP9+B1KVPHFp6w3bQY2JS48AQmJOfsnOlSu+03pyr4fTlCpUTmcnLWkxKcxYEYvipQs+M65sJgtjGnyLfp0I5tm7sa3fBGmbfmabfP2ERGkdLfpnLWMWjn4L89pLj4AAsi12MhFLv4zcCr8MZPvHEIIgYtax7kOY3BVa1FJivibq1qLEILJ3+xx7COA6bP3k5CYjkqlYtPazynyAa3SQgi+nrCDsLBE8uZ1YmD/hjx5FoXZbOXU2QCK6TSEPI3CqDfx69wDjkDoNTwKu7+z7W3UbVOFQ+vOYrMJen7VmrBn0YQ8jeTLuUoKv2AxTzbP3ce1Y3exmhVLiiIlC/DdgYlMbLuAwDsvqdywLG4e2RdQ3/LeCsdGQKU33OozUvWkJabnKCC4c8kRtszeC0CBoh5kpOkxG81UblSOXqM78sAvgM5DW1O0TGFMRjOrx24h6mUco1cOYvSqwSwfvoHCJQrQql9Dx5x3Tj/k/oXHrL42H++Shdg2bx+LBv1Mq/6N+frHQdkCxF5jO7Lsy3UKgVsIhE0QGRxD4RIF+O7QZO6cfUSHwS1IS0rn2+5LeOUfhiRLOLnoSIxK4srBm9w4fgebVTjE9QCsZmtW6/aErUTaF8n75wIYsXyQ8jm0r8HBhM18VnYMgTeDCAkIo3KjctRqU41ydUpx/ehthBCUrVWKpJhkRtWfjrAJ9i47zOGUbdmsLF5Dn67n2LozjgCxWZ+GzDkwOduYteO3kBidTHpKJhf2XKPT0PeLCUa9jGH16E2YjWYCrgRyNH07KpWKGi2r0GdiN+6f9+fJtWcYM40Kydled6rZsrLDa83JRUfhEkpQ0eGLltw+/QBZllly6lsMeiOLB/1MoWJejPxxMCa9iQUDVpKZZiCvRx4kCQr4ejHv4ORspGx9uuILZrPalK4sOxx6nwIsRgtXD9/m6uHbaJ01SBKsHrsZq9lK/kL52PpMsVb5Yn5/vpjfnyntvuPmHw/QOKkJvB3MmR2XaNi1Ni3t4poAZpMFQ4bR4VUW8jiC1eO2Ysg0YLbrKY1bM8TBSTObLCwa+BPBD0Oo3Kg8lw/epGaryszaM8Gh6p2LXLxGbiCUi/9IpBj1jL91AItQFjlhMZJgzOCXRh+z8+VtKrsXobqHD6mpmcTGZS9vREUrZQ+dTiIoOJYihfPxPDiG6OgUKlYowqmzAZQo5kWjBlm+Xyazled2oqYlyUpRbw80GqVE1LplJUpX8wUJnFy0VGlYhsx0Ay7/YudP5fpl2HpvEWaTGa+3DEcBgu6HcO34XYx6E5IElRuUZeTST5FlmeWnZ5Acl0r+gu7ZAgpDhpHLh24xYe0Q8hXIS1l71010SBwjG36LyWih95gOfD67T7bX2rP8mOPvxJhkrHYDzwd+T3h87Tkmo5kL+2/yW9BKzu++ht+e6xj1JlZ8tZEf/Waz7vYiZfyFx/hfCaRKk/LM+WgFZqOFczuvsOH+EvYsP4bNauPk5vP0m9yVAnaX8oyUTPb9cAKtk4aSVXx5ciMIWZao3UbJ2tVuW43adkPUSa3mEvo4HFCcyTNT9Q6lbcW65F1UalSe4pV9sglLyup373Dz5FPUl4UQuLq7ANBnfFdKVyuBRqfBbLLwcbGvHKKMVovC79Ll4CqyfOgvXDl4A9rCUYIAACAASURBVIvJikqtYv8Px/g95Bf06XoWfrKS2NB4fMsXIfplDMImKGXv6gOlPPfHr+coXsmHBl1qkxidxMSWcxyEaGGzcXrbBa4fvUPfyd34aGJXHl8NxNnNCZVaJiNVj9UikFUyH03qluM5adi1DrvD12Gzm5EWLObFrtC1PLgQwKRWcxFCYDZZEDaBwc6JS4xO4exvl+j+dQfHPLXbVqP/tB4E3grm8/n9AKjVpirDl33KT6N+dZyr1zDpzSz78hdHx2L0q1hsVlu28qvGSYMkK8HV74sOYTVbuXrkNuXrlHbw0pxdnZi8aQQ75u8n8mUsao2aEpWK0mV4W34avQnfCt5onDQMrz2NZr3qUbySD7dPP8SQYSTqRSySLHHz5H1ePgqlTI0SOZ6jXGRB/Afxd/5fIDcQysV/JCa8EQQB9CxWHR+XfEiSxLhKWYafVtv7v7HFi3lSp3YJnj6LYuzk35XWYp2ajAwjKpXMsoX9qFrZR5nHYkWWJWw2gdUqKF+uMHu2jyQtTe/IKK27PBv/a89ZM3UX5/fdZPyqz2jV5/0t40EPQ5nZbxUqlczC/eMoXt4b97/gKhUq5oVao0Jy1eFbrggrzsx0PCfLMh6FlOMwZBgJeRoBEmyde4BHV54q5ZijUxy6Nv5Xn2GxWDEbzRzbcJZuQ1vj6Z0VfNXrUIOL+28oC9Qbx6Bz0SqLmZ2zkZmm58aJe1jsInURz6O5fuIeGp0azyL5+LbHUswmMzoXnYMkbshUym0Fi3mRHJeKSx4n3L3cHK9x7dgdwp8pGkaJUcl0GNyCPPlc6Dmm4zvnJDEmGZtNKCU7SUKSJEraFa3TkzMx6o0Iq+KPpdVqqN+lFjN+H4ssy0zd8jXjms0iMiiGoLuvWD1mE6NWfeGY+7uj0zix8SxlapSgfF0lKJYkiVptlCBscpu5WTYdEpSvUxrXvC45fnaxIfGOwMxqsZIYlYwQgjPbL3L3zENFrdtZy+z9kyng60nxij6Ofef0Xsrja89Qa1R8f3Imt089IC40S0JBkmV++nojJoOZ++f9Gbp4IP6Xn2AymHHzyINaq8FqMeFROB81WlTO+eICtE4avqo9lehXcdRuU5X5h6fy5EaQIkJosTk6zmS1jM1iw2K2UPgtkUtJkhjwTa93tnUd3paHfgH47bn2zuu+Pod5PfMw8Ns+73DQpmwawcZvdnJmxyVHQC6Eokv07M4LfMoVwcXNmZb9GtGyXyMeXnpCQmQSTXvVQ61R8+PFuZgMJrq6D0YIePkolEkbh2M1W5U2fft1abOKf1m2IBf/HfjbQEiSJCfgIqCzj98nhJj9nrG9gX1AXSHEbUmS2gLfA1rABEwWQpyzj/UDigCv86vthBCx/7O3k4v/C7AKG5djgx2Pl9fpSZdiVUkwZDDj7lFkSeK7Wl3x0LnYOUCSg5hbplRBvLzc6Na5Bo3qK4tbaGgCEmAwmLFYrFgsNtRqFWlpWd1gQoBaJWOyWdGoZWQJXFx05HHNKoMU8vXEb/8t9JlGhE2w7OstlKtZAh/7XWt0SDxu+V0dRqT7fz5NSrxC5Dz6qx+jlrwrkvgm3L3cWH9rIcEPQ6n+HksAk8HEsLrfEBeR6DDIFDahONaHJzrG1WldFZc8zhgzTWQkZzK5/UI2PVrqeH7q5q/oN6kLd876s33+fowWE7JKZurmESTHpnD79CP6TerKrzN3c+OP+wqBXAhSE9OZ0+cHdC5aPO1ZLZs1y20cYPiSAahUMmuuL+DBxcec2naRcc3nMH7tUMrWKknZWiWRUMpctdtUZcxqhUuUmpDGT2M2E/E8iuS4VHqO6kCfcZ1ZPW4LFrMFWZKp0aoykzeNxLNIfjZM+81BlFapVQgJilf0QaVWEf48iiNr/swWuBxe8yclqhSjs93J3qNwPgbO7O2QWgCFN7Xo01XcOHbHwbtRa9WM+2UYbd7jq/b4+jPCn0dm22a1WFk0cCUB1545FuIXD0PQaNU4ueh4ePExlRuXR6VSkRKXitVsRaNVk5qYTmxYdh2p7qM6cGSNot5s0ps4ufm8vRymZNe8fDxJMqfwmT3rlxSbwq7Fh/AuXZhuI9o5MogRz6OJDVOsOW6cuIfVaqPNgKac2naBlLhU0lMUorHtdTBiE6wevYnKt7/P0QZDCEHQg1f8OGw9eT3z0LxvIy4duInVYkXrrHnHqb5W2+r0HJ092M1IzeSbzot59STcEQSBYs+y7Mt1BN1/RZ58rmwKWI6z3Vg2J7uM9OTMbFmM378/rFisvHWf9FpQMhd/g39gRkiSpIJAY8AbJa7wB24L8cYd9XvwIRkhI9BKCJEuSZIGuCxJ0h9CiOtvHYQbMBa48cbmeKCrECJSkqQqwJ/AmwzDAUKI2x9wDLn4L4LZlrUwSUDl/N5YhY1v7h7hYvRzBND0xHOqexRloLUOKpWMzb7Pi1dxbFzzebb5mjUpzxm/J4SFJTCgf0P8Lj2lbOlCNKiXJbLm6qpj4dze/HHqER3bVcPF5V0eCEC9tlXYsuAQoCwU677Zw/zdo9mx5Ch7Vv2JRqvmp7Mz8C5ZgNqtK3H1xH0Aajb7MK8jL28PvLzfL+QYF55IYkyKgxej0akp5OtFxXplaNK9tmNcvoJ5mb1rLFM6LMCkN7/THSXLMqWqFsNisrBdgM5FR+3WVWjUVZmj0xBF+fjU9ouO8UIIVCplkTdkGIkMjubLhf25efI+D/wevzG7xNWjt6nfsSbpSRncPfMIo97EjyM38vP1BRSv6MOG+0uIi0hULB3sWD/1N87uvOxo+14zfitWk8XRxadxVTNwRm9HAHbn1INsJrRWs5W9K47SeXgbprVfQExoXPbsg4CVIzYQcOUp/lcCSU1Iw8XNifjwBOp2rMF3R6dz5/RD/HZeyTpPKol+U7pTr2NNvv/0J5xcdAxd+il582dl9r4fuIq0hPQ39pERNoHfrqvZWsZNehM/j91EVHAMSNDso0ZM3jSSGTvHs27SNkrXKE5saDyGNIPScSXD0MUD6Tm6M7VaV2XL7N0E33vJs9vBuOZ1ISMlE5vVRuHiXux48bMj4Fk8aDX3/QLQaDXkL+ROs96Kh5skK6Vdk95E6wFNUalkvIp6sMl/BRazhY+8h5GRnJkti5IYncSl/TfoOCS7EnZCVBLjms4i+mWsfW6Je+f8kWSZYhWKEvkihrfx4sErx99PbwZhzDSSGJNCWGAk5rckJxKiknl294WjzTr6RayjUywneBTOR5dhrTnz22Ua96zHud8vI2yK2Obrz6BwiQL/cut/Lv7zIUlSS2Aa4AHcA2IBJ6AHUFqSpH3AciFE6vvm+NurQii/Qq+/5Rr7v5zixfnAYsDBEBRC3Hvj+QDAWZIknRDC+Hevm4v/XuhkNcVdPYg1pOGs1lDYOS+z7x3nSkwwr0N7i7DxJDkafTkLGo0Ks9mKSiVTq3rWj6XJZOHazWB8fTxY8t1Hju1dOlYnJ9SpVZI6tUrm+NxrlKzsQ+UGZQi4rojtuXkqd8rn993EbLQgyxKPrj7Du2QB2vRtSNlqxZFVMr45WHz8OyhSqiA1W1bi5p9KEFCqcjG6f9WGE1v8uLD/Bq37N3aMrVC3FP0nd+POmUd8NitnTZVytUux+OQ0ooJjadKzrlIiVMnYbAKVSmbId/3QOWnROGmo0rgcLx+F8eRmMPfO+9OiT33MJisT1g3jm67fExMSjyxJ/DR6E7JKplnv+rQdqGRRdC7abPpEBYt5vXN3rnPRIcsyNqvCs1GpZSxvCAfWbluNig2yyOBJsQoXTFbJqNQyZqMFo97EmnFbSIhMBKGYuY5fN4y147eQkaIkn68euY0hw4DNYiMzJROQuHXyAUH3X7Lsi5+zHZOzmzNtP2vOmvFbuLDnKsImOPPbRX65s4TilRSlZi8fD+LCE0AIGnavQ/SLWF76h2GzKuKDWicNFnuZpqCvF1EvYjBkGHno54/VYsXZzYlFJ2dwYc81ln2xBpPBhLuXG7P3T6aqPftRt0NNwp5HERIQBgKa9K7Pqc3nEQIeXnzC1/Wms/LKdwAE3g7GZrFhlSz2rsQMHl1+ys/jtpCakI7OWUv3ke2x2WyK8aqzkk006RU9LrPJQp321Xh48SmSpEgwvI3RDWYo79kOYRP2MrVCon5Nan4NSZJoab82L+2/weLBq5GQ6Daqg517p8PNw9WR1Qx/HkXxij6EPo2gapMKFKvkw99hzOohjFk9BJvNRmxoPI8uPkGWZWS1Clkl0Wtsp7+dIxd2/LO6xjoBQ4UQoW8/IUmSGugCtAX2v2+CDwqPJUlSAXeAMsDPQogbbz1fC/AVQhyXJGlyTnMAvYG7bwVBmyVJstoP8Dsh/tsoWv99iDOkk2jMoFzegu9tM5ckiQOthnInIZSq+YvirNZwNyEMs7AhI6GRVY5xv4ZfI7RfBvWdijG9agdKFM9aXOcsPMzd+yEIIVi78jNK5dA99e9gzo6R/Dh+O7JKZsQChTDaZ3Q7Vk/eiau7C3XtmkOXj95l8/yD1GxekZGL+/+lKNyHQpZl5u+b4MiS6NMNfFTsayxmK/5XnhEbmsDHUxTCrCRJDJjegwHTe+Q4l8loZlLbBTy7HUz/Kd34ceQmzu68gs5Fi8lgps/4Tnz5XX+GLf6EiKBoRtSfgUlvZuzqzxmxdABDakzFbDSzf+UfLD4xjfEt5yjWFxLYDGaC7r1i4vrhfHd4CjEhce+4y7+NoYs+Jn9hd8wGMwV8PClZ1ZdJreZhtVip26E6c/ZPyja+76RurJ+yA6+iHnQd0Zbt8/YhIREbFu/ImJWsWowd8/ahf218KkGbT5tycpMfJqsJEPbbOkHo43CFjA2o1DKjf/6SjkNaI8uyUhqy/zpZTVb2Lj/K+HXDUalVzDs0lR3z93FkzUku77+pZM40Ms36NKTvlB6YDSZc8jqTFJNCSnwqT28+x6g3Ub9zbYbXnEx4YAQFfL1o2rsBJoMSjKTEp/H0xnNHILT4s584s+MipWuUoMeojrT6pAkBl58S/iwKgNDASF75h6FP12MxKm3yQggadqvFwJKjyEwzZAtO0pLSGVDya5JiUhi2ZCA9RnWgRovK3PrzAS37N2bK5pH4X36Kp7cHRcsU5uL+6+xcdJAWfRvx0aSuJERliTm+jeKVfEhNSMsmLKrWqh0ct8DbwZgMZoRNEPE8ks0BK4gNiychKon5/Vc6SPHRL2P5fF5f+k7q+kHfHaPeREpcKhf2X8f/8lNAabvvNbYTHb9o+V65g1z8syGEeF/MgRDCAhz6uzk+KBASQliBGpIk5QMOSpJURQjhDyBJkgysAAa/b39JkiqjZIvetGweIISIsJfU9gOfAtty2HcYMAygWLH3p0Zz8Z+PwOQY+vr9ikAwuGxDJlR+v/FkHo2O5oXLEpqeSJrZQKvC5QhNT8IsrBhtFpxVGtY17M+QK79jlm3cuxfGAyk0WyAU/CIWg8GMk5OGsPDE/7VAKI+7CzM3Dc+2reOnTWnTryFqjYqA60GsmbaLW6cfYTJaSIxJoXXfBlSsW+p/5fUBRxCp1qhQa1UOteptCw7Se0wHtE5/bR4b/CCEQ2v+5OWjUIRQusheczSMdqXuvcuPU7ZGCZr3acAvk3c4tm/4ZhcVG5RV1J1tgrTEdPatPAEoJSpZJePmkYcRduuFas0qAtlLgxkpmczr9yNxEQlM2TQSWZbYMmcPlRqWY/DcvkiShFFv4ruj09C5aKn0RiboNXqP60zXr9qi0WkQQuDl7alkNSTBGv9wJAnyF3Qn8FYW32zy5q9p92kzeo3pzPVjd1g3eRvCaqP1gKZUa14ZlUaFRqeh+6gOdB7aFpvNRnxkIkOXDCQ1IY3L+69jswnObL/AlYM3GbbsUzp+0ZoipQoBWWKcGq0GLx9PNs/cSf+pPShRuRgX9uxmz7IjjszL0V9OOTSBol/Gcnj1ScdxarRqCvjau+xSMzn3+yUAQh+HU6NVFbROWn65t5SpHRbw/M4L8hd0x6d8EYyZJkcXVtWmFdm79Bip9rKdLEs069uQuh1qkJqQTrq9tHZg5Ql6jenEgmPTsVqsjnJitWaKPpTVamPRgFVYzFZCn0TQuGc9xq39krUTt2Xjhin+ZGoq1CvN8GWfEhEUzaktftw7648QAt8K3gB0G9mOm3/cw5BhZNDsvnh658fTOz+LPlut8P3sx2rUm9g2bz8vH4UxccMwNn6zk+TYVIYvHegoj75GUmwKw2tOJSM1E99yRRyfgyTLNOpWJzcI+hch/QNTEpIkTchhcwpwRwhx/6/2/ZcKpkKIZEmSzgMdUIhIAG5AFcDP/uNcGDgiSVI3O2HaBzgIfCaECH5jrgj7/2mSJP0O1COHQEgIsR5YD1CnTp1/4Mfz3wMhbIjUmWC8DHkmILsomQi9xcwnFzbzOCXaMfZkxOO/DIQAzkQGMuHmfmxCYBbZU+1CCEq6eaGWJLS3VOQJULPu7gUsJhv9+igeSBPGtGfhkmPoDWYuXQmkScOyDjn/v3KK/3eh0aqxWm1889FKJTMCqLUqBODl/fdaRh8Cq9XGrmVHiX4Zx6BZvfDy9mDxsWlM7qi0s7t7uTmUed8HQ4aBCa3nY8w0IlBKN6+P9208uvyU5n0aYNSbsm0vUcmHMtWLE3jnBZKseIW5urtgzDRhs9kwGZSOsPfhzO+XCbj2DLPRzNpJ20iMSiY2NJ6Aq8+o2rgCVZpU4OsGM4gNS6Cgryfr7i527KtPN3DvnD9lapZQSk0vY1g5ciNhTyOZuGE4NVtXxauoJ2ajhRXD1mV73ZUj1lOqajHSk9I5tfUCwiqQ1Wq8SxfBs0h+ipQuTPC9l0Q8j8JqtTK28UyC7r2kSuMKLD07m1Nb/Vj19QZMejPpyRmsGrGBpr0a0LJ/Y/7ccp6YV7EUq+RD5YblObDqBGaDGf9LTziSup3g+68cQZCskslfyB2ds47IYOV7odLIqKwqJCSGfD/A4XTv4uZMmVqleBUQRkFfT1aO3MC9Mw/pMaYTK87PISo4hgK+nmidtDi7OrHlyY+EP4uiTK2SbJ29RyEN2wTFKvrwzY4xSJJEbGg8KpUKSZZwy++KPsOAs6tTjqrisiyR19ONtKR0ZJWSHWs3uCUtP2lKj3yDFHVqrYrKDcuj1WloP7glRUoVomSVYjToXItrR+5QsJgn5euWwZBpROukZf19hbgvhOCnMZu5dOAmBXw8kCQJtUamYv0yPLkZjNlg5vqJuxzfeI4TG89hMVswGczM2Zd9zXt6Mwij3ojZaCHyRawyj1ZNh89b5GgZk4v/k6hj/3fU/rgL8BD4SpKkvUKIJe/b8UO6xgoAZnsQ5IxSa3P8KgkhUgCvN8b7AZPsQVA+4DgwTQhx5Y0xaiCfECLeTsDuApz50Hebi/9QmB+B/jigh9RZCOcuoD/A7fhMXqUnZBsaq09jws0DzK3ZCTdNzi2th0MfYLS9u0CrkOhToiajru0hw2omr1GNsAlsksjmC1a/TiksFismk4XL14I4eOQOG7dcwsVFy6rlA/DxflfL538Kyd7F9RreJQtQvEJR/th+mU8mdkat+Wv7ir/Dhf032L38GGaDhdjwBBYfm0qFuqX59f5iAq4+o1arKn9bRrCYrVjMiueXJElM2zKStZO2kxCdjLDasnXaFC6uZNFafdzY4V9Vq5VS+pu5cwzfD16DSq1i0Ow+jP35C6Z3+p6Hl54AOHzCckLxCkWR7QKJpasVx5RpIt5OMnZ1dyEtIY3I4GisFhuRwdGkJaSRr6A7ABNbzlH8qFQyLT9uzImN5xylsFWjfmXL05XU66iIW+778RiPrz5zPC8hcXrbBQ6tPqkcnyyh0anxLe9N1MtYQvzDEDbBtSO3WTdpG8H3X2E1W3l06QnpyRk079uIPzef59HlJ8gqGa2zDq2TBq2TljW3Fjve99nfLimlNEnhPgG0HtiUhxcf45rPlW4j2tF6YDPcvdxYN2kbSdHJtPq4CUs+/xkhBBUbZCmUS5LEyivfEfY0AovZyrim32K12Ni/4hjlapeiSa8GDtNagLyebtisEfQuMARJlqjfqRau7i6MWJElalmwmBd1O1Tn0v4bhDyJ4OCqP/hkes8cPytJkvjp+gIuH7xJhXplmNx6HiFPwhk8rx9tP2uO3+6rCCEIvKUosk9oMYffQ9bYgxo1TXsrEhPhzyL5uv43mAxmRiz/jG4j2xPxPJo/t/hhMphJjkuhz/jOuHu60WV4Gya2msfLR2H0Gd8ZFzcnJElCVqlwdX9XyKlqkwq4e+XFqE/AalE0i8xGM8fWnebu2UdsDljx3msxF2/hP8wH7F+AD1BLCJEOIEnSbJT4oxkKteffD4RQWty32nlCMrBHCHFMkqR5KK1pR/5i31EovKJZkiTNsm9rB2QAf9qDIBVKELThA44lF//JUBVRIgGcQS6KSFsKmTspjw6N1A0JRREaQG8182fEY4q55mdc5ZbvTLXqsR+nIp++s10rq/imajtKuHmy++VdANLqW5AsatSRAo+3VJeLF/Pihd2Y9OKVZxiMZgxGMwuXHmP18oF/6y7/d7h+8gE7lhyjYYfqDJjSBVmWGbGoHz9P3YkkS7i6uXD1+D1klcyNUw+pXK8MX87tnW3h+legtt+xSzLZgqqCPp4U7NvwfbtlQ558rrTo05CzO68ghOD0jkusODeLC3uvc37vNV48CHWUFk7tuESf8Z1p92lTUuJSOb7xHElxKSRGJ1PQ15MVZ78FIOxZJOd2XWHAjJ547ypEoRIFaNG3IS/9Qwl9GkmDzrXQOWeV62q0rMySP2eQGJ1M/c61SI5N4eQWP8rVKkmZGiUQQlC5cXkeXniCrFKRmWZAVqv4bcF+h8GqzkXHuZ1XsilLFypeACEEl/bfwKg3MffgZC7vu0Fmup6diw5RpHQhLuy95tjHJa8zs/ZMoHbbaljMFnwrePPyYQggceyXU3h65ycuLIGarauSJ58rkiSx4sI8wp9FcvPEPep1qvlOGXLjtN84uvZPEIKW/Zvw2WyFqL9yxAYyUjIxmyw06l7X0R04atUQ+3470KcZEEKwc9EB5h/OcrxXa9SUrFocfYYBV3cXR2bp+4E/UaXJaVZcmJftGA6v+dORxfMq6sGY1UOwWqzc/OMeBXy9KFnFl3wF8qJSK1mhPPly1ke6fPAmT64/Q59h4NSWC5StXYpou+fb3uVH2R+7kfaDW2Cz2pjecSEmg5mkmBQ72V75boU/j+LumYckxyqmuxaTheMbztJtZHvyF3ZH56xFVsl4FM7H0EWfOIK1X25/j9Vqs3eF2rCYrKQkpNFzVJbA464lhzm17SJtP2tO2VolqduhOid+Pe94XgiIDH63gy0X/ydREKXL/TXMQCEhhF6SpL9s0PqQrrGHwDveAUKIWTkMRwjR4o2/vwO+e8/Utd+zPRf/QAizPyJ9LbgMAdNdMF+BzCBAwlNr4JcK5xjg38pxoyEjoZZlPJ1y9ltaF3g5x+0mm5UnKTHUK1gSWZIUrqsOMipbcA6WWb/pAr26ZV1ayxb148atYMqUKsTd+yE89FdUioOCY7hz7xV1a/91l9jfYdFQReguPCiaRp1rULKyD50GNaNum6qs+3YP9/yeKCrIZisv/MMJfx6DT5lCdPvy3eDvQ9C0Z12S41KJehVHvwmdHdv/2OLHmkk7KFHJhyUnpv2tcFyNlpW4dPAmNpuNvJ5uFPT15KMJnWn9SWM2ztzFhb03QAia9lTKjLIsE/UilriwROLCE9m5+Ahf/6BwgEwGE2OazMKkN6F10rAzZA1OLjpePgrl64YzsFkFskqiaNkifH9iuoPfUaFeVuu8Z5H8DHgjIyFJkkOIz2qxcunADZ7fecHlQzeVTIyLhkbd61LAx4PdS484snBpielsmrmLXYsPISHRY3RHRv4wiNunHmAxWUiNTyUhMovo27xvQ2q3rUZqYhqGDCNrbi9myaDVXNx7DZDoOKQ1XYa3JTYsnu3z9tK4Rz0KlyyI356reBX1pGjZ7KarAE+uP8OQYUStVVOudil8yincmDetHaQcsnbVW1bh4E9/IAH1O9cmPiIBs9Fi5x8pcHZ1Yva+SUxqNQeLXVog8FaQ4/krh29x+OeTlKhcDK2TEmw36q74u60cuRE/e+fb0jOz+HLRAAoW88LZ1YmOX7Z2zJGZpmf30iPo0/Sc2HAWk9HsOL+Bt4LQOWvROmtp2LU2sixTpbFia9F/Wg/89lzjk+k9HO9Vn2Hg63rTFesRnQatswabzUaPUe2Vc6JW0bBrbWJD4xm/btg7JevX88iyTOehrbM9FxsWz9a5e7GabWz+dhcSoHHSonPSkGnOKqULm0AI8f9LOfz/JqR/WtfYa/wG3JAk6bD9cVfgd0mSXIHH798tV1k6F/9LEIlfgkgE4xnezKsKhKIFlCcCd7Ueg3BjRrUOmGwWnFQaehbPuZU9n9aZeOO7TtIyEkVc8hKYEsPUKm1Z+OgktkyB5x9anJ20lCmV3bDRxVlLy2YVycgw8iggHBcXLUajGUmSyPeeu+B/BR6F3EmISgakbB5gQQ9DuHM2AEOmCec8TniXLMCrpxFIEg7BxX8XnkXykb+Qeza15i3z9mMymAkNjOTe+QCHHtD70GZAE4QQPLvzEu/ShUhLysAtvysehfMx/PsBXDtyF4vZwu5lRzm24Sxz947Hu0xhh7N70TJZi/PmOXsd3VZWq40JrebSYVALjv96zkHAtloEEc+jOPPbZfpN6vpB77NZ7wY8u/MCIQRFyxZRFnwhUGvUDFsykC7D2wJQsUFZFnyyEkmSKVaxKH57rtqbwQT3zz0CYOvsPWSm6TEaTOQr5E5aYjoajZqh3w/g4r5rLOj/AwLwLOpB0dKFaftZc9w88tBrXCeuH73Dsi/WYDZa2Lf8KLXaVuPGsbuoNCqcXLS06Nc423EPW/oZCz7+9Da2fgAAIABJREFUAY/C+WjSqx4JUUl4FsnPkjOzOLLmT+q0r4FPDgFU3fY1WP9gGSa9idSEdAaVGwNCMGbNUNoPzgqcKzUsR/+pPTi46gQWk4WqLSrzeaVx9BjdkXWTtmMxWQi4GsiqKwtwdXchLjye9OQMnt4MUkx2nbW8CgijQr0yfDTh3c9i3aRtnN5xCYRQFJ5tin2HJIFzHifWP1hGenIGxSoUxWazsXf5MaJfxvLprD58+m12Kxd9mgGTwYzFpLTy74laj0otO4Qu9/1wnPO7r2K12Fg6ZC2D5/bNUTDxbUQGx7Br6RGsZuX6UuxUlMXb0SFoh6SScoOg/wIIIeZLkvQHiqgiwFdv6BQO+Kt9cwOhXPwv4XV5QqBUUJXHeqsrAiMZVjWy7EZpFy/uJYbRzrsCzQqXRQIuxwTjotZSy1PRZTHbrJTK40WiMRONrGJR7W4kGTO5EfeK6h4+bA++QawhHRuC/BpnulerRttGFTDFman1hofTm9i9/yZ+l55itQoKeOVBo1Fx7MR9xoxs+z8yYVx+bDKXjt6lcv3S2fzDCvl6IYRA56ylQu2SfLtlOEd/9UOlURH8KAyA1n3/up08Jxxee5pNcxSz1JiQePqMVZR6a7eqwpUjd5BlidLvOQdvQpIkytYsyU9jt4IQXNx/gx/9FMH4qBcx2Kw2R/tzcmwqv367m3afNqN5n/rUbl3V0QpvtVg58OOJbHMH3w/h5wdb3+EZqDRqKtQtzYeiWtMKWAxmrBYrc/sso4CPJ80/akRGaiZ7lx91uJU36laXRSe+ITY0gWYfNWDj9N85aO9i6zlG0Y6p16kmL/1DQcCM38dis1gpXaMEbvnzsHb8FocyeXxYAsnRydRqW41Ppvfil4lbObbulONcmE0WMpIzFDVqSZAcl0pCVBLOeZwcTu2u7i6Url4C9wJ5GVRuDMImaPNpMy7svobWWUNiTApFyxZBpZb5rv8PSpZn/yTyF8pH0TJKgPTr9N8c5S+/3VezBUKSJDFobj8Gze1H9KtYhlSZqJDOx29F56zFardDKVTci8lt5xPxPAoXN2fGrx/OqpEbKVKqIM36ZF17SbEp5PXI4yBKR72MVZzqJajboQYWk4VHF59gNlrQ6DR4FsnvyOr57b7K9nl77STlGBafnEF8RCIqjYr8Bd3xKJyPLxd9wslN5+k1tiN5PbJbzDi56JAkpdvuyfXnzOiymAXHplKtaUUO/PQHm2fupkK9Miw8Ps0hhrhjwQF2Lj6cTYSx97hOuORxJl9Bd/b9cNxevrNhswnGr/nyg6+5XPzj4QSkCiE2S5JUQJKkkkKIl3+3U24glIv/MYSwga4dGPbiWP10HSDPaELTLKzzX8ntlAK46/LyODka/+QoDoc+ZHCZBuTR6FgXeBkBLKnTg/ZFK3Iw5AEPEsMRCCrmK0RnX4WcO7BMPXqf20C0IUslOcms52xkINM7tIe/6E7P5+6icJSEzWHSmpAYQMP6ZbIpTL/73gTbFh3B/3oQn8/sQaW3xnoUdqf70HfLXKWq+LD40ARCA6No0rUWznmc6Du2A2PaLiL4USgarYYCRfNTrXH5DzvJKIvwruXHlDZ2CSKCsrrwJq0fSrev2lDI14v8hdw/aL7E6GRkWcKQYSL8WRT9S4yiXO1SfLNjFLXbVuXOmUcOm4mAq895eisYbEpreO221Yh6EUPpGiVwdVdUjuENovjbZEsJVl+dj4ubM2OaziIzVU/jbnXo8HlLiryVxTMZzbx4EMK1o7eztG8ExIUlYLVauXFc4YZtn7eXtp81o6Cvl6PVGyD6ZaySBUBi/dQdJEQlMXBmbxp0rkVeTzcKFc8uo+BRJD/xEYqQn6ySUWlUjoxN8INXGDNNyLJE4ZIF+WLhADy88zGp+RyETbB76WHWTdqmKIpfX0jxSr4s+PgHXjwIUYQp7Vykszsu2YNLE1cP3ST43kvK1SnlGHdw1Qm+WJBlwdJ6YFN2LzmsZO1uB2E2mdFo3+WV3TuviDJqtGrcPPKw4Ph0rh66Sf1OtXBy1RF8/xWgyBoUKVmQ315mF4xcMWwdp7ZdUBSqSxZk1ZXviHhu72JTybT+pAkFfb2Y0GIOgON6eBPCJrBZbSTHpnBu1xWWfbEWSYJFf3xDtWaV6D2uM7XaVCUjOfOdElXP0R2QZIm9y4+RGJ2MWgPRL+Oo1rQiW2fvxag3EXg7mICrgdRoUZmoFzHsXX4sWxAkSRLNejagXJ1S3DvnT2xYAk7OOlb4zaKEXfQyF/8i/oFkaTs5ug5QHtiMIv68g6wM0XvxP1d4y8V/FYQtEWE4j7BlBSMicysY3uTM28AWi6wpSyWPiixouJK+pVrxKj2R1xafFmHjz4jHPEqKRG81Y7CamXnnKIEpMehUaiRZRiXJeOnyYBPZS21vI9OavbVbCMHufTdZvOIEMbGpREQm8fue69jesJyR7XehXm+Ul3KC/7UgDq47i/+15ywYsv4vx4Y+i2LdzL3cPhsAQLmaJWj7caNsfB2zyaJkHyQwGXJuWX8bVosVo8HE09svHCUoCRgwvXvW+5FlKtQp/ZdBUERQNCFPIhyPy9QsQZsBTShbUyEnJ8Wk8ODCYx74PWbWrrEcituAbM+WCYTdfd1CbFg8n1eZyKR2C5jffyVVm1R4p/Qgq2TK1SmFd+lCyCqZNgOaUryiD/t+PM6z2y8IC4xk97KjjG48E+sbZGchBBNazmVKh4Wc3OKXbU6VRpWNIG612HL0wFKrVciSEoSkJ2Xw23f7SYlPo2ytUmidtdw4fpeM1EzH+DdLjA261GbuwSk066MQz79aPohilXyo2qwSw5Z9xs5FB9iz+DBqnQqrxUa83bvLbDRz66TiyeaS1xmVWs52TlzdXRympqCUckpVK46Tqw6NTo2TqxOvApRM4cOLj9m3/JiDsJ6akJ6N1/QaSTHJrB69CZvVhs1m48dL8yhdrTifzvqIsrVLodao6TelG1onDfU71cKn3LvluDO/XXIEa/ERiVw9fIuytUvh5KpTCNqVixH6JMLRiZiZpueXSVkqJ837NsTV3QUkpSvs6No/MRvNmAxm9iw/yheVxzO/3w+Mqv8N0zsu5LcFB7J/pmoVvcd2Yt7BSZSuXpz6nWvSwp4prdKkAk6uOlRqlcOkdvHna9HbO0NlWUKtUZG/sDsaZzVx4QmsmbAVk95ERkomF/dl0/3Nxf999AS6oTRjIYSIRJH3+VvkZoRy8cEQQo+I6wzoQfYCr9PKj701GoWg/0aQYnmJLboauHzG/cweXIoJeieIichMYXm93tyODyXFrCfVYmDVYz9+atCXDIuJA6/ucS7qGd3O/MK+Vl/ipNLwQ73etDuVdVcrAVXze5Ni0uOuVUoTV64H8evWi5jMVp48jaRJo3IkJKYjBDg7aXBzc6Z968rUq1vqHU7R23DL72Lnpahw9/zr79SU7itIiU/jxNaL1G1ThavH79GwUw1mbh7uWBRnbBrGjsVHKV3Nl9qtKv3lfAChTyMZ02IO+nTlTlySlCCjVuvKf+lJ9jauH7/LgoGrQZIYvWowGSmZbJy+E+c8Tvx87TtWjdmM/5VAEOBbPmvB7DikBRf33qBRjzpYTVbSkjJo9XEjHl0OxJhp4t75ALY9/YF1U7bjt/e6QnCWFE2lsauHUKpaMfRpSqcTQMkqxVDrVJgNCtE3PSUTq9mCLGtIjErGOa8TQfdeIoTSht5tZDtObDyLSq1iwvrhOOdx5uxvWUT6t0nhEUHR3Dvnj9VqRaPTIKuUFn2XvM7oMwwMrTYJo96IZ5H8bH7yI5IkUad9dR5efIwQ0GloG2q3zeKtla5egl/9fwCgv88wEiKTCL7/ClklZ8v4IElsmLqDPcuOsOiPGVw+eAPf8t6EPY1k7/KjpCVmeZF1GtqavpO74126MKVrlOTeuUf8vnA/vy/Yz/Bln7Fu0jZMpqyMh1MeJ6a1m09KfBqz9k2kZquqgCJe+DpA0Tpr8SqqXA+zei7h+rG71GlXjQXHpjNkQc5mv7/O+F0pgdmhUsuUrFaMtOQMfMsVodUnTSlZxReL2YJao8JqUQQ0D//8J30mdMHL2wNZlhV5AAGyJNOkZ30Cb79Ao1Vz59RDLCYLkcEx2Gw2hFXw8MJjmNkbq9WGsNlQa9QE3g7m/vkAZu+dQOE3RE/n7p/A05tBFC1bhPwF3YkNjSclPssuSlIpwWZiVDLDa03LFniqdWpq2mUecvFv4B+YEQJMQgghSYocpJ0k/UHIDYRy8eGwxoNIA0xgDQcMgDNSnuEIyyuwhoD1BQDClkSaXkuXJRbSDUcwVtJDEfCx5CM9QI+xug3XSA1bVl2ldIYHzwrHgpOEHAfDD/xGny61CEyNxYYgIjOZgOQoansWo3geT74o25Ddh2/j8kCNqZCVyy1fsOjhKb6vo2RIzCYLJnvXSEhYAv0LuKGLTEY4a+jcqy4hV5+TN91A1cp/719UomJR5v4+iuf3QxycHpvNxuZ5B3hyK5ih8z6ifG2lJvd6URFCcPXEfYSAm6ceER+ZRAH7IuVTuhDT1n84Z+Hk1guOIEiZG1QqiWELP842Lj4yke8/X4ssy0zdNALPItkFHO+ceeTgudw6+YAHFwKwmMykJ1u5deoBs/eM4+6ZR/hWKIq3vUvpwt7rnNlxGQQ4OWsZuSarS+xwtWI8u/2CT6Z1x93LjSmbRjJ8yafERyQojuhFPfEurczzOggCaD+oOUkxKWybvw+r2Yok4MtqkylatjAPLz7B0zs/Hb9szZ+bz1OnbTW+Xvk5/aZ0J08+V1zcnDGbLJSuXoLgB69o/3mLbItfamIaMzovIj1ZIdl7Fc3P4Ln9qNaiElqdhsjwBPRpekwGM5HBMZiNZrROWnqN7UKlhuVxcnWiROX3l1IKlShIUnQyNnspqEarKjy6+ARXd2ckSSIlPo30pAz8Lz9l0BzFeuXBhQB2L8lS+Jckia5ftXdwgRp2rcPpbX4YM01IksSjK0+xWq0Iu/Fsy48b4126MLsWH8JqtrJt9h5HIOSWPw/zD03h9pmHtOrfGLVGTciTcK4fU0qHt089JDY0/p1S4NFfTnF6+8VsittNe9fn6x8/Z8Wwddw7+whJlrh71p8aLSrx+YKPGb7sU379ZqeS0bRYmdt7Of2n9SAmJI6JG4ZzaPVJKjcuT6+xnej+dXskWWZI5fHEhSciSVDApxD6dD2D5/fjxcMQxjefjdlkYcrmkSwfth6LycrBn06yMyTLPFatUTs60gAmtp5HbFiWHpnNYsVisQdykoyQ7KRoCebun0jVJln75uK/AnskSVoH5JMkaSjwBR8oy5MbCOXiw6HyAefeYDgBLp+h6GuCJHsgeSgKvqmhTXFSx2CxqvjhdGMyDFokJHRPnVAHmzC9MqFFhUeoM4YMM7ctIQC4BCn8h/so5YGFK0/QanJ5zsUE4q51xhJp5fzTQJo2KMvUqm05Nd8fk8WKNkaFMcGKXCJrQXQ2WVDHpWJx1aF2d+HkmtPIcamoNSpOrT6N2WTh+YMQajarQJlqOdu2mE2KgapKraJ6k/JUb5LF5flj2yUO/HwKq8XGwi/Ws/XB9wDM3zWafT+fpn67qhxef46IF7F4FclH/oI5l6v2//wnl4/c5eOJnanXrlqOY/J62smlivohABaT9R2+yI6Fhwi4+hwk2Ln0MCOWfoosZ3XLdBnWhksHb2E1W/lofCeuHL6pTGuzkc8rL1qdhgada2WbMzYswVEOu3P6EbuXHaHXmE5onbT8cO5d9Qx3L7dsZaacIEkS3b5qy8ktfsS8ikOWJaJfxRH9Kg5JVoKJVn0bMvanLxz7FPTNsk3RaNWsvfM9hkwjzq5Z2aCYkDiG15hERmqWoGbZmiVp9UkTx+MipQrR9tNmXNx3nZ5jOvLjV+t5ejOIUau+oFabnM//m1hwbDrrp+zg9LbzSJJMmZol6TGmM/M/Wu7ojpNliRotKzv2KVe7FAV8vYi087nK1y1NiSrZg62Pp/ci4EogWictHYe04uK+6yDLIATGTBN12lVn95LDSCoVkS9jyUjNxDWvC6e3X2TF0F9wctXR4XOFp2Y2mBVRT7uYo3uBvOxZdoT05Ez6TelGcmwqv0zcpgTFUtZn0uHzlngUzkdCZKIjYH52O5igey+5fvwukcExyCoZn7JFeBkQSuCtIOZ9tAKVWqZIqUL86p8lWHjt6B0u7b/OoLl9yUzV8+T6M279+ZDe4zpRqUE51k/d4SjxHl13RjFstVhJTUjjzI6L1GlfI8fvTFpSht1RXoVrXicyktOzyubCqgRDsgw2G7O6LmLCryNoM6DZ336uucgB/8CMkBBimSRJbYFUFJ7QLCHE6Q/ZNzcQysUHQ5IkJPe54D73vWNmHv6EigUu/X/snXd4FGXf/T8z29IrhEBCQi+h9947IqACIlVAUEBRBERF6U1AqlKlKL333ntvoYUkJIRU0nuybeb3xyybrAmKz+PzvD/fN+e6vC4ze8+9s4W9z3zv8z2HhzEluBKqkAwZGVSgi8z7umWmGV43BQCSDHPrdCfJnE1EcBKTZirC0TK7PUhMyUKrVSvRAaJM2wqVcN6UwqwVaxg5qw/zPlmHJkuPTi3ScUgrjq1RDNbMRrO1O8hslnB4TRv7jVMPmTF0FVqdhoUHx+NfpRRxLxLZOv8Q/gGl2DT3oHXhy+9yW7VBOb7foGSQtX6vAS+CYildybtQN+nIkDh+nbkPQ66RGYNWcCB2eaEtvl2HtuHQL2esqdzIMhqd2iZAMzUhHZPBhEanBkHJCuvuOQwXTyeWnJ+Kl68n/lV92Pb8J+s5PuVL8CIoBlDMGQvDW8PbEXTjGU9vPyPmWRzrvtvO9gUHmbJ9LBXrlrV2SeVH6N3n/PT5enwqehMXnkBksBJ70ahLnhWZo6sD6x/9SMidcMa3m4Fao8bZ04nkuFQ8vN2oUCfP2+nA8mMcWnUSs1mi37fv0q5fCwRBsCFBoHj3mE1mkCVUGjUNOtdm4sbPrI9npGSycfpOPH3c2RG7mtsn7rNj/n5ys/TMH/ozW1/YRnEUBic3R75c/TG9vuzGZ40ncXDFSXYtOmxdNASVyKStX1hT6S0fF+9P7EkJ/+LUbVej0M+4Yt1ybI9RblyPbTiLWqNGMhtBEHh0LYSWLxJx9nQmNT6dnMxcbp8MpF6Hmiz7dC0mo5mczFyuHbpNr7HdKF+7DH2+6sGlPTcYMr0PJ349x69TdyKZJZJjUxgys2/eGicr22HD5vSnQafaAFSoXYbQu8+t1yaZJV7k05UJImh1GmSzbE2vT47Li1J5GZHA3IHLMOQaObvtCjVaViXoeihGvZG1326l+6hONOlWj/0/HUOW4a2P2tK0R33Obb/K88Bwlo5cg6O7I1siVhRwSJ+660s2zdxDo7fqcnrTOdIT0wDysvZkCSxblUaDxIkN54qI0P8xWIjPG5Gf/CgiQkV4YySmZZGRo6es9+u1Ke3qt2TqxlybY4Is4JgiUNzVkdS0bEz5xLEAdauXpmQJVw6ffmhzfMKM3fw4uRfXYsIwmhQSExyuuERr1Cr6vdMAzxwTa/rvVLpRRBBEAQdnO3JzDKjVKh6eVXy0BFFA56AlJ1OPSi3yzoh2lHpNCOu+1WcwGcyYjGYuHLjNwCqlmDV4BaGBL1CrRYwGhYSIKoHPFw8qdA6tTkOFWq8PCT6z46r1rtzJzeG1PicxYS8BGU9vV1r1bszVg3do8W5DfCsq+UlGg4lPGk0iOyMHjU7NmKVD2P7jIUxGMxnJWVzad5N38znxvoJvxZJWInRq80UeXwuhw8CWlAnI2y50dLFn8vbP+emLDRxcqfy2ZKVm8/Vbs7F3tGPQlN68PaK9te362f0IZg9cRlRwLMF3wq2akmm9F7Enfg12lqgJUMTdleuXZ+ml6YrzdLe66HMMOLo6WO0MwgIjFL2MpUKxYOhymrxdv1ACVq9jLYr5eBDz7CWjl3zI2590snn85zHrOL/jihII6+5E7TbVre7UvhVLvfZzKgx2jjpys3ORzLa3zeVrlqHx2/Vtjk19bwFProUAsPjijALWBslxqZzbfoWqjSuyfd5+rhy4hTafA3d6YgYLhq2kXoea3D//CEEUqFSvHJf33sBo0RFJkmwlMgA6Oy2eJd3wKOlOQlQysiwjS7K1Gy9/BIxaq8bZPU9KERMWn3dxAgUqA5FBMQQ0rUTP0Z0Jvh3G7ZOBDJnRN+8UMS94FuDBhSc4uTuiUou4eDqjtdNQvXkVvlz9MSq1itbvK3lqzXs0YEiVzxWhtV7xHfq9Y3ft1tWo3boa53dc4Vk+smYymBUXd1cHenzaib1Lj2LINVqtE4rwFyHzjzJUFAQhgz+oYcmy7PJncxQRoSK8EZ68eMnQhTuQZRjYvh5JaVm4O9nzSbcmaPIFNfZoUo2pG0/YnOvmZMeE91tSv3ppNu66zrmrwaRaSuMATRuU5/3u9RnYuxF9P1lrPf4wKIbTl5/SslFFlvxyxmZOk8lM3Rp+LP94nfWHVxRFnN0dmb9/HGd2XadGk4oE3Q5n84LDiCqRkTP7sPnHI5QqW5wPxhYkB6/QtldDHl4PRRQFqjepxIvgWEyWRf0VCXqFmYNXkJWew4SVw2jSpfZrZiyIvSuUaD21WsXHs/u8dtyikWtJiFSqQftXnKRmsyqEBUaQlpCBm5cLWanZZCRnKvlhBjOV65dDo1UhqgQElUCtloULsnuM6sTNE/cRBIEbx+5jMtzm2Pqz7IpdXYCUDZnWh4OrTlp/aiSTTFZaDr98s4X0pAwGfd+Lw2tOs3L8Rox6I2qNClEUMFkWXFmSeHI9lDr5toxeoWwNP8rWUAhj/ggOUATA5LsWnZ1WqXoVAmd3J9YHLUWSpD/NWgMoU600Cy9MJ+JRFM3fbfin4/Nj9+LDNiSocoPy+FX1YfzakeRm60HOE3HHhr1En2PAzlFHfGRiASI0of10S7u/iMlCbExGE+9+3pW9S48iy4ord8dBrRg0pTfFS3vi7uVKZkoWao1ayfLq1Rh/C4F9ci2EbT/sR5+tZ1qvhWx+/jPJcalkJGcybPYHrP5qk1XL5lrMmfqdatH2g7zu4vK1/Xl85SkA74zpQkJUMtGhcaQlpJPyMg1DrpHkmFSa9WxIs54NbUgQKNuY3+/4kh+HrSAzNYsaLQOYuGEUj64EU8eSg7dl9h62zt2HLMsYjSY6DGhJCf/i9B7/Nqc3XaTXuG4FSNArbJq5ix3z9xc4Lksyaq2K1Ph0Vt9fgJuXEmhbhP/9kGXZGUAQhBlALLARS2MtSkTYn6KICBXhjXA7JBqzWcJolthx/h5ZuQZUokhxNyf6trYlAM72WjIsZnCliyt7/fZuOibO3kuopaKTH+u3X+X97vXxKeGOVi1ieOVGLMmcvPAElSigVouYLMctekjGz9hN81p+xFs8YHqOaEP/L99CZ6+l/zglfqJm00q06F4PR2c7XDyc6ND3z/O42vdpTJ2WVcjJ0jO++4/kZOlxdtZZ1mTlyRXvFJmE6GSQYcOMPX+JCNVsXpnAi0GotWq8fDz5ou103Iq7MGHNxzbO074VvXn+WIkFMZvM3LvwCEEU2TJvP6MWDMTNy4V3x3Th+K/neWtYW/YvP0novQgEUaTjgJaUf40G6tbJQMwmCdfizqTEKVsM2Zacq98TIUdXB5zdHMlIyef0LSjbJsmWc28ev2fNtqrVugq9x73Nvp+Pc+fUA5zcHN7I5PH38K1Ykml7v+L8ziu4ejrTaUgbNFoNcc/jeXw1mAada+PsbmvQl58EpSWmE/k0hioNKzB66VBcijnj7OFEt4878OjKU2b3W4xnKXcadatL9P3nTOk5n6z0bKbuGkftNrYdR7dPBpLyMo3SVUpxcEUe0XfzcmHJ5ZmoVCKnNl3gx+GrEASYsX8i9TrUZMK6Ufz0+Xoq1StHw84Fvx/JcakYDSZ0Dlp8KpQkLjyeYj6eDJnZl9KVfTjyyymqNatMs3ca2hh/VqhTluU35xL3PN5G3+To5oBkNiOKitO5Vqdh+Nw8U90uw9pyfudVkOGbzWOo9ztt1Eez++Hh7Y7OXovOXssBy2sdOrsfV/ffJCo4ltFLPrSOj3waw42jd2nUtY41SqRJt3psj1lNSlwqHiXdEEWR+p1q8ejyUyo3KE9Y4Atys/WoRJHnDyOtcw2Z8QFDZtg2AeTHtcO32WQR2ReG1Ph0Dq8+xfmdV9mbtOG18xThzyH8AzVCQHdZlvNHFawQBOE+UGgcWH4UEaEivBHa16nIxtO3Sc3MoWKpYtwPj0UQBDTqgnffQzs1ZPmhq8iyTGxSBiZJYsrGE2iiC5qxqdUqypb2JCMzl7uPInF01GFIy6sW3bofQeDjKL4a2ZHLt57RomEF7j2K4vDpBxiNZlKKObLy/Pe4uDvi5Fp4ZEZJ/2KFHv8jeHq7cfvcY/S5iidKqt6AWqtGEARavdeQ87tvKCJPS5t23daFV15kWck5+n2VYsqm0YTci6BUOS/mfricJ9dD0WjVHF1/zuoWDfD1hlGM7zSLoBvPLLERoNGobNqMh03vw7DpSlVpw7RdCKKIALgWsyUJ+XFkrZLYnpWajUojYjZK2DvpbK5TlhURq1qj5rutn7PwkzWUrVaaz5YOYcX4jZiNZj6cokQqfPB1Tx5dCUZrr2XMT8PwqeBN3XbViQqOpbivZ6HZZ+d2XmXp6HX4B/gw+/DXBXQ/APU71qJ+x1rkZOUS9TSGlJepfFx7PJJZwrOUBxueLi309aUlpjOk8hiyM3LR2mn4fuc4Ri0aAsDzR5GMbzMFk9FMclwKO+YfYPfiI9ZKya9TdlqJUFRwDJ83n0x6UgZqrQrJrHSMiWoRB2d7lt+ci0olcnTdGRaOWGWtmh1bf5Z6HWpSs2UAq+/Of+3nMGnr5/w6eQf1O9WiVusAvukyh8S7qkjWAAAgAElEQVSYZBYMXcGkLZ/b5GvpcwwIAmh0Go6tP8uRX07z9OYzKtYrx6JzU9HaaclIUtr0RbVI5UJcvKs3q8JXG0YzZ8BSpryzgHknv+P05osE3Qhl5MLBVG9Whb5fKd2Xi0euwZBjREYm7P5z5p+ajD7HQPyLRCRJcR7/tLGSJv/btJ3sjF1treQIgrKFKIpKYOroBt+QFJeKnYOOH058R1RILDp7Le998VaBaywM+hw9s/stLkCCBFFAVIk2xzNTsjDkGl5bVSrC/1pkCYLQH9iG8i/xAyyeQn+GIiJUhDeCt4czx2cPV7xfcg2sP34TN0c7ejYt6NXxYccG1Kngw8I9FwgMiwXAy92J1tWrsv3AbQAcHXQ0q1+W4sVciYtPpfuHiljYZC7kbk+AXL2Rq7fDeB6ZzMTRHTlz+SnZOQYeBUUTFp9G89fofV5BlmW2LT5G0O1wBn/TnXJv0DpfrUF5SpT25MXTWN4f2wUHBy0OzvZ0GticOi2rsvCzDahUKrp/1IahU3sVOD8yJI4vO80hN9vA1C2fUq9t3taQSq2iSn2l7b5U+RI8vBIMApTIR9qyM3L4utsPhAW+yPdCwJBjJDzfnXR+9Pu6B3aOOgRR4J3RnQodA9D2g2YcXXcWJzdHdPZa4iISrAvgq+ceUecrEqKS6f1lNz6a/QG/BS22Pv791s+t/28ymihbw4+dMYrgODkulZSXabiXcMWvio/NuLmDfyb07nM+XfIhS0atJSstmyfXQ7l+5C6te9tW68IfvODrrnOUPyQzWWnZ+FT0xmw0o88xKFEgr9kKiwyKRp9jwGwyk5NpZna/xdYqwd6lhxVxLSCZZUxG86sGKgRBCaQNvh1GuZp+7Fx4iPQkxTzUlG9b1Nu/OAvPT8OzpDuyLLNs9FoblULHwa1e+97nR/0Otahv8S3qX3YUZpMZs8nM7VOB1jH3zz/ix+GriH+RiEarZvDU3vw6bRf6bOXGIuJRFOd3XmXHgoPWWA6TwUzEoyib54p4EkVGciYnNpxTNHAGMzt/PMSt4/fIzdIzZ8AyG+fpPuPf5sFFJTS478SeZGfkMKz6l6TGp+Pk5sCA73tZc8Qkk5kZfRfRY1RnqjevwuiG3xAVHEuXoW34ZOFgy2clY9IbSXmZysrbP1if59aJ++xaeJAuH7WjVa/CK7b6HANGva0BqUqjonxNf5JfppEYlddWX7N1QBEJ+nfxz6wI9QOWWP6TgcuWY3+KIiJUhL8EQRBwttcxpmfzPxxXq1wpohKUbRONWsVHnRrSuUEVGtctS3BYPMU8nJi3/AR6w+vdlT3dHalTvTRtm1Xm5w3nMRjMvExIIyomheH9m7P813MYjRJrtlyieb4k88Jw/3Iw25cdR59tIDIkjnXXp//pa7Vz1LHy3HeYTWarIPgVwh9HYTaakWWZF8FxNttJ2xYe5vyem5Qq50WmJVZg59JjNkQoPz6Z15/K9crhWsyFhp3zKrs3TwTy/HEUxkLeoxMbL/LFT0MLXJdWp6Hva0JNTUYTB1aexGQ0MWJuPz74qgfOnk5otGpr5ecVTm26YO1U27X4MB/NLnzLIvTuc8a1m47JaGbannGYjWZm9FUI05SdX9KgU77Xc+w+N44qi+7CT9ZYYzkks8SlvTfYueAgg6f1sW4hbZt/gJSXaZazZWSTibD7EXQd0Z6bR+/Sf9J7r9UDVW5YgYp1y/HoylNElWg1GwSo264mJzdeAEmm/+RedBzchkMWMXjVxpXY9/Nxdiw4hJefB7EW8bAgCji5OZCRrNxgvj2ygzVvC8DexR5jokKYRi3+0Ea8/KbIyqebcy/hStCNUGRZZt6Hy0mwLPT6HAO3Tz1AlvIaDox6Ayc3XuT5w0hUahWePu4ICFRrUpmPao4jKz2bnLQcDHojKpWKxm/XQ6NTI6pUNOvZgJtH76K109jYFAC4ebnyzaYxlK1eGpVaxZPrIWQmZ2EymEiNT+enMesYNKU3J349T1x4PNcO3uHaoTtM2fmlUjUySxzfcI4vVo6g37fvsm3efmRJYnKPeSy6MJ1K9cqRkZLJN51nAnDnZCABEZUo7utZ4L1x8XBm9JIhHFp1ku6jOlGnbQ1C7oRRv1Ntxrb43kqEBFFg/NqRPL0Zil+Ab6FVxiL874Qsy8+BHn82rjAUEaEivDEiXqZw+l4IzQLKULn0HzsyA4x9twXzdpyjcunitK6lEJX6tcpQv1YZJs7e84ckCCA1LZtzV4I5dTGIgIreJKWoAYGASiVJy8ixaobcX7Mllh/2jjqwCE8dnP/aj+PvyQZA54EtOLPjGvocA++PzetOiQl7yZb5hzDkGokIilHEvTK0eqfBa+dXa9R0GNCiwPEKtfwx5CgCWlEl0nVIa64euUtGcibVmlQq9Lr+CLsXH2HTrD3IMmQkZTJsVh65OfzLGdZ+uxVRLdJteDuqNqxofUyX7+46PjIJyWTGu6zy+Z/eeskaeXBgxQkcXR2sXV4Xdl+3IUIly5VAlmTsHHT4V/XFxcOJyOBYVGqBqwfvYNQbmT1gGfsSFcF8/oqGKAqYUbZ8ajSvytiVHxf6Gk1GE+smbSUxOpnvto8lKTaVpzdCadk7L2S0VZ+mlK5SCpNJonwtf8LuR1g9dR5fDbaOiwrOy3LrNLgVCVHJ3D4ZiCAKZOXbvhUEgUXnp/HT5+u5f+4R67/bRr0ONW2qYW+Cj+b0Y9ln6xAEgTptazChg0LWi/t4otaqFYsErZo+E7pTtoYfuxYdAlkhLJUblOfJtWBkWWbUwg8pX9ufwZU+z3O+BhDAKJu4dug2fSZ0p+/Entg56CjhV4zwhy9o+0HezU1GSib9/EdhyDUS0Lgiiy5Mp3ztMvhWLpnXXi9DpbrlCLzwmLjweOuxqJBY3Iq7kGhMsYa7Dpram3M7rhAVHItaoyYsMIKwwAhOb75ofc5X28iFwWwyk5ulp9k7DWnzQXPsHe0oaTH+nHXkWyb3+IGQO2GIosBnjSeRm6XHvYQr654sLjSjrQj/eyAIwnfAclmWk1/zeFvAQZblQ6+bo4gIFeGNYDJLDJy3lWy9gV+OXuf47OE4O/wxoejWKIBujQpqZzKz9Fy7nRcIrNGIeLo5kpyajdFk5tVvoVmSeVWjDXr2ktXzBuDkoGXygoOEhMejEkVMZonQ5wkYDSaeP4mhdIUS2DkW7BapXKcME1cMJTTwBV0HFSQdfxU+5Uuw+fGCAscdXR0QRRFRpbja9ZvQjdbvNcQ7n7uv2Sxx+eAdkmJT0NlrafVuQxuBdGJMMqH3IqjVsiqiWtE/qLUqOn/Ymo/n9ef60btsmr2P6R8sYeK6kQW6rV6HrPQcJElZbLIz8hZyQ66B5WN/tf69e8kRvlw1gn7f9OT++ceM+EER2948cZ/pfZS4iXFrPqZ17yY061HfYoon0X5ACzxLunNp7w0EBLoOa8PLiAS+6zGP1IQMPlkwgMUXpvEiKJqm3esjyzIPLz9l69x9PLgYBCji41fQ2CkLmNZOQ6V65Qi+GQwINsJrg96IxqLdAjix4Rz7fz6GSW8iMzWL2Ye/pXJ9W63Mi6BoxrWeSlZ6NrIkU6t1ADp7LZJZstl+EQRQadRotGp6fNqFx1eDla0iQSggpvar4kN6YgaSScJkMHHrxP2/TIS6jehA0+4NkMwSa7/bpoTrAs4eTvQe9zbF/TypXL88zu5O1GlTnTptq3P39AO6DGuHT0VvqjaqiJObAzVbBpCelIGUr2okqkV09jpyMnLIzdKzeeYeylb3o1XvJtRoUZUaLaraXMu+ZUetAasPLytdZFqdhuU35zKt949c3neTKg0qsHXuXkLu5P1bVqlFAhpXotfYbqS8TKOYjweSJPFVRyXMVa1VU6FOWcpUL824NtMw5BhQadQgS7Tq09SmKnV4zUl++mwd/lV9af1BMzZO24ksSSREJtH1o3a8eBLF7sWHade/BY3fqkd4YARmk5m0BCWGIykmmaSYFLzL/PlNWxH+0XgAHBQEIRe4AySgpNBXBGoDp4DZfzRBEREqwhvBLEnkGIyYJRmTJJNjMOH854WYQqH5ncGgySSRmp7DwF6N0WhUnLkUREh4PPlvDiVJpmJZL5auO8OziERkWSFndjo1jeuWZdzbC3gRHIdbMSdWX5yC1q7gXWCTzrVo0rlWgeN/FbIsc+fsY5zdHalUp4zNY66eznz360imfLAUs1nit9n7eXd0R5sx66fv4cDq0xhylVbzs7uuM//QVwCkJ2cyov63mE1mSpXzYuzPw/ht5h5qt6rKr9N3kZGaRUZyFtGhccSGxXNux1U6vaEepfsnHTi1+SK5mbm0fC+vQqJSq1CpRatJpGxJmB88pbfN+TeO3LVWey7tu0nr3k2o3qwKW8J/wmw0WwNf19ybR9DNZ5SuXIqln64j4rFiyDd/6Ep2RK+0ITL12tdgUjdFLyKqREYvGgwo/khpielKFSMnl6inUXyy8EPqtK1ujadY++1mtv+wD/9qpVl2bQ52DjqyMnKsOpns9BzMJjOiyjYA9eKua1YSBPDoSjAIIoIIflV9eBEUDTJo7LR8s/FTZBmCrofQ4t2GVKhThojH0daW//x4Z0xXFn28Cp2jjibd6r3RZ/J7eHi7cXn/TU5vumA99vRmKDMOTMTFI0/8fnn/TULuhPPeF2/hacmca9o9z8PIxdOZXl+8xe4lR3B0sadasyrcO2Pr03X37ENa/U6X9TIigdjweHwr+yieQJJsrbyAUv2aumu89e8+pUZYvxOCSkClUeMf4IsgCNYtrsToZB5dCkKWFaH59H0TLDEoSviwSzEXdkQXNLT8bcoOTAYT0aGxhAdGIEsSklnm7NZLnNlyyaqRCg98QYkyxfD08SAjOZOKdcvx4OITGnerVyBepAhvhn9S15gsy/uB/YIgVERJmi+J4i69CRghy3LOH50PRUSoCG8InUbNnCFd2HTmDt0bV8PL7fUdSb9HXHwasfFp1Kzqi0olotOq+XhgC1ZtvGipUCjVnxLFnOnStjp7j9xVMrVEwVIVgopli/MgKJpDJwNt0sr9fDz4fEgb3p97CFmG5Ph0EmNTKFX2P3cX+OvMvexbeRpZlvn+t1HUb29bHajasDx2DjpycwxIZomveyxg+Iw+VLV08dw8mZf7ZTKaCbkXYW1bT4hMwmQ0oc828PxxNIEXn+Di7ogoCtw589BKVlSWbr38i9Sf4eCqkyTHpiDLsHL8Rj6a/QF12lVHpVbx/lc9FG8XScankjctezUqcH7noW04s+0yJqOZdywmjYEXnvDgUhDt+jVn58JDHFt/jvgXiQiiQLFSHrTqkzePIAqIom1rfviDSGXBtXRj1Wqt6KjiXySSFJOCbFLCWVPiUnl0OYhuIzpYz9239CiyDHHh8QRdD6F2m+rK4mgxAkyNT+Uth/44eTjS64tuJEQlcnrzJao2rojWToMhx4igEjCbZGRZqQQlRiczeceXrJu0FS+/YkzrvVAJFFUJrPpqE7mZuSDAhsnb2Bz+s42uqtPgVrR8rxEandrm+F/Fppm7bP6WJJmvOk5n0fnp2DvacXHPdeYMUIj2jaN3WH5jbqHzfLxgEAO+74XOQcuIWhPQ5xiU8FSzhEarpnXvJiRGJ1PMx4OcrFw2z9rDjnkHkGWZ4qU9GffLJ8Q9T+DdMV0KzB1yJ4yfxqynQp2yxIa9JCokVvkMTWb6+Y1CVIssODOFyvXL41HSnXK1/AkLfEHlBuVx9nDCxdOZKTvHcedUIF2Ht7eZW5ZlnlwPIaBpZW4eu4csy/gH+OLk1paU+HSuHrhpFa6/Cr6NC0+wErfg22EcN27/l9//IvwzIctyCBDyr5xbRISK8MZoX7cS7etWsjmWmpnDxLWHyco1MGtIF/y9FAHpzaeRzNhyklLuLoRei0IQBJo3KI9GreLE+cc0qV+OtzvU5MjpBxhNEvY6DR1aKuX5McPaMH/lKTQqkQRLareDvVaRcfzO4yYiKpnE1Cy6DmrBkd8uUbdVVbz/hXb5v4Int8IUHxS1irCHkQWIkKOLPT9fnMKw+pOQJZnH158x/q15ePl6UKqsF1EhsTbjTUYTMWHx+JQvQdkapWnRsyE3jt8joEklzu+6jj7HQJKFwLyCzl7LjD3jqN60Mm+KS3tvWucIfxTJ9L6L6fxhayo3KE/yy1TavN+UnIxcRv44EFEUSY1P48Cqk5QJKE3L9xpRvqY/u2JXA0pl4MmNUCZ0mIEsw95lR8nJyLURdkc/i0MQRVRqFZIkMWrhIM5uv8KmmXto2Lk2Y1cNx7OUGzo7LfpcPa7FlcwzAO+yXlRvVoU7p+5bydOZLYqe5KsNnyIIAk17NuDSnus4ONtj0BtZOGIlPhW8lQgIlKgRs8lMekIGG6Zst7ZYP7j4hDlHv8PLrxiRwTF8332etXV+yPT3afFuI1q824j3fT/OM5E0ywoJApAhOTaVqwdv0+JdW8JYmE3AX0WzHg15di/C5ljEoyiOrDlN+wEtmPfhz9aut+z0P77ZdXR1IOJxFC17N2b3osN4l/Vi1qFvSEtI48vW0zCbTAz/YQBBN0I5v+OKVaOTEJlEvQ41KVaqcBf5eR8u5/mjSHQOOiasHYlBb2TnggMIokhYYAToYeWXv2HvbEf/Se+y9MosQm4/48RvFziw/DjdR3WiYZc6NMwXvfIKv03bwc4FB5EliR6fdmb/z8fYMmsPDbrU5sWTaMVJWhCo1qwyOZk5vHgSoxh4Gk2IahUe3oVn+xXhL+Af5Cz9d6CICBXh38K28/e4ExKNWZKYtO4o3/dvT+XSXkzZeJzY5AwiE9JwsAMxzcS9R5GkpOVglmQu3XhmY5JYorgzaov4193NkTFD23DxeihnLS63Hm6O1AzwZUT/Fly+GUpGpp4X0cl4uDlQqoQrn/7wAaPn9n1tVMXfiY+m9WLWhytx8XSiY/88V97QwBccWnuWxp1r0bhLbcpUKcWzB0qbu9lkJjY8gcSYVNyKu5CVnoM+x4DWToPOXouHZVtJFEXGLh/KiPrfcuv4faW1WxTwr+ZLVmoOIXcVPUalemX/EgkC8KnoTezzeGRJRhQFcrP03DnzkKPrzqLPNVCyrBcbHi+yjp/edzFBN0JRa9W4FnOmVqsAm/d3yai1VmKVnpSpiNAFQFA6rD6Y2JMzWy5Zt6eOrT9HWOALzCYz53ZepceoTlSoUwb/ar4E33pGdloOt04GUr9DTVQqkR+OfYvRYCL49jPGtvgeWZI5t/0Kw2b3o5iPJxN/+4x+376LWwlX+vuNtBo6au00fLd1LBFPotg0fSeGXKOSdC8KaLRqtHZaytX0w9HVkfTkTBxc7MlKy6ZcTX/O77pGQNPKVKpXjsoNKnD1wK3Xvp9zBixD/k22CoL/Lgz47j38q/mSEJnEma2XeHY/ArVGhWcpd6uBJQACfLdtbKFz7F9+nC2z9xLQpBI3jtxBVIm06duML1crIvNLe65hMpowGUwcWnWKuPCX1mojQDEfj9eGBQMUL+1JzLM4QMazlDvVm1ehw8CWXN5/k1kfLEGSJIJuhGAymnl4KYi3P+nA/fOPCbkThkanwZBrpOdnXdBoCy5Bd04Fos/Wo9KoOPKLsoWMrNgpJMUquWYarZqQO2EY9UZKlvNm+A8DcPd2I+haCK0ssR1FKMKboogIFeHfgr+XO2q1iGSUCYqK58MF29kwoS9iviRPwUmNk0nNqMGt2bDjKnEJ6RgMJisJEkWB8hYfoMDHUXw5bRcIULFMcXSWH8o2zSojSTLb9t8kI1OPWiWwdOb7lPcrhs5SRfhvkCCAirXLsOGe7XaELMtMfHs+Wek5nNlxjTXXZzL/8ER2/3Scc3tuIIoC8VGKC/Xo+f2RZRnfCt68fJFIpTplbCoJSbGpvHyRaL3rF1Ui733amVLlSzBr0M/o7DR8vW7UX77uiRtGcWz9OdyKu3Bw1SkSo5PoOboTqyZsAhnMJomLe65zbMM53v64A1npOZhNEhqtYO0Myw+34nlJ8yXKFGfu4a+5c+YhjbrUwctPqcr5VvRmau9FGHMNhNwJR2unQaNTAnM3zdpNclwaOZk5SJaOocUjf6FqowpMWDcSrU6DRqumSsMK+FYsSUJUEm5errh5uZKWmM7ohl+TEJnEJwsH23QbGfRGQu6EMWByL3wrliQ24iX7Fh+lRsuqtO3fkkr1yuHoquRrLRqxmnRL23vo3XBkSWbuwGWse7yI1n2a2BAhnb0W73IliHgcCTIY9cYC1b2/Cy3eacS2efuJeBSFAPT9qodVz/PWiPZc2X+T/t+9R4XaZYgNj8fJzcHqsi1JEsu/2IBklrh28DaCCLlZepuOuEbd6rFp5m6yM2RyMnOsW7WuxZ2ZeWAi5Wr6/2FX4nfbvuDkxgv4VixJ9eZVrMeb9WiAfzVfIp5EYcwxIgiQk5XLzoWH0NppkSQZfbaB1V9t4viv5/gl8McCcw+d2Y/pvX8kJyuHrFTFYsHZw5EvVn3MnP5LkUxmSlfx4dn959aKXbOeSkxKQONKBeYrQhH+DEVEqAj/Fro0qIKrox3fbzhOcmY2GpXM9aAIhnSsz8ytpwHIwczauf2p7FucFo0q8Cwika17b3DhegiyrGgggp8p7bdRliRrvd5Ert7E2h8HIggCfj4e6PVGklKykCQZjUaFp5ujlQT9TyEqNI7oZ/HUaV3VZjGWZQkHZzsGftODAV93x2wyc+XwPTxKuFK9SV5run+VgoGfXqU9adCxJlcPKXfyarUKnwre+FTwZsXVmW90Xae3XWHF+I1UqFOG6TvHorXT4ujiwHufdyX6WRzrvt9ObraestX9GLlwMA8uPuGt4e2Y2HkWRr2J++ces+jcFDbP3od/gA9lqvkWiN/4dtNnLB69FpPBxMQNo3B0ccDe2Z4Fw1ehVqsYtXgQv03fjdlkslaOSvgXo+uwdhgNRjbO3IMx14hKo6J608q8eBpN/ItE0hIzuLj7Ou36Ke3cKpWK5bfnEXo3nPK1/FFr1Nw8do+0hHQks8Tmmbv5cs1Ijqw5yaOrwejstbTs1Zg5/Zdy7dAtS+VNy81j9xj3y0gbsz1nz7zAUVmSUWtUOHsqhCI329YJ/edbc8hIzOSrjjMxGUwU8/Gg28cdeFOYTWYeXwvm0ZVg2vVrXqhfTn7cOHoXfY4BlVq0upoDfLJgEJ8sUMJ+t8zew6ZZe1CrVfx8Yw6lK5dCFEV8KnqTEJmEqBLxq+pLQmQioyxC9OjQOMY0mUROpp5vNn7KgeUnSIhUfHhKlitBlXzWCfkhyzL6HAM6e8VYtMeowg07nz+MVFr9dRpqt6nG/XOPMeQacPNyxcXTkRBLx2jEo6hCI12qt6jC1siVDA34gpfPlUgeD293pvScR512NfhoTn++7TrLot0S6fJRuwLXUIR/A3nNuv8oCIJQCVgBlJBlubogCDVRYjf+9EeziAgV4d9G04AyzB7ahVlbT5FjMLH84FUc8hEUSZIJi02ism9x7HQaqlUqSdCzl9bFUaUSGGYJfmzXrDKXboQSFZvC+JEd8c+3WOh0GkZ/2IrtB27TqVUAJYr/aajwfxSRwbF82mYGAgL12lZjzr5xHFh9miZd61jb5Z/eCeebnj8iCAJzD4yn4p9kbkmSxLP7EYz9eRhfrhjG5QO3qVCrDD4VvG3GvQiKxt7ZnuI+hWs4Vn29mYyULJ5cD+Xuucc0ypdzdWz9OUWILMtsm7ef6XvG02FAcy7uuWH101FpVPgH+DJ25XBG1J3I7iVH6Pxhaz5dMsQ6j7OHE4YcAzeO3WNMs8lUaVSBwPOPSYhKQhAEfhoj8fxRJGajpfKnEokNj2f999vxC/DFbFIqXmajmdT4dGo0r8qt4/dBlilZzlbsbuego3qzvMpD6SqlEEQBQRDITM1i8Ser+eXhQox6A5N7zuO7t+eSlZZlbUE3WITrWek5NkRo0tYvGFl3IvGRiXiW9CAtMY3gW2Gc2nSB9gNbsXT0WsxGM1p7DV6+xfCv4svP12eTFJtC3fY1CjV0lCSJDZO3E3rvOcPn9qdsdT9+nbqDzbP2IAgCokrg6Noz/Pp0yR9+F/pPepfJPeej0qisIvLf4/TWyxhzjQj2AvfOPqJ05VIcWnUSjU5Dh8Gt6TuhO15+xchIycTBRWnzvLj7Gllp2ZjNEnuXHmXmoW+Y3GMe2enZ9BjVCaPFryg/ZFlmcs/5XD98m/qdajPr0NeFVmAfXw2m46CWnN91jbrtavDtls/Zs+QIQddDGDSlN4ZcI581/hZJkq3dZa9w++R9IoOi2Th9F1np2Yo+aNlR1Fo1L4KikSWZG0fuEv7gBTKK4aksydTv+O93ghbhfwXWABOAVQCyLAcKgrAFKCJCRfjvoFEVPw5MG0qTL5ahN5oQBQGdWoXeZEYlCtSvaBtpUbOqD6eTMqy+NpdvhFK3hh9Ojjpmf93TOs5kMvMiOhnfUu5oNWr6vF2fPm/X//3T/48g4mkMAgK52Xqe3gmnct2yTFj5kc2Yg2vOkJ2hbCsdWnuOsUsH/+GcC4av5tKBW6jUKlbfmkOXD1sXGLN72TE2TN2pkKvDEwlopNzBy7LM6a1XiAyOoUItfx5dVRoo/PP52Ty4FMTxX8+DoGhpGnauTWZqFtP6LOLprWfIkky7fs14d0xXtHZa7p59hD47F6PexNkdV22IUHZ6DjeO3gOU8M3IpzHKAwLo7DWUq+lH4IUn1m4xUSVafHrMhN4NtwkRTYlPY8WtOZzfeQ2fCiUIaFyJzNQszu24SrmafjZbHkd+OcWyT9ei1qqxc9SRk5mLWqMiKjiGu2ceEh0ciyTJiJb5dY463Iq70HV4+wK6Fxd3JzaH/4zZLNHL6yNrN9LCEasUjxu1CrPRjGsxF+v2pdksMX/IclQaFTMPTKSYr6dNa/v1w3fZu1Tx4Yl/kcgvgT+ye/Fh664l41AAACAASURBVGdkNslkJGdYx8uyTFpiBs4eTjbvSUJkEqIoYMjW8+uUHcw58q3Ntd84dhedvQZRJeLo6kCTt+uRmpDOT2PWYzaZCbsfQcv3GrF17j6O/HKaUhW8WX5zDnXb12TTzD2IZom2/Vrg5OrAhPWjGFF7AktG/cLZbVeYdehrm+dKS8zg5jGlm/P2qUCeP4qkbHVbC4HrR+4yo89CBFGg+6hO1rDXPuNsnc5XBy7g5fME6nXIC3y9uPsaPwxehsloRjJLyJJM4LnHHMjYhEotMqbJJF48iSI3S09MaByCAL3GvU2nD9vgH1CaIvzN+AdWhFBME2/8jqD/sWuvBUVEqAh/Kwa3r8/qo9dwd7bHx8OVEh5O9GhSneK/a7efNKYLer2JK7dCMZllTl4M4mbgC7atGIbW0nosSTKffL2F55FJlCzhyvpFg1GrCo9U+LuQnZnLknGbyUzL5vMF/fHyLbziAtCwQ02qNa5A2KNIRs0rPNKmcZfaXNh7CwRo/AYeRrdOPUCfbcDOUUfoveeFVnyuHLiFIdeISi3y4GKQlQjdOvmApZ+vx2QwUa1JJSZv/Rzfit6U8Mvrolsx7jfSEtLRaDX0/qIbbw1vx9Dq44h59tI6JujmM6tPTvWmlXEt7oo+J5EeI239kBxc7HFwsS/QuaRWq/hi+Ue06duUbiM6EBUSiyRJODjaMXvAMhKikpUgWrUKQRQxGU2AjM5eS8dBLa3zfN9zPiF3whEEgaWXZ1C2urLgHfnlNCaD0lbv7uVKTpZC1Lz8ihPQuBIancZKsCWzhFqtYlPYcuu8Br2R2yfuU7qKD74VFU8ilUpkwPfvsmrCJmRJRhBFUl6mWZsU8/+07lhwgGTLFu5nTSZhNksMmfE+709Q3P0dXe2RZRmVWoWzm7L11vitulw5eBtREChbw48hM/sCSsfgxE4zeXQlGL8qPvx0fba1c07noAMBBJWIzkFL/ItEPEq6odaoyc7IYVqvHzHqTai1KtY9WoiTmyM5Wbk2F3twxQmuHryNZJZIjEri2d3nVG9ehc3hP5Gbpbf67EQGRYMsk5ul5+mtZwW+cy6eTpSvXZawwOdIJolRDb7h4/kD6WmxUQAIf6gI4U1GMyF3wqzH0xLTycnMtRob+lf1xb9q3o2R2Wzm9JaLGHONSFLeCqyz11rfi4Xnp3F5303m9FeqaLIMddpULyJBRciPREEQymOhcYIg9ALeSMRXRISK8Lfik25N6Fi/Ev3mbCEmKR1nex0zBncuME6lEpky7i12Hb7Dyt8uYDSZSUnLIjUtB69iigg3K1tPSHg8kiQTGZPMgRP38C3pQcPaZf5j139g7TmuHLmH2Syxesouvls74rVjtXYaZu0uvGvnFZp3r0eFWn4gCHj7/Xlb/8BJ77Dyq834VvCmWpNKrP1+B0G3QilV1osuQ9owd+gKEiKT0GjVOHs6ce3oXTbO3sfASe9QqrziKWQ2SYTee45Wp7YhQQCV6pUjOjQOSZKp17EmJqPZhgSB4uETG/YSnwrerPpqE8lxKXQZ2oZBk3sR8+wlG2fspmyN0vT+shvLLs9gyehf8C7nxb0zj0hLzGDc6hG07qN07niV9sSrdN725qZnywi+Hcbm2Xup07YaidEp3Dn1gKEz3y/wXryMSMSQa8TOUUdSTDKX9lxj18KDlK3hh0qjQhQFUl6mgqx8FlHBMTTt0YDFl2aSlpjO8rEbiAyKpvf47jbzTu+1gPvnHoEMK+7Ox7diSa4fvsPaSdsUPVbFkvhWLkXPMV3wKOXOvbOP6DsxL8KobrsaXNl3E6PBhFGvELJDK09ZiVDNlgF8/dtnRDyO4q0RikfO1xs/IzIoBi+/YjbC+DkDl1ldtWOexRH5JJrylu936z5NyM7IJjEqmdC74Qyp+gXF/Yqx6s48S5VNuSlQqVRWYbNRb6JO2+rcORWIqFLRtEd9dA46zm67jFtxF8pZtmZdi7ngmu+rUaddDWq2DODprWeMXFiwaimKIksvz2DzrD1sm7cfY66Rw6tP2RChLkPbcO3gbdIS0xnxwwBA8Rsa22oqklni4wUDC9UV7VxwgJtH7yIDTm6O6PUGjDlGxdjSAp29jjZ9m3F+xxWuHLhJvQ61aNClboG5ivD34J9kqJgPo4HVQBVBEKKBcKD/m5wovC7b5f9H1K9fX7516/XtrEX4/wNRiam8O/1XjCYJN0c7js8ezpdTd/IkJI7h/VvQt4ft1taydWc5cDKQ9s2r8NWojlbdgCzLTFt4mNOXgl555KHVqPju8660afbXWsffFCe3XeXnb7YjyzJdBjTjk5l9/iPP8ybY+9Nx1ny31aqxcXC2x2Q0Ycg1UibAl8+WDGZSj/nkZhvQ6NQcSPyFn774laPrzyFJMo6uDuyJWWkzp9kscevEfYr5eFC+prIodnYYYHVZBvAs6c6vTxeTlpDO4KpjMRlMiCqRndErGdNiMtEhcWjttUza/BmNu9ZFlmWuHLjF3EE/I4gCHQa05LNlQ/h3EXjhCSvG/0ZAo0p8vKA/3RwGIMsyGjsNFeuV47El+kEQBGq3rc7Mg1/b6H+UbShzAXPD90sNJzkuFZ2DlmrNqtCoa12eXA/h3ParALh7u5GVlo1HCVfWPlporTDl37YKuRPOZ02+tbac95nQncoNyvPbtJ007d6AITPef6MuxoEVPuNlhCIILubjwYagxdw//5ija8/QeUgbGnapgyzLdNb1Q5ZldA5afjw7lUp1y/H4ajDndlyhdZ+mBDRRtg6/6/4DN4/fQzYrFbHuozry6dKhJMWk4Obl8m8ZPQLEhsczsv5EstKy8atUigVnp+Bewu2147fN28+G77dhNkkENKnEkkszCoxZOe5X9v10FGToMKgVDy48JibsJYOnvU//Se8VGF+YwPp/MwRBuC3L8n9ND6ArXVr2HfvHN3h/F8LGjfvbX5sgCI6AKMtyxp8OtqCoIlSEvx2ujvaIgogoSMhA4ONogsPiMRjNrN92uQAR+mxoGz4b2qbAPEGhcdx/rARvvlqmDUYzkTEp/7Frb/9+YzR2GrLTc+jQt8mfn/AfhFqrsiEo+hw9aq0anb2Wxm/VoVQFb3It3jlGvYlHV4Pp9UVXTm65hElvsskvewWVSqRRPhO70HvPcXRxsEQeKO7PXT9qy5R3F1j8g5zITMnG08edJ9dDrdUjk8GERqOk1o9tPY2nN5+BoHRehd4L59Ca0xQr5U7jt/71u/aaLauy4sYcQFn8/Kv58vJ5AmqtmuCbeds3pauWYt7JyTbnXth1lYt7rvPOZ10IaGJLmkcvG8rPn61Dn2vg7qlAHl1+Sr9v3+XK/lsIgkCKZdsrOS6VsMAXzB20jJjQON7/qgfDZitboBXqlMHBxYHMlEw0Og3eZYszw5LDFvvsJW3eb4q9sx2yDCX/wOV89JIPWfTJanwrlGT6gYmYjGamvrcAo97E9SN32BG9GkdXB9oPbMmpTRfQ2Wv5tNG31G1fg1mHvrESoFfIzdIjmyVrI8KB5ScYuXAwxV4jqv+rKFnWi/odanJ+5zWiQuPY+sN+RhVSQXqFlu81YueCA2Rn5NJnQvdCx/T/7j2SYlKQzGY+mtsfF09njAaTdVvs9/i/RIL+x/DPqY9YIQiCJzAFaA7IgiBcAqbLspz0Z+cWEaEi/O3IzNFjNJmRZEjLysXLyxmVSsROp6F2IRlNr3D2ylNu3ntOr7fqUs6/OCt+u0CixVn6FSqVK0HPvyEv7HUQBIHWPf+7Yuywh5Gsm7ydMgG+DJ7cy9qx03VoG85uv8qja4rouePAlgyc9A6pCRmUq1FaCcXM94N1ftd1SpYrTnEfD/yr+vLx3MJ1S/kxvv0McjJzEUUBNy8XkuPS2Dx7r2K6qBJxcLLDbDIjmSQWjVyDIAjIyHiXKY5LMWe+7fYDIXfCFesAWTFtdHR1YOX4jQgCTNo85t8iQ68gCAJLr87m0eWn+FUpxaeNvyUzNQtZkkmKTuHwmpO07deCiEeROLk78sOgZRhyjVw7eIvtscp12zsqW1It32tCy/ea8HmzSQRdDwWgXE1/llyawfb5B0iISuLR5adUa1aZhMgkYiwdjtt+2E+P0Z0xGU04ujqw9PIMzm6/Qr0ONZk7cJn1WiVJ5vG1YJaM+gVZlun3zTsMmdG30NfV+K16bI/My9nKzdZbt7xEUUSwuGpPWDuSET/0p3dJZav24aUgYkLjKF3Z1n7hq/WjWDVhI7dO3MdsNFOhTtl/qQqUm60n9E44ZWv64eiSFyp4/9wjLu29qVyfSrRux74Opcp7szNuDbIkF+pLlJutx97Jjklbv7A5np8EGXINnNlyCS//4tRtV+Mvv5Yi/J/BNuAC8KqM2B/YDrR/7RkWFBGhIvztKOnhoohMZdCoVSRn57J1+TCiY1Op/Ls28FeIiEpi1pKj6A0mLt98xv71o6hepRSPg2PRG0yIosCwvk0Z1Pt/tkoTdCuMSb0Wo9KomLd/PGUC/lrC+O+R8jKNT5tNxmwyc+vEA4r7eFhFySq1igiLTkJrr6VMgC8uns54llRiTOyd7GjduxHndl5HpRY5vumSEjgqy7yMSGTi2k8KfU5Jktix8DDRIbFWo8RXmW+gkA6VRlmEMy3hpHEWPxdBFPCp4M23mz5jaq8fiY9MQkBApVZRp201Zh/6mi8tqeJaey2JhVTvYsPiWTRyNc7uTny5eoTNQvtHsHe0s7ZK//JwIUfXnmbT9F1kpWWzavxv/DplB9lp2RQr7WlNXpdkmT4lPkKWZWYc+Jq67fM6lb7b/iVbZu+mTLXSNHqrLoMrjSH22Ut0jnYsPD+NGs2rkBiTbK3KiSqR2QOW8vjKUzR2Wn6+PpuB3/cCoEGXOhxfdxazWWLyzrHsWXzEet6epUdfS4R+DzsHHfNOfM+ZbZdo3acpDs55VT0XT2eqNa1E6N3nuHu7Ye+kIys92+b98/Irxvfbx5KTlUt0cCxlqv91MbEkSXza+FviwhNQqUXGrlI0X7Iss2vRYavtQfla/vQY1QlZlrl26A4qtUiDzrULVGxEUYRCehwu7b3B7AFL0dppWHJxBv4BioA6/kUi49tNIyMli6m7x3Fo5UmuHrgJAkzf/3URGfpv4B9YEQJKyrKcf+91piAIBcWHhaCICBXhP4JmAWW48TQSR3st5Ut64Oxgh9sfLHi/T5oHGN6vOXWr+ykCVm9Xins6v+bs/x72rjhFlqVL6vCG84x+TbfYmyL2ebzViFGWZcIeRLJ13gG0dhp2LjlifS5DroEVEzezd8UJ1t6Zy7b5h9i55AiNu9RmX/xqdi89xqY5+5RJBQE7RzvU2sKdgff/fIINk3cgy6DWKttbKpXI1xtGceK3C1RpVIFTmy8Tej8Cr9LFeBmRgFqnBlkJe11w6ns8vN3QOehQqUREjYrSFUuSEJXMs/vP+WL5Rywe9QtefsXoMKBFgedfMf43Ai8EodKoOLzmdIH26jeBi4cz7fq1YMvMPdg56jAZzKRkKFta0SGxqDVqRJWIi7sTidHJgNJtlp8IFff15PPleWL49MR0QMaQk2vNN3Mv4cqwOf3Ys/gwJct58fDiE2QZ5BwD984+xM9iTfDpkiF0HNSKYj4eeJZ0R59t4N7ZRwBUblDuL722qo0rUrWxralh5FOFEM8/NZkXT6IJf/CCQRU+RVSpWHBmSgETRHtHOyrUKfuXnvcV9NkGIp9EW/8dzv9wOV5+xQh/8ILbpwIB5XswbHY/BEFg548H+W3qTmRg5MJBvDX8T2/AASWfzmQwIZnMXNp3w0qETm+5SHxkEpJZYuP0XeRk5FiNHF8+j/+XXlMR/k/ghCAIfYEdlr97Acff5MQiIlSE/wgWftKdZzFJ+BRzxTGfgPV1KFPak4mjO3H9TjjvWzREgiBQ/08MCP/bKFejNJcP30UUhQJhq7+HQW/EqDf+YcWjcv3yNO5am1snH1C+tj9nd17DZDRb77qtDPH/sXfW4VGcXxu+Zy1GEoIEYhDcLbi7BndocSjFKdYCpXhxhwLF3d0dgrsTJECIECcuazPfH7NskpIA/Ur7q+x9XVxkZ2fekWx2zrznnOcx/Rf6OoKwgEg2z9iHJMGVI3fo+n0rqrXwYtfCo+h1Bmq3qcTX49tkmhK5uO9GmmEF6nWtjnef+rx6EECdTtVwzOHALyPlNvKwwCgKeuUj8FkIkigxdf8osuWWi2N/PvQ9R1afIToslrPbr2DQGVg5ZguzT4xn/rmJ6a9Fio7HV5/jlMuR3J450VirQeCTtStxUfHcOf2AEtWLfqDEnMMtO0tvzOChzxMWfvureXm+Eh68eRqMaBSJColGEARUGhWNetTJdD9Go5HEWNnOQalSYutgg16nZ1DFHwh8Gkz5RmUoV68UT2/4IRkllCoFVdPoWQmCQJEKBcyv63SsRp5ibrz1C6PyZ6YG/e69Ztfcg5RvVAav+qWIi0qQ/c92XWV2z6UAjFk3iNodq7Hqh80mTSYDlw/czFQN+v+DTRZrWg5qzP6lx0GSZwGT41MIehEify4FqNWhKuXqyZ//148C0KboEAR4Y6rp+xwa96zD0+svUKqUVGqSWrdWrEphc3q4crNylKtfigX9VuBSMDf1TGrjFv48BOkf2zXWDxgObDa9VgCJgiD0ByRJkjJV4LUEQhb+FJQKBYXdc/6ubRrWKmZ2oP87cv/iU7bOOYSgEGjUtTqVG5XOdN0Q/wiG1JtGcqKWwXO60jSNPk5alEoFE7fL9RE+e28w99tVZpNShUrAoDWi0ihl3zFJ1lZxcnYku6sTcVEJ2NhZk9M9G7b2Nux4tQS9zoC9k12G+3pP1Zbl8b3hh2iUMOqNnN95ncSYZO6ceYQgCHg1LGVO62TJasfrh4EYDSJWthpznQ1Arrw56T21MzeO3+PCrmuobK3MnWhpEUWRAZXGEfRclvSo1qo8gxb0IIuTHdVaZl6PJUkSAyt8T2xkHCqNilUP5xMZFEWBsp6oNWpC/cMZWnU82mQdxaoWJuhZCHU6V+erH9sxotYEgv1CkUQJxxwOrH++mCxZM78uSqWSMnVL4HvtBdlyZ8W1QC7evgwj6PlbDHoj14/coffPXfDuV5/osBgGLOz1UYuM++cfc+/8Ixp2q52hsSjIgfLO2fvRaw10HtuGcU2nEx0Wy8U910GQUCgUdP6hDaGvw+WUJ7KIYu2O1Wg5oDH3zz5CpVFRu/2XTxcPWtiLZn3qs27CdopUKohXg1LkL50Hvzv+6HV6+kzvYl63+8QOBPgGo1QpMy2IzohG3WtTsXEZ2f7FUX5YuHbkNlM6LsDa1opRawaQx2RBs+zmrC97ghb+dUiS9P9OGVgCIQtfnMCYWDbfu4eXmyuNC325J9W/goSYRHz23aRQ2bxkyWrHroVHKVIhP4271eL53TcYDSIGvRF/3+CPjnPz1EO0yTqMeiMHV53LNBB6z4U91wnyC6VJ91qE+kfSbmgTfPbd4NTmS2iTdWTNaU/NNpVoO7gxs/quJDYyHiQYsbyPuY7E2s4KazurT55j+2HNiAmLZffCYwCmmZMYdCl6k4idCo213DLu3bceTrkc2TJ9H171S5o1btJSqUlZZhz5gdjIePPshyiKspihWkVyQoo5CAK4cuA2o1Z9+8naIL3OQESQnCJRavV08eiPQhAo6JWfn4+OY0D5MeZutzD/CPZErDVv++uD+XTLP5B3ITHmAu5PMevkBA4tP8HW6XuZ0HIWP+0eSU6PHLz1CwVgXp8VLLsxM8Ntrx66xeuHATTtWx9tkpZx3j+j1+o5tuYs29MUQ6dl97yDbJ2xD0SJpIQUFEql+doB6FN0XNx9lTzF3bHOYoWVtRVth3kDULVFBfZErUOpVKSTDPiS5CuVhyn7x5hfO+XKypzTEz5YL7enM0uv/fz/2kfa1vtHl57yU5s5IEGi3sCFXVe4vP8mCAKj1wwwm85a+AuQ/pmdeYIgtATef9melyTp8OdsZwmELHxxeu3Zy5voaDbfu8+uro4Ud868ffjvxrhWc3n9JBABgeyuToS8Cuf0tsu4FchNg85VObPzKiGvw1FplMRGxeOYSd1S+XolWD9N7r5q1jPjIMigN3Bh3y3CAyLYNvsgBr2RMjWLMuOgfPOxdbDhxAYfVBolnsXdGTxfNtoM849ArzVgZasx23f8HgRBICwgtaPUzsEGvVZPdlcnytQuRs+J7ajYqAwGvZFG3WqiVClpMyhjg833lKiW2qIe8iqcoTUnkBSXzNhNg6nRuhK12lXCZ88NANQa1Uedzd+jUiup91VNrh64aU5biZLE81svuXv2EXpdqnp++9/UGcW/S5CDReDZTT/iouJxzPFxb7o7px6wbOg6ABJjn3Lj6F0GLerFFJOC83vLDkmSWDp0LdcP36bbTx3wKObG9M4LMOiNXDt0i5FrBsjriRLJv1HdTos8yychIfutzTr5I/uXHqdgOU+2zdhHTHgskgQ+u66hsVIzbMU3FCjjad4+7ezcv4HFQ9aYU8CSBMkJWnQpegBuHr9nCYQsfBRBEGYCFYEtpkXDBEGoLknS2E9tawmELHxxtAYDIrLSv9bwWVYvfxtC30SgS9abCnANSKZvZkkUcXJ2oHKj0uxZdpKHl5+zfuo+hi3snm57o1Hk7M5rAGx6NBuDzpBpsLRi3A5Obb2CUacHUZTNRyPjubjvJiWqFcL/cRAIAkiy1cV7Rq7sx5LhG8hTxJWarSv+rvPbvego+5acIIebEwqlgGiUSIhJIiEmCZVayeX9t/DZc4Mu37eky5iWnxWw/JZL+2+QGJeMUW9kRvdl9Jkexfgtw3AtsIOdcw+R0yM7wS9CmNZ1MQa9kSY96+BWMDe1O1RBEGTvNisbDbsXHuXywdtIkoCgVCIZ5bqpGm0rU6ZOCWyzWGPQ6mn3XXPaf5c+EMrq7IB7IRdC/cNxLZAb+2xZMjrUdOxfetz8s9Egkq+kB54l89Dr567cPnGPbpNkcc1XD95wYt1ZtEk65vX9BbfCrqZtjMS9SyBvcQ/6z+nGlYO36DK2Tab76zSmFSmJKehS9PSa1gU7B1uG/dIPAO9+sqv9yDoTQTIZgptmiv5OGPQG/B8F4lbY5Q8HZrk9c+L/KBCAyt7l6DGpI3fPPkSvNZC3hPsntrbwRfln1gg1A8pKkiQCCIKwAbgLWAIhC38uOqORoYcO8yA0lAn16tK0cGF+bdOaJVevUtnDnXKurp8e5Hdw5u4LHr0OoWOdsrhk+/Lu82NW9+fXcdsoXaMorb5twM75R3HJn5PHN16iVKuwd7KTZwYkMqzF2bX4ONvmygab0eFx1GlXkf0rz1C2ZtEPWu2D/MLQJutQqZUUq5Qfa2s1vjdeMrvfSqztrKjfuZqs4SOKBPmlppbyl8pD4261MBqMZi8s/ydB7Fl8nDK1i9GgS/UMzy0lMYU143cgGkViwmNp+HUtHl1+SrCfLJL4XiXZoDeyadperh66w+JLk9MpKn8OXvVLsmnqHox6IwadgVU/bKVpr7qc2nQRUZR4FxrD2gk7CXkld8xtnr4HtZWahJhEQl6Hs2fRUTwKu1CsSiFTQTAUr16E0JchpCRo0dhocMiehc3+y0mMSTSnV2Ij47h39hElahQlh2s2lt6cSfDzEDyKuqFQKEiISWR0/cm8fRnKqLWDqNm2crrjbtS9NndMXVGj1w0iXym53un4mrOE+ocxtvE0NvotJZuLEwqlQjZkNRgJevaWPMXdyO6SDe9vGvDwoi8tBjSm5cAPrWXSkhSXTHx0ItldnbC2zTilOXbLUDZO3oV7YRdq/OZ4/w6MqDOJVw/e4JjTgbWPF/Dk6nMCnwVT/6uany2L8J7srk6ytxoCufM6Y22rQRJlv7h1E3bQdpj37/4sWvjPkRV4Z/rZ8WMrpsUSCFn4Q1x5E8DlNwEk6fVMPH2WpoULU8w5J7+0+vyiyc/lsX8oP647jt5g5NIjf3b91P3TG/1OKjQoRYUGqTolI1f0pWuxUcRExqPWKPn12hTzbJF37zofbB8Z/A693oAAhAdFMbT+zyTGJiGKIrny5mDgjC7mbrOBM7swd9BanJwdGLOiL89uveTGiTmAXB/ToGsNnt16hTZFT/cfU60G9iw+xqbp+9DrDOxZepz5J8czvs1cIoOjubDnOvlKuGdYtKy21uCUy5G4qHgMeiMKlYL+s7/i527LAOg4sjl7Fh3DEJsEEvg/DiQ6NIYcbtnwfxzIxPYLUFupmLZ/lNlA88iq01w/do9Oo1tSwqRyXKCMJ6sfzKF/+R8QDSI2DtasGb8dURTRWKtRKBRUalKGhxd90esMiEa57ioi6B2HVp6Wu9XeRNKkV10KeXny4qYfwU+D0CbpSE5I4cr+Gzy6VJ8ytUugyZWVq4dusWLkBqLeRgMSao0axxz2hLwOZ/CS3uZ00tWDtwh8Fow2SceasZs/CIRqd6xG6TolEI0iZ7de5MAvx/Hu14DAp0HmYvGIoCgKlPFkxZ05bJ+9nzObLwJyOjDoWQgPL/qiUivpOKYV3SZ0+OhnbeG3v3L98G1UGhXO7jmo3qYSw2r8SERAJG2GNaPvjK/J4ZadEb9mrAf1v0avM+BrEvuMCYtl68972T5zPwqlQrZcOTb+d40nGuUCcVESeeMbhLW9NQqlArWVCvtsWcySBhYsZMIM4K4gCOeQExK1gB8+Z0NLIGThD+HplBVJkrBVqynunNolFpmYRNcdOwlPSGBhc2/q5P//aZqkJUVvQBDkOpEU/V+TcpMkiYS4JESjiCQp0SXrad67Tqbrf/19SyLeyi3bXUZ6c2zjRYx6OaXz9mU4cwasYccL2YohTxEXFp9OvVmEvI5AoVQgGkUcsmehYJm8LDjzYXFqXFQCep1BFjp8HcGAqhPM9TAAZGJBoFQq+O6XPvzYZi5IcGbrpVR/LWdHuv7QilYDi7jFZwAAIABJREFUGzKuxRye33pFqZpF5ad0YOvMA4T6RyAoBPb/cpJvZ3+N/5MgVo7ZgjZZx+Mrz9gTusq8L2ePHKy8PYuHF33RpuhZMWoT2iQt2V2dWHplGk65HDEaRVIStTy69BQrGw3tv/MmMjiKczuvok3WsX7iTvIWc8WgMxATHkdWZweT5pKAS/5UReN5fX5Jd/4GrQG9To9oFNk6fS8tvpXrmwqVz4+AgLWdFeXqZ9zx5+TsyIqRGziw9DiiKOL/MICBC3uxedoeKjfzIr8pwHQtkJvvVvSneqtKXNh5lTNbLiAa5dkLg87AQx/fNL+veOb2+QW91sDINQPI4SpLBqjUSlAIIIBSraR/mVFEhcgClDtmH6DTmNbYO306pfe/Qq1R0XJgIw4tP0Xp2sXZMfsAoighikYeXPDl2a2X6SQFPkZEUBRnt15CNMqzkk+uveChjy8LfaZw//xjqrepZLHW+Av5J7bPS5K0TRCE88h1QgDfS5IU+jnbWgIhC38ITycnDnXvxouoKGrn8zQvP/rsGYGxseiMRuZfuvxFAiGvgm4MaF6Ve6/e0t/7rymcFASBiZsGsX3+Uao1L4dHYZePrp81pwOTtw4xvx6zog+bZx3k7atwVGoluT0zlxSo074yZ7ZdJiwwkjGr+me6XudRzbl3wZeXD/xRKBUkmAqJFQqB4Ut7UeAjNibTvlpizv/rkvWorUCv1RP6JgKD3sD3TWYQ+DwEx5z2TNwxzHzzKVGtMFcP30GSJIpWlG9u+hQ9RlEO8hLjkpnSaQHjNg8x6xc5e2SnftcaPLzoa65viQqJZnDV8Rj0RpLjUxCUAiNWfEOdjvLvc9Tqb3HK5cjexcfQpehJNqXCAL6Z0x0rGw35y3ji7JFqne5WyIWUJB1GvYEsTnbUaFOZc9svgw1Ua13JvJ5nCQ/WPFlARNA7CpXPx62T93ErmJuYiDie3fCjTudqZM3pSLBfCAZToH1szVk2vlxKy4FN0Ov06a6lIAhUbuZFrrw5ObPFh/cX1tbRll7TUtvLt8/ax42jd5EkkWVD15CcoCW3Z04GLe5N7nzOWNtZcXqTD1GhqSrcKpUynUv935UhS/oweHFvJEmiTfbeJJmKw/VaPaPqTeZQ3MbPGicpLjldWYouWceLO6+p7J0afFqwkBGCIPxWqOu9mJWrIAiukiTd+eQYFvd5C38GD0JD6bJ9JwLQs7wXo2r+t4XQ/B4E8PJBADVaen20diI6LBaFUoFjjo9LYoiiyJLvNnBigw+SKKHSqChbpzhTd4/46Hatc/Yz22oA2GW1xcpaQ5shjVGplKz8fisgi+ituPUznsXkItXrx+4xpfMiBAF6TGzP25dhHF9/XlZZNhUxW9tZMWnXCLPQXlrWTdjB7kVHMOiMH7wnCLLR69AlvQEIexPBiHpTiI9OZOKO4eRwcwJBIK/pWK4cuMmCb1eSr2Qephz4HtEocnn/DQqW9TTX9cS9i+ddSAx5i7tnOJMwteM8bhy7i2iUANmp3b2wK7/en0eH3H2JCY8FZAXlJn3qo1arOLDsOO5FXFl6fYZZsiA8MJJrh25z49gdbp+8j1KlZOCi3jTrW9+8r31LjrJmrNzI4pjDgfDASKysNeb1VozcwP7FR2WHe7WS7C5OTDsyFs/iv98e46/i/X0j7bV9/SiAsU1/NqUo5c/QSf32zx5z1/zDbJyyC22i1jx2lqy2LL89K13g+1/jr3aft3b3kDwGffx75EvhN27EHz43UyosMyRJkup9agzLjJCFP4XSuXNzolcPopKSKJ07Y3+x/xIFS+ehYOnMZ2oALh+8xYxeyxEEgal7RlK2dnpxyXWTd+Oz5zqdRjanSY/aXDty11zgrLHRMHH7sE8ex7wzPzL966UEv5BnjBNjkhi9uz9rJ+wkII02kgBmUUWAO6cfyrMkEtz38eXumUemICIV0ShmasLZ+ftW3LvwhBd3X2HUp3Y/CYJ8Uz2y6gwXdl8jX0kPph0Yw5aXSzIcB2DZ8LXEhMXim/CcjZN2IkkSLQc0Tpcuc8hmj0O21GBSr9MztvE0Hl1+SpdxbXly7QUpiVo01mokCfRaA1Fv37Fm3BazNtF7w9Mjv55Ko+wdxqNLTylVqxhXDtzkl2FrSU7QolQpaDeiOTncstO4V510x9tqUBMcsmXhXVgMjy4/IzosBgR59hDAtWBuVCaT0a/Gt6XL2LaZnvv/ClEU2TZjPwFPg6neqgJz+6xApVEx//wkPEuYAjaJVEV0MPvCfS412lRizfit5teSJJEQm8SW6Xu5uPc6uT2dWXhxSqau9Bb+m0iSVPePjmEpwbfwxRFNT4vujo6UcXH5T+T2E+OSuXToDmGBUZ9eORPO7ryGXmtAl6Ln4IpT9Cozhp86LECbrCPYL5S9S47z9lU4i4aux2gwkj9NYPXeif1TFCidl9X3ZmFlSjcpFAIRgVEEPntrXkelUZHV2ZHAZyHsmHuY6LAYTm6+aA4GmvetR612lTMsXl03cScBJqPY01suMrL+FM7vuopNFmsW+Uymc1rlYUG2ybCytUKpVpIQnciLO6+5efzeR8+hYNl8aKzVGI0i+5ccY8+Cw/zQZBqQOlPxW17cec2zWy8xGkS2z9xv1j1SW6lo3r8hHkVdKVa1CPsWH8WgM6Cx0dBrWmdZPiDNkHqtgQJlPRnvPYMF36yU67W0eowGkeb9G9F6cFOUyvSSAwqFgqc3/Fg3bhuPLz3lq/HtGbN+MFVNqtp5irmhVClwyJ6FRj3rfPTc/1dc2nuDbTP3c277ZRYOWE1yQgrx7xI4vvYsAImxiQysNJaY8DgQZL+08Vs/HZinxdbe+oPvCkmUOLH+PAnRifjdfc3a8du+2DlZyAQp1Wbjz/73JREEoYMgCPamn38UBGGvIAjlPrUdWAIhC1+Y5devU3jeArw3bCLpNzUVfxUX9lzn66IjmN1vJUbjX6O9Msp7NrO+WU3PsmOZ3X+1WR3499CiX3001mqs7azwu+/P25dh3LvwhMsHb+GQ3R6lWomVrYbsLlm5e+EJD3yeIigEbLJY03dqp0ytHNJy4/g92jh/QxYnW8o3KEmvqR2p4u2FWqOSx7K35ueDoxm5sh9z+65k45TdfFd3qrn2A+Dx1eeMXtMfK7OKtVzwq0vRc37nVQZX/ZEjq88wp+8KHl1+xuxev5AUL2/frE99PIq6Yp8tCz9uHUa74U3Jljsr+Up4yKrYkqxonBkpSVoeX30GyPYfgkK+WepSdMzuuZTG6k5M6zz/g4Aot2dOk9yAgFvB3FzeL4s7Gg0iJWsUJTwgklvH76JN1qFUK5FEkQ0/7aSgV37K1iuJSqNEpVGRwy0b2XJnJcA3CG2SFrWVilyeOek+qYO5ky4jTm04j15nIC4qHtdCuanVvqr5pr/ux20kxSXLnm1bL3/yd/i/QG2ahREUAk65HNFYq1Fbq7HPZk9cVDwzuy/FYBK4VCgUTNk/JlM176T4ZGb2WEqPwkPZ8vNe8+/KMYcD47cMSxdgCwoBK9tU5ezPUQi38J9lgiRJ8YIg1AAaAGuAFZ+zoSU1ZuGLsvLGLSQgICaGW8HB1Mrn+Zcfw6Ih60iMS+bywds06V6b0jWL/un7DHweIisFA5cO3aHx1zUo8zv3W7Z2Mfa+XYEgwKw+K4mNTECUJNwK5sbeyY5ll6bw6MozKjcuy4ape8yqu3mLudJheLMPxtPrDLx6GIBHYRdzTcumqXtJSdRi1Bup0KgMbYfIWjcLz0/kybUX1GxTkazOjlw9fAdBEDDojSQlJCMoBPOMk15rQBAERFNaTqFSkNMtG+GBkUiihKAQWPvjDvNMikqtQmUK0nK4ZWP1PVkiIO5dAl3yDsSgN6JUKRi/ZSgFynhmWlAeHhDB8JoTiA2PA8AQHku/Od14fPkZrYc0ZUyDKUiihM+ea9h9u5KvJ3Qw+4HdPfMIQaFAkgy8eRKEUiVbU1jZaHAwCV4aDSLWdlY06V2PY2vOoNfqeHbDj2JVCqFQKlFbqZh/YTKCIDDi129ZPmI9xasVYcy6QWbhyZsn7nFszRma9KpHpaapD6M6kx6SJErcOHaXS3uvE+YfwYhV31K2bkle3X+DJEoUrVTwd31m/iqqNPdi4IIeBL8Iof3IFiTEJDK2yc/smH2A/UuOERsZZ163SOWCdCs4GH2ynhGr++Oz+zqJsUmMWTcQl/y5WD12q1l2YPOU3ZSpXZyS1eW/lRptKrHqwVwmd5iPNllHvxlfUbCcJ7N6LMWtsCsVGpUhJiLOnFa08CfxzykdTsv7vKw38KskSUcEQZj2ORtaAiELX5R6+fNx4oUfGqXyf2atkaeoG68eBqDX6pnVZwXdf2xL4094ff1RBszszC8/bDcHCzndP+6qnhnvZ3XGrO7P1cN3cMnvTCGTv5dbgVy4mWpwGn5dg6PrzgPgd/8NYQGR5MqTvqB0dJMZvHoUQJasdqy9OwtrOysqe5fjjakWqGS1wuZ1C5TJS4Eyqd05lZuVpcW3DfC794aek9pxYr0P147exaOIC51Ht0AQBCbt/o4dcw5RvVUFWn7bkBvH77Fo0BrylfLg7tnH5rGGLOn9QV3HqrFbObzqNAgCams1Giu12YAzM05t9CEyWNZKUygVdP6hNfW/qkWAbzB3zz4kT1E3gv1CMej0HF97Fr87r81mnS4FcpE26SIHeQbU1lnIW8KDTt+35sbRu/Sc0okS1Yty8/g9Qv3DqdupOme2XESSJARk2weAaq0qUq1VelXv5IRkJraejV6r59Le6xSrXJCG3evQvH8jRGNq7czNo3fM7f6Lvv2VhZenUbFJORxz2ONRJL3o5t8FuaA9tQDc2s6KiMBIRFHCoDegsbFCm6RFqVKiQCDFdJ2WDF4ra0UZRFaO3sSkPaPSzZZKEuYg/T0eRdxY/WCe+fXhlad4fvsVL++/wWf3NVRqJb/enYNznv9uAbWFDAkWBGEl0BCYJQiCFZ+Z9bIEQha+KHObNaV/ZBSuDvbYW33aAPSPoDcYmbzpJH5voxjbpR5l8ssq1jMOjubwqjNsnL6PyLfRLBq6nkbdav6uWqXQNxEcXXeeElUKUblJ2U+u792rDnXaVebKkbsUKJ0H13x/LAhUa1TUalsp0/eLViyAnaMtibFJZtG5tBiNIr43/AC5bib0TQSexd35elwbqjb3wt4pC84eqe7pkiQREx6HY057JAm0SVr6Tu+cZn8F+W3Fh1e9kniZOsQkSSLw2VvK1i1B17Gt6VNqlPk8CpXzTHdca3/czu4Fsvq2Uq3kq+9bU6djtU+ah5asURS1lRpBgO6TOtJxVCsmtpnN9cO3UWpU9J/TDUmSWPX9FrTJWnTa1NRs8SqFmX36Jw6vPMX5nVfQm2bTIoPecWzNGbpN6JBOAHHN4wWEBUYyvul0OfMnCJSqVezjVg+CYJZwkkSJJ1df4HfPn0LlC1ChSVmum2bZYqNSNY9sHWwQBME8I/JPwcbOmi5j27B/2XHqdKxGywGNuHLwFlVblOfAshM8viKnL3O6Zyc8MBLUSlwLyk0T/WZ+hVFvJOj5W9p/15z8pfOSnJiCWqMySy+kZffCIxgNorkxQKGw4sXd15ZA6M/knzkj1BFoAsyVJClGEAQXYPTnbGgJhCx8URSCQJGcf80X1Ln7fpy950eKzsDkjSfZO6knADZZrGn4dU22zDqIta2CnO7ZMgyCYiLimN3vV/RaPaNXfYOze2pgMLblHEJfh7PfSs3i8xPx/AyvIzsHGxp2qfa7zsH3hh8rvt9KYa98fDv7qw8sBJ7dfsWpLZeo0apiui4yhULBgtM/cnbnVSo0KEW2NC7eIIsnth3cmP3LT1GmZjE8iqRanaRVnX4XGoMgCMzosYxHl59TsGxeosNjiQh6h8ZajVKlZPqB0RSvUuij53Hr5H02Tt6NNlmH/6NABi3sybaZ+6nWogJ5i8vXTpIkpn+1mKsHTRIYgjwb0GZYM2wysZhIS5k6Jfj1/lyS4pIp5JVfPk+VUg5AAI2NFY171kGXouf57Vf0MHmDvad41SIUr1qE4Su/wdvmq9RrpfrwoVGvM7Cg3wqCnsvWJoJCYMaxHz96fDZ21ozfMYJJbWanFq5LsnDiDxuHsu7HbVjZavC99oJnt14iAMNXfvPJ8/670nNKJ3pO6WR+/V7vZ/CS3tg72ZGcqOWb2V9z5/RDkuKSqdtZ/tuwc7Bl5KpUtezTWy4yr+9yAGq0qcyIVf1ZO34bD3x86TO9C0UrFiT8jSw2ajSKuBV0yVCiwcJ/G0mSkoC9aV6HACGZb5GKJRCy8I/FJZsDoiihUSnxyJk+EMia04Ffrkzh6a1XVGyYsYrwroVHuXf+MZIosX7yHsasSr0ppSRqEU03M22K7k87h1l9VhDyOgL/x4GUb1CKKk1TZ58MegNjms0kJVHLiY0+bH66IJ2+kP+TIB74+OLimZNS1YukG/fVowAafFWD/jO7ZrrvKwdv8XOPX0CS9yWJEi/u+qO2UiOJEtok+bx3LzzKT59ozVcolUhICIKAUqWgxTcNaPFNg3Tr3D79kOtH7pqvKxIkRCewdMhaRpsc2z+FW8H0gpbDV35DLs+cZHdxomH3WgiCQIeRH7d3USqVKNVKs+L3hok70VhraDMktc5qbq9lPPR5km47/8eBqa3iJqLDYxlefTwRgVEMXNyLLVP3oFQpEI0SXg1K0axfQ7PFx5ClfQHQpeh44OOLZwl3crhl59+GxkpNjbaVmd1zGeObz8DKxsqcls1IKXvdhO3m2Z5L+66T1dmBE+vPk5KoZWLbuSiUAgqlXIDtVb/UB9tb+PL8E5Wl/wiWQMjCP5aYhGRzq363BuU/eN81fy5cTdoyKUlabp54gGcJd7M6tEs+Z3MRr0u+9AW6k3cOZ8vMA5StU5wi5fP/aeeQwzUbkW+jkSTInju9R6AkYbYckCTJPMtwcpMPO+YfIfhlmDl4qdykLE655O3P777G/AFrABi6qAcNutYwjxEdFktWZwcUCgUXdl83p4isbDVok3RkcbLDqDdgUCmQTLMZVVv8Vrj1Q7zql2TAvO74Pwqg/XfNM1zH1t4GkzF0unNMW0/0e3HIZk//Oamec4mxiaitNelqknRaPSkJKeaiaKVKyayTE1g8cBUBvsHoU/RcP3KHNkOaER0Ww7TOC3hx+xVGg2jSOZJTXfuXHGX4ivSK31f23yDy7Tv0OgOLB6w2d0CpNSr6z+3xQeAEoLHW/G6NnX8ay4atI+h5CMF+oXKaRYDgF6GMXjeQgqaaN5AD8IigVMkJhVKBs0cOJFFCqVJgNBgxmtx0fmgynYbdajF67cC/9mQs/OuxBEIW/rHsvfQQgylQuPDwFcVccrBj3iHsHG1pP7SpuZMHYELb+Ty/8xoJiZXXp+OSzxnvPnXJmtMBvVZPrXbpDTgLe+Vj8s7h5tcRwe+4fOgOifEpvLjnT7tBjSiVptj4/8ukHcM4s+0KniXcyZY7KwdWnKJk9SIUKJUHtUbF1D0jObTqDPU7VSWrswN6nYGFQ9aZn6AFpYBSpTTbUADcv+CLNlmezbl7/gkNutZAkiTGNp/FA5+nFCrnyfxzP9H8mwZcOXwHSUwNsuIi41Fbq+UOrtIeGPRG3At93FYE5Bqapr0+1DXTpcgaSB5FXClepRADF/RgyZB16dbpOq71R8e+dfI+rx+8oVHPOjjmyLxb6Ojq0ywetBobO2uW3ZyJa4HcRIVE07/sKBJjEuk2sQNdx8nmtWVql2Da4bGMrDORpPhkvhovL9859yCPLj1FNIo45nTAo6grz2++BEHI0J+sRPWiKBQKVGolkiRhNMjXURQlXt7zzzAQ+i/wXqcqbYrw1YM3jG4whb0Ra8ypam2yjpxu2YgOj0USof/c7rTo35AytYuz7Lv1+F5/ka5e5dQmH75b+U2GtUQWLPx/sXyaLPyjuHD/JfN2XyA+WUvraiW4olKiFAQaehVmxZgtnN1xFQSJ01sv0/OndlQ3idb5+waRkqTF2s6Kt6/DccnnjCAI1Gglv//qUQAnN12kUpOyeNUtkW6fkiTxXeOZREfEmdMpd8/7sj9o6R8Wi8yS1Y5WAxoC0K3YCKLDZYuNdQ/mkD13VsrWLpauNkipku03EmKSMBpFKtQvSY+J7bBzSO28aTOoMTdPPUASJdoPbQrIXk73zj9BEiX87r8hMugdpWoUYV/YSgKevmVQ1TTmrqKEIGDWxbmw5zpLh20gfykPpuwdab7JfQq9zkD/8j8Q+TaafCU9WOQzmeb9GhATHsfm6XuRRIla7avgnaYb6bc8u/WSSW1mYzQYubj3OouvTM903QPLjmPUG9Em67hx9C6thzTl3tlHaJO0GPRGts86wPNbL/lmTndcC+TGJV8utr5JLzOSp6ibXJANtBnajK/Gt+P1owAUCoG8aSwvAp8FY9AZyFcqLxteLMH/cSALvllJ2JsI880/6MVb/qvEhMdluFybpDX/HOofzoAKP5jS0CJqjZqQV2EIgkBBr3zU61ydmPA4YiNjSYqTbWEcsmdJ94BjwcKXwCKoaOEfw+vQd4xZdZigyFhiE1M4dM2X07P7c3p2f0rnd8GgNyJJIgadkYCnb5nRcznx0bJdwtBFPcnpnp0qTctStlZ66wpJkhjV+Gf2LTvJxA4LzA7gaYmNjDcHQcAHXVqfQpIkrp98wP1LzzJ9Pzo8Fr3WgCRB/LsEwoOi6F95PF0KDmPr7IOkJGpRKBQsvTgZl/zOSKLIPR9fQl5FpBsrT1FXNj9dwJbnC8lXUr552zrY4FWvJEqVgkJlPcnh/t4BXUX+UnkoWjG/7KshQPGqhajcLFUDZ+WYLcRFxfP05ktun3rw2eccERhFRFAUumQdz2695NCKk+h1Br4e35b6X9VAbaXiysGb7Jp3ONMx4kz6NAa9McPfS1pcC8hdSUaDkdJ1igNQtl5JrGytUCgV6JJ1XD5wk1k9MrfvaNK7HhN2fMeYjUPoMrYNEUFRXDt0O92N/fqR23zrNYYhVcZxZNUpQt9EMq3jfCKCoqjaogKFKxSgVK1itB7c9LOv1b+NEtUzni1VaZTmh4eHF59i0BswGoxmUcz3Ni/7lxxj9bithLwOIykuBY21mub9G7Dh+eL/hFL9/xzpL/r3mQiCoBQE4a4gCJl/WfwBLDNCFv4xpOj0sv+TKR4pnjcX9jap3UYDZn+FxlrFyS2XEA0iCqXC3BFUs3VFaraumNGwSJKUzgzUoE9vDCoIAmPXfMO2eUfIV9Id+6x2NOxS7aNfyE9vv+JdWCxlaxVDm6Tj2EYfdiw8BhK06FeXpIQUvHvUpkApj9R9rBvAlpkHqNayPJ7F3Vk3aRf+T4JAgk3T93Hfx5dZh78nu4sTjtntCXzvIv8ZxdyCIDD94GhiI+JwyGGPQpH+GWjsxsGsGL2Z7C5Z6Teza7rutaIVC3D79EOQMHeAfQ658+WkbJ0S3DxxHwGBX8duI/B5KIMW9CA5PgW9SWRw49TdePern6FqsLWdNXqdLOCoS5ZnDn577O+5e+YhAGprFdGhMVAqL9ldnNgWuIKLu68z/5sVoAc7R7uPXqfK3qn1ZqPrTyLkdTgKhYK5ZydRoloRbp9+IF9zSXanf2aSKQC4deIeR5K2ZjT0fwJJkg1sdSkG87KqLcpz9dBtAFIStCTEJJIlqx0VGpXGytbKXJQvCNB/djcAIoLeyX+TktyxJwgCTXrV+6hhsYV/NcMAX+BPUdK0BEIW/jEUy5OL4W1qcu7eS2qU8qRT7fT6Pg7Zs/Ddsj5496nHhb03qNGyPH4PApjYeQk2dlbMPTrGXDydFoVCwfR9I9m77CQ121T8QJgQoJp3Oap5f9q2Zufi4+xdcYr4d0mo1EpEo4gkSbjmd0abpEOhENj7yylEUeLCvlvs9ltgDqiqt6xgTuUBFCmfH5VahUFnQDSK5lZugNG/fsOS7zby/M5r9q84TZlaxcju4vTRYxMEgazOjhm+5+yRPdPOsHGbBnH79CO2zzvCoBoT6TmxPa1N6by0GA1GFEoFR9acY/moTeQp6krvKR25c/YxRr0BfYqeCJMXW5+pnbh84Kb5qTD+XQJ2jrZIksQV002zanMvfmw5y1ww/t7Xy8om41b7cvVLcev4PQSFgoCnwRSvVgQbO2vUGjV1u1RHkiSCX4aYZ2pSkrQcXnkaxxz2NPg6Y52puHcJiAYREZHR9adQt0t1Tm64gEqjxsbOKt0sIUDTj6T5/u3ERsYxpMp4wgIiUSjla2ltZ4VXw9LmQEhjo8EmizUATrmysvrhPPqWHIE2SUeFxmXIU0wWlOzyQ2uC/UJJSdJSvEohSlYvSuE/sWnBwt8XQRDckdWipwMj/pR9ZGZS+HekQoUK0q1bt/7Xh2HhH8T4dgu4ffYxgkKgy0hvun+iMDczAp6H4HvzJcc3X6J09SKUqVGE+UM34F4gFxM3DcQmizUBz0P4tuZk840b5OBDkiSyu2TF3tEWpUpJwIsQ9FoD1nZWbHs8x3xjyAjfG35snLqX8KAoBs7rRvk0+inTui3j0sHbKJQK2g1pTJ/JHTId549y38eXiZ0WkZKoxSaLNfveLk/3/vH151kweC1W1mo01hrioxNRqpW4FchNqH84usQUrGytyOWZk4TYJMZtHEzQs2B2zjtMvc7V6TZBLlbeu+QY6yfvQa8zUKRCfl7deUlyfDIgkcvTmZrtq9JtQjuWDV1HZPA7mvWtT5Xm5bGy0WA0Gjm37TILB65GEKBUjWL8fGRspuc0t+8Kzm2/hEKpoM2QpljbWbN30VFss1gz+/QEcns6c//CY0bVnSRvIKTORFnZalh0aSqvHwUwu+cyuR5rRAv6z+n2pS/9P4ZTm3xYNHA12iQttg42pCSk4FowN+2Ge7N85EZ0yTrcCrmwzncBSfHJ2NrLYpKJcUmE+UcEhEjZAAAgAElEQVTgWdIj09m+/zKCINyWJKnCp9f8Mli7ekie/f+UeOMDnk0a8clzEwRhNzADsAdGSZKUcVvqH8AyI2ThX03VZmV5eOU5wO/2/nrP1aP3mPHNKrO31+vHQZzbfZ3It9HERydy+chdytctwfDGMxCNcsu1Qqkkp6sTCbFJJCem0KZ/A0pXL4ydgw0vHwZy6fAdAp6F0DbfMOq2r8SY5X0+2G/8uwQWD99IWEAko1b0TRcEARQq58lNU8qqwEeMSr8EeYq6olQpsLa1okTVD8UV10/ZAxJok/WgkBWWjXojAU+DcS+cG89i7rjmz8XeZScw6Ays/WkHC878RNPe9dKNE/g8xNzx9vTmS1r0rUdcZCwPfHwJD4hiz/zDnN7kQ1JcEnqtgfsXnuBRxJWVd2ejVCqxtrNGoRBISdQS7PdxLbW4SLn4XRQlds07hGgUEY0ScZFxTO+yiK7j2lK1RXncCrsR/CIEhVIgTzF33vqFkjWnI26FXChQxpPStYqjUqvIljvrR/f3b6dk9SIIClBbq/HuV5+vJ7TH2s6KlEQtZ7dfJvhFKEOW9GZqxwVc2n+D4lULM+/cJOwcbM1ijBb+c+QQBCHt7MavkiT9+v6FIAjNgXBJkm4LglDnzzoISyBk4V9N8z51KV2jCFY2VuTK8/8Tr7tz4Yk5CAK5DiJ/SQ/i3iUiiSJ5i7gS5BdqrnlRKBVsuPszOVycMOgNaJN1HF57gdEt5yKKIqWrFUY0igS/CkOSJM7uus6IxT0+aAm+fPgOb1+FoU3Ws27yHqo1T6/n0/G7ZhQonQcrG80HgopfGidnR369MZ0DK8+Qp7BLulqd8MDIdOrM2sT0NUtKpZIJW4fy8NJTDqw4hdJGg322LFw/fo9KjcukS0kVq1yIk5svYdAZUGlU5CuVh2a96zKi7iSi3srF0gkxiWaHctEoEvA0mPjoRByz21OluRfVW1fC7+5rhiz9MLhMy+AlvRnnPYO3fqHo9Uaz3o0kwdMbfkzvspDlt2cx//wkNk3ZRW5PZ9p+503IyzBy5c1p7p5z9vhvWz0kxSfxy3cbuHP6IbpkPYIgUMgrv9lDzNbehvnnJgFyOnJs0+lIEjy/9YrQ1+G4maw3Plb/ZeEv5q9LFEV+YkaoOtBSEIRmgDXgIAjCZkmSvv6SB2H51Fn415OniCuJcUnsXnKCwOchBL8Mw6A3fHpDEy6eOXnv2GnvZMf0ncOZsP5bxq7qx6JT4yhUNi853LKZxxRFCUeTeJ9KrcLW3obD6y6gTdah1xq46+PLvUtPUalVqK1UeNUplqEuSpHy+UEQsLbVfNDSD3LarUKDUh8EQUajyPGNPhxefe53neenOLr2PAeWn2LJiI0cWnXWvHxkw+lEBmfe0RUTEcfiYevJ6uzIkouTqdy0LPfOP2F6t6Vc2H3dvF5KopbFQ9Zh0BlQKAV6TWxPk561AZi0eyQeRVxQaVQ45rBnyNI+5DebxEoMqzEBnVaPSq3i+/WDWHV/LqVrFsvgaFKxyWJN0HM5Tfn+i1/1G00mg85AttxZGfZLPzqNacWueYcZVmMC8/qtwGgUMxn5v8PtMw9o7dSLE+vOExEYhWgUMRqMHFpx0rxO3LsEszu9lY2GMnVKotaocC+cm1x5cyBJEpPazaWxugszvl78vzoVC39DJEkaK0mSuyRJnkBn4OyXDoLAMiNk4T9AQmwSI5rMRK81sHbyHhRKgbxFXFl8bsIH3l4ZUcQrH1bWGiRJoljF/JQ0pYYqN04V2LOzt0ZjrUGv1WNrb4Mizbj+vsHERKS2X6vUKiRJomGnKrT+tgG582Y8o5CvhDurbkwnMiSaYhULfPb57l9+ig3T9oIEkSHv6Gmqv9HrDBxbdx6lSkmTHrV+tx5LeFCUuYPrvQs8YJYoeI9CKaDSqNBYqUmMSyY+OoEja85y8+R9arauxPM7r9Em61CqlIT4h5u3E0XRfN2UKhURwe/o7DkEg97AtP2jWHJtBgFPgshbwh1rWyt2zjkIgCRCRGAkYf4R6TzV3nN83VnObL1MhxHNqdQ0teDd2s6aLFntZB0bo4goiggKBbXaVSY+OpHqrSqQp7g7t089IJdnTh5e9GXd+G0AXNh1ldaDm1C8yh8X1fyncnHfdaZ1Wshvy0wVSgXeJnuVe+ceMb75TCRg4s4RVPb2YtbJ8YQHRJLTPTtKlZKIoCiuH7kDwPmdV01eZR9acVj4C/nnlA5/ESyBkIV/NOExCTwPjqBCIQ+sNSpT664+nehfSqLWJNUvd/iIRnjz9C3RYbHkcP14pxVAicoFmbJ1MMGvwqnXvnKG6zhky8LsA6O4fe4xNVt6cWT9BYJfhtFpWFMcs9ujVCkQFGqy5XKky4hmJCdqadajVjoriIxw9sieziX+c4iNiMNoEE2WGnIA9uz2K9ZN2s3jay/kAtX4ZDoOb/aJkdLT86d2hL2JIjQgApVKidEoolQq+GnbUDb/vB+3gs6c33UdXYoehULBj1uGML7NXIwmaYKE6EQOrjiFKElkc3akYFlPWvSTu6xEUWRM0xkYRRE7R1tSkrTsX3bCfJNd99Munl57hmg0MnH3SMrVK0Xwi1DzsRUo42l2N3+P0WhkaqcFXDkglyA8uvyU/rO/xr2wKxUalUGtUbHizizunX1MIa98HFx+kvCACC7suoqgUNBuuDfz+63AZ/c1jAajOfUJckrOJZ/z77p+/zbunn6YrjEAoP5XNajWqiJRb6M5/Otplo9Yb04rn95ykcreXmyavJvTmy/SboQ3rQc1IVvurLgUyEX4m0jcC7tmKKNgwYIkSeeB83/G2JZAyMI/lnfxSbSbugGjKFHYPQerhrRnZJOZvLjnT5MetRi2QPagyuHqRP/pnTi59bJZWblMraJkd/n84tYyNYt+UGydGJfErG/XEBsZz6hlvSji5UkRL08uH7nLmkly55O/71tm7RvBwhNjeXzdDzsHGzkI6p4aBKUkagnxj5ALkj9jhupTdPzOm7DAKAw6A70mtiMqNIYxzWahS9EjSRIqtZK4qITfPW52FyesbNVEBL1jz9ITuOR3ptHXNfGqVxKveiWJDovl3M5rgFwo7Xv9pfnJ0jGHPdVbVeDU5osoBIH6XavToGsNzmy7TNUW5bGxs+bl/TeIoiTPzhhSb7AaGzUqtcKsSnzk19NUalKObhPbs+3nfYiiSPGqhT+4dlM6zDe3bQMgSaweuxVBEJh68HvK1ilBDtdsNPi6JgBDlvRmYts55oDn3PZL3Dn9kJREraxflYZeUzvjlOu/XRzdalATLu27SXRYjHlZZPA7ZvdYhihKGI1G8+9RpVbi3a8+4QGR7JhzAL3WwPIRG2jaux5WNhpW3J5F0PMQPIq6WeqE/scIWExXP0AQBGvAB7Ayrb9bkqSJmazbDtgNVJQk6ZZp2VigD7IM3lBJkk6YljcBFgFKYLUkSTP/+OlY+C8RGBGDUZRI1ul5FhiBv28wb56+RZLg+AYfhs7vZi7Ebd6nLs37yF5Y2mTdZ9tEpEWSJO6clwunqzQpw7GNl7hz3heDzsDysTv4ebfsTRYbGS8/KUuSeRbKs5gbkW+jmdpzBZIk8eDyc75f0Yek+GT6VRxPQkwSJasVYvrekX/4umTJasvYtd+aXwe+CDEL3QkKgZptKtJlVHOCXoSyd9kJSlYrTL2OVT9rbEGhMM+6rZ+yF4/CLpzfdY0qzcpRrm4JRq7sx+ktl2g9oBH5SnlwctMFIt9GU7djVXpP6YCTsyOi0Yh33/r0Lfc9RoORrbMPsv3VEopULIDvdT+srDWkJGmRRAmHHPbMP/Uj8VHxPPJ5gihKNO5ZB4BmfeqzdfpejAaRA8uO03VcWxyypaZUHl56mu7YbR1tiY9KwMpGw6kNFxAE2XMsLW2HeXP75AMQ4NSmiwiC3AXlmMNB7jIziPSf8zVthv6+2bR/I3mLu7Pz7UqWDl3LgV9OoFQqqNCoDM9uvkSfrENjo0FhJf/9Lb89E/dCriTFJ8vLlUqyONqaFdo11hpL55iF/xmfMyOkBepJkpQgCIIauCQIwjFJkq6lXUkQBHtk9cfraZYVRy5wKgG4AqcFQXifVF8GNASCgJuCIByUJOnJHz4jC/8ZSnrmplrxvNx8HsigFtXxKJSbrM4ORIVEk6ewK4+uvKDUb6T+I99G8/Z1OCUqF0SpUpIYl8yCIeuJj07kuyU9yJ03ZyZ7g1Pbr7JszFYQoGHnqhT1yo9SqUBpo8G9oCzUqNPqWT99P6IoolSrGLmkJwAHV59l+4Jj6PUGRINI2JtIAAKfh5IQm4Q2Wcfd83/Ox9+jkAvdf2zLpQO36DK6BZWbyM7ng2tNJsQ/nDPbruBRyIVC5Tw/OdaIX3rTuYAsvJgYl8QP3rNISdJydO05NjyeR90OVanbQQ6qwgMjSYpPwWCqTcpfOg8O2bJQsGxejHojRoOIXmsg/l0iRoORty/DADlN5pAtC/HRifT8qR0ehV1IScrGiFX9yVPMnQKl82I0ithltSWrsyOJsUnYZ8+Szm8NoEnPuuxekKrIHx+VgGcJD+Ki4jm36wo+e64x7+xECldIrb8qU7s4654uoEfh4Rh08sxQDrdsDF7UkyxOdmR3ccK98Id1SP9lBi/uzYD5PeQXpvqxF3de03dmVxKik/As6WFOI9ra27DyzmweXHhChcZlLLM/f1csM0LpkWTFxffz6GrTv4wu01RgFjA6zbJWwHZJkrTAa0EQ/IBKpvf8JEl6BSAIwnbTupZAyMJno1QomNuvRbplq65PZVr3X7h/8Rk/dljI1F3DKG3qqgoNiGRA9YkYDCKSUcTZI7tZ10cSJVaO28HELYPNY4miyNmd19Gl6Gj0VXXePH2LXqdHNEoc3eDD+b03Gb6wO6JRpEqT0rx6HIRTTnsS45Nld3hBwM7BhvjoRH6dsAuD3ii3FpfNy4CZnZnacwX+vkG45HPG/3EQbQY2+tOuVfuhTWg/tEm6ZaIomv+SRfHzOqCy5nCgbocq+Oy9SU73bIS9loudJQkMhlSV5ZiIOEY0mEZsZDwgq05vm3WQyLfvEBQKJmwZgrNHNuKiEug/qysqtYrC5fObZ3EWnZ+Is0d2c0H3942n8fphAIJCYMy6gczsthSFSsHUfWPQafUUq1yIu+cece/sI5r0qot7YVfaDW/G3iVH06XZvt8wiCmdFmAIjUFlZ2X2L0tJ0qLX6rF3ykLYm1RlZICY8Fhmdl9KtZYVGLt56O+57P8Z0hbeD17c+6Pr5sqbk4bda//Zh2TBwmfzWTVCgiAogdtAQWCZJEnXf/O+F+AhSdIRQRDSBkJuQNqZoyDTMoDA3yzPuArVgoXfgcZKTVRorDn9FeofYQ6E/B8HIUmgNxVvhrwONxfjqjTKD4qSD685z5qJu5EkibA3kbQd0ADfmy95eusVolHCoDfimCMLxSsWoF+1icRFxVO0fH6+Ht2coxt8aNajFg7ZssjF27YaFCkG1NZq5h0ew9Vj97h99hEpSTrsHGzY8Gg2uT6hRyNJEo+vvkCvM/Ds9muKVy5I6Rr/f/2gKbuGs2vBUUpWLyK36n8mY1Z9Q/8ZXbDPloXHV56zf/lJarerjLN76vVb+t2GdC31hbzyEfYmAr3WgJWNhqldF6NL0aO2UnP18B1C30Ty/ZpveXrzJW/+j73zDo+i6uLwO1vTe0IChAAhlNB7700BqaKgVEGRojQVBZH2IQqiCAgoooICigjSpffeAoSekJDee9syM98fGxZCAiSA2OZ9nvAkM3fO3DsbsmfPPef8rkaxdfleer/1vDWPK+xSBHnZBmzs9WxctMPadPHQhpOM+XIoMaFxTO8zH2Oekb2rj7A2Yinupd1wdLUnPdHijNk52eJfuzzv/zCGJRN+IKBeBRp1qcee1Yf44o1vEEWJd759k7b9W9C8R0OC9l+mcbd67FtzhLxsAzfPhz32s1ZQ+McgKzlCRSLLsgjUEQTBBdgoCEINWZaDAQRBUAGfA0P+jAkKgvAG8AZAuXJ/bvdchX8HYxcMYsHbKyld0YvWvRtZj9dtE0ilWuW4dvYWgCVqI8todBo69m/G8JkFJSpS4tMxm0VkSSIpNhV3bxc+3z6J9Yt38cPsjZSvWprqjSoRfSuBjORMDLkmLhy5zpwN4+k/oavVjs5Gy+K9H3J232Xqt6uOzkZL6QpelvsD2Rm5zB76NQv3THnoun78+Hd+W7wTQ64RQRDQ6jUsOzqT0v6F9dMeRXZ6DskxaYyc+2qJq3QEQcDF06J9WKtlVWoV0bFbq9ei1qiQJMtf1LBLkdRpG0hqfDpZadlEh1i2wcwmMyd3BHHqjwtkJGXStFs9Vv1vg6Vr9KGr+FT0wsHFnjfmDmDFB2vJyczh5rkwtDoNgkqgWb42mzHPhJwf4UqOS+XWxdtUrOVHg4612bf2CLIMg6ZbXt9qTQJYdGw2ADu+28eCkcutUaMtX++mw4BW1shPbnYeiRFJRF6P5a1FD2/QqKCg8M+kRFVjsiynCYKwH3gOCM4/7AjUAA7kJ6Z6A5sFQegORAO+95gom3+Mhxy//57fAN+ARWusJPNV+G9SuW55lhwunM+vt9Xx2fZJyLLM9bNhmE1mdq89hk95T14a93yhfIUX3+pMdGg8hlwjr01/8e7xMZ14cYxlG2vn6iMseme1dWug++ttiQ1LZN2inQQ28qfzK80BS1PGbq+1sdoIqOPH8Ol9+Hb6ekxGS75MXrYBjU5dZHNFgItHrluVumVZRkAgKz2nxM/HbDIzstlUMlKycXKz57ugTx94z8dlzOeD8CzjRnRIHKd2XiAvx0BKbBqLDs9gzaeb+HneFsxmkYA65Qm5EI4kyxjyjBgNJgQEZEkm5lYCoRcjUKkFmjxXG72djuyMHEx5Zl5+rzvdRnTEzduFg78eJyk6Bb9qZQkJCgcZti3fy1uLXqPbmx2JCY2nUZe69H6rYILzN5N+4rcvtlqjgoIA3UdaXtfVszewevZvVGtcmU93TXnqz0dB4W/Nf+ydtjhVY56AKd8JssWS4PzpnfOyLKcDHveMP4BFGO2MIAi5wBpBED7HkiwdAJzCUqEXIAhCBSwOUD/glae2KgWFhyAIAlUbWLaCajR9cEM8B2c7pnz/5gPPA6yetxWzSUSjVfPesmG0e7ExwxpPJfpWPAd+O4VvgDeBD2iG2P31dkiSRGhwFL7+pehTbgx2jjYsOjityCaLQ6f1YfagJRgNJmSgY/9mVK5XofgLzycrPYfk2LT8ZGUTWek5uHg4ldgOWJyq2LBESlf0KpAnYu9sx2szXyI7PYcZ/b4kITKJN+dZGsL2f687FWtapEECmwTw3bR1GHKMDJv1Mg4udvSf1J2w4EgkSeL41nPIosTxzWcQTSKCSkCtVdOiV2PcfVw5uuk0nw1fhiSKVKpbAZ2NpSVBo+frYDaZmdjWIoJ79eRNqjWqRL0Od5tgbv1mD7Js+X1wK+3C9N/eoWqjSoiixA/TfgEZLh66woWDV6h/z3UKCgr/LorzMccHWJmfJ6QC1smyvFUQhJnAGVmWNz/oQlmWLwuCsA5LErQZGJ2/zYYgCGOAnVjK57+TZfnyE65FQaFIstNzeKfrXKJD43n7i0F06Fe8UvE77N9wiutnw+j5Rnurg7J91SHO7A2mSr3ypCdnIahUVK1fgdjwRNKTM4v1iUoQBHq92RGAkc0+QjSL5OUYOLXzAt3faF9ofPUmAUxYMoxZAxdjyDFyZk9woTHFwcXDiW7D27HrpyN0GtDisZ0gUZR4u9V0Im/E4letDAsPTS8UVbN3tmPujoIK8IIg0KTL3Q7PI+cW7Jjf7x1LAnxmWjb2znbkpGVzfPNpJLNIlYaVmPn7uzjnzzk9MQNZljEZzWh1Gr4+Pw+1RoV3eS/O7Qsu0PDv+plQqyOUnZ5D6xebsG/NEZw8HPlo3QTiwxPxq14WWZILvH53tgEVFP4zKBGhgsiyfBGoW8Txjx4wvs19P88GZhcxbjuwvbgTVVB4XE7tvkRsWALGPBMrZ28skSN0/VwYC8auwmgwcW7/Fb45NoNbwZF8PeUXDLkmnN0d+GLHJNy8XXDxcGRw3Q/ITs9FpVbx8vjnHxgNup/Og1rx7dR1aHQa6rYNfOA4O0cbkC0yBnYONsVex/2MnPsqI+e++tjXA6QlZBB+NRrRJHLrUgQpcekc33YOtUZF50GtiQtLICokjnrtLNpSJSEv28CoJh+SHJuGzkZDl2HtSUvMYNjH/XFyd7Qmw3cY2IorJ24QF57A+GUjrAKeYHGSBLWALFr6J9XrUBOApRNXsemrP3BwtefzA9OxcbBhVMMPEASo0rAS8/dNY8isfmz4chvtX2mBf+3yT/ScFBQU/t4oG98K/3qq1CsPgoDeTkeDDjUAS3JtelImHmVcC6if348pv5eMLMnEhCfSvexo+k/okr+lYkmErljjbrqbIdeILMvodFoa5b/xFoeeb3agVa+G2NrrsX2IgxPYuBLvfj2c0EsRdBvertj2/wzcvJ2p374Gp/64QKPn6rBtxT7WL9gOAkTdiGXrt/sQBIF67aoz7edxxbabnZ7Dp8OWkRCZDIAxD5r2aEid1oGYjGbeajqFm+fCeH5YO3qM6myVwDi54xy+lUtTqU55XEu5kJuZa/1kK0syE9vNoP/7vdi4aDvIkJuZy+0rUVw/cwtjfhXatVMhvOA0iIq1/Pg5clmJHTgFBYV/HoJ8v2Le35gGDRrIZ86c+aunofAPJCU+naSYVALq+JGVls2IZtPISMmm0yvNeDtfiuNBbP52Hwc2nCbkUgTGXBPu3i68PX8AF49dp8ugVpS5p2rr+rkw1s7fRr22gXS/x1EJPnGTU7sucXjLWdy9XZi2ahSOrvZ/2nr/DE7sOM9XE3/Cv1Y5Jq8cZZUIMeYZ0dno+PLt79m58iCCINCwUy3O7b+MIceIIMDw2f14cWzxujG/1WoaoRcirF25S/l5sCJoLlqdhpvnwpjQdrpFbkMAjU6DaDQjy6Cz1VnyiAT46uQcTu04zw/T1yGa7vY3EgSsydE6Gy3fXf6Cd9rPIPZWQqF5vLdyNB0HtHrCp6ag8GQIgnBWluUGz+p+tj6+csUhE57Jva58MuGZru1BKG09Ff4VmE1mlk9dx5xh33Bs23mGNZjMlBcXWPvNuJVypnLd8giCwI3zt60djw/8dgqA377ayfs95hN87EYh292Ht2PgpO7IoozORkvtVlXISs+hfrvqBZwgsCjVT189poATFHopkil9F/Drop3EhiVy+WQII1vP5Pyhq3/iE3n6LB7/I4lRKQQduMqZ3Zesx3U2FrmSIR+9SNNu9WnRoyFvfTmUCvmRMlmG76evL/Z9okPiEc2WBPROA1uy/OwnpMalsf6LrRhy8nD1ckKr1yIIAmaDxQlSa1QYc42IZhGzSeSz4cvoPqoz7fo1x8HlrsMp528relfwZNm5uSBAblYeADb2+gLzuHnm1mM/KwUFhX8OiiOk8K9g95pjbPl2P4d/P83Hr31NdGgCZ/cG8+OcTYXGVm1QEVcvJ1Rqga6vtSHkYgSrZm8i6NBVpr+6uND4nMw8pg+0CElqtGrUGjVfjFvFtFcWc3LnRcBSiZUQlVzk3JLj0hAEgTvRV1mSSYpJZeagJU/vATwFVn+yiR6lRjDt5S8RxcKdpivWKoeNnR5Zlikb4F3ovLOHI1NXv8UHK0fh7uPCrPUTcHCxx8ZeX6LqtonLhlO6Yik6DmjJ+CXD0NloGdtyKt9NWcsHXecwd/dUvgmaR2DTytjY67FzsmXSyjHUbm3JrRIEkESRjYt3MOqLIay5vYTuIzuj1qjQ2+no+kYHVt1YRNkAH35f/AcZSZbG+VUbVyogrir/17rKKSjcQX5GX38TlA1whX8FmSnZGPM7Rt+jjkBUSFyhsfZOtqw4M5u8bCN2jjbE3IpHlmVUagGHIpoLXj8bZu3fk5MlcmZPsFWH6tTuS3iX92BcpzmYzSJDpvSkz6hOmIxmgk/cpFyAD/XbVadDv2ZcO3uLUr7uHN16HrDkE73bfR63gqMY9Ul/2r/U5Gk/lmIjyzKrP92EJMoEHbxCWHAklWoXFMH8cNVoTu++iG9lH8pVebTelpO7I9+e+4TwK1E4uTswo98CKtQox4DJPR+qMdW8ewOa5zdKPLP7AvOHLyMlNi3/NVJhMpjxrVKaT/+YQvDR68SExjP/9WUICDTr2RCNRs2JbWf5aeZ6Qs6F8dG6CYxZOJQ+47uSFJ1M9WZ3u3FXaeCP1kYDCNRtV4OwixFkpmZjY69nwJQ+j/cwFRQU/lEojpDCv4LIkFjr9zWaVubS0euo1Cr6T7zb4TnschTRofE06lwLnV5rqcACSlcsxax1Y7l8MoT2RaiwJ0Qno9aoEc0irp5OuJVyJjUhA0El4FPBg6BD1zCbRUwGM3t/OUGfUZ2Y9spirpwKRaUWWH5sJmPmWtpkRdyI5dTuS8iSjE95T24GRZCXY+Db6etp/1ITS0NBQXjmSbqCIFC5fkXCL0eht9XhU76w+KzORkvzF+oXOCbLMvt/OU5ejoFOA1sWajzoWsoZ11LOvNl4CmHBkZzbe5mAuuVp2rVesea1ZOwPJMekWhtNevq6o7fT5c9HR732Nbl46AomgxlJlBCABp1qc3LbOURRIis122rLp4KXVfzzDq37NsXT1x1TnolarQPpNqITYZciqNqoEnpbXbHmqKDwr+JvFq15FiiOkMK/grptAjm44TSCAJ0HtGDWurcRBMHa5C/schTjOn6MIAjUbVOtgLgqQO2WValdhFQEQLOuddn87X7iIpJ4+/MBlCrrzrzR3+NZ2pUug1qTmZbNms+2kiXm0Ce/4/S1s7fIyzFgY6cn8macVTOrXGUfFvzxAWFXo/Cv4cv45z/Fxk5PjSYBnDt4hWmvLEatVjNv86NlQtwAACAASURBVDsE1PErcj5/FnO3TeLG2TD8qpYutuzGju8PsOy91cjIRIXE8cbH/YscZ+tgg6BWIcnSQ6vi7qdKo0okxaSQl2PAbBSJvBbDknE/MP23d6xjuo/sTNC+y+Rm5TJ0Vj9K+5ciLDiChIgkRswb+Mh7BDa521TTyc3BusWmoKDw30BxhBT+NmQbLNtP9vqSfxJv17cJ9i723LoeR/32NayRiaATIaxfcQjJYERSCZiyDVw5FVoi244u9ny1f2qBY0sP3m2jZedow9qrn2E2idZKqmHT+rBi5gYCG1SkepNKBa71r+mLf01LIvHyYzOICUukRpNK/O+1rzEZzJgws2fd8WfuCOn0Wmo0e3Cn7aJIjktDNItIokzyPSKr92LZ0lKjUqlw83GjZvPiC8W+8+2bBDapzJJ3ViEaLFufLl7OBca4ebuw4PDMAsdGzh9c7HsYcg1cOxVCxVp+OLo6FPs6BYV/K/+19DjFEVJ4pqRm5/Lq0p+JTc1kdt/OdKljeVM8GRrJyO83ArB0aC8a+/s+zEwhUhIy+OT99ciSzIGdwXy9ZTwxt5P4YOiKu4McHCHXRI5aS0RoAuX8vQrZOXP4OsvnbqdWw4qMmNwVjaZ4/0VUKhU6/d28l65DWtN1SOtHXudZxg3PMm4AtH+pCWf2BiMIAi26FW/r6K/k5M6L7NtwGnc/T3wrevL6nH4FzkuShEqlIiczjyunQpAlmeTYNNbO20Lk9Vj6T+pO+WplHmg/OiSOqX0XIIkSHr4eJNxORKUScL7PEbpDXrYBna32oflHRTG2xYdEXIlCo9OyOvwrHF0dS3S9goLCPxulakzhmbL/Sijx6VkYRZHFe44BFudozMpNGMwiBrPI5nNXSmw3OTET0SRiyDMREZLA89U+YOKrywoOEgQEL3dUNnqK6qF4+2Y800auJCIkga1rT/BCzal8N39Hseew5P219PEfy4qZv5V4/gAtutXjx6BP+Onip9QsYWTmr+Dzt38gNjyJjNRc+ozrikdpN+u5ua9/QxeXYcx8ZRG2DnoadqqFSiXgG+DNugXbObjhFNNf/vKh9tcv/IOYW/HEhSdSrUllVBoNkiyw/ssdpManFxi75tNN9PIZwZDq75CZnxeUkZzJ2rmbObzx1APvYTabCT0fjslgJjczl2/e/fEJnoiCwr+E/1jVmOIIKTxTavv5IAgCNloNbav5k56Tx7aga5jEu03vXqhbDYC07FwGf72O7p+v5Hps4kPt+lb0LFTynZZ8N1FWrVZh56DH08cZb183Lp0OIzE2rcD4qSN+QBIL/u/cuPJosdaVHJvG9pWHyE7P5bevdj+WKjxYdK2c3P4Z2zNlA7zR2+qQZZlSZd2txzNTszmw/iQAp3ZeIDkmlRm/jOWXsEWMXTQEAQFBJaDVPzzaVr1pAHobHXpbHbVbVcXZwxEbez32znbYO9sWGPv7kl1IokR6ciaXjlwDYPagr/jx443Me+Mbzu8vWsowOTq1QGfxrLTHe90UFBT+uShbYwrPFH8vd3a8O5SkzGxMZpF2c5YjihIqlYBOrebFRjVoUqkcAOtPBxN0OxazJPHZ9sMsH9b7gXbVahU6Gy15+WXu9yOKEjlZBnKyDAAsnrkJvV7LyCkv0OK5mtjZ60lLzipwjUanpl7TSkWZK4Sjmz1O7g7kZObh7OZQooTgR3Hu4BVmDlqKo4s9n219l1K+7o++6Bkwa+3bHN8RRIXqZQs0lrR3tqVC9bJE3YzDs4wbrqWcEQQBR1d7qjbwZ8KS17h8MoTYWwm8XPFthk7rw3ODC28jdujfHN8AHyRJplojf5p3rU/QoSuUDfBh24r91GhWmYC6lv5EbV9qyrZv96Gz0VGtkeU1y0zNRjSJaLWaAo7ptdOhnN17idZ9GuPl646btwupCenobLS8+Xnxc4sUFP6t/NdyhBSJDYW/jMW7j7Fs70lkoF750kzr1R5/L3frJ/TZm/az5ngQAF1qVWbeK10fYg1CrsRwYFsQ7qWcEE0iR3df5ublaERz4eaAd9DpNZTx82DJprEs/GgjOzecRhAERk/tQdU65Sjn74Va/eDAaVxEEsHHb1K/bXU0WjXXzt6iWkP/IvsRPS7vvDCP4OM3UWtUDHy/B/3GPf9E9m5fjyHmVgIN2pdcDLW4mIxmIq7F4FvZB52NttD5yyduMqXXfPKyLZV1v8ctK8JK0Qyp8Q5J0Smo1Cq+DfoUr7LuyLJMQmQyzh6OhF6M4Ifpv1I+sAxxt5MoH1iWIdP7olarSEvIYFDgBIwGEw7OdvwauYScjBxCzodTuaE/tvZPz4FVUHgaPHOJDW9fudKAZyOxETz/7yGxoUSEFP4ynqtVmVVHzmM0m3mtVQMqeroTmpCCj4sj9nodJ0MjrGNN0oOdmTtUCixNpcC7jf4at63G2L5fYZTN1m0zF3d7Auv5cf5YKLk5BowGM+E348nLNfLWjJ70GNQMN08nHO/beimKS8du8EGfLxAEASd3BxbtnYKgUj3UcXocmj5XmxvnwwGo2TTgiWyFX41mbKc5CIJAg/bV+fD7N5/CDAuj1Wnwr1Xugee9y3uiUgnY2OsLiNYWh5T4NExGMzobLUH7L9NxQEsEQaBUOQ8AZr2ykNT4dK6fvcXHm96lRrMqxIYl8OPsjXiWdUMUJWRJJi/bgCRK2DvbU7tN9Sdar4LCv4p/TnzkqaA4Qgp/GZVKeXD0ozeRJBm9VsOE1ds4cPUWDjY6Nk8YjKv9XWfERls4qnA2PJocg5EWlctz5vAN/jd2NU7Odsxf8yZepV3wrejFqv3vs2XNCX5etg9JlKjbLID35r7MuWMhfPj6CmTZUt795dQNTPqsH36VShW6T1HIsszU/osw5wt6psanM6L5dExGM96+7kxfMwZHFzt2/nSUdYt20qJbXUbPfeWhSvcPos/oTtRvVx07Rxu8yj7ZtljEjVgEAfJyDNy8cPuJbD0J7t4uLDvxP8KCI6ndulqJrp3y4xiWT15LTGg8i8evIvxKFG/MecV63tndkfTkTEwGM3OGLOG1mS+zYdEOQi9EoLPVUbGmL7FhiQz+qI+1z5SCgsJ/FyVZWuEvw2gWSczMRpf/ZnTw2i0MZjO5RhM345IY06EpDnodno72jGjXqMC1uy7d5I0VGxj/01aW7j3B2qX7MOaZSE3O5NCOi9ZxDk62vDS8FQPGdKDn4BaMntoDAK1WBdx1SuKiUko8f9U9ulTdXmuDIddIXraB8GsxvN7kIwbUep9vpv1KWmIGu9YeIyokvsT3uEP5amXwKutOcmwap/dcIi/H8Fh2GneqRY2mlfEo7Wrtdv1X4eXrTuPn62Bjp3/04Hto/FwderzZEbVGjSHXSNDBguK1H29+j27D2qHWqEiKTuWLUSssfaXyNcjCgqPITMli87LdT3M5Cgr/Dp5VxdjfKOqkRIQU/hKyDUa6z19JYmY2zSuXZ+nQngxuWZ9v9p3Ez8OF6mVK0evLVRjNIgazmbNh0Xg42mMwmfFwtOd6bCImUUSUZC5HJ9C2QyChVy3RjpoNCwp8qjVq+g4vmIy78KONqNUCZklGb6Ol95CWJZq/IAg07FCTY9vO07hzLUbO6Ud2Ri4n/riAWqMiIyUbBEt0wpBrRKNR41bK6YmeWXpyJm80n4YoSpSr7MPC3ZNLbENvq+N/v7z9RPMoCRnJWdjY64vMExJFibxsA/ZOj96GvJ9WvRuz/bsDJEWnMGzmS9bj4ZejyMnKpd+7L7Drp8Oo1CpKlfNg6pq3+PWL7Wj1WjYt3YVKrXqqeVwKCgr/XBRHSOEv4UZcEvEZWcjAoethxKRm8HanZoxq3wSNWkVSZjZRKRnW8bM27WPOlgOIksxHvdrRr2ltjt28TZbByPjnmuNoVrN383m0Wg0e3kU33LuXuOhUzCZL3pAhz8TPX++n5XM1iz3/5Ng0jmw5i2iWOLLlHJdP3uTdJa8BsOPHw3w5/kdMBjN6Ty2jP+1PYCN/7J2e7I03PiIZs1nEkGPkVnDkI8eLooQhx2jVVHtSZFlGEqVibydt/noP30z+Gb2dnsWHphXQ+cpKy2F0i2kkRqfw0vguDPmo+AKn6UmZfDF6BaX8PJiz5T1cPC0O5umdF5j16iIQYOCU3nx1dCbXTt+i8fN1cHS1Z+S8AQBUaVCR8CtRvDC8fQlWr6Cg8G9F2RpTeOaYRJFbCXe3otQqgbj0TACiUtIZsPQX3lm7nXuzaWRZxmgWMYkiG05fxtPRnrWj+7NlwmCOrD3LiBe+IPxGPKHXYvj124OPnMP42X1w83JCrVah1Wvw9Hm083Qvjm72BUQ554363vp9sy51rN+nJKRTpV4FPHxcS2S/KPxrlaNxp1o4uNgxfPqLDx2blpTJoDrv82Klcaz7svhNIR9ESnw6A2tNonuZ0excfaRY12z7bj9mk4jJYOLs3uAC5y6fuElGciaSKLH12/0lmsvqOb9zcsd5Tuw4z/fTf7Uev3o6BKPBhCHHSNBBS5l9h1ea4+hqX+D6lj0bMnByL1y8nixCp6Dwb0R4hl9/FxRHSOGZM2/bIWZv2m/dIi7v4UqdcpZqr9mb93P+dgxBt2Os5/UaNf2b1rH+x3muVgB/XLzO1vNXiYtOYcP3hzHkmqz27+Qjh16NITo8qcg5tHuhLqsPfsCMrwfzxntdmDSvX5HjHoROr8X1HqmH5Ng0lk/7lZO7LlqqsvLzhxq0q45XWTfO7A1mYte5bFhaMC9FlmW2rzrEihm/kZaU+dB7qtUqJn/7ButDFtBzxMOjGRePXCc7IwdJlPh9+b4Sra0oTu2+RGZaNqIosW7hH8W65oXX26PRqtHZaGnQoWC0rWrDitjY26DRaWj3cpMSzcW9tCuyBLIos2fNUZKiLU71c0Pa4O3niaASuHDwCqd3XXyEJQUFBQVla0zhLyAiOQ2D2Wz9OTkrh52XbiDKMmVdnbDRapAkGZ1ahVGUMJhF1h4PAsHS6Gv9qWAiUywSC681rYfeRodabcaQZ0aWZLavO43eRsfvq44iyzLTlw6mYlUfdDoNtvYFE3PrN68MzR9vHRVrlCXudiKiWcJsEvntq91sXr4fWZaRJRmNTs3737yO2SQyc/BSjHkmbl64TYP2NShX2QeA4zuC+HrKOsxGM6GXIpj6w0iWTv6Z7Iw8Rn/aH7dSJYtU3aF640ro9FpEk0SHl5s+3gLvoWbTAFRqNTo9tO7VsFjXdBvejtZ9GqO301nFaO/ojzm7O7IyeB4ZKVl4lC5ZtKzP2Of57qN1AJiNZqa++DlLjs3Cq6w7XV5ryw8z1mMymFnz6SYadqpVsoUqKCj8rRKZnwWKI6TwzHm/WxvSsncQEp9MnslMLV8fPly/C4BhrRrwYY922Nvo+PHIOc6HWyJDqvwwj1arRqdRYxJFZBnicrJZ8vvbBJ8NZ8msTWRl5CEAF07ewpBnQhAENq8+zplD19Fo1cxf/SYVq/o8lXW8s3goW+tXYPlH663HRLOIvZMd2Zm5VG9ciRf9x6G302PnYINoFhEEoUDOjjHPEsmSZBljnpmNX+9l//pTiKKINt+RKgmiWcRsEnH3cWFV0CdkpuXgWUJHoyjK+JdiVdAcMlOyKV2xsFjtg7izLSXLMp8MXcbBDado0aMBU1aNQmejLbETBKDRqGnQsRZndlsiPrcuRfDj/zYwaGofarWsikarRq1V07x7/RLbVlBQ+O+hOEIKfyoJeek4aW2xUd/Npynv6crPY15BlmVMosjnO45w9GY4sgyx6ZmM6miJYHSqEUDQ7RimbdhDeQ9XXqhbFYNZpFHFsny4fjcGk5kybs5E5GXRtlsdnF3tmf/Br9g72vDisJZ8OXUDdg42pMRnYDaJSKLEqYPXnpojpLfV8dzAlnw/a6O1n1Cl2n58tGokelsdH768ELNJRM420G1MJ+ydbKnVvHKBfKFWPRsQFRJP9K0Ehkzpyek9lyxl+YIaZ4+SqaDHRybzVvvZZGfkMu7LQTR7vjbHt5/Hr0ppares+sTrdXSxx9HF/tEDiyA9OZMjmy1d4Y9vP09qQsZjR7sAZvw6jvee/4TLJ26ADMHHbgBQtaE/312cS3Z6Ln4PUbZXUFB4MP81iQ3FEVL401hyYxerww5jp9GzpvnbeNoUTE4VBAGdRsPrbRsRlpiKwWymU40ATKLIz8cvsGDnUWqUKUWbqhU4eD2MyJR0hrS0fMof1KIec7cdZOmeEywTYO3o/twIjiIjLYfU5Cz2bwli3YmPuBEcxc9L96HWqNDrtTRtH/hU12jvaMv0n0bzx+ojPPdqCxq0r2E9V7NpACFBt9Ho1LTp3ZAKgWWt50IvRTJv1Hdkp+eQlpxJ+75N8CrrRpfBrdBoNeRlG+gyuFWJ5nJy5wVysnIRzSK/Ld7J7jVHuXrmFoJKYN6md6lSr/zTWnaJcXJzoFzV0sSEJuBd3rPETt79aLQapq5+iym9PiM9KZPX7imh9yjthkfph1ysoKCgcA+KI6Twp7Et+hwmWcQomQhKDaejT+F8jRyjCVudlvmvdKHr/JWMX72V6mW9ORsehSzDmfBozoRHA/DZ9sMs+OMo7ar7c/haGLmmu3lG2y9cp6anI2q1CpVKwL2UE3k5RiYN+oa8XBN6Gw0/7H0PxyfoHRMfmczMQUuQJZmpK0fiU94TgAbtaxRwgACunApl84r9qLVq6rSsWsAJAlj6wVrCr0Zbf979y3EGfdADt1LOPDegRYGxRoOJw5vO4lXWjZrNKiPLMr9/vYeokHj6T+xqjTDVaFIJMT8ydft6LCqVgGiWsLHTkRKfVuSajHkmLh69TvnAMiWubLt+Lpx1C3fQoF0Nnh/08D5MKpWKL/d/RNTNOMoGeD8VGRLXUs4sOTbrie0oKCjchxIRUlB4Orzs15SlN3fjoLGlgXtF6/FrMYnEpGVgr9My8offAfjghTZk5ORiFCXOhEU90KZZkgo5QQCOeh0dn6uPVqchOzOPTn0aYMwzWTXGJElGpbr75iuKEt98spWw63GM+KAb/tUeHUL4ddFOwi5HIcsya+ZvY+KiIQ8cG3c7CUEQMOQaiQ1P5Pb1GFLi06ndogoqlQoXT2dUKgFJktHqNbh5OePkVvS204Jxqzi69TwAM1aPITszlx8+3oTJYCLiRizzNr8LgN5Wj0anwWSwJI1LMrh7O9O0S10aPSBpeHLfBYRcjEClUrHi5CxcS1BSPrX/QjKSszizN5iqDSoUcvbuR6fXllhXTEFBQeHPRnGEFP40BlVsTZ9yTbBRa1ELFick6HYMA5etQ5JlbLUaDGZLBONseDRatRqjWFBc1d/LjejUDMq4OBGZkgaCQMcaAQRHxZFtMBKfkY1WraJ1tYoIgkDbbnd7+Oh0GiZ91p8d607R5eVG2DvaIIoSQSdCiAhJYOdvZzDkmpj33i8s2zL+kevxr+mLVq8FASrVuvuGnpmWzfHtQQTU8bM6Ay261+PkrotE3Iil+/C2vN3hYwQBOr3anFFz+nMzKNziBOk0DJnck+cHWbbEiiLqZhyGXCM6Gy2x4Yk4uTvkf2ITkO/55OZTwZO6ratxatcl1GoVaq2acQsG0fC+0vXg4zfZ9sNB2vRuxM2g2xhyjdjY6YgJSyiRI6TTWWQrZJkHzl1BQeEfiBIRUlB4Mi6lRfC/Sxvws/dgZu2XrU4QwI4L15Hy373vjercjE8m23i3F5BGreLd51vRvX41HG30ZOYZ6PLZ92TlGsk2GNgycQgvLvyJ+IxsAE6GRlLFx7PQXJp3rE7zjneVxb+auYn9W4IwiyKyJCOohAKNEe9wYNsFosISeeHVpjjnVz49P7AlPn6eSJJE3XuEQif1nE90aDwg8M2xGZTydUen1/LBckvF17bvDyLLMoZcE5dPhACWhoxJsamoVAK1mld5aPfntz4bwOdjV+Lj50HbFxuht9UxeHIPokLieeWdrtZxKpWKmWveQpZlbpy/jY29Dr8qBSNdJqOZyX0XYMwzcWTrOQa+1511i/6gVrPKVK1f4f5bP5TpP43hl4U7aNm9Pr4B3iW69g6SJPHj7N+JvBHLyHmvWpKxBazl9goKCgp/NoojpPDU+Th4I2HZCcTmprI37hJdy9QD4FZCCr+eCi7ymptxdxsflnNzJsDbg71XQvh020Ea+/vyWusGpGXnIQP7rt4CoHu9aoTGp6BWq2haqdxD55SckMHH49YQciUao8GMTq/BLEnIkkxESDxZGTnMmfAzSXHpdOvfhBWf7cBsErl0OoxPV94tYa/TylJ9tXP1EdZ+vp0WL9QjNjwRQ64JGzsdybFplPK9qxAvyzKBjf0pH1iGpOhUXp/RF4BZa99m5+oj+Nf0JaCO30PnHlDHj6UHPypwrPfIjkWO3bXmKPt/O0WfUR2pUq9GofOCgLXZoyAIdHq1OS+Nfe6h97+X6+fCOLX7Es261mXWkKWkp2RxKziS5t3qoVar2LHyINdOhdJ3XBfKBngjSRLhl6PwLOOGo5tDIXsbl+xm7bwtAFw8eo28LAOCIDBn87sENq5U7HkpKCg8JWSlakxB4Ymp4OBFdG4Ksgy+dnedgoSMLFQP6Kvu7mBHSlYOoiQTn5HFqI5NmPLrbiRZ5tStKAa3rGcdK8uQnWeka51qdKgRgL1Oh7Pdw/W01q84xLWLEZZGh1o1ao0ao8ESkZJk+HrJXs5djkROy2PzT8eQseQRZWfmFbIlSRJfTvgJSZTY/O1+hk3rw5YV+6nbuhrVGlYsMHbmoCWc3HsZJ1cHJi4ayuZv9zF35ApGzH6JfuO7FPOJFo+EqGQWvbsak8FM8PGb/B6xqJAumEar4dONE9j501Fa9qiPSwmqtzLTsnmvx3wMeUZ+W7Ibs9GM2SQSG55ETkYukTdiWDZpDYYcI8e3n6dD/2akxKVzbOs5tDoNXx2dgSHXiE8FL2vEJy4s4a79lGxkyfIXeM+aI4ojpKCg8ExQHCGFp870Wn3ZFxdMaVs3arnejdQ0quiLn4crV2MTAdDkJwsDvN25GXsvh7L/yi0MZpGTIZHUKOvFlegEAst4Ud7DjQBvD27GJ1HaxYkms5YgCDC6fTN61gvkUR1p/AK80Oosv+4mg5ncbIP1XKlapdl+4gZmd1twt8W5nDsRWbkIWhX2VQs3DxQEAc8ybqQlZqBSq6hUx4+0DAN//HKK2q0DaZGvNSZJEsd3XwaVivS0HGYM/RpBkjDlGvjqvbW07lm8Ds3FRafXWhpPCpYeR8IDvM6q9StStX7FIs/dz9Ft51n+0XqqN67EkKk9kUQJZDAZTbTt3ZhDm87Q6V49r/xPkhnJWWxYvMtqx5hnYlLXuaQmpOPt58mSYzPQaDUMnNKLI5vPkpaYYb1Yo1XTslejx34OCgoKT4gSEVJQeDJ0Kg3Pla5T6LhKJXAjIcmqticiI6sAGdaeuMiUF9pyIiQSAXi5SW0Cy3gRn5HFrfgUui34AZMo4elkR1xmJqIsgwwL9xxj6b4TjG7fhNfbFHzzTM/IJTMrj7KlXencpyEepZxJT8vh88nrLWEgQGWvIzwrB7MoWUXKEpHA24HcPBMh0SncjyAILNz9Aaf3BBPYyJ/tPx4lOz0XgE9H/UDDq3PR2+pQqVTobPWYjJbIkyxb/rGx0+Ff8+lXT7l4OjFn4wTO7A2mTe9GBarkHpcvx/9EZmo26UlZdOzflLFfDGTPL8fpNaIDjTvX4p2vhlrHBjYOYNT8Aayes4mEyORCtuIjLNufMWEJli3Ech44uTkwbc3bTOr2KYZcIwDPD21N3TZPt9+TgoKCwoNQHCGFZ4YoSRYHRgDkux86NGqB6mW8qF3Oh1PTRwMWpyk+PYvN569yOToeU341WVJWDmrhbqRDLQgYRZGN564UcITCI5N5c8KPiKLEq30bM6R/cxq0rMKgUd+R7eOAJtNAncb+ZCFzNTTeep1Op6Zj20BOnwsnNDyR0cPbFrkWZ3dHq4ZXzaaV+O1ri7CpJMlkpuVYE7CHf9STr6f9hlqjJrBhRYZP6UFidAr121Yv0u6vi3ey9vPt1G8TyPvLXy9xv53Ahv4ENvQv0TUPwzfAm1vBkcjIlPJ1p07Lqg/VLus8oCXXzoSy47uDhc751/Yj9MJt6rQOxCs/j+rI5jN8MnSZtTM3QExovFWTTEFB4dmj5AgpKPxJqFUq9Bq1pWT+nl2bN9o2ZmTbxsiyzLnb0bjZ21Hew5XXVqwnIjnNUgouCIiyjCxD00rlaBrgR8PyZRix8nfScnIZ2KxgBGrD1nMYjWZESWb/kesM6d+c9Ixcbkcmg16DSa/BZKvBxVaHPlKNJMPgfs1o1rAi/hW8GNC3+IrojTvWpO/oDuz+5SSd+zfBw8fFeq770Na8MKQVwj3OW6VaD07s/n7WRosUyO5L3AqOJKD2wxOp/2z+98tbHPz9DDcv3Cbo0DW8/TwKrOUOhlwjh38/Q9lKpTAbzKjUArIEYHnNBEFg6LQ+1GldrUCp/dk9wQWcIIDzB65ybMs5WvRo8CevTkFBQUFxhBSeMZvGDmT5gdNci03kdnIag1vUY3R7S4Th8z8Os/p4EAaziCTL2Gg1iLKMBnizTSO+OXgakyRxPT6Jr4f2BqB5JT+2XrjG1qDr9G1YC41axb7D19i0Pch6zztOjb2dDq1GjSm/d1HwtWjUajVqtQpZlPhp3XGaNSxe7sz9vDa5B69N7lHkuaIchwdRqVY5Im7EotGq8fbzeKy5PE1sHWw4s/cyJ3ZeZK/mJLaONrQpQn1+ztClnD9wBWQY9dmr7P/1JKIsMnByL87uDaZWi6rUb1+j0LPoPqI9R7ecJSMlyxoiVGlUqJ5C52kFBQWF4qA4QgrPlHLurszq0wkAg8nMrss3uRQVR82y3py6FVWgt1CeyYyApZt0aVcn7G10ZBuM9Kpn2VYymkW2XLgGwJWYeG4np1LR043TI1NRqQAAIABJREFU58OtNlQqgY75+SYajZpVS4ey6ucTlPJy5OcNZ8gzmBDymwLq9Rpu3krAv0Lx1dWfNvM2v8PlkyFUCCz72AKnj0NMWCJHtpyjXutqVKpdMGKVmpCOaBKRJcmaC3U/UTfiMOQY0dvpOL//CnJ+a4Kze4KZv2vyA+9bobovC/ZOZUTjKZjyq/iGzehL0651n97iFBQUSoayNaag8GyY+PN2Dt8IQ5Jkyrg5Ya/XWbfA7pCfX0xESjr7Jr1ORm4eXk6WfjSp2bmoVQKiJKNVq5k+43ciI1MIrOKDVqvCZJIYPrCgbldpb1feH/c8siyTlpHLmfO3adU0gC07L1LGx4UWTQKe5SMohN5WR70nTBS+euYW0aHxtHihHjZ2+keOlySJ8c99QnZ6Lms+28bK8x/j7H63548h926jywdVoo37aigLx66kfGBZur3ejuPbzqPWyLTo+ejtLZ8KnnQa0JJDG0/Te3Qneo3qVIxVKigoKDwdFEdI4S/jaszdJOiI5HQAvBztScrKsXafVgkC5T1c6duoJjZaDTbau2/QFyJj0ahUiJJIdpaB6Og8ZBkuX4ulSqVSLP1swAOTjQVBYPybd5sSjhjS+s9a5jPju1kb2LHqMDmZuWi0Gg5vPsuM1WMeeZ0syeRk5iGKEipJIi/HUMARKl3Ri8ibcSBDQmQy2Rm52DvZFrBRo2llJv8wkojrsQTUKc93Fz4lNzOPssXoOC0IAm99MYi3vhhU8kUrKCg8df5rydLKRrzCX8arTetyf3whITMbSZYRACdbPZ/07czW8YMp7VJYA6uxvy+2Kg3IMnaJklVgFSAjM++pKJz/nZDlB/91So5NY8PSPWSmZiOaJQy5RqJC4oplV61R8/7y4fhVK02nV5oxrtMnvFrjPW5fiwFgwsLBDHivG5Ik8euiXYxpN7uQjdvXohnbdhafj/yWWQMW4+7t8lAnSJIkrpwMITk2tVhzVFBQUPiz+He9Uyj8I4hNy+T0rSgGNqvL620aUdXHE3cHW8p7uFrHyMCJqaPoVqfaA+0429rw9UvdKXNDwDmj4K9yn+71HnDVP4/k2DQG1p7EC6VHcWTruQLn8rINRIfGY+9si52jDXo7HTobLeWq+DD+y8HFvkfQoWvE3U5ix6ojpCVlkhKfwabl+wHIycjl0vGbmE0ikigRdzspX1vtLjGh8QiCQF6OkfArUY+834Ix3zO5xzyG1fuAmPtsKSgo/IXIz/Drb4KyNabwTAlLTKH3otXIskSzAD+WDOrJuE7NAcgzmuj02XckZeXQrXbVYtmrGViWn799nZTUbMZMWoshz4Rer6Hn84UbOv5TObrtHGlJmZhNIt/P2kiTzrXQaDVkpmbzRvNpZKfn0qJ7PZYdmsblkyHUal4ZZ/fiS2cAnD94FUOOEY1WjSCoUWtU1G1teQ0+eXMFl47dKDD+y/E/MXfzROvPDTrWokHHmtwMCmfM/IGPvN+5fZfJyzFiY6cn5MJtSvuXKtF8FRQUFJ4WiiOk8EwZv3YbBrOlOujAtTBCE5Lx97I017PRaTk0eQSiJKEuQTM9d1cH3F0dWPXVa1y6Gk3DuuXRav89v9o1mla2NheMu53IB32+YOLioUzsOpfUxAyQ4dj2IN5bOoyW3es/1j2GTu3F52+txLucB6Pn9cfB2Y5ylX0AkETJIt2hFpBECbVajZNHQQFVrU7Dhz+OLv79pr/IonGr8K3ig7uPCwOqTkBno2X2xon4/IVVewoKCvytojXPgn/Pu4XC3x5ZlguozGtUAjfikqyO0B1K4gTdSykvJ0p5Fc4l+qdTtlIpPvx+BDMHL8NkMBF8PISv3ltDcmyadUzPN9oX254sy5zcdYmstBza9G6IRqumede6NH9AyfqkZa+xYsYGjmw9h1qjxq+KDxMWFn/brSja92tG+37NAJj5yiKSYlJBgC3L9/HGx/2eyLaCgoJCSVByhBSeGYIgMKCZ5c1WrRKo7etD66qP18Dwv8LlkyG86D+OmYOXUr5aaVQqgT5jOlr1ywD8a/gyZErPYts8+PsZPnn9Wxa/u4YVM3575HiP0q54+bqhUqkQTSJJMWnYOdgAFqfqm8k/MzBwIluWW2RGUuLTmdh5Dm+1mvHQ/J/MlCxMRvPdpG4ZTu28wI1zYcVei4KCwtNFwFI19iy+/i4oESGFZ8oH3dowqUtrVA/oR6NQkJ2rj2DMs/Tx8aviw6I9UwAIvxrNxG5zEc0Sb38+4KE2RLOILFtU3QHiI5IRzSJms0jMrcRHzmHLigNsXr4fs1FEpRYY+P4LACREpzCu4xxSoixRvqXv/USXoa3Z+NVOrp4KQZIkVs7awAc/jAQgOiSOfeuOU7dtdS4duc5Pczbh6GpHTkae9V5RN+OY0ms+v95eXMInpaCgoPB4KBEhhWfOf8kJOrTlHMNbzmTp1PUPLX9/EK17NUSr16LVa2jT+66obPlqZVh34wvqtw3k/d6f88uCHUVeH3opkr4BE+ldYSznD15FkiTUGhWeZdwoX7U0w2f2ASyRnfiIJKsC/L3ERSRjNooIgmU++9adpH+1d5n2ymJSEjIAS7TPs6w7KrWKclVLo9VrsLHVUz6wrNX+hE4fs2buFib3+IzNy/cimkVyswyFmjSq8x02BQWFvwilakxBQeFp8fn41RhyjSTFHqddn4ZUqVMyEdX6bauz+tKnyLJcqBIs7HIUZ/ZexpBrZOWc33lp7HMIgoAsy9wKjsLJ3YF9v54kN8sScdm0fD9JMan8+MkWjHkmVGqBlR9v4sPvRrBw4mr2/HwcB2c7lh2ZVqCh4ktvd+b8wSvER6ZgMpi5FRyJIc9EXo7Bcj+dDq+yriza+yGCINChf3PcSrlgzDPSOL967/bVaLLTc5Aly1+/ag39ObblHIY8I05uDlYHTKUSqNG08mM/bwUFBYWSokSEFBT+RLzLuaO31SII4F7K+bFsOLk5FFkO7+3ngc5Gi429noDa5a2CpqvnbWVCl08Z3ngqZSuVQmdjiSi1fbERhjwTUn7jSUmUOZOv/r5z9VHMJpH0lCyu35ejo9VriLoZT25mHsd3XEBGxsZOR4XqZRFUAoIgULFWOZzynSdBEKjfvgZNu9ZDpVLx48cbebPJVESzhJO7AyM+6Y8pf7sPGeq2CcTFywmVSkCSZOJvJ6GgoPDXIcjyM/n6u6BEhBQU/kTm/TaW47suUaWuHx4+Lk/VtoOzHcuPzyT8SjTVGt5NOj/xxwUMuUa0Og2GPCMrz3+MaBZx93bBZDSze80xbgTdBizaZvc2R5QlGb9qpQvcR6vToLPRIgM6vYahH/bk0KZzxIQlIEsystlM8KGrXD5xk+r3abUlx6Xx8/xtFtuyjNloplaLquht9QQduoqgEnjh9fa8/eUQZr26mITIJEbOe/WpPicFBQWFhyE8Tt7CX0WDBg3kM2fO/NXTUFD4WxAdGk96chbVGla0RoMATu66yMfDv8HNy5nPtr6Lu7cLSbGpTOwyj7SkTPqM7sivC3diNokIKoHWvRqQm5nHyV2XaNOnIZOWDSt0r6iQOE7svEjlOn5M7bfYmsAtSxKYLN87uNixPuIr0pMzmdF/IemJmZjNYoEIj1qnRqvRsOL8HESzhFavwdXr8SJlCgr/BQRBOCvL8qPVi58S9h6+crUe45/Jvc5+N/GZru1BKBEhBYV/IFdOhfJBn89BEOg1oj1DpvSynmvcqRabIgpWXR3ZfI6UhAzMRjOn9wTz4phOrP9qF5IokZdjZPrq0Yii9EB9trKVvHmxkjeJMalw74enexww2/yS+l0/HubG2TDMJhG1xpL4rFILyDKIRhGNRk1SdCpVGjz91glXT4YAUK1xpaduW0FB4d+J4ggpKPwDuX4uDEmUMRlNnD94jSFTHj6+RpMA1GoVKhstzbrU4cUxnTAazKQlpjPsI0vlWHFEaj1Lu/LesmEc3HgGjzKuOLnaoVYJZGfk0HlASwD8qpVBrVGj0Wpo0qUON8+HE3c7CZDR2+vo+EpzKtevAEDkjVjCgiNp1Lk2Nvb6J3omO1cd4qvxKwEY/cVgOg9q9UT2FBQU/hsojpCCwj+QNr0b8cdPR0hNSGfoh70eOb5S7XKsODWTzNRsylcrA8DrM/o81r2bd6tL8251+W7mBlbP24ajmz1LD37Erwu2s+P7A7Tv34xPtrxHRkoWDTvVZMs3+1gxdR1ms0j9dtUZna9FFhuWwJhW0xEQCKhbnnk73n+s+dzhyvEb1uqzy8dvKI6QgsJj8ndqdvgsUBwhBYViEB2WSFZGLpVr+RbIx/mrcPVy4usj04s93pBrZN+vJ7BztMW3sk+xoj+PYueaY5hNll5AZ/cFs2HxTiRRYvt3B3h5YjeqNfIH4PmhrYm7nUh6UibD//ey9frY8ESLYn22gfCrj1asfxT1OtTk7J5L6Gy0vDSh6xPbU1BQ+G+gOEIKfymRcan88sc56lQpQ4emxVOcf9ZcOhnKhwOXIQjw8uiO9H+7U4HzZpPI0mm/cftGHKNm9qFiYJm/aKYPZvm09ez86QhCfon6C6+1eWKbzw9qwfpFu7B3tKFem0A8y7iRnpyJvZMtTm53+xDp9FpGzOlf6PraLavS5Pk6XDkZwhtznkxfbPu3e1n6zo8gw/ivX6dsgM8T2VNQ+E+jRIQUFP5cjCYzH365lWth8YiSRGpGDlsPBOPr7UqVCqWKvEaWZRauPsjx87d4vW9z2jep8szme/VsGKJZRDRLnDt0rZAjdGTHBfb+dgZDrpHPxv3Ekl2TntnciktWeo4lGRoV2Rk5Jb4+L8fAmvnbUKkE+k/oit5Wx5DJPen9ZgfsHG3RaNUsOTqDq6dCqVK/Alrdo/+0qDVq3v/uzcdZTiEuHb2OIceIIAhcPnaDdv2aPxW7CgoK/34UR0jhmXPy4m3OXI4g12BCJViqiQTAnN/oryiuhyXw+54L5BnNzFy6g+xcA20bVcbR3uZPn2+73g3Y9ctJMlKzGfhOl0Ln3bycQJbR6jW4P+VeQU+LEbNeQhYl7JxsS6RUf4fVc7fy+zd7rT/fqVK7N/Jj72xHg441i7xelmUWjV/F8W3n6f/uC3S/Zw5pSRlM7v4ZyXFpTP5hJLVbVSvx/Pq9253LR6+jUqvo/dZz/2/vvuOjqtI/jn+emUwqJYQOoYP0Ks2CCCqirGWxN9y1YC/r6rquit111Z+6rgXFvoqKFXWtKIpYkCIdpPdeQwIpM3N+f8yAAVJhSkK+79drXs7ce869zwlJfHLuKeWuLyK/0xghkShr2rAWzjlSkny0bVGPerWr061dJh1bF/84IyM9FcxI9HkpKAjw2Kvj+fDrmYy693z8/iBJZeiByMsv4Pspi2mRWZtWTeuWOd46DdJ54bvip2V16duaO56/hNVLN3LCWb2LLRdPterV4LYXhh9w/WAwiCOUsB7I0mPL563m6zd/JG9XPiNvHc0plw/cM9bq2zE/s+K3NfgLArx41zs8OX5Eua/frEMmry34d/kDE5EqT4mQxFyzRhm88uBFLF+zhb5dm5PoK/3bsF5GdV6873w+nTCHd7/8lbx8PwuXb2DIVSPZsWMXZw7qzg3DBuy3oeuu3AKSkxIwM2595CNmzl+Fc/DyQxfSPLN2xNrU89j29Dy2/D0ZlcVFt56KWWg7jfNu2r9XbLdtG7PYtmkHzdo12mtQee0G6ST4vJgnibqZGXud8yX78BcEAPBUgIHoIlWeeoREoq9ZowyaNcooV52WmXW4+txjmL9kPdPmrsQfcGRl7cIF4N3PfsXn9XLtRf33lH/0hXF88NUMWjery6gHzmfpyk3k5vlJSfKxat22EhMh5xxTZ68gNSWJDq0bHHA7K4qCfD9fj/mZajVTOOoPPco98y0QDJK9fSfOOQL+AL9NW8qYJz+n1/GdGXzh0QAsn7+aG469D+eCdDqyLen1anDezaeQ2aYB1TOqcf/7f2X2j79x0p/673XtgtwCvD4PgYIggWDxj0dFRKJBiZBUKh6PMfSEbsxZtJYCfwAXCP3p4hzMXbRur7Jjx83EOVi5dhuLlm/k71cM4v9e/Jp2LevTt1vzEu/z6geTeO2DXwgGg9x21SAGHdW+xOQhP8/PE7e8ycrF67nuwbM5rGvTg25rJL1w17t8/t/vwYy8XQUcd3bfctUf/cgnjHv7JwBSqyUzbszP7Niaw+Rxs2nXsyXN2zVi7s+LCLog+bsKmPbNbBywYOpSRk15kIW/LuPvpzwMwM4duVx859A91z72rL58/t/v2bJuG5fec1bE2iwiB8BpjJBIhbNmw3b++/EvtGtRn9MGdmFA7zbs3JXPus1Z9D+8NQ+O/ILsnDyuG9afn35dyne/LKRXl2ZUS0tiR3YuNasl0zyzNqnJibz71GVluues39aQmxfaQ+ve/3zG2K9m8tRd5+z36G23if+bzo9fzCRvVwGP3/Imz1awmWMbVm0mP68Ab4KXTWu3lrt+clrSnranVEsOzQoLfyl8vtA2Gn1P7sbbj/2Pjas2gxnBQHDPFhtzJy0iGAxSkOfnly9ncPGdQxn/7s+MfXYcg4f1Y+RP90WmoSIi5aRESCq8Wx8by+KVG/ncl0CTBrXo0aEJfzi2057zLz90EX5/gKlzVnLbo2PJLwjw8Tezcc6R4PXg8RijP5rCpWcdUeZHQlecdzRLV25m3aYsnIPZC9eyYcsOGtSpUWT5eo1rgYOkZB+Nmpd9IHasXHH/OezMzqV6ehp/uOTYctc/9y8nh/YSc47Thh/HgDP78OmrE+jevz2NW4WWPKhVryavzHwY5xzjRv/AgmlLOeP6kwA4ZmgvPnp+HFvWbefiO4aSm5PHo5ePIhAIsmDaEjod1ZbMQ+ARpMghoYr1CJW6+7yZJQMTgCRCidO7zrm79ilzJXANEACygeHOublmdgFwS6GiXYAezrnpZvYt0BDYFT43yDm3oaRYtPv8oWvj1mxWrdtG58MakbDPqscX3voqS1ZtItHn5a6rTmZAn8P2nNuVW8AN97/D3EXr8Bj4w4/KPB7DY7ZnSr4Z3HP9EI4/quyLNjrnuObuMcxeuIZWTevywoPn4/UUvyLzzJ8Wsnb5Zvqf1oPklMTyNL/KWfHbGob3+n0mXrP2jXlu0v1xjEikYor57vO1m7hOJ8dm9/lfXq88u8/nAQOdc9lm5gMmmtlnzrmfC5UZ7ZwbCWBmpwKPAYOdc28Ab4SPdwY+dM5NL1TvAuecMpsqbt2mLC742ysEHfTp0oyH/nLaXucfuuk0Ro6ZyI/TljDiqf9xyerN/HnoEQA888YEZi9YC8DuYbZHHd6SzVtzWLRi455rOAcPjvySwzs3pVaN1DLFZWY8ddfZbNiyg7oZ1UpMggC6HNGGLke0IT/Pz/IF62jcoi4J4cdGsrfsbTkkJHrx54dmi61bvrGUGiISC0bVGyNU6oZDLiQ7/NEXfrl9ymQV+pi27/mw84C3DjBOOYQtWbkJ5yA3r4Dp81fvdz6zfjr9urfC4fAHgowdP2vPuU8KvYdQz8/1w45l45Zs/P4ghYf05OYV8OGXM8oVm8djNKhTY08StGX9dsa+9B2LZq0ssry/IMC1Jz3C9UMe5eYz/k1pPa5VVfverTn1iuOpkVGNjAY1uemZS+IdkohUUWXaedHMvGY2HdgAfOWcm1REmWvMbDHwMHB9EZc5B3hzn2Mvm9l0M7vTKsJOlhIXPTo24bDm9fB6jF25+Tzz5oT9yvTs1JSUpES8Xg9nDOq253i11L1XlvaY8dXE+Vw3rD91M6rRo1PTPcmQGbRsWqfIGF59fxLHDXuS2x4dy5KVm/ht6Xr8/gCfjJ/N1z/+tieh+evQJ3nxwY+5+cwn2bh2237X2bxuG2tXbCI/z8+CmSvZmZ13oF+WmJkzaREfPv81WVuySy98EHZsyea3qUsI+AOYGcMfOJcxy/7D6AVP0H9on6jeW0TKwbnYvCqIMg2Wds4FgG5mlg58YGadnHOz9ynzNPC0mZ0P3AFcvPucmfUBdu5T5wLn3Gozqw68B1wEvLbvvc1sODAcoGnTijUlWSIjOdHHiKtO4uy/vkR+QYD/fjyZS4YeQXKSb0+Z2ulpfPTUcHblFey1rcZDt5zGNXe/TX54Qb5A0PHCOz/SMrM2Y0deAcDy1Vv4cuI8enRswuGd9v8e2rI9h+femgjAD1OW8OO0pXg8RufDGjJrwVrMYGduPqcM7MzWTVkU5PtJSvaRvW0ndffZUqNu41p0O7INU76dT/9TupNW/fdYg8EgcyYvpXb9GhVmQPXSOau4+ZRHcEHHmH9/zug5j0TlPts37+CyHreRn1dA12Pac++YG6NyHxGR8irXrDHn3DYzGw8MBmYXU+wt4Nl9jp3LPr1BzrnV4f/uMLPRQG+KSIScc88Dz0NosHR54pXKY8rs5QTCA5vTqycXuWVGQoKX6gl7j7np2KYh41+/gTkL13Ddve+QFx5zsmr97701zRpncPk5RW/CmZfv56Kbf/+28weDWDD0bHfp6i0UFATweIz1m3YAcNvTf+L1xz6j7wmdaN5u/y1BPB4P9712Jf6CwH7jg0be9T5fvfMLzjkeffd6WnduUoavTHTNnbwYFwz9WG1Zvz1q91k+bzUF+X7yduYzY8K8qN1HRKS8Sk2EzKwuUBBOglKAE4B/7VOmjXNuYfjjEGBhoXMe4GygX6FjCUC6c25TeAD2H4BxB9sYqZy2bM/hsdfG7/ncpW0mZkaBP8BrH00iLz/An07vQ2ry/jOxVq3bxq0Pf8iy1ZtJ8HpITk7AnHH9n/rzwZczqF+nOkf2aFnsvbOyc9mRk7vXMZ/PS2pKIrdcdjzvff4rqSmJnDOkBwB9ju9In+M7ltqmogZJz/xpEbk780lM9rFw1qoKkQj1/2NPnrtjDAV5fpq3bxS1+7Tr1YrWXZsxf/JiLrj11KjdR0QOXlUbLF2WHqGGwKtm5iU0pmiMc+4TM7sXmOKc+wi41syOBwqArRR6LAYcA6x0zi0pdCwJ+CKcBHkJJUGjDr45UhlNm7dq99p8eD3GlWeHtmx489OpvDY21IOyc1ceN//5+P3qPv7yNyxdtRmAAn+QYaf34dKzj+TOxz9hwuSFmBn9e7ehScN0Ljo9tCHq1u072bA5m/QaKTRtlMFZg7vz/pfT9/QmNWuUwauPDOP1sb+wfM1WhgzoGJFd7i+9/VQeufF16mdmcPTJXQ/6epFQrWYab8x6mBUL1nJY9+YRvfbMifN59pY3aNuzJdc9cTGPfn5bRK8vIhIJpSZCzrmZQPcijo8o9P6GEup/C/Td51gOcHh5ApVDV4/2maSmJFIQCPLn0/vSIrwH2O5HZc5BILD3nyj+QJCfpi8lNdlHQoIHvz+IL8HL0b1asXDZBr6dtIBA+JHPuB/n4/V42Lp9F+MnLSBrRy7mMRK8Hp6880yuG3Ysl5x1JJfe9jpr1m+nQ+uG5OzK57k3JxIIOv774S+cfnxX6mZUO6h29hrQgTEzHjyoa0RD9VppdOzTOuLXfWT4KDau2sLaZRs5YkgP+gyuGMmfiJTAUeUWVNTK0hJ3GTXT+PA/w9m5K5+a1VP2HD9/SE927sonL7+A4eFeot0eeO5zvpu8CH8gQLNGGXg9xr03DqFpo9pcOeKtPUkQhBIpfyDIB18VmjofcHjMmLtoHZ3bNsZjxur12wkEgnz63RwuHtqb9Bqp5OzKJ9HnpUa1pKh/HaJt2rdzGTvqGwae1Yf+p/eK+v0aNK9L1qYduKCjbmb5NtgVEYkVJUJSIfgSvHslQQBJiQlcc/4xex2bNm8lr380mQXL1rMrr4AEjGWrtuBwPPfmDzzw11Np1iiDeYvWUeAP4PXYXknRbgleo0nDdE44uj0AiYlealRLZueufHwJXmpUT+HVR4YxZdZyunfIJCnRt981KpOCfD93XfAUBXl+po2fS+cjDiOjfs0S62Rv38nDV71I9rad3PzUn2nUsl657nn3Wzcw4YNfaN4+k5ad4j8eSkTKxoKllzmUKBGSSsM5x80Pf8CuvAJ8CV5qp6dRPTmJdRuycM6RXjO0YvQtlx1Hj45NqFMrjfWbdvDwqK/wej3k5hXsWbri1OO6cvNlx+25ttfj4ZV/XcTP05dyeKempCYnkpqcyKBwolTZeTxGgi+Bgjx/6LFgGVa8/uSlb5k2fi5+f4Dn7hzDPW9cW657ptVI4aSL+x9oyCIiMaFESCqV5GQfuXkFeDzGC/eeT/3a1fl8wlx25ORx2vFdgNA0+xP7/Z7AnHxsRwLBIBOnLOGxl74mwevh7JP3G/ZG3YxqnDKwc8zaEkveBC+PfnwL37z7M0cM7kaNMox3qt+0Dt4EL94EL41bla83qLD83AI+e+U7Nq3ZQnJaEoMu7EfdxhlsXreNT0Z9Q8vOTegXg0d1IlJGGiMkUjGZGSNHnMOnE+bSq1PTPTvBn9S/9OnszkH3Do33LLJYFbXq3IRW5Ziyf+zQXqRWSyZ7+06OHXrgicpzfx/NF69PxJ/vx8wYP+ZnXpj6T+4570kWTV+OLzGBjAbpdOzb5oDvISJyoJQISYU3fe4qRn80mWN6t+YPAztz5TlHl16pkKzsXQy75TU2b9vJBaf05Mrz+5VeKcrmTlnKPZe9QFr1ZP755jXUr4CDic2MPid2OejrbN2QRcAfWprAOUf2tp0A7NqRSzAQBAu9F5GKoaqtI1SmvcZE4sU5x80Pvs8PU5fwfy98zaq1W/crs2j5Rpat3lzsNWbOX8OOnDwCgSAfjpsZzXDL7I0nPidrSw7rVm5h3Lu/xDucqLrq4fPpPagLrbs1o8sx7Rgx+joAbv/vNRwxpDvn3DSEw4/vdEDX/vmzX3nzkY/YtiGr9MIiIkVQj5BUeImJCezKK8DM8IUH+ebszMPn8/L5hHk8/so3ANx7wxD69dx/PZzObRuRlpJyUbJkAAAgAElEQVRIQUGAIQMO7H+4kdbjmHbMmbwE56DD4S3iHU5U1c2szT1F7C3WvH1j7nqzqP2Zy2b+5MU8eNHT+Av8/PTJNJ787u6DiFJEgPA6QlWrS0iJkFRoZsYz957Dp9/OoXfXZtSvU4PPvpvDQyO/JCkxgY6HNSQv348BU2evLDIRqlk9hfeevpwd2blkpKfFvhFFOGP4ALr0bU1KWiKZrerHO5xKacfWHMyMgD/Ijq058Q5HRCopJUJS4TXPrM3VF/6+ntB7n0/H7w+C81M9NZlqKUmkJCfwx0HFr1zsS/BWmCRotzZdSh64vHnddu65dBS5OXnc/twlNGu7/yavFYm/IMDi2SvJbF2ftH3WhIqGnid0Zuh1g/lt6mIuvfecqN9PpKqoamOElAhJpXPa8V1YtGwDZh4mTF6E12OccWIvmjWqeAOOAXZs20liso+k5LIvyvj1+5N55o532ZmdCw5ee/RT7hx1aRSjPHi3DX2chTNXkFY9hRd+voeUage/P1tJzIyLR5wR1XuIyKFPg6Wl0jnluM58+NwVnHFSNwL+ILl5fuYsWBvvsIr06ZhfOO/Yhzi//0OsXr6pzPX+fctb7NwRSoISkxJo06UJzjlcjJ/dO+fIzy0otVwwGGTOpEXk7cwnJ2sXa5eVva0iUsG4GL0qCCVCUiml10jlnJN70KpZHRrXr8nl5x4V75CK9Mnbv+AvCJCfX8Dk7xeUuV7DZrVJSkkkMSmBmx67gJ4D2nNWp9s4o/2tzJu2LCqxOudYv3Iz+XmhxKcg389fhjzC6S1v5D9/e7PEuh6PhzOuHYTX66FT39Y0a98oKjGKiESaHo1JpVW3dnVeeWRYvMMo0R/O6c0zD3xMYpKP3v3alrneo+/fyORv5tC2ezMat6jHf24bQ07WLgA+euk72vdoHvFY/3X1y/z46Qwy6tfg2fG3s3rJRpbNX4tz8NnrE7n2X+diZsXWv3TEUC4dMTTicYmIRJMSIZEoOvns3vQ7sTNJyQkkJpV9jFD19FQGFlrNuc8JHRn3zi+A44gILHJYlB/+Nx1/QYDtm7NZNm8NLTpkkl6nOls2bKfb0W1LTIJE5NBgaLC0iERY9ZoHP4Oq98COjPruHwQDjgZNa+93fmd2Lt+8N5nGLevRvRw9T4WdeP6RfPrfidRvUpuWHTNJSknk+Ql3snHNVho2r1Oma2zbmEX1Wml4E0rf1FVEpCJQIiRSSdRrXPysuAeveoVZPy3EPMYDb1xNx14ty339ax86l0vuOJ3k1EQ8ntDwwcRkH41blm3D1X/f9Dpfvfkj9TIzeHr8HVGfNSYiUeBclVtQUYOlRQ4BG9dsJT/PDxib120/4OukVkvekwSV17i3fibgD7Jh1VYWzVxxwDGIiMSSEiGRCignaxc3D/03w/rczexJi0stf/PjF9KuR3MGnH44Rw6Ozhii0iQmhzqYA4HAno1VRaTyMRebV0WhR2MiceYvCHDf5S8yd+pSLr3tVAaffwTfjp3KwpkryM/z8+xd79GjX1vWLNvEZXecRsNm+4/XadOlCY+P/Uscov9dWs2UPWsfxXq9IxGRA6UeIZEoc87x5QdTGfPiBHbl5O13fu6UJcz8aSHZ23Yy6r4PAWjerhGYkZyaSI30VD5+9Xt++mImj974eqzDLzNfYujvqgSfl22bdsQ5GhE5YFVsQUX1CIlE2dcfT+fp+z8mEAiyfNEGbvnnmXudb9yiHh5PKOk5rGto/7GOvVryxEd/YdO67RTk+Zk3bTker4e0GtHfw+tAnXrpAF64+z2SU5PocWyHeIcjIlImSoREomznjlyccwQDQXZs33/sTO0GNRn5zT9Y8dtaOh/RZs/xFu0b06J9Y5xzXP/Q2axdsZlT/3TMfvUritOGD2TAmb1JTk0isRz7qolIxVKRxu/EghIhkSgbfGZPVi7dyJZN2Vz59yFFlqnbMJ26DdOLPGdmey2uWJHVyKgW7xBERMpFiZBIlCUm+bjmjlPjHYaISOkcEKxaXUIaLC1SCeRk7eLOYSO5fsijrFi4rkx1Fs1exfvPj2fD6i1Rjk5EpPJSIiRSCXw2+iemT1zAwpkree7u9/c6FwwGefHBj/j7OU+xaNZKALZuzOLmoU/w8kMf85fTHtd0dhEpuwoya8zMmpjZeDOba2ZzzOyGiLWxECVCIpVAw2a18SZ4SErxkdmq/l7npnw7j09e/Z4ZPy7kn1e/AkDOjlycC61RlLU1R4mQiFRGfuCvzrkOQF/gGjOL+JRUjRESiaF5M1bg8Xho2zmzXPWOOqkryalJZG3J5phTuu91rkatNFzQkeDzUrN2aLByZst6XHTTSXz/v+mcc90JB7xthohUPRVl1phzbi2wNvx+h5nNAxoDcyN5HyVCIjHy6ZhfeO5fnwJw472nM2BIt3LVP7x/uyKPt+venNufv4Rl89cy6Jw+e46fedVxnHnVcQcesIhIBWFmzYHuwKRIX1t/JorEyJxpy8nLLSA/r4A50yK7KWmvAR0466rjqKnp6yJSedQxsymFXsOLKmRm1YD3gBudc1mRDkI9QiIxcvZl/Znz63K8Xg9Dhx0V73BERIoWuzGFm5xzPUsqYGY+QknQG86590sqe6CUCInESLPW9Xjli5vjHYaISKVgZga8CMxzzj0Wrfvo0ZiIiIjsYS42rzI4CrgIGGhm08OvkyPdXvUIiVQQwaDjmy9mkZtbwIl/6IbP5413SCIiceOcmwhYtO+jREikgvhs7DRGPvEFDlizcgvDrz8h3iGJSFVTxsUODyVKhEQqiC2bswkEggSDjk0bIz4xQkREiqBESKSCGHpeX1Ys28SunXkMvy5+vUHOOV5/8it+/GoO519zHP1O6hK3WEQktgywKrYSvRIhkThbs2oL9/79HTxe4+5/nUO9BjXjFkvurnxWLNrAuy99T35uAQ/f8jZHD+5MaPKGiMihR4mQSJy98dL3LF28HjNjzH9/4Npbip4UEfAHWbJoPY2aZJCWlhTxOGZPWcbtl7wQ2pfMjMSkBNLrVFcSJFLVBOMdQGwpERKJs9ZtG/D9N3NxQOu2DYstd+df32TWjBWkpCby8phrSKuWHNE4vh47lfw8PwA9j2lL34HtOeL4jhG9h4hIRaNESCTOTj+7N02a18Hr9dC9Z4tiy02fuhS/P4gBK5Zton2n8m3cWpoBf+jGN2N/xTk4fdhRHN7vsIheX0QqB40REpGYMjN69mlVarmzLjySt177gdbtGpbYc3SguvRpxegf7sA5R7UaKRG/vohIRaRESKSS+POVA/nTFQOiOmYnrXpkH7eJSCVTBdcR0hYbIpXIvknQrOnLufe2d/h23Jw4RSQiUrmpR0gkCpat3sy8Jes5ukdLqqdFp5clEAjyjxveIC/Pz6QfFtChcyb16sdv6r2IHApcLHefrxDUIyQSYRu27ODPt7/Bwy9+xdX3jonafcwMb4L39/fe0I9zfr6fW65+jVP6P8h7b/4ctfuLiBwK1CMkEmEbt2QDjtw8P6vWb4vafTwe4/+evZgvPplO36MPo3ad6gDMnbWS3+atJi/Pz2ujvuWM8/pGLQYROfSUcWf4Q4YSIZFSLFq+kdse/4jUlEQeveWP1M2oVmL5Dq0acFK/jkyauYwrzzk6qrG1OqwBV980eK9jzZrXJSHBS3IKdOrWNKr3FxGp7JQIiZRi5JiJrFq/DY/H+ODrGQw/66j9yjjncC7US2Nm/O3S4+MQaUit2tV4acw1rF6xmbYdG8ctDhGRykBjhERK0blNI5KTfPgSvLRtXm+/88tWb2bw5c8w8E9PMmX2ijhEuL/0Wml07NqUhPAYIhGRMnMuNq8KQj1CIqUYdlpvOrRuQGpyIh1b77+Q4WffzyUrJxeANz6ZTM9OehwlIlJZqEdIpBRmRq9OzYpMggD6dGlOUmICiT4vxx3RNsbRiYhEkAMLxuZVUahHSOQg9ejQhHefuJT8ggCN6mkdHxGRykSJkEgE1KlV8kyykgSDjrEfTmXr1hzOPqcP1SK8q7yISLlUoPE7saBESOQg+QNBVq7ZSuMGNUn0lf9H6ssvZjHquW8IBIKsXbOV2+88PQpRiohIUZQIiRwE5xxX3/kWi5ZvpH6d6rz26MX4fOWbqZWfX4BzoZ6h3NyCUu/3w8QFABx19GFR3YBVRKqoqtUhpERIpDjOOZ4ZNZ5vvp3LmX/sxXln9dmvzK7cAuYuWotzsHZjFhu27KBx/fQ95wOBIC+8/SPLV2/m6guPIbNhrf2ucdLJ3Vi3djtbt2Zz+fCBJcb03ru/8PKLE3DAZZcdy9Azex10O0VEqjIlQiLFWLc+iw8/nkZBQYBRL3/H0FN7kJTk26tMakoig45uzxffz6NHhyY0rLv3YOlvJy1kzKdTycvzs3FLNqP+ecF+9/H5vAy/suQEaLcVyzeTn+8PvV+5+QBbJiJSPNMYIREBqFkzheRkH16vh5o1UvAVM/5nxPUn84+rTyxy8cLUlEQAPF4PaamJBx3TRcOOZsXyzWBwwYX7r3AtIiLlo0RIpBipKYm8PPISZs9ZTY/uzfB4ih+PU9wKzn27NedvVwxi5ZotnHVyj4OOqW69Gjzxn4sOqO7OnDzee3UiNdJTOeXcPng8WkZMRIqgHiER2a1O7eoce0y7A65vZpzYr30EIzpwzzz4Md9+Pguvx0NSso/BQ3vGOyQRkbhTIiRSRezalU8wGMTMyN1V8uw0EamiHFCBVn2OhVITITNLBiYASeHy7zrn7tqnzJXANUAAyAaGO+fmmllzYB7wW7joz865K8N1DgdeAVKAT4EbnKti/XFSqXw1cT4vvvMjx/RqzVUX9Kt0U9evvf1UkpMTqVErlZPP0mwzEREoW49QHjDQOZdtZj5gopl95pz7uVCZ0c65kQBmdirwGDA4fG6xc65bEdd9FrgcmEQoERoMfHaA7RCJugee/pwCf4B3P/uVQf3a07pZ3WLL7sjJ5dufF9KmeT3ataofwyiLV6t2NW558Mx4hyEiFZjhNGtsX+FemuzwR1/45fYpk1XoY9q+5/dlZg2BGruTKTN7DTgdJUJSgdWvU52NW7IxMzJqppZY9qYH3mPx8k0AvPLIRTRtlBGLEEVEpJzKNEbIzLzAVKA18LRzblIRZa4BbgISgcKLorQws1+BLOAO59z3QGNgVaEyq8LHRCqskfefx8Qpi+ncthEZ6Wklll27IYu8fD/JST42bs5WIiQiUkGVaf6scy4QfryVCfQ2s05FlHnaOdcKuBW4I3x4LdDUOdedUJI02sxqlCdAMxtuZlPMbMrGjRvLU1UkomrVTOWU4zrTPLN2qWXvvPYkWjapzeD+HejesUkMohMRiRDnYvOqIMo1a8w5t83MxhMazzO7mGJvERr/g3Muj9AYI5xzU81sMXAYsJpQUrVbZvhYUfd8HngeoGfPnhXnKydSgj7dmtOn25/iHYaIiJSi1B4hM6trZunh9ynACcD8fcq0KfRxCLCwUF1v+H1LoA2wxDm3Fsgys74WmnozDBgbgfaIiIjIwVCP0H4aAq+GExoPMMY594mZ3QtMcc59BFxrZscDBcBW4OJw3WOAe82sgNDKBFc657aEz13N79PnP0MDpUVERCTGyjJrbCbQvYjjIwq9v6GYuu8B7xVzbgqw31gjkcouZ1c++fl+apUys0xEpMKpggsqarMhkQhasmITpw0fyR+vfJ6x42bGOxwRESmFEiGRCPrp16XkFwQo8Af45JtZ8Q5HRKTczLmYvCoKJUIiEdSvVytSknwkeD2cddLB7zYfSc45crJz4x2GiEiFok1XRSKoaaMMPnnhKvyBICnJvniHs0fAH+DmP7/A/Fmr6HdCR/7xyLnxDklEKqoK1FsTC+oREokwn89bYhI0c/5qXvtgEus2ZhVbJtLWrNzC4vlrcUHHhC9mk5/vj9m9RUQqMvUIicTQuo1Z3Hjfu/j9AT78cgbvPzs8JvdtkFmLBpkZrFmxmS49m5OYqB99ESlKxVrjJxb021AkhnbuygcgEHRkxXC8js+XwDNjrmHThizqNaxZYtktG7J4+Ja3cc7xt0fOpXb9cu2KIyJSqejRmEgMtWxah8vPPYpu7TP55y2nxfTeCT4vDRrXwuMp+cd+9LPfMGvyEmZPXsroZ76OUXQiUiE4tLK0iETXeaf05LxTesY7jGI1alobX/jRWaNmpW8wKyJSmSkREpG9/PFPR1O3YToARw3qGOdoRCTmqtjK0kqERGQvZka/wZ3jHYaISExojJCIiIhUWeoREhERkT0q0vYXsaAeIREREamy1CMkIiIiv1OPkIiIiEjVoERIJILGj5vDAyPeZ+7sVQd8jZXLNnH1BSO5efjLbNuaE8HoRERK4YCgi82rglAiJBIha1dv5dEHPubbr+fy97+Mxh1g9/JLT41j8W/rmDtjJR+9PSnCUYqISGFKhEQOwtLFG/jqs5nk5OTh8dqe417vgf9otWhdj+RkHwk+L01b1I1EmCIiZRSj7TUq0DgkDZYWOUBrV2/luuEvA/DR+1P4z6hLGPHAmUz6cSFDTuuBmZVyhaJdOPxYWrVtSEpqIj36tIpkyCIisg8lQiIHaMOGLAzIzS1g9aqtbFi3neef+ors7Fym/LKEmjVTuPufZ1G7TvVyXdfj8XDUgPbFnl+9YjNp1ZJIz6h2kC0QESlCBeqtiQU9GhM5QJ27NmXACR1pnJnBNTcO4p03f2LVyi1s2ZzD2tVbWTB/LR++Ozmi93zntR+48txnGXbqv1k0f21Ery0iUhWpR0jkAHk8xk1//wNzZq3kbze8QcAfxOMxzAyz0DihVq3rR/Se3301h/x8Pwk+DzOnLqN1u4ZlruucY2dOHqlpSQf82E5EqoAq1iOkREjkIP34/QLy8/wAdOrahEuuGMDOnDxSUhPp0q1ZRO913iX9ePAf71KjZgpHH1f847N9OecYcfnLTP1hId36tuKBly5VMiQighIhkYM24PiOfPz+VPz+AOdffDSduzaN2r2OGtCej3+4PdzrVPZEZvvWHH79cREu6Jj5yxK2btxBRr0aUYtTRCqp3esIVSFKhEQOUuvDGvDeZ3/FBR2JSdH/kfJ4yj+0r0Z6Km06Z7JozmpatmtIeh0NtBYRASVCIhHh83njHUKJPB4Pj46+kk1rt1GnYfoBJVMiUhU4cMF4BxFT+m0ocoh7+7nxXDboUT57exL1MzMOarFHEZFDjX4jihzCNq/P4vX/jGP18k2MvP9jcnfml1h+47rtPPfgx4z7cGqMIhQRiS89GhMpg9/mrOazD6Zw1MAO9DqyTbzDKbPUakkkJfvwej2kpCXhSyz5Ed5917zGorlrSExMoG6DdLr21crWIlWOps+LSGGBQJC/XfEKubvy+fp/M3nloxupXbd8q0XHS0paEk99cD0zfl7M4ccchjeh5ESoID8Q2izWwF8QiFGUIiLxo0RIpAz23km+cv211KBJBg2aZJSp7B3/uZDX//MVrTs2psfRlafnS0QiRNPnRWRfXq+Hfz4zjE/emUy/4zpQu+6hs/6Oc44XH/6UiV/M4ryrBnLiWb259f/Oi3dYIiIxo0RIpAw6dm1KxygulBgvKxdv4OPXfyQ/z8+TIz7ghDN6amq9SFWnMUIiUlWk166GN8FLkseoVae6kiARqXKUCIlUAHOnL2f8/2Zw7Mld6dg9svuTlaRGrTSeGnsD86Ytp+cxbWN2XxGpwNQjJCKx4C8IYBaaqXXb5S+Tl1vAlx9O463vbiMlNSlmcTRqWptGTWvH7H4iIhWJEiGRGPEXBPhpwm/UrVeD3F353HnjG3i9Hu7794UEg6El7YPBIMEqNmNDRCoSpx4hEYmOJ//5Cd99MQsHtGnfiPw8PwATv57DXU9exOfvTWbw0J6kVUuOb6AiIlWIEiGRGFm6cB25uQUkJiXQpEVtfpuzGjM4ckB7uvZsQc+jtG6PiMSZA4JVa9NVJUIiMXLN34bwyF3vU79hOsNvHMywKwbi8XpIr5UW79BERKosJUIiEbZ7FWoz2+t4u86ZvPj+9Xs+p6bFbkC0iEiZVbExQlo0RCSCJv+wkFOPup/zB/8f69ZsjXc4IiJSCiVCIhH05ksTyM/zs31rDt99OTve4YiIlJ9zsXlVEEqERCLoqIHtSUxKIMHnpevhLeIdjoiIlEJjhEQi6IwLjqTXkW1Iq5Z0SG3OKiJyqFIiJBJhTVvUjXcIIiIHyEEVW9RVj8ZERESkylKPkIiIiIQ4cK5qLaioHiERERGpstQjJCIiIr/TGCERERGRqkE9QiIiIvK7CrTYYSyoR0hERESqLPUIiYiISIhzENSsMREREZEqQT1CIiIi8juNERIRERGpGtQjJCIiIns4jRESERERqRrUIyQiIiJhTmOERERERKqKUhMhM0s2s1/MbIaZzTGze4ooc6WZzTKz6WY20cw6hI+fYGZTw+emmtnAQnW+NbPfwnWmm1m9yDZNREREpGRleTSWBwx0zmWbmQ+YaGafOed+LlRmtHNuJICZnQo8BgwGNgGnOOfWmFkn4AugcaF6FzjnpkSkJSIiInJwHFVu09VSEyHnnAOywx994Zfbp0xWoY9pu887534tdHwOkGJmSc65vIMJWkRERCQSyjRY2sy8wFSgNfC0c25SEWWuAW4CEoGB+54HzgCm7ZMEvWxmAeA94P5w0iUiIiLx4jR9fj/OuYBzrhuQCfQOP+bat8zTzrlWwK3AHYXPmVlH4F/AFYUOX+Cc6wz0C78uKureZjbczKaY2ZSNGzeWJVwRERGRMinXrDHn3DZgPKHxP8V5Czh99wczywQ+AIY55xYXutbq8H93AKOB3sXc83nnXE/nXM+6deuWJ1wREREpBwe4oIvJq6Ioy6yxumaWHn6fApwAzN+nTJtCH4cAC8PH04H/AX93zv1QqHyCmdUJv/cBfwBmH1xTRERERMqnLGOEGgKvhscJeYAxzrlPzOxeYIpz7iPgWjM7HigAtgIXh+teS2hc0QgzGxE+NgjIAb4IJ0FeYBwwKlKNEhERkQPgXJUbI1SWWWMzge5FHB9R6P0NxdS9H7i/mEsfXsYYRURERKJCW2yIiIjIHhVp/E4saIsNERERqbLUIyQiIiK/q2JjhNQjJCIiIlWWVabFnM1sI7A8/LEOob3MDnVVoZ1q46GjKrRTbTx0VIZ2NnPOxWwRPTP7nNDXJRY2OedKWpcwJipVIlSYmU1xzvWMdxzRVhXaqTYeOqpCO9XGQ0dVaaeUTI/GREREpMpSIiQiIiJVVmVOhJ6PdwAxUhXaqTYeOqpCO9XGQ0dVaaeUoNKOERIRERE5WJW5R0hERETkoFS4RMjM3jaz6eHXMjObXuhcFzP7yczmmNksM0su5hrXmdn8cLmHCx2/zcwWmdlvZnZiLNpTTHwH1UYzu9vMVhe6xsnh4z4zezVcb56Z3RbLdu0TY1TaWNb6sRLNdobPNzWzbDO7ORbtKUoUv19PMLOp4XpTzWxgLNtVRJzR/J49JH73FCr7VzNzZlYn/LmmmX1sZjPC9f8ci/YUE1tU2hg+dmz4unPM7Ltot0VixDlXYV/A/wEjwu8TgJlA1/Dn2oC3iDoDCO1mnxT+XC/83w7ADCAJaAEsLqp+JWnj3cDNRRw/H3gr/D4VWAY0P8TaWKb6lb2dhc6/C7xTUpnK2kZCmzk3Cr/vBKyOd/ui1M5D5ndP+FwT4AtCa7rVCR/7B/Cv8Pu6wBYg8RBrYzowF2ga/lwv3u3TKzKvCrvFhpkZcDaw+6/EQcBM59wMAOfc5mKqXgU85JzLC5fbED5+GqEkIQ9YamaLgN7AT1FqQqkOoo3FcUCamSUAKUA+kBWhcA9IFNp4sPWjIgrtxMxOB5YCOZGK82BEuo3OuV8LfZwDpJhZ0u6f3XiJwr/lofa753Hgb8DYQsccUD183WqEEiF/pOMujyi08XzgfefcinD9DUVVlMqnwj0aK6QfsN45tzD8+TDAmdkXZjbNzP5WTL3DgH5mNsnMvjOzXuHjjYGVhcqtCh+LpwNtI8C1ZjbTzF4ys1rhY+8S+p/mWmAF8KhzbkvUoi+bSLexPPVjKaLtNLNqwK3APdENu1wi/W9Z2BnAtHgnQWGRbuch87vHzE4j1HM3Y59TTwHtgTXALOAG5+K+YVWk23gYUMvMvrXQo9xh0QtdYikuPUJmNg5oUMSp251zuzPw84A3C51LAI4GegE7ga/NbKpz7ut9rpEAZAB9w2XHmFnLSMZfFlFu47PAfYT+CruPUPfvJYT+ygwAjYBawPdmNs45tyQyrdpbnNpY1voRE6d23g087pzLDv1hG11xauPue3cE/kXoL/aoimc7YyVabTSzVEKPwIr6dzoRmE6o96UV8JWZfe+ci0qPdJzamAAcDhxHqMf9JzP72Tm34GDbI/EVl0TIOXd8SefDj3aGEvqm220VMME5tylc5lOgB7DvL6NVhLovHfCLmQUJ7ZuymtBz390yw8eiIpptdM6tL3SdUcAn4Y/nA5875wqADWb2A9ATiEoiFKc2lvX7IGLi1M4+wJkWGuyfDgTNLNc599RBNqdIcWojZpYJfAAMc84tPshmlCpO7TxUfve0IjTGaUY4Oc8EpplZb+DPhIYkOGCRmS0F2gG/RKRR+4hTG1cBm51zOUCOmU0AugJKhCq5ivpo7HhgvnNuVaFjXwCdzSw1/E3en9DAtX19SGjANGZ2GJBIaFO9j4BzzSzJzFoAbYjSD2kZHXAbzaxhoY9/BGaH368g/DzczNII9YrNj0LsZRWNNpb1+yCWIt5O51w/51xz51xz4AngwWglQWUU8TaaWTrwP+DvzrkfohZ5+UTje/aQ+N3jnJvlnKtX6PtyFdDDObeO0O+e4wDMrD7Qlij9AVZG0WjjWOBoM0sI9xz1AebFojESXRU1ETqXvbs0cc5tBR4DJhPqgp3mnAmMfO0AAADaSURBVPsfgJm9YGa7N857CWhpZrOBt4CLXcgcYAyhb/zPgWucc4GYtKZoB9PGhy009XMmoaTvL+HjTwPVzGxO+BovO+dmRr8pxYp4G0uqH0fR+LesaKLRxmuB1sAI+326c70YtKUk0fiePZR+9xTnPuBIM5tFqIfl1t09L3ES8TY65+YR+vebSSiRfcE5N7ukOlI5aGVpERERqbIqao+QiIiISNQpERIREZEqS4mQiIiIVFlKhERERKTKUiIkIiIiVZYSIREREamylAiJiIhIlaVESERERKqs/wcfIp/jDKAOGAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5, c=sites.vs30)\n",
+ "\n",
+ "plt.colorbar(label='Vs30')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Next, we need to get values for the Compound Topographic Index (CTI). The process is the same, using a raster of CTI values. (Though it is possible to calculate the CTI from a DEM using algorithms implemented in many GIS packages, in practice the range of the resulting CTI values is incompatible with the CTI values that Zhu et al. used in their calibration. Therefore it is strongly advised to obtain CTI data from a dataset that has a global range of 0-20; we recommend [Marthews et al., 2015](https://www.hydrol-earth-syst-sci.net/19/91/2015/))."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sites['cti'] = sample_raster_at_points('./tutorial_data/ga2_cti_cali.tif', sites.lon, sites.lat)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAI/CAYAAABj+03oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3hVRfrA8e+cW9N7J5CE3kLvgoBSRQERbIi9F6z7s6y9oK66dhcRxF5QFFAE6dUgvbcAgSSEkN5vO2d+f9yQEBOaVGE+z5Nn7z117sG9efPOzDtCSomiKIqiKIpSk3a2G6AoiqIoinIuUkGSoiiKoihKHVSQpCiKoiiKUgcVJCmKoiiKotRBBUmKoiiKoih1UEGSoiiKoihKHcxnuwEnIjw8XCYkJJztZiiKoijKGbF69epcKWXEmbrfgD5+Mi9fPyP3Wr3BOVtKOfCM3Oxv+kcFSQkJCaxatepsN0NRFEVRzgghxN4zeb+8fJ0/Z9c/I/cyxewMPyM3Ogmqu01RFEVRFKUO/6hMkqIoiqIop48EDIyz3YxzhsokKYqiKIqi1EFlkhRFURRFqSTRpcokHaIySYqiKIqiKHVQmSRFURRFUYBDY5Lk2W7GOUNlkhRFURRFUeqgMkmKoiiKolRRs9uqqUySoiiKoihKHVQmSVEURVEUACQSXaoxSYeoTJKiKIqiKEodVCZJURRFUZQqanZbNZVJUhRFURRFqYMKkhRFURRFUeqgutsURVEURQG8xSR11d1WRWWSFEVRFEVR6qAySYqiKIqiVFEDt6upTJKiKIqiKEodVCZJURRFURSgckySKiZZRWWSFEVRFEVR6qAySYqiKIqiVFHL21ZTmSRFURRFUZQ6qEySoiiKoihA5QK3anZbFZVJUhRFURRFqYPKJCmKoiiK4iVBV4mkKiqTpCiKoiiKUgeVSVIURVEUBfDWSVKz26qpTJKiKMoZVO5wsW1vNh6PfraboijKMRwzSBJC2IUQfwoh1gshNgshnq/jmJuEEDlCiHWVP7cdtu9GIcTOyp8bD9veQQixUQiRKoR4VwghTt3HUhRFOfdUON1c9dRkbh/3Hfe88cPZbo6i1EGgn6Gff4Lj6W5zAn2llKVCCAuwVAjxm5Qy5S/HfSelvO/wDUKIUOBZoCPeLN5qIcR0KWUB8BFwO7ACmAkMBH47uY+jKIpybjIMyb8+mE5OQSkAa3dkYhgSTftn/LJQlAvRMTNJ0qu08q2l8ud4x74PAOZIKfMrA6M5wEAhRAwQKKVMkVJK4HNg2Ik3X1EU5Z/hs9/+JGXT3qr31/ZrpwIkRTnHHdeYJCGESQixDjiIN+hZUcdhI4QQG4QQPwgh4iu3xQHphx2TUbktrvL1X7criqKcd6SUfPHbqqr3MWEB3D3iorPYIkWpmwQMeWZ+/gmOK0iSUupSyrZAPaCzEKLVXw6ZASRIKZPxZos+O1UNFELcIYRYJYRYlZOTc6ouqyiKcsbMStlGabkTAMMEu0yldHzmfSYtWkVOSRkHi0uPcQVFUc6GE5rdJqUsBBbgHT90+PY8KaWz8u0nQIfK15lA/GGH1qvclln5+q/b67rnx1LKjlLKjhERESfSXEVRlLNud2Yez074rXqMQmj1UNCPF6xgwGsTGfD6JOZvTj0r7VOUv1IDt6sdz+y2CCFEcOVrH6AfsO0vx8Qc9vYKYGvl69lAfyFEiBAiBOgPzJZSZgHFQoiulbPaxgDTTvrTKIqinGMWr0utMYhzZPfkqtfh/n44PTouj87sjTvPfOMURTmq45ndFgN8JoQw4Q2qvpdS/iKEeAFYJaWcDjwghLgC8AD5wE0AUsp8IcSLwMrKa70gpcyvfH0PMBnwwTurTc1sUxTlvDO4Wws+npaC26PTMjGKx4f2ZnC7pvyydis/rNyEJgRWs4lrurU5201VFCT8Y7I8Z4LwTi77Z+jYsaNctWrVsQ9UFEU5h0gpcbg8+NgsABRXOOj+/EdVGabXrx7EZe2anb0GKucsIcRqKWXHM3W/lslW+e2vkWfkXsn1M8/oZ/s7VMVtRVGU02DN5nRG3DuBB1/6AYezOkCS0oW1eDRrHvgft3fy/tHXODrsbDZVUWowpDgjP/8Eau02RVGU0+DNifPIyikmv6icT3/8A103GNirBY1i92IlFTTJHV3WEhj+IE1iqielGKUfguN38LsXzaffWfwEiqKoIElRFOU0aJoURVZOMbqu89X0lUgJ0+ZuYPak6xHYAAO7X3du6pyLcaANmOIg6EUo/R/ggKKHkPaNHFqxyTAkQoBawUk5ndSYpJpUd5uiKMpp8ORd/Xn2/kGEBflxaOinw+VBihBExBxE2DeI4A+g9G2gAvQMcK0HBGAFEQCeLQDM+WMbvW56m2EPTCC3QNVUUpQzRQVJiqIoR5CWlc+E6X+wcdf+EzpvzeZ0bn3iK35dsIkDeSVV26PDA7nuoU9ZsvogwtISXEtACwVsIATC1hMR9g1Ye4MsReZdi3TM5tOfU/DoBgUl5SxevQsAh8vNb0u3sGXXgVP4iZULnUSgo52Rn38C1d2mKEoNbrdOVk4RsVHBmE3/jC+y08EwJLe+8i0l5Q4+m7mS6a/fhiEl+UXlNI4PP2q31/PvzSQnv5Sde6tXCbBbzeQXleFwenjlo9lclHwACu4FJJgbIkImIEzRAEgh8K4trmE419K4fjLpBwoxaRotGkbz07z1zFi4id0ZuUhg/DPX0Cwx6rQ+D0W5EKkgSVGUKh6Pzs2Pfs7+A4U0SYrio1euvWDHwBhSUuF0I6V3Cn9qeg6Pvj8dKSUj+7blgVG9jnhuTEQgBcXleDxG1bZu7RNZvHIXNquJ6IhAKHoccFferACZfzPS3AQR/B+E/71I9yYQNmanlNGp/nj2ZbTmzmtvY8rstcxN2Y7L7UECdpuZjOxCGsWHs3NfDvVjQvHzsZ7eh6Oc1/4pM8/OhAv3z0RFuQA5yl3kHSw+4v6DeSVkZhXicuts3pFFhcN9Blt3bjGbNP5z3xV0bBbP2FEX8+Xs1ThdHhwuD4vW7jrquW88cSW3j+qOzWpG0wShQb4s/jMVaRi43Dp70nOZvjS08mgBhhP0XeBcCI65CEsztMgFYL+MAcnfMajjVt66bRoH80s4kFeM0+3BbNYIDfKlR9skenVoyH3jpnD3i99x9WOTKHe4TvvzUZQLgcokKcoF4kBmAfeOeB+nw8319/Tl2jt61zomOiKINi3iWLVhH326NcH3AstIlFW4eOI/08jKKeKZ+wbRIzmRHsmJfDL9D1ZtS8eQ3hlmdwztVnVOhdNNucNFcYmDLalZ9OzYkB1pOWiaxqevjmbTzv28On4OxmHLng/stJn6UW4QYSBCwTi0JIkLaRSBeyfC0hjKv+BQIs9mkVzUNon8wjKKSx0k1Qvjidv6Y7dZMAzJ+u2Z3qwXkJldSOMGZ6YgoHJ+UbPbalJBkqJcIDb8uRuPW8fj1vl96uo6gyRNE7z93CicLg826/n59SCl5KvpK9mdnsdto7oTGxlUtW/O0q1s3J6J063z1qT5fPraDQBoQiAAi1njyouTGdDVWx17X3YBY174CpfDjbkCzJrG5B9TyMkvRdcN5izdxs1XdcVqMeFwevDztZIUk8fYEcuxWz0gg0AevmabL5Q8i0Qgg94EUwx4igGJPewxXvpkPsvW7QbgoTF9sFcWqNQ0wVX92vLjnPW0aRpHYr1wDEOiaeqXnaKcjPPzW1BRlFo69GiMj68Vj1tn+A3dj3rs+RogASxdvYtJP6TgdLnZm5nPxHHXV+1LqBcGQmC3mWl62EDo0QM7ohsSp9vDLUO6VG1P2bQXt1vH4zEQOng8BpnZRVX7c/JL+O+nCzAMSdOkSJ68awANY4uR+VMBHYRGjdVvKav8XwnFL0HVUpdAyZtkZD+K0+XBbjWTlVMMzb27tqdlM2PRJkwmjR5tk7hh7KdkZBVw+7UXMeaqrqfu4SnKBeb8/SZUFKWGsMhAvlrwf7icHnz8bFXbpZR8N3MNm3bs59aR3Umsd34vkWE2mQCJEAKzueawzLbN6/Hh81dzMK+EHh0aVm23WszcflgX2yGdmsd7X5igdfM4srKKyCkoBSkROsRHh7Bx536khLBgfxonRAKRyOB3kK4UsF8BRfeDnkGO50qyctbTOnoXCA2BH971wg9x8sRt/Xh14lwaxIRyademVXtWbEjD7dbRDclPs9eSub8ACUz4ZinXDO2I1aK+6pXjJdClGq58iPp/jqJcQExmEz5mU41ta7dk8PG3S3E4PexMy+G7d245S607M7q2TeDBG/uwOyOP66/oVGPfvox8bGYTSQ3CmbdyBz2SE/H3tR3hSrBwTap3nJKmERMfzIsPXMbweyYgKgwEsH17FharCSEE3dolVJ0n7H0Q9j4AyPB5gIcH3vqebZmRtIrtxJg+Q+ifHIzMGwlUeE/SYmiWYGPyS1eDLEVo1V/ffTrFM2dZBc3i9jLqoi3c/NJQQCClQV5BOjGRiafm4SnKGSSEmAQMAQ5KKVsdtv1+4F5AB36VUv7rdLVBBUmKcoGzWkxI6R13Y7WYjn3CP5wQgisuTa61fdmfqTz7nxmAxOUjkL5mggPs+PvY6NQ8noeu6V2rHILNasakCYQU2KwWIkID+Pw/Y7jj4S9wuTyYETwz9jKiI4Mqs0h1twcsRIcEsDs7j505Eewv0nhvTg4jO31NlPYy6PlgZCAPXgzCBrIc6XcnWsBYpJFPnBjK5IdKARMCFyN6b+TX5c3o1GkL5XIT8Pkpf47K+UkCxrkz8X0y8D6H/QcshOgDDAXaSCmdQojTOkNBBUmKcoFr1SSWJ+8ewNZdBxg1uP3Zbs5Zs3rDPlwuDwBS03CY3RzIcwMlZOYUcUnHJrRpHFfjnFGXtMMwvPWURg/sCEBSfDivPz2Cyd8to1vHhvTs3Pi47j/u+kFMX7kZIQRvTF+My+Ph19UBzH76a4y8MWDsBgRIHfBAxfcQMBbpXAAUVc5H0kH4cP/IFQwYthA3ErNp+Cl6QopyZkkpFwshEv6y+W7gVSmls/KYg6ezDSpIUhSFfj2a0SAulIUpO+ndtTHR4YFnu0ln3P4DBQCYTIJOXRuydX8OUkoKSiqQUhIW5FfjeN0w+GHBOkrKndwwqCM+lTPNANon16d9cv0Tur/T7WHS/JUcKCzFJARSQrnTW6dK+N+CLFgNwl450LsUzJXZMC0O73pvErAgQiYipT+2wufx0QKJD33t7z0Q5YJ1jpcAaAL0FEK8DDiAR6WUK0/XzVSQpCgK+UXl3PX0N+i6wVfTVzJ9/J0XVKVtj0dn+Urv1HqTycQ1/dpT7HLRuF4EK7bspUViFPUigwHIOFjI2h2ZFJdV8NFPy/F4dH5csJ6LmidwYE8+LZvFcu/NfU54+v3NH3zPgULv4rWGlPRsnsgd/ToDIGy9IWodoCFzh4BeCq5lSNcqhLUL0udGcC0G/0cQ1o5YgIZR35yqx6Mop0u4EGLVYe8/llJ+fIxzzEAo0BXoBHwvhEiSUsqjn/b3qCBJUc4x27bt5523ZtEgIZxHHrsMyxkYJ1RW7sQwJG6PQVFpBVLCBRQjYTab6Nw+kbUb9xEZHsCj/5uOR5dEBPvxwys3VwWMpeVORj/3JbphYDaZkIaBbkiKyhzMm7MZYcDufbl0aZdI5/YnNlh6f351JXQJ5JWU0yyueriFEJbKfYd+F3izR0IIRNCTwJMn8QQUxUvKMzq7LVdK2fEEz8kAplYGRX8KIQwgHMg5+ml/zzkzOktRFK//vPorO3YcYMni7SxetO2M3DM+JoTbr+5B06QoXnxwyHlbhLC0zMmfa/ZQUuqote/Ru/uREB+GzWbG5fBQ4XSTfrAQXa9ef62wtAK3ruNweShzOPHzsaFpApMGmLwlBaQhCQn2PeG2PXllX8ICfNEqA7I9B/PZuO9AreNEyP/A50oIeBxh9c7Ok1JHGvmcpj+mFeVc8jPQB0AI0QSwArmn62Yqk6Qo55jY2GCysgqQUhIVdebGBl1/RadaU+JPhfGfL2Lm3E1cMbANvbs35cPJC2mSFMnto3ud0WBM1w1uffAzCovL8fO18e3Ht9eoH/TFlBR27ckBAQkJYRw0HNwwqBNms4kKp5uNu7JoWj+C0QM68vuKbQT62dmalo0QgrZN69E6NopVK3dz2aVtaJxUXYjS49HZujOLejEhBPjbMZm0Orsyh3VpybAuLXn40xks2ZaGr9VCk5jwWscJcwIiaFzVeymdyNxhoKeB/XJE8Oun9sEpFxzjHBmTJIT4BuiNt1suA3gWmARMEkJsAlzAjaerqw1UkKQoZ9XcOZt48z8ziYkN5p33biAgwIennhnGvLmbiYsLoVXreA5m5OMX6INfoM/Zbu4Jyy8s47ufV+HRDb78YQXzl24jPbOAjVsyadk0jou6NKrzvHdX/ME3m9ZzdcvWPNi1xylpS3mFi4O5xeiGxO3RKS52EB7mX7U/IT4Mq9XbtTn8kjaMGOKd6Sel5OaXvmZ/bjE+Ngs/v3Yrd1/Zg09/WcHu/XkA9GydyKcTl+By63w4eQE2m4nLLk1G0wRPjfuZtRvTMaSBx2MQFuLHx2/eQFiIf+1GAm/cOIRd2XnEhgTiZz+OtfM8O0DfD+jgmA6oIEk5P0gprz3CrtFnqg0qSFKUs2jypMW4XB6yDxSS8kcq/fq3xm63cNmQtgBMef93vvjPr5gtJsa+eZ23KOHANlj+IcuG+PvZCAiw43C48fW1EhzoQ9aBIiSSwAB71XFSSrbm5hDl548mBO+vTMFjGHy46k/GtGlHqM+Jd1/9VYC/nZFXdGTG7+vp37tFjQAJ4KrLOxAXE4IQ0LVDUtV2j26wK9MbDDldbrLzS0iICeWmyzrTsF44mhAsWbQdt8fbLefxGLzz8Tx03aB396as3ZSOw+lGCJASiksc/LFqN0P61a7VBN512BrXkUE6nDSKkXmjQN8L/k+CKRr0dLAPPJlHpCiVC9yqkTiH/DO+aRXlPNW5a0NmzVyPEIJmzWNr7CvKK+X7D+bgdnmQUvLGfZ9htppZ8ftGHnv/prPT4BNktZiZ/M5NbNiaSZuW9QD45fcNNIgPI7lFvarjnl4wl6nbtmDWNH4edT2BNhtFDgeaEOiGcaTLn7B7bu7NPTf3rnOfEILunRrW2m4xm7BZzDjdHoQQ7Nh3EIvZRFxEEL3aNmTarHXMX7INkN7xTJX/Xtt3ZfPBpIW4PTpms0ZosB+FReWYTBptW8UfV3vdHp03fv6Zvg2+oFlcNIHRryK0YKRjIeh7AAmlr0DkaoQsA+3owZWiKCdGBUmKchbd/0B/Bg5MJjw8gNC/ZDbe+79vKCsq974RIDQNR7mLtG37z0JL/76QYD8u7tak6v3oOhZcnZ+2G4fHg6/ZwtbcHHo3SOTnbVvRDYPxq1fx7169z2CLa4uPCmbfAe84secmzkYTglfuvoxebRt6ly0R3gyQyzCwBdnpkZyAxWyiTOpgArMuyS8s464bL2ZQ31YE+NuPfVNg1rrtNPT/inaxW0FuQ5Z+iAh8EixNqF4ZVyKMPIT5+AIvRTk6tXbb4dSTUJSzSAhBk6YxtQIkAKEJhElDWjVKGofiCLETmxTBfa9ecxZaeno90LkbZk0jLjCQng0SiA8MwmoyYdFMhPmefFfbyfrosZGMvboXHZrF4/boON0elm3YA0Dfns145K5++AbacQuJWzdo3TqeOX/uAE2AAF3zdsMtXZF6xABJSsnvS7bS78b3GPPY5xSXVhAZ5E9+uS8eQ8PABFooAJqlGdivAsxgGwimenVeU1GUk6MySYpyjnrgtWtZb3azp9ybTdIbhnLvw1fSvOn59wvxmlbJXNPKO0bHoxt0CIvlvk5dCfX1YWSLVsc4+/Tbp6czK+BH/Hv645/ui6abGdG7DeANdAf2bcWm3QeYuWgLIKuWKqk8AItJYEIybGDbOq8vpeT+F6awZnO6937781mQspOhlyaTsf8R3vttHlf1iSQp9vqqc7TgV4BXTufHVi5A59jabWedCpIU5Rxl8bOSVlFRVdUxMS6MVknRZ7lVR+dwe9iek0uTiDB8LJZjn1CHR6bMZGlqGgA/3TMak3bsL2zdMEjLLiAuLAj7aRjUPnHPj+S5CinRynj88REMiL6o1jEP33IJ/S9qTkRYAGaT4ONvl2EYkpjIIP775AgC/e34+9nqvH5+UTnrtmYctkXSvFE0ZRUuPpy4BLfbxLw/ipk5AXIKi7n3zR+ocLh584GhtEg8t/+bUJR/MhUuKso5ymYx07FFfSxmEw3jwpj05DU16vqca3TDYOikLxnz1RSGTfwKz3EMuF6cmsagjz7j3zPmVA3QXrtvP+UuN1LCjuzjqxF35wdTufaNr7ly3Oc4KhepPZWaBiRg17zT8RP86s7kaZoguVkcMRGBRIQGMOnV0Ugk6VkFjBo7EZf7yO0KCfQlMrS6yzW5WT22786muLQCj8fAoxtUVLi45ZVvuPs/U8g8WEhuURkTpv8BeDNRG3ftJzWj5vP6Im02gxc9xuPr/4du6Cf7GBTlgnPufuMqygVOCMH7j4wgO7+Esgon1z3zBTarmTfHDiUyJOBsNw+AwgoHewsKaRkdSXGFg/SCIjyGQXphEYXlFYT7+x31/MenzSKvvIKsohIGt2xC96QG/GtgL176dQH1Q4MI9Tv2eCSPbrByp7ebKre4jPTcQhrHntpZXnc2vJquYW0IswbTwC/22CcAFQ4Xuu4dXG0YkivvnUCPDkm88OCQGtmxecu38+mPKcRGBZNXWI5uGKzZnM7G7fvp0SGJh27py/czV7M7N5+tad4Fz02awG4x0am5dxHdr2av5qOfvJmrF+8YxKWdmnq37/0dXRpsKtrDztIMmgU2OJWPRTlP6fLcKCZ5LlCZJEU5h2maICY8kE+mp7AnK58d+3L4ds7a035fKSVLN+9h2ea0Iy51kV9WTr+PJjHmqync9+MMQnx9GNKiKSYhuKxFE8KOI8CpHxqM3WxGSklMkLe6+JDkZrw5cjA7s/O49bMfmbx89VHbaTZpjOjmHbfUqkE0iVGhf+MTH51JaLQPaXHcARJAw/oRNG4QUfXe5dZZ9Gcq23dnV22TUvL8+zPZnZ7L5p1Z9O3WhNZNYjGbNJwuD/uzixh2aTKD+7fGsHh/cQkB1/XvwEePjeS6/h0AWLR2Fy63jkc3ePu7RVXXbxWYiF2zYjdZqOdTvQ6coijHR2WSFOUfoEViFMs2pAGSZg1O/y+7bxet491pSwFokxjD7gP5XNenPTf1q16LcmduHm7doMLt4Y+0dPbkF/D8oEt4/YpjFzTclp3D2wuW0S0hnpHtWtEiOpLEsJCq/Wv37cel6xhSsix1Lzd171DrGnPX7eTxz2YSFujHFw9fwxOj+mIxndrFgPNdReQ5C2nkX7/OpUSOZuuuA0gkLRpFe19Lb1AUExlUdYwQgvAQf/ILyxBCcP8NF+Pna+OVj2aTcaCQ/7uzHwADuzZj6qIN5BSUcm3/Dtw1rHuNJV36dmjMup2ZgDezdsi4NnexsySDeN9I/C3/vIrtypknEaqY5GFUkKQo/wA3DOpE0wZR2Cxm2jaJ+1vXyMop4sFXf8ThdPP6o8NomhB1xGN3ZObgdHmQwModGRhS8t70pVx9cRt8rN4B2e3iYmgRHcn6/VnUDw5i6MQvCbLbmXnHGALtR68DdP+UGewrKCIlLYOPrr6C5tE1A7/h7Vsyff1WSp0u7uldu64SwPhZKbh1g/yScuavT+WaXnXPHDsRn36/nJ9nr+fyS5MZPKwxD619DYmkc2hrGvjF0ja4GY0Djq/Latz/ZrM7PQ+b1USDuDAKisp5+OY+hATWzLBNePk6Fv+ZSnKzOEKDvd2Tz4+9rMYx4cH+TB13S9X71dvS2bAri8HdmhMVGsCoS9uye38em3Zn8ci1vauOs2hmWgQl/L2HoSiKCpIU5Z9ACEGXlic3nmTq3PVkHCjEkJJJP6bw2iNDj3ishre+jwCsFhMCQaCvDZu5+ivDajbz9Q2jAGj9+rs4PTqlThfbD+bSqf7RyxT42ayYhEBKiZ+19vpkccGBTLppBE9Mnc2EJSt59coBBPrUDLwuadOYvTmFCAHtG9YOHGet3s74WSn0SW7I/UN6HDMTVFxSweQpKei6wZdTVxDbHSQSp+Fiae4aluWuZUr6bD7p9AKBlrrXXTtc/ZgQMrOLAHj8jn4kN6s7uA0L9mN4/zZ17vtmxioWrNjBNUM60LNjI1IzcvljUxoTp6egGwYzlmxi6qu3YNI0nrqpX41zcxyFvLTlMwwpebrljUTaQ+q8h6L8laGKSVZRQZKiXCBaN47FYjEhgPYtj16dOaugBCnBrGlc17sdTetF0Klp/RpdPIcb07Edn6SsokFoMK1jjj4l3eH20KthAmG+voxq14rkuLqPf23WYlbvzcSkaXy1Yj3Xdm6DEBBUGSzdNagr/ds1JsjXToi/L9NWbMbp8jC8WyvMJo1/fzkLt26QubCYQR2aHXMwt6+PlaAAOxUON3abhW6RyczKW0RmRTa6NDAwMKSBU3fBcVQ3ePaBwcxbvoO46KAjBkhHs3d/PuO/XYbL7eGpt37BEmpBlxIkuHXduw5cuaPGOdv2ZvPlrFV0a53I7vAtbCveC3hnuT3S7PwrQqoop5sKkhTlPDFr6RZe+2QO8TEhfPj01d7lMg7Tq2MjJjx/LU6Xh1aNjz4A+ZEre/H4pJmUVjjxGJI+bRphMR95vM9jfXsy9uLuWDTtmBmbN+Yt4bs1GxECejVKOOJx8SGB2CpLHpQ4HFz8n48RAsaPHk6XJG+QlxQdBsA3i9bx9vQlSCAzv5iHhvYkKjiAnOIyNCEI9a8ejzPx22XMXbqN0Vd24bK+1YUqzWYTn711I2u3ZNC2RT1CfPwIsQaS7cgFKajvF024NYTNxbu42BZyzM9ps1oY3LvlUY85Gj8fK1W3EOD06GhC4NENfGwWWiRGccfQ7jXOuf/NqRSWVjB/VSq3PtgMq2ZBAgl+qpaScnzUArc1qSBJUc4T479fhsPlIf1AIcvW7mZAj+bousHLb/3K+k0Z3HXzxW+csEYAACAASURBVPTr3aLGOVt3H2DGks3YrGZWbd5HUr0wrrqkLa0bx5KcFMuMlM18u3Atof4+3HjYoO26WE0m1u7MYOx70/CxWpjw2EjqR9Xu4il1utClgQlBqdN1xOs93K8nTaIj8LdZmbVpBy5dx1Js8Nwbv3D70G5cOaAt6eW5vLzpB7J26XgsbmSFRl5xGQCfP3wNCzfuom1iLGGB3rE+GVkFfPXTn7jcOq9/OJsBF7fAbPL+Qsh3lvBH2Q7atU0k1Nd7fGrpPhyGC7tmxaqZWVO4hfVF27GbrHQNq+4iyyjPYXdpJp3CmuNjqrtg5IkKD/Hng+eu5otf/mTRpt1YzRoXtUli9/48Hrr6Yrq2Sqh1jtvjrcXk1nXk7kD+3X0MhpR0Dfv7wZqiXMhUkKQo54kuyQ2YvWwrAmhRWZl745ZMlv25C4fDzX8/mlsjSPLoBnePm1K9fAawY18O81bs4LMXRwMg3RLh1Nm0cz+r6qcTHxlM1FFqNH3620rKHC7KHS5m/LGFe4f1qHXMv/r1wpAGdouFm7t6Z63NXrKF1yfMJTTIl3eeHklsZBBmk8awtt72BthszN2yE58sgyJZzrufL6R7hyTe3jeD9YVpEAfWODDpZlo39ZYSCAvwZUT31jXuHRjgg9lsQghBYIAdU2X3oSENbkp5j2JXOULT+Knnvwi2+nNr4gg+3TOVJgEJlOsOPIaO22Pwvx8W0f6WllgtZg46Crh71RsAJPnH8k77sSfyz3ZULRpFM+7BK8gvLqfQyGNr+WbuCb6UeN+6u++6tExg/uqdABzILeG2sG6nrC3KhUEiVJ2kw6ggSVHOE/+6pR+X925NZFgAESHegcWx0UEIwG63kNTgL2NypKyqcn04t27w1czV3H9dT2b+vhHDgIVrdrF8y16EEHz7zGjqRQTX2YZebZJYtT0DKSW+ZjMe3ajK1BwS6uvD68MG1dj27ucLqXC4yXQUccdTX/PLhLtr7O+SFM/yx+9h+F3jKa9woWkCX7uFOJ8wTEJDx/s5dLOH93b/wqikbnV2hwX62/nkP6NZvzmD7h0bVh3jkQa5zmIkgA5jV0/ks25j6RvVhb5RXQA44Mjl1h/ewJWvkb5asqHHfjq2qk+WIw8Ah+Fib9mBOp/LyQr0t/J/q1/DYTj4Lv1HxrV+njjf2l2m9151UVXV7TGDOwEwceoffPHLn3RtnYDVamb5uj3ceEVnbri882lpq6KcT1SQpCjnCU0TtGwUU2NbZEQgn7xzI7vTcujUPqHGPrPZRJC/DzkFpQAkxoayZ38+AIUl5QT62vGzWymtcCIFOFwefGwWUjPzjhgkXXVxG0J8fXjuw5l8PnUF6Rn5PHPXoDqPPVxMRBAFRRUAFBRX1HmMr83CxHHXsyBlJ53bNCDQ34cHml5GmM2fybsX4DDcWISJSHtwjQBJSsmXaYvYVJjOHY360TA2mvqxNQtOWjUzNyddwqTd8wDYUZKFx9AxdMmW1AMkxYcR7R9Oi4wurN6cjtmkkVjPOx6qVVAS3cNbsaFoN7cnDTnmZz2SCr2M/RVp1PNJwmaqWdPIIz04Daf38yCZmfU7bYNbE+cbS6xP9b95/agQfhx3c9V7w5B8MnU5UsKydXsAidtj8OG3Sxg9pNMJ135SLgxqgdtqKkhSlPPM9tQDPPvqdAID7Lz6zAjqxYbgY7dwz2NfU1Lq4MUnhtK8ifcXa35RedV5HZrHY7WYKatwcdfIizBpGhOevoa5K7ZjmODr+WtpXC+CLpVLYRyJo8KNCUGF083mXXVnVopKKnjriwXYLGbGju7NDcM789SbMzAMSWjQkSt114sO4YZhnXl/+0weW7SOaxv05MakvoxO7M2+0hy2FGfQI6JZjXNW5+9i0q55OAw3e8oO8P1Fj9V57VsbXsK24gxScncwIr4rZs3EHc98w659OdisZr5/91bGPTaULTuzMJk03p68gIb1w7lxeBeeaHHDUZ/JsXgMN29tf4QKvYwgSyiPNP0vmqj+ReU0XMTaY8h07Adgce5SFucuxYSJy2IHMPvAPJoENOLhJvdj1qq/1jVN0DQhir3787FYTJRVVI4BE7BmawYdWhx9lqOiXOhUkKQo55nxkxeRlV3EwdwSZs7dyOiRXZk5ZyNp+3K9mYUvlvLmiyMBaN0ohvU7MjGZNFo2jCEkyJd6kcE0jvd2zZU7XGzfe5AurRqw6J17a93Loxu8PWURu7LyePTq3jSMDadP58b8ungz6QcKeHhMnxrH64bB1t3ZTJm9lrkp29E0CA/247YR3Rk5qB3bdmVz/5jeR/18WRX5TElfjsvw8P6OmQyP74rdZCExIIrEgKjDjitge3EmfmY7Em/tJ7updk0mAI+hs7konSdbXkWo1R9RWcNpS2oWhiGRUpKZXUjTxCiSm8Vxy+Nfsn1PNstW7yIpPpxenRqdwL9QbaWeIko9RejSQ67zAC7Dgd1UHSx+sHM8WY7aAaeOzm9Zv+OWHnaUpLKrdDdNA5vUOGb8M9ewKTWLRvHh3P3Sd+zOyMNiNnEgt/ik2qycn6QEXdVJqqKCJEU5z7RoFsvmbVlIJI0SvZWsmzSKxlI5YDky3J9bHpiMQ9PZU1CE3WZhcI/mzFy2hbXbMjCbNGwWM3abmWf/N5OiUicrNu9l1a5M7DYzrRvG0CAylE7N4pm/Zic/Ld2Ew+Xh6Ymz+Prp0fjarXz471F1tu35j35j8epU3G4dJGjChJ+vDU0TjL2xZkC1M+0gNqu5VtdYkMUPm2ZBQxBk9cWq1S5NkO8sZfSy/2IgifcN49nWo9henMmV8XUPZH56w9ek5O3EhODF5OsA6BLemBuHd+Gzn1ZgtZgpKCrDMCSaJrBZzVVdVTbrkb9GHboLi2bGJI7+SyfIEka74J6sL1xGl7B+NQIkAJfhwqD2+LEoWyRhtlB2le5BExpR9tpL1tis5qqM0b/vGMhdL36Ly60zeVoKg3u2UF1uinIU4kiLV56LOnbsKFetWnW2m6Eo5zQpJavW7SUwwE7TRtX1cVL3HCQ9I58X3/gF3ZAYGriCvAGGxWzCpAmcLg82q5no8ECy80qqZr4ZJtBsJnRpIITAYjLx5j1XYNIED30wDV036NgsnvfHXkmF0439sCDicIPu/rBqzJGmCQb3bMHjt/avNbh76ux1vPeFd6HWcY9eQde2iTX2H3QUsb4gjU5hjQi2+tW6z9aiDG5b8QGGdyg2Sy59GXMdwdQhAxa8QLG7HJtmRpcSi2ZiSGxHWuQ04vUJc3A4vVPrOyc34O1/X0VeYRnf/bqasBA/5i3bhstj8NJDQ6gXXV3yYGrGYsanTiPE6s9HHR8lxHrkWYHHctCRw/fpU8msyCKjIoMkvwRuTrgBP7MfgZYA3t35ERuKNhHvE8dzrf6NVau72uX+g0Vc+dAnVe/fe3wknVofvftUObuEEKullEevv3EKJbQKkP+eevJL/ByP25suPaOf7e9QOTVFOc8IIejULqFGgATQKDGSzdv2oxvewEEYoFUGMm6PjsvtoVf7hlx1aVsO5pdS4XRXFTMUhyptS+9gYKfbw5vfL6Rj03hevm0w9wzvwbjbB/P85N/p+cD73PTqt7g9eq223XlVj+oCiVISFxlcK0AC+GPdHpwuD06Xh9fGzyGvsKzG/kh7EP1i2tQZIAEk+kdWBUhmoZFZkV/rGF0abCrcR4GrlLsbDcCmmZESPFKnQnexsWgvYcF+GEb1H5IrN+zF6XITFuzHPdf3IievlC27stm55yATvlte4/pTMxZhYFDqcbAqf1ud7TxekfYI7mt8J+OSn+Pfzf+PGxOu5/uMqTy24Sme2/wKG4o2AXDQmUNGefVCt2n783C5vQFeXmEZQf41B4Rn5RadVLsU5XynutsU5QIyfdb6qtctmkTz7OND+d+PS1mxaS+3Du3KyH7tAKgfHcL73y8h0NdGTkEpUsDwPm2ocLmZusT7Czn9YCFZ+cX0btsQ8AZP05dvBmBnRi5pB/JpXC+ixv0H92rJO18vosLhBuHNJP1VcamDMcM68+f6NNweg5yCUr78+U/G3tSn1rFHYjdZuSiiOX/kbifJP5o4n9Baxzy9/mv+yNuOWZj4uvvD/H5gHWsL9lTt7xLWhE6NG/Dig0P47+QFZOcW06tTI2zW6ixNUnw4VosJEDT8S4mFflEd+W7ffCyaCT+Tnev+eJ4gix+vJN953FmlzPI97C7bQuugLgRbw5lzYD7fpv8AUuKS3ixfRkUmiX4JpJenE2QJIs4nBikld7/4HdvTsomJCGJwzxZ88uNybFYLJk1UBcqhwUceJK8oigqSFOWC0qJZDGs3pAOQuicHq0nj4dF98Pe1YdKqMzpDe7dmaO/WSCnZuiebkEBfYsIDkVKyPT2H1MxcosMCiQyuXuhV0wQ9WiWwcls6EcF+xEfWrrbt9hje8UiASRPYrTW7hd74ZC4/z91AXFQwY67swlfTVgJQP/bEF2d9ve0YClylBFv9aswUO2RV/i4cuhsfkyC1NAsfkxWBd1kGszDRM9IbwPXs1IiLOjakpMxJgF/NatqDe7ckPNQPt1une/ukGvtuTBzEoJiuBJh9eXrTJ+Q4C8l3FTP7wJ9cU/+SY7a/xF3Ah6lPY6CzKGc6/24xnp2lqbgMFwKBr8mHct3bdeln8uWNNuMIsgRi1syUO1xsSs1CSklWThHT5m/A7THQhIeWjWLZtucAvnYrrf5SMkJRJGrg9uFUkKQoF4D8gjI2b9vP5QPaVAVJAnj764XMW7WT+tEhTH7h+lpBixCiqnr3ofcT/3U1+w4WEB8RXGs9t7fvG0ZmbhFRIf5YLbW/Xvx8rDx950B+mLOWoX2TCQqo2f3zy4JNGIYkN7+U9s3jaRgfgdmk0aNDdQBS4q5g7OqJZFUU8EzrUXQLb1rnZxZCEGo7csbm9kb9eH/HTBr5R9MuJIkWQfF8s2cxpbqTy2M70jQorsa1Av3tdV6nc3LCEe8RafcGdy0DE9levA+JpLF/vSMef7gKvRyJRJceyjzFSCkZGjuE1NI9SKeZobED+Cz9SwA6hrYjzFadLfO1W+nfrSmzl2+jTdM4endsxFtfLMRus/LCvYPx6AZhQX742I9jpV5FuYCpgduKcp5zONyMunU8LpcHt0fH4zHQNMGIy9vz1dL1GIbEbjXz4RMjadnw+DMLP89ax4y5Gxk5pD0DT2Ih18O99OEsfl+6lfAQf75440b8fGpP2Z+e8SdvbZuB03CT6BfJ1z0ePiX3Pl5SSjZty8TP10ZSg4hjn1B5zrrCVALMvjQKqLmkyJrtGeQWltK3Q2PMfwk6F2T/xMaiFVwSOYKWwd4K2t/8vpp3pyzB127lnScGExJiJc6n7gWLyx0upPQGp2UVLmxWc51jwJRz15keuN2gVYD8vx/PzO3ubbbwnB+4rTJJinKeKywup7zCVdXNZbOZQULHDoms2L+f1LQcIkL8aVivekzN6h0ZfLdwHQM6NuWS9o1rXTO/sIx3Ji3A7dF59YPZ9OrSGN86ApoT9dTdA7jzmh4EB/rWylId0jTQG2TYTVbahSbVeczp9OUPKXwxJQUp4eUnh9G5XeIxzxFC0C6k9nNcsXkvj7w3DQFMmb+OxNgw2jWpR/3oEFomRtMnajh9oobXOOeHBRvw6AZOl4edO4uJCQvkzXk/M7h7cy7tVJ1VyzhYyJgXvqLC6eb/briEguJylm9M467h3enQTBWRVJTjoYIkRTnPRUUEMnRQG+Yu2sqVQ9rTtFE0LgzumzANQ0osvhqvPzQUu83b9eLRDe57fypOt87ijbtJTooh4rCxRwB2mwWLWUMisVpM3PvUNxSVOnjpsSto0bh2NuqXzOVsLkrj2gaXUN8vqtb+Q4QQRITW7CKTUuI03FWFIJsGxvFFt7HkOItoG3LsAOVUW7sxHYfTg6YJtu48cFxB0pHsyy7wfj63zvrU/azbuZ+fF2/EajHz8p2XcXG7hrXOGdEnmfemLMFqMdGhaT2ufeYLXB6dFZv30q5JPcKCvDP+lm3wzhD06Aaf/7aSnIJSHC4Pj70/nfnvewuDutwefliwHrvVwtBerWqMS1MuTBKBoRa4raKCJEU5zwkhuP/2S7j/9urBwu/8tASjsqtdNyQFZRWHHU/lL0sdIbwDsv/K18fKx6+PZsXaPSxK2cmGrd5p5y+98xtfv39LjWM3F+3hw9RpOA03m4rT+KLrk7Wul+8s4ZXNP6IJwZMtr6qa2u/Q3dy+4gN2lWYzsn43Hmp2BQDxfuHE+4XXus7p4nJ7mPjVMkpKK7h6WEf27MslwN/O4EtandR1B3drwbINe9izP4/cwjJcHh0pvSUZtu/NrjNIuq5/BwZ3b4GPzYJJCMwmDZdHR1S+PqRrqwQ+mroMwzAoKXPidHswCVGjDMAHPy7lh/nrEULgcnu4pl/7k/o8inK+UUGSolyAujVvwNfz1uDRDTo3i6d9o+pxMiZNY8LDI5m+fDO92zYiLLDuWkQJ9cJIqBfGbws2V23z/8vsrxV5WxifOgOP1BF4lwapy8epc0jJ3Q5CMHn3fB5sdjkAW4rSySjPQyL5KX0FDza9/LgqRLs9OmaTdsqqSU/7bR0//rIa3ZBUONz8NPmeU3JdPx8rbz84HCklPyxYz4pNaWzbl0Owv50reycf8bzgwwKdjx+/mlkrtnJx20bYrGaKSisI8vehQXQIv/33Tu587Xu2pmUjgI4t6vP0Lf2rzl22YQ+uynpWhSV1LyysXHh0VUKxigqSFOUC1LlZfaa/eAsuj058RHCt/c3rR9G8/pG7xQ732F39eXzcT/jYLbz8rytq7Ht+02c4DTcmNHpFtOG2hpfVeY1Ie1DVwqyR9iAAMsvz+L+1n+Mw3AgEbqlz7fK3mNjlPvzMNYMxKSWFZQ6CfO18OW817/60lIhgf75+4jpCAk6+FpDFYgIhEEJ6X59iQghG9m3LyL4nVunY49FpWC+csQ0uZl92AYMeGu/tUru+L1f2TsbHZsEwvMuZSMDl8RBV2Z0ppWTfgQLAmy1s1ziOLTuyiAjz5/tpqwgJ9uXqoZ0wqYHeygVMBUmKcoGKCgkgp6iU2976HsOQvHLLYKJDj6/I4a69OTz0/BQA3npmJDM+vYcdu7P57IcULurUiK7tveN0giz+5LuKMQmNuxsNJcJeOyADuDGpD1H2IDSh0S86GbfhYXnudlyGt2CirKye7V2OZA/dI5pVnSulZOyH0/hjSxoNY8PYmZGLBPKKy/hj614Gd27+dx9RlSH921Dh9FBSUsH1I7oc1znbsnIwpEGL2OMLNk/Uqq37GPv2T5g1jfGPj2Ldjkycbu8YpG/mrMFuM3NRclKNyuf6YdXDhRB0a53A6m3pBAf48u5Hc8nJLUUIcLm9mbhAfx+G9D9yRks5/0jAUHWSqqggSVEuYJNm/cn61P1I4JnJs9iekUNCdAgfPTACX/uRZ6t9/8tq8gvLva9nrOLxewdy39PfUV7hYub8TXz34W1EhAXwbvv7WXhwHa2Dk44YIAGYhMZlcR3Jqijg8kXjKPVUcG/jQZg1Ey69+pe8WZhoFlizzlC5082yzXuQElL353GoIqRhSNo2jONUMJs0rh3W6biPn7VxO09O/R2Ap4b0YUSHkxu7VJfv563D5dZxofPrsi2MuqQt43/+AyndZBwsZNxncwkP9qd+ZDB7svLRhCC5UQyDHx5PTFgg/x07nP+OHc6+7AJ8LGauuf1jdEMiqF6GRtdrL6qrKBcSFS4qygWsQVQoFosJq8XE9owcSiqcpGbmsmTTnqOe16VtAjarGZvVTKe2CQA11jg7NCg8wh7MyPq9aRZYcxHVCo+TFXlbyHeV1Ni+6OBmyjwOPNLgy7TFxNpDMIvKRXiFiU+63EOoreZMO1+bhc5N62M2aSRGhWAze//2u39YD2LDAk/8oZwCK9O8WR2H28OK3eknfP7rX86j513v8vLkOVXbDhaUsC+7oOr9wK7NsFpM2CxmerdvRHxUCLPevpP3Hx2B2aThcHnIOFjImh0ZdGnRgGduGUDKpr3kFJaxYVcWlz82gez8EhJiQokKD6TPRU0RAi7q0ojLLm3NtcM7cVm/1qfkeSj/JAL9DP38E6hMkqJcwK6+uA0xIQHoUrJwXSrz1qYCkqb1jl4ksW+PZiQ1iEBKSWK8d5bZW89cxY8z19C7WxOiwo8enNy35h0OOPKxCDNfdnsKf7N3IHKn0EaYNRPSgEJXGXmuEqyamYsjWtI/ui31/Wq2a+X2dD6dvZJAXxvRIQE0iAohPacIkybYnp4DeIO3jz5ZwOatmdxze19atTj57FJJqYNN2zJp3iSG4MDaY55u6NaORdv3oBsGt/U8/gwUQGFpBVMXbkA3JL8s28ydw7uTnl3A/W9OBSQPX9ObK/u0oW/HJiQ3isWkaYRUtsFmMdO+ST0uv6gls1dsp6TcgcPlodzpYnD3FqzZnkFqRi7gzcAtWLOT6/p3ID0zn+Urd2Mxm/DztfHYvQNO+hkpyvlABUmKcgETQnBxG+8084uTkxjaoxWxYYHEhB47A5NQL6zG++TmcSQ3rxmAHKjIJ9uRT5OAeHwqB1vr0mBvWTYSidQk87PXUN83irYhjWgYEM3PvR5nb1kO962agG4YuA0P1yX0Ijm4AQcdRaTkbqd9aEPifEIZ++HPOFyeqvvtzy/GrGmAQK/MZq1em8aM39bjcLgZ+69veOf1a08qUCosLufauz6hrMyJyaTx7f9uIyoyqOazCQ9h7qO3/q3rB/jaiA4LJL+4nCB/O8F+dqZu2YfL40FKmLd6J1f2aQNA+F/qV4H33/Rfoy/hliFduPP1KeQUlLIrM48RT0xi7KiLmbFsc1XWr1Nzb4bvwcquUoAlK3b+rXYr5wc1Jqkm9SQURQG8U/87NK53xABpUcoOHnnhBxal7Diu603Zt5DRKS/x8LoPuWH5OHZlHsQwJCahcWvSYPzNPtT3jeR/O6fz5IYJzM9eA0CgxZfWwQ3oE+kdxyOBr9MWo0uDm1Le5a1t07kp5V3KPE58/rLWnM1s5rq+7WgQFcyf2/bx6eyVhIT44akcvKx7dN54Z9bffEJejzw7hbIyp/d6usHPs9ad1PX+yqRpfPXcDfx37DC+eWEMZrOJgd2aE+hrQwgorXAecbr+1rRsXvx0NrNTtmGzmGnXJA5fu4WyCheZOUVs23eQuPAgzCaNXm2TaBzvzQbmFZRVXWNAn1OzxIyinA9UkKQoyjGVljl57q1fWbEujefe+pXSyiDhaGZn/YkEpAcyv/Hhpie/YuxrPwBwbYNLmNbzZWJ8wnFKN27Dw67S/TXOHxTbHptmxqaZ6RnRArfhodhVgdPw4PR4KNedvHDjALTDaiFpAob1aEVGbhFFZQ4+mLaMBvXDiI0KBkOChHpxISf1LA7mVI+jEgKSW9ResHZfZj7XPzCJMQ9O5p2J85k+Zz0nsk6mn4+VDs3i8ffxZt/qR4XQrZV3xuDWtGxemzK/6tg3ly2l0/iPePqXOdz04tdMX7KZZyb8xvOTZvPrsi0UFFdg0gRCE0zYsYbwbqGMe+wK4jtFsCXnIEIIHr3n/9k76+gqrq4PP2euxp0kJMFCcJdgRUqxohVKgbq7v23funvfKrS0pdRLDadAcYdACBoSCCGEuHtybeZ8f9yQkCZY7aPtPGtlNXfmnJlzh9V7f9ln798eRWiIL5eM6cF9J5mO6vw70XOS6tG323R0dM6IwSAwGBScLhWDQWA01v99daQih2XZOxkY0pE+gfX9ySa3GMYbyd8hK4yIaiNOl8bOA8dxudS6Rq43trmYjOp8rAYTl0UOaXDPfsHtmDvoQVyaRpRXMD8uT0Db5gnhDrRUDzZoR7lsVHc6tWzGgWN5KALCg3wJ8vXCw2zCoCgE+3qBlGQcL0IARqPCtdMH/a5n8cQDY/ngs/WEh/pxzeT+dOnYeOtuzg9bSc8sBiDteCEWixEPq5mRg3+7HUFosA8nas2Wph/mCcdIUouLmLlzBwBzD+7HxxMM1e7EeSkliiJQhGBM/w4sKE+hVNjZkpnBpox0HKrKJwm72HLTrYwf2Y3xI/VSfx2dX6OLJB0dnToKKqrw97RiMjQ0TPSwmpnx4pVs2JbC0AExdX3eNKlx164PqXLZWJS1ne8HPUqwxZ2fMyY8lmHNeiA0wT37f2L/4WzGDu7coNN9lGczZsc+fMr1hHsE1v2+eM1+OO6BSPZAAp99v5UQL08+ffBKEo/nkpxRwOje7fCymvnxqWs5cCyX3u0iMZmMjBjeiTXrDtIuJozo1qdPSv81UkpUTda1/Ojfuw39e9c31k3KyufbbXsY0qE1Izq3RQhBx+gwNu9IxeFw1QoWsNmc53RfgL2HslA1jZ4dIrl2XF8+OhCPE4kIEEgpOVxUVDdWM0NZGzDaYIy1JS/cOpb56/chJUwd2ZNDiyvYk5uDlBKXqiKBGpeLIZ/NZsm0q2np78/x7GKSjuZhVBSGxrZt8G+l8+9ASqHnJJ2EOFMIWAhhBTYCFtyi6icp5TOnGHs58BPQV0oZL4S4Cjj5E7Ab0EtKuUcIsR4IB05sro+SUuafbi19+vSR8fHxZ35XOjo658xzi1YzLyGREG8vFt5zDT5WyynHljgq2VKQRGe/Fty84z3smhOzYuTbgQ8TZm28neVu4urC+qsconNh0ep9vDF7NZomEarEVKNhtZgYEBvNM49NPOP8mhoHVqvpnFqV1DicXPXhdxzOKeT2i/px98iBjcYMfGIG6jEbBgcoKlwyujsP3TqCect38/n329CkZMTgDtx7w4XnJDqWbUrk9TmrAbh72hAmj+rJmqOpzNq5k8mdO3Nll66U22wMnTObMoejwdw9d9xJWkkp7YODsBrdz9zucrH5eDoxQUF8sGMHPxw8ALhtpZ4eeiHNys28/MEKTlgjkLx4vAAAIABJREFU9eoUxYxnp5z1enX+HIQQu6SUff6q+0V09pd3/nDBX3KvJ7v8/Je+t9/C2USS7MBwKWWlEMIEbBZCLJdSbj95kBDCB7gPiDtxTEr5DfBN7fmuwEIp5clZjldJKXXVo6Pz/8jRgmLmxu1lwe6DuFSNshobiVl59I9ucco5t+2cQZG9AkUInukyjRU5CVwY2rVJgQTuiqvfKpDsDidL1h7A39eDJR/dxtufrWP//kwqnVXYbE5S0077t1UdHh6nNsc8FXuP53C8sBQJfLEpoUmRRJYD40l51At/2cvKjUmEhfhSWlGDyWggMizgnKMyB1NzsTtdICExNZfJwIwdcRwuLOT59fkMiIqihZ8/A1q0ZMWR+oq0bs1CufS7ueRWVhDh48vyq6/FoChYjEYuauOuZOzdvDnzkxJxSYkQgvjk4+xacARO+pt576Gsc1qvjs4/kTOKJOkONVXWvjTV/jQVfnoBeI2GkaOTmQZ89xvWqKOj8ydy45yfyK+owiAEBiEI9PKka2RYgzGHcgvwtpiJCPBDSkmerRRValgUE5GewdzbfgIVzhpk7ZfuH8mbs9ewaksyihA8fudonr9/PHa7k2dfXsTxjGIevHvUmS/yG0nLL6bG6bYY6NGyeZNjRvVuz9qNyWiq+71LKamucWCzO7FaTEgpiW51blt8ANPH9SEhKQNV1bh+Uj9yKipIzM/HpWl4GI3kVFTQws+fF4ZfREJONvlVVYR5eVFUXUVWpfsj+2hJMfetWEZyYQHPDB3O4JYtAbi8U2dsLhcLk5M4WJDP8pxUPMPBuzZ3XgjoGP3ntFPROf9R9e22Os4qJ0kIYQB2AW2BmVLKuF+d7wVESSl/FkKcSiRdCUz61bHPhBAqMA94UZ5L+YeOjs4fgrN2f8VoMDD7+svo0SIcg1L/IfnZ5njeX7MNKWH29ZfRu1UEj3WawhdpqxkS0gWb6uCWHe8DcHWrYdzQZuQfsq7P5m1n7pJ4rBYjDqeKELB8QyIXDWiPxWLilecm/yH3OR0rD7gjNALo0SK8yTFP3jGG2M4tMZkMlJXX8P7n69A0SfvoUMZf1JUAP0/atTl3wdE8xI9vX7u+7vU9y5biqm1W2yYgkL4R7qq6kpoa8qvcJfy5VVUNrtEvMor1aWlUu5w8uvoXtt50KwCKEFzTvQfJhQXszctFCpAWgaeHiZcfmkiNzUHPJqr2dHT+bZyVXJRSqlLKHkAkECuEqGtEJIRQgLeAh041XwjRD6iWUh446fBVUsquwODan2tOMfdWIUS8ECK+oKDgbJaro6NzDnx83aWM6dKOpycOJ7WgiNFvzeG1ZRvqStbXJx/F5nThUlXij7m3YMaE92LuwEe4I2YsB8rS0aSGXXOypTDprO97ur+JXC6V2T9sobLaTkl5de142HUgg7i9xxqNL6+o4bmXF/H0iwspLas+h3d/eqYP7IFBEVhMRkZ3jWlyjNFoYOzwLowc3JHLx/ZEURSkhK3xR9mTmMETry/mged+5N1P11J2Cn+j0yGl5MEVy1l55AgGIfAwGrm6e/c664OdWZlNzovw8eGZYReiIfEwGmnt794KdWkaNyycT6eZ7xHk6YlBCKQAV6jCu69Owc/byvPvL2fCrR+xNeFoo+tWVdvPyc5A5++FBDTEX/Lzd+CcYmpSylJgHTDmpMM+QBdgvRDiGNAfWCyEODkZayow91fXyqr9bwXwLRB7int+LKXsI6XsExJy7iFrHR2dxhSUVrI7JQuXqtE5IpS3po5jUo9OvLB4LdmlFXy3Yy9HC4qRUuLrYQXA02xifPcOACSWHeeu+A/5MOVnLmzWjRCrH1aDmZvanHnrq6S8mssfmM0F173Dsk2JTY6RQKuIIExGBVWt/0J2utQGjXfLymvYviOVTz7byMatKWzelsKnX27+HU+mIXvSczAoClJKdqdnn3kC4OttxWBwb7t9u3AnOfll7Nybzrzlu3n9w5UNxian5fHp/G2kZhSe8nopRUUsTzmMU9NQpeTF4SOY0rm+Ye6QVq2xnFSN6G0yExMYxNeXX0G7oGB+uOJKXhw+go8nuAP5+/Ny2ZGVhc3l4qP4nfhaahP0zQoGg8L8lXuosTtxulTmr2xolPnkW0sYfcNMbntqLi69+a3Ov4AzbrcJIUIAp5SyVAjhAYzEnXsEgJSyDAg+afx64D8nErJrI01TcEeLTowxAv5SysLaZPDxwOo/5B3p6Oiclpyicq587is0TWNQ19a8dtt4wJ2H0jzAl8KKKhRFIcjbi18OHGZtUioAlXYHwd7uHmHP7P+aXFspSWWZBFv8+H7go2edi7Rl91EKS6tQVY05C7YzdnC9w7PLpXLXsz+w/3A2Pt4WnK6GX8Sx3VrSrYPbl6iiwsa06z+qa6dxgrgdqb/puaQdK+CNt5YTHOzDNTdfwO1fLKKw0r1Og0Ehv7zqjNcQQjDrlems2ZxMt46RPPH6IiqqbLhcGkiJprn9ixwOFw6Xym3Pf4fd4eKTeVt5+b4JDI9t1+B61TYHj76yEGeYitEkaB0UyCUdOzZ41hG+vuy89XY+37ObUpuN2/r0JcTLq+58l2ahdGlWv93XOiAAi9GAENC1WSjPDLuQL/fuYUBYBI8/t5CikkqEcG+/jhtWL8bsDhdra93WD6flk51XSovm9RYNOv8UhJ6TdBJnk5MUDnxRm5ekAD9IKZcKIZ4H4qWUi88wfwiQIaU8OW5rAX6pFUgG3ALpk3Nfvo6OzrmSklWIJiU1Dhfxh+q3aoQQfH/7NDYePkbPFuGkF5Xw6E8r6qo0JG4hBRBg9iHfVoZDOnn/8BIKbWXc0W7cWd2/W7vmKIrAYjYyrG/DLawjxwtJSXdXq1VU1rt6Gw2CGyYP4PrL+tcdy8wuwWZv7D2UX1jRwLDybHnn/VUkJedgNudTFKCRV16BlODvaaVfdBTXDu51VtcJb+bH1Zf1Q0rJq49dwqGj+WTllOBwqPTsGsmoq96j2u5Eegi0k3atZv+0rYFIcjhdvPLJSnJyywjMg4poidNfJS4zk3bBwRwsyOerPXu4pENHLm7Xjjv6xvL65k08vPIXnhgylJigIByqis3lqo8WAf5WD1ZfewNf7d3DvrxcCqqqePmikRxKy6OkrLpOmP74/o00C6pvUWM2GejbtQV7krKICPMn/Ff96nR0/omcTXXbPqBnE8efPsX4Yb96vR73FtzJx6qA3uewTh0dnT+I2A4taB8VwsGsfAJb+/De6q3cNbw/BkXB39ODiT3crtD7MnIxCMEJGdIyyL/OZPKNHjcycdML7ugIks2FB89aJLUID2T+2zdTUl5N64iGTXIjQv0wCwW7S0MqAhSBj5eFCcO78uWCHWxNSOO9p67Aw2oipm0oLVoGkZZW2Ci74ZKpM5j17jVERpx9pCOiuT+HDucA0LtVc7blZYOAOy7qz9WDGn0EnpG3PlnN0jUH8PIw89U71xPg78VFU9/BXtuQV1Olu48KYDQoXNCrdYP5361IYM0Od+RGSECFY6WlTJ/3IwZAKAouTWND+jH6RESwIyuTz/fsxqlp5C6r4NNJlzJh7tdUOhw8OWQo13avfw+qpvFh/A4cqsqWjOPsvf0uoqOCMRkN2B0uFCHYsiuNS0d1r5sjhODqS2IZ1KeIicO7kplbSmJKDkP6RuPr7XHOz0fn/MTd4PbvkS/0V6A7buvo/Muwmo18+siVTPvoO/Zl5HC0uJiY0CAu7tq+wbiRnduyLvkoybkFTO7dhSv6dkUIQamjipkpS7EqJqpVd7Tn2tZn3+8rs7CU7zftpWd0BG0i3Tv15RU1bNl2hCXL92ArqKn9YJI4vRSocjF3cTxSQFJqLrc8+CUvPjqJ/YeyySooQ1gVpF1DSLBaTdhsTmw2J5u3HWHq5CZTHZvkgXtH4xniyYo9hzmeV8a8e6+ipLyGksxycnJLKa+wkZ9fzoD+bevct0/Hms2HcDpV7AYXB4/kMqhPNFaLEbvD1UjU3Xz5QK6b2HCtinC3FNGQKBIspaBZJE4fgQqI2pwgVdUQCHZlZ+OsrX4rqbGxMf0YNqcTl6bx5d49DUSSUVHqEr9Ntb8bDQb6dW/J+rgUjEYDVmtDX6utCUd54q0lCAHJqXmsj0tBSsncJfF889b1Z/2cdXT+TugiSUfnX4qn2eSuxKr9/deYjUbevHJso+MzU5ayMnc3CoKBQR24MXoUHXzd5eJ5tlK+PbaeGJ/mjI9oWqDc/sF8MgvL+H7zPr5+cCotQgK49o45VJRW1yVpC9x/0Souic3uAKsAo0BTJRnHinhrxkp8Aj3rojIGo8AkDEwY042FS/dgNCrE9mnd5P1PhclkYNmewxSUVrJ2Vwp+BhOLftgFgKIIjEYDiiIYNrg9/33Q/VwW/7ybdZsOMf2KfvTt3fB+V4zvxWc/bCPQ34uWzQNJScvn+YcmMOf7rfToHMlXK3e5rQ0As9FAbnUlV6/4nsyqcv43eCxXjumF3eFk36Fsdu09jme+xFoIBf0kiqIQnAgV/hq+lQZyskqJ9PXFqChoUtK7eXMuaNESs9GIKiXTunQjJ6+M0vJqqmscPPnKQmKsJrpP7sDU2B51EcJHbxtFy4hAgvy9GX1Bwz5zGbmlaFLidKikZRQCErvDRU5B2Tk9Z53zH/Xcarr+0egiSUfnX8qbU8by1bbdtAryZ0i7UwuKkrJqklNz6d4xEk8PMx4GMwoCIQR9gmLqBJJLU7l22/+oUu0YUAjzCGjQ8PYEdqe7b5gA7C6VG979nmO+diyawKOkPklHAAa7dIsIBwhNgCrRJBzPKOaRK2LZm5iB2WTklScuJap5AJ6eFqZe0Q+rxYSX16nbqpyKFqH+VFTb0KTk5yV7645rmkTTNBwOjZTUPACyskuY8fE6HA4XiQezWLHwQRSlPkZ0w5SBTJ/Ul4LiSm78jztRXgiB3eFi/6FsHrhtBD+sSiAs2BfZwsCgH2ah1WaAvZWwiYtbtqPrwCgG9G3Dzbu/cT8TDZZefjWRof7c98yPHMsqRggIC/blqjbNyK+qIn5tKsnfp/F9rgfbb76VKoeTDesOcdVLszEoAl8fD6qqHVRVOzAfctJpXLO6NXt7Wrh5StMNgMcP68yOvccoLKnk8TtGs3TdAbbvOcatV/6+hsE6OuczukjS0fmXkJldgofVRFCgNwABXh7cO6KJNhtAXmE5DodKcKAX19z3GXaHi+BAb759/0bujBlHkNkXD6OZyyLr5x+uyKrbflPRUGXTJeLv3TqJT1bG0TcmimZ+3iRl5iONArufwKOkflx4qC89urVE1VTGjOhKZEQg9z38rTsiUlbNYy/Mp39sNK8+eVmDaq8T7++38NZ9l7B2VwptI4P53xsr6gSRh9VEx/Zh5OSVc/+dbrNMq9WEwL0t5uFh5uTiPpdL5fl3fiYxJZdhA2LQNInN7mpwr8++3cLiz+4EYNSCT+sEEoC/xcq4xZ+TXOK2BggNNqIUapiNRpoH+OJjsfD+M1P4dvFOlm88yNtz1vDsfeO4vXsfJnywC1XVWLRmPzdOHsCOhDRmzFmLy6XhomGj3YQDx8/62Xh5WvjfY5fVvX7ghuFnPVfn74NE6DlJJ6GLJB2dfwHzF+1i1pz1CCF457VpdGxf7x69MS6FD77cQM8uUTx82yh2J2bwyEvzkcD1V/SnusaBw6mSmVOC06ViNZm5rk3jHKRIz2C8jB7UqHZCLf7EBrZrNAagY1Qz3rppAgA2hwsfDytVNjtmkxFF0dBqS74cTo1HH7wYgFVrE1m97iDtYkIpKKrA6XJLiu27jrJj9zH69Tq3rbVT4Wk1M35QZ7ZsTyE9owiDQRAe5k9oM1/2H8jEy8tCQIC7vD4o0Jv/vXIlCXvSGT60QwOhtnNfOtsS0qixOVm+LpGwZr5k5pRw4YB2rN6cjJTu7b0TXBrdmTcTNtcJy6KaGtIrS+vOF8WqtBEBvNJ7FH4+7iRpLw8zq7Ykk1tQTml5NZt2pjK0XwzNAr0pLXebVj75ykIiwwPqninAxDE9+HFxPAhBbM8/5rnp6PxT0UWSjs7fFCklR48V4O/necboybqNyTgcKgZFkLA3vYFIemXGCiqq7BQWVzF6SCd27jmGw+FCAvuTsrhoWHtWem7DFC7ZXJzI8NDuTd7D1+TJ9wMf4VhVPp38ok7rmySlZP+xXPy9PZj/2DUkpGbRNyaKuO2pfPTpBlRV49Ybh7B63UF27Unnl1UH0KQkJNibe+8YwVsfrXLnLCkCL89zb1x7JnbuSsNRm++UlV1CVlYJEnCV1bB63UGuv8q9xdSlUwRdOkU0mh8ZFoDTqQJQWWlnxgtTadPCnaQ+sHc02xPTKG6r8VzcGh7uNZg7uvVnUHhLbl4zn8Kaauyaqy4vC8ClSSr2VHDPzz8yuE80rz48CSEEraOCKCypREqIDPPHaFD48o1r+Wp+HD8u3MmB5GwKiytp0yKI1PRCpISfV+/ji/dvIK+ggu6d9dYjOo3R9JykOnSRpKPzN2X2l5v4cWE8Qgg++N/VRLc+tSP9VVf256kXF+LlZeHCwR0anIsMD6hLxG0W7MPFF3Zm6Zr92B0urro0loqQctYlbsWmOnjv0JJTiiQAP7MX3c1njk7M+HkrX63bhaZJ/nPpUKYO6QHAxSO7cvHIrmia5MrrPqSwyC0ATiCEYOLYHvTt3YqFy/fSpWNzunRoLFJOsD8pi607UxkxpAPRrZqdctyvmTS+Fxs2H6aqyo4mJVK6hZ3JaKBX95YNxmbllvLAcz/icLp4/fHLaNcmlKjmATQP9eN4dgmKQZCw/ziB/p48+cZiKqvsBI0NYmlWMmQLPAxGHukzlG4h4fw88TrGLv6C3Gp3g1qrwUgbv0Cy80sx5GtouKvMSitq8Pfx4Om7x7I14SgtwgNoX9sfzsvTQt9uLfn2R3eLzfyCCh5+9nIef2lhXXl/RHgAEeEBZ/08dHT+regiSUfnb8rm7SnY7S7MZgMHDmaeViT1j43ml4UPIgR1EZ7c/DL+++pCnE6VG6YMZECv1jQP9QdgSW2ujBCC5IIs7N96Q5mBoEm+p7zHubA9OR17baTljQUb8PPy4OLe9RYELpfaSCApiiA40JuCwgrCQ/254/qhp71HeUUNDz79A3aHiwXLdrP0m3vOqnQfoHXLYBbMvRuHw8X8xQkIIYjt3QovLyvNQnwajJ2/fDc5+WVICV/O286LD7vbf9xw5UBeeHcZUsKho3mUV9jYn5yNqmrkHLQj/ARCUFdZBrA9N4Mqp9tBXACalIQVWqjZIHBoEpNRoU2LEGw2JxP+8wXlFTaevmdsnUA6QY/OURiNCi6XhtGo0CzYlyfuH8uO3WlcPl63qNM5NVKCquck1aHH1HR0/qbceNUFmE0GgoN8GDywcf7P3v0Z3P/oXObWRhQURTTYApu7KJ6j6YUczyrm6PFC2rSsF1lC1I9NP1iGudIKLkH5pt//4elSNcbHdsSouD9+NE1yJKdh7zKz2cg10wbWijrw9XH3j0tOyWXOV2fXm83pUtFqVZbTpbLvSBZTn/qCR2YuxuZwJy8XlVUx/ZmvGPvgR+w7ko3TpfLiZyu55ZXvSMkowGw2MnVyLFde3pfWrUIaCSRwCxKzyYjFbKR31xZ1x0cO7khYiC+qqrFu62HsThdGg4LVYmJCQDumtuvG2FYduLVLvVVCv7AorAYjCu6tNoemslZkUGV0IgREhQfy3L1j2RSfSkWlHZeq8dXCHY3W9OPiXe5WKIC3t5WWkUEkpeTyy/qDfDZ3S4McJR0dnVOjR5J0dP6mDL2gPUMvaH/K80++sICKChtJh3Lo3bMl7dqGNTjfLjoUs9kdxegQHdrUJQDo2DYMgcBqMdKvNtHXrjpRpYan8dzL7O/+aAF7jmbjaTUR4uuNt4eZ6bXbbSdz4zUXMGlcD/LyyzmYnM3szzcigeZhZ9cOIyjAm8fuvZhf1iUyeUJv3vhmHalZRWQVlLFmZwrjBnVi6ZZE0rKLcKkaM+dtZtKQLvwSl4zN4eK5Ob/w9TNXn/E+g2Pb8vFrV+F0qnQ46Rmv2ZxMRZUdg8HdIHdY/xhie7SisspOcFtfLlv2NQoCTWq8O9SdyN7M05utU+7gpyP7eXLbKveFBBT30QjdZCQts5Dn3l/O43eMwmhQEAJGNCGQ07OK6n4vK6/G6XQxd4FbTG1PSON4VjGtooIazdPR0WmILpJ0dP6h+Hhbqa6ygwRPz8ZiZtzwLjQP9UNVtQYRkF/TIiKQ72beRH5RBR3bhpFcnsndu2ahaiovdruGQSGdzmld8UeycLpUQPDMtBF0b928yXFZ2SUk7D3OjvijHEjKYuTwznTpHMnIC898v+pqB0KBEUM6MmKI2xSxVVwimfnuirHI2r5jHVuFYVAUjAYDPWIi2LIvrS7iExrgjholJmUhhKBTh/p1Op0qr729nKPHCnjw7lGNkreLSqp48f3lOJ3uZPmXH51Ex5j6ZPmpy+ZiV93bjRuz0hrMFQLiczPxNBipVt3J4yYfExazgsOpYjYZiG4RwryZN1NZ7SAyzL/R+795+gWs23yorvnvhGtm0jIykLzCCrw8zIQ2ERHT0TmBbgFQjy6SdHT+obzz2lRWrkmkc6cIIps3TtKtrnHQLNCbDXEplFXUMHxg+1NWpAUHehNcW0G3Lm8fNtX95bswc/s5i6SbR8byyco4urQMpVOLxhGs7TtS+WnRLvYdyEBq1AoqWLJ8L2vWJ9G2TQjRrU+dhB2XkMbjLy9AEYK3np9C145uAfPszWP4bmUCSOjU2h3xie3Ugs+fmkZZlQ0BfPt2AlK6HbBfuPVilizfy4yP1gDw4N2jGDq4PSaTgc3bUti8NQWb3clrby/ntZevwMfTgo+Xe1vQaKxv+2H+1TYcwMFit/8SKpRV2imoqSLEw20tsPzYIX45nkKNWu+r1DYgkJiO3iQkZtC6NgLk7+uJv69nk88gKNCbn7+5hxff/pk1m5KprnHQsV1zHrm7K61bhOBh/eMrAnV0/miEEHOA8UC+lLLLr849BLwJhEgpC5ua/0egiyQdnX8ofr4elJZUsWrVAdq0CsHPt74JaUpaPnc8Phd7bW6O0aiwKe4Id1w7hNDg0ydnD2nWhXkZW1Clxvjmfc95Xbdf3J/bL67vee10qjz93HySDuVw603DePuDVXXl8ydQFIGmSaprHKxel3RakbR01b66+as3JtG1YwRFpVVc/+RXFJRUIYANcYcZ2ieGwb2jaRvpzsU6llOMxF3B1jzED0+rmcSDWdjtLoSARb/s5fkvVhLg68mTN45CIrFYjEgDTH34M4wGhTkvXEWr5kH4+Xjw9jNXsHnnEUYO7ojRWJ+cnVdYTpsCfw5WFiFUd+7XnE3xPDrKnYge7uWLdIKlyABBgnA/Hx7vMYxHvp2HqkmWrj3AzVMGEejXtEA6gcGgcOGg9myKSwEEwwa2o2tHveRf5/S4zSTPm3Tlz4EZwJcnHxRCRAGjgLN3Q/2N6CJJR+cfgNOpsnL1AXx8rAwe1A4hBPMWxLP45z1omkTVNB57eHzd+O0JaTicrrrqMadTY82WZFLS8vnm/RtPe6/Ofi1YPOQpXFLD13T6L+qzYfeedPbsy8Bmc/LR7PUYDYp7m8qgENrMh7Gju1FWVsOCJQkoisLAftGnvd64EV3ZujMVRQhGDHHbHayPT6GorBpwJ0QfPJpHcloeny+KY8WsOzmYmovBIJj50OUkpuUxpr973rQp/dh/MBMhBJmVFaiapLLGQUm1jTdfmkJmVglfrIrHUeEWZbsOZtCquTvS061jBN06RiClJDe/DD9fD6QG0+/6lJw2EsVS+0UkYeXBI4T6+BDgaWVit460d4VwqLoQi8PAbd1i6RochsFsQHOoeHtb8PGykJZbzJKdSYzpGUO7yKZF4+D+Mdz/4BhsLif9e7f5vf9UOjp/KVLKjUKIVk2ceht4BFj0Z69BF0k6Ov8AZn60hhW/7AcBDz9wMRdd2AmL1YQQAkUBq6VhA9vB/dry1fztVNfUt6iQEiqr7Wd1P0+j9Q9be4va7SOr1USH9uHcfMMQ1m5M5oIBMXTuWJ8HNHVyLEajoUFErCn6927DrP9dzWtzVjNnSRwt41PYtjeNX28kahJq7E6+WLSdb5fvAgkP33ARF/Vui7eHezuqZVQQ33x6KwAf/7SFr5bsxGhQ6NkxkrBgX7p2jkR6KLz0yUq8PS0M7tlQwFVXO/j0uy0sXLYbD6uJl/57CS6niuISaGY40cvEpCi8tXoziiI4mJPP4dpqPynB38PKL3sOUx0kcFVBy7b+aFJy+atfomqSOat3sO6l2wjwbixYlyYk8/yiNQggt6qKu8c03YZGR+dk1Eb/t5w/CCEmAVlSyr2nM6z9o9BFko7OP4C8/HIcThdGo4HCwgoALpnQi/KKGtLTi5h+Zf8G41tFBtGudSh7DmYCYFAEJpMBIeDIsQLatjq159LpKHNU422yYhANw/U7Dh5n6740JgzuTHREcINzYWF+zPnoRtIziujVoyVms5GYto1zlc6lJ9ucBdtJTM1BEYId+9NRNYmn1cT911zI6m2H2HEgHQCDQZCYmovd7gIBny+K48WPV+JhMTLvnZsJ8KkXHrdOHsSkC7vi42XF86ScnrGDOzNyQAcMitKgwe2XP25jzrdbQLr9jgwGhaLSKoYNasfaHSkUtgVZq10DvDw4XlKGUSisOJhS57Qd6e/L6E4xbEs+jlAERh8TLUL9sTtdqLVl/FJCSnYhse0aJ9+n5RfjVFU0TXI0r7jR+ezicvLLK+neMvy0Duk6On8SwUKI+JNefyyl/PhUg4UQnsDjuLfa/hLOm41HHR2d3849d4yge7cWDBoQw4Rx7nJ6p1Nl4aIE4nYe5Z4Hv0FV6xvO1tgcdQIJIDTEF4dDpbC4ik+/2/Kb1vDes3tdAAAgAElEQVTS/sUMX/0al254jxqXo+54XnEFD767gG9W7uKWV75HysYePeHh/vSPjcZs/mP+bosM88diMmI0GFCEwGwy0CzQh4nDunLoWF7duNYRQdx/9YX4eFsRCDJyS5FSUm1z8u3P8Y2uGxrk20AgncBkNDQQSADzlyagaRLF4DaN9PPxoHe3ljz30ESefmYS0lQ//tVLxjAougVmg4H88sq641ll5aw9dJSurcLo0jKMFiH+XDOsF76eVvq2dSekhwf40LNN067jVw/uSe82EXSOCuX+cRc0OHcou4BJr3/BLbN+4qp357I+MfUsnqzOPx2Ju7rtr/gBCqWUfU76OaVAqiUaaA3sFUIcAyKBBCFE2Gln/Q70SJKOzj+A5uH+vP36tAbHCosqqK5x4HJpOBwuHE4XHgb3F7zVYqJtqxCOHCsAYGCfaJas2ocQgq4dmi7Jbwq76mRD/iFaewWzKHM3qtQosJWTVJ5Nr8BWgNs88oQsOlGp9mdz+5QLiI4KcXsxBXiTeCSH4f3cnlK+3lbKKm0ADOzRhubN/KiosvFr7WYx/r6Px1HDOjNvaQKenmZmvDyVpJQ8MrKL8fONoE/LCIK9PCisqmFi1w6E+/kQHRzIpiPpDa5hd6kkZGTz/JerKKtyr/nad75ny2t3MfveKdgcLiwmwymjQIHennx6xxWNjhdVVLMvPQcJ2B0qB47n8ciXy/j87il0imoYxUvOyic1t5jhXaPxMJsaXUtH569CSrkfqEvAqxVKffTqNh0dndPidKrE70ojKiqQyIhAsrJKuP2eL1FVDS8vC1dN7d+g7FsIwWf/u5b9ydn4+bgdmUcP6YjN4aJHp7OvgPpPwnfEF6UhJQwKacum/MMEmL1o71vvCRQR4sfj141k3a4Upo/q/Zds6xgUhTGDOta97tim/g/NR24YwYNvzAcg0NcTs8lAVFgABcWVmE0Gqmocbifrn3cy5eJe+Hr9tvyrO28YxuQJvbHZnbw3ew17EzNBwjsvXslja1ZTXG3DoAh6RoXT++UZGBQFkyJwaRKLyYjN6bYAWJl4uE4ggVt0OlwurGYj1nOIvOWXVeLnaeW1RetZEJdIiK8XUUF+HM0tcgtEAZU2R4M5R3ILufa97wFYvDORj26//Dc9C52/E+dPdZsQYi4wDPe2XCbwjJTy079yDbpI0tH5B/DsiwtJ2JMOEj7+4Hp2xB/F4XBXr4WH+jFtSv9Gc4QQdOtYv01zstnh2ZJSnkeN6sTDYGJCRE8e7zIRf7MnJsXQYNy4gZ0YN/Dc/JT+LLw8zDhrW3a8+80GenaI5OOnp/KfNxeSX1JORbU7pGR3uDiUlkffLi1Pd7nTcux4IY+/sgCHwx1Bs1qMZOWUklJQK0wkzNwQh1PTkEiGxrQmtlUUszbuqBNJVkPDj2l/Tyu+nucm3N5cvJFvNu8GCS7N/d7Lqm28NG003lYLM5ZvoUerCPq2bSiQM4vKEAJqHK4mc5p0dP5MpJTTznC+1Z+9Bl0k6ej8Azh0OBebzYnVaiL9eBH9+rbhsy83I6Vk0oSeqKrGzI/WciQ1j7tuv4j2MX/MFv5TXSfx0oEldPANZ3BoO0zKuX+kxCcd57FZPxPk68nM/0wmyM/rD1nbyTicLj5fFEe1zVFXuQYgpeSVT1cyYVg3DqTmNJq3PyX7d4mkLTuO1Akks8lAbM/WDB3Yjh6p+9idkYMAYltFsirpCEaDwt3DBtAxvBk5ZeV8s3MvZoMBP9VMxknXvHPcQG5+/0d2p2bTPjKE2fdcgSIEdqcLv1NEvRbHH8R1Uk4auLfiOkWG4mU1M/OWS5ucN6hDK4Z1jiYxI4/HLrvwNz8Hnb8X2nlc3fZXo4skHZ2/KbsOHKekrJph/dtx710jeHfGKtpGhxLbpzVms5F5c+/Cbnfh6+vB5q2HWf7LPmw2Jy+/toQvZt/yh6xhULMYlg1/8Jzm7E3JIi4xnTEDOtIiNICZ87ZQWlFDVY2DX+KSmT7qj+9S//2KBL5euhNNk1wYG4OH1USNzW1/UF5px2xsuL2gCIEmJTkFZb/rvhNGd2fp6v04nSpSStq0CiE1LZ+H+w3gY+se1qccZVniYXpFNeeDaZPwr40QPTp6KNNjexDo5cne1Gzun70YD7ORT+6ezNG8EuJTMt1+T8fz+G7jbj5dtROb08XjVwzn8oFdG61j6qBuzFoVh5RgMRq4c/QArh3aG4MiWBB3gPzySq4a3BNva8P2NSaDgdeuGfu7noGOzt8ZXSTp6PwN2RKfytNvLQEB+5KyePDmixjyq2a3FosJS60/UoC/F1JKTCYDQUGNS+lT0wt4+s0leHtZePW/lxDg/8dEc3KLK5i9aBttmgcxbVQvCkuruPONn3C4VD5ftpOf37yFvp2iOJJZgJTQufWfVqRSh6fVzOqP72bG3I0kHc3lnquG0qF1KCu2JJGYmsv0sb35YlEcSFi2OYm7pw/Fz/v03kynom3rZlx6cQ/m/7wbKeFAUhZzF+xAAHnhGgS4xVlCRjbeloY5Yy0C3T3ZBnVqRdyb9yCE+7jdpSKEQEqJEIKiimrsThcuVePHzfsaiaT1iamUVdv48q4ryS2toKSqhgHtWmA0KPyckMzLC9bh0jSO5BbxxjXj6q57MtV2B+sOHKV9RDBtwxpaOOj8s5ASVL13Wx26SNLR+ZuRk1/G1wvjcDhVNClJyzx9YYdLU+nQMZwXnrmM9PRCxoxqHGmY9dVG0rOKMSiCWx75Ggk8ed9YenaO+l1rfeLDpRxIzcEkFHy9LPRoF1mXE+N0qfxv7npeuPViBnVtjb+PJy3DGveYOx02u5MXPlpBXlEFj98yijaRTX+BXzmmFzV2J9U2B7dcNhCDQSGmZQg7DqSzOymTztHhzHxiSt26Fq/bT1WNAx8vC14ejZsDn8DlUjEaDVRW2fnyh214epq5+vJ+dW1I1m85hIeHhcH9YzAYFCxmI7v2pSMl+FQZsde+3R6RYRgNp06WPdleoFurcGbfO5nVu1MY26cDPp5WFm5PROJiyuDuDealF5Twn6+WYXe6+GHrfhTFbaJpEAqvXDWGKrsDKUHTJMWVNVz84qfklVXy4tTRjO3doe46d3y8gKSsfJAw7+FriApu3FRXR+efiC6SdHT+Zjzy6gLSMgoRCCJC/bn/huGNxhyrLGRvcSZ+Zg8e2vkjilD4/ILrmdy76V5r7aND2Z2YiUN1kdkiH5Fn5L1P1/LqS5ewKDOe9p7NqdrvpFmID316tz7rtQohUGokmqry1kdrmTfzZkb0iWHVzhQURWAxGxFC0D2maZ+fM/HzpkQ2JaTicKq8Pmc1s56e2uQ4s8nIrZMHUVZew7ylCWTklLBkRxLgdtK+qF97wkPcPetMRgPfvHod+1Oy6dY+opF4sTmcPDNjGXH7jmF3uLhidE8cZXZWbjiIogi8PMxcMbEPOxLSeOndZagujd7dW/LGM5PJzi1lf3IWqqrx5H/GsTo9jbbNghjXtUOjNZ+O3tGR9I6uT7Je+9Jt2J2uRgndqlafh+TSNKh96UJjc/IxnrxsOMfyi8krq6RLZCgf/LIdl6rx0artDURSWn4xNocLD7OJrOKyOpFUUlOD3eUizMfnnNavc35zvlS3nQ/oIklH52+Gy6WBBJNJYVjPNgT4NNwKKrRVcsX6j9GQGBDYNHeV1Pz0BDr7N+2BdNPUQYS38uWFQwtwhjrABe0yQ7lr52ekVxXiscIDa6oFRQief+ZSYvucXR+w/15zEdc//BUaEiklxzIKee6WsXRqnUBFtZ1rxjQUbctX7GPR0t1MHN+TsWO6NXnNtGMFPPvCQjw9LUy6ojeKcIutiGZnjm489doi9h/MxKVJ8BQgBAZFwcvD1GCbyc/Hgwt6Nd0jbuWWZLbtSavzfJq3ag/j+nZwu/DVRmUAyittCNwl+2UVNQA0D/Pn65k31V2rc9uz96Q6HRaTEYup/uO8oKSS71bvpn2LEJ6+/CKW7znEziMZuMu7JV5WE9Mv6IHJaOCRScMAOJpXxKyVcVhMRi7qGgO4E9s/XLkdXw8LRsXAgHYtqKixM3PFNnaWZbMpMx2DELwyahSXd+n8h7wXHZ3zCV0k6ej8DVBVDUNtROPVRy/hk7mb2b7xMEvm7WLjqiTmfndn3Rd8gb0CVWrYNRcCMCDQkHgZT71tJISgX6/WKOXuaIOHyczDt4xk/MY9aEhEqcDpUDGbjeTllZ/VmhNTcrj7uR844SRpd7h4+t1lfPPWdVw1uk+j8ZWVNt567xdcLo233/uFCwbG4NtEn7ZPP9vI8YxiFEWQfbSIVx+YREFxBaNP8kU6FRWVNlRNIgCrQ2CwKtw7dSiX3zgLq9nEjFen0TIy6LTXSE7La2CK2b9bK+65aTieHma8vSxcNq4XAMMGtefQkVyOZRRxz02No31/Bi6XyiNP/cSWzEykye003iYimIgQP3544CrKamx0b9m8kTs4QJvQIJY9cSMHM/N4/qfV/BS3nwfGD2bO2p3YXSoWo4HLB3Thto8X4HCpuIwSQkCVkgUHD+oiSecfiS6SdHTOcz78YDU//bSTjh2b8/Y7V9MyIpBbrhjIjl+ScKgaxcWVaJrEYHB/8XXwDSPcw5f0qmIMKEjhjgh8eXQ7N8YMwt/cuBEqQLDFh5l9b2BbYQoXN++O0WjgzV5XMStlDW1uCiXlx3zCQv0ZNeLsvgzj9h7D4XQ1cLIurajhwOEcBvZqHIkym41YzEbA5f7d0vTHU/t2YexKSEciiW7TjP7dWp1yDfsTM0k5ksdFF3bCz9eDpx8azwefrSesmS8xrUPp27MVb81ahd3uwm53sWLNAW67bugpr6dpkkVr9tW99rCauO+aYfh4W7n/1hENxhoNCnfd+NeWzR9JzedgUjbSx/1v7lQ1ko7lkZJRQExkCDdO6Fc31uZwMmvBVmrsTu66/AJ8vawE+XgSd+Q4eaWVSODp71fWjXe4VLalZCCEuxedOOnf9aY+f3xFos7/D5K6liE66CJJR+e8Z8GCXQCkpRWQmppHhw7N2bTxUO32EAwcFIMQwt0nTBEIITAbTEjAIASythLKKBTMipG3E1fxddoOhoe15/XelzeoZOoZ2Iqete1EALr4RzGj7/XuF0PObd3DB7Tji/nb64wbwS0curRreovJbDbywfvXsj0ulf6x0XWVeb/m6ukDad8uHA9PM107N3YHtztcHM8oAgn/eeIHNE2yYvUBPn7/Olq3COaNZybXjS2vqOFoekHd68Ur9zFlUp9TVvcpiqBVRCDHsorRpMRud7Jh5xGumRh7Vs/kzyYyMhCr1YRflQNDqJXgUF+OZhViMCiEBDSsavx2ZQI/rtmDJiUuVeOpG9w9Q2Ojo/h20x6ctb5KQgDSvaXXoXkw1w3rw8GMPKYM6U65amdQyxYEejYtvHV0/u7oIklH5zzlRI5Mn76t2Z2Qjre3laioQHYnHCMlJRch3IJIIJgw/n8oiuCBV8cSFunHs93H89SexbT2DuKmtoP4MX0XI8M7IYBPj2xBAsuyDjAuoivDwtufaSm/iVYRQUSFB3A0owiA5qG+zHj6Sny9rThdKqqqYf2VEGoRFUSLqPrtLk2T5OeXExLiU7fdKIQgtm/DSNSylfuY8+Vmmof5cTyzhJoaBwEBbqHjdKoUFlc2GL9rXzoff7UJqUkKiurPOV0qCfszuGjwqROpP35uOjO+3cDPGw5gUJTfZTb5R+PtZeHrT28hI7OY3IpKnvpkORKYMLgL4wc1dDw3GQ1uWwHAbKx3SB/SqQ1z7riCO2cvxKmqxLaNIsDLg+jQQIZ3aVuXr6Tzz0U3k6xHF0k6OucZVRU2HrzuEzKOFXDnf8cx5YpYOnWKYOLEXqxalcgnH69D0yTR0c0IC/dHdanYbE5srVTuT/kR0zEDD3UayeLhdwHwxO6F/JKVyPKsROYOuQWzYsRem8ydXJ77p4kkAA+rGUWAyWTkgeuHExbiy9GMQm59ci4Op4vn7xvHsH7tGsx5/4PVLF66hwsGtqW0tJrEg9lERQXy0czr6krrf83bM1a5xdBJgqegsJzxY7qTmJTNyOGdcDjc23gAz76xhLLymkaVaxazke5NRKdOxsvDzKM3jeTaibFYLSYCfP/6KMraDUl8/s0WLhgQwy3XD2kQDfT2stCxfTgLv1yNvba1SXmlrZH30bQRbif2qho7HduFk1tSQViAu0qtR+vmrHzqJrJLKmgbGtRkDpOOzr8BXSTp6Jxn7I5LJTe7BIeXmbc/XIvBqGA0KqSm5uNhNWG3OxFC0KFDc+67fzQbNiSxc+dRqqJUNEXDpmrMObKF1w+sYExEFxKKj9f1VztUnssLPSbyWMJCvIxmxkY29kw6GxwOF4uW7MbT08zFo7ud8kv0xQfG88X8OFpFBdXlIW2IS6HG5vbn+WHZ7gYiqabGwYJFu5AStmw7gtPpTpDOyCwmL7+ciOYNfZSklBxMzsHHy0pZRTWqWp8oM2xwB66dPpBrb5nNZ19vYWtcKu++7m4FFejvRXWNAwH0696arNxS7rhuCLG92tTmRZ2Z8BC/s35efyRSSl5+82dcLo15ebsYcWEn2rQKaTTuiuHdWbsrBU3TmD7KnUxuczgpKqumebAvRqOB68fFcutH8/hi7l6EgEWPXEeYv1soeVsttAs/dbK/zj8TCXpO0knoIklH5zyjXecIXCYD0ujeC1FVDVXVyMos5plnL+Xw4VwURXDhhR355ustREYF8dnnt5HnLOfh5HnUuBzk1ZShAcuzDvBUt3G8eXAVrb2DuDC0PV4mC6MiOmMQAkWc3g9ld/ExHt79Lb4mD2bF3kiIxZdt21OZvzCevfszMBgUNE0yYVyPJueHBvvyyK0jGxwb2KsNXyyIw6Vq9P5V1MZqNdG6VQjZOaX4+liJiQll27ZUOrQPJyy0oSjJzCrmjvu/pqI2SuLpYaZf39a4XBp33zacZiG+7DuQgapJbDYnh1Jy6+a+88IUVm1MomNMOF1rm/xm5pQw7bZPqLE5efXJy84YUfr/QghBs2BfioorEYrA36/pSFbbyBBWvXtH3evSyhqufPILKqvtjB3YicevG8HGPUfZk5ZNjdOFp9nEsfySOpGko6OjiyQdnfOOZuH+PPfWNJ544ke3J1ItD/1nLBERgcz+9GYqK21MueJ97Hb3dkpsvza89NIUVkbdjyo1Lln7ATk1ZXgbLWRWl/LdkJsJ9/CjyF7Fpes+pNxZw/v9ptE3uNVp1zIrZTUljirKnTUszdpNZFowb737C06niqa5c6bKK2zn9P4iwtx+Rpom+WZJPFdfEovFbMLlUikurmLmu1eTciSf6DYheHpaqKqy4+lpbrRdtHZDMpVV7ntLKXE6XTz16IQG4zp1jKBX9xbsO5DJzdfVZ54H+HsxZWJDG4Llaw5QVFKJlPD1T9vp3nky5yObt6WgSUm7mFAevHs0gQGnbiFzLKeYJZsPkHQsD5PRQGW1HYdLZfXOQ3SPac5rX60Bo4bFy0Cf6Eh6t/ltpp46/yx0M8l6dJGkc14Ql5bB4bxCJnbviJ9H053M/0306duGjz+5iVkfriE1NZ8bbxpK+/bhdeePpxfWCSSAHXFH+ebrLVxz7QUYhMIPQ29la8FRHo7/idkpm/g8dStOTaWFVyA5NWVoSD48tOGUIkmTGk/v+4n9pRkYhIJRKHTxjyIpJweXS0NKSVCQF/36RnPZpF7n9N40TTthnYSqSTQN1q1P4qVXl6BJicVixOnUePC+0Ywd0w0vLwvV1XZ+nB+Pr48Hkyb0RFEEvXu25OvvtuFwqnh7W3j4/ovrBFJmdgkvvrYEq9XMs49NxN//zHlDvbq24IdF8QAM6tu0keT5wGtvL6eiwkZpaTXFJZXMmrOefQcyuenaC5h8Sb3wW74tiRfmrMSp1ns6CdzValMu6klmfilOl4Z0aHQLD+Wd6ydg+lXOV0WNnXvmLCKruJxXpo+hT/T5GV3T0fmz0EWSzv87B7LzuO3rhWhIViSm8M1NU/6/l3Re0LJlMK+8emWT5776agtC0MCD6IufNrO3Uw4v9bwED6OZaB93HzMJODX3F2VWWQlGswEFGBJ66iqlVTkHWJm9DxWJguDrQXfRxqcZHSY1Jyk5h6pqO489Mp7m4efew8vX24MX7h/PsvWJXDKyGx5WE2+/vxK11qnaZnOLvy++3lLnuv3+B2tYszYRxaBgNhsYd3F3OneMICoykNS0Aior7bz46hJC35xO27ahvP7hSpJScjEqgp8WxnPz9Wf2L4huF8qst65GkYLWLc6vJq4uVWPVjkNomkaNWUMzuPvWZeeWsXd/Bjabk08+39hAJG3ak9pAIAGYTQYemj6cS4d2paSimq9XxKNqsD81h1tf/Z7P/o+9846Oovr78DOzLb2TTgIJSSih9y4QiiBVQFFRFEVUrGDXn12xomJDRUUFpQtI7733FJKQhPTe25Yp7x8bAjEBgi+o6D7n5Jzs5N47d3Y3O5/91pfu4HhsBsWllfTrFsb6E/FEp+VikiTeXbWDpU/d9Vdfuo2/GtVWJ+libCLJxt9OQUUlgiBgtkjklldcecJ/HFlViA3LpqSFEZftdog5VrEkKQrbcxJYnxnDmKAONHPy4rm2w9icFUdmaQm5KeXo9xvQOMFTDwxkXIuODa5vUSTe/H0l9vv0mCNkmvbxJMTZGwAXF3tmvzXhqvd84Ggy8xfuIbJVAD27hJCVUYSHgx3NAzxJTM5Fa9CillObeCxqRfz83GorjVdVm6zuPVGl2mipXdfJ6YLV0SLJbNkRy7wNBzicnY3srcW+EnKNVUQnZRMZ6selWBcbz9OrNqIVRRbdffXXdz1Jzyrmq+V72Hk6CZOkgE4FLw0uJQIbTsRT6qziqNHS+g8tTu4c2pndp5KpNklo7TW0bepLZHNfRvaxFgN1cbTDbLkgomJTctl7NImX5/wOAgyPSSeyfSCoKo6lIGgtlFUYcXGyWXpt/HewiaTriKqqfPL4Ao5sPs2UV24l6vZef/eW/pH0bdGMWzu14XRmDs8Pu+m6nSehLA9HrZ4Ahxu7g/nuvHhy/cuQFAX1dhh0ug27TyVQ2M8EqHWub2KzLoQbfXli3nIMkgFVBbkUog/mMO4SXjJFUdEv1iJIAtp0Dc+NH3lV+1NVlc++205ufjlPPDAIL08nXn1/DVXVZuKTclm14YS1v5kKCUm5pGYUYqq2cD4KwtXVgQqjibiEbFauOc74MZ15fMYQ9DoNri4OjLooSPzVF0bx0Web2bs/EY1G4EhaFnG5Bdb1RahyhtWH41h/IoH5z99ORLB3g3tefOw0FllGkmW2JiTRxs/nqq75ehEbn8WjL/yKRZaR9YCTpra6o+Cs4VRqDpIWqtxE4qpLOHomHY0osnzHSQZ3iyAwwovo9FxkDfTp2YJ7+l+ojK0RRWbdOYBPFu9CUhTuG9GN9OwSZEXFIsms2xnL79uj8XLUU1kpk1NZwpeLdvHstCF/2/Nh4/qjYquTdDE2kXQd2ff7MTYs2AXARw9/ZxNJl0Ajirw0/Pq2b/ggejM/JR1EFAS+6XUXXbz+OQUArxYvgzX7SC9qCfXw5vkXRvGkbGF9RjQBjm714ox2HEqsrZcjCgJarcjwfnVbi8REZ1BVZaZL1+boNVqcHOyoLDOhEzX4OrhRVFiBh2fdis2XYs68Lfy2/gQAyefyWPTVA3i4OWAyS8iyUhuMLooCsqxY0/xFAUWvopUFOnYMYte+BGRFpaKimpTUAma+sJji4ko0GpHu3UPp2rk5YA3AfuOlMZSWVfPeT1vZciwRVVURa2KTFFVFqXmcXVh2SZF0R+f2HEnPRCdqGNzyn1MscffBs7V94nRmMNjpqDRa0GhEbh3ZmYWbjqERRSRFobC8io8X7yQlqwiTRWLb0UTuGtuNxOwCa2++Fk3rrT9xUEcmDrpgUayoMnHgZAq5BeVkZBdbBVNJNTqdBlUFg77hKug2bPxbsYmk60h2Sl7t76LGpsz/LvbnJfNd4j5UrO6cI4WpN5xIqpJMHC5MoaWLH5FugcztNpmk8lwG+7ZhWephmtg5Mza4YffZ0D6tWL39NBZJRqcVaRHUhDYXuZ727IrnnTdXIQgCEyf14O4pffn8iyls2RRNizBfHn14AZUVJibe3p37HrjpintNyyiq/T07r4yS0irmvjOJzTvj2LY7jnPphYSH+tA8yIvJE3pw18PzMRotCIiMGdOJybf1QMVaiHLiuK58+tVWiooqAZAkhW8X7K4VSedxdbEnOMAD/Wlr4PEj4/uy52Qyp5OycLTT07VVEH3a1Z1T5zlqFcbBkIfQiiJ2un/Ox2Lr8ItchCqseu9+Fqw7TBN3J24b1JEurYLYeyqFJVuPoygqmfmlyMqFjMiJPdtxS5dWONrp8XC6cvC6k4OBj18cj6qqzJq9kv3HU+jZqTmFJZWkZRUT5Od+xTVs3PjYYpIu8M/5NPgXMmBiT5bN3UhpQTnTZ9+BqdpMYXYJfs2b1EtntnH9+Dh2W202lVbQMDKw3d+6nz/D1P3fca6yAI0gsGbAk3T1bE5Xz+a8fGI5m7KjEQSBdzpMYIBvq3pzW4X4suHrhxnx0JdUVJlJSM1n74lkonpYK20nJeXWpvQnxGcD4B/gQUWFkc8/3URVlQlJktmw/lSjRNJT06OY8vgPSJK1vtPbn66nX/cwJozsjIuTHR9/vYWEpDw6twvG28uFeyf15qsFu/D3c+XeO3vj7GTHqy+Mrl2vY7sgtmyPrbVAJSXnsf9kMhsPJzCwSxj9Olgz0aaO6kGgjxt6rZZBXcK4Paph0XgpnAz6qxr/VxAU4FH7uwr8tv00g7tF0KqZDyt3nOLjJTsJC2zC85MHM/vnLZRXmbDTaxnULZze7Zrj6eqI56WXvySCIPDes2OwWGSS0wuY8doSjKQvUd8AACAASURBVCaJT3/cwbihDdfEsmHj34hNJF1HPH3d+CVhDoqsUF1h4r6Oz1FWVEGf0V149ptpf/f2/jOkVV6wbDzcsh/F5ioKTBW0dQ+odcv8EzAZLezccBqfAHfW2kWzOvM4twS056W2o0ksz0FSFew0OrKrS3DXO7I89TAbs6MxKxJ6UUuuseySa8cm5VBVbQ14NlskwoIuVGgeOaoThw4kUVlpommQJ8uXHiI01JsN605ZLTwCaDQio8ZcOdU/LjGbd+duxN/Hldz8ciRZ5siJcxw/lUZ5lYmysmqrIFNVUmssTpPGdmP8LZ3RasUGvzwMjYokKNCDR2YuRFGs7rNn5q7BqMhsPhzPytn34e3ujEYUGd7T2p8sq6CU6e8tparazIePjaZ92I1Z/+fi7EGzs8i81fv4Zu0BvnthEp8s2UWV0cLJs1nodNaingadFg9XB9YmJrI6Pp5vdh2muLKaaVHdmdSn8eLm9+3RzJ63iSYeTnzw/DhEQcDeoKOpv82S9G/HVnG7LjaRdJ0RBAGNVkNydDqVZdVYTBL71hz7u7f1n6HYVMUtgW35OfkQAIvPHeGTuO0IwGD/VnzS/Z9TbuCDl5ZzaHcCsoNK9iwZGZXf0o/xcPggnm59M18lbqeXVxgtXfyQFJm3Y9YgqyoC0MMrlNFNL2050YgiOq2IySIT4O1GsP8FC4WHpxOfz7uXH+bvZMmvBwG4ZVQH1JqaRYFNPfnwkzvrZJJdivc/30Ryaj6iKDCkfyvSs0qIS8gCFYqLK5k0titxCdkYTRamTe5bO0+na7gn23maNfNCvajewcVaSmggyHTN7hhyC8tRVJVv1xxk7lPjrrj3fyI6rYaBfSLYticetAIWWcFeqyEzvwQXRwOVRjMAR+IyEAWBwCbO+IV4kBxXDkBijrW58OzfdnB77/aNtmD/uPIgiqJSWlZN3NkcfvrgHs4k59KtfbPrcp02bPxTsYmkv4jwTs3wCfIk7Uw2t9x/fYOUbVjJM5YzcssXmGQJDQIyKjnV1puHCuzNS/p7N1jDzo2n2b89juSEHExGC3pBi6vqQLXWgofeARedPTcHtOe39OPsK0jkQEEyPb1CaWJwocRchUYUebPDrdhrLu0uahvuz/MPDCH6bDaThtetNL1542l+WbgPBwc9inI+qFrk48/uJiE+m779WzZKIAFoanq4KYrKgWMp1nR9QaBL+2AmT+iBs5MdH7/ZcO2ny2HQ6/D1caWkpAqDnY5XZo5mzb5YBnYOo4l7/YDyDuEB1sKIAvSKbHbV5/sn8cITw9l6NgWlJl2/e5tg+rYPISEtj2/XHKwdp6gqqbklJBcUw/mnRBDQCAJBXm5X5eIf2DOCX38/giiKtG8ZgJ+3K37ef0+vOhs2/k5sIukvws7BwFf738BstGCw/+fFPvwbiS/NRVLk2o739hodjho9BWZrEPD08CsXGLzeZGcU8eHLKzCbJOzsdIS29COwmRfTBwznUGkK7npHNILIpqxokivyMCkSc+I20KvfDBb1mc6e/EQ6eQTjorO/4rmG9mnN0D6t6xyTJYUP3l2LLCvodBp69ArDydHAXff0wcnJjrBw36u6nlFD2zNn3hZUVIxGCZNJwqDXMqhfK+ztdOw5eBY/HxeaNfWiotKEq8uV9w3WTLhvPpvCqeh0Wkf44+bmQMeW9bO1ztO9TTCLXp9MtdFyyYy2GwWr+8P6u06r4cV7BlNlsuDj6UKQrzv5xeV0bRXErhPJ1sw+CbTlIDlbRZGsqng41w3aPp6SyeGkDG7uGEFTT6tLb+ehRA6ePMetQzsyfVIfhvdvjZuLPS5OjXuNbPx7sLnbLmATSX8hgiDUEUiL56xl3Xc7GHR7L+5+cez/e31VVakyW3D8BwagXsyBrTH8/OkmvL0cGXNff9r1jrgu5+niGUyocxPiSnOY0fImujVpRqS7P5KiYKfRNuqbdUlBOTq9FsdG3syvFlG80CNJq9fw2a8PIQgCiWU5vHJqJQDjmnZhuL812Nxeo6OLpzVLy8PgxKjAqwtOrnd+jYCTsx1lpVVYLDLBzZow5b6+fzqxYMTgdkiyQnFJJb4+rrw3dyMms8THX2/hp6X7ySsoR5ZVJFlGVWHYwDY8+WAU9nZXfs86ORro1b1Fo/cS5PPviJ8x6LTMeWIsy3ecZESv1rg52zPu+e/IL65EIwosfmMKTdwcGT7za8oqjciKiotWh2SvocxoAuBociZJOYWE+nqSU1LOtHkrMEsyv+w5yfZXp5GWVcSrn67DZJbYeegsa795CB8vF2a9s4LTCVn07NicN58aiUa09fSy8d/CJpL+Jn6fv53vX10OwKL31xB1Ry/8mze+gF1xbinznluEk5sDD7w9CVGvYfKXi4nOyKNHaFPu6deZPuHB/7gsOlVVefvxhZgLSjgrSRzecJL3V8+kZeeQa34ue62OJQMeqHdcJ14+/uU821ccYs7jPyFqRN5d+SQRHZtd4x2Cj78bL35wu9XdFp/Nrb3fYtqsYVR3EVBVFZMisSnrNNtyYjErEk0dPHmi5Z8v5mc0WVBUFYcaUSIIAgGB7pSWVAGweNE+OnUOpn2HP1ciQRQFxg63CrfVm06i1MQRVVaZqawy1xu/YVsMm3fG8cwjQ7l5UCSKohIdm4mnpxMe7g6NEk//Bbq1DqJb6yAAzmYUkJFXUtuSZuxz8wkP8uamTi0wWyQOxKRSVFaFtkC+4HaD2nLmVSYLKtYA+AqjCbWmltR5FNnqcn3ug1UcjUkHYPeRJGITs2kbcWMGwNtoPCq2tiQXYxNJfxPbluy/8ECF4ryyqxJJXz2zkF0rDyFqRDx83TCEeHM2KRdVDwejU4g+lMwDk/ozdWC3a7Lf57ds4rf4WMa1as1bA//8TVoQBNw8HMnLL6p5DPmZxbTsfIWJfwObf9mPxSyBAIc2nb4uIgmge78INBqRHetPY6w2M//jTXy75QkWnttHRmURpZZqLKo1HiXXWEpWdQnNnZrUWyfmbDZvfLUBSZKRZIVJwztz280XntjoxCxmvLUURVF5d+Zoera3WqSCgjyJi8msvele3PbjShw6lsLug4ncMqQ9EaEX3r/fLtzDT0v31xmrEQXs7fXotBqKS6tqj8uywtz52xjUryWfzdvGxs3RmM0SgiBwz129uOeO3o3ez7+dBesO8fVv+9GIIhpRwGSRkRWVuHO5xJ3LRaMRrQ2EVdAIIk8M6cHqE7GM6NyKUB9rMYAQHw+eHNGXX/eexE6nZW98Kn1aNuO5B4ew/3gyk26xxqwdO5NeW1sMwN/nxq5Ub8PGn8FmO/2buHXG0NpPHwcnO5q1vLpvaGlSJRIqZlXm999P8fOb62iyKQ99qQX/LQW47ilkw3tbr8le86sqWX4mBpMsszQ2hsKqqitPugwfLn6EwXf1QaPVYDZKrPhiM7IkX3niX8yoqTeh1WmwdzTQZ+TVdbq/WoJDvRFFATt7PW06BuOqd2BZv0f5odc0NMKFf1N/kzuHNqWQllFYb40Pvt9KamYhmbkl5BaW88WXWxkyeDYzZy5CkmQ27zuDySxhkWRWbTtVO++xJ4cR2SEIQStiEVT+9+ZvvPHOau57cD679yZccs8FhRW88M5vrNpwksdf/NXaCqSG1RtOoKpWEezqYsfIIW2ZemcfVi14hOXfTcegr/v9rLrazNZdZzh+Ig2TWaqJw1FZserSmaBpGUXExmfVyXr7t1JQWsnGw/H8tPEI5hoR3DrkQqHJ80JGlq0CqWmAO3cO68zUod1Y9ewUpkV1R1VVlu84yavfbkAnQVZxGWey8nn8+9VIssLQvq149bERRIT48MvO45S7qZgdrX30PvvfBDzdHP+ei7fxl6Mg/CU/NwI2S9LfRO+RnVma8ilnjqYQ1iEYR9crV8O9mMKRARQa89EoIrozlaiyip29ngdat2XNzh0ggynz6pvFqqrKke1xqKpKSGQgP3+6CYtZxq+5A4WiiSaOjrjaXX2DS1VV+f2nvWSnFjBh+iAK0wpRZNUaf3MyjbSEHJq3/meZ8nsMa8/ShI/QaEV0+mv7r5JUls/0/b9iVmQ+6zGRtr7+fPPbY2SmFdK6fVDtuJaufvyv3WgOFyYz2DuSt2as41vTLhYs3MeKhY9gZ3ehTYSfqxOp+RZQQGmiR1MhIwNn4rI4m5hL+zB/Vm61iqORN7UFoNpo5tTpDE4nZCNrBUBAscjs3B2PLCu89e4aNqye2eA1KKrKefOTclGVZ4DhUW1ZsuoILs72/PDpFNz+8P5+9tFhzPtxF6qiUlxaiagR8fZy5sGp/Xn7g7WYTBZEUSTqJmug+Q8bDvPT5qNEdQ7nuUkDOBGdzjOvL0cQYPKEHkye0PP/9Xr8k7FIMre+toBqswVJtt5aRAEyS8qQ9VYLnbuDAwUllQgqqCJkFJexdO9pHhzdq9blfiAmlTm/7MRkkVi3PxbJXUQADFptvXphe+LOIQOCs0inHiFsS0jB188NX3fnv/z6bdj4O7GJpL8RZ3cnuka1/VNzH+3di/szs2g2Px9VBgTo2r8lPTqH8ru6ExWVoBBvTEYLBrvG9VvKzyrmlXvmkZaQg6jXIGl0qIqKIMLNI9oz8KkRtGnijVYUMZssCIJQKx7KS6vYuOwwQSHedBtQv+rzvo2nmT97DRazzNmYTCSTBKIIioLOoGPtDzuRzDKtujYn6vZeaDRW60lVhZHvXl+JIMC9L4/F4S/uQG7ncO1jYoyyhfE75lMlWWN0Poreyvd9J+Pp7YKnt0u98cMD2jM8oD3lFUZMJguSpKAiYTJLdURSqKcbB2u0SqiLK85+diQm5GAwaMkvKOPDd37HCejaPYTeHUMwmSxMeWA+pTWuL71ei9lszQRUFGu2WxOvS98Uvb2ceXnmLaxYc4yC3DLmfrWFR6dHIYoC0+/pz8TRXXByNKBvoM1HVL9WRPVrhdFkYdOOWHy9Xejc3hoHtW75ExiNFkpKq7AIKkVlVXz2214UVWXVvmjuHNSRmPhsJMnqajp8IvVfLZKScwoprzbVPlb1oIgCo3q34buNh9FqREyKjKoTrO4xQUCSFSqqTSiqiuZ8HztFqbW6qSq4WXSMH9aBtORCoh77gruGduG+kd0BeHBoD6JTc9CKIgcSUtkdm8KB+DSWPHvXX379Nv5iVFt228XYRNINhlGyUGI00rdpM0K/KUCtuSlqNCKz3p/I2l8OoNGISIpMcnw2syZ9wcfLHq0VHZfji5eWkhKXBYAsiSDUuDFUcHK2p1tAIADH9ibw6oML0GhF3vv5QfybefHGIz8RdzwVUSMyclJ3UhOyKS2qxFhlpnWnZrTr1QKLWUKRVU4fTEIQBbQuDvj5OJMen83a762NgLcs3k9RbhmTnhoOwML31rDx5z0gCIgGkQdeHY+2kYHXfzUVFhOZFWWEuXldtpJ3vrECsyzVPm7vEdio9Z2d7HhyxhB+W3OcUSM61Euf79YtlGXLDoOqMnhQJK1a+VOQX86HH67jzTdWoaoqsqyyf08iZ+KycHA0UFJSVSuMXnpuJPPm7yAnpxSNRqR/33AefnDQZffUv2c4n8zdTFFxJeuLounTM5zOHa1ix6MR7hk7g45RQ9vXP26nY9XmWL7fcBitVsTbzZHSKhN6rQZPV0eGDmjNhm3RlJZXM/WOPo16/m5U9FotGlFAPu/OFARUFQZ3DmdM70gcDDqW7z7NZ6v24uvhzLg+bdl5KokpQ7rWyUbr1bY508f2YuGmo5RXmQh0c8FX78jiU0cwWWS++m0vd9/cBa1WQ7vmfux85yEOJqTx+NerUFQVo0W6xA5t2Pj3YhNJNxB5lRUM+/VHys0mJodE1onFePh/o9AbdAwY1ZF1vx4kIzkfVVE5G5PFvQNn88WaJ3G6Qhq7i4cTWp0GWVLwaOJMhVHGYpHpP6IdTXzd+OyVFdzxSBRzX16BxSxhMcO8t9YQdyINVVVRFRUsMsu/3QkXuV/Sz+ayd9OpGrN/zTdZRUUGcjOL6uxBkRXys4prH+sMOgRRQFEVlmQfYMX2RH7uNQMf+39WEGmxsZpBq76hSjIzMDCUL/pfuqRDoIMbtzSNZH1GLFH+ETze+qZGn2fE0HaMGNpw77m2bZvy888PcS4ln//9z5o52ay5V21fNqtQVpFlhTlzNvDFl1Po0D6Iw0eSGX1LJ27q15LomAxWrj6KJCkcP5FeGzuUkVnEwSMpdO8aQuAfWlP4eLtQUWlCVVS8POsXdvyzrD8Uj1mSEUSByUM642hnYMXu0zz40TLevG8Yg/q2ZO2W0+zYF0+71gH/uEzOa0VzXw+enjiANftjiEnNrT3exNWR7KJyvttwmD6Rzdj7yQz0Wg2CIHDfsPoJG4IgMPnmrowf2IGBMz4nIT2fOYt3Ym/QIYoiPh7O9b5MdQtryvSbexKdmsP0m3tc92u18fdja0tSF5tIukGIK8hn3dkEqi0WLIrCmtREgpwMmI0SdvZ6Bo/rCkBhThlDx3fl5IGzHNllDbotL60m9ui5Bt1g58lNL6R9rzD8gr3w8nMjpHUAS7/cQrueYTi5O/Hhc0uwmCVS4nPIybggYtKTc2tThlEUqx3/D/EpABUl1RjsdChKjZgCVIuE2WiqMy6yRxiTnxlZ+/iOmSMw2Ov5JXUvlVEKBtnM/oJExjTteslrWZiym88SNiIg8GzrkYxu2o2KciMZGUW0CPNBq732lqi4kjyMsgWjLLEjM/myYwVB4N0uY3i3y5hrvo+8vFJefnkZJpP1W39aamFtQHXrNv4kxOcgCAJBwZ5oNCLvvjkBVVVrBUZhUUXty1dZZSIpOZ/wMB8efOxHzBaZ737aw8pFj6DXa1FVlW9+2IUgCowb1Yn+fSIIDvoz7VQbZsqwLrz58xZc7A1EdQ5n8faTxJzLQVFUHn3pV0rzrUVB12w6xcgh7QgJrp/x92+hua8H/dqG1IokQQB7vY5pc5ZSVmVi9f4Ylr9yN/6eF6pimy0Scal5hPp74uRgqD1+MjETqeZ/VpYVfnj5DtJyiugQFlhPaAqCwJRBdSu027DxX8Imkm4ADmSmM+X3FQjU9IITBKZ06sy4lS04vi+Rzn0j0Om1lBZVMnPSF8iSgqOzHSMn92T9r4ewdzTQskPQJdcvKSzn4cHvoigKvkGefLnlee7q/DKFuaXs33CKu56+xTpQpTZQ9zw9B0eycYnVxYN86Qw1URSY8fYE5r6wFLPRgkYjIFeazxuWagnv1Az3i+Jy9HY6Jj01HDnFiS8SNqMTtXT1DK23fpVk4rXTyygwlRNXmolc44f8IG4tg9zbMeWurzAaLbRs7c8Hc+68/BP+J+jk5U+IiycxRTlMa939mq/fWJYuOVQrkLRakXbtgzhy2CraQkN8eOD+AeTkltK374UCnhUV1sazAQHu7NpzIZvNzdUBvV7LiVPpGE0WZFm11m4yS+j1Wo6dSGPF6mMYjRZyckrYsj0WWVZ4780JhIU2vpzFpRjTO5IRPVqhFa2Nb5v7eqDTalBVldL8CxmWggAe7v/ezKuTSVk8/sVvKIpCoJcLTg52PHVrP77dcJCKamtcm6Kq7ItJZVyftog1rWEemL2ElKxCHOz0rJx9H/YGa/xafkkleq0GsyQT6O1G05qfy1FWZeSDlTsRBIFHRvRiT0wKTZu40TXs0lXPbdy42CxJF7CJpBuAmII8FEXFrMh09PHjp1HjcdJbA4r9LvrmXl1pQlFUJItMZVk1Dz4/ktumDWTb6mPcO+hdOvRswQuf3lXPpF6QXYIsy5iqLaSfzeWRoe9SWmzNjFNV6NQnDFGrISu1gHH39WPq4Pdr5w6d0JXs1EJij50DrYBUU2Onaag3RfllVJYZ0em1THo0ijlP/4Ii16giSa4nuABWf7ud8Y8Mxq1J3QDmu5r3Y7h/Jxy0euxqepSpqsprp5exPTeGtq5NOVGSilmRsBN1SDV1hZoYnMlIL6LaaMFktHD6ZHrtmlVVJg4dSCIs3JeAQA/+P9hpdfx+yxQUVb1sPFKFxcSB/HO0dffHx/7aZwr16hXG/v1nAXj11bG0iQzkyy+2oqgq997XDycnO9pEXoiBSs8o4sEZPyDLCpNu68HQwZFs3ByNl6cTLi52PPLEj+i0Wrp3bk5eQQVjRnbEuSZ43tXVHlVR0WpFZFmlqOY9s3jZIV56dmT9zf1Jnvl6LbHncnjm9gE8N2kgs3/ZRpW3Fm2Jheaubrzz8ljcXK4uO/RGIrfE2m/QLClkFJSh01ayZn8sm48l1LzfrG7qj5bvJLOwlMfH9kVWFGJTcgBrH72sglKCfT04dTaLjuEB3NSpBWm5xbw4ZXCj9vDluv2sPXIGgCOJGRSUWa14Xz48jk6h/6ysVBs2riU2kXQDMC6iNasTzpBXWcGLvfvXCqQ/4tvUg3tnDmPHmhNMfPAmNFoNnj4u/PjxJiSLzNE9CZyNziSifd1vf6FtAhkwtguHt8Xi6ulEckwmoigQ2jaQCQ9FEdI6kJDWF26sT707gSXztjN0fDc+enYpOemFSBbFmummA4MGykuqqCo3AiCIcHxPwgWBBLh6OlFiNNU5BtY2HWkJ2fVEEljbcFxMZnURW3JOY1YkDhcloRe0GEQdgQ6enK2w3iD8HNxpEeZDmzYBnDqZxu139KqdP+uJhaSlFiII8P3P0/G6TCZXQ5SZjSw4c4xAJxfGNG+DIAiXFUiqqjJh+3xyqsvQiSJbhz2Gs+7aZutFDY6kZSt/NBoRPz83Tp1M49ChJNzdHYmOTmf16uO4ONsTFdWGLl1DOHkqzSrAzTLbtsfx4/wHmHZffybe9SV5+dabsyxbqK628O3nU+qcq0WIN++8disJZ3Nxcbbjky+2gABdOjW7ZtezPyaVfdHnqDZbmPnlGpr7edRWiPYPb8Ivr09pcF5FpYnc/DKaB3nVWlZuVAZ0aMH+2FTWHYzDIitYJJmY1BzkGpeZooIgqBjNEgkZ+QBoRJG7b+7CL5uP0b1NMM39PHlx3lr2nkpBEGDRa5M5Fp/B1iOJ+Lg7434ZkWmRZPbGnUOSFbQakSqTGaNFwk6n5futh9lyMpFHhvfC0VYd/V+BreJ2XWwi6QbA3c6eVRMa5yIaO6UvY6f0rXMsLDKQlPhstFoNfkEeVJRWUZRXRtMWPgiCgCAIPP7eJAB++mAdmcn5gMr46YPoP6p+EcXBY7sweKw1TuGXL7YiWawf1hazhCDAu78+zMzxc2sNRaoKt0zuw+mDF2J17FzseeblqZzem0DLziEc2nKaAxtOEtGpGa261nenNYSXwRlnrT1VsglfO1cejbiZYnMlzZ2a8Mjh75AUmQlBPdBqNbz30R315qelFmI0WrCz05GXU9pokaSqKjlV5bx0cCO7MlPQiiL2Wh3Dgi7fg05BJaWiEBUVnaohs7KElm5X10C2MQReZBX75psdFBVVUl5u5PXXfqt1xe3YEcfrb9xKj26hfPfjHiRJ5o7brIG5zs726HQaLBa5phikA1Pv6dvguTp1CKZTTQuT1i39URSVkOaXjw1as+M0Xy7ZQ+fWQbz68M0N9gOzSDInkrJwcTCgoiJgdSll5JfWVJtWmTSo4b51JaVV3PXIfEwmiT7dWvDK09fOqvV3oNNoeGXyEA7GpZJTY63TiCI3d23JmoOxqCq4ONjh5eLIE+MuNG1+dEI/Hp1w4fGx+AyqTRbsDTpW745h0aajWCSZ2JQcPp81/pLnPxCfRm6J9bx6jYY5D4zi3WXbkWSF/XGp7CcVSVZ4YcLA6/QM2LDx92ETSf8BZv/4ADFHztEswhdTtZmHomZjMUsMntidGW9PrDP2zqeG0aJtIHaOBjr2uXLj2efm3MEPH21AVVTyc0qZOO0mItoHM+ON8Sz8dCOhrQJ44KVRBDT3piivlHmvrwIB7nxsKP3HdCGguTezRr6PqkLbnmG8tfTxRl+XnUbPr30eJ748i7auQdhrL3yT3TjwRSRVxkl7aUvN9Eei+GH+Trp2D6VlIwtZqqrK/duWsyMrBREVSVXQIFJuNl1xrkYQeaxVfz6N24Giqrx1aiM/9bunUedtDGazxLyvtlFUXMn06QOJjc3E2dkOg0EHqNjZ6WpFEkBeXhn7DiVRXl6Ni7M9PXtYm8dqNCJzP7qLLdti6Nm9BW0j65coUFWVbxfsJjomk2n39adNK3+aBXs1ap8fLtiG0Syx+1gSsUk5tA3zr/3bpyt28+v2Ezja6akyWdCIIp89OpaPl+/mbGYBAF/PnECwj/slLReJKXlYLDIms8T+o8nk5pfx0VebcXNx4MnpUdgZGlc3DCDxbC679ydyU98IQppZxd/OPfEcOJTM2FEdCW9x7UXupRjTuy1frz0AQJtmvjw6ujdZRWVUGs28M3U4Qd6Xb+g7Y3xfPli0jfCm3gT7Wscqqkq16fJtaIKauEFNoHiHEH86NPfnl6fv5OuNB/hm4yHUK7iYbdx4qDZLUi02kfQfoLiggjUL9+Pt70rLyABkScZstLBvw6l6IkkURXpelGKuqCoWWcagrftWMUkSJUYjXfu3pGv/lnX+tic9ldJ2jnyz60XsLprX/5ZOfPfuWiwmic9eXk7/UZ3IyyxCEARM1WayUvKv+tpc9Q5086zfGd5OowMufTOsrDSxYP4OKjOKSBSAi7pUSRaZDYsPotVpGDy+a50YrqVJp9mamVTzSKBjE386eQUwJqRNo/bb2yeErxP2Ui1bOF6YfuUJV8G6tSdYt+4kkiSTdDaXnNxSJElBqxV5552J+Pi4Mv+7nZyOyaB1uD9RUZHMu/NzJEnBaLIQdyaLdpGBfD1/J6qqMm3qTTg6Gho819ETqSxfdRSj0cJr76xiyY8PNXqfoUFNSE4vQBDAz+uCW9Volliw6Qiqav0dsAYbCzD/6YnsibYGC7cIuCDGVFUlMaMAF0c7fD2slsC2rQII9HPn/R7J0QAAIABJREFU7Lk87ri1Gx9/vYWDR1PQaEVCmnnRv1cEdgZtvTims+fyORmXQf/uYXh5OFFRaeKhJ39CkhR+XLSPX76fhqKovPX+Wsxmid37E/j9MqJeUVR+WnaAzOxi7r+zL95ezsiyYnXL/gkX4NSbu+Fsb6DCaOKuQZ2xN+j4+skJjZ4/sk8bBnYOY/v+eIKbuDN5WBdSsouYMb5hK+F5gr3dWfz0nSTlFNGndbPa41MGdkGWVUySzLSh16ZHpA0b/zRsIuk/wMcvLuPkgSR0eg2+gcPw9HUj61w+t824fNBmTkU5o35ZSInRyJsDo5jYJhKA4upqhv38IyXGau5o245XbrpgZt+TnsoD61eiAnsyUpk7xJoZV2KsJqX4Qk0kWbaWC+g+pC19R3fm7Mk0Hn530rW/+EuQkV5ERUo+anElGfllrPt5H7fcbS1K+POnm1j53S4QBKoqjIyb2r92XnxxPuerPRk0WhYMug1nfcNCoiHauPnT2bMphwpSeSii4ZtTZYWJ7ZuiCW7uRduawowAxw4kMf/TzXTo0pz7nxxSL13bwdGAIICoEZAkGbOqgl7EDBw7kUZqZiF7DySh02lIzCjAYNAyZmQnFi0+gJurA5FtAvlx4T7WbjgJWCtwPzK9bjHJymoz015cSEpGEVoRdFqxTssRVVXJzi/Dy92xwUrbAJ89P4HD0am0CG6Cl/uFODODTkOInydZhWWIApgtMo46HU56a1PcAR1aIP+hvMS3aw/yw/rDqMA3sybQprkvdgYd8z++h4T0fKZ/uAwprxpRAItF5tfVR/hq0R40osDc12+jVZi1/1lhcSXTn1+Eoij8sGQ/HSOb0qdzKJJ04XwHj6bQ9SqaHP+29hjfL9gNKqSlFzL97v48+/IyNFqRT9+/gxYh3o1eC6wutkkDG3YxXowkK+w9moSnmyOR4f51/vbMuyuJPWuN1/v27TsJDapv/VNVldiUHBztDTTzs7pum/l40MzHg90nklm2/QSj+kQyqGs4Dw3/91Y6t2EDbCLpP4GTiz0ajYiAgKePK9/ueglZVq5YhXtbSgrlJhOSovDN0SO1IulETjaVFjMWRWHlmTi6+gewM/UcUzp0IrO8DBUwShJpZSUApJQUc8vSn5AUmVEPd8I93sTIu60NbgGe+vTauZwaS2gLb1wcDZQWV6IRRSou6kpfUlCBJCkIApQU1u1/N61NN47lZ2GULXzeb/RVCSQArSgyv8/lWzu89sxiYk9nIAAffj2F8FbWG907zy+jrKSKjJQCetzUkradguvMi4qKRJIUSoor6dkrjGmPLsBSE9ybmVvCoaPnUFUVs1kiN68MWVGZOqUfd9zWA4NBhygKJJ/LrxUG1cb6bpjjMemkZ1tfV0kDvXqGcPdFLUH+98ladh0+i4erAz9/OAVH+/ouMXs7Hf261Lf+CYLAB9NGsmzbCYJ83Pls8S5KKyp54bPfWfrevTzzyWp2HUticI8I3nx4BAC7TiRjNEvotCInzmbRpvkF99dve6IprTSCA2gR0BpVCoorUQFZFDh44lytSCotr7Y+NxYZc2kV2/bGs/vQWXp2D+XAwST0emuGn5+vGy8+PaLW3XYp8vLLWbvxNNRorLzccpb9dhSTWQIzrFp7nE69QugQFnDZoOk/wyc/bGftjhhUVeW9Z8bQtd2F90lGTom1nY1BR25BWYMiacG6Q8xfcxBVhTlPjKFrK2v5kGqThWe/WINFkjkcl07nVk1xc7p8gVobNyY3SvPZvwKbSPoP8OTbE1izcB+e3i70GWbtFdeYNiU9ApuiFTWowNhWFwpRdvb3x8PeHpMkMSIsnFmbN2KUJLalpLD7vvvZk5FKWlkJL/ceQHR+LqfzcpBVBZMsc8Szku2fT71el1oHY5WJHz9YB8Dds4Zjd1FBPa1Ww5ernuTL/y3D0dmeMRdZi6bMupmKsmp0eg0Tp9cNRvVxcGbl8MnXdd+5OaWYTRJ29joK8soJr3nqvbxdqK4yo6oqdva6OkUgwVqLavjwCy0+XnlhNC+/uRJUKCquBKzp4hqtyEP3D0Rb8x6wv0jIFBVXodas5e9fv3ZOy1Afa2PbGvacTGHPyRT6dQ3j9SdvYdehRCySQmm5keS0fNpGBKAoKkdPpeLl4UTzBm7K51EUlelvLaai2oQgCNZYF1HAoNeSV1zBvpMpAGw9lMDTdw/E1cme6aN78uy8tXg4OzCka3id9XpFNmPJ9hOoCEiOAlqtBjtJwCLJ2Bt0DOx9IeYuJMiLO8d2ZeeBRFIziqyNZAV44ekRmE0SDg567GtioPr3iaD/ZeL1KipN3PfQd1QbrTWMNBqRscM7EODvzqEjySAIbIw+y6rYBBzsdKx5/wF017DAacK5PIwmC3qdhpSMwjoi6eUZN/Px99to3cKP7h2a1R5PTM9n1txV2Ol1ODsYMJolREFg36mUWpEkigJajYhFktHU/G7Dxr8d4eLWFg0OEAQ7YBdgwCqqlqmq+solxt4KLAO6qqp6RBCEZkAcEF8z5ICqqtNrxnYGfgDsgXXA4+oVNtOlSxf1yJEjjbowG9eGMpOJcpOJAJe6KfmyolBpsZBfWcnIX37GKEl42ttzeJo1NqXcbGLQou8oN5to28SXjPJScirKcdIb8HNyZt6w0TRzu3yg6f+X+W+vZtX8HQCMnnoTbbo0Z8F7a+k8oBVTXxj1j21jEXMqnc8/WE9YS38ee2Y4Gq31ZlRaXMn29afZuPoYKYl59OwfwSsf1XdRHj2eyuyP1uHmak9aehEms4RWq+G5p27m3TnrUVWVpx8fxtCoyHpzN22NYfZH6xAEUGSVsaM68dhDUXXGDL3vM8or6gaqC4LAzKkDOZdRxPKNJwhp6sm3b9+BQa9jzrzNrN8Wg6qofPzmbbSJqOsCAqgymimvNDJ21nfIsoJep+HR2/uRnV/GbUM64uXuxF0v/khWQRnBfh4seO3ORsX1zF2+m0VbjyMg8OTYvgzuHo6TgwFRFC85Pzo+i407Y2nT2p+TKdl0jAhgSLeWDY41mizMWbyT8iojT00agJerI2kZhdz/yILanni3je/Gug0naRHqw8xHh2BRFCa9/jNyTUr92g+n4XENrUlxSTm8NncdTTyceGfW6DrVti/FM5+tZvuxs4iCwJDu4ew8nky1yYJeq+HTmePoHGEtGxKfmsfmw/Hc1LEFkaF+12zPNi6NIAhHVVX9y8qeO4X7qh2+uPsvOdfewe//pdf2Z2iMJckEDFRVtUIQBB2wRxCE9aqqHrh4kCAIzsDjwME/zE9SVbVDA+t+CTxQM34dMAxYf7UXYOP64mIw4GKo/yGrEcXav70bNYQd51JIqyyh03ef83Lvm2jh7km52US1JHEkJ5OzDz5Jm28/pcxsoqzIxKhlP3Ny6ozrKlSsN0GhZr8C7z32E9WVJrLTCuk7ogMRHYIvv0AjSDqTxeZVx+k5oBXtu4X8qTXKSqtxcNTXtktp064pX/w4rd44V3dHevSP4JuPN6EqKvu2n6G8tApn17o32E+/3EJ+QTkFheW1ZRgG9m/JZ/O2YrFYi2yuWnu8QZE0ZFAbgpp68NjTvyDLEitWH+PhaQPrWA2c7A2UV5jQakRUrE1zNaKAJCk8dd9AHrqjL3YGbe1rGx2XhdFoQa/XcjY5r55IOpdVxL2vLsIiSQzpHkFCWh5De7Zk4uC67qwf37iLtJxigv08Gh34/OitfRnarSVO9nr8vVyvPAGIjPAnMsKfMc/MJ6uglDV7Ywj28SAiuH4M0eKtJ1izJwZFUUCFtx+6BX9fN9q2CSA+MYd77ujFoiUHKa8wERefTWp6Ib17hHHPzV1ZufMUo/u2vaJAKqsy8sS3q8krrWT23TcTGXz5jLpWob78+vF9jbrW83QID2B/9DlUYEDncIrKqjkUm4YkKxyNS68VSRHB3g0+DzZs/Fu5okiqse6cD8w4nzLUkMXnDeBd4OkrrSkIgh/gcl5oCYLwIzAGm0i6oTBJEu/t3UNhVRUDQ5vz3I5NVEkWXtuzncNTHqK9tx8Hs9KZ1qELaeWlGKUL6eeVZtNF+WSXR1YULIpSJ1PuYhZ/upGln2+m+5C2zPr07tqb8x2PD611K942YzD7Np4mN70QUHFv8v+vdi3LCrOmfEt1pYl1Sw+xYMPTHNp9huQzOYy/tw9NfK/chPeHr7azeMFe3DwcmbfwQVzcLn/DbOLjgp29joqaGkZrlhxCEEVatQ2kQ41IaxnuS25+GcaamCKDXsuuPfEYL0r/jxrY+pLnaBbkhZurPaVl1YS38KnnVnnt8RE88uoSBAEiwwMI9HHDxdmesUOsrj57u7pZhTOmDuCNj9bi08SFgX3rW2QORp/DIslYJIWzGQUservhGDW9TkuLplffny38EnOuFJcnK0rtB90fA8bX7Y9l7d5YYpJzsEiy9TlSrVXcf11+mOjYTAAMeh2RrQM4fOwcAtC8pr/cQ+N689C43o3a/5pDsZw6Zz3P+yt2suDJ2+qNSc0rxmSRCA+49PNjkeQ6br2C4gpOncnE1dme0X0jadXMB4NOS+vmvrg62hGdnI2jnZ7hvS79XrHx78RWAuACjYpJEgRBAxwFWgCfq6p68A9/7wQ0VVV1rSAIfxRJzQVBOA6UAS+pqrobCAAyLhqTUXPMxg3E4pjTLDp9EouiUGSsAgEctDraefui02j4dcxttXEzlRYzrgY7ys3WeJO5USMaVVslvbyEUWt+otxi4sM+wxkdWvcDW5YVFsxeg6qq7Pn9OBNnDCE4wuoGMNjrufvpEbVj31v2GHvXnaBlp2Z4B3hQVWHk5clfkRSdQfveYbzw5b0YLo7PyS/j+/fX4+ntwl2PD6G8tIqNSw4R2ibAWvZAVZElq2VGVeHUkWS+ePt3LGaJ2BOpzF38yBWvb+3Ko8iyQmlJFfdO+Jy2HYJ48e3x6HQNx6hotBo6dg9l95YYAFYsPEBlhQmdVuTzXx+iaTMvnn7yZvr3jWDHnng2b43B09OJgsLy2jXaRwYy9pb6RULPY2enY8HXU8nILKZ5A7WPrO47kWqjhTPJuXz2ysQGVrlAx7ZBrPj+0iUC+nQI4duV+5FkBZ1GpKCkAi83p0uOv1pUVSWzoBRPF0fsDTokSebxV5dyMjaDW4d35Mn7B9UbP/vHrVSbLTjY6bBYZB79aDkezg5MuaU7HcMDeOuHzZgtF3oV6gWRg+vjmbgtmU4dg7CYZQRRIDu3lKaB7uzZn4iriz1vvvc7Mx8bQmjzS1tjFEUlMT0fH09n3JzsCfXzRCMIaPU6WjWtP29v3Dme/HYNADPH9OO2vu3rrTdr9goOnDjHwJ7hvPnkSCqrzdz51A9UVJlABW8vZ354bzLVNS7Czi2bsvOLR//0c27Dxr+FRokkVVVloIMgCG7ASkEQIlVVjQYQBEEEPgKmNDA1GwhSVbWwJgbpN0EQGldQpgZBEKYB0wCCgi7dpNXGX4+DTl/bcNfLwZGNt03hbHEhvQIvvE7nrTqOOj2bJt3Lidxsevg3bdCF1xCb0s5SYanJsIs5XE8kaTQiwS39yEkrRKfX4tVAsPF53DydGDG5T+3j3b8fJ+7YOVRF5dDWWNYt3MfY+2+q/fvcl5ZzaEccWp0W70B31v96gJS4bLQ6De//+jBhkYG88eU9rPxpHwOGt8PR2R5BsN5kL04dv5iEuCwO7E6gz4BWhIT5MHRkB1YsOoAsKZSXVnPsUDLHDibRvU94g/MBuvcJY9+2OGRZobLCaG3totNQWWFtA6PViPTq3oJe3Vswc8YQNBqR12ev4ejxc4wd3ZnqKjOzP1zH9Ptvwt3N2hg2O6eE2DPZbN0Zx9BBbejfJ+KSTWrbtQwgMtyP0/FZ3NyvNeWVRpwd7aioMjF/6T4c7Q3cM657o4ORA7zdmDqmB3MW7iQ2JZf7XlvE6jn13Y1Xw5ylu1iy7QT92ofgZK9n3YEzODkYWPLq3RQUlHOmJg1+xfrjPDF1YB2376nELFbtjq5jPbJUmiirNPHm95v44aVJdSygBp0GIduELKlUSDJtWvlTXm5Er9Ny+/hujJ30GaoKJaXVlJRW896c9cy7REanJCs8+clKjsVnoNdqePm+oazceYoxHVrRNTKIAe3rZwUeTkzHbJFQgR2nkzgYn0ZhRRWv3zGEYG938orKORqdBsCOg4mUVxopLq3CaJJq3bGFpZWMfPpbzBaZSYM78vht/eud5zxLt55gxc5T3BbVkTH92jbyFbFx42BrS3IxV5XdpqpqiSAI27HGD0XXHHYGIoEdNR80vsBqQRBGqap6BGtME6qqHhUEIQkIBzKBi8v4BtYca+icXwNfgzVw+2r2a+P6Mq5Va0ySRGF1Ffd17IyTXk9Tl0vHfXg7ODKkef0P+cvR178ZH4oaBARuDa0fQwPw0ZqZRB9IIqx9EI7OjU9JDo7ws2ZRYc2icnKpO1dXE1cjADq9lvKSKmTZ2qPufMkAF1cHoo+kcOLAWd748h4mz4giKS6bux6q36KhqtLErAcXYDRZWL7oAEs3zuL+GVHcOqkH7736GzGn0lFVCLyoaXFDePm4otVpQIBmod44udjTqXsIEW3qG2MNNdWlX39pDACLlx9iybJDSDU9wP733CjmfrWVlWuOoSjWf6/DR1NoFxlYK6D+yL5jyTQL8ORcRhHrdsaw50gSS+dO5ZMF29m4Kw5RFHC01zNpZOPjMUtqBB5AXlHFZUZeGZNFYuHmo6gq7DqVjFYjYpZkKqpMfLZwJw+M64mri9WdGBnhXyuQFEXl5Q9Ws/NQIrKTAIJQzx+sEQWauDnx7OQoEtPz6NY6mCZuTjz62E+YsVqWTkdnMvu1W8kvrECSZNq1CSTmTBYWi4xer8HHu+H/EUlWGDnrawpq3luqovLiV2uRaso4LN17CndPR756eBxhAU1QVZVjSZl0CQ1k/ZF4qs0Wgr3dWbb3FJKsMHv5dp4bfROero4E+rqTmVtCi+AmODkYcHIwcMuASNbuiMYiyXj5OpNeXAbA8h2nLimSisuq+OjXHdb1f9pKVJfwRgWG27Bxo3JFkSQIQhPAUiOQ7IHBWGOPAFBVtRTwumj8DmBWTXZbE6BIVVVZEIQQIAxIVlW1SBCEMkEQemAN3L4bmHstL8zG9UcUBO5s1/7KA/8fhLt7sX/iQ1RJFvwcG44jsne0o+ugqzJQAtCyYzM+WPE46xfuo3XnZkRNqFs1+LE3x+MX5IWp2sy5+GymzLyZTcsO06pjMB16hQGwYcURKmoa+b788I9IFpnRd/bE/w9CJ/ZUOot/3GsNnFbBYpZrG5S6ezrx2ge3c2jfWYJDvAi4gkjq2D2EWa+PJT0ln6hb/o+9tw6P6lr/t++9RzJxJyQkEEGDS3C3YsVKgVJapEihQr3UW6qHlrpQKKVAgeJS3N1dEyDubpOMbXn/mDAhTaA9v3PO963MfV29mtmz9tpr1mxmnnnk87TEzcOA528MvKzsYjZvvUDT6BC6dGzgOG4w6EAQ0IgCBoOOklIT6zef5c66UlEQ0Gpq9gLdSs7l7S+32fV+KrDZZEruMHJ+i6qqnDibgF6vpW2L6snyufmlnDuegKFcxWIQ6Nv57uX15WYrb363nfi0PGoHe/PIgHZ0bhZeZUx6bjFebi6Um214uxsY3CmaJTtOI1ll9uy9RlZaEVPGdmHdtvMM6lVpeGdkF3H8bAIooC9VwSBg8HFBoxUpKTPj7+3Ou1MHMevzDSRk5BMe7MesMT3QiCJPTuvNF9/tRZYVTpyO5413N3LhciqCAJ+8PxqtVkNOXilFhWX071vzvXojJcdhIAEOjSuwJ4GqCuSVlPH4d+vZ+950vt5ylOUHz6Oo8N2MEbStH8qu8zfYcPwKGlEkM72IiS8tw81Vz9KPH6HUaCE02NdhFL44tS8vTrVXLn72ywFW7DoHQJDf3UOdri465IqbRVYUCstNTiPpb4gzJ6mSP+JJCgaWVOQlicBqVVW3CIIwBzijqurme5zbHZgjCIINu6za46qq3pZdnkmlBMB2nEnbTu6Ct4sBb5e792D7T2jSJpwmd+la7+HlygOPdeeRru9jtdhwdXdhzdl3HCKYAB26N2b72tPIsoK53K6Ls37JEfoPb0u9KHv+iKqqvPL0ckzlVgQBGkYH07ZDFPt3XaHvwBboXbToXbR07VVzmXlNdO/XlPi4TKaNsrcVeXHOCHoOqAx9vPj6GtLTC9HpNHzywWj2H4pFq9UwYVxnJEmh1Ghm9MgYJElGoxEd4cH+vaMZMrAV+QVGzpxPolP7KLthVcGdeTiGCgHKgT2i8fNxZ9aEXni4ueDu6sKogZWVacvXnWTp6hOoqLwwoz/dOjTgx1+OotNqmDimEys3nOJGfDaoKv1aNGTOjEF3fd3bj17n5JUkrDaZtLxiLsRn8NUzI3h1wTYMeh3fPjeSp77YQHGZBb1Ww4fTBtO6QR2iawfywVfbscgyRcXlfDx/FzZJ4cNvd9CpXSReHgYC/T3x8XajuMSEi17L4D7NmDauGwOe+x5ZUSktt5BXXMbN1DxkRSE+PZ+CknICvN0ZOrg1yakFbN52AQFITs3HapUQRYFLV9J4eExHmjQK5tKVNMY8Oh93dxc++2gstYMqvUphQT64GXSU1yDiCaBWfFrfjgKevpWGySqh04hcScmmbf1Q+rVqgF6robjczBdf78FSsYbEtALaNas5XUGSFY5eSkQQ7Mnxc58Yetf9N7joEPy0WMts6Nx05JeWExbw+wUKTpz8Vfkj1W2XgGrSsqqqvnmX8T3v+HsdsO4u485gD9M5cfKnRZJkbst3STYZRVG508fSpnN9Fm15jhtX0nj32RUACKKIVltz1ZSqQnFhOetXnkRVVS6fT+bld0bc9fpGoxlZVvC+o8x/7dKj/Lr6NMGhvljMNlQVtq07W8VIMpttdtFHAeb/sJ+rsZkV11d5YlrVUOCHbz/Anv3XGHRfc1o2r0tqWgETH/8RRVGoG+ZHZHgtLFaJ55/qT3T92jz1SA/OXU3l0ZEdaBhemUjs4ebCrAm9KCwpR5IUSsrNaDUabiXmYrHYEESB+ORcYm9lsWnHRQQBdDoNAYGeaHUaRKBpg8rwl80ms3PvFTzcDfTo2hBBEAgNsjdblbWginZvxrKdZ8kvKUcQYP2hyw6xS0EQcKsIN/bq2JAb8dncTMxh6kNdePqtVZS5qUh6Aats94q56LX8/MUkElLyaBBRCxe9/eOxdcM6nLyajNkq8a/le/DxNJBfXE6jsEAmzFlOkdHMhzMGM2ViN1xctOh0GhpEBTHnw83ovfU0aFUpebBgxSHS/KxorVZ27L7MxPGVOXKebgZ+/XgqiRn5XLyZwVdrDzuei6rrT2xBPlpRw5fT7gfgmaFdeXGxXUhzSEwTx2vu2TwKgOzEQpZsOElILW+aNbi7plFuoZGMrCIEi4JNlQj8naT5tx/qz+dbD9OhQV1a1HNqJf3dUMGZk3QHTsVtJ07ugV+gF89/PIZ9G88xbEJXdPrq/2QCa3sTWNubOd88ys4NZ+k3rDV17qgKy8ooome/aHZtuYQsKxhLzXZZA0khNTnvrteOjc3guWeXoygqL788hF69oyktMfHjV3uQJYXcrGJcDDokSWHI6Kr5Px+8NZIlK44SWS+QDb+ecxxPSSv47WWIaRtBTNsIwG6Y7D143REKTE4pID29CEVVWbj4ELOfH0TPjg3RasUaE7M37bnEpz/utTctdhMQdCIP926N61VXAr3dGT20HSvXn0JARUDgenI2h5PTEPw1PDesK6Puq/w99t0P+9m64xIIYLVJZGUVc+joDYZ1asrqU1eRFQVFUekYXZczcfZ8rtYN6jCoYxOW7TxLTOMwGtW1G3GiKDDjke6Oucc82olv9tq9W//afJCPH7FXQbq56mn2Gx2nj2bezzuLdrDjRCzFRosjTSkjr5gysxWbpPDjlpP0aF0fpaGBeUdO0lYM4Z0vHmTamk08tmkjr/Tpwbi2LUkMsmJ0ExFUMPlXN6S93A20bFAHL383PPwMrNl2ntr+nrw3bTB6vQaNUCmC2SYqlL3vTa/55gGmje3K5FGd7C2J7lFJaimzYsi0oSgqQXW9fjd8NrB1Iwa2vntI1ImTvxNOI8nJP4r87GKO7LxCs3YRREVXV36uiR6DW9FjcE16qFVp370R7btX/fIoKTYxY/wCZEnG4KqjXmQgQx5oy8cfbgWtyM3EXGbNWEJJUTnPvzKEZi3CHOceO3YTS4W20cZNZ1m27ChGowmDqx7JJqN30bJ40yxEjYC7R9VwZIP6QYx7oAMvPrscm6QgaAFFhXIJWVIcKt53Umo0M/HpxfYWJhVdfD3c9dgkBVEFPz97Ivf011eSV2hEEATWfvUYfnckeG/ee8l+PQFki4CMwo87T4MOcsuLyDOWM2V8V3Q6DVqthkNJKfY2F0BSZiFWm+zw4GTnlGC1SWg0IrFxmWz49RyqCvFJubhFuWO0WvF01TOwYxMahgXi6+mGIArM/Hwdkqwwrt/de6t5eRnQiAI2WcVkrTm8dRutRqRj83C2n4gF+7ag14h4eRgoM9vbf/RpZ69G/PrISayyzIX0LH69GotNklCAXXG3GNe2JX7+7ghlheg1GuqE1aw4fyI5lalrNiIATwzswPRO7WscdzfibmWxbONJTqSl0zCqNp9OH4qhBuP+NjdvZuOi1WC2SGisztqYfzwq/E4jjn8UTiPJyT+K58Z8S2FuKaJG4Mc9L+NXy+v3T/oPKCqwVzhZLRI2m8ynCyaREJ+NRiOiKDKKrHLtsl0y7ItPtrPwDqXtHj2asH7dGSRJJjDQk2tX01EUlRatQhnUtzmtOkTg6V01YTs5KQ9QqRceyOWLKUiSgiIr6BGQZZWrl1M5fTqB4GAfgmp7V8k3ir2VRanRjKyoaF21PDe1D107NeBVXBzzAAAgAElEQVT4qXisVonB97UAICe/FJsko9dpWLLhJMnpBUwd04WmDYLxrDDWBEFAdBHR6TWY70jyPncjjcZ1a/H4BHv1VPiZG7y2cBuuGTZ2b7xI7OkUXpg1gF/WnqJZ0zqYzFY8PVypHxlY+cGtqjSNqs2J68mUWWzc99ICVODdSQM4fzOd7EJ7ddySnWf4YErN+U0j2jcjKbeQg1cTsEkK11KzWXfyCqF+Xkzo2a6aovfgTtFczcpmx6UbdKkfjrfWhRVXLyEECcTUC+PRgTEAxNStw7m0TFy0GrpG1mPz1VhkRWFqJ7unb+7QAXx64AhhPj4Mjq7ZG3M+PRObLCOrKkcSk/+wkaSqKnPmbWHv4QpjToALShqHryTQr83dJSU6dapP2Hp/0tILmDqp+13HOXHyT8RpJDn5R1GYV4rNKqE36CgpKncYSXu3XGD1okP0HNiCh6b1/K9dLyw8gP6DW7JzywV8/T1IT82nfoPaDHugHetWnXQ0cnVx0RERWVUtOSqqFus3zEKWFa5cSePY0ZsIgkBMhyj6Da3u2Tqw/xpzP9wCwAsvDaZX36Zs3niOkpJygoN9SM8oQlVVVq04TmxsJqqHFq8Ad/x9PXj28b5ENwxGFO0eJlVRMJosaDQiA/vZc50kSeb4+US6xUQRm5BN84bBbN57GYtV4szlFOa9MpLTl5IBe3irX4dGuOi12CSZrSeu4+vpRt+2Vb+s+7ZrSKPgACY/vhirVSIxKY+X31xLSYmJ46duMeGhzhw5cYu5n+9EFO175e/nga+HKzqNBkVVkWS7Mvaagxd5qHdrNh2zC212jK5eSVdmtvLEoo2k5hfTq2kkWcVGUvOLuZySSZnZil6nJcjHk0Ft7En0iqKyLzYeg07Li8N78tKIXgBsvnAdrguYbBLJJUWO+ReMHs6VzGwi/P0YvuhnrLKMTqNh+ZkLuOv1tKoTzMdDB97znhnerAnrL1+l2Gzm6W6dqj1/9mIyb87dhI+3G1+8N5aAimq09KwiDp24WTmwwiNwMz2PY9eSmXxfDGGB1ZOsPdxdWPDtxHuuyck/C+UP9UL4Z+A0kpz8o5j92ThWfL2HTv2aEt7Q3gNLlmQ+fXM9sqSwYsEBegxsTkjYvcvw/yiKrJKanIfNJpOTWcyCL3bz7qcPMf3JvnTu1pD4m9nUredPSYmZLt2rexb0FWGSmJhIvv5mAuXlVprWoIcEcOZUItaK8Ny2rReIqh/E8tV21W+TycrxozcJjwhk+pRFSFoBWZYozykhK6eEOZ9s4edvH6NDmwgOHr9hT/hecohFK4/yxbtjqBPiy8PP/0RBkb1E3c/bjYeHtmfvsRv216mqfP/LYSJCA8jIKaLMoLLtZCwaUWBk9+ac/v6Zu+bFhIb40qVTfQ4fu0H/Ps04UOEJkSSFJSuOOSrqbus45eUbubY3gfsHRWOy2Nh34RayrDCyW3P6tGlARG0/JEXB1UXHteRsmtSt5bj2ros3uJqajdkmsf9Kwu2oIqVme2WipCgci0umb4v66LVaFh48xYKDp1CBN+7vzYi29vL9/k0b8PWe46QVFpNWWMz+6/H0ahKFTqOhdWiIY08AbLLMnpsJHIpP4r3B/egeGY6f+93bzwR7ebJz2kSySkqp5Vk9iXrhz4cpNVowmW3sPXydMcNiKCopx+Ciw9PDgNFoRtSIDB/ehroRAbz/y14sVonLiZmsfeP/pnGpEyd/F5xGkpN/FJ37NaNzv6pFlaJGxNvHHWOpCY1GrKY59J+wa+tFrl5KA9XuXakbHsDpE/EkJ+URGuaLRiPSKLoO7u6/rzVTUFDG+fNJeHu7ElaDETdyVAwnT9zCWGrm2pV0Zk77kW++n0R4RCCurnp6V+jzDBvehnW/nqsQ0rRrJvpW9Ix7empvSoxmrsVlYDLbsFgkjpy6RZMmIZRXSBwAGMstRNUNYMbD3fj250NotRqaN6rDzIe7sXznOeZvOQ4KyIqKXqetYiDJisLBCwn4eBho0zAUQRB4+9VhAPzw0yFHE15vL1cKK4wyUQQvL1eKikwAFBaVsfXIVdCJjO/blvF92+Dlbg/1RYb4c+5mGhM++gVBgCmDOjB5oD1k1SDYnlDvqtfRuVFdQv29mb/rJFJFXb2qqGy/EIeHQc/sEb24mZ2H2SYhCgIJuZVJ70XlJjIKiytej8qOKzdoE16Ha9k5tAwJxk2vY+GYEbyxfQ8X0u2VhVZF4a0de/FxdeXAE49V2RNJUXhn1z6u5+TyZr9efHn4OMeSUqjn68OmyePR36Fb1b5NOAnJuagqRDcMYd/hWN7/YhuiKPDBqyMQRYHohsG4GvScvXln96fqnIxN4cuNh4lpGMasEd3+pw2nnTj5K+I0kpz8pVFVlSXvrufo5jOMf2U4PR7o8IfOs1okLp2MJyyqFkF1fPly5QxOHLhOi5gIPL3v3WT230GrFdFoBBRFoEHjYDr2aMQrz6205wopKjqdhiMH4/jX5+PuOU9mZhFvvrEWi0Vi+7aLzHpmAFarRO/e0Y4mrZFRtVizYRYPj/6a7OwSDAYdKSn5hEfY1ZnLyiy4u7vw5Kz7mPp4b35ee5K0zEIi6gYwfKA9fOfpYeBqXIajOa5GI9CjU0NqB3nj4W7AKpUR4OPOk4/2QFXhoSHtaN+iHlm5JbRsEoqLXke76DDkzccA8PUwMHN41UauX647zNoDlwD4YOogerSKcjxXZrI6KuuKKoQV9ToN774xnGbRoUyeuZjcvFI8vA0UKzawKqw/fImpg6u+7xfjM5Bk2W7AnIpjwn3t0IgizerWZuUzD5FZWErnRvZw3NXUHI7FJdG8bm0uJmciyQoZhSUcjE1gao/2pBQUY9Bp6RMdxbFbybSPCEOv1aDVaLDKdoNuZJumDPj+JwpNJnSihp2PT+RWXj5mm1RlXSabhEUyYpNl9Hc0bP7l/CXWX76GVZZ5fvN2kgrtIbzU4mJSCouoH1BpFE8a24VO7aLw8jBQJ9iX599e4zAsL1xJZer4bsiKwonYZIJ9vXjxwZ5cS85mYv92bDx2hY/XHKBxWC2+eXIksxdtpajMTGJWAT1aRNG6vrOF5j8dFaeY5J04jSQnf2mSr6ez7qvtWE025k79nu4j2/+hX8PvPL6Yq2eTEASB77c/T60QX4aM+WMG1t2wJ2dLVSrN+gxsQWmxify8UsZM6MrliykIgoAs2yvArFaJ7Kzi35/bKjmMh+JiEx9+sBlBgNTUfCZPrtpC4unnBvDpx9sIq+tPTEwkAO++vYHDh+Jo3DiEz796hO+WHGTbniuAysMPdMCrop2LqqjId/SdE0WRdz75lYh6gfz8yaMoqsq8H/fxzpfbWLL+JN+8PQZFxa7CbZN488lBFNssjvONZmu1yqqbqXmYrRJajUhiZkEVI+nCxRTH37cTtUVRxFhmxd3dhZWLp5OdU4yo1zD41UUoqkq52cbF+AzaNaqsDBzUoQmrD1wiu7CU5OwC+rwwH7Ms07xJCF89Noz6te0eJaskMa5rK94c1Qc3Fx3vrdtHYZmJE2lpHF2VSi1Pd9Y9OZ6MohJGf7sCQRDo3TiSOSP68fbwPiTkFNCzSSSCIFBoMqOoYJFlXt2yi2PJqVVed3RQIIUmM491aFvFQErIL+CjfYewyjKiIBDs5Uk9Px8OJyTTMDCAcL+qVXCCINDkDt2jkYNac+FyKlqtSK8u9pDtu8v3sOtsHKoKP704lpFd7Hllj879hXKLjeupORy+kuAw4mySgp/nf+/HgRMnfxdqVrxz4uQvgoevO6igN+jwv6Plwr1IT8rl/NGbWEw2ZFkhNT73P15HSmIuowd8woP9P2H9Lyc4dyqBdStO8MSjC/H0cWXq0/3w8nalXYdIohrWplaQF02a1sHL25WRo2OqzKWqKgu+3cvMx37k3JlEMjOLMJaaqXeH9pLNJmO1yuzYfqnaWjp0rE+LlnW5fCmVmdMXU1pq4tCBWFRFJf5WNhkZhZy9lILZYkMFR7NXsPd6e//V4Xh7uqLVikiSTFpmESfOJrD74HW8PFzZeywOWVFJSstn8NTvmPrqcsrNViRJYfXWM1WMott5RHfy7OgeRIX406p+CCN+0yA1O7cEVbWHALVaEa1GRKsTad40lNJSMwt/OsTRE7cI9PGgY3RdXF10aLUaIoL9qswT5OvJE8M7Y9BrsckKxWUWLGaJc7Gp7L8S7xg3Y+FGnl68maH/WkK51cYH4wYwa0hXJEXBZLWRnF/EyK+WEZuRgwCYrDbOp2Qw9MulzNm8j0M3kpj20wYm/rCGIHe7FIJGEBwJ8Lfp2zCKxQ89wMEnp/BoTFVpglt5BWgqxrvrdTQMCOBEUipuOh1fDBvE8nMX+WDvQfLLy6mJLu3rs3XFU/z685PUj7DrQl2IT8dklUCAG2mV93fbBqEYdFpkWWHumgNYJbsHysvdQL2gmiUJnPzTsDe4/b/476+A05Pk5C/N9y+vsOfVAG//MusPnXNwy0XH3waDjhYdIv/jdZw4fAOL2e7tWfD5bnR6LVaLXQ370/d+pVvvaAwGHRvWnOZmbCaKopCXW4qiqHz/9V76DWiBq5segCuXUvl1/VnMZhtz3lyPVVUQBIH27SNJScl3hFYACgurN4NVVZUD+66hqpCTU0JmRhFt20Vw8UIKISE+uLu7MHJAK75beoiQ2t706FS14qxj20hWLZjG7kPXOHY6nnOX7d6d4CBvUjILEAUBRVWRFRVQkSuXQ25hGfe1b8zW49e5kpjFc6Orl5Q3CA1g9Ts1JxC/+sJgFi4+RLs24Tw5vTdZOSV4e7ni5qrnrfc3cfTETURRZOOWc9QNC2DulME0Dq+Fv1fVZrwJmflYrBIN6gRyIy0Xi02yhxEEiAyqNKgup2Riskq46nUk5xYS4OlOuL8vgR7upFbkHGUUldKibjBN6wQRn1PA5G7tmLv9EFZJ5kZ2HjqNiE1W8BcMzBnTF1EQaBlcm37zF1NoMvNou1a83r/XXe+dbpH1qOXhTlapkdf69OCLwyewyDKiKPLjqXOsu3wVqyyTWFDAwgdrVmc3uOiqPH7hwZ68tXQndWv50rtVZVPpl8f04lRcKiXlZvKKywDQazV0aFxzyxInTv7pOI0kJ39pzu+/is1sw+DuQn5mIZHNf//DvnWXBqz6fj+qqjLhuQFVVLQL842IooC3r/s9ZqhOwwphSkEAjUbEUpHTo9Np0Oo0fP/ZLgYMa43ZZEVVVUerk5rw9XVHVVV0eg0GNz0WoxmLxUZqagGbf32OoffPw2ZTKuav/k9YEAT69G3G/n3XqF3bm/DwQN55bxTxCdnINpnxY7/FapUQvHUUFJU5KuhUVeXU+SQ0okDblvUYNqAVg/o0Z8/h6/j7utO+dQSnLyffc+05+aWIgsC3zz3wb+0fQLnJSl6+kSem96Z9hQJ48B29zSwVIUdZUkjJKiLRWILsKdJqZlUtpJxCI498YDeeQwO8Gd+3DYt3nEZWVQSNQHpBMYk5BXRuVI9nB3fjy+1HaVUvhHKLjbzSMg7fTCLXaDcgBGBQy0aE+XqzdOpowO4dOxiXyOEbSUQF+pGUX4hGEJjUtR09oiIc6zj57AxUVaXcZqOw3ISvW80FAbvibpFVas9T2hF3k8fat+GDfYfwMRhoEOCPWlHKf2fD29+ja9MI9v7r8WrHrydnI91h1broNLz0YE+GdXZ2iHJSyZ9FTFIQhB+BIUCOqqrNKo59DNwPWIF4YJKqqkV3n+U/w2kkOfnLoaoqh9YcpzivlHEv3c+Pb68jPDqU5l3/WIPYJq3rsXjfbCwmK8F1KxNij+69ykcvr0YQBN795lFatq/qYbp+KYW5r6ylTl1/Xps3Ftc72jesWnIURVHQ6kRC6/qTlVGEwaBDQaW02MTWDWfZuuEs738xjoH3t8JqlejUuQFHD9+g38DmDi8SQGhdfz6YN5ZP5m4jN78UT29XLGYbU6f2RK/X8trrw3l3zkZEUaBx4xDHnnz80RaOHIpj5Kj2vPza/cx4si8engbKyixMnbiQkhITYXX9sVrtXhXJJCHrLJSWmnHx92D1pjMsWnEUUJk1tQ+D+7VAp9MwsHflF+iNxByHGvdt9FoRL09XzBaJ8cNiEARYuf0sF+PSeGxkZxrUrar/dDfem7uFM+cSEQSBj955gNYtq+oceXsa7F4sVMw+IpJBYN+leAq+2sjCF0c7xuUWG1EBs1UiMauAWxn5judkm8ILS7eh1QgE+3gxoHUjJFnhcmomzy9JQ6vV8Ooou9dHpxHp0SiSj0YNqLIOURT4fsIITsanMHPZJmRFpZanO/e3blLtNd3IzWfMkl+wKTLvDuzLyBZN77kHqgoTYtowtnUL9BoNSYWFiBUh5Ad+59w/QquoEHw8XDFbbXRpGsHUgR1oHuHsv+bkT8tPwNfA0juO7QZeUVVVEgThX8ArwMv/qwU4jSQnfzkOrDrGvCnfoSoKfcZ3Z0v+D//2HH6BntWO7d92CatVRtVp2LP1QhUjSVFUXp6+BGuZhcy0Avb+eqFKordOr0UURURRw9gJXTm09xpHD8RWmV9y1fDinPU0qB/E15+MQ6fT0qmbPdT1w5LDHDl+g4kPd6Fnt8ZYbTL5RWVYbTIWs41Nm59zzNOtWyMWLJhMYlIuHTvaQynp6YUc2Hcdq1Vi+bIjjHukM94VZf034jIpL7dgs8lkpBdgMOgo1qvIrhrcXfUO+YFbSTlYrPYQ4ccL9pBvNPHoiKrJ7PVC/NBpNVhtMgIwpHdTWjUJo1fHhhjLLJy5lMyBUzf5fs0RzBaJG0m5rP98yh96T3JyS7BaZVxctOTlVw8jZuWUICsqokZAI4O+QEGQ4caJFCRJRlvRSy66XhDDujTj4Plb5OWU2j/lRBBUMIg6rIKKySqRlFvA/F0nUFTVkcDsKkBdXx8+GjWAjKISHoxpXm0dt/Fxd0UFtKKIn0fNSc8HbiVgkSVkRWXV+cs1GklDohuRVWoko6SEp7p2BMClIrF7e+xNzJKEoqqsunCZ+6P/2A+B20iyAqrq2BtPNwOb35mEyWLDw/X3ZSec/DP5s1S3qap6SBCE8N8c23XHwxPAqP/lGpxGkpO/HIVZRSiygmSVyE+v3rC1JkzlFuY8s4KMlHyeeWc4rTvUrzbm/jEdOHgmAUUUOHAmkd7nkygvt9KxY33KyiyYZbthgAqevwnHvfDGUFYtO0atIC969GtKanIeRw/EogKiTkSVVBRX+z+31LQCVqw5xfJVx/HxduOVFwaxZsNpLBaJ9+dupUfXRoRHBKLRiBgMOpo3D6u21vCIQMIjKj00/v4euLnpETUCvrU8yCoo5VJ8Bmv3XWBQx2h8/TwwZxbh1yqI1NJSpDx7o1arTeZ6fBbNG4UwcUxnrt/IIiWzECsKC345yvhh7au06OjaLorIED9uJObiohXp3CqKHh0bYLPJTHxuCWaLDY1ORNWAKAiOPmx/hNnPDeKzr3dRL8yfnt2qGwOzZvTlg3lbKbPZSFLLEMptdqeWpFJiNDt6yAmCwMtje3H9WBLGQhkVsLkLgIDOKtO7b2OOXktiaOvGnMvM5Eam3dMkAB0a1MVcYmXhT4eoXzcQfcfqyuYmq43XVu4kITufp3p1QhFUhrWJxipJvL9pP0duJBFdJ4j3RvWnT8Movj92GoskMb5dzf3/NKLI9E4x1Y7fSsujLKMcvSKi6qB/w+r37PJTF1hy/Bz9oxvwfN+uDgX3H5Yf4fjpeBJScgGBT+eMpk1FKFojik4DycnfhcnAqv/lBZxGkpO/HAOn9uHGuXgKs4t58uvH7jou6WY2OzecpV3XBuRll3D5bBKSTebVaT/xzZoniaxQ3L5Ny/aRiC5aFElBkmVemb0ajUYkMNCLnJxiPEJ9KM4upVmLMLr3s3sEjhyKY82qE/Tt34wRYzugd9EiigLjp/TAWG5h547LhIUHkJZZiM1sRRVAIwqsXn8KSVIoLjFxPTYTQRDQ67Xo9RpGjvuG+/o246cl00lLK6hRYTstu4irNzPp1CoCLw8Drq56Fi2dxtYDV/hm23HGvrkEWVFRFJW4lFy2zZ/G7lNxfLnmMBabhEYLggSKojDr3TXodBpCanmTU16O3lOPKCv4eLlhsUq4GqomBbu66BFVuzFyO7/FbLVRWmZBlhW0ksiLT/QnKbOAUf1qNgxMZpu9q/0dVWD1I2vxzafj7/p+RkYE0n9Uaz5auQ8EUN0E9OUqUeGBVZrsgj38mJSab6981GkQRQFLhWBkz8hwjuyNY3PWJcYMaMOzQ7pRv3YA3m526YaRz/5ARk4xeYVlHD4bT+8OVRPbVx29yO5L9vYfn/96mB2vPcbnW45w5FYSecZyVCC72Mj8fSd5eUgPTjwzHaus4OGirzJPfnEZNlmhtl91r2ax0cTk91ciyQpBBh3z3xxTRSsJIK2wmPe27UcFfjh6hp4NI2hXL5SdB67y89qTd+SOqXy/5CDff/LIXffWiZPb2HPg/s88SQGCIJy54/ECVVUX/JETBUF4DZCA5f+TlVXgNJKc/OVwdTcwe+nT9xyjqiovTv6B0mITm1YcByrL0VUVtq87zYyXB1NabMLLx80hHTBlai+WLT1CSIgPycl5mM02UlPtngaLRSIyOoQvvpsI2HuZvffOBiRJIfZ6Jt98uRuNVsNnX44nOSkPnUHHD0un8ci4b5FsCiIg6EVMZptjLRpRoHOH+nTuWJ9TZxJZsPgAigJrN57hwRHtaNGiuhepsKScCbOXoqgqtfw8WfXpZAC8vd0olm2ONh6iIKDViOh1GlxddAT5eyIIoNNq8PLSUVJgqqhQA9kikZxegKyo+Pm4UWq0UFRSzhufb+GT2SOQZAWNKJCZU0xyej4I0KtzI3p1suvyeLobmP5wV9Zvv8DQ/i0Y0vPuicDLfj3F/NVH8PdxZ+kHj7Bu90WW/nqK9s3q8dGzQ6sYTrfJLynj7SW7OBNXqT2kDzTw/rj76BwTVW28IAg8MaknS9ecoFPbSIYMbMnmA5dpEx3G/tM3sNlkFFXl6s0MZozuSmxiNpcK0+ncKoLIOv7kGI2YRIWggOoGTFJeoeNvRYV31uzhaFwyioDjE1UQBPzc7Ynaeq2WOx1ql1IyeWvtbhIT8tGbVF6b2J9h3arul9FkRVYUbJJMsVHm6Q/WMu/p4TQJD3KM+W0i9+0Q3dpfz1VLrm8YFYQTJ39C8lRVbffvniQIwkTsCd191HtVkvwXcBpJTv622KxVe37dybbVpzm4/TLGUhONm4fxyU9TEEWRBx9sz4MPtqe83MKbb64jM6MIo9GM0WgXSMzLLXHMIYoirq56ysstKIq9Yk2WFT7+1xZSkvKRZYWNG86i0YhINgVVFFBUQFEAAUEAV1c9z85eiayA0WjG4GJv4eFi0OHhYcBssfHFsgPkF5URFRZATPN6eLkbkBUVi1UiPacYmyRz/EIiQf6eDOzUhCXbTtlzd0QY0aM5o3q1wuCio3urKN56bAA5haVoZYH5Kw4jyyqyYs9buW0w1Q7wotyUh9kikZlTzM+bTvHdisOE1/Gnd/sGlJaaURSVs5dS+G7ZQSaP6YyrQc+44e0ZN7w9566k8OnCPQzs2bSK6OFtVu04h6yoFJWaOX0lmUXrj6OoKqevJHMxLp0bmXk0CA2kbcNQVFUlr6SM7zYd4+iVpCrzPHpfDN06Nrjr+//g0HY8OLTy87dJVG2GPPE9ZqsNBAj0cefxMd04dz2VZ+euR1WhTi0venZqyL6cFERBYOGh03weNbTKvI2CAxGEygqgxJyKkK9qz3sK8HSja6NwJnWv+bP/mZ+3kF1iBHcV0QY/7zhdzUiqE+jN48M7s2zHGYpKTeQWlfHD5hPMe3oY++MS2HjxGmPaNmf2fT1Yefoiw1tG07yO3TPq5uVSZX1hIb7MmtrnrvvkxMlv+TNrGAmCMAB4CeihqmrN4mH/RZxGkpO/JYIg8P78CaxbcoRrF1Mwl9swmyp7j8myQklFX7AbV9LJyy6hVrC9Q3pJiYn9+68xaVJ3mjYNpaTExMdzt5KWVsCMmZVfNqIo8PX8iRw6aE/QXrTgAKoKiXeIU1rMNh4c24FfN5/DqCp2jYAKVBVHb7LbmC0Sb782jBZNQ3HRa1m26RRbD17FJskcPhvPym1nWTjnIZrVDyY+LY+ZY7vx8aI97D4eh6qqfPnaKEJr+ZCcVYhWo6Fry0gi6/g79qRvTMOKa6vUDfZFlhUaR9XmqXdWk5RegFYj0q9LY24m55KQkscLU/ry3AfrUFXIyivB1U1vTwKWZPIKjazdeg5VhUce6MCxMwnUC/XjxffWY7FKbNt3le1Ln0Sn01R5jY0jgzhyLgGrTSIls4joqNrEp+bhotfy+cYj3EjLRRAEFr80mq83HuVUbCruhqqhKle9jge6Nyczu5gbCdkE+HkQ4OdBUKDXXe+JcrMVo6kiJKgRWfbho5QYzXyy5Cg2m4SiQmJ6AakbT6ENEDEhcyk5k6IyEz7uleX7Izs0Y/H+M2QWlQKQUWj/vwhotRpyjeVsuxjHzL6dCPGtup6lR85SbDI7HgsK+HnVnPT9yMAY6gX78ep3WxEEiGkSRmG5iVmrt2CVZfbHJXBq9kwmdGrjOGfP9VscErJx9RHRFSmgQlm5lVKjGV+ff0/WwomT/78RBGEl0BN7WC4NeAt7NZsLsLsiAnBCVdXqehf/JZxGkpO/LU1b16Np63qYy63Ex2Xy1lPLMJaYq43z9nPDv1bll9krs1eRkJCLIMC3300iPDyAd9+rLKAwGs0sXLgfnU7LlCk9eejhzhQWGFn8gz1UdhtRFNBqRbr3aMzQEW15ZOoPSNK9tW5at6hLz66NHI/d3fRVEqcFARatPc6VW5kI2EUEYxOzMVtsuOi1JKbm89HM+/lu/RGahAfRqVl4jddRVJUOLcMdYcYJIyAOX9gAACAASURBVDvy3rc78PZ0pWeHBowZ3NYxtntMfXYfjUWn1XBf92j6dWnMT2uOs23f1YoRKtNeXk5+oREQUCo2QVEUlDs84WXlFsrMVkKDfBwqAglpeXz7+miuxWcREerPuPeXO1SgF247yfGryahASZkZvVaDoqqEB/ny2RPDUCSFSbN+cugn6bQibzw3hJ5dKvfvTrw9XJkxuivr91xkRJ8W+Hi68fDspeQXlVUZJyDQLLQ2Z9MzKTZZGPzhYpY+NYaoILux6aLTMnf8IJ78cRNmqw1LxXo1oj28ebufG7/5MZ6cV8jnO446xuuLQZThcnwmyVmF1KtdXfG6e6soFr/+EBarRLOoYEpMZoedrRGF316C2KxcLIqE7KfiaxERTApFJeUs/uUYzz3er8Z9ceLkt/xZdJJUVX2ohsOL/i/X4DSSnPztMbjpadq6HvOWTOPr9zcTfz0DjUZDmdGERqvhwUndHE1iwa5SbbVKGAw6CgqMhIcHVJnvhx8OsGP7JQRBwMPDwMSJ3fD182D02E5s2nAGD09XnpzVDy9PV3z9PQgNtSs8v/XKUHbvu4qvrwfbdl7CZpNxNejs7UFU6NIxijmvV1VUHtanBYIgcCM5h4TUfDo0r8eVW5lYbRJajYbcAiPPT+zNnG93EBLkTd/OjXF31TPv6eF33Y+tx67x7qIdGNAyvFszpo3tyn3dmtC1bSQz317FyCcWMnV0FyY+YC9Hf+Xx/owd3BZfL1eHN+LpSb3w8jAgyQonzyeRnmXXcnPRa5n5aA8uXk9nxIBWjuq2pIx8Jr+xHJukMH5IDOF1/LFJMo+N7IRep6VV41AAZgzrxJuL7RW++8/HO4yAimwyxvZqxdMju6HViFyLy0BRVEdPO5ukMGfeFgwGLWazRPvWEbi5VfVAjR8Sw/ghlZVkFotd9PO2CKiiqEx9oBP39WjKwPcXYZVkrJLMuM9XsOuNqY7k7lYRIRx5dwZxGblM+W4tRRYzdWv5MmdUPzaeu0av6EhCfKp6kdxc9AiCgCgIqLKKpsKxaa82q7rOO2kQVlnF6OVq4IfxI9lx9QZDWzbB5Tdiog+2bc5PPx/FUKCiKiparQiqXajzP0VVVQ5fS8RksdGvVcMqxrsTJ39XnEaSk78dxqIyfnhlOToXHY99MA5DhehjvahafPzjFCYP+ZTM1AJEjcjIR7tw/9iOVc5/7fVhzJ+/j+bNQ2nVql61+fV6e96QvSKtMpQ0ZXovpky/e/uJRg1q88kXOzGWWWjVIgy9XouXp4H9B2NBEGjZvG4VYw3sX6Aj+rasciw9u4gPF+7Cx9ON4X1b4GbQs+7LKUiSzJnYVOrW9iUkwJu7sXDTcVSLisVqY/X289gkhRen9OXarSzSsopQVfh582mHkVRaZuHlDzaQnVfC9Ie78vCIDri46Jg+vjux8Vls2HHBMfew+1owanAbHhzStso1T11ORpKUirDhLVbOnVjj2kL8q677zh+09jwrez83gMYNgunRuQHHTsdTWpEzJooCr3+4CY1GJDTYl0WfT7jrPgDMe3GkI2ncy8NAg7qB1K8QvxzXtTVLDp51XLu43Owwkm7TKCSQIe2bsPLEJdKKijl6MxlBEFiw7xQv/7KDMD9vFk55AB83A4Ge7vw07UG2nLnG5t2X0egEWtQP5qkHu+PvXXMozGSx8fI3v5KcVcCbk++jbeMwYsJDiQkPrXF8LU933EwCKCoqdsV3i1ni4LE47uvVlJhW4ffcj3vx66lrvL9mHwC3svJ5YlDn/+e5nPy5+bPoJP0ZcBpJTv52LHp1BTt/3IcgCnj4uDHh7TFVnpdsMqpqzx/p2KMxR3ZfJTermEEPxuDm7kKrVvWYP3/SXeefPLkH7u4u6PVaRo1qX+W5rMwi0tMKadm6rkPAr7zcwrtvbeBWci6lZfak59S0AlYvnYHFKhEZHoher+X+QTWXy/+WOkE+PD2+J/NXHWHV9nNMHN4BQRCY/e0WTl2391lb8c4jhNbyqfH8JuFBZKZVqPirYK0QUqwfHohep0VRVDq1rmyvce5yCkUl5SiKyi+bz/LwHQKT4aH++Pu6k5NnpHPbSJ6e1LvKtXLyS5FkhW5t6rNo/Qlkk4WHBrVlz4k4zBYbA7pGO4wegJZRIfRoGcnp2FRG92zJir3nsUoyggBRIf5MGlDpBRJFgace683jj/bg0vU0Pv1uDz7ermTmFGMy20hMzUNV1Xs2PW7ZqA7zGo3AbLFhttrw8XTj2IUEcgqMPDWgM1G1/flx32kGtm5E3YCa99MiyfZWMwhcTMnkdGKaI2QYn1PA7is3Gd42mmd/3sKF5ExeHNydCXPaUlhqIjo8qNr69p6+wScr9tMkIogeraI4fyMNs1XiX8v2svr9iXd9LWDPO3t15gA++mw7iqRiMtluP0NR8d1zXFVV5bNNh9l/OZ5p93Xg/vbR1cYk5xZhkxQURSEp217hV2g0cSIumdaRdajtW70S0ImTvzpOI8nJ3w69QYcgVnh6ftP4E+Cdrx7hlx8O0rxtOEUFZXz65npkWeHk8Zu4B3vTuXMD+ve/u9KywaBjwoRu1Y5npBcybbJd/btd+0jeftfev2z3zitcvJCCSZZRXeyGk1TRe81Fr2XMA+2rzQV2iYHcQiNB/l6O0EZiWj7urnpe+WwzGTnFnL+eRrMGwcQ0q8flhExMFhuuLjoSMwruaiS9Ofk+EtLySU3Jo0VUHZ56pCd7j8Xx1bKDtG0axoSR7YmqW8sxvlmjEIeHq7iknBPnEunYxm5EGVx0/PzFZPILjdWSpk9fSeaFeRtRVZXZj/Vj67fTkWSFnUeu8/HiHahAcmYBT4ytbIKrEUU+mznM8Viv07Jk5xlEAeZMGoC3e6UnZ/3W83z5w14URUUQ4PkZ/fjqh31YK6oaUVU2bL/AyEGta9yH26RkFTLp9Z+xWCWG9mzOtsNXUYGLcelMH9uVpJwCImr5svLoRUrLzTzQsTn+nm4Vl1BJyS5EsimE+XvTt1l9zialI2A34hRVpZaXO2cT0zkRn4rJauOjXw9w/O2ZNXr7CkrKeWX+FlQVjl5KpEVUCCrg6qKl0R3vSU2oqsru67eYt/2wo1IRQBSgd7fG9LpLrhZAfFY+vxy+iMUm8faK3QyJaVLNeBvfsw1XkrMot9iYdX8XFEVl7NzlFJWbUBSVGQM78WjvtlWM3n+XeGMSWzN3E+FWj8EhfRGF//e5nDj5b+A0kpz87Zj03kO4e7uhN+h54NnB1Z6PaFibV+bavUs7N9jDKZIkc+FWNsrNLE6eiCc6ug6BgZ48/9wKbt3KZvr03owYWVnSXVpuZt2Ry4QF+tCntb0MPTHRXtVmNtu4djUNgMyCEi4X5mFzFTBYNFgEEDUiUZH37mdmtUk8MnspmTkltGtWl09fHsmKrWdYsOooCPYkZLDn1EgVOTnPju3BJ8v306heLdo3rbnR7+HLCZy5kcrM0V05fSMVHw9X3Fz1zF24m9IyC8eNZob3b+kwylRVZeHqY5hkCVUAWYUl6044jCSwh3Rq16r+hX/sQiIWq91L9dnS/byzYCd1annTuXk4kqwgKyqZucX33IfH7+9Ev7YN8HZ3JeA3IamNO85X0b5atuYkslxpHMiySuzNTODeRtKJi4nYJBlJVjh8Lh5FVbHaZDJzi3li0UZuZeVXNCW2j996NpZNs+1hvJySMs4mpCMqkJVXjFxopU9wPWQXgRMXEzFrFF5YsY1FUx9AwF6VFx0aRG6JkU2nr9EsrDYdG1a+V4kZ+Q7VbEVR6dIigk7Nw8nILaZby8o2OZIik1iWS6irH65aez7TitMXmbvrEJTa8KpYq6u7nlmTezO4b3Nii7MptZpp6hPMT7dO4qbVMz4qxtFWRSMKGHRaArzcEQQBo81MXEkG0d6huGr1+Hq48v0TlY2LLTaJnGKjIzn/u+3HcNVreahHa+Iz83n9550Eersxblgz0ix5DAhuhYeuarjyTlRV5f1rn2JSzBzPP83FoivMDHv8rtV/Tv43qAjOcNsdOI0kJ387DG4uPPrW6N8fCPQe0pKb1zLITi/kclo+pUZ79ZtWK3LhQgpJSbnYbDI//XQYt2APEtLyGN2/NW8u3cmZuFQ0GhEPgx6dVsPVwnxC6vmRlJBLSKtgJFlhyrw15BSVoqnrwssDuhIU4EV6ZhED7+GpSksv4JnZv5BuM4EAxy8kIskKB0/ftKtlayo7zIqiQEJqHp1aRjCgYxMGdKzeZPU2CZn5vLRwKxabxLI95wDQ6zV4uRmIDAsgLjEbFahzh8GTnl3MzsPXsEkKsl5AMQhcys3h4s10VBWaRtZGp9XUeL37ezZjy6ErmC0SRrMVUEnPKSY2NZfAAE8y8kqITcnFbLFhqMHjd5uokIAajw8f0JovFu5xGC9dYqLYdzSOUqOJAD9PDAYdjzzY6a7z3qZzq0gWrj2Goqg8NKgth87cwmyVePmxfjyxZJPDCBBkQIWkjALScotYsv8c5xPSCfbyJLuolABc+O6XIygVelmqav+Ald00lFtsbHr2UW5l59MhKoyHvlhJQnYBOo3Iymceon5t+2tsHhVM88hgzqVloOgFNpy7ykvDelbxIp3OT2D2+ZWU2swEGDxZ1+0ZXLV6UguK7canr0CZVaCOwZNFrz9ErQAvjmYnMOP4KgQE6nsGEFeSg4A9iXxMRGv2FFzkyQltcTd60qNZFBbZxpjDn1MqmQkyeLOq26xqXh0XnZbnh3fnqy1HK3rfCZgqQrcfrdvPtdRs9KUKZ86fRRQFdmVeZEGH6fd8L9Q7stAuF8Ry37z5tKwfzILZY52J4k7+f8FpJDn5R6PTaXnytfsBSErMZdu2C7SLiaR2bR9OX0+l0FvExUVHcFQgb83fZg+DXEhA9dBgkxU0GpHErAK+2HAESZYR9AJSAxdO5Wez++wNSsrNyIqKVifQtFUYelkgvF4AHu53753184rj5GWX4iKAzUPENcAVrUZk0ohOzP50E17uBjq3jmT9sSvIAgT6/7FcEItNqqbErKoqNllm3isjOXEhkfr1Agmu5c3S3WfYcOwKo7q0wN1Vj0aUsLioWBQZmyQz4+O1aDUijevVYsHsypyvFTvP8s36IzSPDOar5x9g85fTGPbsQopLzHYhIVTMZit5FWX3eUVlxCbl0KpR9dYrt0krKEYUhWrVYiMHt6ZPt0YcPnkTdzcXusTUp2XzMGrX8mLH/qvsOhzLjgNXmTqu6z33JTTIh63fPo7VJvPMv9YRn5qHIICnmwufTxrKtzuOUVxu5lxcOgAuOg0bT17l11PXMFlt+Hm44lMsUmYxISuKI6nfng8FMZF1SLyZw0vvradReBDtXw2l0Ggfq9eKFJdXylLodVpen3ofoz5Zhk2S+fnQeZ4Z3BV9hZq2rCrMOrMEi2I3RoosZaSU59HIK4SpXWO4kZOHpCjMfW4Atb0r74vLhRnYFAVZVcg0lWBTFEQBymwWXr+wigM51wB4omF/fD2akWkqpNBWhk2RSSnLwyzbcNNWv2fH92rD4JgmfLrxEB6uesZ1t3vtwgN9uZSYiepqRhQEJNVCuvkqDx59gWcaPkyXwOrePUEQeLXJs3wc9zWlNiOFF+yG46X4TM7fTKNto+rq807+N/xJFAD+FDiNJCdOKgiPCGTmE3YtGVlR+GjpXiQtCD5avEO9ULNzAEjNKWbxk+OYt/YgEbX9iKjth1WSUFUQRdBXeFb8vNz4ZPr9LNh6gu7NI7lxKYOvv90DwLtvjySmXUSN61AUxdFIV2tSiK7o3daxZTgHlswCYNmus3BGRJEVtp2OpX8ne0PYkjIz+aXlhAf5VsspaVI3iFkjuvH91uOUlFuoF+RLbT9P5q09yOpDF/n5pYfwdDOQX1LGV5uOICkqn6w/iIu7hlohHkzp1oovVh1EVlRskt1YunQrkxNXksgtKqNPuwZ8sfr/Y++8w6Mo9/b/mdnd9F5I75RAQkLvvaqISFNUBCwHEY69HLsejx57w95QUBQUBZHepYQSIJQkpPfeN8lm68z8/piwEBMUy3l/r+/Z+7q8zM4+88wzs0ueO99y3/uRFYUT2WUcTi+ie1gABpO1nSCpKCivZ2DvCI6fK8XVRUePyEunHreczubx77cDsPymaxjdM7rD+yfSS/li/TEGJ0ezJyWHwycLVX0mWcEmyXzx/VFumjkEt19osQeVnDjptOSV1tkjW+U1epJ7hfHmLari9rqUM7zwzV4iAnwYkxDLqr0ncdZp8XV3o7GqyW7dMm5wD2aM70t6XiWjB3anR2Qgk//2DharRF5JLaeyynlj4dUs33qIhIgg3t5yCJNN4pX5VxER4EOwjyfe7q7UNxsQRYGbl6+lsLaBiclxjBgVjFbQYEYlST29gonzUC1H/D3cWLFgdpf3Nysqmc2lGTRZjQwOiGRrWSYg4KzRkaEvs4/7vvQYZ5pKuCV2HFNCkthdmc7syKFdEqTz8PVw5V/zpwKwquAnVuTvY3CPOB6PmYC/pxsbTPs51ZSGICiYZDMvZ33GhoB+KCidolM9PGP5aNDrlFY3MufTzwEFjSgQ5CgKd+D/ExwkyQEHuoAoCHi6u9BiMKERRSYP68WBUwUoisLkoT2JDfHn3btmAfDuxkPQLo/YNzqYiQN6EhHozdB4tdbk/P8fe+o7e43O/kM5DBwQ3WUKYfrV/dm3X1XQThoSzZO3XsHra3/icEYRPcIDmTUmEX8vN7QaEUEQaGw1klVSg4erEzf8ezU2Sea6scncN3tMp7nnjE1CpxUprG5k2/FsirMaUYBavYHUnDIm9OuOm4tTBxFIs1WiVm/A1c2JCYN6sPNYjv09WZa56/Xv0WoEfth/tkOkSiOKhAR4MW10H37Yl24/LghwJrcCUI1uz5vknkejwcjZsioGRoexKzPPLr74U1YBggDv7D7MuF6xLBk/lBfe2YbRZKW+MRMvT5d2gqNFp9WgUxR8vNxwcdahKAqb92dQWFaPs7OW5F5h+Hi6smrjMQYnRnHthCQAHlgwnve/OcjAPhEk/sxSZc6IJOaMSLK//vjvs3lr40FaTRbCI3wpLq7nb3NGcPPVaiH+kL7R9rGDEiI5fKYIjUake0QAAb4erFg6l7c2H+RUcSWyrPDWlkO8umAaLjotd0wawr++24MkKWSWq+R80/Es9rmmIjtLBDp7MidyKLd3v7TkxMXo5urJxkmLSakp5LPcIyqhF6DebGBB7BheP7cJgDpTC5XGJs42lrBz0hM8kzS301xpDYXUmpqZEJyIVuyYan0/dyeSInOg5hzZLuU8GjOT2WJ/sltP2KMTMgpfFP3IurJdhLsF8Wry/UiKzPOZH6O3tvJg/ELigiLY9vod7EzNoW9cMGGBl5a0cOBPxv+swe3/ejhIkgMOdAFBEFjx9A3sPpbD4IRI4qODCOvmQ1NLG0N/pmIdFeSLc7v1xuBekcyfOKCLGeHG64dy5kwJRpOVbdvPUFPTzEvPz6WpqQ2bJBHQnjbrmxDOZx/dhr7ZSO/4EL7dd4Y1e9KQZIWCygZ2nchh8fThPLlgMs+u3EFmURW3vbSW+64fiyzLmK02dp3MYcrAnpwtrGTKwF5oNCLZpTUcyihk7b7TWGwSF/8eFAVIjFa9v1yddCTFhnK2sBJFURAFAbPRynMrdzJ7ZF80oogkq9Ye54vGbZLC6bwKrhgWz67UHJK7h9K/Z5iaQrl1CglxIaxYf4TGFlVKwNROFq02CYPRYi9EN1qsTH9rJSarjUBPd/49ewp7zuVhlWTOlFWxIS2TNouVnKo6xvaKITzEl9IK1Ttt6YIxfPjlQWIi/HngjknkF9XSI6YbtQ0tpOdX8urnuzFZbAioxeauzjr0rSYOpRUQGezLa6v2UFbdxCO3TebKUZ1b4H+OJoOJ9JJqzFYboX5e7P/83kuOfe7uqzlXUE1YN298LypEjgnyQyuKoIGYbn7248u3pHSeRFQwC1YERaHW3MIneXtZGDuaKqOenVVnGerfnQSfrvWTAD7MPsT7WQeRZNn+GcZ4+DMnuh/DAnpQaWzkoZNfIijgouk68na0Lo8HTnyBpMisLjzEx8MX4yRe2EZ6e4WR01yBRZGoMum558TnDPaLZU7YJL4r3w0o6AQt26pSUFCoNtaz+PizSIqM0WZCQubTgvX8O+luymqbeHPtT1htEu6uTnz8yPXEhQU4apMc+B+FgyQ58JdE5skivn5nF4PGxTNjwS/XnPxehAZ6c/O0C7o8vWO6dlKfNqQ3Pu6uGM1We6fbwfRCDpwtZPbovvQMV9NJiQnhvPPWzdyxbCUWi41jqQWknSrmkSfWoSgKtywcxQ3XqQKOYWG+hIX5UtvUqhqyXgRJVjieXUpFvR6zVY2ySJJMcmwIfl7uVNY3M2tUEn9741tkWWHtvtO0GE0YLTZEQbBr+KAAAmg1Ip/edx3dfDzs11i+9Fo2Hs4gPNCH51bvok5vQEJhy7FzDOodzuncCrUwWSPaCQ9AQXkdN00dSHZBNeMXv8O4Qd158a7pTB+dyL7jeaScLrSPFYBR/WMJvShKUNtioNVswWKTKG3Q0yc0iABPdyqaWsivacDVSWe3/fBydWH5s9dxKDWf+O7BRIf7M2mUWrhe36jWPF1358fYJJkBA6JUI9/227ZYJSztz04B0vMqKa9uwmyx8eG3hy6LJKXmlGBuL1R2d9Fhs0ls2p+Bs07L1JG9O2zmGlEksXtns98r+/XinW0p1DYbSMkuYunUYarBsU4DRnXMuD4xGBQzp3wyEHQXInXOGrXYfdHhD2i2mvhU3MemcQ/h69y1MGVKTSFGSf0uaRQBGYVPcw8zNqQ7LVYrwwJ68NKAm0hrKGRG2CC2lp9Cb2mjztKM0WZhSc/JFLXWYFMkJEXmXHMZH+fuYlmvK+zXeG/I7azI28PnhT/Zj53Vl7K051QGB/Tli6IfGeKXSKmxmn01qUiyhN7aeuE5CRpcNWpq7/t9Z7C2f1cNRgs3PfMFrs463rx3Jv17XpoMOvAnwFGUZIeDJDnwl8Qziz+jpamNs8cKSBwUQ1yfSxf+/qchCAKjEtX6orLaJr7YdYINh9KxSjLbUrPY99qd9vqg8DBfYmMCycmpYvy4eI6lFmBpJxmffLofrUakf79onn/pRzQ6DRk2PYoIVw6NJ6+8jsr6ZjSiyG3ThnDn69+p1wdumzaEHuGBbHz2FmRFIbO4mk+3HcVik6jVtyLJin1DP48gH3eS4kIZFh9FeGBHTSVPV2dig/35ZNtRNYUmAIpAgJc7x8+V4u3hyvL7ZxEX6s99b63nSIYqYplfVk9BRQNyu0fdgZP5NBtM7EnNJTWjGFA78sK6eTMwPoL753dMF0X4eXNNv95sT8/l5uH9cNZp6RcRQlObCVlReH3eVWRU1DAgKpSwdvPYK8YldJgjr6iWJY+uxmKRkBW1X+pYRgldZRDc3Zy4alQCzQYTgiDg4qRlRHLXtWI/R15Vg/35j+odw0frUli7/SQC6qY+Z8qvi4PWNhuoazZgk2TSS6vJqagju7KWl266ine3p3CuvJa0ogpunpHI6doz9vNi3AN5uM/VCAgYbGZkZGREjJIFX7omSfJFxoJS+y6Y6BvC5O3voigyo4KjWBo/hr/3uoIfy07wcsZGrIpkjyYeq8+nyHDBvFkE2qSOdicuGh2L4saxpSKNGnMzGgRcNU5EugdwX9qLVJsbyG4p4uWk+4hxC+Xjgu86nC8pEmmNWRytP8vEQT3ZevicXfNJUaDNZOWu175n37vL7GKtDjjwn4SDJDnwl4SruzOtzUYUVG+2/y1Y8tZ3VDY029vSzVYbeeV17E7LZXTfWBKig3lv+c20tJhwctJSXtHIdxtOYLWqG/rBlDwOpeRRVFSHIArgLWL1UjeD1U/Ot19HURR6RwZRUFmPv5cbC9uVqAVBQCMIJEYHc+P4/qScK2bpNSPYfCST/WcKmT68D1uPZWG0WPn7jFGk5Zfz3Fe7eGHtHr565Eb2nc7HYLIwND6Sez/YiMUmodOIBHm609JiorZBJVxGs5V6vUFtTRcEu3iiogCKgoerMxazje7hAXi6uWAwWqC95Ty5ZxjvPzrXThzP5lVwPLOUyUN7ER7kw7MzJ/PszAtmrC/OvZKjBaWE+3kT5e/DkNhf7nI6fa4MWVbsdVWKSJcECUCWFL7dkYZGIzJuUHfmXz2Y+EtEDDt91lcM41xpNe4uzswdlcQHXx/AYlWjdXVNF6IjJrOVljYzgb4eneZw0mroFRpIemk14xJimf/2GmySjItOi8lqw9ZObNLS6gjt7kOFqQkBKDTU8lb2dlaPXMbLA25kVcF+poYkE+rW2ST3PLoKDlQbm1EUBUkwcqwhndNHs/lX8nXUm1uRFBlZkVE/XYHiiwgSQKibP3f06Gya66Z1ZsPYh2gwt1JjbibKPQBPnSty+wqsso1n0t+ju2ek/djFMFU58dSG/YT6+PHFU/MxWqxsP5rFN7tV+xubJLHtaBa7UnO4bmI/RvS9PFLrwOXDUZN0AcLPW4L/N2PQoEHK8ePH/38vw4H/BagsqWfnd6kkDo5lwKie/7+XY8eEhz6gqdVof63RCDhptZjMVpydtGx/4W+06E0s+ftK2tosPHT/FfRNDOeeB76itdXMc8/M4lBKLlt3nEWSZNoCtSjuGt6/fzZJcaH2eXefyOGpT7cR4O3BRw/PvWT3T2NLGy+s2YNWFHn0hgl4urnYO9PcXJwYcvdye0qjZ1gAhdWNWG0SGlElNLKioEVAZxPs9TwajYivpytfP7sAbw9Xymv1vPTFbmRZ5lhmCaIoMGd8EnMn9Cesm097Ss7K8q/302Iwce9N4+xeZXVNrcx6cAVWm4S3hwtb317yizYil4O6hlaWPPoVdQ2tyLKMpIDkIsCvTDuqfyyvPjjzlwf9Am5/+msyOlYABwAAIABJREFU8ytRUOjm64m3pwv/uHUy9778HSazjUUzhnLbrAu6TfUtbUx/6XNskky/6BBuHNmPuz7baH//vIwAgJerM2vuu5FypY4HTn6JWbLR0zOYr0b9/bLX92zaNr4sSO10PNjVixapDq1WQkRgfswobo0bz4uZG9FbDAQ4q9+teksrR2vzkJBxFrU8nTSHySFJnea7FIoNFbyXt5bs5mIkJDy0bqCArMhEugeT1VKEVtBS83UkFqN633Fh/qz5lyrc+enGI+w+nsOMMX1Z/s1+lcBrNex9d1kno9//SxAE4YSiKIN+feSfA5e4MCXixTv/R66Vd92T/6P39nvwf/eb5cD/aYRE+rPgvit+feBvhKIofLn5OCezy1g8czi9Y4N/0/lv3jmDT7Ye5Xh2KZIioxU1WK02FGhvnZdJOZKHyWRFkmTWfX+cqZP78u1Xy+xz9EuOJDkpAh8fN3r3DkMUhQ5WD7Ks8MQn27DYJMrr9KScLWTmmK43q/c2prD3VB6CINDN15N7Z41WO7/aUxXuLjqaWlWS5ObihNKe2lC1nURG9Y4hu6yGxhqDfc6oYB9WPTUfp/aNKSzQm+X3z+KNNT9xPKsUSVbIKq4lKuRCIbKLk46HF07stD6j2WpXlzYYLSiK2v32RxDg58Ed80fz3PKtyO2ZQmcJFFcNkqTKA1z8p6FGFAj08+ShWzqvT1EU3tx4kAOZhSy7ajgTk3tc8rqVtXp79Kq6oYWahhZe+Xx3ewefzKb96R1IUkF1PTZJxmixcrqokoVjB6IVRWyyjKerMyKgN6rGvc1GM98fSefuq0Zyd8+pZDdXclv3cb/puRhsZvvPIoI9ilNjbEFGh7egQauV+aLwAHurM3l94AK+LznG2uIUZBSG+MWxYvgS3s3ZTptkoY/3b6sLinIPZUncXB449RqSAgabkSF+iTyRsBjA7rM3e/MKSoyqt6C9fg647Zph3HbNMPStRt7+9gAAOo2I5o9+YRzohL9Q7OQ/DgdJcuC/GpIk8/HbOynMr2HJvVNplqx8suEwJouN3JJaNr21+DfNlxQbwvJl11Jep2ff6XyG94mitKaJr/emcc2IBPy83Bg8MJoVn6sk5cqpncmNRiPSMyGURS+sQd9q5IXFVzF+wIXNuaqh2b55KEBJTdMl1+Pj6dpOsAR8PTpbQmhElXyJAlw5uBc9wwL46WwB+lYjt10xlA+3HMEmyWg1oEPEapPRG8x2gnQe6/ed4esdapu3KMDS2SMv63lFBPkyaUhPjmaUcMes4b+pc6m+0cCajanERARw5fiEDhGoleuOIEkyoiAQGeZH375hbE05h0VW8PF0xWS2YbHamDUxiSF9oxnRP7YDEf3m4Gm+2HuSoT0j+C4lHVlRePCzTRx++S5cnLr+tfno7VN48LX19tcajUBeaa29A/D6qR27HvtFh9IrNJDTRRW4OusI8fPixtH9OFlQzvUjknnm2132sU5aDQNi1W7B66N/XUW8KyT7hbG+RK1rujN+JO9lHUQBZGQ8XEwoAljaN8daUzMLD72LSbbayVRqQz7Pnv2OotZaZGReP7eZ1wbe/JvWEOMRzvyoaXxRvBmbYqPCWGN/TxAE8lpLuXvpAL5dm0eb2crjiy6k8zIKKjmSUdxOymdy6EwRU4fGO2qTHPiPwkGSHPivQn5OFa/+6wcCg7x59NlZpB7JY8uGk5hMVl58+nvufHI6cnuhqrurE3mFNWzdm86owd3p37drP7S86npajGb6RYXYN+qwAG9uapcCiA3xZ2xynH18VGQA675eitFoxd+/c50KwJ6TeehbjVglmRVbUjuQpG6+nni6OdPSpkYGxF/4S3rxtGG46XT8lJJDVU49prEXLEBkWaGp3YZFUaBvdAjXjenHo/PUiIrFamPVrhOYrTa0GpG5wxI5m1/FXXM6m/vuTcuzR2cUIMT/8nRtzhVWszs1F4vFxqpNqcwYd/npmydf2Uh6TgVOOg3+vu4M7X+hNiU+Loii0npkRcHJScOym8ZyLLOE8ho9FquN1S8uIMjf077BljfoEUWREB9P1YR23V4kWaG8vtkeHZJlWPDSVzw6dzwCAk46LX3iLkQaRw2IJTrMj/JaPQgweUI8u3dnY0Omd2wQ864c2GH9Oq2GxMggzhRXUt/SxrzXV9MnrhvnKmp4dt0uunm709DSRoivF28sutpuXfJ7kd5Uaf+5rE3P6KA4jtQUImFDFDpG8EyyFUUGa4kbSpsGdDK6EBP5VIMCOkFDsGvXBsq/hulh48g3lFHaVsXS7hfU2tMas3g+8yNAYPrssSyMmcOZsipmffAl/qILGallqsq9KHD1yASeuGXK730UDvwC1LJCR3TuPBwkyYH/Krzz6lbyc6spLa5n55bTRMUEogBanQYZuO/xNTiLItOn9mX+9MEsuvszjCYr32w8wb8fvZbRQzumWw7nFvP3lRsRgNvHD2HJxKGXtQ43N2fc3C6tYpxypgCrVUJQoKGplbqmVgLaW/S1GpHVT97Ek59sxcvdhZunXjqlr9NoKMmopji9itLMGsKCfZg/R5UZEATwdndBbzCi02owWqxc/ewKGluN3D55CLdMHszqR27kYHohIxKiiep26aLg264eSmpmCTZJZmB8BMHtmk96o4m9OQX0DQsmLsCv03nn1cXPpyN/Cy62WbFYJdraLLz87jaOpRXh7+uOTiditcpIkoKHmzOe7VYwVpvE/pP53NBOWnaczeGRtdsAeHP+dEb2jMLH3RWDyYJGFLA2yQgmGVkDxfW13PX8twiigCiKPHnHFUwa1guAtLpy0vrWQL2C1UthpZDGhLGxuFSIPLBoQpf30CesG1qNgFlno82scCKrHEWjgK9EZEgIH1w5k4gAH3SaPx4tSRbDWC+fRhRF5sUMJMrZl7ve/R6rVYJReopNNYS5+iIrCpWmJqQyN2zFbpwv5pKqXXAdWQ8yuOaHkJapZ+BHbxEe4M3bd8ygqdVE78huVDe24OXmgpdb12a2OlHLQ/GLOh0vNJRhU2QkRSKrRZWKeOKHHeTU1ONqFHFSLqSC88rq/vDzcMCBy4GDJDnwl4Ch2cgjs9+gvKCGe16fz9gZv6/WLzI6gLycKlAgNNyX5IHRPPavWZSV1LP7VD623BZkUSHYy4Nu/p52LR2At1fs7USSzpZWY5UkJFnhWH4pCeFBPL9hDwnhQbw474rL2twycitZse4wg/tGMu/qQbS2mTmWUdLeUwQ1Da1Me+BjXlo2nXEDugNqpGrFI/N+de7cgmr0zcb2TV3o4BknCAKrHprHzpM5DO4Vwcvf/0RpnR6A5ZsOcc3QPkQE+nDD+M4+Wz9Hco8wNr+xGHdnHc66C2a181d+Q0mjHgGBbcsWcjC/GKPVyvUD+uKk1ZIQF8L9N4/nVFY5N189uNO8sqxQ3qQn2Nuz07N89oHpfPzVQWKjAhg1OI63P9nDnoPZALQZLfRPisTJRcedN6vK41NH9qGgrB6NKDIoIRJ9mwlBgJ3pF1S9957LZ0x8DGsevomDmUXEdfNj2T/XYpNBbO+gt8kKyAqioJCRV2knSTtKc7CIMrS7rCiAEi3y9qLOqtXnMX1QHza2pnGoIRckATHNHTnJAM4KR4VzeHpf+acQJEVRePejQ7hbXHHWaQkc5cGWg+coym/AJskMdY9keO/+GPUSPRLceDNvE4pV114j1U5eJQFrlTNyrQtVjWZq2moRgcqGZq5/aTWyIuPu4qw2Lgjwyi3TfrGG6+eY2G0oh2pP0WRt4ZaYGQBE+vlQ0qBHcVeI9+5GQWk9vl5uPDy/a9LpwJ8AhUu3g/4XwkGSHPhL4OiOs5TmVWNus/D5cxt+N0m66+GrSB4YjX+AJ8kDowEYPlrd5LzCvMl+Zxs6rYaRg+PQakTu/dtE3vhoFxpRJDaqc7rj2kF92JR2Dr3RxN1TR3Dfl5uoaTZQ19rGwewixveJo7xBT151PcO6R3bZhfOPlzfQoG/jZEYpSfHhhAV7d2rEkhWFlVuOodNqSIgJxsfT9VfvNb+olqX/+AoECA3y5roZg5k2qW+HMWEB3iyaopKT8AAvThWqdiFOWg2uzr8urbAnPY+P96Ti5ebM0bxSPF2c+f7++QR6qVGvkgY9JpsNV52WVcfSWH3sNAoK5U3NPDJlLAAzxvZlxlh1XecqaxAFgV7BKtP426rvOV5UTrivN+uXzbf74gGEBfvwzP1XA2A0WTidecGDTBAEbpw5hMH9ou3HbrhyIGMHdcfd1Ykz5dVc9++vEYCHpo1h37kCRFHguiFquq+btwezhidislhxc3XCYpVwddbi5e6C2apqB7m5ODF36gUCeVVkPCuzj2OS2rsARQ23xncmfjZZYktZOu46ZyYE9+J0a4nd/Ffu1wrtj11C4UB1HrOifp2kXg5cnNQuS0ERcNJqCPH3QqsR0WpEWkWJLw+dRpYVrrbEM0UzhnVlGXQUDhCw5bSbDCugOIGgKjtgk2UsNgmTtc3+/sOfb+Hwy8s61a9dCt5OnrzW/8EOx16ZfSVb0rOJ9PNhcLRDQNKB/3k4SJIDfwn0SI5EQNVE6jem9++eR6vVMGFq3y7fmzougeEDY1XLChd1p7r2in70jA2itKKBccM7Sw108/Jg4wML7a+7B/nTYjKjKAqR/j5UNrVw7RtfoABJEcGsWDyn0xxurk40NquyAa4uOrw9XHls0SS+2n6SHhEB7DuZj6IolNfqefT9Tbg4adn48u322qJLoaKqCUEQMJmtmC0S10xN/sXxT82bTEyQH1WNrSyYMBC3X5lflhUe+HIL1ou810xWG8fyyxiXEMvx4nIenTKGTw6fYEz3aFw0WlV7R1aoN7R1mu+HtEye3rgbqyQR6efNuzddQ0q+KlJZ3qSnrFFPbGDnlB3Al+uOUlRShwCEhfjwyN1XktRH3VSz86vJLahm3IhednXvjScz7cXv2ZV1HPun2l0oCAKVtc08tnwjgiDwwj3T+fKFBaSdK2Ngnwi+3ZFGfmkdQ5OiWLH+CM99uJ3XH5qJi7OOvv4hnJxzL5Ki4KrVqfIJothprW9m7uarwlQUReHp5Gks7D6cd7P2qUTp57z0T+oyEgSBjx65nk0HMxiSEEWwvxfB/l64uajWLHuLCrFUVah6V4LA1tMX/PnOp0M7rEkARQPPzZ/KoB4RPPDpj6SXVHe4pk2SWbnnBH+benkp6K7g6qRj9oDE332+Aw78UThIkgN/CfgEeOId4ElNWQM9+3VdQP1noKXVRF2DgaQ+YXadmgNHc0nPKic81Jc+PUJYt+kEWXnVLLp+BBGhHet0li+4hr2ZBcQF+REX5M+RvBIUVE+y80alP8dbT87lxz1nSOoVRky4PwDXjkni2va2fn2rEb3BxJzHPleF/ySZ+ua2XzX9HDYwluGDYsnJr+b+O9UuocKSOr798QSDkqPwD/Miq7SGqQN64eOhpmFun3L5G1qjoQ0XndZeF6QoCq5OWobGRTBvxRrKGptx0mrYffeteDg702q2UKZvps1i5eHJnc13DxeUYLapquBF9U3ct3YL05J6seVMNn1CuhHp17lQOLegGqPJik6rQRAEtDoNo4b2sBOk0vIG/v7oVxjd4IOdR/j62YV4ujgze3AiuzNUaYRrBvTu0Bm3YsNhsgqrEQSBlT8c4+FbJzF1ZG/2peaydvtJTGYbR84UYZNkDKZKvt56gkUzhqqK3doLxPJSBfUlhgZM7fYgr2bsZM8V9zMuqCcLD35Om2Tp0J7/1KmNTA3rg7vu0vVrl4voED/+PvdC0b2iKPh5uRMV7Mdjm3faj4+Nj6HB0Ma+c2pd0JS+PSht0JNbVY9Navf8U0BUoEbfyj0f/YDFZmNKvx6k5pXh5epCSW0joiiw7tAZwvy9uWpQfIe1FBsqeTL9HRRF4dnEpcR4XH6UyCpJ1LYYCPH2RBAEyhr1pFdUM6p7NB6XEf104NfhkAC4AAdJcuAvgeN7MtDXtaDICmve3MaVN3fusPqjyM6vZtljXyEgcPXkvtxz+0ROnClh3aaTmMxWnn55I4uuH8HbK/ahKAo5+dV88c6tHeZwddJxVb9e9tcDY8IY3j2StOIKHprWmRgAhAR6sfj6UazemMrTb21meP8Ynvr7VYiiQGl1Ixv2n2VArwjmjE9i44EMxvSLY39aHp9vSWXioB48dNOELgUYdToN/3z4mg7HHnj6W+oaWtm+N4PWYBGTqPDCur28css0Jve/fFFOqyQx+43VWCQJnVbkk8WziQ70w81JhygK5NbWoyhqmrCquZXugc54ODsxLaEX6RXVdCVie+uoQezNKqDZpHbt5VXXYZMkrkzsxfMzJ3do0QdISc3n6Zc3Ighw89zhLLhuOJIkc+OsIfYxNfUtmF2hsZtCo2DgH2u28t6iaxnWPZJDT6l2MS4/Swd1jwi0p0XjIi+kWNtMFmRZQSOKeLo702a0YLbY+HzDUUxmK3def3nfyXv7TGRXZRYArVYzpYZGEnxDOTLtH2Trq3g87Qdymi8Q6sLWOhJ9f7vtzu7UHDYcOMvsccn2Wrb88jo2H8pkZFIM768/yOncSjSigCZYy/lm/1e37OeOCcM4lFOMVZI5XVJJdIAvMwf1IdDTgzWHT9HYYsRN1vDNoTNUNrQAoNNq2ffvJbQazby2YT/rD6dT1dTKk6u3MzohBk/XC0Tvx4p9NFqaAVhfvof7ey3otP4TxeW8ufsQAyJDVXudVgM7z+WpVjMKjOkRzT+nT2LGe1+gKBAd4Mv3S276zc/JAQd+CQ6S5MBfAvEDYxBEEScXHcOv/OW00e9Fdl4VkiRjs8kcP6X6jHl7uqAoClqtiK+3G+u3nbJv8KUVDZRVNVFraiO2mx/eXXTz6DQa3l54TafjF0OSZVoNZt5ffQBZUfjpWB4FpXV0jwpk6SvrqG5sYe2uNERBRFEUjmQUsTNVLVD+bu8ZrpvYn+iQrtNQP8fF5MRu2wF8vOMYk/v3pLC6gcXvfIdNknnvzmvpHdG1RUdds4FGQ5sqOqkRCff36XD/940fyScpxxnfI4ZXdh3gQH4RV/bpya6sfMw2G+8eOMLVifG8OGOqPeLSMyiAW0cO5K3dKWrtKFBQ10h5UwvDzkQwd1DHNGlmToXdziUju4IXn5jVaZ39EyNJTAxjf105igD1rRfSfEW1jZwsKmdy3x5087ogxXDd1P5EBPsiCDAsKRqAI2eKeOnTXciKwvDkaP5x22Q+33CEH/adxWy1cfRs8WWTpFjPQK4ITWBHRSa9vIOJclc/O62o4cOcA+S31NpTXAk+ofT0vjybFJtNIjWrlIhuPni5u/Dkx1ux2iSOZZQQ1s2bRVcN5s21+2lpM/PFtgvOBTZFwWS74OvXZrHRKyQAjSiiEUVqmg1U6Vs5WVzBmqXzmDGgN0azldLaJu795McL87SnXT1cnXlo1jjWH05vPy5zIreMcUlxtNlMpNSfItg5ACdRjbr19+kYZTqPu9b+SIPByMkStU5O+hmx3pNdwOLRqkSD0Wojt6YOSZbt2l8O/AE4Ikl2OEiSA38JhEQH8nnqv2isaSayV2c39T8Dnh4uSO3Cfy7O6j+NHrFBvPj4THIKarhyfAKfrU0hJ1+tvZBkhWmvfIakBVcnLXsfX4yHy29LixiMFhY9vIqq2mY8PVwwW6xYbTLPvrOVZ+6+CqPFag99WyUbNkmxu9mDSnT8vd0u+3qvPjOHtRuOMzA5ij3FxWxPy0Yrikzup3Yhfb3/FDV61Xfs893HeWnRtE5zvLbpACv3n8DD1QmdqGH2kET8PdQ1pBVV8OIP+0gMD+LIg0soqm9k5sdfIckKm9KzcdFq7O3+O87lcvOQfvQNvaA19PbewyiARhAI9/WmqrkVQYBg7862K9OnJLP/SC5tbRZuueGCeKXVKqHRiIjtHX3L75/DS5v2UVTXxCPTxyLLCi9u2sdXh0+hEUVWHjzJjn/cZj9fEARG9OvoB3YiowSLzdauCC4Q6OvBbbNGcPJcGXVNrdx53ajL/gyOVBdT0GBgbvhwnhwwCUEQkBUZURBx0ehQ2k15B/hFsGr0LYjC5W36j324mSPpxSiKwiePXs95XU5ZUSitbuL5z3ei03b9K18jCHYS8vzcKfQJC2LNshsoa9DzxLod6NtMWGwSc95ejUYUESygWOQOczw0a6z9ZzdnXYd99p5PNrLv+Tt4pfATsluKAHg4fhFpDVm8lbOat3O/5unEJST7XIjC+rq5ojea7cReFAQEFKT2iXsFBZAUFszg8HAO5BWhaZB56uNtPH/HVZf1vBxw4HLgIEkO/GXg5eeBl1/X4ot/Bmw2CWcnLSazTTWXbceg5GgGJUcDcPdtE0g5nk91bQuyCDaNWsXaZrGRUVbN0O6/rV7qXH4VDXo1ImM2W5k0Kp4tezPIK67lln98yQuPzOC7fWcYnhiFTZb5YX86M8cmsWprKnVNrYxKjsXzEno0XSEuuhuP3atuIlNJ4OHZ42hpMxEdpEYzhvaMYMORDGRZoaimkd2nczu1ca89chpZUbDZZF5bOI3hPaPs7z369TbKGvQU1DQwunc0Q3tE4uvqgt5kokdgAON7xvBJygn1L35BJNTbq8PciWFB5FbXo9NoWHnbHPZmFRDi48XoHtGd7iUo0ItVb3dMd27ZdZZX3t2Oj7cbH7+2gAB/D7QakcdnXGgZ33eugHXH0lEUNcpR29zK8YIyYrv54efRNeGcPr4v2w6dw2SxsuCaIdQ0tGCy2Pj65UWX/ewBKg3NLNi9Bqsik91YS4J/EK9mbsUiS3w0/CZu7zGSLeXpoCic01eR3lRBku+v1+vUNrZyKqcco9mKq7OOwsoGNBoNXCRh4enmwgtLr+aZT7bR2NyGrCh08/VgycyReAe4s/5EOjMHJjKy/fPsERxAj+AAVt5xHTPfXNWePgVZkkEAbTtZcXHSMn/cAIbHR3dY04j4KFKy1IisoJG57+C7tHlXY5GtuIhOWGWJLVUHUVCQFJnPCn7gtf4PomknhSsWzOaH05nE+vtxML8IXzdXenQL4B/fb8Mqy+TU1GGTJTz0Ah4V6mL2HM8BB0n6gxAcYpIXwUGSHHCgHeNHxZOdX01JeQN/v3V8l2O0Wg1fvnMbr7y3g6yCKtI1rdhkVQU4Ifzy0iIXIz42CC8PF6xWialjejM0OYZNe9Q0hSzLGFrMvHb3DPv4eZNUFe+ZY/tS39xGUBfO8r8F/p5u+HteIAYTk3uw6j5vbnrta7LKanlk5Va2/zMMP0830kuryK9uYHJid7acysHDxYk+P7vnYB9PaptbkWSZJzbtwt/bnZULZtNsshAfHIiTRsPCYQM4XFBCn5Bu+Lt3JCUrb5nLqdJKegT54+fuxrwhvy21+tX6Y0iyQovBTMrx/C47+jxdnREENTLhrNUQ7ufNks83oNOIbH3wFnzcO8srRAb78uM7dwBwKruMuQ+sQFHg3vljmTWp32WtrbC5gambP8aqyICCFQs/VZ2j2aqqnr99bi9nmypQFAURAZsiE+Ti9cuTAueKqln84lokScbFSUtiXAi9o4PsxsWgWsVcN7Efg3tH8sPLt3PwdAHB/p74e7nzzKfbaGozog10osVk6uIKSodCXgFArTsnwMuN3c/d0eW6nrlhMvNeWU1jmwFBJ1PrXIooKWgFDSMC+jHEPwF3jQutktrZWWAoY/6RR/HTeaMTtTzW53YWj1bryyb1UWuqDGYLni7OmGw2unl6oNNoCLz434AjTeTAnwwHSXLAgXZoNeIlydHFcHHW8eR9ahqqpL6J/ecKKapr5IGvtnDvFSPpHdoNWVZYefAEVU2t3DFhyCUjFB5uznyz/Db0LUYC2n/ZTxzRi31HcnBzdaJf764LdnVaDcF+nVNQfwbigv3RaTTYJFntPlqzi/HJcTz93S4kWaZ7sD9b/rEIPw+3TrpPby+6hs1pWaw7nc7Z2hoaLEa2ZeaxZPSFYmp3JycmxXfvdF2bJLP5rJr+SwgNaveM+/VUU01dC+WVjfTtE86UsX1Y9c1htBqR/okRXY4fGB3GK/OuIre6jrlD+jLxxU9UOQAnHUV1jfTrgiRdjOMZJVisauptz7EcZk3qR7lBT2ZjDSODo3DTdt1htbUkC+tFqVJEiTNNZWjbIyehrt6caSxvr8dS0CqwuzKLG2OHdDmfzSbx0Q+H+WrHCaw2GVlR6B4RyHsPqjITN00ZyI8HVcIdGxbADVNUgq3ViIxKiuFoZjErNh21mxLbquFUaRUrD5ykm5cHz8+dgoeLMz5urogXpeM0ooBNVBC1AqsfuKHLteVW1HHz618jywoxowxY/OsQ20NPNkXCKttwEp14Z+Dj7KhK4YfyvRgkIwabkVabWjf2bekOlvWYh8Um8cQPO8itqeeZ6RP5cdkC0iuqGRildqAunTWS3ak5NLeZ6N8zjMUvruW26cMYmhDV5docuAw4yKYdDpLkgAN/AJH+PsR08+PN7QcxWmyU1DWx9eFb2Hwqi3d2HMYqSZQ1NPHuomsvOYdOqyHA14Nmk4md+fksuHk4d908Fi8Pl05aSOl5lby3Zj9JPcO4Y+5IsopruOv179CIIu89NIe4sN/n71Vep+e7/WdIjgtlbHIcn949h7UHTrP5eBZ7z+bzU0YBNq0CAuRW1XOuvIYJiZ2JjqerM/NGJFNnbSMvpQFFgYSQbtQ1tPLlt0cID/Nl9rQBXXbjffDTUT49eBybJCEr4OXizLqlNxHmc+loSmW1nkX3fIaiwJD+0Tz3yLVMGtsbT3cXPH9m6FvbYmDhh99Q39rG6zdezR0TVLmDuyaP4N1dh+kTHMiuXecw9DMycmBcV5cDYOqI3ny38zRtJgvzpw9mZd4hXjvzE5JVRw/vQDZcsajL80aHxPDK6Z/sr0URzLINrSCiAL19QkjXV1LUWq/W4QjQZjN3OdfHkOR3AAAgAElEQVTGA+n8e+XODlYuOq2G268ZZn+9dPZIdEFOpOSXcPuE4R3Ssk99vJU95wpQjBJajYisSCgatX7pbGkVWo2Gb4+dZeagRK598wtkRUEAdBoRoc6GT48mnOJMFNtKCSahw9rabCZOFpQjKwpmm4QtJxTd6Hqki3beM02qDpO/szdlxirapHYPwYvGhLuptWq7svLYlpGLRZK4/fPvmRwVy62TBtvb/b09XNn+1hIyC6u48+V1mK027nnje1ycdCyaNphF036/TpMDDjhIkgMO/EF4ujihKOpf2F7tbc7nO8dQoM1spaG5DT+vXy6wvunbbylsbARgxy23dCkW+fjyH6mubyGzoJpBCZFsOJiOvt2k9pvdp3h0waTfdQ9L3/yesromnLRaVj16AwmRwSy9yp1tJ7KxdTE+Nb+sS5J0HsvGDGNwVDheLs70Du7GPU+s4XRGGVqNSFFJPYuuH0HAz8x9K/UtWG2SPWLRbDIz491V3D95NDdeIu1WWFIHCphMVo6eKeJkTQUDgkK7HLv1dDYVjc1YJZnlOw7Za29uHTuIW8cO4urFH/B9Uxmb96bzxasLCA/u2qsuItiXLe8tAWBVwSHeydmF4CQhKVaymmq7PEeWFdbvzyS02IdavxZc/bVMjoqiVTJxoDoXURCpM7fy48RlNJgNvHR2Ox46Z+bHDetyvi+2HUeSZAQbiFoBH283Nrx8Gy5OF74zZ8uref+noxitNnK+riPlH0vs7+0qK6LZ2wZeMDu6Oz0iutEiWCisbeSnLFUfKcTHk/zqOtrMFpW6yOBVCZK7Bff+zQg6hVdyPmdd4Cv2edcUb2N18Va0Fld0riHIiogSV45W0AFWJEVGkSEgsy93Hf6O++eNwyiZERDQICK1UymNIDI+UFXV93d3swt/GtosbD6excn8crY9c7v9uhpRJLDd21AU1MYAg8nC+9+nsPCqIV2ScgcuAcVhcHsxHCTJAQf+IJIiQ3j1xqvIrqhlzlC1Tf3q/vFU6Vs4ll1KZloZ15z8hLfun8nAXl2ngABK9HqMNhuuWi1VLS0Eu3vwrw+3kXK6kIggHxr0BloMJkRRwGZTO7gCvNztCshbT2dj/QYemz3hstJUF8PU3kUnCOrPAMG+nrxx+zX8lF7AoJ5hPLNuFy1GCx5uTswb8cu1QoIgMDQ6AllWsEkykk1V2rbIElt2n+VQah7fr7jTLtgpyQr3ThpJfauBiqYWCusasckyrRYrz2/dyw2Dk7rc6JITw9EE6JCrrFT0tDJ381f8e8Rkru+VTJPZyN6yAgYEhhLl5Uu/yBB7W/voXjGd5rJdVMNjs8md3v/5/QE0WgxqDZEArloNDyV1TVJPFJWzMe0cRosVf6sHBxcvQSOKlBsaefjE97hodCzqPgIAP2d3XhrUWc7gYlwxNJ6PvzkECmhlgUfnT+pAkJqNJj46eAyzTUIEvFw7RtV0XlposyIA9S5WRLOe/h6BlJXXck10DwryaynJrGP87Fh8nVyosrbi3KhgNcqI2vbvlgTeLioxURSFTws28EP5PmQULE5t+EzJx1PrRoutDaMMUe7ByIpEz8b+rE8twGSx8eTHW3nrkRv4rHA9vk7exLqHsb0qhStCRuLlpM49IDIUL4uWNsmGaKHd8qXz9zu/qJYIN0/8/N05V1WLTZKJCvZ1ECQH/hAcJMkBB/4EjO8Tx/g+F1I0GlHkjglDyT5bic0iYxVlPj18HA8/F3oFBtrHlen1HCopYXBYGHG+vmTW1jImOpp+ISFkFVSz91gOJosNfYux4wVF+PS7FEb0j8VJhlYPMMsW1h9NJ8TXk79N/m0phjeWzeDjzUfoFxdKdmktLW1mRiREM7KP+t/mE1nYLDJOggabWebJr7bz3h0zf1HyoLisnjsfXo3ZYiMyTNUdUhSVgDQ2GbjnibUEBXiSeqoIfYuJx+65kg9unglAbk0d8z5Zg6JAqI/XJTe6o3VlFAwxYzzfF64oPJ6yk8LmJtbnZ9BgMiIIcHDuHSRFhrDxvgU0thlJCOtcZP/6Y7NZvTGVEQNiiA73R1EU/nX2B7ZWnGFmxCDu7z2Vt7J2UGSo48HeVxLlEcCt3cdQbWrGKks8ljgdP2f3LtcZ5O2Boii46LRE+PnYN/kwd19Wj7mty3N+CbPGJbFuaxqNzW1oRdEuWXEey/eksC+7EEGA5PBQXp/bsePriWkTeOKHHXi6uHC4sASbJLOxWcG97AI5LC1tJCk+jM9un8OSp9ZgMlkxCzbkFi2tPwQx75beXNdHreErbatic+VBu1I4gIiAh9YNs6yS7tnhk5gYNISjGcWspwCtRsTX0xV/Z28ejF9kP298UMcaLJ1Gw5p7b2T3mTwEATJLath7Np/ke95gwfiBPHCtKtL6+OubsFhtVNU2s3jeKL7blUb/yFAURXEQpd8KR02SHQ6S5IAD/0HMmzyAo5nFNEbI7NOXsP/rr/nx5puJ8fXFZLVyxapVmG02dKKIAFhlmaKmJkRBIDjAC80lIkKyrFBQXsfTS6/iyJkiUqsrMSg2JFnhw+1HuWXC4N8UTeoTFcQbS2fw0IebOHhW3VzfWDqDob1VSYMavdqxZpVkkCCrvJadp3OZOfTSvlq795/D0GZGUSC/qA5QU5LdAr2QZYVT6aVotWK71YrCl+uOMnlsHwB6dAvgx6ULOFtRzcjYrmUVqgwtpFSUYJY6JgQlReHj9GPYLmrJ+nfqPt4cezVhft6E+XVt59KnezDP3z/d/rrW3MKPZaewKhJrio/Q3aMb35akYpKsNJoNfDlqCV46V17oP/cXn21ti4HTJZU8eOVoJEVhfJ/YXxx/OVj2/De0tqlRxRuuGsiQxChaDGra1dPdBQ8XZzSigCRDYX0D7+w9zJ3jhtnru3Jr6rBKMk1tRmjXfhLad0ZRFFQxS0VhT0oWCnDTNYNpazPT0mZmy74MJiX05c5+k+3kw8fJC40g4iw64aZxJsm7B246V+ZFTsEsq2m2yPYao6EJUTx5yxQq6pqZPT7psu43Ntif2GB/qptaSc0ts6ezV/900k6SfL1dqW80IEkyK75NwWC0sKk+nfFDe9K/j8Mc14HfBwdJcuC/GpW1eg6eyGdIUjRRoZenWv1bMKRPJD+9dxcjPvqQeqMRN52OMr2eGF9fipqaMFrVv7LNkoSTKOKq1RLnp67Dz9uN1S8uZG9qDicyS0lJK7xQ6wQ06I3c/cI6vnppISW1TVz70kokWUGjuby/ms1WG3vS8ggP9KZvjCrQWVGnx2y14aTVkFlczdDeat3T+j1niPTzodlsptmoFhP3Cg2kyWDk0S+3YrRYef6mKzoQkCEDYvh6vWrk2qt7MOlZ5fTqHsw7L9zAYy9soKHJoLaTCwIaESaO6ai8HOrjRehFRdsGs4VXdh7AYLbQ5mFlU3mW/T1RENAIAmHuXjRbzDSYjYjA+bhIo6mzoe6vwdfJDX9nD/RWIwHOHgS6eKrpLUHE2+nyBDybDEamvfo5BrPFvs7Xth7gzflXMzb+95OlmoZWrDYZF2ctI/vFcuxsMQ+9vgGA1x+axdKxw9CIAu/tO0pjm4l1aRlsz8xl3wN/w93ZiR9On8MiSbjqtEyMjyPE24vB/sGcSi9j1MA4zmZXkFtcw6Z9GYCahtWIIuOG9mDXqrvZW53KnEMP4al1Y3hAMhXGGu7teSMlbVV8U7KTww1n6O0Vi7fOg13Vx/DWeRDhGoQgCGw6lMHzn+/E3dWJKUN7XbbO17ubU/h4x9EOQQ5JVrh1+Tc8NW8y7z5zPfMfWIlNkmgzWdBpRSxWG+k5FQ6S9JvhiLydh4MkOfBfC5sks+ixLzGZrWjXHmLje3fg7vrnG2RqNSIvTJnCc/v2MTA0lBGRamQkwN3drnSsE0WWDhtGRXMzj4+9oFwcHODFDVcO4oYrBzFl8Ts0Gzp2OxVVNGC22Ijq5svy22ew63Qus4f37TKKpCgKLUZzu06QwJMrtnEwvRAU+OD+Ofx0Op9zJTXotGr7/4c/phAb4sdzX+7kfBPVshkj6BMXTLCPJzFBfizffIgjOaXIisxbPx7k5YUXFLoT48P49pM7MFtsBAV6YTJbcXbSIggCTz9wNZt3nSU8xJfE+FBaWk2EhXRdKH0enx46zrqTZ7HJitoi7yVi81FpUIJfN9x1Trw/fgZlBj0PHdhGVVsLKArhnj48NWwigCqiKCv4+3SdFuvwuQkaZkYM4HBdPvfHTyXJL5J/Js+k1NDAddFdt+X/HGWNetraCRKoBf0Wm8T64xl/iCT96+/TeP+bgwxNjCKhewjPvL8VS7tw5I6ULAYlRHLriEF8lnKStvYaM7NNQm804e7sxMLh/Xlp2348XZwZ3T0ao9XG4MRo+saFggDHz5ZQWtlov955Hz6jyYpZsvB69mpkZEwWCxsr1I690025PBS/AFEQMcsWakwNfJD3HburU5ENGu5JsjIxdBBf7TipmgMbLfx4MANnnZbtR84hyQovLZtOTKj/Rde9kCr75tCZLrNAJ/LLWfjmGrY9dZta+C/JiAI4O+lobTOzYt1hBiZG0qd7cBdnO+DAL8NBkhz4P4F9B7M4k17GrOkDCA/zI7e4hrue+xZFgeWPz6FXTOcaFKtVwmC0IEkyigJGk+V3kaTzkZdfqnuYGBfHxLiObeUBbm6smjOHXXl5+Li68sGxYyiAh5MTj48b12mOaycksWbbSQQBokP9KSpvYNakZHsX3OjeMYzu3bkgWZJlJEnmzo82cCK/jP/H3nvHV1Gm7//vZ+a09F5ISEhCgITee2+CgqiIiGBDwbp2XXvBsuraK1aKFaSJIALSa+glhBJCSO+9nTbz/P6YcEIEXN3dz+e3+/nmgrwIZ2aemTlzzjzX3Pd1X3e/9jHMveMazhSUYXe6sVlM5BRX8tX6/cb6muG543JL9p3MxcdmoabBmOhX7Ejltsv7kV9ezdPfrqXB4cKkCIQwERt2IckJPK9lyvnVej7eViaM6cp7n29k3eY07rt9BN/tPUxhdS0zB/YiwOvC6IK3penaCARqXRNJOlVRio7k6V3r+WjkJBICgjhZUYKCEV2qdNjZdzSLR15djpSSR24fzcSRXS7Yx/nYV5bJ/DPbadBcPHV4KT+NeJDLooxtpJS4dA2zojbbpqiqlvWp6fSOb01SVBjJUeFYzSr2RgIjhKGxubbv7+/7YsjIKWVjykkG9WjLgG7xDOjWdK2vHNaZTXtOIYTg8qFGytLHamHx7Gm8++sOjuQXMblHJ09k7qb+PZnSsws7MrJ4ZOkapJR89NMOOO3Ax8tCXb0DRRWYTQpuTadTu1ZU19iZPK47mtQuenwSSZ+QToyM6ENGTQ53JE7mm6w1lO/yo+GUHy+u3kmvVzoxvn8S6TmGsHr+6hR0vaka9OPlO3j9niuRUvLYgp9Zf/AUl/dO4pUbxzOqayJLdx0FoEubCNIbP79gVJBaLWYemzWa1z9djxCCuoaL2ye04A+gRZPkQQtJasF/PVL2neHF11ahaTrbd5+mf+8E9h7Npqq6ARTBojUHePbu8Rds52Uz8/isMXz/834mDu9CaJAvqVmF7DqZxdju7WkT/vuRDYCPl+3gy1UpBPjYeO2eifRKunT12sXQPyaG/jExfJiSglvXces6udXVF1337uuHMnF4F/x9bOw+chaTSWFk3/YAZBSWMfvjpWi65OM7ria5dTgAZ4srmPHOd9Q7Xeiajg7sSc+hoq6BZ24cw5yv1hMXEczmw6dxazpCgI/NDEJgNZuYPLQLo3u34443lyCB8X2TySwq5/q3vqXB6cJqVpkxrCftokK5rHv73z3XkrIatuw8RbdOrWmXEMGiH/eyfrPRAqWorpZd5lLcms6ZknLev37iBdvfPKAHDrebT7bvweF24/YzCJLa6DOk6ZIapzExJgaGYDOZcGoam3LPsCUvkyurEzzRltc+XU/HxFa0jb24r5Qmdeamb6JBMyrAvNQmgmbXXNy881NOVRcys+1Q/pI0BjCI07SPvqOitgFFEax9bCa55VUet2p/LytrH52Jqir4WP8cGXe7NWa/8B31DU6+Wb2Pnz64Az+fJiLZq1Ms6z65BwSeKrddZ7K58+sVWM0mvp55He0jmp+rzWyitLYeKY0oU6Vdw0/Tqa61G55IZpWn7rqMHh1jueaez3C63Dz11k+s/fIeHk++hR9y1pPsH8/20kPoUufhDjdhUczc226qZx93JU7h18yvQAeHXWfcg58QGxGI1WzC4TJ6EZ6PDrHGw0xpdR0bj5xGAr8cOMlj1wzn2etHM7ZHO6SE/h1iEUKwZMcR1h06xa2j+qAogjGDknj90/UeI9KhfRPp3z2uJYrUgn8aLSSpBf/V0DSdOa/9hLuxMW11dQM/rzuKW9NQTaB7q2Rkl1BcVkN4yIUO1ROGdWbCMEN8XFHbwMz3FuN0a8zbsI/tf7sbRfn93Px36w8AUFVn587Xf2D2pP7MmjTwT5/HdZ07M//AAaodDlr7+9Pjww+xqipvjByHs9LJgK7xeNnMxEQGMW/5bhasTAGgrLKO6y7ryXfbDlFSXQfAgk37efVGgxSuP5xOrcOJrku8rWZcbo1OMREEensR3Nabpc/fTE29nREPzQUM3cm8x64n4byUB8D6v8+motZObHggd8xdRkNjCkfTJT3ioxjayUgd1dod3PXJcgoranj1xvH0atukBbnrsW+oqKpHVQTffTILPx8biqIghMRsVUEzIgpVdjvr0tLpGxdD4Hl6FbOqcn2frny+Yy+ql0DzBrNqws9sIdzbl+PlJZgUBV1KHuwxmKSgMF7bt5WsGkMIfyaoxlNhh5S8NW8Dc+6fcNHUW3p1Iccq8wDjofq93tM9y45W5pJdV44Evjm7y0OSAMpr63FpRhXg22u2kxgZitIYYQzy8cL/T/TZOx9uXTdcvhvfc6f7wmiOyaR69lXdYOeub3/EoWk4NI0Vh9J47LKhlNTUkZpfRJ3DyZMr1hHs40WfuGhKa+rwztPJUcuJCvcnt6ASTZcktglHNv4B4/smgUFh3RkUZrRjuSPx2ksed5RXGDeP7ce8VXs839HMgnKC/LzQpcTf20pZdZNeLKfISPEF+XrTOiSAwooaokMCPBYG/Ts0d9G+dlBXurSK4MFXlmJSFT56YSr33zKC71ftZ/ywjtw25c9/F1vQgvPx58xUWtCC/zC4NZ36hibNR3KHVk0ToW483Z/OLuGdrzb9w7Fq7Q4cbsPMrs7uZMBjHzDlta+orr9YPysDw3o0T6F99uNuHK6L2S8aMCrEjAnu51On+HD3bioaGjhUUIDd7cat63x9+DDVDgel9fXcO285c+b+wv2vLqG8qh4pJfklVTjdGi63Rn6xEXXq1z4Wq9mE1WxiYFLTRDIoqQ1Wk4rFpPLwlUNZ/dRM5v9lajPy5+tlJTnWSAvFhgcSG3FhBM3P20ZseCAAMSEBmFQFRQiu6tuJIR2b0j6frkvh8NkCiqpqefKbXzyvSympqKrH5dKQEmpqHQwZ0I5ZM4Yw68YhvPrAVdzYvweXdWzHkdwCHvhhNVd8OB+9UQxVa3cw4cOFDH7jU5xuDb0BLIUqS6+YzvprbiOtvBgdyY6CbDKry1GE4Ir4JN4dNgEv1WQ4SbuLGX2TQYh1CQeP5XLv84svep2ivIOwqWa8VAtdAlsT6R3oWdbBPxJvkwWrYmJoeFPXeiEEf592OclRYQhgxYE03l+3k5nDenNFtw58cNOki+zpj8FmMfPK/VfSu1Ms113Wg582p1JWWedZvvPQGUbMfI9xd35EdkE5+7LzPO8dwND28RRV13LFBwt4+IefefLHdTg1jZKaOnafySGrvJLkgTH8+PFsfL1tRmsUXbJjfwYhgT48/5fLGdY3kTeeuAazSb3IEV4ad149iO9fvKnZa5/89ToSooKpbXB4iB3A2pQTnC0ox6QqLHp0BvPvv47vHrnhdx9W3l2wicrqBkor6vjb3HVcO64HSz64vYUg/SuQ/0s//wVoiSS14L8KGZklfL5wGx2TWjHjuv5YLSZunjaQ+d/uQEo4nJrD7FuGMe+b7TiERBPGE3bYH2gEG+bviyLwiJTtLjfZJZVsST3DxL4dL7rNnFnj6RgXwbuLt6IogrBAXyyXmEROlpZy3fff49Q07uvfnw9TUnDpOrtzc3lx1CiklHibzcQFBZFeWoouJdZ6gd3hIjWjgIn3fkKP5NY8c8dlFJRWo6oKN13ZF5dbY9GOw2i6zpSBXbmyT9OxdoyJYN2zs7C73EQEXvw9EELw5V+nklNUSUx44D+0Dqh3OBsN/QTjenRopsUqr2mKCpzfMkMIwfOPTGTBol0MHdiOQ0ezef+LTaiqYGCftpzNLuPuW4dzrKSENceMlhVldQ3Y3W68LWZSzuaSX1WNlBKL2URUgD+zh/Shc2gEc4+kePZjVgTW83RCPcKjGBIdz6bcDBQhGNApnv0BZyivMo7zt/5TWfnlPPnGSsxmlU8fmEmVuY6uQc1TqP5mL1YNf5BCexVtfJpH3MZ0bsfoTon0ee5DQAMkE3okExsSyL+KIT3bEhbkyx1zvsft1li38zg3TuhL3y5tmLcixSNa/nX3SSaN6Yav1UKNw8EVnZNwuNyMfucLw8LhPGhSYhKCBpeblMwcnrliJBNHdeF0Vgkmk0K/7gYBHtG/PSP6G+nUTbtPkX62mKvHdics2PB/Wl2wjdPVuXQIaIOCwsiIPpiVpuklPiqEV+64nKWbjzB1dA/aRAZzKrsECVjMKkhwujUUITwkzGYxkRzTpCU8W1zB5qMZDEqOo12UkTqsdzipbGh6iDlng9CCFvy70EKSWvAfjdrKOo5uO05S30SCIgJ55uXl5OVXcuBwFsntW9G7Rxwjh3Rg/vxtoAp0oH+feNq0CqKorAa3WaCoggnDL+3ncw6KgAcvH8yWE0ap/YEz+dhdbnLLqqhpcHDHR0vJKq5gzg1jGdWtHWBM/tPG9mJM3w4cySigd1LMJQXcP504Qa3TiHqtPmUQAbeuU2W3ExcUxJqbb+ZsRQVVdjuPrV2LEILAeF9Ul5PKmgY0Xefg8RxsFjMfPNnkzXPwTB5HswpxazpLdx3liWuaN+kN8LFxMWcgXUrq3U68VDO1bgeVlnpilH88mWcWV+DSdKxmE9mllfRt10Qibh3Vh1+PnMbp1nj+ujHNthvSvx1D+hvv26yHF+Jya7g0WHsgHQVQVMG0af09FX9eZhPeFjMFRVUs/mo3LrOGRVUJcVroVh9Aa6sfh07l8sXevZzromB3a0xY+RVbp8ymvsbB3X9fgtOtceuEniS3juCyNu0IvMfMs++sRqgQOsHC3FMbuaPdCIQQfPHDTjJzy1AUwZq1adx/ywiO5RaxLjWdcV3akxxtaL28TBbifcO4GIQQfDLzahZs28/oTokegrT/cBYvvb2aVhEBvP7stfj6XNqIE2D5lqOs33OCG8f3YUDnOABq6x0IIdB0SWZeGa/N+xWLSaGuMZqqqoK+XeII8fVmw4O3UVZXT3SgP/d8t9JDkCyqSoCXjZLaOuP99PGi3uXinuH92Z2ZzZihSQzt3Rar1XxBIcPRk3nM+WANLrfG7kNn+fLVGRyqPMmXZ1bi0JysL96NCRM7S47TyhZNG98wxrXqQVFlLZpV8NpfriSgMeV48+V9+WbdPrq1j8bkZ6K6vIFZl/cjOuzCT6tL05jx1nfUO5y899N2Ev2CeHHWeD5au4vTzipUxdBYPTRz1O++py34A5BAS1sSD1pIUgv+Y7F9eQqv3fIhUpfYfG18dfp9fLysKIrRysLby4KUkscf+A5zg5EmExaFZx5ZTHlpDapJ5ZP5s2gV9Y8nfiklt8/5nqyCcgJ8vbjp2r6kZhXh1DRW7T1OTGggGYVGNc3bK7d5SNI5hAb6MrJXu0uMbmB4fDzzDhxAl5KZvXpxuqyM9LIynhhqmOFF+/vzzskNrD95BrdU0XRJqzaBfHnfNdwx53vSzhTSrX00/r9p3JoQEYLVpAKS7vFNfcvq3HaqnPVEeV/o//Rx2nbeTN0MQKSXH7UuB05do1doDDPb92NX8VluaNuLOL9gHJqb5/avIaeukhd6jefpa0fyzPfraB0cwOU9m7yN9hzM5OCRbBbffwNREYF8snwnz360mnH9k3h0+shm5PG6K/vwyrs/4/AWuBuL3s6WV9I6KIBPpl/NzjNnmdyjMzW1dh5/eRmZWaUEqwKbr4XaumrW+9exOf0smi5xBGqQBCjgRqfe7SK/tpr3vtxMTnElAMc25fLUCyMB6N89nnXz72XCprc4Ul9E+pl8uge3oX9oW5ITItm+7wxISYeECEqr65j64bdICfO27mPPC/diM19426xvcLJy7WHcLg2LxcTwQR1478Yrm63z/hcbKauoo6bOwaYdJ5g49tKtXfJKqnjjm4043RqH0vPZNvcvqIpCr44xTL+iN/uOZZN6ugC7w4X9vCKu3h3b0DnR8LzysphpbTEIx7U9O7P9dBaKEMy/5VrsLhePLvuFqAA/nh4/HLum8dCS1dQ5XQQ26n9aBfjz8bQr8bc1fd7q7S6EMMxMz09zAzS4TdhMbsqdKmsL0oF0rMKE1AQvzd2FW9cJ9fNm9RO3IoTgnmsHc8+1g7nt4yXsOHUWi0nlSEERKw4fZ0Snts0+Wy63ToPTZUQnJZzJL+Pv32ykWnXjkDq2GAuPTB1N9+TWjetrPPfOKtKzSujSIZpNu0/Ru0sbXn30you2NGlBCy6FFpLUgv9I1FTU8vL099Aaq5GkhMqiKv72/DX8uPoQ7RIj6JgURXV1PSWNuhwB4NQpzDcmRqsiyEgvpFVUIOmZxeQXV9GpXSS/bEkjrnUog/s06YmcLo2TWcUAaNV1xIYEYjarIODy3kkkxzRGECxmeiREU9fw5+0CekdHs23WLJxuNyibLtEAACAASURBVJF+F4rIj1UWsLHgJA4vF9LmRa/AGJ4bORJFEXzy7PVUVNcTHODdjGw0OFxs2HuKF6eMJTDQm46Nx5nfUMFNO9/DqbuZ1mYwd7W/rNm+Pjmxy/N7qb3W4069u/gsB8pycWpufs5JY/vE+/kpO5VVOcewa26e2PsTP4y6lWWPGRqTg0ezOZKWS9eOrXnylRW4XG7WbUlj4Ye3sfCXvei6ZMXWVG6+vC8RwcY519Y7WLBpP3qkheToMFLPFCAE9OkRB8DgxDYMTjR0Vfc99T1Z2WXGZ0CT2KsdYDPO/1xkxFqhELZLUN9ap761pE9oFO2DQlHP07Eo4sKJ0c/khSqM6jNfkxHVuX5CLxLbhGE2q9jNOiNf/cxTnabpEremwUVI0usfrGXrrlO4NR1VVVi8ch9LvriT+gYnc95cRVFJNTHRQeQXVSF1Sdu4cM+2lbUNrNyWSnyrEIZ0T6C0qo47X1/kEWdLKfkpJY0tx85wy6je3HBFb/YVFqDWWvFpgGqHA1mvowrBjAm9Lzg2gJFJbdn+6Gx0Kal1OokK8GfbI7NJOZvDjQuWIJG4NA1d4vFVKq2tZ+WRE8zo290zTt+ubbjp6n4cP13I7OsHA9A9sAO3JVzFy0dX49YFLr0p3emQbl5OW4K7nYWGo37klRuu8KbzDE/P2WfouuTTX/fg1nU2pZ6hS2wkMaHGA4631cxL0y9j7prdFOZXYjGrJESFMHl0d17+YQPx4cF4uxVufGQBI/u3Jz4mlN2Hs7A7XOQVVQGw62AGp7NKLmoH0oLmkP8leqH/DbSQpBb8R+JvM5oIEsCYG4cSGR+OEILbbhrieV3/nUaksW1C6dU3gROnC7nnme8RQmC1mqirc6CqCm8/N4WuSdGAIQA/p0fSNEnHNpGsff52qurttA4xnsaXP3EzB0/l8uaXGxn763GeuX0s4wZdXKsEkJZfzOz5y1AVhS9mTiYxPIRgL69Lrt/aOxCTouBjNpPQPpDFI6/3LFMU4anCanC4OJNfhpCGr8zBU3kg4MNHrsWsGhPU4YpM3LqGU3ezLCeFa2MHEGZrcq8eEZXIzzlpaFI20096qWb0xlomp6ZR63KwMT8dt66jSkH+6Up2+mdgNquEBvvy2JyluNwaNqsZZ6Nnjd3hwmY10SrEn/LqerxtFgL9ms5766EMsgrLsTvdlFTVcuWQzvh5W7lhbK8L3pPyyjp0KRuduY1UVvuoUEpwUt3gaGrMiyCoyMLEiHhevmICihA8f/t4Zv1tETnFlZzMLub1bzbw2PSmdMz7fWawLGcfSf5RdA40IhBCCPp0NQjazM+WNNNVdW4dccledUUl1Z7qLU3TKaswGt+u23yMfYfP4nRqWC0qLz0+ifBQf+JimrRMj32wkqMZBaiqwgcPTWZX6lkKy2o9y4UieGXJRhwujT2ncnhw0hAOZOQZJMrHhrSo2K2S8EBfenW6eAsXAKvZxKS5X5NXWc2ghFjm3nAVh3MLcOkami4bBdTSk+506RoxQf7NxhBCcMs1/S947YqowewqyeHXwiMX7FdDR0TaCS4NZna/wRdo3l6ZNo63V29j5b40z/stkUhdkpZZSJvIYHy8LIzvlcT4XkkcOJlLaWUtI3u1w2RSWfjA9TicbkbOeBcJZGSX8tRdl6FpOhaz6rF90HXw/h8wi23B/238Q5IkhLABWwFr4/pLpJTPXWLdycASoI+Ucp8QYgzwKmABnMCjUsqNjetuBloB55STY6WUxf/a6bTg/wI0TWffuqab7eNf/YWR1w+ioqKOt15djSIEDz1+BQGB3kgMAnGukqdtYgSh4X5MmNST/oOM9NfZ3DKju73DhVvTDA8Vk0p1TZPIUyIxmYwbqsmkIITA18uCn1fTpBgV7M+6klrqHU6khOc//YWOCZHEtjLSWbnlVQR42/BrnEjnbdtHeZ3x8f529yGevfL39RJBVm9Wjb6L45WF9A2Lu+g6DpebqU8voKi8xqAyxl9sFhNF5TWe9fqFtMfbZMXudFHrbuDuvZ/xw5CHPcvf7HcVdyQNZFvhGd49tgVNc6MKwVv9r6LUXse2wgzuSB7E349sZFPBadQK8DpjQpxy8cSaZdisZkKCDSH4b1Mv984cgaoofP3cDPadyGHVjmPMfPk7nr5lLMlxESS1MZ7kbRYTAzrH8cRNowGoqm7grY/Xk5NfQUVVPddN7MV1k3rz7qcbcLs1FEXQs2sbnrhvPKHBvry/eCsLf9kHgElRQEJCVCgmVSG7qIIfNhxqFu37YeNhEgb7Mzm2N0IIQm1+zG43Ak02EW1d6jx5cAlbC09RZzcBVkyqwgtXj2Ziz+SLXpPD2QWcqapo9pqm6cx5axXHjufjdBqTdMbZUswmFZvVxKFjOXRJikZVFSprGjy+PlV1dorLm/tkXTeqO9+mHPFc/xW7j3miTDUNDsIDfCnV67jrcqOaq6yunk+27SE2OIDpfbp7Io9nyyoprKrBpWlsTs9E03Umde3I8kNplNc3UNMogNYawwhSwgurN7LizqhmKbdzkFJyqrqAV9OW4W/2ZnRkVzYVpqKhYxUmHLKpylMIGDYmlOndejQbo9bu4M7PlnG6sKwZIR3YIZY5X6zlZFYxfj42lr5yK16NZqQ9O1zYYqS23tGM7C9YnmLcF34TEokMbU76WnAJtESSPPgjkSQHMFJKWSuEMAPbhRBrpJS7z19JCOEH3A+knPdyKTBRSpkvhOgMrAWiz1s+XUq57187hRb8X4Pbef7NVdC+VzyapvPWq6tI2XUaJEyddJqkjlGMn9AdVVXQdWPSyDxTzNz5tzcbb/iA9qzffoLsvHJunNyPTTtP0j4+goG9mtpC+HpZeePBq1i1NZWJQztfMpU2qFs8H/+wHTAmkbe+2cw7j1zDBxt28fnWvVhUlSX3TCc2JJDB7eLYkJaBBAa0vfQT/vmI8PInwuvSN/Ki8hrKqus8N3+LSSUyxJ+uia0Y2TPRs16w1ZfXe9zIPXs+wyHdVLnqmo2jCEFSYAQuXePdY0YEaXBEAqOjjZL269v2BGBp5mEAVCHwO21CYBgtNthd5BVUcNfNw9h9IJMDR7LPG12wLSWdAb3bUlPvYPexLBxONy/PX8/Xz88gITqEH16+haKKWroktPJs9eG8TazbnOYhvO98tgEppSf0bzabuPm6AYQ2krPdx7I822pSx+2Gr9bu45rhXbn3jaUUllU305/o/m5eSl3JwfIsDlVkU+Wqx0u1UOKoYVBoO97vO4NdJaf5pcBwdSbegVpi4bbBvRncIY7HF63BZjbzyOVDCPBuiow99v0aSrDjI0BIUBTjs7Fx2wnO74HlcLp597MN5BdWgYARgzrwxH3jefnOK3hn0Rbax4RRWFZNvcON2aQAgvumDOH6MT3p07kNH67eyYm8Yo7lFOFrs1Brd6JLSXSIP7+8cJuHDD26bA0pmTlYTCqhvj6M62hUpQlhEFO7282VXZNQFYUIf1/W3HsLLk1j4BufUGN3YDWpOBpJWGltPWvT0pnSs7lDeKm9mtkpc8m3VzRecdhXblQQxniFkVdfxm9xqqbQ8/vR7ELsThcl1XVkFpdf4PtUUl1HRnoRABI7eSWVJLa+uFAeICTQh6vHdGXN1jRG9GvPL9vSkJJmfQyjwgP+tH1BC1rwD0mSlFIC52K/5safi/HMF4HXgEfP2/bgecuPAV5CCKuUssUvvgWXhMVmJioxkvKCCmzeVkKjQ3j3jTXsSznDuYd+TdPJOF2ELnXMZhWXS0NVFbr3bPIIcrrc7Nx3htjoIN58erLn9StHX7zzeL/ObejXuc1Fl51Du9gwurWP4vCpfAACGkXUqw6f8JQw783MJTYkkEk9O9IxOhxVUUgI+/c0z20dFkjf5Fi2H8kEIDEmjKmjurNi61HW7z3F+AFN0Y5OATHc3HY4KaXpzE4cc9HxugRH8dXwGWTXVjCudbKRVhPGE7iqKDzadSRW1YRVMTGodxsyzpSQdjKf/UeyGTk4CZdb56/3juOR53+gsLgKoQjenLseRQhGDO7A2MuMqkKbxURsRJOAPjLEn8iQ5mTQZjWjCIGORFUVTKqC4zzC3Kd7HB07NAnTyxtNCBVFoCoCl1vH4XTzxrebKKmsNaKMquC5W8fyetrPVEcYkbYtRcep11zoSGrdxq1oR2k6J6sLee7wcs/4AvC2WpjUsxOvrdrMmiPphj7o4HGW3DeDxAgjZRYZ4EtxaA0OVWdsQgKFeZVkZpeiNbpJm81GLzyL2UREmD/5hVXY7S4OHc3Brel42yy8/9Bkft17khe+XIvTpRHoa+P1e6+kR3sjajKoYxxnS8rJWGmQj9Hd2vFjyjEkRu+y6//+DV8/NA2A1OxCNF3i0nQ0XVJtt7MvK4+X1myist6OzWRiRt8enj5yNrOJoupaj7+XU9MY3LYNe7PyEAI6tbpQwzNz90cUO6o8/5cYRFUD6jUH7t9MEQIYG2l879YfSefJb39BCJg2sDsCgZfFhL+XjaKqWoRbUpBRQUJUMJn55fRoF92sn9ul8OisMTw6awy6LikoreZQWi6KUFBMEkVRuH7ChencFlwCLdVtHvwhTZIQQgX2A4nAh1LKlN8s7wnESClXCyEevdgYwGTgwG8I0jwhhAYsBV5qJGQt+D+M8sJKqkqqiet86VJ5IQQfprzCsR0n6dCnLTZvK8eO5uJ2G20zzBYTSCMasuS7FOx2F916tuGuv4whLr7pafPZN35i39FspJR89tp0EmIv/ST6Z/Dmg1fxypfrURTBQzOMcvvbhvRmzo8b8LdZGdrB8JZZl5rOW+u2M6BtLM9MHPkP3bv/CBRF8PYDV3Puq1JvdzH6vo/QOlZzpPAIhadGc2t745iEEMxsO4qZbS+e5nNobm7YtJAj5fnclTyIJ/eu4sfsVGyqGYfm5vYO/flrt1E82X0MOfkV3PbAfBxON4/cdRn3zRrFjLu/wOnSWPTjXt6ecx13P/4t7kb9h1OXnMoo4okO43n3waspKK1mTN8OFz2Oc7jrlmEEB/rgdLkJD/WnbVwo9z+9CE3T6dcznpefuKrZ+jeO7827i7cSHujLlJHd+PTHXYCgqLzGE41KbB1qGHw6VIQ0Q6SbCbE9WJ67H4fe3PTzTE0xdZpxe1KFwhMdJ3LN5b1QFIGfzeZRs7o1nflb9/H8NWMwqQrv33Qln63azc+LDrAt/5QngjF8UHtuuKYfTpcbHy8r5VV1VFXVk3aqAIfTTf8+CUx/7iuyCsuJCPZjVO92Hv1MZa2d1DOFHpL01MI1rNp3gqToMK4f2p3xvZI4mJlHVmP1XmZROacLSqmzu6BSRzGBimRkhwRGvP05dU4Xmt74hCGgqsHO8Lc/o6y2nr+OHcqMfj3oFx/DttNnmdA5ideuHse+rDwi/H1pExzI2rRTfLJtD+M7d+C2gb0odV68dQ5AvG84Va76Zu+vSagEWw3hfmp2oWEIKiVZpZX89PgtFFTWUFJdy8PzV2Gqh3rNSb6rmrsnD+am8X3+0HfH4XRRUd3Axp0nOXw817hWbo2pE3px5cguxLX+x0SrBS34Lf4QSZJSakB3IUQgsFwI0VlKmQoghFCAt4BbLrW9EKITRpRp7HkvT5dS5jWm6ZYCNwILL7LtbGA2QGzsH0tZtOA/E2eOZnP/4KeRumTyA1dw64vXX3JdH39v+o7vQX5GIbWV9Qzo0or8nDLcmsTpcGO1mpjz2nU8+fD36Lrk8IEsjh7ObkaSTmeVNIqIzWTnVfzbSJKfj42//aV5b7EpfbowqUdHzKrC/qw8XvppI1tOZuJ0a5RU1zGpRzLdY6MuMeKfxzmCaTIpmP1B79AAKnyWuZ4b2g7Gqpp/d/u0ikIWpO/hRGUxEvj0xE5PhZtdM6qbPju5i85BkVwR24n3P9+I3WFMeh8v2Ezn5BtwazpSSqpr7Cz60ciaa7pEUQT+fjbun2WQs14dYuA3/Ki23sGjH66kuLyWObPGoWqCz77ZRpfkaGbNGIIQAofDxWtPT8ZmM9GpQzS/xQ1jezF5RDcsJhUpITTIF4fTjQAy8koBCPb3Ji2zCBCYdvvy3INjmNClCzckDGBr0QneOv4LOnBFVDd6hcRjEioWRWdqm35cG98bXZcUV9fy8PghVNY3sD71NLqUrDx4nF+PZfDoFUOZ3Kcz8d5GVMyTGjSZCAv147NvtjF9cj/i24Sy8dsTfL98ryc6tmLdYZxBhtVDfmk1izcc8pybWVWaqgEbHPy8/yQAGYXl9G0fg81iYvFjN3LHR0s5llVIiJ8PbcKDsTtdWFUVxSXomRjN5zv2ecwWFSG4vFN7hraLp7K+gRq7A01K5u0+wE39e/LZ9Ktx67qh7wL6xrVuvKY6Dy9dg1vXySgtZ0xSIn9Nvop3Tq6mQWvSogkMMtQxIIb7OlxBTn0pq/MOsLfM6MEW1+grNW1Qd7afOEuD08Xd4wYQHuBLeIAvf/36Z4SiIFQdVYLd6ebTFTs5nVvCMzMv4/0ftlFRXc+D1w8j9DfGqOVV9dz48Hxq6520iQry5DqEIhjaJ7GFIP1JiJZwhQd/qrpNSlkphNgEjANSG1/2AzoDmxtv3JHASiHElY3i7dbAcuAmKWXGeWPlNf5bI4T4FujLRUiSlPJT4FOA3r17t1y6/2Dous47d37G/vVHuOXFqYyZYfj/2OsdPDT8eU4fzPSsu3XJ7t8lSQA7V+7jlenvousSt8uNtJiha3tQjIamsXGhqCYBTkNv8dnHG3G5NKZMM6pvHrljDC+++zN2u5MtKacY0jfR80R6qSjWvwKLSUXTdW6ft8yjsTCrCiCJ8L+w5P+fgabrzFu9h/ziKu68ZiDhQX58dP913J02FyEkgVafCzrT/xb1bidTNy7ArrmQgFVRceoX7+y+pySbK2I74WwsCz+H+NhQ2iWEcyK90IjumVR8faw4HG6kLnE63ZSV1150TICfd6Vx5HQ+TpfGm99tpiazmqKSao6m5dGtY2u6dmzNbQ8tpLikhvAwPxa8dyvn9D31DU4OHMmmXUI4EWH+5BVX8revNpBVWM7Tt4ylb8dYwoL8cLk1Xpq/rmmnis6LuctJjA2lxtXAytxD6ICCoLVPMKFWX1p7B3GyuoCcunI0XWf6x99zPK+EHnFRzJt1LSv2p/Hiil9xuHVq7A7mrNjAmM6JjBqSzJoNqRQUVxEXE0KXpGh++Gk/TpfGkWO5rF30AKcziz0ESVEEwf5eyBAbuY3RIFVRMKnGLe7eKUMZ08fQEvnYLCS1DiejsIzIQF9eWryBlJPZ3DCsB/Puu46c0koig/ywmk14W8389MytZBVXkNQ6nPc270QBdKBtaDBvTr4cIQT5VYZeSwABNhv1ThfeFrOHIJ0PRQiCvL2oarCjCAV/m5UJQb25LKo7o359AQ0dFUG3oDjMipkJ0b2I9g6hrV8kg8OS2Vp8nEivADoGxNDgdGExqyx95EbAEH+/vGwj6w+nExHoixBAgEKX8FaknSrA6dLYdjiT5ZuPsHzLEdxuo4fd3//SvMVLWnoBdqcbl1sjt8jQfJlNKleO6ERMq3/cqLoFLbgU/kh1WxjgaiRIXsAYjKgQAFLKKiD0vPU3A480EqRAYDXwuJRyx3nrmIBAKWVpoxh8AvDrv+mcWvD/E07uzWDTop046h28d/fnjLx+EOsWbCHreC65jRqecygrqOBvN77HfR/cjk+A90XH+/XrrTjtTZOzcLiQJ7NQOicwfkI3nn/8BxrqjeVSgq5Jas+rWOvfIx63W8Ph0ti2J4OlPx/k0++24+1l5qOXptH6f+DmKRDNembFBgfQLjKMJfuOcueIfp4S/X8W6/ecZMHqPThdGoXl1Xz06BQ6x0bxQ9hDHK48S9+Qdhf1BDofbl3HLY1GpQJ4u/9VvHhwHcUNtZ7y/3No7WPoiMYM68ih1Bx0Cb27G7qtF/86iTlvrkJVFW6fMZhH77mMh55bzKHUHIALKovOR3xUCEIIbFYz7WPCOFnsoKTMMAn18bFSXdNAXkElmqaTV1BJdU0DQY0WCPc99T05eeUoimDYuE6s2HbUUxn12tcbWPa3mQzqaqQ8v1m7n6MZ+YZGp3c9NuCn3IN8d3a350wtqol431DyGirJqC1BBzYXn+DNQ+s4kV+CW9fZn5lHdYODcV3bs2LfMfadzUNVBDaTCavJhNXLxGdvGd5Rui5ZvyXN8/7abEZUb+ywjhxKzcXPx8pVl3dn7LBOBPjbeGfxVsqq6hjXL4nnv1yLlJIubSM9RF4IwcKHpnK2qAKXpnHLO4vRdMlXmw7QKSaCUd0SsZzn3RTo40WGWk6/1z82qsraJ+Bvs/LEuOGeMaMC/BmSGMe6tHQySstYuPsAdw7td9FrJYRg8e3TWH88na6tI7l54RJOl5TxwIiBXB7dk/WFh5FSklaVi47kzj2fsnLY4wghMCkqIyMNXdrZkgqmvfMtDpebRycNY9qg7mSVVrI8JRWHW6O8tp6bhvciyMeLqf27Mvu1xZzOKWHGuF542ywIIVBVgY/XhTYM3ZKjCfT3wuF0o+s6UoLLpbFs3RH2HM1m0bu3XfKz2ILf4L+or9r/Bv5IJKkVsKBRl6QAi6WUq4QQc4B9UsqVv7PtvRg6pmeFEM82vjYWqAPWNhIkFYMgffbPnkQL/jMQHhuKUAQ2HysRbcL4/MlvWTV3vUc/IxSBbJzM7HUOti1NoVVCBLe8MPWCsRa+8APbl+/x/F+aTZDQGrOXhbseuIzomGBWrzz0m60kwcHNw/BxMSFkZBmpl80ppxodil28+N7PfPzy7zfO/CPYeDyDDzfsYmRyW+4ZNQBFETw1cQQvrtyAIhT8bDbWHzuNqgg2lZ6kR1Ikf+0yBov6z1mUmRpJlmjsSXcOEV6BjPXqfqnNmsHfYmNCTEdWZB1FAsvOHmXRqFtYnZ3GT9mpHK8s8twjl509wqykAYwf1YXK6np+/OUwFRX1lFXUEhHmz4ev3gBAdm4567cc55apA1kfmUariABGDUnmdG4JmfnlDOmegM3SlALskxzL3EenUFpVx5DuCVRMqGf1+iN0SIykfUIEUkq6JkdzMDUHRRHUNzhRVYUFi3dx+kwxupTYrCZ+STnRrHQ8KsQfKSUb96fjcLp5874r2bAvnTqfBj4v30hr7yDWFaSiN56hr2rh772mMSAsEZeuEecTSnpjFdaSwhTCQ6MoLKmjf9tY/L2sCCFYcOd1nC2pYOvJTIZ2iMf6G3PJTxZuYfnPh0BKRg1N4tbrBwHw5sfrqat34HJrDO7bjtAQ47P66HTDCfz9H7ZSbzfsJeat3sNb9zVpsMyqSruoUOodLnxtFo/I+omFa+jRNpp591/X7Bi+3nMIu9tYJ9Lfl+euGIVb19mSnkmrAD/ah4cS4uNlRJOE8NhW/Bbrj5/mUG4+9U4Xyw+l0alVBHkV1UgJX+zcz+7H7mRCdC90qXP//nk4dTflToNsq42Rv+y6UvaUpVNy2hCKuzSdpbuPMm1Qd0L9vLGaTaiKQoifNw9PGOIhct++cCOarqMqihFN1jQqaxu4fnRPz/HNX53Cqh1pTBjYiaT4CAZ0j2flhqOe5RLILay86Lm1oAV/BH+kuu0I0OMirz97kdWRUg4/7/eXgJcuMXRLqcH/IaQfy+P7TzYx5flppB7MYN+JYrI+34iwGykdU3gAorTKM/kKRaCaVALDL9ZVDL5/azUiOAhZ3ug/ExUG/r64BGSkF9GtZ5tm3cMB3G6dz+duZNK1Ta7Dbz87hV0HztAuPpwDR7M5cjzPON7MYvYdyaJv97h/6bwf+f5n7G43maUVjO6USIfIMKb27crQpDjm7NnInkM5gMSt65yoKiTjbAHxfiHMaNv3n9rfqN7tKK+uI7+kipsvbxpjxZYj/P3bTSRGh/LxY1Pwtv2+ad6AiDjW5B5Hl5IgqxdR3gHMShrAVW268PqRDazKTgMk46ON1hCKIsgrrKK4tIbi0hq+WrybB+4w/I0cTjd3PPoVDqcbi9nEigV3Y7OaSc8tYcacr9GlRA+G0KG+fDXyBsK9DHLQuW1T+X9osC83T23q2i6E8Jgz6prOph2nSD9TxLbd6SiKwGoxMaRfOwJj/Fm4Zp+HiFfV2flozTbmL9+LQHDd2B48MmUEO09mYV/mT5mvmZJuTX5SY6O6MCAskap6Ow0OF98NuYunDy1lfUEqCMmUKxK5Nro/xcXVfPnDLob2TSQqPIBNW08QFuxHm9ALW94cO5mP3eHCZFLokBhJTLRR2ag0migKjM//b9E7OZZFvxrEf3DXBIoranC6NFqHN+3D22rmrdsmcvv7P+DSDKp3LKuptH7jkdN8t+UQCbHnWtXAqCTDGuL5Vb+yOvUUUkoW3jKFR0YPJSrAH2+LuVmJf12Dk4Vr9lCju/j2ZCpOze1p+nw0vwCr2YxVmhjZIQFFKHQLigPg5vjh/Fp4hJsThqM2RjMb3E5u3f0BLl3DbLdiNQej65JpgwxCbzILrp4STG5BHY8NvOqCNPg5CwdFEVwzvHkbl8KyauYu34Wm63y0bDvmOqNZrsWi4m5o8r6S0kjr/U+k2P9vQrRUt52HFsftFvxb8MxdCyjVNLYcNqrJpI8Nd3I86tEMpI8Ne3w0Qgef+gbufutmnA4XVi8rY24aetHxAuNaUVHZgBYUABVV4HCCNEp5wyL8OX22hFn3jWbu22s9pdY2LzNtE5uXK3t7WRg1KIm6Ogeph3LwV8zUSzdCCIIukeb7Mwj186a42vAgCjzPTftoRRGb8jNpCHARbLIRH+bPKe8846ndfKEx359BQDtv/Np5NXOx/nj5TpwujcyCcvakZTP8PM+ki+HqNl2REk6kF9G2NITqWjv+vjbCvHx5KnkMBz7Pwik0lq44yFrvNF5/7CpatwpqTOtIoqOaUpVvH95Erd2B0AWadDJt/XyuoKASOgAAIABJREFU6dCdJTuOoEkdoQlktSSzppxlmUe5s+OAP3SeIwZ14MTZQmSYk5iO/pzMKERKw/Tz7luGM2mcMdF2aduKp+auRghBXKtgfjl9DKkbE+PerExgBB/8spM6hxOH20Ww8KOaOsyKyv1JY1l3+BSPfvUzAGH+PsRG+jOxbw8CrF5Mjx/IjpQzvPzxWlxujW9X7aNv1zbsOHAGk6pgs5oYPTCp2XHffctwnn/jJ4IDfRgysB0lVbWEBfjy9pzrWLHmIH17xBMTdWGqd0DnOL6bcyMOl5uqWjvXPD4PieTxG0cxcXBTg+Zu8a2YOboP32w5iMut0ysxmokvzmP6sB68sXwLLk3nYGY+ix6Zhp+XheKSGmrq7RzOK6TB5cJmMpFeXErX6EhmDrywjcnbizbz8440NBto4QJdgqVBYHaANdTCirtvosZuJyHUIDzztu0jr7yau0b357bE5pWU9ZoDp+bGJTU0q86ap29BRfU4ly/L3cj26hQ0b513ztRyU9wVdA78/c8uQG5xJfNX7/FU7KmKgqIav9vtzfVzivif0SC24P8NtJCkFvxb4LKo6LoAIVAAqetgNmHqkYjDZKRZfJPjiGrlz9EyO4OHtKdf37YIAfu3nsDLx0rHXoaOxO3SaJ0UTdXeM1iC/HnoizuozC7mcGoeHQYnseSXw5SV16HrksBwXy4bmszAQe1oaHDRvVfcRY9v0bI9bN5+Ek2ThIX5YjGrrFp9iPvuGo2q/vMNL7+ZPZW1x9Lp2SaaiICmVF9r3wCklHhZTHSMieDT0VfzTcYeLC6VnF9LWRt/jMtGdPrT+5t/Yh9/P7QFkOR0rWJ2J0NH0q9TGzbtT0cRgg6x4b8/CMak0V2N4oOFm1kvJRt3nOTTl4zUWV5RFdIOmsPwvamoquejb7cw6qaO9PNJZJhfW0YNMIiBW9f54mwKXv0UvE+p2Nvp5DcUkXpwLZpZwTfEjKlGUJfkxqQodA/54xV+3YdH4fYqRkPnqfx5RAwIZERoJ+o0O9/6rKPyTBk3J4xiWI9E3ntoMoXl1Yzu3Z53jq7nW6+9CKdg6ijDDmFocjzpBUba9bXk69H8XHTwjyTA4s3rP2726KeKqmopq6lnQEJ/Zo3ux3sLN7N83WFPab7brVFb50DTdJBQWdVAaUUtXjaLx4DUK9BGq76tCPb1YsJL89AlTOybzNqDp7CaTOSY7LRqE4QJhSfnrsbLaub1eyYSEuBDTIRBnj5Yss2TUlu352QzkiSE4O4rBnL3FQPJK6viqpcX4HRrvL5sM1azyegfJwRRgX7c/foSsosq8LZZePKusTy7+ldiggK5rNFgEgy/KX8fm6ddSF5xldEXr14wJKoNTqGTtjsXl1sjUCiE+/kQ7mfow9YcOclHv+7G5dbIKa/ks9smU1RVi0lVCPH1JsTqx93tx/FT3j6mxg4kwNb8wcSmWhAoSHSOV2fybOrHzOl8F50DE/lu3X4+XLaDzgmteP+hazxGkJ+v3M281SmeawJww9ie+KkWggK8+e6nvRSUVqPrEl2XPH7HWFrQgn8WLSSpBf8ydF1n8IiOrNp4zIgiKYKhw5O5+ebBlJfV8sSTPyClJDAqiFO5FZwsOMK69alMubYPfk4Xiz80nJUfeXs6g8d3Y/2SPZw4lIWU0LZTNMMmGhqEScAd9y2kpLSpaqqy1s62g2e46y8XN0s8h8AAbwQCKXVKio10S1nZMQb0bUv/vm0vuZ2Uki8Wbudoag6zbh1G547NS9HD/H2ZMeCCbDQdQ8JZdPk00itLuTyuAz4mC7M7DGb2w19x6kwRZrNKeKgfPbr8cVsLp6bx8bFdNGguBHC2ptyz7PnbxjF1VHciQ/wJCfD5Q+OVVtQZpfZON9n5FUyc/TFJbSN58cEJ9O/WhpTDWTQ4jKfyPfYcth44i0QiQhX6uOLIrq2gY1AkfmYrNW0dNLT9TR89RVLbrempftXY2/C1WLl63XxqXQ7Gtu7A1LbdiPVtHlVx6m7Sa/LZUZKGRtOYRc5K3H1q2FF8BBzwZeZ6xkX1IsIW2KxVRa67AiI1EPBW5lqKRTV3jBnG0I7xBHp7ERXc3MQyzN+XoiojGqgIMKkKbcKMY0o/a1SkKQJahQdy1w2DCQny5Z7nFyGl5OuVe3jvq81YTCqfvTKd+NYhPDZ/NafySg1jzMY01aq9J9ClxOHS2HQ0g5N5JXQNCyc9pwRFEXz/60HumTzYc0zj+yez8Oe9SCAtswiXW7uoW3TKyWw0XcesKgT4ePHRXVez8fBphnaOx9ti5mS20elJ13Vi/QLY/OCsZtu/NG8dP20/hi4lUWEBzH9qGjlFRopbFTCpcxIRwX7M3mG4mzc4m3tLgfEd0aSkrLaBnw+d4Kkl6xDApzOvoXdCa6bFDWZAWAJ17oYL0l6ToochgKU5G6lwVQMqhfYyOpPI3BU7cTjdpGUWcjg9j97JseQWV/LVL3ubESQBjOrTno7xkexJyybXXoclyMK8J6aSEB3628NtwR9Bi3Dbg3/+EboF/0+isryWPVtOUHdeFdmPX+1ky9J9mCsaDA2ShPLyOuLjwujVK54Vy+/nhmkDyMur8GhHNE1ny9YTnDqcg73BicPu4t3HF5F5Ih+rzXBeVlSFwFA/dP18fcGF396GhubhdSkli5bs4bW31lBUXE1efgXfLk5BP69HlyKMSqrQ0N8vzT+SmsuS5fs4nJrLcy+v+N110yvLmJOygc25ZwDoFhrJlHZd8DE36YOcLqNEXkCzG/3vwa3r2N0uDpfmUetq8mK9r2vTpKoogk4JrX6XIGUXVXAmr6ldRIf4CMYPS6ZDQgS6lJRV1nMgNYf9qTm88sgkfl34F4+wXbdI3FLHpevk11cxes1HTN/8FffsXEKf0Fh+m8xQhaBbSCva+AahCME1cV1oFxjGZ8d3c6Qsn4zqMuam7WTS2nlNJocY1+7uvR9x//5P+ClvT7MxTSiYzrM30KSOn+nC1KWpUYysSUm1u4FP0zdT4aynY+sIrGYTW9POUGtveh8DfZrGGNapLe/eeiVjuxmRlvtuGk5c62C6JbfmvpuGsWB5Cl//uAezqqDpkuKy2saydI1dBzORUuJrtaIqohkZ8PWycH7GR1UE7WJCsVlMWEwq3v8fe28ZH8XZt39/Z9bi7o4EEkjQ4FCcYoXS0hZKS/Wquzv1UjcqVCgtRQqUUqy4S3ASNCFO3G03KyPPiwkbtgktva/r87/lyfEGMr6zs3Me50+Ow2Rwajsdyyjk501HneNUvdlKRW1rOYWqejPvrNyBrKgoqspPj99E18hg7p84iG7Roej1Om6b2A+jQceQHh2JCW2d4ttw4IwzilZR3cjO41kkxoXibjKg1+voFBlEXkmNs/7PbLHxybKdzv3HJ3dxps7yKqpZmpqOXZKxSTILdh9m8ocLeWbVah479iEvn/yKZQWbXM6vE3RMixrFnKR76OgZSb+AJK4K0SZFveKjcDcZ0ImiU3F7zncbsTSn00RB0CJWvp4Y9TrKqhv4cMl2bA6JxiYbWw5ntvq87WjHP0V7JKkdVwxrk537pnyKzerAP8iL7/94EkEQqCitQ3LICLKCTgDJHQoKKpkw8QOum5ZCr14xHDqc04rglJXV8/IHMzl9OIeGWguNdU0s+ugPXvr6DiyNVjYvP0Tq1tM8MP59Pl3zOCY3I688dw233P2d8xiCAAldwmhosOLtrQ12+1Kz+P6nPdgdMmczihk6OJ6q6kZUFdzdDHh7u3P16G70T+lI545/nZry9nZrNr8V8fubGqabNiylymph8bk0RkZ1ZGN+JlfHduHrUVOdA+Ybz05lwdJ9xHcMpX/vuL+951l1lUzdsBBLs8CjAOgQGBbegTCPK9de2n0imxe+Wg/Ac7NHY6mzMm/Rbjzcjfzw7q28/+0W0s4WoaISG9FioTJ1dDJb92cyOboztTFW6uxWpsQkcbiigCbZwYGyXHZMepi3T2xm/YUzSM1E1KDT8Wa/iST6hdLosOFj1L6bBL9QjIIOmyqjAvV2G5KqIKoCVfZ6PHRuZDQUogIKKtMiBrG2+BB6UeSZxOl46k1sLm1xO3LXuXZl5TdWcbAiB0VVMAo6REHATW/ES2/CYnMw7f2fsDkkgn08Wfvc7QiCwOCucRzJLkIFpg9MZnDXFmua+LgQlnx0BwBT7v2ayhoz5/O06M+lxsoIAh9u2st3qUf56v5pbEvPIi7En9yyGn7afpR6Swspu35wEreP7kd0kC9dYkI4fKaABesO8v3agzw24yo+WbYbh9QSsXF3N3Dvl6uoMTfx4V2TGdBFiz4a9DoneTEZ9IQ0Cyw+Mv93dp3OYXBCLF/eP42Hpg9r85mYt2IPDqmFoOp0Ap2jgmgwW4kJC2DCoEQ6RwU1m+/qkBXNbGT5thPMujqFYH8vRFHArbm7TxQExiZ15lRhKQadjv3nC3DIChdqagkdKGLwsXGyLouZaARXVVX0oo7MhnzSajN5qfvdhLq1iD5++PAUTuWUEhPmT4CPB6VV9dQ2WJzrBS27T2WdmZlzFrk0chh0Ovp3axcf/i+jPZLkRDtJascVo7aqEUujDYddoqywBpvVgZu7kZvuGUFxfhWFhdXkNPtp1ddrkaaly1JZuqzFCzkkxIeqqgZ0Oh0mu4Of3l+Pb6AXlkYroihia5J4/NpPmHrHVeRllKAqKmWF1WSdKqR7SkeiIgO46fp+LF91uLlrBQ4dzeWLb7bz3JMTAXDYJWeUJv9CFTdF9EMQBEQRJoxLIjunAncPE8ndW7uJ/xkd44KZ+9r1ZJwvZdxorS5EUVS+/WEXp88Vc//dI0nsqnVp2WXtnIqqsqngPCqw7UIWJeYGIry0FE90ZABznrqmzXO1heVZaU6CBNq7SxRFXug7ymW78poGXv7mDwRB4M17JrRSJE49leescdmXnkva0QIkWaHRbCP1eA5zn57KobR84qICiArTuqm27s/gj92aUai7zsAL/a8GNDuTn7IOk15dzAPdhhJg8uCDAdfyQq9xlFrqaXBYCfPwIdZLI1sXCRLADR17UGFt5JOTu5FVFQGVsevnkxTiyRlzBkEmH6ZEDmBd8WEGBHbl8cSp3NJxJN56Nzz0bjgUiXivcM43ljApPMUlWlNnt/DgwUU0SNqzF+Lmw4MJo+kXFIdRp6esphazzY5dkrlQVYddkjEZ9Nx6VR96xUXgbtTTOezy6ZnwYF+qay1at56i0jcpmhNni/B0N2ILFJBsNhqabBzPKeaBiVqn3pHzhSzc2uLhLQA3DOlJTLB2j6/q1Yn1+85gtUsIApzILEZWZGea7uoBXQmP8mfBlsNIisJXGw44SZKPhxuf3zOV/Rn5TOybgEGnI6ekil2ntUjm/nP5lNQ0tEov/rojjfX7znAqp8S5bFRKPE/PGsWbP2zm0JkCBAEOny0gJSGaB64fwmMzruKLlXtxSDKyovL0F2uYPbU/RXX1vHH9WBYfOEGf2AhuHdKbmYN6IgoC13z0I6W1jQgCRPsGYDeYmR03idzGIp5J+xSHIvFE11v4JHMxkirze+EuFg184xI1eR29urSkt++Zu5yy6hY7FFVVcUgto/mlulwfPtLie9eOdvw7aCdJ7bhihEb6M25aX3ZtTOfaWwbj1lyo6uvvyatfakJ60677lLq6psseo7xce8l5uOuQs0s5nl3uXCejcGzPOQA+eHIJQ8b34ODW03j7edBksbNn/QkGX53M/XePZNWaYzguSVddqndkNLU81nq9jjXr05r9tETW/pGGw6Fw7nwpKb1j6dI5rM3rdDhkBFEL5/fuGUvvni3RhXUb01j+22FkWeW1d9awbOG9APx49XS+OXmY0dEdWXDmKHl1NYR5ehPs0XYK7JfVh9m5P5PZNw5iUErHNrfxM7m3WuZQZEx/0ln6bk0qJzKLQIAF6w7y5M0jEYWWlM/0kb3YfvQ8kqxw6/gU9u4+D2gDi5+vJ0aDnqEprrVZZZX1SLKCJCkcPJHHotWHmDG5Lya9nl9G3d7qugJMHgSY/jraJggCt8b3ZXl2GoXmWkRBpNBcR0l+DaGBMnUOM2PDevN0YoshcahbSwu8QdSzYMBjWBUH7rqWNGaxpZbpu75wGtYCJPqGMymqxcw4KtCXKSnd2JyWyaxhvXl95VZOFpTy/LSRDOry18bGAB88P40vft7Nhp2nEUWBLnEh3DCxNy9+sBbJrCIECIgGgX7x0c59usWEEObvTUGlptXTPTaMzn8ya71jcn/SsooxGXRMHdadLYcynOusdolBCbEs2KKlHgsqamlssuHlbmLtoTO8unQL7kYD0wZqBN4mabYsF4Us/T3dWfTHERosVmZP7EdNvYWPlu1sleqdOiyJIF9PymsacTSrxZ/NKyMjv5y9adkUVtQjCgIxof5kF1VxOr+Mx5asQyeKRAX6svaJ25zH2nEmhy2nzvPQ2MGYrTZO5Jewb3c+s4eOJcGnAwtyVmORNSK7oWSv0xy3wWFmR/lh+vgn4mdsHSWtt1hRmn3xvNxMmK12FFlptR3AE5+t4eU7xrkYPrfjH6A9kuREO0lqxxVDEAQemjOVh+ZMvew2gYFef0mSLqKh0YbobsJgt7S5XlVUnvhgJvVVZvIyS3jzngUoBh0RKw9SbpMwGfWIooCqwpiR3ZAkiTlvreaR+8fw5ntaWkkUBcaPTWLthjRAq4O6mB5RZBVPj7YF9FIPZfPyG6sxGnXM++gWOsQGUVJWx6Il++kQF8TCn/c5ZQe8PFuO0TckkvmjtZnv1E7dyKypJN4vsE2bkILCar5dvBe7XeLluavZsuLxNtuUb47vzeLM4xRbWmbQRlGH45I6niqrBYvRgcGgyfdZ7Q6G3vsZfl7u/PDyzYQFeNMxMpCNH9/n3Cc6zI+8Iq3w+3J6mtPG9uT0+RLOZJVSWF7LvFW7+ObsPt6/axpJ/uF4GVrfv9M1pbx2fCNxXv7k19eTU1/FewMmMzKypa3bx+jGjmvu51R1CTO2/YwBHcEeRlShkUCjN128W6IHqy7sZ3VRKoqiMLvDKMaF90EQBBeCBJBecwG5OdWnE0SGBnfmnT7TnevrLFa+3pxKqK8nO1+7lwMZ+SzceZQmu4OXl21m6yuuBc1twdvTjefuHcfMyX2564UlrNqcxtJ1RwGNkHjUqMy9eyKdwltIkKrC7WNSiAjwYWDXmDa/44TYUDZ+rBHtNXtOYtDrnFG/tPPFjC6vw8fDnepGCxabnQPn8hmUEMtby7cjyQoWm51dp3KYPaovCVEh3DEmhW1p2Tw0eTDr9p1m/ur9yIpCZZ2ZB64b4jIA6kSBh6YPY3Byh+Zr0YrJL0JRVXJLapx/C4KmRSTpVByCFj2tbDA71xfX1PPcL39gk2Q2pGXQNy6SkxdKscsyH2/cy8xBPekfmMza4j2oqsr4sMEMDExmV8UxCswlzDu/HC+9OwsHvNZKOf6Dh6bw7ZpUhvXsyMbUc2Q2X6deJyLLisu47pBk1u493U6S2vFvo50kteOKUV3RgLmhiei/qOOZfn0/3nt/Q6vlOp2Av78nNTUWrX0aUAK9UATolRxNeIQfm3456LLPy7d9w1uL7qV0WxV2QcAS4Ut9SS0IAgaDjhnT++Pr7c4X325HVbUXuCgIeHoYsVkdGPQ60tI1iwxBADeTAUuTHb1OZPq0FBetn0uxYvURHJKMQ5LZsfssHW4dxpy3VnM+qwy9TnTWcYiiwJOPXN3mMUw6PclBbUepADbvOo29uVPIy8vtsjoueQ01gEqouxeTY7uxpTCTiTEJdPTRUll2WWbCuu8wY8czycBbA8bz4/pDSLJCnbmJ7UfOc/O4Pq2OGx3h7yRJf+w6w8mMYiaO6E7H6JZ0k6eHiXeemsqH32/jx8JDNCXIgI3bd/2Mh97EY0nDublTitPv62xtGY8f/I3chipO1ZRgd6goKty391dOXP8E7voWxW1REOgRGMGqcbeTXV/J6Ih47KoDT72bU4gwq6GEeefXYW92k3/7zAqGBnfDo41i7cHBnQlx8+GCuZrnkiZyU5yrWOc7v+1gU1omOkHAx8Od/p2jUFUVN4Pe2cl2pXAzGbBaHa1sV7rEBjOsj2tE8LHv1pCeW4IKLHpiBl0jXU2WK+vMbD6YQXKnMH7ccJhdx7NdFLxrG5t4bcFm+vWJ5VB2IYIg0C0mlG3pWc66JUVVGZIY13J9RgPBvp4E+3pSWdGgdZyqWqNA5oUKl+s26HX4XFK4XlRR5/z/xYjUpcgvrSG5UwQ3jelFekU5+87n8+jVQ1r2EQQuvS1H84rwcTehk0X8PNww6fV09+nII/EzEAWR4SGapvDgoJ7cc/hNHKqEwy4hqTLGP5GklMQYUhJj2HIow9m1ByDJCoIA3u4mbhzVi2Vbj2OXJGaMbd112o4rgMr/GDFJQRAWoNmWlauqmtS8LAD4BYgD8oAbVVWtaWNfX+B54FogBO2TlQO/A3NVVb0iKfZ2ktSOK0LWmSKeuuUbVFXl+juGUV3ZgK+/J7c8OBqDseUxGj++RyuS5Ovjxn33jaJ3nziWLN7Prt2Z1NVZQBBwuJsYMLo7190+jBkPjuGO4W8538znjuWye+0JBl/dgy8++kNbKAigqkgOmT49Y/jw883Ol7IoCnh7u/PZ+zezeftpeiVHc+ZcMQsX70MURR6+fzQ/Lt5PZIQft868vKDh2FHdST9ViCgK9EyKIb+gClmSNT8oyTW8//D61ZQesvHxVZMYGxt/xfdz+RotAqHXizx858jLbvfcgfUUWzTJgh8zjtA/JJozNeVU2SwEuXlS77BSY29CUhTs/jLd4sOaC3o1IpKSEN3mcW+Y0IfU47mIgsCB47k4JJk120+yacGDrQjbvTOHMn/tAa0XVgUZaJBsvJu+jRp7E492H87S7GO8nbYZuyxjEETNVLX5e1FUleOVRQwOi2t1HQl+IST4aaTbDYPLOpNO79I1ZxINGMS2X1k+RnfWjnoURVX+1rsOoHNYEAsfvJHssirGJP+9eOGlWLb+qAvRSOwUSlxUIC/ef3Vzi7yKh0mLdF2orMPqkHA3Giiprm9Fku57dznFlVoq6yLpkWSZmWP7sGzrMVRVi/RNTenG/ZMGE+rvTaC3B/UWG3qdDr1OZWzvLs7oVXpeCQu2HsZql3ji+3VsevUuqurM1JmtPHT9MD5dvsupZO7n5cbApDiuHtgihtklJpj0LM1nccaY3pTXNHKhrIaahiaqGyzYHDKVdWZG9IlnBPE8cglBAgj38+bjWybx0oot1DdZSekYxTs3Xs2J/BIGdIpGFAV+KdjELwVbAJBVmVGh/QlxC+C66FHsKDvMtKhRGEXXZ+Eivl+Tyk8bD7darqpaRKm6wcLS12/F38fDxQanHf9rsRCYB/x0ybLngG2qqs4VBOG55r+fbWPf5cB2YISqqqUAgiCEAbc1r7siAa12ktSOK8LJw7nIsoLkkFm7JBWL2YZeLxIY4sOUWa6Ew9PTiNlsByAiwg9BAE9PN158cSXZl9QgoaoIksSSDzdw3e3DCIsJwmDQ42iOsMiyyo7fjyLqRUxWCclsR3E3IOp1IMIzL6+kf984Z53T9Gv7ctusIZhMBm6fpb28e/WIYcSwBDw9Tfj6uDNhbDJ/h/FjkkjpHUtTk4OHn1qMpcmBr4+bSwu3qmoF3LZDDTSMg/eO7vlHJKl3UjTHT17AYNARGuLD/c8sxt/Xgxcfn+iSBuzoE0hGndYaLqsKqWX5CILAvJP7eLXfOILcPLk7oT/Ls9OZFd+b5RuPcy6/HFEUuWZoEl1igts8/8ETeSiKio+PO1W1WrqkqcnujMhdCi8PEz5ubtTZrVxkLULz9VQ0aa3pu0uzsMra9zYgOJZ/dR3Ewowj7C3Nw8dgopu/qxL6lSDaI5h3et7O9rJ0fA3uTIroh0HUU9JUzam6fAYEdsXH4FoDdSlBqrGZyTNXkuQXxfPTRuLv6Y6vh4kbBiVzIreYp3/eQIivJ8O7deRcUTmP/LCGxiYbn9wxhf6dXcnlofQ8qmstxEb4s2pTi2egv48H37x1MzpRdNYICcDn917LoIRY3px1NXNXbqdbTChDu3Vo9Rmr6iw4JBk3o57oUH+KK+sI8fPmgeuHEBcewOpd6fSMj2Rk33inRQdAYnQIvzwzi6KqegYmtHRxebubkBUVUQBfdxNGg56Hb2hRtb/2qmS2Hs5EVeHNeycxoLtrLdZD04cR5OuJyajHzaBn5Q4tVf3g9UPZdTybgrIanrq5hdTnVlSz+1wewxM6ENcckRuR2IldL3WgssFCsLcnoigwrJueM/W5xBtjyG0sxqbYERHJN7cUj8+Om8zsuMmXfR72puXw3dpUJ8n7M2oamvht10m2Hs5k+7wHL3ucdvw9hP8hNUmqqu4WBCHuT4unAiOa//8jsJO2SVKcqqrv/ul4pcC7giDceaXX0E6S2nFFGDouiV8X7qW+xkyHLqGcPVEAAugNrettZt08mB8WajUHhZYGFKvMe++vd6aXnFDBTVGJiQ+jzmrlYNEFTGGeOApaQv7H92Zy+nAOj75zA6lbTjNoYk+O5ZazYVM6DoeM2WLnh6/vxMfHHW+vtu0+IsJb+2v9HYICvTl8NBebTcJul6iptaBvbrkeNTyBbbvOoaoq5iAFd72eYRFtF/5eTHX82Uj3rRemkZlVSmS4P69/uI7TGcUY9DrWbk5nxrX9nNt9MnQqpVt+5kRxMaJZQPUDo6An2qvlMz3bZyTP9tEGrq9y9mrnUnGxLfkzft+ajqyoNJit6EQBWVFxdzO4XKeqap5zBp2OeYOm8/zhtXTxDeG1PhN488RmZFXh8aQRANyfOJSjlYW46fS80XcisV4BDAntSG5DFWHuPi5aURex4WQGr67bRueQQL679To82pj59w/sQv/ALjRZ7RQU1VAd0cDtqR8jqyrBJh96yWqVAAAgAElEQVSWDnmmzc9XYzNzzY7PsNhtGM1ufNhrBs9eq11rdnEld85bgQOFqgYzC7YfZtHuY5rKNDBv435+ekgzXc4vreHut5ZS22jFzSGApCArWi2PJp8wC50o8tuBk7y6dKvz/KtTTzEoIZaU+ChWPj/7st/DO/dP4uvf9jEwKY4+3aJ45IPfKK9r5PXvN/H2/ZO5bkRL4bnV7kAQBIx6Hb/vOcXqXemczi0jMS6Ub5+/CZNBT61ZK4gWRZHusa3TvT3jI3n17vG8NH8DT33+O188NZ0tu85w+nwpj90+kh4JkU5PwLd/3KLVRqmQeaGCr565AavdQWlVgzZBkCRmzFuKTZL4cusBdr90rzNVKAjg4aHTZBJUhUePfUC1vQ43nYk3kx+gqKkck87I1KjLR1EvhdXu4MX561sRJAHQI6A2yUjuGolssNiwOaRWxsPt+D+DUFVVL7LrUuByM7B8QRCeAX5UVbUMQBCEUOB24MKVnqz9KWrHFSE43I+fdzyHqqpYGm0s/3YnPv6eXH19a++nGTMGkpwczTs7d3GwvhRUHR1KfBjYLY4VK7VQuaeniQFDOxIY4s65YBv9vvsKEQF5iicdv65HlFynMpXhOhYn17G7Po0PJo5jx+5zWKx2dptKmGytYkzEX6dMVFVlXtoBjpUX83Tfq+gW+PfWHUndIwkL9SWvoJKZNw7Ay8OEp4eJiVf3oFdKHO98vQmPepFbvPvwyIDWHnT5xdXc++pSmmwO3nvyWgb0iHOu0+tEunXVLDqiwv1IP6v9FMNCWtq1zVY793zxKwXFtXg5tOiSqgdREsinBtqoSb3rmoG4mzThwpljW9ciXcTVVyXy+9Z0vD3dMJl0lJQ3MHvagJZz2+xc8+mPlNY3cufQFJ4aP4wdkx52rp83uKUoWpJkErxDODT1CQCqas1U1ZkJ9PWkk09LjZNDlnn6142cKSnj5UmjmLN2Kw02O2kXStiZkcPE5K4u15idV8GTc1ZoKt+ApclOVJIP0lAFm+KgyFp92fRabmMlNsmBJChI7haeW7iBPe8+AMCS7ceR7AoYtGigdEkRvAD07xTFmfwy4qOCWLzxiEY8BLAJCvrmTcOCffnq9ZsI8vdCVVXeWr7D5fxTBlyZ5czApDgGJsUBMPbNb5EUBUGG1LP5zm0O5l5gzi+bqcmqx6DXcd+1g5i/+gDW5klHTlEVWw5l8PPGI1glCUFRcSgK2aVVLufKK6yivtHK2r2nta5FWWHxH0c4fCgPq83Bq59tYNWXLQXssyf048T5Iq34fFJ/zE12bnxpITUNFrzdTdx57QBskqSRy8BGnk9bwo1xg+jlH8tt+78g31zJ1KgUHk+cRKm1EgUVhyJTVWnl874tE//U9DyWbjjClJHJjB7g+gxchO0SWY+L0OtE4qODMefXU2ZpRDJqucm+CZHtBOnfxf+7SFKQIAhHLvn7G1VVv7nSnVVVVQXhsnGvm9BScbsEQbj4wi8D1gA3Xuk52p+kdvwjCIKAp7cbdzwx/i+36949kvM7GlB1AiZRx433DmFSUgL9+3ckK6sMzwQfntm3BWu9BPWX7GgQKBvqjeqmI/6CSL/OsQyd0puXzh/EJssU1tdzXqplxktX8c6eXdhQ+PDAPsZ0/GuStL+kgC/SDtIkOciqrWbPjff87Wd1dzPyw9d3NovpuQ7EWUWV2AUFVYLC7GqXOp4fVx9ka2oGUaG+1JutqCosXnfYhSRdiofvHkVCl3D8fDxcpAD2nsklq7gSh0NBaM5zCc3BuN8PnuGVGWNbXZfRoOf2Sa5FyxchSTKr1h9HkhUeumU4s68dgK+3Gwa9DllW0F9ie7H6+GlK67VU2sJ9R3lqfNuChBl5Zdz3xi/IssL7T1yLJCs8/+kaAN59fCqDerakmPacz2NXZi5NDgcv/76FBpuWkpVVlb27M1j1w0HunjWUgX21e/Dzr6lU15pdznf+aBXXTOtDam0Gt3UYddn6o2T/SBK9IzhRU4Au18MptAgwICGG9QfPIksq904cyDUDu7F8XzoOVaFXdBgrtqTx84ajhPt6UVKqPZyCAL6ebtTqNYmBaeN7EuTfckxPNwO1Zm0Qf/a64S6F1FeKWsGObATRAd6RnqQXlqKi8uyqjdQWNmBQNLKQerrApTja7pD448AZsouq0IkiISFeKEaBlJBwZj2xELPFhtlqx26X0ekEBg/ojEGvQycKjOjTmUMHczE22+RcCn9vD964ZyKdIoPQ60ROZZdQb7bikBSqG5r4YNFO7psxiDWFJ6iMqGBvZR17K88xt9fNlFhrUVBZW3SM55OmcVPM1SzP3Yo1y4Mnf1jL/FdmktAhlPpGK4+9+ysAh07lk9w5gpDA1u3/vl7uPH3zSH7dmc70Ub3olxhNRkE5A7vH8fBzS6iobMStVkHUCbwyexxnz5cQFx2Iu1vrCGY7/kehUlXV1jPtv0aZIAjhqqqWCIIQjlaM3QrNxdzP0nYq7orRTpLaccUozKtk37bTpAzpQqeE8L/d/rkRw3h92066hwQzuqtGYvr27UDfvh3412+/YTPLoMP1KRQE6vto0ZS07gInhUrmn95Ez9Awys16QKBXaBg1TU3Ym329At3/WpsHwMtgRFVVREHA2/jPXpx/JiIAU0Yks2nvWax2B7OntERgLpTWsOC3A9gdMjmFlRgNelRVZfTAtmfIoGk5TRiV1Gp5QlQItuZiXlEQmD44mZ2ncqgzN9G7Y2Sb1/VXWLb6MAuX7QegvqGJ+24b7lz3y5F0Pty4B50oclP/nvSMbknVmC4hT2VV9ciySkSILwAb952lqdkmYsWWE3h7mJwz/u0HM11IUnSALyoq7gY9nYMD8XN3I7eqBqMN9u/PRjZLvPr+WjYuexSAvIKWSIgogqJobu+9qhJ4ZkSLjtKlcMgyn6/dR3ldI+9PnUFlfSOnAssY26ulXmxcSlc6hAUgyQpdooPJLKzA0ASSHU5llDq3yy+pRddMRiYP6U55TSMHT+cjCNDgsDu3EwSBhY/dxNwV2zmcVcjn6/czKDGODqEtyuVXgifHDeP19dsQEOibFMPshSsACPPxQvDWoVpkjM1WI/HRQSzeqFmXBPh40C0ujPQsLQPx9PQRdI0K5sZHvkdWXCfZDgn2H8zijkl9uXXaANxMBsIDfMguqGTc0JYC7jqzlWue+habXSK5czjfPT+DLjHBxIYFuHSWdY8MJt3PQGWLjSAXzFUEGL2osNYzKkx7rmfFTmDNvBLKS2oxGQWyCio4X1DOpr3nnPtp4rBtBwUkWcHa5GBUz86MH5CAu5uBqBAt5fzeK9N5/q1fycwuR1ThvmcWY7U58Pfz5Ocv7sLQRklAO/5XYw1a8fXc5n9/b2sjQZu53oAWF1sJjEKrZzoHfK2qatvFbX9CO0lqxxVBlmQem/U1Foudpd/s5Octz+Dlc/maF4BpSd2YltSt1fIGm41dWfkIqgASGIwCIR6eVDRZsMuyM9IrNxtnApwqK+O3GbPwMRl5cMM6zlSUoxNFJEXhXGUFdlkmo6qSTv4BeBha17b0DA7n85HXcKqyjFkJPf/t+xEd7s+aL+5ttdzbw4ROFBFF7fd3x7SBjB2U4CQVoOk17dmfqc1+TXpGDU/E8xK9pYrKBs5nldGrZww6QURSNQPT6wYn8fR1w9l1KoevN6byxHdreXv2BNyMV/YzNlvsWseZqmK2tAzyNofEW+t2Xrw6Fu47ylvTxnLfiAEcyrnAMxO0VOKBtFye/Vh7H71873jGDkpgeEpnVm1NQ1VUJg5NJMjfix2HMkGAqSOTKaqt597Fq6lutPD8+OEsu3sG2RXVjE7ohKqqHC0oZv7OgxwWitBJOiLrWgivsXlwMxp0JHYJ51yWRmA6xbWkSu0OCYNe54zkrTl4hmV70nBIMg0WG1/cP43uMa61Obml1dz94QpNjFBV6RsfhcmgR1EU7Jd0L4p6AYMiYNDruGlMb05mFWuCnUBKomthd4fQAGotVmRFxSHL7D+b949J0ox+PRid0AlFVflo616szVpJvu5u3DU9hQhvb5Ijw/DxdKNfYgz9EmM4dKaAa69KJibUn6ROEXh7mOjTNYq6hqYWyxQ0kqlJYDiw2iR+WHWQjjHBjB7clV6JUfRKdFWnXr71uNPcOO18cfP3oGfRnFk8M28tu45n0a1DGD82bOVcfbFzP50gkuwfw6wOQ6myNxJi8kFRVB5+ZwUXSmsx6EW6xobQMSqQ+99Yjs0hoWuugxszsCuhQS3p5tXb0/nwx+3ERQQwdlAC3686gKKqlFc3MGVkMrmFVfyy8RhXD0lkUL/OZOdVIssKtfWaTltldSOV1Y2Eh7b89trxvwuCICxFK9IOEgShEJiDRo6WC4JwF5DP5VNnX6C1/hvRyJEJjWBNAroCj17JNbSTpHZcEeTmmZwiK8iSgM3q+FuSdDkYddrgpzbTIUlRqbI28UC/ARh1OtZnZnC6otwlLS6j0i04hDd27eBcZSUqmvGru17P8Lg4blixlKzqKgLdPdhy6x2Y9K0f7XGx8Yz7Bx1ol4OqquwpzMfP5EaPENcB2M/Hg7ceu4an31+NrCh8s2IfMyf2ddnm24W7WbXmKHa7jF4vsnXnWT59byagRXjuuG8BsqwQEe7HnNvH8uWG/fSPj2beuv3UN1mpM1vJr6ilsLKOP46eY9qg1lGotjBtYm827ThNk9XByKEtkS2dKKJrNoS9+PkMej2PjBnssv++4znOKNHOw+cZOyiBXl2jWPP5PUiy4jTXXfzu7ZzJLiE2IoBXNmwjq1yLCD372yb2P3MfCWEtHXdDOsXwr0WrNHkBk8hDD48BNMXzi4OdJClcKKrm4btG0adHDFHhWhfVZ2v2smDrYTqFB/LzkzNxNxowW+1OIcZGmx1JVlqZzW47dh6z1eaUKEjPaR7kBegQFkBeaTUqYDDqePOOiaAonM4pZWTfeLrEhpBbXEXnNtzlbx7em9eXbsXdaGB4UtsK6n+HYG9Ptp7N4ve0s85lJ4vKmD9rGn4eLY0JO49lcS6/jFnj+hLcnPYb3rtFMd3X252bJvXllw3H8HQ30CMhkqOnClzOdfR0AaMHu0Y4SyrrKaqsIzbM/6LaBpHBLSRDEATef3iK8+/x29926liJCOgFkY6eGokNddP2q6huIC2jyNkR+v6T19LQ7GUnAH7eHqz/skXo9CK+/XU/DkmmsKyW7AuVTjuYzfvPsmn/Waw27bxZFyoID/IhKMib+vomunQKJf1MIYNTOrnU+LXjyvE/qLtt5mVWjb6C3YepqposCIIBrcA7XFVVezPxOnal19BOktpxRTCaDDz77g38tmg/Y6f0JvAfvHyK6uq5UFdHv6hIdKKISa/n6ZFDeG/PXhRBQUGLGkV4+3B9YncWpZ9ARXOSV1SNSnUPDuZIcRG/nE53KisDdPIPYM7w0fSePw8VqLCYKWlsIM7vnwkE/hN8cGgvC04eQ0Xl63FTGRHj2trdIz4CN5Mem92BosBDb63g4ZuHk9xFK9ROPZyD3a6RDUlSyDxfiqqqCIJAWXk9DknGZpPIza/kSOYFfD3cND2jjALk5iLji7Pv6KAr79xbveE4VTWa0e+877Zz3+3DSekZh14ncs/w/szfdQhFVYkL8md8UpdW+08dmcymfWeRZIWbxmtF4cfOXuDEuSLGD01k8brD/L7zJGVVDYiCQLC/F0MmtAzCoiC0UvfOLKtEbCZosqrSr7n1vqyynspqrSZKUVWqay2cPFPIlKtbooBLdh9HBYqq6jmZV0r/LtFY7S0+d9X1FgY8+TneHiZuHdGH8upG/jh4luQO4Rj1emwOzS9NUhRnjU95bSPv3TOZeb/vI9zPm2fnrWm+dvjkl13O6MrXq/ax9v1/udRxTR3QnbG94jHodRh0//UUzxc7U13+VlSV239cwZK7ZuBhNLD9SCYvzt+ArCjsTcvl51dvafM4j9w2gjtvGISbUc+tT/2IzS6j14koimbYPHpQVyqqGwgO8KbJ5uD7tan8tOEwKhAa4MXLd4yjpLKeGW00AJyrK+L9s2vp6hNBkaWaAotWmC2rCpN3votOFPmq/910840i0N+T+Jhgsi5UkNgxDB8vN3y93XnnsSkcOpXPtaNcZTlUVeV0VgnJ8RGkpuWiqiodIvyZMiKJmnoLu49mO7vcxOZ3RElpHUabptSfmV3Gzt+e+i/f/3b8n4EEoKqqQxCEw6qq2pv/lgRBuKJUG7STpHb8Awwbm8Swsa5Ri/paC28/vQxLo41n595AZKw2wz6Qf4GXNm0h0teHY0XFCILI2M4d0et0/H76LKM6dWRGUjIrzp3Erip46A1M6aLVRLw8bCQv7diCXhQpM2uFu54GY7Prt+som1VTTWljAzcn9WTJqTSGxsQR4/vPW/7/CY6Xl9AkOdCLImeryluRJE8PE4vmzubGJxagqAonM4t58NVlRLl7ERnmx4XCapftHZJMUXENUZEBdOoQwoihXdl/JJuE/tFsOp6B1SFTUWd2qddwMxqYd++19OkUyZViV2qmkwxk51fy0tzfmTQmmU79IqhsNDOxR1csNgfPTxqBKApUNVpYevAEnUODGJ/UhfjYEDZ/o+nPCILAqaxiHnxzOSrwy8ajWKwOp+8XQGFZLaIoohMFFEXlxQnDWXcygy93pXJVfAfenDKWEG8vTAY9VruDQE8PZ1dSeIgvPRIjOZpegChqZetbdp8FAV54dCKCIDAiuRPb07PwdDNilyReW7qF6CA/THodKmB1OJAUhdrGJr7ccABJVhAdcDyriHmPTCMswIeCshoe/fJ353U/MHUwo/vEM7pPPBMen+/8LIqKkyABVNZZ2J2Ww6i+rpHJiyKS/w7GJHbmbGmFy7Ks8mqWHznJtcmJvPLdRidJMFvtbR3CCS8PE7mFVYwc1JVl644QEeLHRy9Mo7quiQdf/QVJUnjw1qs4eaGULYcynNHbsupGBnaPc0ap/oxXT64kp7EMN9HAy8nX41AkFuXuQRAEshpKQYZPzq7HXW/irk4j+e71mzmXU8aGPadZueUE08f2YnCvDgzu1Vo76rtfD7B4w2EURWX6uN6s3HycH9YcYlCPDuQVVzkVtnt0icTSZCevuBpRD6JdQtTrCPD7+xrFdvwN/ocobv+bKBUEwUtV1UZVVZ2dRs2Ckn/9w7kE7SSpHf8Wfl9ygJNH85BlhbnPreCxOdfSKSGc5/7YRFF9A/m1dehFEUlxkFpQSHVTE7KqsiUrG4MoIqkgGCHC29s5+w7y9OClq0ayJTuLDVmZ2jIPT/pFRPHkoKFsy82m3moju7aaIA8PYnx9eWPUGF4fOfqy9h7/STw/8Coe2LyWADd3bkhoIY0ZeWWs2pLG0D6dGNa3Ex2jAsnM1wY7wSxTXFNLRUUD/n4eNJpt2GwOTEY9JpOBgABtMBJFgaceH8/1b//E9gsF2oAAdA4LoMHq4MyFMgC6R4f+I4IEEB0RQHFpnVbALgpYrQ6OnMznx+Iz2BwSUQG+bHqiRWPt0SVrSSsswaDTEeDhTv+O0S73d+73W52Dal2jFQ83I6BFxLw9TNw2dQArszKaxQ0FVh47TUZZJZKisOFUBrcM6EW38BDiQwI5WVRGg83O3qx8hnaORacT+fiNm3A4ZDKyS3nwuSWoKmzbc457br2K4EBv3r51PLllNQR6e3D1nO+cNTwmg473bptETmkVX29MxS7JWmu9AEajDpNBT3xUMN7uJurNTXiYDJhVlS6RQWw9mknPjhF0iw2lW4cwdp/Ivuz9fHn+BtR7JjA6pXXU7d/BgyMGEh8SSEldA2vTz3GutAKDTiTEx5PKOrOzPVsA5t7ftvjir5uOs3DVQZK7RLD/WA6iKDJ2SCLP36eJDO9IPY8kyTgkhdVb0sk317kUeQf7eeHvc3myEermS6FFS6MGu/nQyz+OiZF92Fl2mpfSfkFRFU7XXcChKqTV5HF9zACOL63iXFY5BoMOu0Pixqv7YNC3jrgdOpWP1Sah0wms2X7SmeLNvlBBZXO3o0Gv41xuGQ6HTGSoLw/NvIogb09OZxQz6pIC9Hb8/xeqqk64zKp6NKuTK0I7SWrHv4Wo2CD0eh2qopKTUcITs7/h40X3uLRmG3U6PAwGnh91FZ/vS6Wovh6bJDtNWkVRJCFYq1M5XFzIbat/RQASg4Jxa64tmhTfBUVV+e7YEepsNvSiwNLrbqRrUBBuzZ5g/y8IEkBycBh7ZrkaoqqqykNvrqDRYmPj3jMs++BOvnxlBkvWH2HrgXMYm1QqiutQgUcfGAMqREf5U1pWT9cuYXi4t0QgKurMFFfXO6MFOlHk1lF9iQ7255kf1mHU65l72+V+/5fHy09MYt2WdPx9PPjtjxNUVDUw7bq+nN61W3NiV1Q2ncrk16OnmDmgJ402G7KiYtSB2d564uV/iVhleJAPnz4/ncOn8hnSqyNhzQW44VkBPLR0LXZJ4nRJOSa9DoPOgChoaaWKBjMWu6NZdFPlva83sTU0nBcem4DRoMdg0JEYH050RADllQ34+3rg7+tBTWMTN3+whNKaBp6+7ioXmxC7Q+bMhTLumzCQ2BA/iqsb+HnnMfp0imRy30S6xYTi7a4Vyr/x81bqmgUYz14oR1XhpQV/sOq12xnTv4sLSTIZdEQG+5JTrEUC7ZJMQWkry6j/CMZ1i+ebPYfIqtCIyL+G9WNCd42MXT+yBzuPZXHXNQPpGhtCUUUd3h4mpweboqh8/MMOFEVl79FsBASsNgenMlsKrIf07cSClQdQVQeNit1JRHy93Pnk0WnExwT9Zffk271msqHoGDGeQfTyj3MuHxHanQ6eIeQ2lmNXJU3fSrazOHcvpoZAVFXFZpf4fMlu1u0+zdJ3b2917PtuHMoLn67BYnXQ2KTVLvl4mnju7nHM+WI9sqIQGx7A+YKWaNvwFC2i171Ze6wd7bgIQRCGACdUVTULgnAL0Af49Er3bydJ7fi3MHJST7z9PPjgxZXUVpvRG3Sknsvj3v4pvLRlGwA2SeKX22aRGBLMmM6dyKio5Jsjh9mUd15L/6hwulxrK86v1TwHmySJJkli7YxbEASBjv4BWCUHFRYzsqpi1OkI8vR0EqT/LhSUVHOhtJZ+STEu6TBVVfF0N/Kv6YO5+/pBSLLCvgPnCfD3okdSSydRXGxr25Bwf2+GduvAjpPZiIKAXicSE+xPbIg/y5+99Yqua/PO03z67Xa6dgrlnZeuw2TU4+lh4qap/SgsqWH+ot1YbRJdwoJ4YdIIjuQVcWO/Hty5YCV2WeZgTiFL7rmJr3ak0jk0kPjQIGfd1EW8+fBk5n6/Bbss89r9EzWxTTcjb3yzEb0o8sQdo5i34wCy0tKxGOnrw40pydglmXk7D2CXFfSiSJ+YCErOVVFzvo79BWZ27stk3AitM1KnE/nu49mczymjU1wIer2OfWfzqGm0oKgq32w8xKszx/Lr/pOk5ZZgMuoZ17sLz//4B7tOZWN1yJgMevadzeO1m8e5CA36XmLuetH/6+Iy258U4n+ecwu1jVYe+GAlkiwT4uflooj9d5BkhfS8Yo7nFDM5JZFQ/9Z6QJdi9/k8rM3dXwaxpYPv8RkjeHzGCAAWrD3I92tT0etEfnxlFnHhAYiiQHSYP+VVDYiiQFxUIGWV9Tx2u6ZuXVhaw90vLKHJ5mDOwxNYvjuNkmZNrOgQX5I6tW3MfJHgmIx6PPUmboht2/8wp7EMhypjEHWk+HfiaE0OdkXCb7SK//5QzuVq0dDcwqpWzxRAr4RI1nx+LzOe/oGSSk2nKtDPk2c+Wk1K9xgemDGMx5u1lURRYOqIv7caasc/QPM7+f8QvgJ6CoLQE3gS+A7NC274X+7VjHaS1I5/GylD4nl27o189sbv5Pd34+3sI3hcaCEvsqqSVVVFYkgw7gYDvSLCOVlVpv0OBa1A+7GBWifV5C5d2ZKTTV5tDW+NGkungEDncdz0Bp4fOpzvjx/l2oREIr3/eztX8oqquOPFnxEEgf49YvnshRtYsek4V6V0crb8n8ku5ZG3V2h+ay/eQNcOf+1hpigq57PLePXGMbw6cyzb07NIjA4hNsS1ED2ntApPk/GyA+28BTtpaLRyOqOYY+n5DEpp6XxavzmdymqtgPvnlQeZ+9J1TO3djc2nzju92fSiSOeQQN6YNo4pn/3Ewr3HuD4liZevGeU8jo+XGzaHxP4Tudw1ZzFJncI5eraQ8qoGBAHeWb6dzKoqpOY0jigIXKit46Nt++gcFOhM70iKQpW5iUEBERwy5qKqEBHm2rbtZjKQfEmbescgf8Rmic2GJhtv/LKNVS/Mxu6QeOzbNTw8fzUNTTaszRESm0NCURQarXYXkjT37onMeGsxpdUNBPt6UtvYxJn8MtYdPMvEwYnMXbQVWVYxGfSEBHgTFxHIT6/cTGWtmf7dYlvZzVz8Dr9Yv59zheU8NnUY8RFBfLlhP/M3HkRoNh5edeAU61/5a/uo+6/qz/1L1qDXiQzo0LZR8caDZ7FLMoIgcPTcBeLCA1i1Iw3BR8f4Xt25dXI/woJ8qLNY8WoWVtyemonZokUJl/9xnA+en8aTn/2OucnODaN64ZDkVmkwVVV58rPf2ZuWw8DkOD59bFqbkdv0mgImRfZhW+lJ+gV25s2eN7Esfx+nagv5V+fR2BNV7np5CYqq0iEy0OUYB0/mkV9czferDmBusjN9bG9WbD6OQS+SX1yDoqocSMsl50Kl85lQVfWyIq3taEczpGZl7qnAPFVVv2+WD7gitJOkdvxH0HtgJ35Y/wRJH32OVZIQBQGTTodNltEJAgOiXHVYUiIiKM1sQFZVREll/4HzDA2NxtPLjfmTpzq3kySZC/lVREYHYDTqubN3X+7s3ffPp/9vQV6RprTdZHNwNruUbp3CmPOAaxps5ebjmJu0VNWvW9AuaQQAACAASURBVNJ44Z6/Np5+58P17N6XiV4n8sPXd3Hd4Naz5EXbj/L5+v0IwDcPXU/PDlqKQVVV1h0+S155DZ3jQzh1StP0iY1uIZrHsgtZeeIMCAImg46BfTvQYLbyyM9rSCstA0Xlmp4J3DakLyaDntScApocDuyyzPr0cy4kydxkZ/+JXADyi2vIL25JPbkZ9HQNDWZfdRFCc1ebThCxyxppOVNarnXoNc9Yq8xmXnliFtv3ZRAV7kdSQiQNFiubD2YQHx1Mj84taZS1m9P4eP5WvPU6hDA9jYqEXhXJL6/hYGYB+RW1KKqKrnkAdjPqCfDy4PrBSQR6u9bZ+Hi6s+Htu5EVhVFPfu30b3tj0WYcNgd6UYcsS/h5uzfXXIGEyovLNqMXRT6/byqhvt4uEandp3NYvOsYTXaJkpoGVr0wm5+2H2v+jrRJw8UU38Xvra6+CW8vN3SXpLhK6xsRBQGrQ+LT7fv5fvZ1LteeejQHT1nzE/TyMDKsV0dq6i28u2w7Fg+Vk+lVDB/ShW93HmZl6kligvz45fFZ9O8Rx8JfU9EpKlcPTcTbw405d41n5is/MXfRNjYdzODTx6e5nKu2oYn9J3NRgcOn88kprKRTtGsUdF9FBs8dX4IgwA0xg3i4q1Yre0uHSyx7vGHxu7dRUlFP/+QWv8PthzJ5/as/kGQFRVFRVJXj5y6wY8HD6HQid89ZQl5RNU02BxfKahGAmyelMPmqJDpEBdKO/zD+b0WSGgRBeB64FRgmCIIIXHEKop0kteM/inv6p/D5/lSCdW4klZtw7xvItP49CPF27ZL5YOwEmhwSO3OzCd/YxCF7GnevPM+Pyx/E2CyOqCgqj/xrIfl5FYRH+DH/x3vQ6f+ZyvQ/hcVi44OPN9LQaOWpxycQ+hdSB4N6daBH10iy8it44rZRbW4zrG8ntqVmNP//77VzDh/Nw2aTEN0MnM8uJSS4daRoe3qWU4TvSFahkyTtP5vPm79swyHL9O4YyVvPX0t0hD9hlwhZvvvrTsplK25RBmaOTmHq+F7c8OQCMnR1GKtVTFbIsZbQ9XqtS7FPbCQBnh5YHfXMGtDL5To83Y14uhudJPAi9DqR5+4ex7hBCVw/uie5ldWoqoqHycgTKzZQWtfQLPEgIoqazxgqmEwGF+Xxxz9Zzbn8MhAEFr50M52jtGtatzkdSdL2CZTdMAsSkk0m3NebnnERGPUnNJkIFWRZRa8T+ePVlomj3SGRejqfuPAAYkK1CJ1OFLln0gA++nWPU5m9qt7CxUDHpTGThduOUFmvFRDf8sFSZEXlocmDuWOMZkzs7W5CVbVj+nhotU/Dkzqw42QOogDxEcE8PHkIoE0CHn9lOSfPFhEbFci3H92KsTnS5WYwQHPkyd2gp6yinkB/T/R6HRaLnRffWY3DIeNp0LHi09vx9nKjyeZAdhO0Cxbgl/1p7DyTg6KqlNU1cq6onD4dI1n1xb9oskmEB2vPd16JVmfVZHNwNq+UP8PXy52uMSGcz69AbFS449mfefjW4dwwoUUeIKuhFFnViuTP1RU5l9c5GrHKNkLdNDLTITKQDpEtxEZWFDamnsOmyCiy6rzXRje981589fJN7D6SxStfbAC0Mbxv9+h2gtSOy0IQhC+AJWgebjcDd6qqWioIQgzw/pUep50kteM/ikeGDmJqZGceumU+52wSnqlFDJg+sdV2OlHk0/GTWHTkGMuXbUFSZWprLNTVWghuJibmRivZ50tRFJXCgirWrTtGZGQAKf3+a0J9V4Lffj/Gnn2ZyLLCF19v4/VXpl12W5NRzyfPtW2PcREj+3eha1woggDhwX+v/Hv7rCHM+2YbUZH+JHeP4svFezhzvpjIMD+mju7BnM/WU9zQgMFfh5+nGwd3Z7No4X7uumEQ4XEBIGgF2GcLyxG99C4ECbSuuPxyLdIysEcHJFmhsKyWi/EVASgtq6eorJboMH8+/WkntlP13Dq8Ow+PGUxhWS3f/rqPztHB3DK5H9+/fjPvfr+VyBBfjpwuoLahiRf+NY5xgzX33XBfb8J9W4jejifu5mRRKV/tOsigjjGU1/9/7J11fFX1/8ef59xYd/fYGBsxmtHdJakgoIAdX7uxG1tsRfmqgCghIindzcjBAhasu3fznPP744w75gaign71d58+8LHtfk7e7d73fcfrVcOe9PM8NKR3k3uRX1qFySLh5KCjuKKGbYlpLN5whFg/bzRaEauzSJHBgE5RcHLQcr6wnIEdo/n6wSlU1Nbx5oodZBSVMXNQY2uoxz9eTWJKDoqisPjFmwgP8GL38XQ+WbYbB0UgJNiLyEBvpg7uhJ+7C4eTs5k5qsEPr0dsOFtPnMNqlTBb1X6rZbtP2IKkLi1Dee3mkZwrKGVyfSbw9ZtHkVFYRpC3WyOZgJfeWcPxpBwAcvPLycouJSZKLcmOateKGpOJwqoacvbmM235lwT4ufHfebMQRDV4ArVcfSEDZTFb6R0Wxvb8bDQagUHtonHU61h/NBlvVydig9Xsj6e7MxcLZSS0CadTq1DOZBbw8I0DmjwXoijw1dM38vWP+1n000HMFolVm080CpLGhXZlV1EyFeZa7o9TM6pnq7N59PgHyIrM7VHjGRvS1ANw0YbD7EnKQNaqGTGTVcJktZJedFFmUq9jaM84Nu9PYeeRc3SPj6BXh2v3OvD/nf8VMck/SSrwNhAELAVqABRFOY/ak3RF2IMkO1cdvU6ddgPQaATMZitP3fstKUm5zL5nMJNmqP1HDlott/VIwHpDJWt/TmTgkLb4XpQ5cXVzpN+g1mzffBpZVvjozQ1oXfU8OWcs/Qe0vibn7uPjikYjohFF/Hwv31h7pQT7X7ktwvixnRg/thMAP6w9wpLVh5BkhcTTOWzdl4LFKqNYZOJ8vHlsxmAeenUFZovEV8v2sXXhA4zt1poVe09RazTzwPyf2f3GPY32//SUwQxoH02ApxuxIeobpiDQKL3u4eZIkJ8HxeU1/LLnNBarzKotJ7nn+r489OYKsgsq2K5Po0WID306R/PJMzew8/BZNu1PQRDgWEquLUhqjviQQD6Z1lBSfeQS6166YyTvLdlOfHQwXVqF8sC7P6IAp/KLaN0lhONn80BRA7t20UF0b6uWb1qHqYrPP86JwCrLTYQdk7MKMZgsOOq1vLloK73jW3AyPc824VVdYWBffgbT0xey9NVZXNe3XaPpufE92hEb4sf0d5bYdKeGdmrFlkOpfLFqH/07RXP3xN4M7tBguiyKAtFBTbMeF6xWADzcnQgP9eFAYgarNx5n9JD2TOnaHkVRGPDB2ygKFJfVkJldSmzLQN57+Qa27kpmUN8423Tkq++v48TRTDRBIhZHhWNZ+bwydRj3j+qNt6vTJUUudVpNkxLbr9FqREb1b8vSdYlYJAlNfCXl5iq89OqHGk+9C1/2aGzVk1iRglW2IiGzrehws0FSWVUdsqw2cA9IaMXRlBxyiiuZNqyxiKUgCLz58Phmm73t2Pk1iqLMA+YJghABTAUWCILgBCwBvlMUJe1K9mMPkuxcddw9nVUBQFHtwTh1NIuzyQVYzBILv9huC5IucNcDQ7nrgaFN9pN6Jp+Tx7KBevNLwGq0kPMrMcaryfCh7dDrNNTUmhk5/O+dmtFqNY3c3o1m1afMQa+lT9doQgO9MNVbM5gtEidScpg5qCs/HzyDxSrZGnUvRiOK9Gvb8Ak8JbMQV2cHqmvrbSIEmDAonkfeXolOq8HT1ZmqOiP+Xq6cPJtPTqE6fWi1yui0GqySzJ0vfs/pc/lQb2ORmlnEyi3H8fNypU/n6CbncKV0iQ1j0QvqNJ+iKESF+JBXUoVOK3I6oyG4iAz25pNHJzfadsuhVLYeSWPKkE6N+pkAHps2iLe+24rJLHEwKYvjabnMHt2dHbpzCPVlNoDSylrScop5atEGsosrmD2kKw9cp77Jx4X64+roQFWdEZ1WQ5i7O09+ugaAnOIKhnWPxdlR38TW49c8eMdg3vzoF8KCvZn73EQkq8yc11ZisUjsO5zOqm/uxdXFgRED2/LLttM46LXc/shCunWM4M3nJtMurrFWltFkwaJRsNQ/9d/vOc7j4/oT4NG8KOTvJdjfg/53e7Ar/xglXjJLszdzZ/TES67v49uR5dlbMUhGJoc17yRx69gelFTUIsky903ui4erIxarZCu1/Rp7gPQX8O/IJAGgKEoW8AbwhiAInYAFwHOo9uq/iT1IsnPVqa0xYrFIKDJUVxrwD3JHqxVxdNLRvkvkJbfbufUMRw6mM/76brSI9mf+J1soLakG1L9ZAWgZG8jY65raJFwtBEFg0MCmprzXknOZxXz+7Q5ahPty2/S+NtfycUPas3H3aU6mqO7uYwa045bre1FRVUfLCD8MJkuj17LNe1Pwb+FFoKcr0UE+PDLhtydc73r5BwxGC6IAXu5OlFYa+GrlgXrBSREXR53q1yfLvD5/I4IgoCgKQX4eeLg58eAby0nOqJ9UVCA80AtXZwfeX7QdAVUm4M8EShcQBIH/PjON42m5RAZ5M+vl76iuMyIrUFRew8rtJxjRszXpuSW4ujjy3JfrMVskdh1PZ8O7dyKIAk4Oaq/m4G6tGNytFbe8uoSkdDXYignz46s5U1m4/jCF5dUcT8ujfcsQCipryC6pQAEWbD7M1H6dsEoSbk4OfPvwVDYcSaFXXATPfbbOdq6KrHDibB5zF25FURRuGZPA3RP7NHtdvbq15KdvGjJORpPFVkZTbVzUr596YBR3zxrAdTd/DMDx0znk5lcQHtrYRHfOA6P4+OttbC7NwYJMXIj/H7JIMZospGQU0jLcDxfnBvPlxKRsNrxfjKQE4T6sgqDoph52FxPs5Mv3PV9BQUEjND0Po8mCs4OOV+8a3ejnFwdIJrOVTbvPEOjnTteLmr3t2LkSBEHQAiNRs0mDge3AC1e6vT1IsnPV8Q/0tHW66nQaKssNLFh5H3nZZbRq3bzY2/nMEt54eRVmk5V9u1NZuuYh2saHciYpF7NJbVKeeXt/ps1s/s3mr+L0mTwen7MUrUbkvbdupEWLpjpHv4eyilpue/gbJEnhQGIG/r7uTBqjBoFajUhmfdbMQa+lRbgvnu5O+NWrczs76hnSK5bNe1MQHESWnT6D8biaWcotq+LVm5oXnJRlhf9uPkRWcTkGo2q1IStwoWVWEAQ0oogoQE2dagSbV6zq1YiCQFigJ6/cN4bH3llFUVk1AqqWUbe24bz/xCTufPF7m55OcXlNk+PnFFXwytcbcXdx5LlbhuPq5NBkTXM4Oejo0S4SgB9emcmqXaf4ctV+ag1m3l+6g89+2kutwUSAtxtyfblXlmWGPfQZiqLw7v3jbSU5gNfvHsN/1xwgKsSHPh1aMOHJBeQWV+Ko1/LFkzfQqVUoRZU1tmyeRoCnvlnHsYw89FotSx6bxl0jewDQKz6Sn3cnIcsKc+8Zw5KNiTbdrCWbjl4ySPo1jg463n9lCpt2nGZw39Y4OzdkAz3cnYhvHULquUK8vVxwctJRW2dqFMQE+Lnz0mPjeNJkIau4nJbNlPh+C1lWuHXOYvKLKtGIIk/eOZTBveJQFIXv1xxGsqofWcLyWjE2uC+KonCgLAmNINLVq3WTTM/FwrIXs/VIGs98tha9XsuCOTcSVd/MXVBSxb0vLKW6xsjcx8bx06bj7Dqsinq+9cR4e6D0V/AvyCQJgjAUuBEYBRwEvgfuUBSl9vfsxx4k2bkmdOsVw7FDGTi76ImI8sPVzQkPT5dLrr/4b/JCP9OsOwbQoXMEOp2GoBAvfP3+fkfv5T8eora+NPXz2mM88J+mZcLfQ15Bhe1NWFHgbEYR3y7dh85Jx+KfD1FTfyyT2cr7/93GsnWJLHlvNt+sPMB3qw/Tu0sUW769j2+2JfL5hn22/TrrdeguMQn43Y6jfLhmDwrg4KFBWyUhiiIv3TOaNTtP0bZlEOt3nyY1s4gAH3fy60tcoJbrPnt2Kj6eLjg6aBEFAY1GIDzIm4LSKlIzi3jytqHM/WoTgb7ujOzbNCv37pLtJKbkoNWI/Lj9BDeP7Pa775uHqxMjesSxYPUBnBx0WKwydUa1THa+sAKdVg3yPFwcKaq3sli182SjICnA240nbx5i+76yxqDe6/rJQQAfN2cevK4PC7clEurjTuK5XJT6NQdTs2kRoGZyHps+iDG92+Lv5Yqvpysms5XDyWqpuM1vaGP9mraxwU2Uo8/XB8vzXplCVk4p5zKLmXrnfERRYN4rU2nTKqjRemcHHa1D/X/XcS9gNFvIyimz9WG9/PEGAnzdOXe+hIMnsgDVYPnOcQMQBIHl2VtZlLUegDujJzAyqNcl930xP2w6ikWSkYwWtiWm2YKkX3aeobCkCllW+GrZXowmqy3ozq8P1u3YuQKeQp1ue0RRlD8sjW8PkuxcE55/eypZ6UUEBnvh7PLbmYKISF8eeWoMh/afY9LU7oCa0eh8DSfZ/gjR0QHs2pOGKAok/Ma5mc1WzBYJ18tcf+uYIHp3i+ZAYgYx0QFs3nUGq1XGqshIuqZBTm5hJQXFVfWWErDr0DlmT6pmUPtovt5yGItVYljnVtw9suclyyybjqfZglJZJzC8dxsmDG5PalYxw3rF4enmxHvfbkNWFApKqoiN8CeroAxFhncfm4BPfbA774nJrNxynNLKWjbuPYPFKjNv8XY+fvoGPn9uaqNjmixWjp/Nw9fNmWA/d/Q6LQLgfwkD1QtU1Bg4ePo8HVoGE+DduJHe38uNr5+dxtHUHF7/ZrPt5y1DfcnIK0VWVIsXQQCdRsPo3m0veRxJlqmplzLQiCLOjg5YrBI3vvUdGUVl9IqLIKFVOKeyCpEUVVZgQLuG518QBNq0aFCqHpoQS2SQNzlFFfS5wimstPRClqw8REKnSLp0iKCq2kB0pD/b9iTz2vtqEPLUAyMZ1CeOT7/eiaW+0Xz3gbQmQdKfwdlRz6QRHVm2/qjt2uqMZrLzy5DqdaQG9Yyla7twALLq8jDLFgQgqzb/io8ztm9bTqbnoxEFerdvMLptFxtkE7Ps1TmKbu0jmPvZRkICPRlm92W75gjKv2O6TVGU5nVZfif2IMnONUGjEYmKad7e4FIMGtaOQcPa/fbCv4mjx7JYuHgPoigwcng8PbtfutcmL7+CO+7/BqPBwgP3DmXsyA7NrtNoRF6do04VbduTwuvz1iFJMhqNgKgVsVhltFpR1QVCLbt5ebjg5+1KRZURJ0cd/j5uuDjp2frqnVglCXdnx2aPdYFB8dGcysiDWhnBJLNp3xlq6kwcOJmJKAh0bx9hyyK4uThwNrsYSVZw1GtxuqgZPMjPnXum9mXvsXS27E9B4yAS04zNiiwrTH9+IVn1PmcDOkfz+PRBuDk7MKBzyybrL6AoCje/uJiKGgNajcgPL8+kqLyaVuH+6LQa8oorueXVJZjMVuKjg8gqKGdY91huHduD21//gZwiNUvn6erEj3Nn43aZ+6IRRbrGhXHyXD4+Hs6E+nuQXVJBVlEZVklmZ1IG94/pzaTe8ZRW1fH4pAGXtRU5kpzN4eRsRvdq06yJK6h6Td+tOIjFKjFjcncefXE55RV17NinmjqLgsCMyd3JK6y0WaQcOJLBoD5xTBjVkaMnz6PVigzoHXvJ8/ijPDR7ENcNjufzJXtoExNIt/gIWob7kZJRhMUicde0him1GREjOV9XiEYQuT5syGX22pgxvdvSs10kDjotrvUlw13HzvHEJ2twdNfwwi0jiAxWM3UL5s64uhdox84VYg+S7Fx1CnLL+XnZIdp2CKP3wGszqn+tqKkxsn1nMjEtA3Fzc+T7pQeIiw1i1Ij2pKQWIEkyVqtMRmbxZfez/1A6ZpMVqySzcnXiJYOkC2zdnUx2bhmjhrQnv7CCqRO6sWV/Kmu3J2EyW/Fyd2JQz1imjO7Cix+to6LSgILCnLuH41I//u3soONKhGRvHtSFipIalvx8BABZUCgur8FskXDUa9FptaqMgwLjB3fAx8OZr37cT7f4cFpFNi3h9OoYxbwnJ1NRXWdr0pZlBVmWVeFDk9kWIAFsTzzH87eO+M1eJItVorCsWlXPFkVGPfIFoiAQF+HPvIcmMuPFRVTXqeXI/NIqNn/YIHfw/cs3M+7xryiprCU8wPOK+p4+enQSy7ce479rDvLwB6t4454xBHi5kV1SCcDzSzbx3aPTmt1257FznMspYVy/eIxmCw+8txKz1cqqnadY9+4dzW7z/cpDLFq+H0UBg8GMRlQzhxfKzSZJYvveFCJCfXBy1OGg13L9darafO+ElqxZ/B9EUcRBf21exqPD/XjzifG27709XfjwuRuarAtw9GFep0sJOVweH4+GEvyx1Fwe/mAVoIpsbjqUwu49ZwF45p4RDO519YNBO5dAsU8QXsAeJNm56sy5bxF52aWsWablvQW3Eh179UoB15rHnlpKRkYxCODr60ZeXjkbN58iLNSbYUPbsWlLErl55ei0Gior6/DwcG52PwldIvnqGw2yonDdJQIkq1Vi6+5kCour+HbZfiSrTMf4MN59UX0jcnZ2YPXWk2i1IlHhvjxyqzpCnV9Uidkq4eigpe5XatdXgiAIFBZW2753cXLAbLHi5+VKlzZh3DmpNz07tMAqSYzu1w6tRmTKiMtbwXSIbRhFzy2q4JZnv6PWYOLl/4xmYEIrBneNYcthVZZEp9WgFX9bOV2r0TCiRyw7j6XbSmGyonA6s5BDZ85jsUq2tdOHNxaMrKo1UlHfY5SUUUBljRFPN6fLHu9AUhZvf7cdgJq0XPaeyOTJSQN5ZMEazFbJNmmmKApzl29jR1I6d43oSbSfF3M+W4vVKrPz2DmenT28fh3UGS/9/EiSXO8lqmCVZN598XpWrD1KTAt/Fq84QFllLYoC2/emotdpeeSeYbRs0RCkOjUj8fBPZu7ChpKpAhhrLLYM2r5jGfYgyc7fgj1IsnPVMZutajOyoApJ/pMoKFBLG46OOlXGQAEBAVlW8PZyoUf3aJYuP8ixE9nMX7CTRx8a0Wh7SZLZtCUJgKXf3o3FKuF5iUDqgy+3sn7rKSRJRhAErJJMRaWBTUdT6RQdwrnzJeqkkAId4hq87565ZwRvfbmZyFAfBvZo9buub9Evh1myMZFAN1dEQUBWFKrrTFTXmdCLInu2p7BzyxluvqEnMyb3QKv5/TYw2w6mUWMwIUkyz36yjnsqqpl7z1g+XrGLb9cdJtDbjazCcp76ZA0WSWJc33aEB3gxNCFW9cIzW3DUaVn0y2G2HjnbSMgRYGDnlnSJC8PZUa/2DQ3twvThjYM4L3dnwgI8ySupIszfE3eXy5cgAZZuOWb72iopRIf6EB3iy31jerHvdBZ3j1Jd71PzSvhpfxJGi5UXvttIjIOqgyTJMlW1RqJCfHjghn7sOHaO2WMSmj0WwLSJCRiMFswWK7fP6IuLswOP3K0OAlw3Qg2s75uzpH61Yssw/S9hkSXSKouIdPPBWfvngrZgPw/O5ZYC0KdDC+4Y14tDJ7OwyBItwu32I38p/3u/an8b9iDJzp/CYrby+n2LSD1xnjufG0ffkR148d0bWTx/B+27RNI6vnn38j/Kzj2pJKXkMXFM58v6qv1RnnpiNJ9+sY2O8WFMGN+FJUsPEBTkyYmUXESdiLubIxpRREHB3a3pG+/3Sw+w8Lu9AJSX1zJoYBtWrDxM544RTeQCsvPKMZmsaDUi7VoH46DXcbCykKcXbsDJQceEuDiskowiK2TnN5SrWkb6MWZgOzW4qv/ZudwSFv9yhK5xYYzq1bzOk8Fk4aNlu5BkhbKqOsb0b8uxMzlk1wtEyiYJyaoGawu+28PuA2l8/tZNjUxXr4SEdhHMX7EXSZIxyxIfLN3J+H7xrN1zGllRKKms5ZMVu8kpVnuG5q/aj16noarOxPnKSr7dlkgLfy86BQepDvdA++ggcsurqFWsaNx1eLg6svqt26iuM9lKNhXVBg6dOU/HmBD8vFz59tnpnC+sIDLIC1EUqK4zcveby8kpruC5W4YzqEtMo/Me3asNB5OyUIDnbx1By1D1+Vr/yynyiip54OhyfnzvNnzdXRBFAa0oIlkksvPLCQ/zwdfblUl94zmelMPkQR24fnBHLkcNRsq6luHn6IaDY/Mvxc89Mob/fr+XsCAv+vX8fQHxX8H07d+QXFmEt4MzG4bfzdHSHNKrSxkXHo+r7sqkHS7gFeSKlAwIAv7hHjg46lBE1X/v02W7mTqqi60kacfOX4U9SLLzpzi2N42je1Ix1pn55PmV9B3ZgehWgTz31pSrfqwzqfm88vYaLFaJA4fT+fqTW676MRK6RpHQtWEa6YlHRjFh1ieUV9ah02pY+PEtONZnMMaN6dRk+6KSaiwWCUEQKCqq4u77vqGmxoQsKwQGeHD/vUNsU3EP3D6Y1+etw8vThWcfHs3J8wX88smPAFgkmRED2nAmLR+TWeL2KQ1j1UtWH+bLpXuxWmWWrD3Cpy9O5f53f6SovIaNB1OIDvUlNrxp75Bep8Hb3YWKGgNWSUbQCzw0YwDPzFuDLMLMiQksW9EgO5CeWUJZRS1+Pm6czSnhkQ9WodeKvP/QRJuK9I/bjrPrRDqzRnenQ72ydatIf354ezZTn/kWSZFxcXLgw+W7kBUFvU51re8VH8mRlBwsVglZVstNRWXVLN13HEVRyC2rYmLPdrTOD+BUUTHptZUYsGCwWNl24hxHz+XRNSYUHw8tO4+d4/3vd1BcoWoy6bUaPFydyC2p5PHpg2gVrgY7O4+mk1VQhtFs5aPlu5oESUMTYukSF4Zcb7i6bMsxxvePJzO3FElWcNBrKSqrJibCn6WPz+DrDYfYtDUJQSdQnFVOUXIJyfuz0Go0TJuUwKwplx+Ffz3pJ/YUJ6MVNAQ4ejLAvw23HficAmMFUyJ6G8zqXwAAIABJREFUcV/sCPx83Hj83uGX3c/fhVmWOFamGtmWGmv59MwuPk/eiygIbMlLYUHf6b9rfxIKsouILCucKyjF2VGPIArotBo8XB1t5U47dv5K7EGSnT9FSKQfiqLg6Kwn6iKhyPKiSh4d/BJleWU8tfh+EkY0DSh+L2azFUFQS19Gk+VP7+9KUBSFmlqTTZzQZLYybuylr2XWjN4UF1cjCDBjWi/WrD9um0zLzSvntTfX8NOy+wGIDPPh87dvsm2bXVqJRhSQZAUPF0fiIgL4/JWmjcKV1QYsVrUUmFdYyczHv6WiyoCoA/RqebA5NKLIM7OG8sD7KwFYv+cMO9efQasoeHs6M2tiDyaP6MSjzy8j+WwBHduF4VsvXLlg9X7ySioRBPhh81EevnEA53JLePeHHZjMVo6n5bH1o3ttxwr0cef7V2eSmJKNySzx7pJtGM1W/Dxd+fb5afi4uyDLYDCZSUzNxVGvZcaIruTV1bA+MQWTxcqHa/YQHeyDRZYpqzHg5drQUxTq22D18fKCjbb+I1Abvs31wdeCNQeYNFAtXcXVN5076nUktA5v9h55uzvz3vfbWbb5GIpVJj2nhIdvHsRXK/fRu1MULesDrjA/T56ZMYTB8dFs3ZPC5i1J9c3qClarzPFT2ar3OFBZZWDuh+uxWCSevG8kvj7qPdUJmvrnSkAriEzb+wElJrVXbGHGTmZG9cddd/k+qr8TvahhenRXvjt3mAS/CL5I3ouMgqwoHCzO4mRZHvHezYvH/pqCimrWHElGqv87O5aZz+GMHOa/cCOJp7MZ0K2l3Y7kL+TfIAFwtbAHSXb+FMGRvny0+mHOny2ka/+Gxsqdy/ZRkFGIxWTl62d/uCpBUvu2ocye0ZtTp3OZPb2pa/y1QBAEXp0znkXL9tO3RwwRoZfvjfDycuG1lybZvp/z+Bi+XrSH3NwytFoNwUGel9x2ROdY1hw8Q355Fa/eNOKS626e0J0jp7JJzShCFAVb5kcnCTw9c6gtc9IcT36i+ouhKJgNFvRWEYtFIr+wCqtV4qFnfiArtwxPD2deeWqc7Y2pY0wIO46dQ1GgXZQq7WCxSMj1ujk1BhOPffQzr981Gm39yHugtxujerYhMSXHJphZUlHDTS8uRpJkag1mRFHg2dnDGNZd1b95ecZwvN2dWbQtEZNVotZgxqHeouKR8f1w1GlpFeJH4EXj92EBnhjNFqySjJuzAwO7tGTjgRQcdFr6d2qQaYgO8WXZq7MoLK+hdbg/+09lEurvSUW1gaSMAoYlxOLl7kx2YYWaDZTh5y0n+fG9W5k0tGOjRnFQfzd6dYwiyNudzZuTbD93cdZz+4yGEfnFKw6w/0gGiqLw/vzNGAwWggI8eHTWdQQ7e+Eg6lmXd9QWIAFoBRFnzf9+Y/bznUbyXMcRKECXVW9Sa1Ub1c2yxE07vuXYhCevaD+1v2pwN1klTp8vpH/rKGIu8/tsx861xh4k2fnThEb5ERrV+IWsdfcYdTzZ2YGuwy8//n6lCILA1IkJcGk/zWtCQqcWJHRq8dsLm2HggNYMHNCatLOFpJ0tpF/fS0/ouDk58O6tYxBFsVHWpMk6F0e+fG06b325mTXbTqLIqn5Sl3ZhjOx5eckFQQQUBX2FjEYGBxct7q6OXH9dF1auO0pqehGgZu0Ki6tpEa72lQT7eaDIqgFuYVk1r32ziVU7T6HUd3gqijodlpiaS0KbxlmazrGh3DisE4s3HMEiyZRUNHYFeOaLdSSm5PDkzUPU57hvRzYcSaGyzsiTkwcR4OmKIEBUoBqgbjtxllnzlhIT5MO8O8bx4cOT2HH0LK3C/Wx9RPdM7ENJZS1RwY2D2kAfdwJ93Hnyk9XsPZmJJMu28/9p50mWvHQzSRkFIAooooIiKXz90wF0GpFlm48RHuTNgpem22QXCkurOJKSQ0LnFhw+molGI3Lv7IG0uUgx29/PDa1WBAVSzhZQVFyNXq8lrmUg9w0byXvJazlanqHauyDi5+jOe11mohV/v+faX8UFyxVBENR/wA8DZ3PLrsUUGdWyp0G68mxvdKAP/xnRk0827MdgUbdbtPEIG9aeZOHrNxHg8/er7f+/wp5JsmEPkuxcE1p1jWb+ibepKKoittufNzj9pxPTMoCYlpe3p9hyPI0nv1mPIMBHd04goVXjpvfPluxmy94Ubp6QwNhB8ew+fA5JUl/NHPRa5j427jfP44snp/D0x6spKlNtLmpqTTz94Cg+/3YnmdmltnUXjGwvcCApE6skoQBHUnI4kJTVZOpMlmXC/Jt3vJ89ujuHz2STnFmEtT4wAdXiT1Fg2e6TrE1KJSbYl4/vnsDGl26/5DW8sWI7ZdV1nDCZ+WzNPkSLwqSBHQj1b8jSebg64XFRoGmxSvznnRUcT8tl9pjunDyXj8FkselBWawSxeU1fLR8F9V1RhDqPcckhZ+2nrC9Z+QVVXI8JZdOcaHsOHKWd7/dajOlnTquK34+bowc3FgQdeKozri7OlJeUcfx0zmUldeBAB4e6vmFOfugE7WgwOzoAcyOHnjJa/+7kBWZr87uJKOmmP7+bXni0Gr0oobF/W8mxkMtYyootqAToG/A7/u7HxIfw3trd3Mh7SjWKVRbjCxYuZ+tB1MJ9vNg/gs3NjK/tWPnWmMfFbBz1ZHrXygDI/2JS/j/0UtQW2ti5+4UCgor//A+1h9JwWyVMFkkvt92lBvu/4rH3liJyWwhO7+c79ccJrewgje+2IRVkomJbMjeVdUYUa7g019suD9LX7/FJkAoCgKFJVVk1XuDgapj5OXhzPmcMlWvp7yW9ZtPoamTQVGYOCCeId1aNdtI+8mK3WTkqcHW2r2nuf31H9h4IBlnRz3/fWYas0Y39mnz93bDUa8FJ5Eqg4nT2UXsTsq47DXEhfrhoNUgyQpLNx5l8cYj3P+u2vCuXOImJGcVciajEElW+GbdQVuTuU4rMmlAeyKDvIiPDuKHzUexWGX0Og13T+iFVhQbfai2WCViIvx4+K0fmfvlRqpqjJgtkqqHNaojk8Z0bjINKIoCZ9IK+GLhLk6dyeXmG3rw9AOj6JOgqo23cPFDI4h46J0ZE3J5Paq/iy0Fp/nq3E7W553klZOrqLOaqTAbWJ6pyiZUm41M3PIVpWbVP6+jVwjv9fh9KV8XBz0iApo6BaciBa1ZjZdW7zhFda2JlMwiPvl+11W/Nju/QmmwJrnW//4J2IMkO1eVJW/8xEin6dzV5QkMtca/5Ry27kzm+lmf8uo7a2xeU9ea+x9ezKtzVzPt5s94be5qW6P37+GGPh1w0Glw0utIP11ITkEFR06dZ/uBs3i4OaHVanDQa/HzcuXIqSwSk7IRBQFnRx33zuh3SfuLi9lzIp0B936EPtiZbp0iuePmvvTu1hKdTkQQwNlJx1svTOapB0bw6rx1fPXdbu55YjGmUhNag4KuVuZYWh4v3jYCR4fG6t4mi8TGg6nc/NJiVmw/zotfbuBYWi7PzV9Pbb0Y5IQB7YkM8sbDxZE37h3D9OFd8PVwISbYBye9DlCICbl0D4rBbOF4huoP5u7kgAb1jdRksfLClxvoftt7PPXpmibBUpCvB1ZZlUwI9fdke6Kq5CzLCh1jQigorWbfqUxMZitajYBoUpi/dC+xLQLo2jYMnUZEqxXx83LF19OFjNxSjGYrOq2GQF83bpvUk2C/5rNoABu2JmGxSlRVGwkN9mJA71jbh4dP0zZRazVRaqphY/7x33wO/w70YkNQ7evoioOoRS9o8NA5UW6q47GDK7HIkm3NZ32m4KZrXpuq1mjmqcXrGfXaAr7YfMD2XHm5OvHWTaPQS4LtDVQQUIPoei7ng2jHzrXAnre0c1VZ+tbPKLJC3rlCkvak0HXY1elH+j28/eEv1NaZ2Lk3jdHDcugY3/wk09XkfHapbYptx+5URo44T6eOEb+xVWMSWoWx5417QYAXP1jH3jIDiqIQFuSFu6sjX78xg2NncunVOYr5P+zGXG9w2iLUh+nXdWuyP4tVIjW7mMhAb1sPzec/7cNgUpucu4yOZtqwzgB8+sZ0TiXnMaBXK7w8Xdh94CwCAlarTJ3BbBOeRAGrVRW/vBCAigIE+LhTUKpaiAiCwMfLd9syMDqtBp1W/Tzm7+XGsldnAVBZY2DEQ59jlWQ0ZQKv3TuG2DB/QnyaDzbyy6qY+f5Syuon2Sw1Bh6d0IfjZ/OYMrgT9769HEWBLYdTee1bPbeN7WkzxT10+jyiqstJRl4ZGlHAQafBQafDo17vSpIVnPRaxvVpx+otJ7FIEqfPFdAuOhBRI6LTavj02SkIgsCc24bx/qLtxMcE8exdI22imwcTM1i96QSjh8TTo0uDlIS5vs9GVhT2J6az2e0o+YYKnm43ga7eUaRW56Mo0MYjlP9F+vnH8nibkWTVljIzqg+VZhO37FrMFyl7+fbcQcpNdba1HTyDGbTuQ0ySlde6jmV97hmqzUbe6DaOcFcv3lu7izWJyQB8unE/3aJD6dRCVWwf0j6Gli/O4qn3V2E0W/nP1H60ivTnxU/XERboTY/4SMqr6vByb16g1c5V4h+S5fkrsAdJdq4q3Ud1Zs9PB9E7aonuGPm3nENkuA9nM4qwGq28+vpqbrm5LyNHtL+mx7zvniF88PHm+k/FCv5/UOjyQjbo+ftGsevQWUICPImNUnuZQgO9CA30AmD0gLas2nwSgJTMIvKLqwjya3zMO99YSlp2MW4ujqx4bTZODjr6dYwiPa8UAegY09BcHBMVQExUQ89Ur27RTBjVibT0Qm6f0Zc1m0+w62g6oS19mTU6AUEQeOf+cXy97iCDOsdw/eCO7DmRzmvfbKZlqB+HzmTZ9vXETYOb9JF8sHQny7cdRxBUXSO9Tkvvti1sk2zNsfrQGYor1AkwjShwy5BujOzZhsz8cg6dOU9EkDc5hRVYrBI/70wiJauYb59TtXpC/T3UtEQ9oiBgscp4uGqICvZh5qhu7DmRwV0TetOhZTD7j2aQV1zF0B6x/LL3jK2UaaiXnujXtSX9ujY2560zmHnqtZVYLBI796XSplUQwwe1Y/yIjshSw7vO/tPnKIwuAC3MPbWKL3vcSU+/WDx1zkS4/m9OcgmCwMTwhkDcUaMnv64KGQWrIuGg0WGULGgFEQSBuvqm7RePrscsS0iKzBsnNvFxrxsa97Ip4OzQeIovMtibJW/Otn3/4+ZjnEkvIi2rmK0HU9FqRBbPnUmgr72Z2861xx4k2bmqPP71PWSdHod/mA8ul7DjuFpYLBJvzFtPemYxD987jHat1U+jb79yA6vWHuXrr3dRUlLDO/N+YcTw+N/VG5VfWMnPG4/TvnUIPbv+dgPqdWM6MXhgG3btSSWmZQAhwV5/+LpADZYG9bz0JFyblsG4OjtQU2dCI4rodY1LbZIsc/KcWpZSFCN5JZVEh/hy23U96dexJe6ujgR6N4zRK4pCWXUdXq7OKCgYzVbuntXf9njrVkE89qtz6N42gu5tI2zbZ+aX0611OLeO7c7kOf+tvw6RuIiG4EuSZT5atotFv6jmulqNwK3X9WB497jLBkgAnaKC0em0CMDdo3oya3BXHv1gFbtPpKPVaHhgSl8UReDDZTsxma2YLQ2WOPHRwXzy6GRWbD/O5kOptixcUXkNq3ae4rbrenLbdT1t65e8OZvC0ioeemMFoMZXHeNCibqMBIQgYFOoUhRISsknLaOIuOhAEjq3YN/hdAQBKg0G9ZO6FVwtjgiCQAev35d1/Ltx1uq5K643C88dYnRoW6ZFd2FLXiqDglux+OxhjpblABDg5E6+oQotIuGu3gA8PKYvkiyTUVTOzP5diA32o85qRidq0DUz0ffduiNIssyFyrnooCMls9AeJF1L7JkkG/Ygyc5VRRRFWrS7ulYkl2LX/jR27U3DaLLwxvvrWfj5bQA4O+kZOSSeRQv3IjqK+Pu5NRsgldXW8djqDZisEm9dN4Ig94ag4eHnl5JfUMlynYbP355BVMRvf8J3cXFgxLD433UNp1LzmPfNduKiA3hw1sAmtgunzxawbkcSA7vH0KVdQ9lQFAU+f+VGNu46Q/eOkfh4ujTaTiOKTBvWme83H6VLXCiRQd62xy7WUSqprEUAnvpqPUfTcokL96Osqo7C8mr0Oi0aUeSj+yfQIfryooB7T2by2co9mCxWzuaU8NiMwSxYfYABnaOJDlEDC0VReHndD2zYogZvei8z3v4apg/vjKP+tzWBusWEsfzJm6g1mmgdpgZeGo1oi04cdDrG9mmL2WLlTGYhd4xvrHjdvmUw7VsGM2fmUPrc+UGje/lrLJLESws3kVFagUZRDzHviUlN1l2Mk6Oel54dzZwXfsY25KWAVivyzEOjmb9oF44OOk6n5nF6q4DiKvPkg+N/87r/V3mw3UAebNcwiRfnqepnPddpBO56R+qsZp5oP4S9RRnUWEyMDlOn/lwdHXjxhmG27VZlneDJQz8jCALDQuJ4rctYPl66m8SUHP4zuS9tWgWRX1qFBrXkGxboSde2/6yg0s4/F3uQZOcfS6Cfu2p1odcS8iuRRk9PZ774dBZnkvPp3i2q2e3n7z/M3szzKAq8u30Pb13XIOBoNFrUsoCAzYn8WvDCh+vIK6zk3PlienSIpHeXhqyV1Spx34tLMZgsrN12ipWf3I7nRb0Y586XkJiUTXCABx1bN+5lOZdZxNjubXho6oBLHnvb0bM89eU69ViShKzAmfNF6LUaZAWM9de9cNOR3wySLvTkCAhoNCKTB3Zg8sDG/WjHK86QWHUcGV/c2pXh3b0cQYD5Wd9xX8ys37xXAOF+jZ/nOTOHEOTrjq+nC6N7t0EQBGaM6HrZfWhEEa0oYK1vrv/ip3046LVMHdLZtua5xRs5lJ2L5KY2MomCwNn8EloG+TbaV2l1HTPf+56C8hqentGHjcpS/KabqT7gQbx7a8YM6UjLFuqI/MN3qea1JrOV40nZtAj3xc/HjX8beo2WEe5teWbRL9y7exWOOi1Oeh0Db2yFu3PTZu53T21DQgFF4ZfcZPwkV37ZnYrBZOGRD35CFEUER5G37x9Pgj04+kv4p0ye/RXYgyQ7/1jKTEZqfEUE4PopTd3WQ4K9bGUvg8XCjrMZtPL3JcpHzaqEe3mg12hQ6r++mNefnsjXS/fSJT6C1jFB1+wa/L3dKCmrQVHAx8u10WMKXCR2qHBhYG7NtlMs/OkgOQXlKAokpxfSu3MU3vXZpC27zjD3gw0APHL3MEYMamvbR1lFLV4eqkHrxsOq5ACAo06L0WLFw9kBi6SgEWVAQavR0L/Db5cbE9qE88i0gZzNKeGmSwQpTlpHnCKr8RtixinEYGsROlmR/HtuWSM8XJ14cEpDWbDGakAv6mzTWABm2YpBMuGhU++PViPy0WOTmfvtFjLzyzBbJXYfz2DqkM6UVtYy57O1nCwsQpLVJnRFABn4bscxnps6pNHxt504S1FlLYJLHUvqvkTQyogh4DPJxP3tbyfMuWlw6aDX/mFx0n8Kc5dvI6uonOzicvX32Efi3PoCXhs8hjb1GScAiyyRb6iyfa8RBILcPVAUxWbRI9VPzd37zgpG92rNC7eN/Ksvx87/Y+xBkp1/LCt3nMRa36iw83g6sZEBfL32IG7ODkwf3tWW3QC4/YefOJlfAMDq224i3MuTqZ3a4+3sjEWSGNm6scN6XEwgc59u0HkpqKrml+Q0akxmTuUVckuPLnSL+POTSG88Po4NO08THe6Hj6cLyzccpUNcCDGR/ui0Gt55aiI/bjzG8D6t8fZwxmKVeOPzjTaPK1FQS04OF41JJ544b8t+JZ7IYsSgtiiKwiPPL+PoqWxiowP4eO40rh/Qge3H01Hq/wMorzGi12p4887RtAr1wyrJRAT8dn+VIAiM79e01GiWLeQbighxCiTWLYpbo6YwnyWN1kwOHXXZfe8tOktqdQHjQjvh5eByyXWrc/czL+VHHDUOfN7tAUKcfSk1VXHrgXeosRqY2WIYN7VQg5wusWG8/+AE7nxjKbUGM7eO7Q7Awg2HOZaWi4SCt68zkYFenDpfiCAI9IhtOiXZMSoYURBwCTCj0Qg0VNkUMmuzmw2S/j/gWN9fJisgO8qYYg2clg3cvGMhh6571Fb+NlotBDq6U2qsQRHgqQ5DmRbVlR5PRPL2d9tsfXUXWLv3DM/MGmazvrFj51pjD5Ls/KPYefQs732/g2qDiXF927HvlAZRFBjSrRXvLtnOhn1nAFi35zR3TezNwHqn97TiEgwWK846HdkVlYR7eSIIAsPj1MeTC4tZcTyJAS1b0DuqcUpfURRu+O/3lNTW2ko0ezLPc/zx//xpoUw3F0euH6mWeSbe8wWllXVoRIGlH9yKr5crXdqFN+pF0oginu7OVNcakWWFhA7h3Dm1Ly7ODfox11/XlQOJGciKwpTx6kRSbZ2ZxBPnkRWF1PRCikur6RwTys5595CeV8b01xY3ul4BgZB6E9mNh1OZu2QrMaG+zLt3fCPdmsthka08cuxlyswVRDiH8Gr84wwL7EelpZpl2WtRUOjp04WhgX0vuY+kilwePPQdVkVhc/4ZFvW5tBL3Tzl7sCoyJsnMgdJkJjr3IbH8LEbJglWR+S5tByfW1PLAlP6E+nsS4ufBmrcb7y8yyBt9/RvwjN4duXVsD9LyShAFgeighqbtzMIyLJJMTLAva56bTWZFAd+ULKDYVGYLOPONRVd0n/6NlF1kOGxDAONFViU5tRWM2/wFBqsFGRmdoCW7pgJBEIiLCGBE9zjKquqoqK6j1qhu5+Hq2ESs046da4n9t83OP4bM/DKe/HQNOcWVVNYYWbPnNBvfv4uN799FfHQwVqvaV2ORZNLzy3j683VU1QtavjRyCEHubgyMaUH3iMaN5YqiMP3bZXxz8Ch3LV1FYXVNk2OX1hlsARKAXvP7PskqisKexHQSk7Iv+XhpZR0Wi4SiqArahSVV3PToN1x3x2d8vWI/BqMFURRYMHcGoYGeyIpCYlIOub9S+Y4M82H5V3fx44K7ia5X5XZx1tOlYwQajUir6ABbL4xOoyE2zI92LRpKIB1ahtC3fUM56J1l26moMXAqo4B9pzOv+JpLzeWUmMoxyxbSajLZULADi2zl+rDR9PPtjhYNh8qOsSpv0yX3UW6uUwfBFIliY9Ul1wEEO6n9QpIi09FTLRF29mqJo0aHiEjtaT07jp7j+fkbLrmPcX3b8frdY3jx9pHMHt2dwvJqdp5Kp6ymQQdoZ1I6N7y5mBnvLGH5nhMUVFXw+t5FFFVV0dWrPVEuEbR2i2FE4P+evchfRacWDRk00SgilKvedTpBY/tgcagkC4ssY1VkZMAkWzlbXQzA95sT+XD5LnKLK6k1WnDQaZg0oD0/zb31/4WC/9+O8hf9+wdgzyTZ+cdgNFsavUC2jgzA9aIMysPTBqLXaVmzJwlJVhBFwTYtNjwuxpY1+jUK2NSCAVsJ7wKCIPD+hFF8uucAcf5+eDg5MLFD28u+WB8tzKeoroY+IeHUWa2sXX+Cb386CApMGtGRWoOZ8UM70CrS33aMlx4YzYLl++ifEENUmC+fLdlN+vkSFODLZXtJTMrmg+eux8/bFQ83J9uLzJU0lguCwNvPT6aisg4Pd+cmE11zbxvN20u34+fhwkOT+zWasotvEcS+pCwURWmUTfkt/B18iPeI5WhFEgKwMHMFeYZCbo2aglEyYkUCBX44v5qhAX1x0TY19XUSdVhkCQEwSVZkRVY91ZohsSwNUNWhy8zVRBGEj4M7y/o8y9ZjqbySvBmNRsbV+dKTdIIg0KdDQ6P/bR8tJ7e0ElEQ+PK+6+kYFcy+5CzMFisK8OP+kyQtLUQQXdE6OaK77jSLenx4xffo34aiKKoCurXhd7J/l0g2uJwCoE4yU2U24q53pG9ANE4arS27JABPtleb24vKqrHUi7MKgvq/cf3iG/2927HzV2APkuz8Y4iLCOD+6/uxPfEsfTq04PpBHRs97unqxDOzhzFxQHs2H0plYJeWJBUVceeyn3DW6/luxg1EeHs22a8oCHw1dQJfH0xkROtWhHg21V8ZGteSoXEtm/z813x27ABfnjhChcmIVhSRZbXfp7XBC6PJiigKLFl9GFmBzXtT+GXBvbZgq39CDP0TGgK51tEBaLQiVquMLCtk5TX4qz37n5G8/eVmTqcVsHTdETq3DcPP27XJ+VyMIAh4eTbf0xPo7cbbd41t9rHXbx/F/uQsvijZwvVHPuL+uCFMj+rZZJ1VltAIIsuyDjH31Dqi3PyYEz+I4xVnkJGxKFZKTeo1TI8Yz4HyY7Zta6y1uGidUBSFrQVqyXRgQBz/ObgYuT4arDDXYZYlHC9RbuniHcPB0mQEQSSztpC2nhE4aRzQiVqGdWqNPFMgp6iCGwarvzdGk4UV20/g6erEqF6tmw16K2uNavMwCrd9uJxRXWNZdeA0Oo2Is4NONRhWQJFELHU6Bvn3vtTt/9dTXmNg+jtLKCivst1LJ72W7u3D2HBODZIcNFqctWqQ6uvoyvrh9zBywycYZAt9A6Jp6a5mPmeN6U52UQUGk4X46GA6tgqhdeTlDaLt2LkW2IMkO/8opgzpxJQhnS67pk2LQNrUl49u+f5Has0WDGYLK0+e5sH+vZrdpltE6GUbsc+WlHIsO59lx06REBFKQkwoj+/4hRYeXswfMR4XnZ608lLeOrgbqV5R+IJXmAIUeZqICfdFI4pk5JQgW2Ukq4zBaMHZqfnMRv+EGD55YQrzf9hLYWkVD98yyPZYoK87ep2WimoDVbVGlq1P5J7p/S57X/4oOo0GhwBIzSrAIFn4MHlLkyBpRdZhXjrxM3pRi4NGi1WRyagu4ouzP6ERRGRFRi/oyDMUcfuhJ3g49jbujJ7OqtyN9PVNIMBRLZUtTN8H9kjMAAAgAElEQVTHR8lbsChW2nmEICsNWb1AJw8+Tt7C3bEDmJeykmJTJWNDetLLtw0OGh3Px9/EloJE3klewfxz6zhQmsxbndSeI0EQGNmzdaNzfnPxVn7Zn4woCmQVlOHkqOO7jYm4OOr55LHJBPt68O6tY7j1w+WAqp206sBpQO0Nm3/f9aTlFvPs4l9QFJg5uAu3RPXn/yu7T2dQWl2LJCu4OOqQZQv+nm6IbgKOohajbCXQyR2NIFBjMeGi1ePt4MyWUfeRU1tBKw9/2748XZ145/5/robUP5p/kPnsX4E9SLLzr2ZwTDSHz+eiAD0i/pjI5eaUczy0cp2thJBcVMKPeUnk11ZTYTKwISONfqGRTFy5GElREACNIBLk6kaV2Uit2cIt7bvQt3cYrs4OpGYUsf1gGpnZpQyd9SHD+rTm+fuaTnhV1Rh4c/4m8oqqeO7eESS0j2z0eFxUAPuPZYACMZH+Tba/mkS7+aMVNDhpoLN3U62aj1O2oqD2lYgICICElUJjCeGufoQ5BxPo6Mva/K1YFYnFWT/xSvxjDAno02g/mTXFGGW1/HKyIocbIhOoNBs4UppJnqGCb9L3srHgMLJQg0Wxcqz8HOEu/izo/ggaQcRR44CAgFE2k1NXfNlrqqg2YJVkREVg4YbDyLKCrChUVhuY8+labhnbnX4do4nw8yKruBxREIgK9Ca7uAJvN2fC/TyJDfGja0wYWo2Ir/ulJ+/+P9ApKhgR1WZmUq947hrRAye9jjrJzJqcU2TWlPF8p5Hcv385m3JT6OgTyuIBN+OqcyDO054lsvO/iT1IsvOvZnqXDnSPCMVJpyPE44/ZGOxJz2zUY6EoCm18/Ck3GZEVhVZePqRXlGGS1L4mjSCwe/rtBLq4YZEkDFYrq9Yf497lPyArCp3ahCLJCtn1Oke/7DrD03cPbzLWvOPgWbLzKzCZrXy6ZDf9Ehr3VN00PoFWLfxx0Ovo1ObaGqP6OLiycsB/WJJ5gBaufo16g/LrKtDQUKoyyBZ0okSERzmioKARRB6Nu4PTlWmsL9iOHhFXrQtHyk7S2atdozJXB+9wVmUfw6JIaAUNrdwDmRzRlVl7vqLIpPq2VZqNuNW3psgoZNUWUW0x4KF3oZdvG/r6tyOtOpeHYhskHJrj8ZsGc987K8gtqsBS34d2IfOXlFHAnE/XsuiFGSx44Ho+W7+PEB8PZgzoTE5pJUFe7rYpv0Cvf58g5O+h1mDmzZXb2Z+ShckqAQJtQv1xcVQzpK6iA4sHzATAYLVwy67/Y++8w6uo0j/+Obem905IQgo19I6AVFFAQRClY1cs6FpX3Z9Y1rY2xLUsuiqyAlJFVJrSe+8QQhJI773cMjPn98eNCRGQxIJtPs/D83Bnzpw5MzD3vvOW7/sZEjhakk1mVSnRte1KNCkx6EnZvw90T1IdupGk86cnPiiQk/kF/HfnXgbEx2JCEOHvg7mRFWpR/vV5TH7ubrwz7lo6R0awKSONSG8fWgUEk1FeWpf8rUkIcHMpY5uNRkwGA5+cPkh6ZyfeqbDnSDpSStxrf0Q6tom8oO5L2/gwhAA3q5keHc733ggh6NXpfFFCVdVYtf4oiqIycmiHX0xTZnH6Xj5L3QkCqhQbE1r0AuDm7f8lr9aA+R53sxMhpKtXmbOCD1LmMzxiEC93eILFGV+xr+QoR8uSmB4/mSuCXDIF1YqD5w5/iVOqGBDMaDOUMVEueYRZ3ScwdesHZFaX4GH04m+tBrAsYwunq3IAyT173+bjXo9gMZh4qt3ERl2Ph9VMZn5pg0R9o9GA0WDAXtv3TVFVgnw8+cdNLn2lD9fuZu76vVzRJoYXplx9XhuZvxq7jp/lrveX/eA3VbJo22Gu6dYagLLKGqQEP2933IwmegbHsK8ogxivQCI8XMKR9+1YzLrsJK5tnsjrPa//LS5FR+eC6EaSzp+ecpuN8XM/x6GqvLZhK9YqQVxwIIvun9ioH7kOzcJwM5mQSDo1C6d7lMtrMzi6Xonay2LFajLhUFW8zBaM57wRJxUXkuFbjaJBaSL4bjUCkmuubMtNw7sSEeL7w1MCEBcVzPw3b6GguJLEJqh+L165j/9+thUJFBRVcsdklw6RU1NYlrEHozAwOrIbpgs0E/0xcqpLcWgKBiHIramXHShz1GviGAuNmLMtaLEmvHw1atRqKpQq1uZtYX/JMdqeGEpSaC4OLwdGYSTPVlh3rFQlRgw4cXmRSnbYGPni+yiqxutPjmHhFXeTUlFAnF8I7kYzC9I3uI4D8m0l5NYUE+V5fthxyf6jrDx8glv7dOPKlvVGpbvVjLeHlRq7E1XTkNLVx21wrzjKqxxc2SGeFs0COVBykhC3AA5mpLOgfAlaczfWHXAwsX9nOrT49dTYf++s35fM43O+Qlpqm9vVYhCCG/q4hEX3nkjngVnLAXjlnmvp2zGWT/pPJru6jDB3H0wGA7nV5WzMcVUmfp15jKc7X42v5fxKR53LiO5JqkM3knT+0OSVVXIqp4Ducc1xM5uQUmJX1DrFX4Bqp4KiaSiaBhIciuR0XhGFFdWE+v54RRhA1+bNmDN+NGeKS7gusc0Fx/i7ufP5tTexOfMM17RoyYpVB8nILmHyDT0JcPfAaDBgFYJQb08eua0X1TYno4d2wGL+8UcwLMinyd3OS8uqUVWtrg0JwLHSTN4+tYZDxWcRQlCp2Lk5tmmJ3jPaDCGnpJyCXdW42z1QW2sYDQZmdZ/Ae0kbiDYHsnHpWRxOFWuqJ/c/OI2/f7wAv1HpCBNUVNtYsuogRl8rMTcEkhAezrAwV6Kzpknum7kYa6UHHgkaztOwKO9A3Xf1+/O3cCIlF1WTvPzIKLp1bE5mdb2BFe8dQTOPhn3VVE3jwc+/Yl1SCgD7szJ5Zkp3mnsG0yOwFWaTkc+emcKek+m0jg5hyfpD5CnFbI/cgjDClMRE3jo1n20FB1GlilNTcQsBS4AdZ6EHzQL/2l3odx9PRzolmAEkaDCyexsGJsZSWFLFso2HeGPBJhxOl4d11Y4T9O0Yy6yDW1meeozb23ZnWpuuBLl50dwrgOzqUlp4BeJtPr+/m47Ob4VuJOn8YSmqrGbUa3NRNUmriCA+vmscU979nGMZedzQsz0zb3CFSMK8vXhiyJUsP3wM7JKTFfn0im9OSBMSbXvFNKdXTMPE78oqO8+/8RWlZdU8+eBwOkaG0zEknM07TvH+3E04nSppZwuZ9c+b+OL6iezNzcbbZKXS6eD6Vh2wmFyPX7XTSXpZKQkBgb9I+GbS2J7kFZTjcKrcObkfBbZy7tz1IXbNiQRMGChzVF9ynh8S4uaDz14fThwrYkHSPiKD/Bl5ZSK9guPoFRxHUVkVG+QHACiKxtHkHOw5Vko3BBHWTtDF2INMkYxaZqFrzlVc07It36w7Sf/u8bi7WUg+k4+mAYVG5DnCnVaLCZPJiM3uCoF9se4QvTu34ObYq5iX8h3VhW5EKR0x/kA/6f7PV7I+KbXus2/LYv5z+iuEELzc8TY6B8QT7O/F8N5tAXhs8mCeOvQxzkIFNFifd4DDZUnYNIcrFV2AlCCE5J6r+hL4F0/UvnFQJzbsT6aorLru3hTnVfDMzjVITaJqWl37HJPRwPVXtierspz3j+7Coak8t+c7bkrogJvJzIohd5BWUUSsT5Cel/QbI9Cr287lkkaSEMIN2AxYa8cvkVLOvMjYscASoLuUcm/ttieA2wAVmCGlXFO7/WrgLcAIfCilfPnnX47OX4mMwlJUTVLjcHIyq4Dk3EJO5xYhgSW7jvD02MF1ScGTunZkUldXV3qbU2ngaWosUkr2HDqLw6FwRfc4Vq49xJ6DZ1EUldkfrOf1Z8cBUFpeg6q6RPXU2nyXVgHB5FZUMv2bL5HArsxM3hw2nEqHgyH/+4gyu50eEZHMHTX2Z98Xby83Zj5Sr3l0prKgrjubAcGQsPbcGjeAs1WFfJa2jc7+0VzTrNPFJzwHg0GgSbA7Vd5ftJWYiADW7jhJvy5xdE+M5v/uuppvthzjxmFdSIgK4uv1RylIFnSN7sD0if3wUfxQVcn1V3VkwoMfo6gac5ftYuWcu2kbH8bRUzlYLSZsdieaBD9vN957fgLllTYOn8xCk5IRAxMBGB7Uh9fmHcepafzPcJDp/Xrhd06X+b1nsxreF08LNbIGqzCzOmcPCOjs31D7alxUf/YWn8JkkGwp3IFAYBYmfM1elDsrUYXG7XHXc11kw6q8vyKxzQJZ8+bdvPq/9SxafxCTQdCrfQxH03KxKypWswmL2fX8zXtmMtGh/lQ67biZTBhVA94WKxaj6zm0Gk16hZvO75LG/FLYgUFSykohhBnYKoRYJaXcee4gIYQ38ACw65xtbYHxQDsgAvhWCPF9J9F3gKFAJrBHCPGllPL4z74inb8M7aPCuKJVNHtOZ3D/1VfQIiSAQC8P8ssriQ0JYF9aFt1iG1Z95ZVVkl5USufoCExGA5U2O/9Yso7yGhvPjR1KZMCF84MAVm04xhsffAvANQMTaRcfhtEoMBlNNG/magLrcCp8MG8zmpQYTQaeeMDVsXzuoQO8u28XTlVFkZL0cldOT0pJMeV2OzZFYWvG2V/jNhHjFczdCUNYn3eM2+IG0C/ElVA7efs7ZFUX83XWAWK8gmnj2+ySc/3jzmFcM/09ACqr7dz30mJsdoUV64+wbNbtXNWnNVf1cc2fW1hOZY0Dp6Ky8rsjtIwJwcfLnVaxISiqhqppOBWVskobqqqRmVsKuKqcfLzdKa+0cef4vkRHBGCzO3ly+jBimgWQEBOCqml4u1kJ8PSgwm7Hz90NL2tDvakbOrfjox376z6f2eNJzyEelGuVrM87yMb8w7zV9R5a+9R7CDv5x/G/3o9xx57ncUpXmCjI4sddcWPxNnsQYPGlmcevK7fwR+PRyYP424QBgCs1Kb+kkhNn8rh/XD8qqu3ENQuiWbDrufIyW/nm2lvYlZdB/4gWutfo94ruSarjkkaSlFIC3zezMtf+udAtfB54BXj0nG2jgIVSSjuQJoQ4DfSo3XdaSpkKIIRYWDtWN5J0Go3RYGDW1IYq0Ssfm8aDc79id0oGd3+4nPduu57ucS5DKau4jNGz5qFornydcD8fvN0snMguQErJK19t4u2p19XNpWmStZuPY3cojBiUSFpGIQ6niqZJVqw9xLdbT/L4fVejaRpX9Ign5Uw+/r6eVFU7UFUNgQFPDyulthr+uXVjnbhk++BQnrlyENO/+ZKkogKifHxJKi7itk5df7V7NTW2H1NjGzaS1aRW9yBrsnHfiv4+Hgzr05pvd50iNNCHnEKXsSeRKGp9a5eS8mru/r+FlFW4kroVVePjZTspKKrEYBC88NC1hAb5UFZew4xpAzCZjLSJC+Pg8UwQ8MELEwkN8sFUq6494/nFpJwtRAiX2vgzs7/BaDDwxpOjqTapdIoMZ2daBjtS07mhSyItgvyZ1rsrc3fuR629NCkFf4+dzHNp/6XYUYGbMFJkd/WDs6kOnJqCt9mDAnsJhnMkDUod5byeNI9ege15tM20Jt/7vwKmc1TQH5006EdGQqSXL5FeF38Z0dH5PdGomIMQwgjsA+KBd6SUu36wvwvQXEr5tRDiXCOpGXCuxymzdhtAxg+292zi2nV0zsNiMlFQUVkXUsssLqszkk7luhJ9HYrrxzyjqLTOSDAbDYT7NdS7Wb76IO9+ugmAnPwybrq2G0eTsjmWlIOmSRRFxdfXg/atI5hy738pLauhbatwbp7Qhy9XH+K6qzvi6+OOXVHwMJuxKwpWk4nFN4xnXeppNp09Q43ixNtiYcu0O4j0+fFEYCklewszUDSVQyVZdAlsTo/g86UBGstbXacxN3UznQNiaOfXeJ2lZ+4ZzgOTB+Lr7cahpCwWrdnPkF6tCT0nkfn1D7+joLheFqBNXCjZ+WU4FRWrxcSTr3+Jw6liMRvZvOc0OQVlzLx/OMdP55CaXsjytYcYP7IrQf6uxPrTZwux2Z24Wc0s+mZfXb+6jdtO8fBtg0kvLuXehV/iUBRWHjnB5ofvJNTHC193d4qrXYaal8VM6/AQnvKYyNunvqCldyS9gtqwNmcfr51cgqqpPN72RgaHdaF3UAcOlSXTI6AdG/P3YtMcnK7M/Mn3WkfnD4OuuN2ARhlJUkoV6CSE8AOWCyESpZRHAYQQBuAN4OZfY4FCiDuBOwGioqJ+jVPo/MmYOXYIMxd/S1SQH9d0alW3vXdCNG0iQjickQOAqkmklJiNBkZ3bccjwxtWexWVVKKqGpqUFBRVEhTgxXsvTmT+F3uY89kWWkQF0aF1BJk5JZSW1WB3KBw4ksGbz93E1HH1bTusJhMrb5rM5vQz9I+KwWoyEe3nj6q58pUqHA7uXfUlK26a/KPXNfv4Jj46tROb6kQAFqOJlUPvqhPjawoVThv59nIeaTuyydVEQggCfF06UF3aNKdLm/OVzM1mI0aDwdXwFEg+W0i39lEUl1ZRUWkjoza0piga2/ensuNAGmUVNfTrFs+Hi7fjcKrsO5ZOs1A/fDzdmDG1P+98toXqagdJqfmYTQYMBgP9u7tyiuyKUneu/IoqknILaBUWzBVx0Xx15CQSmDHQ1ZKmnW8073d/AICvM3fxRtIS1Fpz+cusnVwV3q3OY2RT7RTYS8iszuee+HFNvc06Ojp/cJqUvSqlLBVCbACuBo7WbvYGEoGNtUmyYcCXQojrgCzg3G/QyNpt/Mj2H55zDjAHoFu3brp9q3NJEpuHsfSh8w0ON7OJT+++ESklRzJycaoaX+w/TlSAL7dd2R2DoWF+xITR3cnMKcFmV5g+pd6Amji6OxNHuwQQv/72CK+/uxajyRVuGDuiC1m5pSxYtot2rZsxYohLLybK14/J7euTo9uHhPJE3/68uHUzTk1F0TSqnU7MBsNFRS53FZylprZjuutBEJQ7bE2+P05NZfzW2ZQ5a/A1u/PFlQ9jbqJm0qV4+LbBhAR4k55Two4DqdjsTgqLK/no5cl8snQHc5fvRlU1WrUIISkt3yXd4FBw1Io4SinJyi0j+UwBBiHoVxGHm8VMVbUDh6IyZVQPrr+qI4F+nqw6mkReRRVxQQGcyHO1Ilm47wgzRwxiYvcOZJSU0T8hhqm9uzRY43vJK1mUvqnOmyiAUc1cxu3Cs6tZmL6GVj4xvND+viZrSuno/KHRf2nraEx1WzDgrDWQ3HElW7/y/X4pZRkQdM74jcAjUsq9QogaYL4Q4g1cidsJwG5c30cJQogWuIyj8UDjZHJ1dH4mQgg6RLlEALu2uHiysrenG889ct1F9wN8snA7iqphMhn5v4dGMPTKtkyc/iFZ2SWs23yC6MgAEltf+BzTOnRG1SQnCvOJCwig45x/42WxsPKmyUT6nJ+z8XDiIGbsXIJDVZDA9dHtaR8Q0fgLr6XSaaPAXoEqNRyaQqXThr/1p5WzK4pKVn4ZzUL9GuSleHlYmT6pH5XVdv7+6gpyC8r52y0DXdc9phfx0SG4WU20bxXBe/O3YrM7uWdSf7w9rdw8thcpZwvRNI3Ne1KQSLbsS3HleQmByWhgQM8Egvy9+PbEaZ5YsRZNk7QND8Zaqy5+ZUIMTlVl8seLUaXkYGYOHSPDuSKuPjz5ZdYOJK4vowCLD//sMI02vtGoUmPe2W8AOFqWwpGy03T2r/dI6ujo/HVojCcpHJhbm5dkABZJKb8SQjwH7JVSfnmxA6WUx4QQi3AlZCvAvbWhO4QQ9wFrcEkAfCSlPPYzr0VH54JU2OxMe38RZwpLeGbMEK7r0rZJx6/bcoLjyTmMG9GFiFBXi5IVaw+x60AarVuGUVpejcEgaNsynOzcUsrKqxv1IiaE4LbOrmTta+bPrfMmfZeWyrSOnc8b3zWoOS93u477diymRnWyJS/1vDGNwd/qybionqzM3M+1kV1+soGkahq3Pv0ZZ7KLiY0M4qPnJp3njfPysPLvmTc22CaEoG+3erXyB28e2GD/1NGu9MSKKhteHlaqahxs2ZuCpkraJoTxr8dG4+fjCvcVV9eABKeqYjaa+HL6VIwGQaS/LztS0lHPSUg/mpVXZyRVKjUMCOnIt7n78bV48lz7aeTaSojxCkP+IInd1/zX1kPS+Quie5LqaEx122HgvG9sKeXTFxk/4AefXwBeuMC4b4BvGrtQHZ2fyuaTaaQXl2JXVGav2d4kI+l4cg4vv7MGh1Nhz8Gz/G/2LSSn5TP7ow3YHQp+Pu6898okggK88PP14MY7/kNllR2DQTDlhp4X9SL9kBvbteelrZuwGIz0jbp4MranyYJEYhQCT5PlouMuxaNtR/Jo25E/+XiAkrJqUjOLUFSN5LP5FJVVsnlfCkaDgWsHJJKdV0Z6Tgk9OkRjbmL/uBqbk6mPfkphSRVWs5FRQ9pTUl7DPRP74evtjs2h4GYxMbpjGw5kZJNVUs7z1w0lOrC+z15xdTUG4eqlJwT0iXPlNL699RuW5W/BJ9DM7K734m60cNf2t8AoaO0XyVtd72FK9AhWZG1kQEg3Yr1+3ebBOjo6v190xW2dPz2JkWEIBO5mE31bxQBgdyqUVNQQ6u/VoAv9D3EqKqJWTTgzr5SBk99i2vUuFQshwGIxEd+iXjfHZleQEixmI73O8ZZcils6dmFkfCs8zGY8LRc3froENefV7qM5XprLpLhujZ7/1yDQz5Me7aPZfjCNKzrHsuzbQ8z/eh8ISM8u5os1hxAIuneI5uVHRzV63opqOzPfX0Veoas6zgH06xZP18QonIrK1BcWcCI9j+v7tmfckE6s35GMompsiU0lIySANpHBBHp7UmV3uN6INTDY4OZ3F3F/lx4sXHocKQOpGl7OmYQ8TuwopmJRILhpHG1TwqBZs0mIDubTZ/7ZZONOR0fnz4VuJOn86YkO8uObR28hr6yCds1CKauyMe7ZTymrsnFdn7Y8NWnIRY/t2CaS6VP68+3WJE6ezcfuUFi29hDPPXItB45lMGpoxwbjX/7HGD5dvIMenWJoGVuvIHzoRCabTp9muXaCUA8v3u9/A37Whk08gz0bF9YZFtmGYZEX7iH3a7JlfwqvffIdLaNDeGHGSCxmE288Oga7Q8FqMfHyf9ehqCpCiDphyArhZP2JFP63Zi+ThzXOqLv3zaUkpRegWcFsh+AALzrUeuROZxWSmlOElLBsyxGWHT6Gorr0nt76emutwrlg4cMTKatxefREtcTgBIdTZc7SbaAIEBKZb6FLQDz/3bAUpACngZr9boCTI6ey+XZbEtdc2bTQrI7OnwFdAqCen98oSkfnd4BTUZm1eDNPzPmajQdOM/qpj7l/1jJstXo6wd6eLo+SEBw/m0eVzaUEvXp3EgDz1u3j7jeXsD/5fC2cscO7cOuEPmhSw2ox0i0xiopqOz07t6B5hH+DsW1bhvPyU2MYM6K+kio5LZ+Hnl3Ce2k7OVtVwt6CTEZ88yHbctN+xTvyy/Ovj78lr6iCvcfS2XGofu1Wi+td6+4br6B/t3gG9kjgsduHEBsTjDQJJPDu0q2NPk96XimKpmHwNHHNkHbMf/NmCsuqmLd2HzaHkwAfDywmI5gFzloDyWgQ2J0qiiZRNI2nF65lYo+OjGzfBl93a10/KqfJ1VolPMSXT6bcA5VGamyuikF3o7nBOk6m5f7cW6ajo/MHRzeSdP4UrNx+nEUbDvHt3mSemPM1GfmlbD92lvdXbD9vbPsWYQT5eGAQgnFXduBkej7vrdjO7pMZPPTu+XUIVTUOHv/XCjTpUhY2Ggy89P4aHn1lOdv2uTrMV1TZyC0ov+DaCosrXVVZRSAU0JDk1FRw9+Ylv+xN+Jl88OUO+t49m4fe+qJOw+lcWkaH4G41I6UkKvx8bSY/bw9eeuA6nr9vJEF+Xrz2+PV4e1hxt5ppGxPW6HXMvHkozUP8uLZPW566fRgWs4lbXl7Iv5dt5b5Zy3n/4RtY9OxU2rcOx91ixstq4aXJ19CtVjRU4NLAmr/5AE9dPYDvnrqDCb074FEJXtLE9UM7sPTtO2geEsDiVQcoq3SJTbaLD2/YJkPqLTN0/qLIy/TnD4AebtP5U1BWZcNeq7Fzru1/Nq/kvLFe7laWP3cLNQ4nnm4W0vNdytsGIfByt543/nhyDja7y9tQVaOx42AaTsVlRGzbn0ZEiC93Pv4Ziqpx16S+jL+uO06nyqETmcREBtKjUwzXDGzL8eQcPAK8+Lr8JAA1ipPx6+ZxojSfZ7pexfWx7X/Zm9IEpJR8uGInmpTsOZHO6YxCWkU37FH24oxr2XEojeiIAFo0C7zknH5e7ix+4WZSsorw83Lj0bdXkNA8mNuv631eFdy5DOySwMAuCQDsOHaWZz9ZQ2FpVZ3HyKmoxIQF8J/pYzmQmkVGURlPL1iLEDCofRwmg4FNx1J5b81OTmTm88Yt1/LEjYOZNqAb+UUVdGhVn0zfNj4Ms8mIENClfRSnMwopr7ThbjVzy1i9CYCOzl8d3UjS+VNwJre47u+dEyLYdyoLo0Fw24j6H7rkrELS80ro174FFrMJTzdXgnRUiB+z7x/NodPZDO91fq5PXmE5JqMBRdUI9PMk0N+T4rJqhIDIMF/2HU5HUVzNWldvPM7467rz2IvLOJqUjRCC+W/fysN3DgXgdFkh61YlI5FEefpztDiXatXJywfXc31se+yqgkBguYig5K+FEIJ2sWGczizEajHVNSQ9F6vFxIDuCQ22SSlZs/0kNruTkf3bYfpBonOgryeBvp5MePpTTmcWsvP4WVpFh3Jl58Yltf9rwXoKSqswGQ2YTQZCA3xws7jCYlaziV6totnzzTYcqqunngCuaBPD5uNpqKpKebW9bq6IEF8iQhpe16DerQgJ9MbhVOncNpIxV3UkJb2QtvFhWC0Nw286On8J/kBensuBbiTp/Cno1SaKdXtOAYrAZnoAACAASURBVDCqbyJvzbi+TngQXAbStJcWIISgZ5so3rinoUhk91bN6d7q/PYaAP17JLBkzUGy88p47M4hhAX58Pw7qwkJ9GLUkI5UVNTwyeIdVFTZmTDKpcR9/FQONTYnbm5mzmYVExTg6kEW7xvEsmE3k1SaTxu/UG5YNxcPk5nuwc3ZmpvG7RsXYTIYWDBkMu0Dwn+t23VB3n9sHMfScomNCMTL43yP2oVYseEws+ZtRALpOSXMmHTlBcd5WM0YBEhN4unWeOMjsUUYBaWV1NgVFFXjTE4x/1qwgTfurf/3m9C3E7uTM6i2O5gxoi+RQb4k5xSSU1zBI6P7/8jstedoWS/I6ePlTue2F/5/oKOj89dDN5J0fjdU2RwAdR6epnBNrzZ4ultIziykV7uYutLtXSfSmbd2L6om0aTE4VQ4lJLdpLl9vNz45JUpDbZ9+urUur97ulv48qN7UFQVi9n1SE2f2p/35m0msVVEXWXW97T1D6Wtv6vybe2Iu0ivLKFbcHPu27oMh6bi0FSWpx657EaSxWyic8umaQIVllShfN/frqTigmOklLUyC4JAX086NeEcM28eRofYCF5duAFVc73eBng3rAoM8vFk3gPjG2x7bPSARp/D7nBy/HQucVHB+Hg1rY+djs6fkd9TdZsQ4m/A7bj8W0eAW6SUTe/H9BPRjSSdy0pZSRUPTZ1Dfk4pDz8/lgHXdABgz8kMHnh7OQBv3X893Vs37W2+oLSSJz9YhZSS1buTWPzsVNLzS5g+a+l5Yytr7KTmFBEbfn5ezc6Dabz96SY6t43kwZsHYTI1rrbBYBBYDPWP0+hhnRg9rNOPHOEiwtOHCE8f1zExiWzMTsEgBFdHtW7UeX9Ltu5PYdXW4wT5exETEcD9Ext6kTRNYjAIqmwOjqTkuAyp0io+XrmTtJxibruuF3HNgi4yO6TnlTBj9hdomiTEz4vc4goMBoGfl/sFx1fbnbiZTT+a73Qh7vrHAtIyizGbjSx753Z8LjK/jo7O5UUI0QyYAbSVUtbUdvAYD3xyudagV7fpXFZ2bjxJYV45TofKvHe/A6CkooaH3lmB3alid6p8teN4k+ctLKtCUVVsDoXU7CK63vEmt/5r0QXHGgyGCwpIpmYU8ujLy0nLLGLZ2kP0n/gm7362udFrePPD77h6ytu8N29Tk9cPcHVUa7aOvo9to++jR0jUT5rjcvLPOWvIyi+jrKKGiSO6ERLgXbfv6Q9W0fP2N3n031/iYTXTp0MMBiGIDvNn7qo9rNtziodnr/jR+eet3UdmfilZhWUkxoZjMAhUTTJv7T6KyqsajJ2zdhd9nniH4S98RHm16yWztKqGD9btYu3BUxc9h6KqnDpTgFNRqa5x8O95jf/31tH50/L7qm4zAe5CCBPgATQtFPAz0Y0knctKm47NEQKsbmZ6DWhNeZWN1btP4lTVujEjeruSp0sra7jj1UWMmzmX5MyCH503JiwAVa1/6iRQXFZd99loEHi5WQj196JZkA/7T2WSW9wwPPTIS8vqQjrfs/DrfY26rsLiSlasPURllZ2FK/ZSUfXTvMFBbp74Wz1+0rGXm+jwANwsJqSUhAX51G0vr7KxZpergm/roVTyS6t4Y8Zo1s2ezlM3DwUhEIJLqll3jIvAajHhZjHRvXUkfl7uuFvNeLlbz6tC/GzLATQpKa2sYW+KS+vqkblf897qnfxj/hp2nkq/4DkKiqs4116uPCfRW0dH57dFSpkFvAakAzlAmZRy7eVcgx5u07msRMWG8NHXD1FSWEmNFa55/AMUVXOFq0xGru+XSI/WLi/KF1uPciglB1XTmLVkC+88OOai85qMBtwsJqprS/UFDWVuVE1SaXNQWZv39OL89XgYjPx9zJUM7NMKDw8rxaXVDeY0m4x079A4j46Ptxt+3u5U1Tjw9XHH4yfkVV2MvQfP8NRLX+Dt5ca/X5pAWMj5lWe/BW88NobN+04THxVMVFi9qKaXu5X4ZkGk55UQ4u9NkI8HQgh8PN1IjA3n6Vuv4nByNpkFZQx94D3uHduX0f3Plz8Y2actMeEBSE3SPi6cgZ0T2JuUQVSoP0s3HaZzQjPaRLtyu4Z3ac2ibYexmE10jHHlcpVX21A0DbPJQEVNvfFzLDmH3YfOMLhPK0KDfAj0c1UrWswmZkwd8OveNB2dPwCXMScpSAix95zPc6SUc+rWIYQ/MApoAZQCi4UQk6WU/7tcCxQ/7Hj9e6Zbt25y7969lx6o84fg/S+38+FXu5BAp/gInpw8mNjwwLpQ2GufrmfBloOA4OpuLXnhrhE/Ot/J9HxW7zpJiL8XTlVj/YFkTqTno6jnCyMKVeKVo2A1mYhs5s9H797Cy3PW8vX6owghePi2wSS2DCcmMhCj4eIO1+zCMvafyqJ3YjRmYeBYcg6JrSLw9vzlEoDvf3IBh45lYjQKbpvYl8k39PpZ8505W0hWTgk9usZiNv86UgNORSU1u4iY8ACs5vPfxQ4lZ3H/G8uosTtxs5jZ8v79jZ77uic+Ir+0EqNBsPT5mwkL8EZKSU5JBf5e7iRlFTD7623EhweSXVxOfFgg94+4AqPBQHFZNWPv/QCHU8Hb041V/72HqhoHp9LyaRMXhnsTKu90dC4HQoh9UsrL1qjRPay5jJ/80GU519HXH/rRaxNCjAOullLeVvt5KtBLSnnPZVkguidJ5zdkaLeWzP/2AA6nwrRh3WgRFsiZzCJCg3zwcLdwcN9ZLGUaGECUKZecr3VUCK2j6gUQ+3eMZcqL85FSQo2GaoIQNzcS20Wy9/BZkAoOh0LamQJsNgeP3zGUm4Z3JdDPs1FVTvtPZTL9jaUIIfDzcuOzf0xCWgwYjb9sFPuKHvGcTHa1yOjY7ud1pE89U8D0B+chhKBH1xY894/Rv8QSz8NsMtIqKuSi+5sF+2IQAnermYTmwU2au6i8ytV42GxkV1I61/VqixCCiABXyO+hj1dSWFHN0Yxc3r9rDF1im5GVX8qHS3cQEuCNJjWkhBqbE1WTeHlY6dJOL/vX0anj9+M7SQd6CSE8gBpgMHBZPSW6kaTzmxEXEcR3b9yNJiVWs4mnX/uSrXtT8XS38NnsW/D1dseY4RrrZj3/Df9gUhbVNge9O8Sw4/AZ/v72Snw93fjg/8YTFuRDi7AAVr18O8u+PsD8/+1A1TT69Yviqekj2bv/DI/+Y5Erf1DCq2+t4f8ev5YWkZdWkgZXWfsDs7+o81IVlVUzbuanOBSViCAfZt03Cm8PN1ZsPcrcNXsZ1CWev08cdMGE8UsxfnR3enSOwdPDSmiwz6UP+BHSM4oQQmCzOTl1Ou9nzfVzCPLzYuHzU0nOKKR7m6YZKC/fNYJZS7ZwtqSEF5Z/R3J+IY+Mqq+s8/N0p6SyBqdT5fFPv+GBkX1ZvHwvp87mY7WYiIsJITu3lDtvuqJOR0tHR+f3h5RylxBiCbAfUIADwJwfP+qXRTeSdH4znE6VotIqQoNcVVHb9qXicCgYDYKU9EJuG9+HJ19egdVqYuoPQkzr95zi2f+sBgFThndn55Ez2B0KxWo163YlMWWES9TR28ONSWN6YsFAWXkNk8f3BsBsNiAQyNpXppzarvVNQZxTaj5uYEe+2HIUu1MhJauIsf83F5PJQI3NiQRWbjvGhMGdiQk7v+dZY4iNdnlbCosqOJ1WQKfE5rj9hNBQ7x5xdEiMJO1MIX+7d+hPWssvRVigD2GBTTf6+nWIJau8gtdWbMLmVNmdnNFg/3/uHsOH3+5m6c6j5JVV8szn6+joEYhAoKqS5KwCnE6Vxd8eYMxVl5Zp0NH5S/E7U9yWUs4EZv5W59eNJJ3fhOoaB5NnfExRSSU9OrXg1X+MYfy13fh06U4iw/1pHRvKtIfm4nAq2B1ODh7PIMDfE7tTIdDXk+R0V9m2qklOnsnjyq7xnEp3VcB1ad0wJGUyGpgwrmEfrtdmr8VgFGiKxGo1ceOY7k1avxCCvokxrD+QQv8OLXh0/AAqa+xsOpiC0WCgrLa6zc/bHZtDwWQ0EOjj+TPuGJSWVTNt+keoqkZ0VCD/eXPqpQ/6AVarmX89P+5nraMplFbW4G41XzAvSdU0auzOC/bLuxTDOrVk6Y4j5JVW8ODIfnXbk3MKqbY7uH1ID1bsPo7B7ArDvXTndXz21V7MZgOL1hxwVTs2UlVcR0fnr4tuJOn8JqScLaCguAIpYcf+VHLzy7hjYl9uuakPJqOBopIqsvPK6sa//t/veG3hJjQpefzmwdwwuBO7j56lssbBPeP64mY1s2rbCSxmYwO9nouRm1uGUtuk1m5XmLdwJwP6NV7AsaC0ku/2JaNoku/2n+ZAcjbP3Xo1AMs3H+Gf877FoagEmo08PnEQHeMi8P6ZP8q5+a412+xOTqfmX3K8qmrY7U48fiFjQEqJpslG51x9vuEgry/ehLvFzGdPTSQy2K9uX0W1jQn//Iy8kgqmDevOfaOvaPQ6SsureeXdtcRJT+Y8NgZ/X5dkwpYTaTz88VcA3HNNbxY+PIkjZ3O4sl0sPh5u/G3qQADaxoWTmlHImCG6F0lHR+fH0QPyOpcdxamQtTsFajWJjEZBflElANl5pUx/cgHPvPEV52bvqAaBU1VxKiorNx0l0M+T/86cyOcv38yaHSeZ8MRcUjILSTqbz7yv91xyDY/97WqCAjwxGoXLsAq+tGF1Lr6eblgt9e8YMz9aXff3Aec0by0sqyaxRRgh/l5Nmv9CJMSG0rtHHN5ebky/dcCPji0treamae8zctxs5i/a+bPPXVxcyfib3uGaq19l1apDjTpm8abDKKqGXVHYcfxsg30HU7IpqaxB1SRLNjVuvu/5ZNEOtu9NYcvhVN6fv6Vu++EzOTgUFZtTYfepDGJC/Lm2e1t8PBom4Q/q0ZLbx/YhwPePoUelo3M5EZfxzx8B3UjSuezMeWIB7zw8D/ORDFBUmkf4k9jK1WR01gfrOXIyiyNJWXVhcYvFyA1DO9U9VEN6tOTbXUms3n6C7IIyPlu1D5ujtvpNyjpxwOSUPDKzii+4hqGD2rHks3t5+dkbuOfOQfzf49c26RosZhOBvvXhs4LSSmYt2sSWQ6lMe3Fh3Rp6J8YQFuDNppwUbvr2U/57cleDeaSULDx9gFcOrqfI1lBF+ocYjQae+ft1fPX5DG4Y9eMVwQcOp1NZZUfTJEtX7G/StV2InTtTqKioQVU1Fi7Y0ahjbhzY0aVfZTbRp11Mg32JLcLxsJoxGw1c07NNk9YSFOBFVYiBilADS06fJLfUJQo6tld7IgJ8MAjBruQMtp4406R5dXR0dH6IHm7Tuexkp+bjqHFgsjmR3u6U+HuxYXsSqiYJD/XBajGhSYnZZMCpaDgcKkvWHQCLQABfbDpKVr4r0XriNV1xs5gwGg3YHa4k6eUbjuCpGVm6dC9SwkvPjCUuNhiLxYSHe0ORx+5dW9C0bKR6WjUPIbugDEWTOFWNeev2s3DDIZASKcFsNPDiHcNRFJXpW5diVxWOluRyZXgc8b6unmXrsk7xzwPf4tBUjpfk8W7fsTy3fy0VTjvPdh1GsPtP80C1b9cMi8WEqmoMG9zuJ15hPR06NMdoNGCxmBg4sG2jjrnxyo5c3a0VbhZTXePf7/u5+Xu589WLt1FWaWuyl238dd3415btADg1jRkfrODzRyYR5u/NDb3b8/Y323CqKnPW7qRvm5gmza2jo8PvKnH7t0Y3knQuO3e/Momy4kpSc0upaR5I25ZhvPTOaiQwcVR3HrpjMJ4eFhZ9tZ8jJ7OQEowIMAjMJmOt8aQigYKSSj57YSoHkzJ59dP1VNS2lThwOB27XUEIwfIv97Frbxomk4G3X59EfOzF9XuawjO3DCOxRShvLq4P+aiqhpeHFbXGTqf4Zgx44F3crWZ8elgpMblyoLzM9TlCdtXlAZNSw64pfJy0mxVnj6FJDYvByKw+TdMxUlQNVVEJCvRm0dy7Ka+wNTmUeCEiIwOYv+AeystraNas8RV6PrWimlJKnvjwG9buPcXgzvH8666RWM2mnxSGNJmMXNEmhm21nqKk7ALeWbWD+4b3oVt8JGajEZMRBnWIb/LcOjo6OueiG0k6vyqF2cV4+Xnidk7ycGRCGG9vnImUEqei8v68zew+cMZl9BRVctt4VxLvgN6tOJqUzSvvriGqWQBDB7XF7lTp2iaSf364FrtDoVmwL9mFZQzr0wY/bw+enbMabw8r40f34LWzq/H0sFBQXFlbCaexc3fKL2YkuVlMjO7XnreXbavTS2oTHcJr91yHm8XE/W8tR1FdFVyTfbpiiTfSMySKMI96o2VEVFvSyos5U1nMwx0GsDH7NEYhMGAgoIk93HLzyrhrxqdUVtl59MGr6ds7ga07kmkRHUjnjtE/+3q9vd3x9nb/SceWVtbw3f5kADYdTqWovJog359e7Tf7tuu4/Z0lHEzLRgIH0rIA6BAdzsonb6HSZicurHGaVzo6Og25jG1JfvfoRpLOr8bHzy5hyVur8PBy4/1d/yQw3L/BfiEEFrOJKWN6cjarBIfDyaCOLVCcKstWH+A/n22lTVwo/VtHsvVYBtmZpUyozcWZ0rs9sxZu4sPknQgBH82cyIm0XMqraigpr2bVnpOsXDSDk6dymLdwB6eNBqxWE317J/yi1+jlbuXN+0bxxdajjO6bSJ/EmLp9HXuGckTNxFTgxtWdW5MQGVS373hJHo/s/JJyp41iWzWjYhKJ8PBhQnwXzAYjVYqDifFdmrSW7btSqKpx4ETj86W7Wb3uCMdOZGMQgrf+NYHWrcJ/qctuMr6e7sSGB5KeX0pksC/+P9HY+h6z0cgbt4xk+n+WU1JVwwMj+9btC/XzIpSfnyivo6OjoxtJOr8a6z7biuJQcNidHNl2igE39DxvjK3ajrvFxHMPjuCOgS/y4qL9tOzYnJ0OG5pBcPBoBie/PISxysHcLanMf3oFvQe3Ze/mJGrsTkSMN84AK2t3nCQ6IgCjwYAQkmB/L2psDh58fCE2mxOr1cTCT+7C52f8OOfmlfH0s8vRNMlzM68nItxV0t4nMaaBcQRwoCid/1VvR3aEjkHNGhhIAM/tX0tSWUHd52VpR3io/ZUEu3txY1zD0nSHU2HjliRCQ3zomNgcKSVLVuwlI6uEKTf1JrhWjLN9YjOqPUETRpIqSjGUl2JQVTwsZopKKi94TQ6HwsGDZ2nRIoTgJobljqfm8ulXu+nVvgWjB57foPZcDAbBvCcmcCavhJhQ/x/th9dYAr09WfTI5J89j46Ozg/QPUl16EaSzq/G6OlD+fiZJXj6uNPpyvoKptSjmeRlFuHu7c7MWz4AKbn7mTFUllbjdCgc2ZmCISEQzcsKEozVDoSqgV1BNRjYuzkJW40TIcBU5UTxt+DlYWFkv3ZYTEYqaxxc278ddruCWhsGcyUM1/8wq6rG2x9v4PTZAh64dRAJLS4dglu4aBcpqflIKZn32XYef2T4RcdmVpciENg0Jxk1JZwuz6fAXknPoBgMwkAInhhVgSYkFpOBYHdv/KwXNuD+9dZqNm8/BcDLM8dSWWXnw0+34nAqnEkvYvYrEwCwelgwWY04nCqalEgBgRHeDOgUR6/ucRec+7HHFpJ8Khej0cAnc+8iIKDxIbC/vb6c0ooath8+Q2J8GPGX6MFmMZtoGdm0Pm06Ojo6vyW6kaTzq3Hj30Yw8vZBWD2sdQKEJ/ak8si1r6KpEquvJw6HCsDR3SmYzEactaX87qeLUDwtxEQFUWAyEdwqmLzsckBwxVXtOHUki+oaB0W5ZXiVKfSf2QIhBMP61BtjFrOJpx+/lpWrDnHt8I54eVpRVY19R9I5k1HIV98dwWZXeG7W18x765ZLXk98XGhdlVZCfL1RVeao4buckyT6RdDSNxSAYRFt2ZSbREpFIZNie3DjpjkIBGOiO/NUh+Hkzc/H1yJwU83cNaEfo/t2wmwwXvC86ZnF2O0KVouJrJxSfH3cqX/Vq3/liwzxo3u7aLYdTMVoEJhMRh6/92r6dGrRYL6DJzNZ/t0hhvZuzamkHOx2BTc3M9nZJU0ykiwmo0uWQboa2uro6PxJ0D1JdehGks4vzom9qcx6cB6R8aE89t6tDRSaN32xB011PYH2ajuYXP8Fz57KpabKXjfOaDJy96MjGDymO54+7lRV2Lh9+OtUVdiorrQz56u/cd/YtynKKUOokkPbTxMbH3reWvpd0ZJ+V7Ss+/z6nG9Zu/kEqqohpUQIccHmues3HCc9o5jrR3XBt1Z0cOTwjkSE+6FpGl27xNSNvWXrJ5ypLAIhWDn4Xpp5+GExmnitu6v9x8K0PUgJNs3J/qJ0AHy83PFOq8RkNNA9MrpBxdsPefjeq3jlrVWEh/oxdEBbrFYTt03pR3pWMdPG96kbZzAIXn/0eqSUnEjNw91qPq9hr1NReeCVpdgdChv2JDN9Wl8+X7CTDh2jaNMm4qJruBCv/m0Un361h8E9EogO/2k96TRN8tGCbZzNKOKBOwfh7eWOENQZozo6Ojq/Jfo3kc4vzuyHPiM9KYe89CK2fLmfITe5mtNmJOey6tOt9QOdChgMYDCQdjKnbnNETBAxrcPZseYIc579go59ErjhvqGUl1QjJexcfxKAwaO6kJ6yGqPRSOfeFw4nfU9hcSX/99qXJKXm43AoWMxGVE1DSkjLKKSiwsbzL64gv6CC0dd15v0PNqIoGoeOZPDmqxPq5unS2VUltvTMfv5zajNDI9qSUVWCTVNwN5rJrymnmUd9+w0pJZ0DmtPSJ5TcmjIeTbwKgFeeuYGv1x4mIS6UVglhP7r2VglhfPTvhp6uG6+/sLrTyk1HWbv9BBOHd6Nt3PnzCqgTugS4enhHJtQ2/W0Mx1Jy2HYojQFd4/n77JWUVtRwKj2fAd0SMBoMrNh4hCOns5k6ogdR4f5omiT1bAEhQd4XzAdbvHIvny5yiVMeOJlBOQoGIXj7yXG0T2ia0aajo/MLIPXqtnPRjSSdX5yoVmHknC0AKYloUZ+DUphTisHwAzF6TQODAf8gb0qLKtBUjcKcUiY9OIw3HlmApkkO7zzNmLsH1R0ipaS6ysbAER25Ykg73D2tePv+eEL2/C/2cOxUDlKTmEwGTEYDDqcr1KdJyXsfb2Tf0QxUu8qyL/YBrrylqnO8W3VLlhrPHFqJKiXzU3fzSLuhzE/bTa/gWDoFNG8w9v5dC9mUewpfiwcvdR7NyvcP8a+kVdx352Cm3NR446Qx5BaW8+rH3+Jwqhw8mcWGj2Zg+kGfNZPJyL+fvJGVG48wqGdL/H0aLzNQXmXjnpcWY3cozF+9D6dTRVE1svPLqKy2czanhDf+twGbQ2Hz/hSG921LWW4FW7YnYzYb+WjWNOx2hYhwvzpPUXZufX++EpsdtTZq9/XmY7qRpKOj85ujG0k6vzgP//tmtq7cT3h0MG26x9Zt79i3JRGxIaQezQTAaDKgmk0IYOpjw9mx+gg71x3FYVc4uD2ZhA7NOX0kk/j2kS7vUkIYZ5LzCGnmx7hezyOEYPK9gxkyussljaQWzQOxmF2/wA6nSrXNWbcvKiKAVZuPIx0qAggM8CI7p8ylDO13fo6OQBDm7kuRvQqjELTxC6fQVsWSM/vpFdyCoREuRWpNaqzPTQKg2FHFvbsW4JfvhiiBWe+tY1D/xjfUbQwWswkhXKrkbhYTBnHh7kiJ8eEkxjdODmDrliTee+872rdvzq13DUDVJBJwOhWu6tWG73YnMbJ/Ir5e7kBJ3XFllTYWrN6PUCQWp4bDqfLAPz6nuLSa8BBfPn5rGiaTkVsnXsGmHacoKa1GIAGByWRgcM+WF1uSjo7Or43uSapDN5J0fnEsVjODLlDubzAYOHMiu+6zZrGAdD2PX83dyvTnxnJw2ymEEIyY0pf4xEiKcstIT87lriGvoBhNBAR7U5hbVpvXJPl09rfMf289k+4dzE13DGhwvrKKGsorbDSP8GfkkPYEB3pTVlHNi2/XN6M1mwxk5JSg2hQMtV8MJaXVmM1GbDYnqWn5512HEIJFV97B5rxkOgdGsTB1DxWKDYCH9yxh98gncDOaMQgDFoMRh+byWElA8dHwdrOS8AsJWp5LgK8H/35yHDsOpTG0d+vzvXY/gddfX0V5eQ2lpdUMG9aeJ28dyjdbjzN+WBf6do5l5l1X143tkBDBI1MH8eHyHeQWufqpyXO+bXPzywHIzi2lsLiSsBBffL3defHJ0dzz4mIUpytpf/TADnRP/Pnilzo6Ojo/F91I0rlsqKqGVluSDyBVDYTAaDaS0KE5bbrEsPT4y4DLoCrMLeW7ZXtIPpyOIowgBCVFlRjOCSEZjAKnQ2Xd8v0NjKQzmUXc8dj/UFWNKWN7csuNfejVpQWTZnyEqrl+uLu2j6K6xsGJ07kIo0AIicVsYuiQduzZm0ZqWgH33FUf5jsXf6sno6Jcekbdg2L4JMWVVyNxVbu5ubuSwR9NvIqXjqzGJAx0CYji8buGUZhdQbcuLS4474Klu5m3cAfdu8Tw9GPXNkh6bwztEyJ+0TBVVFQgp0/nARAa5kvniBiG971477Zr+ydy7HQOyzceASkxV9cbSQmxISSn5tOlQxShwT4AbNpximdfW4nDoIFZgBBk5JbU9XjT0dG5/Og5SfXoRpLOZcNoNGC2mnDalfqNAsbfdxUTHrgKKSXH9qThF+hFs9hgnpjwLtlnCjEaDRjMRpf2j4ROfePo0juBxO4xzLxrLuWl1Yye0qfBuZYt24PDrqBKyfptSdxyYx/KKmo4m1lcN0bTNPx9PbBajGgSbpnciyu6xhEXG8KkJiQzDwxvxe0JV7As/SA3RHUm1N2nbt+k2J5MbNEDcU7oq1XUxRO153yyCU2T7NyTQkpaPi3jfzyp+9fm5VduYsP64ySdymX//jOEh/s1uJbvsTmcvL6USwAAIABJREFUrN+TTFSYPw5FxSAEUsD3Jp4Q8P/s3Xd0VNXawOHfnpZeCEkgdAhNeq8CEkAREGxYLyIWUNBrueq9Xst3Vey994KKBaxIFxAUpUsPHQIkoaQQ0qed/f0xIQRISJ9J4H3WmsXMOfuc/e4skrzZZ5dJ4wbQrVNTLEWWC1j99z5cLgNtO3nPNVsPsHTtLuJ6ySM3IYRvSZIkvOq9Px5nxusL2Lv1IEn7Urlq8lBuuN/zyOaTZ39h1md/4LA70YbG5m/FcBtYLCauuzOOGR//gctpkLDjCFPf98z26ta/JUtmb+S32Ru4dGxPzBYzv8/bxIKP/sBoGgoWE+Ou8jz6CwqwYbWYcbo8j78270jCbDJjNpnQboPPf1hFv54V2xT1/vbDuL/9sGLPFZdUlKR1y3rsP5CGxWImpl546RdUs4AAG6tX72XFil38utBEYKAfcXFn9iQ9+vZc1mzdjwYevCmOhSu343JrJtx0IetW76NLh8b07Nr8jK/FlSO7sWzlLtKMIss/mBRm6UUSQtQAkiQJr2rQPJp7XxsHgCPfyfI569mxPoE2XZuxacVu7HkOT0GtceTaUWYTLpdBvZg6BAb5k5tjZ9gVnj3NnA4XS37ZCMDu+GSS9qfRuEUUf/+1C5NLE7TnOGaziYsHen6pWyxmvnxjAtNmrqReVAhf/7yWfLtn5W6twc9mYde+I7Rs5rtVod947no2xScR2yyKkBB/r9WbnHSMZb9vp3v35rRufWrvVXp6Ni6XgWFocrLzi71+/6F08h0u/P0srNqyH8Pw9Pqt2LqfD567ocR6Y5tF8d5L/+CGf39WONtwynUDGdi9YsmqEKIKyOO2QpIkCZ95dtLHrP0tHsPtpl7jSAJDAzCZTSfHLRkG2u0GPxuHElL4fMm/yc7Mo26053HW8fQczCaF29BYrGaevutzDu45SpsuTbBaPT1G4/859JQ6G9YP5793D0drzfHMPNZs3M/A3i35ZdFmGtYPZ0Cvqt0At7z8/Kz07NqsUveIj08iMTGdgQPb4u9/5kKZpzMMzZQp08jJyeeLz//k628mFy6gCWAv8nhUldDD88itF/PcZ4uIbViXq4d05o+/92DWmrgyfD0bRocxamAHFq/awfWXdue6S7uXoZVCCFH9JEkSPrNny0FcBduQHErwbPYa0TCCjLQcDENDwYrYjVpEc+kN/fDzt+JX5Jf+9g0HMKNxO13kHnORlJWP1rB9/QFadWjIq9/dXeLAZ6UU9088mUDdedOgamypd3z44W/MnbOBnBwHFouJ35dtZ+rTY0u9TmtNbq4dt1tjMhnk5zkJCzt5vmHDOhw4kIZhhqSMLLJz7QQHnrpCeJc2DXl68kgSktJo27we3790C7l5TprE1Cm1fqUUD90ylIduGVpqWSFE9ZOB2ydVfituISpo9K0XcfpwnfSkdAy7A+VyERwWwANv3cQHSx4muuGZv2w7943FViRpcheMNQLIOp5X7plhNZ3WJf/kSk3N4ruZa8jMzMftNrDbXRw8mF5i+aLMZhOPPjaGJq2jGXZ5F25+4itGTnmPvYmpADz071GMnzCAvAgLX8xfy/j/fnHGPfYlpnHrY9OZ+v4CHn51FpHhwWdNkAxDs/5gMkcys8sUoxBC+MK59VtE1AopSels+nMnl98+mGvvuYQWHRoRHhlMw9iCvde0RhuamdtfIu7KXiXeJyQskP+9fzNWPwtW26kbrI65qX91NsGrUtOyGDv+XYZe/jK//7njlHN5+Q4Sk9IJDvYjKMiGn58Fm81C06aRPPDgiDLXsXJPIvsc2fzw1xaOZeaSlpHDjAXrAcjOs7N6fzJOt4Hb0CQfPc6BQ6cmYAcPH8OkFPl2J3sPppZa36M/L+SWad9z6ZufsT8to8xxCiGqmfbiqxaQx23Cqw7uOsxdQ55Guw26XtSOJ6ZPYfx/xgBgz3MwoffjHDuayeCrit+b7HTtuzfns98e5lhKFg9c9w72fAc2fysjb6jaLT986fe/dnHseC4ul8EH036nX++WWCxmMrPyGH/nJ2Rn5zPowjZ89PFtbN6cSJcuTU4ZU1QWqzcfIN/uwmo2ocwKs9lErw5NAHj87Tms35Z4SvlnP/yVdx+/tvBz3y7N6dO5Gdv3HeHBCaU/Nvtr7wHynC4CrBbiDx2haV3fz+QTQojTSZIkvOrZ2z/EkefZEmT1ws0c2HmIJq09W2T4Bdj4atNzuN1GuR6VRUSFEBEVwvvz/0X8ugS6Xdgaq+3c+a/duUOjwoUVkw9ncP8j3/Lw/SO568HpHDuWgwaWr9jFow+MYtCgim11MuW6ATz1/nwaRIXx4IQhhAT507xhXQDchkaZFEqDNjRms6JO6KnbwFgtZp65d3SZ67tvaH/+98sSWkTVITo0mEEvf4ifxcLH466gcYQkTEL4VC3p5fGGc+c3iajxtNYkxCcVfjZbTCTEJxUmSYXHKziWKLpBHaIblD5QuLZp3CiCJ/87hken/oTT6WbT1kRee2chqWknx/NcPabsM8K01qxYsZvs7Hzi4tphsZi5qGcrLupZ/Ey0J6eM4K2vfmfp6p1gVjRvFMkjRbYjqYgxndsxprNnaYa7vp7FkcxsFDB99Ub+M7z2D6IXQpwbZEyS8BqlFKNv92zzYbaYaNujBb2GdfRxVDXb5vhERl3zBo9N/YkWzSIxmRTXXtkLp/Pk9i4tW0Rz200Dy3zP337bxtSnfuK1V+fz/vtLSi0fHRFC/chQlDLhdGuOpmcTFGADPAnXG18u5fK7P+D7XzcAkJaRwx1PfMOER77k4OFjJd43Izcfh8vNvtSCMg7N2qV72LbncJnbIoSoWgrP7DZvvGoD6UkSXnXH09cw8amrMZkkPy+LOQs2Yy9YJqFZ40g+eG08AHsTUrj7oa9wuw0euOuSs97D7TbQWhduB3L4cAZut4HLZZCcVPqg6e9+3cDMhetxGm7MJsXEqz1bwBxJy+TWx74iLSMHgFemLWFMXCe+mbeOzbuS0Ybm/Rl/MvWfowBISDvGLxu30S+2KWsSEnlr6UrCAvzIyvcsIKotsC/5GPc9/T3zP5lSga+WEEJULUmShNedTwnSb39s56Mv/qB3txbcPSmuXFuUAAwZ1JbFy+IL3l9QeLxFsyhmfX03/3tuFvc98g3jrunLjdf0OeP63buPcO+9X+JyuXn66bF07doMs8lEdHQoNj8rk+709OxprTmUmklEWCD+tlMXoEw+ehyny41SiqF92zBveTwffb+CiLDAwgRJAfXrhmA2KZo3rIvN4tmQOLZxZOH9b/joWzLy8vjoz3WE+ttwGQY5dqdnCxJ3wU0UWM6j/x9C1Ei1pJfHGyRJEqIaPffqXPLtLlJTNzIsrh0XnDb+qjQ9uzXnu88no7Um/LQZa3sSUli1bi92u4uPvviDG8b2RimF1po9e44SFhbAr79uIS/X01Pz4w9rSUnJ4rPP/sDhcGEEmnn3hz959p7RPPfxr8z5fSshQf58/cJ4wkNO1nXT6F6s3rKfwymZuJxudu1Pwe5wkWd3FJapFxnKJ1P/gVKKSwe0o254EHaHiwu7xQKw62gamfl2DA2g6dwohkXb92B3uQgP8CfP6QKtMGvodEHDin2xhRCiikmSJEQ1iqkfTvLhDFCKyIjgCt0j7LSZZIX3rheGn82CSSmaNYks7KX6/PPlfPvNSgCmTBmKzWZBa82QoR3IyszDMAw0oHLdrFqzB5fLzS9Lt2BoTUZWHlt3H6J/19jCemwWMweS0nG5DX5fuweTSRHgZ6Vlkyi27k7G0NCqaRRhIZ44lVL07tSs8Po3lvzFO8tWoYA6Af7cM6QfS3bsBTx/sPaNbcLqPYlkH83FnKU5nJJZoa+TEKJqqLMsXHu+kSRJiGr0xvPXs3zlbtq1iSEqMqRK7x0S7M8X79/G3oQU2rdtUHh8xV+7sNtdWK1m7A4XX38zBZfLTWRkCE6nm/nzN7FjxyHPPXIVB5KPcaJ/XWtNbKPIU+qxWs342SzgcGGzmrnjhgEsWrOTpMMZGBrcZvh7bxIbdyXRudWpvUCp6dl8+Psaz70Bp8tN35hGBFitrNx7EJNS3NCrM0+NHMrDL83isCuT+26Jq9KvkxBCVJQ621YHNU2PHj302rVrfR2GEDVCYmI6xzNyade+4SljnVau3M1TT/5EREQQr70+jrp1g0lJz2LSo9+QfjyXccO7MeOLv3C5DLAoBg9uR4bVzfL1e7m4X1uenDLyjLr2J6ez/O89tG1Rn3te/wG70w1agwvPn1pKERLox5K3ppCRlce/3vyZY1m5mDNc7AjIxhHsiS8iGYIzFV+9exsOs4HNYiYyOMhLXzEhah+l1DqtdQ9v1RcU2VhfMOY+r9S17pN/ebVtFSE9SULUQlu3JPLgg1+jlOKqq3pyy60n1xbq06clc+Y+cEr5JSt3kZaRg9PlZvnWBK65vi/fzliFW2vy85289PBVuA0DcwmDpps2iKBpgwiOpGedHNOpFBQZ4x3o71kWYNbyLcTvO4zLbWAzFGHJblSAQjlBuzT4WTialkW7co7PKosN6Z6VwbtENKryewshzj+SJAlRC23fnoxhaJxOF+v+TjglSSpOl7YNMZkUfjYLg3q24sbRPXE4XRw7lsOk2wYDlJggFVUvIoSnJo7g11U7iI4IITTIH6tZkZPv5LIL2wMQ27AuZrMJq8XMoE4t2LPxEIeOHgetsflbGR7Xngta1Qdgf2IaexJS6NujBQEFSVZFfZ+wnic3zgfg8c7DuapZ10rdTwghJEkSohYaHNeeuXM3kp6ew22lJEgAbVrUY8Ybt5KZnU9sE8+YozsnVmzsT1z3VsR1b8WbM3/no1krCA8O4Osnb+LzeWv4cdkmRvRrx7sPXs3x7Hz6dWzOj3PX8+5nS3G5NT26NOO+ScMAzxYrt9//OaBo07Iebz5zfYXiOWF9WiJ2t2fLm7/TEiVJEqKCastCj94gSZIQZZCYlE52tp02reuXe62j6hAREcTHn9xe5vJ2h5MFf2wjONBGs0YRZeo1Ks2sP7bichvk5DtYsWUfXy1ch9vQ/Lh0ExNG9qJjrGcw+WWXdOLQkQyOHc9j8oSTCd2JWX/5+U72HUitdDz967Vg+dE92EwWbmvdr9L3E0IISZKETyXvPcqP7y2iQ99WDLqip6/DKdbGzQd56NGZKAU3XtuHcdef+gvYabj536pF7DyeyhO9htEuItpHkZbszc+X8cuSLZhMCsPQXHlJl0rf84pBHfl8/lqCA2z0at+U6DohZGTnERxgIyz45LIFNquFu249s9eqS8cm9O8Zy5btydx16+BKxfLt3nU8s3khoJna9TKah9St1P2EOK9JT1IhSZKE1zlcLu79dg5bk48Q/tshHKuSWDh9OQ1aRNOqc9Nir9Fa88GrC1i9fBfjJw9m4NAOXot367ZkXG4Dt9tgzd8JZyRJ8/bv4Id9W8lzObn/z9nMv+wWr8VWVlm5dgzDAExk5drLfX2+3clHv6zEpBS3XNYbf5uVyVddyA2XdCfY34bFYuarJ8axaU8y7ZvXx1qwBcrZWMwm/u+ByyrQmjOtSztIvtuJAv5OO8hlTWRPQCFE5UmSJLzuz937Wbn3IHlOJ8faB9FgpQYUhsso8Zrd2w8x5/u12POdvPDYj+Rk2RkwtB3BIcUvtFiVhsW1Y+7CTWRm5nHLuAvPOB8dEIzWGj+TmZjAql0Lqarcc9NFGIYmONDGtSO6lfv6D35ewTeL1hd+nnyV5+sQXqTHKDjQj34dmxd7vdaal9/9leWrd3PT2L5cOfLkeKH0nFxunv49R7NzeO3KkfRp1rjc8U1s0591aQcwK8X4Vr3Lfb0Q4iQZk3SSJEnC65pF1kGjCbBa6RATQ/urw+nYrxVtuhf/CxagTt1gz4xzmwWX08U7L85lzg9ref2z23G73Nj8rCVee4Ld7mTFHztp2jyK5rFlfyQWFRnClx+VPP6nT/0mvHfRFSRkHuPqlt7r4SqPiPAgnrp3VIWvN7TG0wev0BXoi993IJUFv23F7nDxxkeLuWJEl8KxXb9s3c6e1HSchsGLS/7g+1tuKPf9W4ZGsXj4P8t9nRBCnI0kScLrmkdG8MOdN7I35RgDWjXFZin9v2FkdCivT5vIotkbmPXtKux2F3t3Hua6i18kKzOPMdf0YtK/hp+xeW5engN/fytKKf7375ls2XQQrTVvf3obTZtFllBb+V3UsAWcw1uOTbq8H6aCpObWUWdupHtCemYux7JyadGg7ikD3CMjgrFYzJhMiujIkFPO2cwWnIanF9GE7wfFC3Hek56kQpIkCZ9oHhlB88iIcl3TLDaaW+4eys74ZDat24fbZZCZkQvAz9+uwmI1c/u9lxSWf+Olecz+cR0tWtbjjQ8nsG9fCvn5TvwDrCQnpp81SdJa89eh/QTb/OgcWfWLHnqb0+nm11+3EBzsx4ABbco9Q89tGGTm5nsW2XYbbN17iGlz19C/U3PGDPSM/9mblMbNU7/CMDTdYhtQzxbATWP70rhhBKEhAbz4xNVsjE9k9NBOp9zb4XZhMSlchsbQJT9yFUIIb5MkSdQqJpOJy8b2ZPuWRJxOF9rwJDRaw46tSaeUnfvzerSGpIPp7N19hPv/M5I3X55P67Yx9OwTW0INHm9vWsHbm1diGAbP97+UMS3anTWxcDhcvPjSXA4cSOP++4bTpk3NSqzef28xc+duBBR2u4thw8r3WPCjWSuZ82c8AEH+Nub8FU9mTj5/bU6gQ2wMsQ0j2bg7CcPQ2J0uVsUfwP+Ym+27DvPF27eyfd8Rpjw7EwVkOx1MGntybNeo9m2ZuWErKVnZPBA3oApbLYQoNy1jkoqSJEnUeIcPpDHznUW07NiYS2/sx4VD2pGb6+DooQz6DW7Lq0/8THZ2PhPvu4Q1S+L5a/5GugztQEDdQLKO5xESFkDTZlEEBNr44ru7ylTnuqNJ5Lk8CxPe98dsvtq5kW+GX1/4yOl0y5ZtZ/nyndjtnmTpow9vrbL2V4UjRzJxOFyYzSZSU7LKfX2AnxWTydP2QH8rNou58MHYiZlsA7vE8tncNRxJy8KWb4ACs9nz+HPTTk8C5XS5+XPDPiaNvZCFf21nxoK/ueyijsyeOK5K2imEEFVJkiRR4z1564ck7DiEzc9Kw+ZRdOrXiktGn5wd9db0O3A53WxcsZOpt3+Ew+5i9l+7cftZsdjM6AAr38xYxc3jLyzzY6YHug1kV0YqiTmZaGB9ShKHcrJoGBxabPl69cIA8POz0KBBnUq3uapNnjKU3DwHoSH+jB5T/tltt4zqTZC/Da3humFdGd7nAn5ctole7ZrQpJ6nvXXDgvj5+VvRWjN/yVa27z7MdZd71r4a0qcNMxduIC0jmzvG9icv38kT787FbWji9xymS9tGNI2peV83Ic5L0pNUSGl99q+GUsof+B3ww5NUfae1/r/TytwBTAHcQDYwUWsdr5S6EXiwSNFOQDet9Qal1FIgBsgrOHex1vro2WLp0aOHXrt2bVnbJmqRtMPHSU5IoV2P5phPW2PnziHPsn/nIax+Vh58fRwXjjy5EGJ+rp3/Xv82O9bvR5kU7oJlBNyN6kJYgGenezx7sT76yGgGD25X5pi01lw3/2v+TkmibZ1ofho57qwrVW/YsJ/k5Azi4trh71/6bLvzWUJSGtc99Fnh5xaN6vLV8zf7LB4haiql1DqtdQ9v1RdUt7HuMOI+r9S1+st/ebVtFVGWniQ7EKe1zlZKWYHlSql5WuuVRcp8pbV+D0ApNRp4BRiutZ4OTC843hH4SWu9och1N2qtJes5zx1NSueOuGfRWtNtUFse+/C2U84/9vFtTHt+DqsXb+H5u6ZxYNdhbrh3OACfPDOLbesSPAUNDQp6D+3AUWB3ckbhPbSGF16cR9euzQgPDyxTXEopvh5+PYdysqgfGFzqVh5dujSlS5emOBwuEhJSadSoDpYyLKp4PsrMycdqMeN0uQFIPnrcxxEJIQAUMiapqFI3cNIe2QUfrQUvfVqZzCIfg04/X+B64JsKxinOYQnbD6G1Jj/XwZZVe84436BZFL2HeXaYdzndzP96ReG5Bd+sOKWsQnH745dzNNuOy2VQ9Oma3e7kl1/WUx4mpWgYHFqYIB3NzebT+LVsSTtcbHmXy83ESZ9yx52f8c97vqS0ntrzVcdWDRg7rAthwf7UDQ/i0YnDfR2SEEKcoUy7XCqlzEqpDcBR4Fet9apiykxRSu0BXgCKW9XtWuDr0459qpTaoJR6TNWEXUOFT3Tu14rYjo0wW0zk5dj55NlZZ5TpcmEb/ANtmC0mLht/cgZUUOipvUIms2LpT+u4c9JgIiND6Nq1aWGipBQ0a178tP+3N62g3ZevMGnJj+w8lsKWtCM4DTczdm1i9r5thcnOVXO/5Nm1Sxk7dzqHcjLPuE9qahaHDmXgcLjYufMwubmOin5ZvGbjjiRmzP+b41l5pReuhOPZecTvOYzLbaCU4p//uIgF709hztt3MLRvm2qtWwhRDlp751ULlGngttbaDXRRSoUDPyqlOmitt5xW5m3gbaXUDcCjwPgT55RSvYHc0665UWudpJQKAb4HxgGfn163UmoiMBGgSZMm5WqcqB38Amw88Oo4bhs4Fafdxcx3FnHDvcPxD7AVlomIDuWLNU+Rn2snOOxkYvT4R7fx0Ng3cNpdALhdBl++PI+mbeozY/F/AThwII3FS+Lp0rkJXbueuTfcsWM5vD3rd/LqaRYf3M1viXswKUX3qAasS0lGATlOB9e27kxKXg4Ow42/2UKGPZ+YoFMHckdHh9G1S1NWr9nLRRddQFCQX+E5w9Bs3nKQyLohNGxYMwYp7zqQwuQnv8XQmi9mreaXd+6olnoysnK55oFPcThddG/XhJcfuKJa6hFCiKpUrtltWusMpdRvwHBgSwnFvgHePe3YdZzWi6S1Tir4N0sp9RXQi2KSJK31B8AH4Bm4XZ54Re2xfvkO3AXjU8IigvArZuCzxWo+JUECaNutGT/vfplt6xJ4+Pq3cOR5pu0n70stLNOkSV0m3Fz8+jsOh4vbbv8YoydoE7i0gdKe58W7jqfhcLsxKUVyjmfa/NsXjeHVDcsZ2qglbetEnXE/k0nx3HPX4HK5zxiP9NZbvzJ/wWa01rz+2j9o3bp+2b9A1WTLzuSCLUcgNSOn2urZm5iG0+km3+5iXfyBaqtHCCGqUqmP25RSUQU9SCilAoBhwPbTyrQq8nEksKvIORNwDUXGIymlLEqpyIL3VmAUJSdd4hx3LCWT9x//vvBzu56xKKVwOlxMf3Uenz47i7yc4neuT05I4Y4hz/LAFa+i3Qb+gTb8A23c8fTVzPplPSuLGeNUVGZmHllZ+ThDNJg9z+VsZjMR/oFM7XMJfWOaMKRxS25p55mAMaRxS2ZfdjP3dj37cgLFDdjesPEA+fmeJG7nruLHNHnb0L5t8LOaUQpiG1fdNi2n69AyhtbNorGYTdxyRcnbmgghfE9p77xqg7L0JMUA05RSZjxJ1Qyt9Wyl1JPAWq31LOAupdRQwAkco8ijNmAgcFBrvbfIMT9gQUGCZAYWAR9WvjmiNtq8cnfhe5PZxPiHRgLw44e/8e1bv6INTW52PlOevuaMa997/HsO7PQkHE6Hm2vuGsY/7h/Bk0/9xJ9/7kIpxYABrWnQoA43XO/55ZyRkUtKShZhYYE0bhzBFZd359PE9Rxt5enJahFal3ljJvDe5pXsPZ7O2FYdCfPzr3Q7J00czLPPzaZ+vVAGDWxb6ftVhZAgf35+exIJSem0i63anq2/tx3klWlLaNcyhn/fMpT3H7+uSu8vhBDVrdQkSWu9CehazPHHi7y/5yzXLwX6nHYsB+henkDFuatjn5YEBPvjcrm5/p5LaNras6WH22UUzpM8sf7RCS7D4Pfd+7BFBGCxmnE53VhtZvpc3JG98UksX7QVl9kEChau2oYFE8ezcln22w6ysvJQSmGxmHjxxeu4884hjHNeyJhfPmd/VgZdomLIdtp58e/fcWvNu5tXcmObLtQLDKlUO3v3juWnH0v8VvGZsOAAOrep+t15n3h3HkfSskg6epxB3VvSv2uLKq9DCFHFNLKYZBGy4rbwuTpRoXy++gnycuyE1gkqPH7VpDjycvLJz3Mw/sFRp1zz8KwF/Lp9D0ZdNx0vb4WymHj6/rE0janLA1e8hjqYhqoXRl4DK4cHg2GF10yb8OsDdVdp/DM0JpNi+/ZDdGjfCBOKhKwM3Nrgu91bmNKxL3X9A8l2OrCZzYTZKt+T5Gsrtu3n62UbGNmzLZd0r/7ZZA2iw8jIysPQmui6lUswhRDCFyRJEjWC1WbBajv1v6PN38ot/x1zyrHV+xP58M81xB8+Sp7TiVkp1kc60Bpe/nMFb1w9ikYt67Fz0wFMSekkXt8Iw4/Cv4zs4XBoqImYvxXNdR2GxHlW4PYzWwj38yfH6cBqMlPHP4C5oyfw56H99K7XGH9L7V5B2+lyc8/7P+NwuVm5fT/dWzUiMjTorNdk5ebz6CfzyczN54mbh9MkOrxcdb50/+UsWrWD2EaRtGpy5iB3IUTNpIzSy5wvJEkStYbWmklf/0Su04nVbCIqKIjQABtJGVlorYkIDADgrmeuoVPfltStF8auKAePLF+IWZnIdzkxFGBRDBnfhacuHFZ4b7PJxNzRN7M0cS/9YpoSZLURZLUxpkXZtzGpyZRSWMwmHC63530pq4cDzFi2kRXx+3G7DV6ZuZTXplxerjqDAv0YM7hTRUMWQgifkyRJ1CoBNit5TicmZWLGrdcRExrCz5u2kWm3c223joBnqYC4Kz0bq3YGrm7dAbdhsPjAbh7/azEWZWZChzOHxNULDOHa1p292RyvsZhNfHLfNcxdvY2LOsUSHhxQ6jUN64ZhMZuwmE00ia74uk4mASUOAAAgAElEQVT5LhffbN/E4exsAq0WxrbpSExwCEdzsvk8fgPt6kYxooUsJilEjSFjkgpJkiRqDaUU08dfw08b4+nbogkNwjwLOV7eufTeHg30qt+YlTfcWc1R1lxtG0XTtlF0mctf0rMNgf42snLtXNKz4knMU3/9xswdW3AYbhTw867tLL7uFm5f8BNbUo9gM5uJDgymR/2qHzwuhBCVIUmSqPFWHTrIB5tXc0nTVlzTphP3xfUv1/UZ+Xlc+sM0UnJzmNipJw/1GlhNkZbd5u1J/Oe5nwgKtPHG/66hfnSYr0M6g1KKgZ0qPyMtJS8Hp+FZXkEDxx35AGQ7Hbi1BhTZjpq/fYsQ54uatIZRwTqNHwEd8PwIuUVrveLsV1WdMu3dJoSvaK25eeF3LDq4h0dXLCIh89gZZbYfSWFPanqJ91h7JInj9nxc2uCr7RurM9wy+2TGXxzPyuPw0UzmLt3q63Cq1f/6xxHXpAUdIqPpG9OI9y/2jG16d9hohjWNZXKXXgxq3KxC917+9x4++3kV6cdzqzBiIUQN8jowX2vdFs8Iim3erFx6kkSN52+2kOtyogCbybOSdbbdjs1s5ufN25g6fykaePXKEQxpE3vG9d3rNSTYZsNhuBnbuqN3gy9B7y7N2LQtCYCO1bBGUU3SIDiUjy+98ozjrSMi+XB4xfdw27L7EI+8ORuXy+CPdbv5+MkbKxOmEAIK1kmqGV1JSqkwPAtS3wygtXYAXu12liRJ1GhKKWaMuoHvdm1mQMPmNAgO5adN8Tz6y6/4WS10aRhDvsuFAlYmHCw2SarjH8Dy6yZx3J5PVODZp717y3Wje9KlfWMC/W00aRjh63BqpaycfJRSuA2DzOx8X4cjhKh6zYEU4FOlVGdgHXBPwYLUXiFJkqjxWoXX5eGeFxV+nr5mA07DQDtdhPr7EepnI8Bm5fruJU83t5nNNSZBOqFtKduApGRkc99bP5Nnd/LCHaOIbVh9e6tVBafbTXzaUVqERxBi86v2+vp0asb1l3Ynfs8hplzn+3FmQpwrvDgmKVIptbbI5w8KNrU/wQJ0A+7WWq9SSr0O/Ad4zFsBSpIkap1runVi25HFmJRi0Y49mE2K23p2oUVkzeyRyczMw8/Pgp9f2ReknLMynhe++o2cPAcaePfnv3hp8ujqC7IK3PDLDLakHCXEZuO3G24lyGqr1vqUUkwaW75B/EKIGiVVa93jLOcTgUSt9aqCz9/hSZK8RgZui1pnbNcO/H7vRP7RswsuwyDP6WJD4iFfh1Ws2b+sZ+zVbzD26jdJTCx5cPnppk5bRHZBguRnNdOuWX201mgvjxXQWmN3uUotZ2jN2kNJ5LmcZDrs7D+e4YXohBDVQnvpVVoYWh8GDiqlTqxBMgSIr3wDy06SJFErRQQGML5XN1pHR9K4Thj3XNTP1yEVa9asv3G5DBwOF6tX7ynzdQ2jwvC3WbBZzfzfhEsY0LoJl135OiMvf5X4ggHfVU1rTdLxzMKkyOF2c9X0r2n/2hs8+uuis15rUoqJXXpiVopeMY1oE1GzHw0KIWqNu4HpSqlNQBfgGW9WLo/bRK1VLzSYnyf+w9dhnNXoMd14842F2GwWevc+c1B5ST7597Us37yPDs3r06ReHV55fQE5OXYAfvhpHe0uqPoZcffOmcvCXbuJCgpi3s03kXAsgx2pqWjgm42beGroEJRSJV7/cN9BPNx3UJXHJYQ4f2mtNwBneyRXrSRJEqIajRrVlUGD2uLnZ8VmK/u3W2iQPyP6XFD4uV/fliz4dQsA/fu1qvI4ARbs3IXTMEjPy2VHaioXREURGRhISk4O/Zo0OWuCJIQ4Nyhq1mKSviZJkhDVLCSk9H3SStOnVyyff3I7htsgJib8jPO5uQ4WLN1K4wZ16NGlWYXquKZjR77etIlGoWG0i4rC32pl4S03k5yVRdPwM+sszrGMHEJCArCY5Um+EKL2kyRJiFqiXnRoief+78VZrN98AGVSvPLEWDpe0Kjc939y2BAeGjSAQKsVU0GvkZ/FQvM6Zdvc9vl3FzB3yVbqR4Xw6cvjCQyo3tltQohqoHWNWUyyJpA/94Q4BxxJycThdKNQpKRlV/g+wTZbYYJUXvN+24rbbXAkJYude49UOAYhhKgpJEkSogbKzrHzz/unc+2N77Jp88FSyz9y7wjat4lh6MC2DOxTPWOWSuNn9XRMu92yArYQtZnS3nnVBvK4TQgfc7nc/N/jP7B1ayK3TxzMyJFdWPJbPDt2HsLhcPPmO4vo0a0ZickZ3DlxMA2KGZPUpmV93n3BtzP9goP8Che/FEKIc4H0JAlRzbTWzFm8mek/rCI378y9GbdsSWTDhv1kZeXz3ruLAWjePAqFwt/fSmiIPz/O+ps//9rJsy/M9nb4ZWa1ejYftlhMpGfk+jgaIUSF1ZDFJGsC6UkSopotWBbPqx8uxnAb7DuYxqP3jDjlfKNGEZhMnoSoTZsYADq2b8Tbb4wjNTULh9PN1m3JmEwmgoOqf0+0irrq0m68PW0pAX5WenVp6utwhBCi0iRJEqKa5eTa0YbG7dbFjtWJjAzhk09vJyEhlc6dmxQej20RTWyLaLTW/Oue4SQfzuDKMd29GXq5jB3VjYsHXYC/nxW/cqwJJYSoWWrLeCFvkJ9kQlSzUUM7sT8xnfRjOfzz1rhiy0RFhRIVVfwUf6UUw4a2r84Qq0xYFawJJYQQNYUkSUJUMz+bhfsnDvV1GEIIUToNGNKVdIIM3BaiFsjOtXPvKz8w/n/T2ZecVqZrth4+yier15F8PLOaoxNCiHOTJElC1AI/LdvM6vgDbEs4wivTl55yzjA0b874g8nPz2R7gmcRx9ScHK7/8lteWrqcsV98g5YVdIUQZSWz2wpJkiRELdAwOgyLyYS/zULTmFO3CVmxeR8zF69n7baDPPLOHACy7A4MNE7D4Fhefm35eSSEEDWKjEkSwou2bTqIyWyiTfuG5bpucPdWBPzTSkZWHkN7tTnlXFhwAFqDxWyiTqhn4HTziDrcO6Afc7ft5M5+vSq81YgQ4vwjs9tOkiRJCC+Z+/1a3ntpPgD3Pj6auEs7lev6Ph2aFXu8Q2wMz991GbsTUxk9oEPh8dt69+C23j0qHK8QQpzv5HGbEF6yZf1+7PlOHHYn8RsOVOm9+3Vqzk0jehIuU/CFEKLKSE+SEF5y7YQBbN1wELNZccWNfX0djhBCFE8mehSSJEkIL2kaG8202ff6OgwhhBBlJEmSEEIIIQrJwO2TZEySEDWEYRgsnrOROd+twel0+TocIYQ470lPkhA1xLwf1vH+ywvQWpN0IJ2J91/i65CEEOebWrTQozdIkiREDZGemo3bbWC4DdJSZCsRIYTwNUmShKghrvxHXw7uSyEvz8Ht9/muF0lrzbTP/uCP5Tu5aVx/Bl10gc9iEUJ4lwKUzG4rJEmSED6WeCSDf78xC7PZxAsPjqZ+ZKjPYsnPd5KQkMK3M1bhsLt45plZDBzUFiUrdgshzkOSJAnhYx//vJI9iakoFF/MWcOD44cUW87lNtiVlELjqHCCA/yqPI7Nmw/y0IPfoLWBUgqbzUydOsGSIAlxvjF8HUDNIUmSED7Wtmk0S1bvBKBNs3ollrvn7Z9YvzuJQD8bPz55MyFVnCj9unALDodnVl2v3i3o17cV/S9sXaV1CCFEbSJJkhA+ds3FXWnaIAKL2USPdk1KLLdmx0FcbgMFJBxOp2PzmCqNI25IO379dQtaa668sic9e7ao0vsLIWoHGZN0kiRJQviYUoo+HZuVWm78xT34dP4a2japR9vG0VUeR5cuTZn53d0ABAf7V/n9hRCitpEkSYhaYsqY/kwe3a9axwhJciTEeU7WSTqFrLgtRC1yeoL0965EHnx/NgvX7vBRREIIce6SniQhqsGBhFR2bkumz4WtCQ6pnt4Zt2Ew5Y0fsTtd/LF5L51aNKB+REi11CWEOF9okDFJhaQnSYgqlno0k7smfMTrL8zlgcnTqq0ehcJi9nwLKwVms6eXyeF0MfmZmQy89Q2+nr+u2uoXQohznfQkCVHFUlKyALDnO0lOPFZt9ZhMio/+NZZZK7YysGMLosKCAdi0K5n4vYexO1x88P1fXD+8e7XFIIQ49yjpSCokSZIQpdi74zBT75tOQJAfT759E3Wjz74idtt2DRh6aSfWrdrDhDviqjW2No2jefC0mW7NG9bFYjYR4GelS5tG1Vq/EEKcyyRJEqIU095cSPLBdExmxZwZq7nprqFnlNFao7Wnd0cpxT8fGuGDSD3qhgUx88UJHDh8jPYt6vssDiGEqO1kTJIQpbigcxP8AqxYrRZaXtDgjPP7E1K5asQrXDb0BdavS/B+gMWoExpI59YNsVjMvg5FCFHbaO2dVy0gPUlClOLa2wbRpmNjAoNstOnY+Izzi+ZvJisrH4CZX62ga/dmXo5QCCFEdZCeJCFKoZSia5/YYhMkgB69W2Dzs2CzWRgU187L0QkhRBXSoAzvvGoD6UkSopI6d23K599OxuFwE9Mg3NfhCCGEqCKSJAlRBepGVnwRR8PQ/DB/PenHc7lhdE+Cg/yqMDIhhCinWjJeyBskSRKiktwug8SDacQ0rIPNVv5vqXnLtvLOl7/jdhskHcngiXtHVUOUQgghykuSJCEqQWvNfVM+Z8/uI0TXC+ODabdjtZZvRpnD4UIDhtbY7c5S6/vz9x0opeg3oHW1bnYrhDhPSUdSIUmShCiB1poPX5rH0nmbuGJcP8ZOGHhGmfw8J9vjk9AajhzKIPVoJjEN6xSed7sNpn28jAMJadw+OY6GjSLOuMeouI4cOnqctIwcJv9j0Flj+mHGaj77cBkauHXiRVxxTa9Kt1MIIUTxJEkSogRHkjP45ZuVOB1uPn1tIaOv74ufv/WUMgGBNuIu7sDiBVvo3LUp9WJOHbi9fOl2fpixBrvdSWpqFm99MOGMeqxWM5PHnT05OuHg/jQcDhcABw6kVbBlQghRMiVjkgpJkiRECcLqBOIfYMNsdhMaHoDVVvxjtP88NoYHHh5V7MKNAYE2AMwmE0GBlR+QfePNF7I/IRWl4Mbx/St9PyGEECWTJEmIEgQE+vHeD/9k6/r9dO0Ti8lU8rJiJa1s3bNPLPc9NILEg2lccXXPSscUFR3Kq+/cVKFrc/IcfPPLWkJDArjqki6YTDKeSQhRDOlJKiRJkhBnUTc6lIGXdKzw9UophlzcoQojqriXP17Mor+2YzaZ8PezcFlcxdslhBDnA0mShDhP5NudaEOjlSYv/+yz6IQQ5ykN1JLVsL2h1G1JlFL+SqnVSqmNSqmtSqkniilzh1Jqs1Jqg1JquVKqXcHxZkqpvILjG5RS7xW5pnvBNbuVUm8omcssarils9dz28Uv8vELc9C1sDv6gVuHMOzCC7jy4s5cPqyTr8MRQogaryw9SXYgTmudrZSyAsuVUvO01iuLlPlKa/0egFJqNPAKMLzg3B6tdZdi7vsucDuwCphbUH5eBdshRLV7+aEZuJxuZn3xF3Gju9G8bUyJZbOz8li+OJ7YNjG0uqCBF6MsWUR4EI/fdamvwxBC1GAKLbPbiig1SdKeP5mzCz5aC176tDKZRT4GnX7+dEqpGCD0RKKllPocuBxJkkQNFt0gnNQjmZiUIjwy+KxlH7nrS/btOgxK8c5Xd9CoaaSXohRCCFFVyjQmSSllBtYBLYG3tdariikzBbgfsAFxRU41V0qtBzKBR7XWfwANgcQiZRILjglRY7387RRWLYnngq5NqVPKXm2Hk49ht7vwD7CSeiRTkiQhhKiFSh2TBKC1dhc8MmsE9FJKnTFdR2v9ttY6Fvg38GjB4UNAE611VzwJ1FdKqdDyBKiUmqiUWquUWpuSklKeS4WoUuF1g7lkbC+atKxXatkHn7iSprHRDBnRmU49mlV/cEIIUVW09s6rFijX7DatdYZS6jc844e2lFDsGzzjjdBa2/GMaUJrvU4ptQdoDSThSbhOaFRwrLg6PwA+AOjRo0ft+KqK816Pfi3p0a+lr8MQQghRCWWZ3RallAoveB8ADAO2n1amVZGPI4FdRa41F7xvAbQC9mqtDwGZSqk+BbPabgJ+roL2CCGEEKIypCepUFl6kmKAaQXJjgmYobWerZR6ElirtZ4F3KWUGgo4gWPA+IJrBwJPKqWceFZeuENrnV5wbjLwGRCAZ8C2DNoWQgghRI1Rltltm4CuxRx/vMj7e0q49nvg+xLOrQVqxlLEQlSh3Bw7jnwn4XXPPgNOCCFqHFlM8hRlGrgthCibhF2HuXHQs4yLe555M1f7OhwhhBCVIEmSEFVo7e87cTpcuJxuFny/ztfhCCFEuSmtvfKqDSRJEqIK9RnSDv8AGxaLiTH/6OvrcE6htSYnx+7rMIQQotaQDW6FqEKNmkXy9R//xe0y8A+0+TqcQm63wT3/ms627YcYOKAN//fIGF+HJISoqWpYL0/BxLG1QJLWepQ365aeJCGqmNVmOWuCtHVdAt++/xtHko55Laak5GPs2nMEQ2uW/r4dh8PltbqFEKKS7gG2+aJiSZKE8KKjyRn895aP+fz1hTx443teqzemfjgx9cOxWsz06NYMm006kYUQxfHSGkll7K1SSjXCs/7iR9Xa7BLIT0ohvCg3Ox8Aw63JOp7ntXqtVjMfvTuB1NRsoqPPvjNQano2U1+Zg9aax+4fRaQsZSCE8J3XgIeAs2+YWU2kJ0kIL2rWuj433XsxHXo25/G3x3m1bovFTP36YZhM6qzlPv92BRu2HGTj1kQ++/YvL0UnhKgRNN7sSYo8sTdrwWti0VCUUqOAo1prn00Vlp4kIbzsqgkDuGrCAF+HUaJGDcKxWc2e9zF1fByNEOIclqq17nGW8/2B0UqpEYA/EKqU+lJr/Q/vhCdJkhDiNGNH9yA60vNIbmDf1j6ORgjhdTVkxW2t9cPAwwBKqYuAB7yZIIEkSUKI0yiluKh/G1+HIYQQPidJkhBCCCFqNK31UmCpt+uVJEkIIYQQhWrLliHeILPbhBBCCCGKIT1JQgghhDhJepIKSU+SEEIIIUQxJEkSogr9tjieqU/8RPzWpArf48DBNCZO/ox7H/iKjIzcKoxOCCFKoQFDe+dVC0iSJEQVSU4+xovPzWbpknj+/cDX6Ap2WX/48TJ27T7Clq1J/DjLZwvNCiHEeU+SJCEqYe+eoyycv5mcHDtm08lvJ7O54t9aLZpH4e9vxWIx0bRx3aoIUwghyqhmbXDrazJwW4gKSk4+xt2TpwGaWT+t4633bub/nrqSVSt2M/Kyrih19j3SSjJ+3IW0jK1HYKCN7t2aVWnMQgghyk6SJCEqKOVoJgrIz3eRlJjOkSPHef+dxWRn57Nm9V7CwgJ54umrqVs3uFz3NZkUAy4seTuQxIPpBAX5USciqJItEEKIYtSSXh5vkMdtQlRQx05NGDykHQ0b1WHKPRcz89tVJB5MJz0th0PJGezccYgfv19TpXXOmL6CSeM+YNzVb7F7x+EqvbcQQohTSU+SEBVkMin+9dBItm5J5MH7v8LtMjCZFEoplPKMS4ptWa9K61y2OB6Hw4XFYmLj+v20bFO/zNdqrcnNdRAYaKvwo0AhxHlAepIKSZIkRCX9uXwnDrsLgA6dGnPr7YPIzXUQEGCjU+cmVVrX9eP78/RjPxIaFsCAi9qW+TqtNf959DvWrt1H165NefHZayRREkKIUkiSJEQlDY5rxy8/rcPlMrhxXH86dqraxKioCwe1Zc7S/6AU5Upyjh/PY93f+zC0ZsPGA6Sn55R7rJQQ4jxwYp0kAUiSJESltWpdnx9+uR9taGx+1f8tZTKVvwcoNDSANq1j2LXrCLEtoqhTRwZ9CyFEaSRJEqIKWK1mX4dwViaT4o1XbiQlJYuoqJAKJVpCiPOBBm34OogaQ2a3CXGOm/71CsZN+IDZczdQv35YpRa6FEKI84n8tBTiHJaalsW0L/4kMekYb76zmLw8x1nLH03N4s2PlzB/yRYvRSiEEDWXPG4Togx2bE1i3o9r6R/Xjp79Wvk6nDILCvTD5mfBZFYEBNiw2c7+Lf/IMz+ya+9RrDYz0ZGhdKvGQehCiBpKlgAoJEmSEKVwuw0emvQZ+XkOFs/ZxGez7qVuVIivwyqTgAAbH75zM39v2E+vni1KfdTmdLnRWqNQuFxuL0UphBA1kyRJQpSBPuUvq9r1V1ZMTDgjY8LLVPap/1zOp1//SevYevTs2qx6AxNC1DyyBMApJEkSohRms4ln37mJ2TPXMGBIO+pGhfo6pCqjtebdz5axbMVOxo3tw6hhnXj8X6N8HZYQQtQIkiQJUQbtOzehfRWvnl0T7E9M58e567E7XLz0zkJGDOkoywMIcb6TMUmFJEkS4jxWJywQs9mEv5+FOuFBkiAJIUQRkiQJUQNs2ZrI4iXxxMW1o2P7Rl6rNyw0gI9fvYkt25Pp3b251+oVQtRg0pNUSJIkIXzE5XKjlMLhcPHAf77Fbncxb+FmfpxxNwEBNq/F0TCmDg1j6nitPiGEqC0kSRLCS1wuN3+u2E1UZAj5+U4efuw7zGbFc1PHYhTMJjEMXfheCCG8T0tPUhGSJAnhJa++sZAlS7ehtaZ1q/o4HC4Alv2xg6lPXMnceZsYMbwTQUF+Po5UCCEESJIkhNfs2XuU/HwnNpuFpo3rsmPHIVCKAf1b06VzE3r1aOHrEIUQ5zsNGLLB7QmSJAnhJf+cMoznXpxD/Xqh3DlpMBPGX4jJZCI8PNDXoQkhhCiGJElCVLETq3Mrdep0+nYXNODzT24v/BwYKI/VhBA1kIxJKnT2jZyEEOWy5s9djB7wDDeMeIXDyRm+DkcIIUQlSJIkRBX6+tM/cNhdHD+Wy7Jft/g6HCGEKD+tvfOqBSRJEqIK9R98ATY/Cxarmc7dm/k6HCGEEJUgY5KEqEJX3diXnv1bERTkR92oEF+HI4QQohIkSRKiijVpFunrEIQQooI0yIK2heRxmxBCCCFEMaQnSQghhBAeGrSWxSRPkJ4kIYQQQohiSE+SEEIIIU6SMUmFpCdJCCGEEKIY0pMkhBBCiJNqyUKP3iA9SUIIIYQQxZCeJCGEEEJ4aA2GzG47QXqShBBCCCGKIT1JQgghhDhJxiQVkp4kIYQQQohiSE+SEEIIIQppGZNUSHqShBBCCCGKIT1JQgghhCigZUxSEdKTJIQQQghRjFKTJKWUv1JqtVJqo1Jqq1LqiWLK3KGU2qyU2qCUWq6UaldwfJhSal3BuXVKqbgi1yxVSu0ouGaDUiq6apsmhBBCCFFxZXncZgfitNbZSikrsFwpNU9rvbJIma+01u8BKKVGA68Aw4FU4DKtdbJSqgOwAGhY5LobtdZrq6QlQgghhKgcjWxwW0SpSZLWWgPZBR+tBS99WpnMIh+DTpzXWq8vcnwrEKCU8tNa2ysTtBBCCCFEdSvTwG2llBlYB7QE3tZaryqmzBTgfsAGxJ1+HrgK+Pu0BOlTpZQb+B6YWpCQCSGEEMJXtCwBcEKZBm5rrd1a6y5AI6BXwaOz08u8rbWOBf4NPFr0nFKqPfA8MKnI4Ru11h2BAQWvccXVrZSaqJRaq5Ram5KSUpZwhRBCCCEqrVyz27TWGcBveMYbleQb4PITH5RSjYAfgZu01nuK3Cup4N8s4CugVwl1fqC17qG17hEVFVWecIUQQghRDhrQhvbKqzYoy+y2KKVUeMH7AGAYsP20Mq2KfBwJ7Co4Hg7MAf6jtf6zSHmLUiqy4L0VGAVsqVxThBBCCCGqTlnGJMUA0wrGJZmAGVrr2UqpJ4G1WutZwF1KqaGAEzgGjC+49i4845geV0o9XnDsYiAHWFCQIJmBRcCHVdUoIYQQQlSA1jImqYiyzG7bBHQt5vjjRd7fU8K1U4GpJdy6exljFEIIIYTwOtmWRAghhBCFast4IW+QbUmEEEIIIYohPUlCCCGEOEnGJBWSniQhhBBCiGKo2rTItVIqBdhf8DESz95w57rzoZ3SxnPH+dBOaeO5oza0s6nW2muLBCql5uP5unhDqtb6bOsu+lytSpKKUkqt1Vr38HUc1e18aKe08dxxPrRT2njuOF/aKSpOHrcJIYQQQhRDkiQhhBBCiGLU5iTpA18H4CXnQzuljeeO86Gd0sZzx/nSTlFBtXZMkhBCCCFEdarNPUlCCCGEENWmxiVJSqlvlVIbCl4JSqkNRc51UkqtUEptVUptVkr5l3CPu5VS2wvKvVDk+MNKqd1KqR1KqUu80Z4S4qtUG5VS/1NKJRW5x4iC41al1LSC67YppR72ZrtOi7Fa2ljW672lOttZcL6JUipbKfWAN9pTnGr8/zpMKbWu4Lp1Sqk4b7armDir8//sOfGzp0jZfymltFIqsuBzmFLqF6XUxoLrJ3ijPSXEVi1tLDh2UcF9tyqlllV3W0QNoLWusS/gZeDxgvcWYBPQueBzXcBczDWDgUWAX8Hn6IJ/2wEbAT+gObCnuOtrSRv/BzxQzPEbgG8K3gcCCUCzc6yNZbq+trezyPnvgJlnK1Nb24hn4+wGBe87AEm+bl81tfOc+dlTcK4xsADPmnWRBcf+Czxf8D4KSAds51gbw4F4oEnB52hft09e1f+qsduSKKUUcA1w4q/Li4FNWuuNAFrrtBIuvRN4TmttLyh3tOD4GDwJhB3Yp5TaDfQCVlRTE0pViTaW5P/bu5fQOqo4juPfHwRL2wiNi/rKorYaFRGhWivS4KIFlz4XtYuKbi2Im1YQRAkIilgXFReWulSKqBUrLbagLUWtGG2S0uKrEOOjxQeIEVHbn4szF2/DJN7kzrlzvfw/q8zMPZPzYx75z5m5GQNLJfUBi4E/gV8r6u6CZMjYbvssMuRE0p3AKWC6qn62o+qMtj9tmjwOLJa0qHHs1iXDtuy1c892YCuwp2megQuL9faTihQzwFMAAAOFSURBVKS/q+73fGTIuAl43fZk0f5MWcPQW7rudluTYeC07S+K6SHAkvZLGpW0dZZ2Q8CwpI8kvS9pTTH/cuCbps9NFfPqtNCMAFskjUnaJWmgmPca6Q/q98Ak8Kztn7P1vjVVZ5xP+06qNKekfmAb8GTebs9L1duy2T3AaN0FUqHqnD1z7pF0B2nE79iMRTuAa4HvgHHgYbv2F4BVnXEIGJD0ntLt4c35uh66RS0jSZIOAJeULHrMdqNyvw94pWlZH7AOWAP8DhyU9IntgzPW0QdcBNxSfHa3pJVV9r8VmTO+CIyQrt5GSEPKD5KuTs8ClwEDwGFJB2x/XU2q89WUsdX2lakp5xPAdtu/pQvivGrK2Pjd1wFPk670s6ozZ6fkyihpCem2Wtl2uh34jDRqswp4V9Jh21lGsmvK2AfcCKwnjdR/IOlD25+3myd0r1qKJNsb5lpe3C66m7RDNkwBh2z/WHzmHWA1MPNENUUaEjVwVNI50ntoviXdZ24YLOZlkTOj7dNN63kJeLuY3ATss/0XcEbSEeAmIEuRVFPGVveDytSUcy1wr9IXD5YB5yT9YXtHm3FK1ZQRSYPAG8Bm21+1GeM/1ZSzV849q0jPVB0rCvdBYFTSzcADpMccDHwp6RRwDXC0klAz1JRxCvjJ9jQwLekQcAMQRVIP69bbbRuAk7anmubtB66XtKQ4AG4jPUQ305ukh7eRNARcQHqB4VvARkmLJF0BXEWmA7hFC84o6dKmybuAieLnSYr775KWkkbTTmboe6tyZGx1P+ikynPaHra9wvYK4HngqVwFUosqzyhpGbAXeNT2kWw9n58c+2xPnHtsj9te3rRfTgGrbf9AOvesB5B0MXA1mS7OWpQj4x5gnaS+YsRpLXCiE2FCfbq1SNrI+cOk2P4FeA74mDSsO2p7L4CknZIaLyncBayUNAG8Ctzv5Diwm3RQ7AMesn22I2nKtZPxGaWvr46RCsJHivkvAP2SjhfreNn2WP4os6o841zta5RjW3abHBm3AFcCj+vfr2wv70CWueTYZ3vp3DObEeBWSeOkkZltjRGbmlSe0fYJ0vYbIxW5O21PzNUm/P/Ff9wOIYQQQijRrSNJIYQQQgi1iiIphBBCCKFEFEkhhBBCCCWiSAohhBBCKBFFUgghhBBCiSiSQgghhBBKRJEUQgghhFAiiqQQQgghhBL/AHYaMhQchFFiAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5, c=sites.cti)\n",
+ "\n",
+ "plt.colorbar(label='Vs30')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "## Saving and cleaning up\n",
+ "\n",
+ "That's basically it. We just need to save the file and then proceed to the [liquefaction analysis][liq_anal].\n",
+ "\n",
+ "[liq_anal]: ./liquefaction_analysis.ipynb"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sites.to_csv('./tutorial_data/liquefaction_sites.csv', index=False)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3.7.3 64-bit ('oq': conda)",
+ "language": "python",
+ "name": "python37364bitoqconda2538d931db6a43dbb13a044a946dcd86"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
\ No newline at end of file
diff --git a/_sources/contents/sep_docs/tutorials/liquefaction_analysis.ipynb.txt b/_sources/contents/sep_docs/tutorials/liquefaction_analysis.ipynb.txt
new file mode 100644
index 000000000..35ede3c80
--- /dev/null
+++ b/_sources/contents/sep_docs/tutorials/liquefaction_analysis.ipynb.txt
@@ -0,0 +1,526 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Tutorial: Calculating liquefaction probabilities from a single earthquake"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The OQ-MBTK has several models for calculating the probabilities of liquefaction and the displacements from liquefaction-induced lateral spreading given the magnitude of an earthquake, the Peak Ground Acceleration (PGA) at each site, and the susceptibility of each site to liquefaction (which is based on local geotechnical characteristics and a soil wetness variable or proxy).\n",
+ "\n",
+ "These functions are quite easy to use and the calculations are very rapid.\n",
+ "\n",
+ "Functionality for calculating these probabilities and displacements given a large number of earthquakes is being implemented in the OQ-Engine, but is not yet available. However, the functions below are easily incorporated into a script that can iterate over the results of an event-based PSHA, though this will not be demonstrated here."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "from openquake.sep.liquefaction import (\n",
+ " zhu_liquefaction_probability_general,\n",
+ " hazus_liquefaction_probability\n",
+ ")\n",
+ "\n",
+ "from openquake.sep.liquefaction.lateral_spreading import (\n",
+ " hazus_lateral_spreading_displacement\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "plt.scatter(hazus_liq_prob, zhu_liq_prob, c=event_pga[\"pga\"])\n",
+ "\n",
+ "plt.plot([0,1],[0,1], 'k--', lw=0.5)\n",
+ "\n",
+ "plt.title('Example liquefaction probabilities for Cali, Colombia')\n",
+ "plt.xlabel('Hazus liquefaction probability')\n",
+ "plt.ylabel('Zhu liquefaction probability')\n",
+ "\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "It is clear from these plots that the two liquefaction models produce highly discrepant results. This is a warning that they should be implemented with caution, and calibrated on a local to regional level if at all possible. Both models may be calibrated by adjusting the coefficents for each variable relating soil strength and wetness to liquefaction. \n",
+ "\n",
+ "Unfortunately, the tools for these calibrations are not implemented in the MBTK, although the functions used internally in the MBTK may accept modified coefficients."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Lateral spreading displacements"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Displacements due to lateral spreading associated with liquefaction can be calculated given the earthquake's PGA, magnitude, and the liquefaction susceptibility of each site. The model currently implemented is from HAZUS."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "hazus_displacements = hazus_lateral_spreading_displacement(event_mag, event_pga[\"pga\"], sites[\"susc_cat\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAI/CAYAAACF0oasAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3QVRRvA4d/sbek9gZAQAoQSeu9VqihFigoWEAVRUbH33j4VC3axK0oRlCICIkV6lx5KgEAKhPR+2+58fyQGYxKKVGGec+45uffO7s5uDuE9M++8I6SUKIqiKIqiKJXTLnYHFEVRFEVRLnUqYFIURVEURTkFFTApiqIoiqKcggqYFEVRFEVRTkEFTIqiKIqiKKegAiZFURRFUZRTMF/sDpyJkJAQGR0dfbG7oSiKoigXxObNm9OllKEX6np9unvLjEz9glxr83bHIill3wtysXPgPxUwRUdHs2nTpovdDUVRFEW5IIQQhy/k9TIydTYsirog1zKF7w+5IBc6R9SUnKIoiqIoyin8p0aYFEVRFEU5fyRgYFzsblyS1AiToiiKoijKKagRJkVRFEVRSkh0qUaYKqJGmBRFURRFUU5BjTApiqIoigL8lcMkL3Y3LklqhElRFEVRFOUU1AiToiiKoiil1Cq5iqkRJkVRFEVRlFNQI0yKoiiKogAgkehS5TBVRI0wKYqiKIqinIIaYVIURVEUpZRaJVcxNcKkKIqiKIpyCipgUhRFURRFOQU1JacoiqIoClBcuFJXU3IVUiNMiqIoiqIop6BGmBRFURRFKaWSviumRpgURVEURVFOQY0wKYqiKIoClOQwqcKVFVIjTIqiKIqiKKegRpgURVEURSmltt6tmBphUhRFURRFOQU1wqQoiqIoClCy+a5aJVchNcKkKIqiKMolRwjhIYTYIITYJoTYJYR4oYI2o4QQaUKIrSWvO85Xf9QIk6IoiqIoxSTol84AkwO4SkqZL4SwAKuEEAuklOv+0W66lHL8+e6MCpgURVEURbnkSCklkF/y1lLyumjhnJqSUxRFURQFKI5GjAv0Oh1CCJMQYitwHFgspVxfQbMhQojtQoiZQojqZ3rPp0sFTIqiKBdQgdPJrqOpuHT9YndFUS62ECHEpr+9xv6zgZRSl1I2AyKBNkKIRv9oMg+IllI2ARYD35yvzp4yYDrbpCshxEghxP6S18i/fd5SCLFDCBEvhHhPCCHO3W0piqJcegqdLvp+8g3Dv5vBqO9nXezuKEoFBPoFegHpUspWf3tNrqxXUspsYBnQ9x+fZ0gpHSVvPwdanq8nczojTH8lXTUFmgF9hRDtKmg3XUrZrOT1OYAQIgh4DmgLtAGeE0IElrT/GBgD1Cl59a3gnIqiKJcFw5BM+G4emSn5OPPdbExMxlBbUChKpYQQoUKIgJKfPYFewJ5/tAn/29sBQNz56s8pAyZZ7N8mXfWheM4xU0qZRfFwWd+SG/STUq4rSer6Fhh05t1XFEX5b/hh6ioOf7CFKiuzMeUbjGrdDE0NrCvKyYQDy4QQ24GNFMcTvwghXhRCDChpc1/J7Nc24D5g1PnqzGmtkhNCmIDNQAzw4UmSrroA+4AHpJSJQASQ+Lc2SSWfRZT8/M/PFUVRLjtSSn76bAVCB3OhTh2nBw927nixu6Uo5UjAuEQGPqWU24HmFXz+7N9+fgJ44kL057SSvi9m0pUQYuxfCWFpaWnn6rSKoigXzILNe0gNEegm0HSJ49cDXNfgcX6cvIzM9Dwy0nIvdhcVRTmFM1ol9y+SrpKBvy/xiyz5LLnk539+XtE1J/+VEBYaGnom3VUURbnoDiWl8/C8haQ19yCxfyCap1aa1DD9oyWM7P8uIwdMYs3y85Z6oShn5AImff+nnM4qubNJuloE9BZCBJYke/cGFkkpjwK5Qoh2JavjbgXmnPXdKIqiXGL+2HoAtwUQAsOmcc0NbUu/C6gWgNPpxuV0s/L33Revk4qinNLp5DCFA9+U5DFpwIy/kq6ATVLKuRQnXQ0A3EAmJUlXUspMIcRLFCdrAbwopcws+flu4GvAE1hQ8lIURbms9GvfgEnr1lHgZdAsuAr3jLuWHj2asPSXbSycvRkhBFabmWuHtb7YXVUUJPwnR38uBCH/Q8taW7VqJTdt2nSxu6EoinJGpJQUudx4WS0A5OcVMbTjKyAlEnji9WF069fs4nZSuSQJITZLKVtdqOs1bGKV0+aHXZBrNYlKvqD3drbUXnKKoijnwbrERB5dvIjogAA+6T+wNFhyOt08Nn4KhqcFXDqaSycqpupF7q2inGBINcJUERUwKYqinAfPLVtKUm4u6YWFfD53NbZEJz37NaGgwEHikXQQAqxmRt/fi1p1TwRMUz9awurFuxhxTw869Gx4Ee9AUZS/UwGToijKedAoLIzkvFzIdTP/+5VIXfLr7C18/dN4rFYLUkLzVjWpWi2Qge1eomq1AO57uj/TPl2O0+7ifw9MZc72l/hr1yjDkAhB6XtFOR9UDlPlVMCkKIpyHvyvV2/6xNThw/eWUmjkIQCHw42fnxdfzxzP0eQsatWpwp2D38dhd3EsJYu9O5MRgMVqwhrpy57E48RGVWHBlr08NXUhIb7efD/hRkL9fC727SnKFeeM6jApiqJcSRIT0pkyeTlxOxJP3fhv1ickMvSLqcxdvYPUYznkR9pw+GiEVvNlzHXvsWPTIerUD2fThoP4VvXD6mFBCEGLDnV4a9pdNLqpBckxntz+5gyW/Lmfyb+vx60bZOUXsmznAQAcdhdLZ29m77Yj5+PWlSuURKCjXZDXf40aYVIUpQyX003q4XTCa4ZiMpsudncuGsMweOC2z8nPszPj65V8+8sD6N4GWc58avuEn3Rq7JHZC0nNy2ev+zgBGAgEVn8PclNycRS5ePv52TzmbeW5p2YipaRG/Sq8+vqNhFTxA8C1woojQUcTgm3xKTT0DyQxLRtN02gUVZVpm7az5Nu1pC1JAAlvTr+HOo0jK+2PoihnTwVMiqKUcrvc3NPxGVIOplGnWQ3e/v3pKzZnRhoSu92JlBJDwoHcYzy1/UuklAyK7MBddfpXemxEgB+ZBYW4hY4104XFIencPZb1iTux2sxUCffnzdd+we3WAcjJLeKRx6ZRs2YoTzw5gDHXtGP34ePYLCYOz9/D/q1JhFrghQ9H8t2mrfy6ax+uABchISaC0w2OHkknukE4cWlp1AoKwsdqvVCPSbkMqVVyFfvvjYkpivKvFRXYSU/JrPT79OQsUg4cx+VwEbfxAEX59gvYu0uLyWziuYnDadqqJmMn9GbmjPXo8y04Cl2sST95Ve7JNw7ivi7tCcwwo/la8GgQyPxjCTh9TLhyCjj85yGyEtJBUpzb5HRz5HAG69cdYPWqfdSNDGX+q7fTr2EM6515ZNf2QZeCrIRMjubk4XC7MVlM+NUIoHX3WNr1bMQtM2cyYsYMen/1FQVO54V5SIpyBVEjTIpyhTiWcJy7WjyCo9DJzc8OZcSTQ8q1CYsKpmGHumxdvpvOg1rj5et5EXp68RQWOnjuqZmkHs3msacG0rpjHVp3rMOUr1eybUEiGFYsbhj1WK/SY+yFToqKnOTk24nbe5SO7WPYnZaGSWhMefomth05ypNLFuOWGqYUN/4OJ27NhDdg8bER4GPjUGIm2Mw4XW5yiuwcOpJOzagQflyyrXhLFYsJw8dK66tiOf67g9ygQmpFhPLS4z3xtFgwpGRTcjKS4lVOR3JyiFV7byr/glolVzkVMCnKFWLrsl24SvYtW/TV8goDJk3TeP2Xx3DanVg9Ls9pHSkln6/ZxP60DO7t2p7qgf6l3y1dvItdO5JwOt18MGkRH39+OwCaECDAopm4JqoDPaq2ACD5cDr3Dv8Yu0vHWcUbk0nj22lriKvuwC0Mftmxh7t7tMNiMeN2u5FNAvE87KTIJbHb3ZizizicmosGCIeONdKPiZ8sRmiC5+7vRzUvL/IKHGCCsQ/24aPXfmHDin0IAbd+1BlPi6W0f7c0acaUHdtoVa0adYKDMaQs7reiKOeECpgU5QrRqk9TPH08cTvdXDeh30nbXq7BEsDSfQf5cMU67C43B9MzmXnHiNLvakSHIAR4eFio87dikkOHt8OtG7icbkbc2qn0881r43E5ddzSQHcbON0Gcd75ONwCa7Yk3ZzPR28vJThfJ7RdGC/e1huv0Qb3Df0Ap9ONMIniApaAQFIgdTBpSCn56J2F5CdmYQmwIhC8P381jTMtOB0ubB4WUpOzoFVNAPYcOc5vP+8ixDDRp1ktek//ikPZWTzctiP3tGh/gZ6solzeVMCkKFeIkGpBTEv6FKfdiafPiak2KSU/f/I7ezYd4qZHr6VGvWoXsZfnn1krTt3UhMBiKrsKsHHTKN5+/xbS0/Jo175O6edWq5lbR3cpd65mbWuDAM0laVIvnAR7AanBRZgKdTyOFtDIvwo7MlOREqLzvIgNC4UwePKdEWzfcJBu/Zvx8uM/ciw5iw79G7Fm3xH0fB1Ngo8B+U4da1Hx6JZpbwH3fzCS91+aS2R0CF37Ni7tx9pdCbjcOroh+WHzVhJ8MpEI3t60ijHNWmPV1J965XQJdKnSmyui/hUpyhXEZDaVCZYAtq/exzevzsFR5OTAziN8sf7li9S7C6NLTDRP9ulGfFoGt3cou+9n0sE0bJpGdHQoK5bspk3HGLx9PCo916qV+3B728BTEhkWyJP3Dqb7u59T7dcUzAU6CUf2YKkbghCC9s2jS49r2z2Wtt1jAfh6zv3oboPB06cS7yfwy7PwWL/utAsM5/4bPqaw5JiqAT5UjQjk7SljKShyYrVZSs/XKTaa735aiyvdjvNwInJI8e/Y6ung8NFU6kREnJuHpyhXMBUwKcoVzuphASSaJrBYLads/18nhOD6Fo3Lfb5u6W5eu/97AHSbBc3Lhr+XFR8MmnWsw9inB5YrsWCzmdFMGlJIbDYzVfx8mDPuZh6a9gYuqWPLd/L0uL6ERQVRJ7riHeCFEJgtJqr5+hKfkYEzSJAr3MxKjefZ70bxwxuLyckp4nhCOrde9TrO2CDyTZJbB7RhzLCOZGfk88htnyItBn55Ar3QTWRCDoUtBF47Db5Zt4SXP7z1nD9H5fIkAUMtoK+QCpgU5QoX26oWD0wayb4/DzPozqsudncumq1r43E63SVL/QVOTcOVlE66lBw7kkGnq5vSsCRn6C+DhrTGMCT2IidDh7cDoE5YCC99PobvJy2izVUN6Nil/mld/+1+/fhp1y6EDq+uWoHT7WaOnx8rvhnL47d9TvK+VBDgTivAHerBnGU7GDOsI2vX7+NQY28kktwig+o7QCxw4/2rBGHGt++VtdJRUc4XFTApikK3wW2IrBXKyh/X0nlIW8Kirrwl6ceOZIAEk0mjVc8GxB9IQ1gEuRl5SCRBYX5l2uu6wbwf1lCYUcDQMV3x9DyRKN+0Qx2adqjzz0uclCvPycLHfictIx+/+h4cb24trac0eFRndm05jNXDQmGwF55H82lWqzoAwTWDEQKkpiF8zbz80fV4+diY/Mav+Ph6cP9zA8/yyShXGlVWoGIqYFIUhazjOUzo9Ay6W2fGxDlMS5p8RVX4drt01i+NA8BkEgy6qR05UqduRDB/Lt9D3SZRhEcFA3A0KYsdfx4mPyOPb99ehNutM3/WRhoPaUKcrYCmUeE80q8rmnZmz+/R4R+REZ+KAPz2CRoMrsc97doC0KZrPX7e9DxCE9w19AMSs5zsWLyHnYMP07p5FCO6t2B1XAL3X9uJRo1rAPC/z0efuwekKIoKmBTlUrN3YzyT7v6MGg0iefCzcRckr6ggpxBpGLidbnIz8pFSXlEBk9liolWXemxbF09IeACPfvQrbsMgJNCb6W+PLn0WBfl27r75U3TdwGzWMKREdxvkZBUyMzEet02wLzWDjnWj6VQ3+oz6kJqYCRKkpxUkeM5Oo9E1J/KezJbiFX1SFueZFCv+PT06qBsMOuvHoChIqVbJVUY9FUW5xEwc/RH7Nx9k5az1rJy57oJcM7JOOCNfvIE6LWvx1NQJaNrl+achv8DBhs2HyMsrv+XL+BevIyqmCjZPC84CJ0UOF0mp2ei6UdomN7sIl0vHYXeRp7uwd69GdrtQZIg3JqfEohXXUAr28Trjvt39wnUEhvqieRevyktMSGfvruRy7Z6fdBO9BzRn7EN9adQiGiieHszJLkRKWa69oijnhhphUpRLTHjtKqQcTAUpCatx4XKJrn94INc/fO7zXb54Zjq/fbOCa+64is5D2/HF87Oo3bg6I58aeEEDM103uOPer8nOKcTb28bUL8ZitZz4Ezj942Uc3HMUAdRuEkFKgJmb+7fGbDZR6HSx7chRYquFMfTm9iz/bSeyWRA7j6UhfMzE9K7ONfWrsPR4IkObNyK22omRIbdLZ++uZCKigvDx9cRk1iocves9rA29h7XhxUdnsHHNfjw8rUTHlF9ZF1EjmAdfHFz63ulwc/etk0k+kkn3Po149Hk11KScHUPlMFVIBUyKchH9/v0K3hnzCeG1q/DOipfwDfThyR8msPSHVUTEVKVRx/ocP5KGt78X3v7eF7u7ZywrNYefJi3A7dKZ9uZcVvy6jeQDx9m1Pp7Y1rVo17dphcd9/+Y85n+zgqtv6cwtjw04J30pLHJyPC0X3ZC43Dq5uUWEBPuWfh8VE4bVVvwncWD/FgwoqegtpWT4x1NJzsrF02ph0cOjGXXXVXyxcAP7F2QB0K59bV7fsgaHrrNv5QpsZjNDWzRC0wQvPDyV7ZsTkA43er6DwFBf3pt1L0GhvuU7CTz9v2EcOZhGWLg/Xt62U95XwoHjpB7NQdcNlizcoQImRTlPVMCkKBfRt89Nx2l3kXoojXW/bKbXLV3x8LLR744eAEx/YzbfPDcds8XMg5+NQwhBh0Gt/zP1krwDvPAJ9MZe4MDLzxP/YF+OHc5ASvAJOBEASik5uDOJ4PAANE3ww1vz0d0G095ZwIA7uuMfXHFwcSZ8fTwYNqg18xZupVf3hmWCJYCBIzsRHhWMEILW3U6UAnDpBgeSM9Ds4La6SM3Jo2ZoEKP7tCamWjCaJli0ez8iS0d4g0savPrrMnTD4Oq6MWzfnIC9yIVW5ARDkp9TxMble+gzrHWF/dQ0UeHI0t/lFtoZ+dY0jiZkMmFEN0LD/DiakkWXqxqc9XNSrmzFm+9enlPyZ0sFTIpyEbW+ugWLvloGmiC2bdll6DnpuUx/Yw4uhxsp4fVb38dsNdPxlzY8/u19F6nHZ8Zqs/DpxlfZuWYfjTvVByFY+N0qoupVpVG7mNJ2HzzyA0tmrMdk1pj02+P4BHiRl1WIZtLK5BCdrbtu78Zdt3er8DshBG0rCDisZhPebjMOw43JKdh75DgWk4nIIH+6NqnNjLXbWfjnPjQX+GtmCk1uDCGJjzvKTU8txI3EbDYRVC2QnNRcNJNG4zY1K+hBeS63zjNTFrLtj4M0iKzCc4/2x8/Xk5W7DpG7JAkfu8GXLyxgzsJHKCp0Ehj83xuFVJT/ChUwKcpFNP690fQZ1Y2QiCCCqgaW+e7dcZPJz8ovfS80DXuBg4QdRy50N89KQJg/nQadGE25YULfcm02LN6Bo8iJh5eVgzuTaHN1C5bMXI9hMjHzk6WMffa6C9nlcqJCAjh8PAspJU/O+A1hgrduvoZuDWrj62FDUDwyRLZOuNtC86618D0GeVbAZsXrUBbZWXmMfrw/vYa2xsfv9IpJLty2l5W/78GcobM5NYFvf1jD+Dt7ULdqCFphcaaJcBlkZxUQHhF4yvMpyqmpVXKVUU9FUS4iIQR1W9YuFyxB8X/AoiQpWtd1DMOgWkxV7vtozIXu5nl308PXYraYCKseTMurGlIlKgSLpwdmq4WAkLOfjjtbk+8byoPXdaFFw+o4pY7DrbNizyEA+jaryzNDehCkWzFn6uhFOu1DqzE38QCGRcMwC+xVvHG7dNYt3lFpsCSlZOHqXXR58ENueHUKOQV2wvx8kJbizXeFJggsmcasUz2UvoOaYzJrdLkqlqrVAi7Ys1CUK5UaYVKUS9T9n4zlwLYEkvcfQ+oSs83MQ5/fRYP29S521865vrd0ou8txUnWulunfstoht/XG/8gH3rf0PYi9w4O701l7lvL8QnywifcjMlq4vp2xQnrQggGtGrA3h0p/Jq5G5DYPSU5VjeeGoDA6jIwW0z0u6lDheeXUvLEyM/YtuEg5gALh9voLPlzP4M7NebBEd1YMGcrHdvU4cahbUqPeejJ/jz0ZP/zf/PKFUXtJVc5FTApyiXK5mklJf5Y6fvohpHUb3tm221caI4iJwlxKdSoXw0PL+upD6jAa/d+x+Y/iqtuf7jgEUymU//x1g2DhNQsIoL98bCe+z9rn7z7G+lpeeTmFvHMoD5cM6hFuTYPjexB7w6xhAX5Ijw03lq3lnyTpLbuzQfv346fryfelYwuZaXns2NLApmNPDEsArNbp2GNKhQWOvh64u+4XDpzD2Zy64gOJOfkcuvMmRQ6XXx63UCaVK16zu9XUZTyVBipKJcoq4eVZlc1xmI1E92oOu+uehmr7dJdHafrBuN7vcZjQ95lfK9X0d36KY/ZtGQXYzs8z7sPfFea3B23+RD2wuI91BL2HD2ta9/54U8Mn/gDg1/7FrvT/e9vohKxjSPw8LQggFp1qlTYRtMETetFEB7qR1VfH+bcPJyqf+RS8OsRbu8/Caer8ucREOyN+aoqZLT2Iau5D/XbRHBwWwq5uUXobgPdbVBU5OL+cV8ybuIPHMnK5nhBAe+vWQsUj1DF7UgkIT61zHk/m7uW9ndOYvzbs3Cfw+R5RbkSqREmRblECSH436KnSUvMoCC3kDubPYzN08aLcx4lJCL4YncPgLysAlIOpRHTpDp52YUcTUhDdxscO5xOblYBgaF+Jz3+rfFfk52eR1pyJl0HtaJ511jueGoAHz/3E+HVg/APOHVytFs32Lg/EYD03AIS07OpUy3knNzfX8Y/dDUdOtcjJMyPmrVPvuT/L84cJ+S5ANCdbkb2epM2XevzxMQbyoyaLdi1jw9XrCOgdTXM6ckYUrJ122GO7zxEuw51GH9/H2b+vIEDGens355CUZoZrbMXNrOJ9lFRAMyasoavP1qKNAwee3kIXXo1AuDzX9aj6wZb9yez53AqjWqFn9PnolyedKkKV1ZEjTApyiVM0zSq1Ajl+5dmciQumQPbDvHze7+e9+tKKdn4xx42/bGn0u02stPzGN3+OR4f+i4vjZ6Mf7AP3a5rjWbS6Dqo1Wkla1erGYrN04qUEBoZBED3gS15/J0RHNoUz5PXvc1PH/520n6aTRpD2hcHCI1qVKVmlaB/cccnZzJptG4fc9rBEkDN2mHUjK0GUiIEOF1u1izdTfzftjuRUvLI7AXsT8tge+IxrqlTlzZ+4VTZa+BwuDmaksU1A5rT8a5W2EPMSA28juvcH9qEKTcMY3SrlgCsXb4Hl9ON26Xz2RvzS8/fLKYanjYzHjYLNSpYWKAoyulTI0yK8h9Qt1VtNiz4Eykhpnmt8369ed+t5ss3FwCS2MYRHNl7jEG3d2XY3T1L2xzZexS304290Mm2VXtJ2n+M8a/fyMPvjzzl+Q/tSuLr1+bSpGt9+tzckdqNo4isfWKqa/f6eFxON9KQbF62i8H39C53jlW/7+J/j/9IYLAP7343lieuvwqLyXRO7v8v6Vn5HM/IJ7Z2lTPejHhH8jGOdfShWq0Yjv4SX7JprqRK5ImATghBmI8P6QUFaELwRLeu+FlsvJk8j5TkLB54pB8AAxrUY3q77eT7ZXFb6xbcMbxrcRmDEp261WfXn4eRhkQvcJZ+/sGDQ4hLSCU6PAhfL4+zfBrKlUAiVOHKSqiASVH+A65/ZCAxzWti87TSqFPsvzrHsYTjPNH3ZeyFDl6a8zgxzSsvnnhwTwp2JFKXbF+1D8OQfP36PPrf1gUPz+Jk7vqtalK7cXX2/plA1YgA7m7/ND4B3ny2+bUyVbwr8tLoyRxNSGP76r08+81d1G5cvcz3vUZ0Ysn0dRTkFXHTIxWvBPvh0+W4XTrZmQWsXhrHgBvPfjXde2vWMnXbdq5v0pihtWIZ9dh3SCnp3KwmsR5etOhcj7pNqp/6RMCzPy9m//EMPDQTzWOrkJeSx12PX0NAUNlnM/32G/l9TzwtoyII8Sn+7qnnytadCvPxYfHY20rfb99wkLitR7hqQHNCq/ozYER7juw5yt6th7nz6RP7AVrMJprEVPu3j0NRlL9RAZOi/AcIIWjZq+J9107XvI8XkRJ/DMOQfPfij7zw86OVtpV+3hgle9eZLRpakQMff6/SvdaguIr3xDkPAdA/+HacdheFeUUc2pVE444nL33g5WNDMwmklHj5lB/5qBIVzGu/PMrEF2YzffpGHmkQgY9v2Xymjj0akHQ4HSEEjVrUKHeO5Qu28f0ny+hwVQNG3dfrlCNE2UVFfLhuPW7D4JP1G4iyeyGlxO5ws3TVHjZtT2Xah4v5dvWz+AWeuqJ2dEggiVk5ANzz+mBa1IiosF2ojzfDW1X8u53x4wZWrNjLsOtb06F9HQ7Fp7JpTTzT3v8d3W3w20+b+WLhQ5hMGve/MrTMsWnHc3nl6VkYhuTpl4cQVtX/lH1WFABDFa6skAqYFOUK0bBDfeZ8sBAENO3e8KRtjx/PRVKcuzNwXA9iIgNo2rEumlbxH9KBd/Vm5rvziahdhbotTr7th6PISaseDfEP9ePqmzpSr0V0he0mv7uInX8eRjNpzJm+gf7Xt0EAviVL828a153OvRvi6++Ff6A3P/+5C7vLzZAWjbCYNCY+NQu3S+fn5DV079eU6EpWt/3F22ol0MODApcLT4uZbq3rMHvBNo6kZGJNyMYwJIYhsRc6Tytgen3Y1SzcsZfqQQGVBksncyQxgy+/XIHT6eb5F5JxNPIk6M+C4mk3iwnhcJOfW1TmmPidicyavIyW3WKJO5jOnpJ8qSlfruBBVbNJUc6KCpgU5TKxZPoaJt37FRG1qzJx4RN4+3uV+b7DwNZMWvMKjiInDdrVPem57hzfk/Tnf8kXtkkAACAASURBVKYg346u67Tv2xSLpfL8oDtevoGRzw7BbDGdciTnq5dn8+u3KxGaoPVJNoutGhFYWkYhv9DBjQPeRQjBKxNvpFnLaACiahUnYU9Zt5W3Fq9ESkjOyuXhPp0JreJPRloumgb+fwtwvnt7AX/M3cL1d/ek9/UnpvEsJhO/jLyVDUlJtImMINjbmwi3mezjTgzNTM1GkYRGBLFzcwLdqwWc8j49LGYGtTh5YHoy3l42hAAEGCZwF7jRpUR36Xh4WYltUI2bx/csc8xTt35KbmYBqxZuZ8gDV2MpqUlVo1bov+6HcmVRm+9WTgVMinKZ+OaFWTgKnSQfOMb6Rdu46vr26LrBG6M+YvvKOO54bQQ9hncsc8y+zQdZ9M0fePh5sXVtPDXqhnPt6K40aF2bBrHVWDx/K3NmbMQ/wJvrb664SvVfLFYzOzcn8Ow932LztDDx6zFE1Ci/vL8grwhDNxBoFObZKz3f7eN7UjOmCt4+NpYvi8Pl0sEwePWZWdxyexf6D2nNkbRsnpuyiNS8HIwcO7qPhfT8AgDemXIna5fF0aB5DQJDfABISUhj5sdLcDrcvPfYdHoMboXJXBwIZmYWsHnDAZo3jSLEuzjA2rf3KPYiFx4+Hlh8PNm0aj9/rjuAh5eVDj1PBEPJh9I4GJdC62718fCyncZv69SCg3145+2b+G7eehYmJWD2NNG+ezRJ+48z9v7etGpbu9wxrpIaVG6njs2t8/TLQzAMSbtOl3bBU0X5L1ABk6JcJlr2aMTS6WtACOqVTIvtWr2Xtb9sxl7g4IP7vioTMOlunYd7voS9wAGA5udD/J6j/PHbDj6c/zAAssCOnp3P3rX72F4zmPCaYYRWq3x5+vQv/qCwwEFRoYPFc7Yw6r7yq9vueG4Ihm7g4WVj8LjiEZKlMzfw/iM/EBDiy2sz76dqjRBMZhO9rm0GgJevJ6v+2IvbbpCdWcAnk36jbce6vDl7GTs3xBO06ADhBmjBvrR9oXipfUCwD1cPbV3m2r4B3pjMJqxC4BvghVZSD8kwJHfd+SU5+XbwMDHt63EE+Hsx7r7eTH5/MfUbRmBPycbt0nG7dL58exGtutTDajVzPDmL8de+A0Ct2Gq8NXP8mf/yKlG/fjiv1B/Eg3mFpObmsfZAIsPv6kqdqhXXmWrRuR6rF2wHIDUpk+H3ln/+inIyEqHqMFVCBUyKcpm4d9JI+ozsQmhEEMHhxUFN1ZrFU1Ye3jaiG0aWaS+lRHefqP4svT2QVYNxATOnrmfMhD78/v4CDN1g7cz1bJ63BaEJPlr+NOHRFU/xtOsWy7YNB5ESbD4e6G4Dk7ns8L5/sA+PfHhbmc8mPzcTe76dY/l2Huz3Bj/seqPM981aRjNrwUPcPOBdCgsdaJqGh6eVyJAAvI4VgLu4VpSRWcAXz/7MoJs6VThl5hvgxXvzH2Ln+gO06dGwtI3brZORVUBWDSvSBHe9/xNTn76Z3lc3offVTQA4mpjBHX3fQtcN0o7nsnvLYZq1q82xpEwQYC90cnj/sXLXPBd8PW30fetLCuwu3vl1Jb/cdTPRNcr/Dm579NrS6ujDxvUA4PtPlzHjq1W07BCDKcSb9RsPMOLG9tx4Q7vz0ldFuVypgElRLhOaplG/VdlpmrDqwXy88TUO7ThCy95NynxntpgJqBVOWnwKmoeV6s2iOXw8HxDk5Dvw8fPE08dGYZ4dqRs4ipx4eNtIiEuuNGC65vo2+AV789rLc/l+2jqOHMvmsScHnLLvVaKCyDmeCxQXxKyIp6eV9768g1XL4mjZthZ+/p48eF0Xqhgmfr7/BxwFDix+XoRGBJUJlqSULDi2gAP5B7gu4joia0USWatsAUqr1czw0Z346I+NIGBvUhouXUfqkr27kqlRK4zw6sG07Fqf7RsOYjKbiCopYtmwVU3a92rEjvUHuP2Ja055r5XJL7ATH59KvbrheHqW3YfPpesUOV2gFY+GzZixjlbd61ErIoTo8BN1nSJqhvL5sidL3xuGwZRPliOlZMO6eFyBHuR5ST6cuoIbrm97xrWllCuD2ny3YipgUpTLzP4th3j5pvfxDfLhpZ8eIiKmKh4+HjzY53/kZRXwzHd3l07ZZR/PRbPZQEKzRpFYknMoLHAwalx3TCaNt395hBVzNiMNyezJS6nVMILmXStP1AYocuoIswm73cWe3SkVtsnNLOCT52ZitVkY+/xgbrj/al657VMMt0FAlcqXv0dUD+KGWzvyxQs/8cKsDQy+uyejxvXkliGdSDqQyr5tibTpUbZ/cXlxzEmZg9NwklyUzP+a/K/Cc992Y0e2ZaaxZtdhru/aFIvJxISxX3IwPhWbzcLXP43nufduYs/2JPC18Pq8FdSpFsLtfdrw6DsjTvpMTsXpdHP7mC/Iy7MTGuLLV1+MKVOY0uF0U98SQHxGJl4pTuaylzkb9oGXxq19W/Pj/C00rh/Bm48Pwmw+kZyvaRoxseEkHkrHYjOTUc1MoYdEE4JN8Um0rnN6NaUURVEBk6Jcdj5/ejrHEtJIS8pg0bd/cOMjA/htyioO70nB0A2+eflnXv3pQQBiW9Zk19r9aGaNek2qExDkQ3h0CLViipfgFxU6iY87Ssuu9Zl14J1y19LdOp+99guH9x9j3NMDqVG3Kp271mfRwu0kJ2Yy/v6yOTS6brB/RxJzvljGyrlbEEIQVMWPmx/qx8CxPdi37TBjnh9y0vtLPZLOnM+W4nK4+fz5n+g3sgs2Tys16oZTo+6JvdKSs3PZdTSV8CoaSBAIrJq1wnPqbp09O5N5/saeBAb7IERxjag9u5IxDImUcDQ5i5h64TRsUYMRr39PXOJxVuw8SO1qIXRvUj4B+0xkZxeSnVWIy62TnJJFUZETb+8TyeOPfTmfQ1k5CENDChOlKSZ2g6nzNuFy6Wzfk8zO/UdpFlt26vWtr24nbnsSNetU4baPZxJ/LAOL2cTRzNyz6rNyeZISdFWHqUIqYFKUy0yDtjHs2RCPNCS1mxQXdKzTLBqz1YQmzIRGBnN395dxF9lJ3HsUm5eNnsPbs2TWBnasicdsMWH1tGIN9uXNu74mPz2PP1fuZfuKOGyeVmI7xxJZM5SmbWqxatEOFs5Yj6PIxZsPT+WDuQ/g6WXlrUk3V9i3iQ9PY+3vO0tXc5lMGt6+nmiaxtgXygZK+5LSsFnM1KhSNsncL8gHm4cVk0nDN9Abi638n7GMgkL6f/wthjCIDgzk6WFjSChIoEeVHhX265UnfmTz2ng0TePJV4aAIWnZuS433taJaV+vwuphIjs9D6NOFTRNw2Y1IzSBBGyWyv+M2oucWKzmMpvtViQ01JceVzVg2R9xXHtNszLBEoDd5S4O3JAITRSv/ZaSatUCCQ/wZff+Y5hMguoV7BdntVlo2rp4RPHF4b0Y8+oPGJlFzH5hIf3nN1DTcopymkRlG2teilq1aiU3bdp0sbuhKJc0KSVblu7EL9CHOn8rInlwRyJJB1N5/e6vMXQdaUiwF6+QM1s0zD5eOJw6Ng8rwe3rkpqRj6PQiSkpE2F3YKI4J0Z4e2IODeDZd0agIXlh7FfoukHTdrV5+asx2Aud2DwtFf5HfGOb58nJLAAp0dxuegxuxf1vDi9d2v+XGX9s452ZKwCYOK4/HRtGl/k+LSWLXevjad4lFv9gn3LX2ZFyjMHzvsPlqaM5BXtHP4xFq7yO1NCr/kdeThFWmxmZ78AioPfQ1tRpVZNJr/+Cw+5GuNy0alCNV74bR3puAVOWbiHM24sNUzbjcug89cb1VIsKLj3n7O/W8NkbvxIQ5M0Hs8YTeBqbEVcmKT2b9+euJjE+nZStqdSPqcqDE3rjb7PhH+TNcy/PZsuaeKJrhPDhp6PLVGT/u2OJmYzq8TqC4pjr1al30qLl+d+bUPn3hBCbpZStLtT1ohv5yqd/anZBrjWm3qoLem9nS427KcplRghByx6NywRLALUaV2f32n0Ybh0QCCFK82RcdheOnHza92lC/9FdScsswF7kAgHSJPh77KMbxQngk1/4iabtavPYOyMY+VBfHp90M28/PYvr2rzAhBGf4Hbp5fp26wN9i89lGEi3m2rRIeWCJYA1OxNwZRfhtfgAH479kszUnDLfh1YLpNt1rSsMlgBiwoJxeekgQPMQHMnLLtdG1w1270omO7uA2+7pic1iQuTbcek6BSaNuD8PExTsgzQAKZG6wZ+r9uKwOwnx82bCoM4U7Ehj385kDuw9yrcfLS1z/tnfrsbQDQry7WxZE19hP09XZEgAr4++hh9eHcn7bwxnwj29+OaV+dzRZyIPDPuQLav2I3VJSko2hw4dB8BtGBzIyMThLh7Ny0zLwy/QC2nSigeozBopaWpaTlFOl5qSU5QryPxPFmNoJjSLhXrNavDE53fwzfMz2bxkJyMeH8jAcb0ACJ+3lc8/XYqvzUx2ShZ4Wrnmpo7Y7S5+nbcNHC5S4pI4nphJ+16NgOLRp99+3gJAwr5UjhxMo1a9qmWu33NwSz57Yir2AgfCpNFjaJtyfczLKeS2Pq3Y/e06TBl2crId/Pj+b9z58rDTvk9Ps4WekTEsTz5IvcBQonwDyrV5+fmf2bj+ACazxhff3skfP25gx4aDCACLmeY9GtKiTS2eenkwH700h4yDObTv0wSbx4k8qOiYKlgsZoSAmnXLbr3SY0AzfvxiBWazCU9/T4YPfZ+AAC9efeMGAoMqDvT+affR42w4nESf2DqE+/sye94WPvlsGUjQk7Mxu3QS9qdSr21N4pOyCA72oUZ0KFJKRkydwa7UVCL9/RltRDNl0mJsHhZM3lbcBggBod6ep+6EoiiACpgU5YpSv01tdm5PASE4uOcoFquFu968GS9/rzJ5Nv36N6Nf/2ZIKdm37QgBIb5UiQxCSsnBHUc4FJdCWFQwIX8rYqlpGq0612Xb+oMEhfkSUSO43PXdLh13Sf6SZhLY/rF8/oOnZ7Jg6hrCo0K4dVhHZr73GwCRMSffB64in3UbQrq9kGAPL7QKpgf/3JKA3e7Cw9PCwQPH8fC2lUwjSkxWE+271QegfZf6tPutHvm5Rfj4lQ0weg1oTnCoLy6XTpvOZbebueXeXvQd2hofP0+eefJH0o7nkpmZz6IF27nxppNXTQdIyy9g+NfT0Q2DL9duZsUDY9i5KwmHw40Q4Bfqi6MgEwn42ax8O/VugoK9MZtNFDid/Hn0KFJKEnNymLdiE26XjqYJYptGsW/vMby8rdRvFHnKfihXFolK+q6MCpgU5QqQlZrN7rX7uGZcb3be803xhwI+fXIaK3/eSGSdqry//NlyAYwQgnrNapR5P3HuwyQfSCW8Zijmf+wv9+JHt3AsKYuQqv5YreX/vHj5ePDg+yOZ98Vy+t7SCb9/jLQs/nE9hi7JSM2hSaf61Kwfgcliom3vxqVt8nMKeeqmjzmWmMEj795Cq+6xFd6zEIJQz8o3yR05uguTP15CrdphNG0WRexbw5n1+XIKilz0ub4NMfXCy5zL9x978/2lRfuYSq8RGl48stWwUSR74lKQUlKnbtVK2/9drt2BlODSDTILi5BScvPwDuzecxRhEdw8oBUfPTsbgA49GhBWxa/0WG+rlf716zE3bg+tIyMYen0En74yDw8vK4+9Pgy3LgkK8cHDs+JVg4qilKeSvhXlMmcvdHBz9F047S5cLh3DyxuT1cqgMd2Y/cEiDN3A5mXljV8epd4ZJADPn7aehTM3MvCWDvQc2OKc9PWth39g+ZwtBFfx56OFj+Dl41GuzcKpa/n42Vk47S6i6lbl0yVPnJNrny4pJTvjkvH2tlGrgmrblR2zdcthfP08iKlTNmDasekQGWl5dOrZsFwA+umqDfwWF8/dndvQo35xYPbNui288ftKvG1WJve/liCLrbSI5j8VOJxggLenlcJ8BzYPc4U5Y8ql60Infddo5Csfm3VhLndP/eX/qaRvNcKkKJe5nLRcCvPsuBzFSdxewVYQ0KJbA3as3svBbYcJrhpAjdiI0mO2rz/AvClr6HpNMzr1bVzunFnpeXzy2i+4XTqTnvmJjj0b4ul99pvOPvjmcEY+3A//IB8sFYxQAcQ0ikQI8PCy0qRd5aM758uUH9fx3Y/rkBJeeWoQbZrXPOUxQgiat4wu9/mWtfG8cP/3AMydsYGo2HBi29ekekQQDWpV5c5ObbizU9k8rx82bcdtGDhcbvYVZhMe5MtLP8/mugax9KtXr7Rd8vFsbn3+e4ocLh69tQdFR3LZuO4AI2/vStMWNVAU5cyogElRLnNhUSFcO64XS39YxaB7r6Zeu3q4nW6eHf4BUkrMHjaen3YfHl7FAY/u1nnm9i9wOtysXxpHbPMogv9RfdvD04qlZDTEajPx0KjPyMsr4qmJwyvMi/n125Xs3niQG+7rQ/U6lU9JCSEIqVo2QVtKicPuKp0+imlcnQ8XPUrGsRwatT27gpH/xp87ErE73GiaIG7fsdMKmCqTfDgDKSVOh5vd2xLZlJ6Bc9deLFYzr9x1DV1alL+/4a0a8+bvq7CaTbSuEUG/b7/DqeusSjhMm8hIQryLpyFXbTuEw+nGrRtMmb8R++Z0HA4Xzz81k58XPASA0+1m2ppteFgtDGnTCJOmcleudBKBoTbfrZAKmBTlMieE4O53buPud05sePvFM9MxpEQIgaEbxbWRThxQmgAuBGgVFF309Lbx7vS72bxqH6sX7WDXuv1ICROf/JHP5z5Qpu3ujQeY/NwsHEVO4jYd5Iu1L5Q7X1ZaHu8+OhVN05jw5o34l+Q2OewuJtwymYT4VAYMb8ddj/YDIKJmGBE1K56GOh+cTjffffg7eTlF3DiwFYeOpOPr40G/no3O6rw9+jdj48q9HDmURlqBE7dNwwBcbp09CakVBkyj2rVkYJMGeFktaEJg1jScul7681/aNY7mk1mrcZkNjvk4KKpnIniPjt/fEtffXbCaaWu3IYTA6dK5uXPzs7ofRbmcqYBJUa5ALXs05qePi0sMNO0YS6O/TW2ZTBpv/DCO32Zuon2vhpUWXIyqHUZU7TAWz1hfsvUIeHtYyrTZ8McevvjfPNxuvTj4qmQE49u3fmXT8j0IAdPeX8ydz10HwN6dSaQkZiIlzP9xI+Meufq0KlO73Dpmk3bOqljPn7GBOd+vQ9cNigqd/PzN3efkvF7eNl788FaklMz7eQsbth1iW04m/r6eDL6qSaXHBXqdCHqm3XgDc+Pi6BUTg6dmJje3CD8/T2pUDeTXSXcy6tMZJC5NwNsN9XrH8Ozoq0uP/SP+EI6S301mYeE5uSflv09XJRorpAImRbkCNevWgK+3vYHL4aJarfJL9mMaRhLT8PSWnN/38lBeGPslHt5Wnnn/ljLfvTrhBxx2FyYvTzp1q8eoJwZUeI7Q8IDSKb6QkpVlR5Myef7BqTjsLoQQuPPt3HnVa7w778FyyeBSSnJzi/D19WTKks1Mmr2KsAAfvn98BEG+Fa9uOxMWiwkECE1Umlt1NoQQDBjckgGDW57RcW6XTv3gYBp260pSYiY3DJiEw+Hingl9uHZQCzxtFjwP2/FJcgJgTiokNKx4NZ2Ukv2OLDQrmDVBizqR7DhyjKpeXsz+chX+wT4MGdXplNu6KMqVQgVMinKFCo0IIuNoNg/3egXDMHj867sJq16+dlJFDsWl8OSIDwF49fu7mbrxBeK3H2HqxF9o37cprXoUT1X5B3mTmZaLyWRhzAtDCa3qX+H5bhjfi9BqAWiaRteBzXE53WxYtR+nw42hCaRZoOW5SDuaxc4NB2hzVcPSY6WUPPnUTDZuPEhU/TD+NLJBQnpuAeviDtOvTcVlB87E1UNaYS9ykp9bxLDRXU7rmL3JaejSoEHkmdeQOh1bNx7imfunYDJpvDn5NnbuTMbpdON2G/z84wY8zRptutTDYdKRAoQE198WyAkh6Fw7mnVHEgn09OJ/M5eRmpNH8NZ8TEmFmM0avv6eXD209Xnpv3JpkoCh6jBVSAVMinIFm/bmXHat3QdSMnH8Vxw8lEn12mG8OuWuk656m/35crLT8gD4+fPlTJg4nEcHTqQwz87iqWv4cuPLhIQHMvH7caxcuJ2GLaMrDZageBqw17C2pCZncXO318nPLeL2h6/GbDbhMAkQAiPMH3NhEXWbRJU5tqjIyYYNB4uLbGZkQKgJ6QLdkDSrHVHJFc+MyWxi6KjOp91+0da9PD21uOjmE4O7M7jt2eU6VWTu9PU4HcVFQH//ZSsDhrfjmy/+wJCSYwfTeO/FOQSH+RLcN4pDjbLQdKjXpgbDr32HKuH+vPTWjXw2dBCHMrPwMlvo++oX6IakyO7EWxbvWm/oxjnvt6L8V6kwUlGuYNXrhmOxWbB4WDh4MIOC3CIS9hxlw9LdJz2uZbf6WD0sWD0stOhSvJT9r/9cpZTFG/sCoVX9GTyqM/UaVy9zfFGhgw0r95GVkV/m8zVLdlOQZ0d3G/z46TLChRNzSd0gs9XMO3MfIuAfOVWenlZaNK+B2axROyAQs5cZwwPuHdaRasF+XAybDiTjcLmxu9xs2J94xse/8f0SOt31Hq98s7j0s/TUHJIPp5e+7351YyxWM1abmQ7dY4mIDGLGnAm8PvFGzLqBw+4i5UgmR6bvo2P16jz2UH92LthHRnoeu7cncku/d0g7mk3t4CDC/X3p07Qumgla3tCMPoNbMmx0Z/oM/s+UyFHOGYF+gV7/NWqESVGuYP3v7EloZDCGbrD2j72sXrgdJNRucPKRmS79WxBdvxpSSmrULa6I/cqPE5j72VI6DWhJaETQSY+fcOvnHEvJxmI18c28CXj7FuckNW9fuzRAyklKIzMrF0uwH+2Gd6J7r0ZERpWdMlx7OJFP12+kWg0vQo/7U7VuMFtcBbgNwfbcNKB4j7vPX55L3JZDjHl6EA1a/fsyAH/Jzyti19ZE6jeKwD+wfDXxmzo3Z8XuQ+iGweirzmxKKzu/iFnLt6Mbknmrd3HnoA4ci0/jyTu/AuDOR6/hmuvb0LlHQxo0icJk1ggo6YPVZqZJy2h6D2rBsgXbKShy4rC7MJLtDGzagAOx8RzanwqAPa+I1Ut2M/iWjhxOzWTpgYMITxPWEBv3j+17lk9IUS4/KmBSlCuYEIL21xZX6W53bQv63NCOKpFBhEUEnuJIiPpHPaWGbWNo2LZsIcnUpAxSEzOp0ySqdIpP1w0OH0xDSolhmFn280aqR4fQtEss0XWq8u3Sx0iKP8ZjV7+GLsCdnc+wwa1o0Komqdn5rI47ROs61YkM9mfsT7OxF7qossGFuQiOHc+BTh5Ii0AvGeX6c9U+fv1hDY5CJw/f8hGvzXuApjHV/vUzy8otZPSASRTm2jFpGl/Pu5+w8LK1o6LDAln0zO3/6vy+XjaqBvuRmVtIgI8HAd4eLFx/AJdTR0rJqsU7ueb64mKWwaHlVzAKIbjnyf7cOLYbj975DRnHsjmyJYE7er3B7U9cy5KZm9BdOsKQNCupYzX+1R8p9HEhTbAk7sC/6rdyeVA5TJVTT0VRFKA4j6hx29qVBkurF+/i6TFfsnrxrtM6309f/MGo9i/y2ND3uL3zixzadwzDMDCZNG67twc+fh5EVfNn8sPf/Z+9846uovra8HNmbkvvoYSEFmpC71IEkaqIiIgKgmLBhh07KioqKopgQUERRCmCdBWQIj30kgQIIaGF9N5umznfHxcDgaBg+9TfPGvdxc2dMzNnDmvlvtln73czbvB7rF+wDQC/AC+atKlLlyFXgc2G9PFh4afr0HSdW9+dw1vfbWDou19TanfibTKjuCCnmZm8piYsZhMjO7aifZJKxsQ9LJi+gaBQPzS3J/HZqQomzF7zGzP/dca8u5DSQjtIj/hbPm/HH7rehaiKwjcv38H7j9zI3PEjMJlUelzXAj9/G4pbpyy/rLJv1nkknsjg7Te/Y/2KvVgtJmJbRuJlNVFaYif9VB4pCWlUrxaASRF0vKYJ9RpW91QYni5BcUqQMCjmjyfJGxj8FzEEk4GBwW9SWmxn4lNz2b35KBOfnEtpsf03z1mzcBfoOhLI1RUeHjmd5x+eA8DQu7qy6OfnqOGj4Chz4HK6SU2onOvTc2hHrP6+WL2tdOrdDKdbo7DMjsPlxuF0U+pw8nbfPphQQBU4/QXWQju31W9C4a5MigvK+HLyaiKjqxHesjZ6gA8y2J/a4YFVzPbyySgsobyaFV0FzILY1lEXjTmRnsfQZ77k9udmMXHxBhbGHeRK+nb6eFlo2zgSXy9PVC6idihtOtQHXefowdN8/NbyirEzP13PkP6TePujH3jozo9ZN3Mb74ydx6Rxi/hpxX7yi+0oPlYURbB4+noiawbw/IyRVO9ZjyMnsxBCMPb+XjTJ8+HeiFieG9jjD62Pwb+ff0oOkxDCJoTYIYTYL4RIEEJc5HorhLAKIeYLIZKFEHFCiDp/wZIAxpacgYHBZaCqCqqq4kJDMSmopnN/a6UkZ7Jq5X46dG5A6/Pygwbd0433nzwNUiLMKm6Xxt4dKbjdWkWe0shxgzmdlI7V28rAB3pXumebbo35bN2zuN06EXXDSCmcS/9u29m6si7qMY1tqxIZMKQdsdXC2Z+Rif9pF9VD/QgK88Nqs6CoCsFhfiDg5Jki8PXCjMJ9fTr8obUYf08/PljwM5H+ftzdux1NW1wsmGYs3s7xM3kAHMnPRYSY8baY6d+q8e++b3hEEGfT6lkfl8yjZQ5OpWQz7+N1AKyatwPVoYEOuiJB01EUgVAUelzXgm0Ld1BaUMb+rUlsKMylzN/MnB93s2LSfVzfqznX97q0UaaBwf8TDuAaKWWJEMIMbBZC/CCl3H7emLuBfClltBDiVmAiMPSvmIwhmAwMDCrIyy7GP9Abk7lyR3ubt4W3v7qPLavj6dw7tqKvm65LnnhgNqWlDlYsFFgUKAAAIABJREFU2cOsBQ8RejavpvfgdnTr3wJFCJ55aDaHDpzi2utaVIgl8FTpTYubcMn5VDvPF+pE0SJqq2ns+c6MrinMeWk+IVaVOXffwpFDZ0hJPEO3Ps3w9rEybfljHDlwiubt62E2m+jZJ5Z1q+Np2KgG9a6wpYqUEl3TUc/Ou3OzunRudk4YHj6ZxYL1++jSrC49WkUjhKBpvWps3JOMw6WhmyUqUOZ0XdF9AXafTEPTJe1qR3Dzfd2Zu3w3bl1HDbQhgePJWaBAWZgVZ7CK70kd6Sdo1bU+Y9+8he+/242Ukhtv60hOUjqH9xwHwGVVUAuclIXCgOc/5+sXhxEZHsjp1GySjqSjWEx06dao0v+Vwf8GUop/TA6T9IRlfymlNZ99XRiqHQi8cvb9QuBDIYSQVxLSvUzEb11TCGEDNgJWPAJroZTy5UuMHYxnwu2klLuEEMOAsecNaQ60llLuE0JsAGoA5WeP9ZZSZv3aXNq2bSt37dr1209lYGBwxUwdt4jVi3YRFObHJysex8fP65JjC3KLiVsTT+PWdXho9CwcDjcWi4mZ8x4gvAq/pV8azFovaJ1yJRwvWsR333zE2hcjcNsVhKpi87bQvm8Lnp/5wG+eX17mxOZlvqJ2KfZyJ08M/ZjjR9K57aGe3PFI74vG9Bg9BZGQj9tXkNnFh6HtWzK+1zUs+n4Ps2dtpqSGyrVXN2HswO6Y1csXIEv2J/Ly92sRwFM9uzK8fUu27Ezmyx92cn3XGAb2aE5JUTm3jfyE5GYgBShuSeTyfBZtfoG0U3nUqR9eseZOu4s9m45Qu2F15szbyrcHjqD5mFCAJ2/tTnCZZPK4RWh2DcWlEdujCe9MH3XZ8zX4axBC7JZS/m3+DhExgfLBBV3+lnu9GLvyN59NCKECu4Fo4CMp5TMXHI8H+kopT5/9+RjQQUqZc9HF/iCXE2G6nJAYQgg/4FEg7pfPpJRfA1+fPd4MWCKl3HfeacOklIYCMjD4f+TU0QxWzNrImsX7cLs0igvKOBqfRstO0Zc85/Eb3iMvswhFVXju01H8tCqertc0rVIsgady6/eKJZfu4GDBKrzUUEaPXIRjx1zitxylKL8Ue5mT1PjTl3UdL2/LFd/70N6TnDmRg5SweOamKgWTKbkIpdiNuQT8j9j5xnyADSsO0ajQQvnpYmyZKo2v8r0isQRw4EwGTpcbefY9wMcbd5JcmMOBlT/TplkUtUIDad6lHkeLUkAR6Cao1yGKR++aQXZmEdVqBDBt3oOoqoLFZqZjL4+BZotGEfy4IZ4Cm4LZDnsST7Ck9Bje7b2p/lM+SEjceOSK18vA4AoJFUKcrwE+k1J+dv4AKaUGtBRCBAKLhRCxUsr4v3WWZ/lNwXSZITGA1/DsHY6t4hjAbcC83zFHAwODv5Bnh0whL7MQxduGYjYRGOJLw2aV+8ilJJzG289G9ahQpJRkp+WjuXUsNjO1agTywCO9KC4qR0r5pzW8/YU16R9xqGgDAoV+NR/nuS8exFHuZMLIjzmVlMGY90f8qfc7n9PHs3G4dDCpNGldp8oxPTs34eeVB9ClRPc1odqhtNxFiWrCZjMjpaRu/SvbBgQY1akNO46fRtN17u/SnuysIo6cyMSFxMtiIiO/hFqhgYy9pzc7J87mjCwjQvUhw+Si9HgOAjh9IpeJY+eReiSDB14YQOurGgBw7Q2tcNhdrNp8hKScHHb8mIR3HYEjxOTpoiwEDZtH/ur8DP67aH/fllzO5UbPpJQFQoj1QF/gfMGUBkQCp4UQJiAAyP3TZ8pl5jBVERKLu+B4ayBSSrlSCHEpwTQUz17j+cwUQmjAIuD1v2LP0cDA4NdxuzQATLrGhNkP0qRN3UoNVxd+tJqv3lqKlPDGwseI7diAxycNY+7kH7mqX3PKXRpjbv4QgFtGdmH4fd3/lHlN3bGd6Xt3MaTdEVzpgtTPg9Ba76bxC92well4dcFjf8p9fo3Nqz0WCkJAk9a1qxzz1Lgbad2mLiabiXQfjWlT1mBLKaJxn2b0v68XQUE+RDeqXuW5v0atwABWPHBODE54cRE+R8sojrQSHRxA67NtX3Lt5ZywlQOC3JQ82F+GkCCFoHmbKHb+nIS93Mn7Lyziq/XPAqAoCgNu7UhSViGJqVkgweQEWc2HV7+7GXdGOc061r/iORsY/JkIIcIA11mx5AX0whOYOZ9lwEhgG3AzsO6v0hKXJSOllJqUsiVQC2gvhKhojCSEUID3gCcvdb4QogNQdkEYbZiUshnQ9ezrjkuce58QYpcQYld2dvblTNfAwOAKeP2bh+h6Q2seemsoJ9MKuHPQFD6dvLqiDD5u1QEc5S7cLo34bUcB6Dm4HTM2jWPU8wNJPHAK7WwrjrhNl7+N82u/01yaxvtxWyh2Ovh+UQ12jo4kZ7sPm6afYPf6i9u2FOeX8sboz3n9nukUXtBu5Y9ww7COKKqC2Wqma+9mVY4xmVV6D2zNNX2ac3vnlgQl5GMqcLBn6X7i41J4/fFveOLFOUxYs4H8svIqr/FrSCl5Z+x8ti/Zg0+mnYgkJ8NaxaIonkjentTTnpi/BHORp0oOCcGNQnhwbH+klFhtZiLqhgGguTXG3f05NzZ7gVAEZrsbpdhB+N5Cvu17E0EWb96asJxb+73Hji1HL5pPid1xRRYJBv8uJKAj/pbXZVADWC+EOADsBNZIKVcIIV4VQtxwdsznQIgQIhl4Anj2r1gXuMIquUuExPyAWGDD2VB8dWCZEOKG8/KTbgXmXnCttLP/FgshvgHaA7OruOdnwGfgSfq+kvkaGBhUTV5mIWeOZ9OkTV0atIji+U/vRtcl1131GromWbFwJ/0GtiKyTih+NUMRQVl4mwU9bvaU5B/ee4LP31pO41a1GTiqG8vmxZGfV8KI+6/5zXsXZBfxWI9XyTqVyxOf3M21t1edYBodHEL27pP4f5vryWgW4NZ0vHxtFWOK8ko4vDuF7avj2fr9PqSUBIT4MmbibX/KOiUcSocgLzQhiE84Te0G1X7zHL8AbwrzPKLt21mb0DVJeno+Z5QsMoqKmTp4QMXY+MxM1qek0LtBAxqFhlZ5vRPHsti06qAnEujSeHTCzfTse068dW5UF5/lKuXSjdvHjHeAQmi4H+PfGUbNyGDenXMfJ5KzuKpnUwCSDp7m4M5UHHYXC6etJ8jfi8K8UsxWEyah8N3S3ZSXuxDA8oW7aN+5QcW9Hv9mBWsSkmkeWZ3Z996CSf1nVFMZ/DeRUh4AWlXx+UvnvbcDQ/6O+fymYPqtkJiUshAIPW/8BuCpX8TS2QjULXiiSL+MMQGBUsqcs4nk1wM//SlPZGBg8Ktknc7jgatfQ9d12vaM5YUZ9wKebadq1QPJyy1BVRUCg33ZuCae7esPgRCUaRAU7mlm++aY2WSl5ZO07wQhYX7MXProZecu7fhxP3kZBWhuja/fWlpJMLk0jWFzv2XvyTRi551BOVkAFjOYPQnjrbs1Iaa9Z6uouKCUO1s/T1leMdJsQjGbkcCOH/bB7xBMx1OymfTmckLD/BhxVzdeun8W+bklaBYVxaKSl/PbkSshBO8teIifV+4npm1dXhs7n+LiclxSR7cINCmRUuJwazjcbobOm4/d5WbKxq183rE/3a6u7LJd6nDywPzlaOiYLSqRtUPp2bdZpbWuGeTPpnGjWbhsN6VR5dw6pSPB5/W3i24aQfR5vQFr1Q3DYjUhBDSIrcUDLw1k2VdbadapPk9NWU5ufgnUsOGb46L3gBYV5zlcblbFeyJOiWeyOJ1fSJ3Q326hY/BvQ/ydOUz/Ki4nwlQDmHU2j0kBFvwSEgN2SSmX/cb53YBTUsqU8z6zAqvOiiUVj1iafuXTNzAwuFJSE9PQdYm9zMnBrUkVnwshmPLlPezcmkzT5pGknczl7XGLkWd7sklJxRd1YKgfOWl5OMudTH91MXnp+Yx6cdBl3b9px2gUVWD1stB5QJtKx45k53AoKxvrmXJK04tQhEA6XaiqYPizA7n1kT4VY8+kZGMvObvF5XShax5bx6yUEtwuNybzldnMTZn0A4cTz2CxqDjyy8nJLEJKiZ+/jRZdGnDTrZdneFmtVjC3jO6BlJJXPrid5MPpHLKWUmrR6RxWi25jplLmdBKUZMfRzwtMAl3A7C82VhJMTrebccvWkH2iEKV5MLYcJ2Wh3uzff4K6UaEcSc9lwU/76NepCT3bN2T44I7MfO9H3nt6Afc+05/a0dVwudw47e6K5sYAfoHeTF81lgXr97IvL5t0nDz6+mCOpGaSP7cUl1sHm8qsxaMJDT9X9WgxqXSKjmJXahpRwYHUDPS/ovU1MPi3czlVcr8ZErvg8+4X/LwB6HjBZ6VA5d+UBgYGfwstuzaiXmwtkhPPENqiLrM+Wcfw+7qjqgr+gd707O9xfD6ckIZiNqHpEiEgonZIhaHlq1/cw+3tXgKpoEvJ9tUHL1sw1WpQgy/jJ1GQXUTtJhGVjkUFBBCcXIrYkoXiliAlvv5e9Lm9E9+8NI9t325l4qrn8fKxEd08ktpNa3lsBXy8IL/Qo+oUwdDIB5iy+TUioi8/2bpmRBBJh84AENumNvFxnia0w+/rzsDhV132dX7hw4krWbVsL94+Vj6b/yCBwb50v/MD3E43FgnZTayYyhTQdcKTNTp2a1Dp/C937GX99iRshYAUmIpdZKWm8szu6ZgcDvI7R+DWJdsPHKdFwwgSth9jyZytaE6NnKxCXp12Jw8Om0ZZqYPRT/Rl4NBzgs9lgmlxe3C6NbYfPcW2Nx6kfmQoNg0cUmLLLSduTQLXDTv33EII7urVlq7ZdRnarBmnswqIT0nn6pb1CfC9tGeXwb8LT/PdP7fS9b+C4fRtYPA/htXLwqTlT/HoXTM4En+ak6fyqRMdztW9YiuN69yjMds3JXHscDr9rmtOvyHtEEJQmFvCjPGLsKqCcrcOQjD00b6Xff/049ms+Hw9MR0bUKepx76g1F3C/oI9LLxvO95bTnh8S8wmT+RICBZO/gF0naQ9KYy5+lXGff0wh3Yc40xKFopZ9bQMCQrEpkrKM3IpL5VsXb6bIY9fd9nzenRsf/y9rWz8fj9njufw0aKHyS8u47S0czqvkLKsMrIyCunUpWGl1jCX4ufVCbicGg7VzeGENDp2bYTNasLhdCMFuPwVhAtAYeSIzozqWzmCpQgB5rNfXCq4fE2o5SbUUjeaS0d36yA8SdyKgF1ZGbg0HSEgV3Owa1syDrsLza2zbH5cJcFkUpWKaOEv702qSrfQILasjkdVlAo3919YfzyFB1YtRwDxGZnErUhGSsmcVbtZ8NrIy15nA4N/K4ZgMjD4H8XLy4KieL74L/xyBLBYTDz3+k0XfT5j/CLWL9qBUATte8QwfOz1NGjm8ezJTsvj24/XUD+mFn1u71zlfZ+/6T0yjuew4vP1vL/6eSIaVGfcnhcoNxWRutUKmu75M1cRSAHlTt2Tw+R0oGs6p1KymPrk1/iH+OCwe9qNKFLH7OtNv5vbsGzK95jMKu16X1lvNLNZ5ecV+8jNKmLzmnhEA18WrN2Pd4aGK0glMFNDEYJuPZvy1IueAp0VS/awYV0itw6/irbt61W63o23deDr6T8TFOJDregwkk5kMeGh6/h8/lZaNI/kk8S9OF2eFqSKr5mc7GKeHT2LrPQCnhp/IyOubYXd7SJhfxr7dp7CGe6FM8RG0O5sVFUhKD6H0iAbviVuMo9lE9IwhLwugaiFLhpf35jWHepjtpjQdUn/wW05XVhIbnk58ngJr42ZQwNvC7Gj2jD42lYVppqPTLiFWvWqERzuT48bW1d6ntTCAnRd4tQ1jmbmIKXE7nRzJqfwitbZ4J+PdnkF9P9zGILJwOB/lOfeGMySuXFERIVUqoS6kIK8Uo4mphHTqjbePlZs3lYURUEoglZdGlaIJc2tcX/viZSVOFAFhEeG0Krrxc1mnXbX2bJ0gcvhYvjMeRxQq1O7uoolvBD3ibPFsKoCLjeoLkxB/ii6htR1dKFw+kQuj43pw8GtR7HYzLwy52Ei6ofj7WtjyMN9sHpb8PH3vuI1iagdQklROVLC3MQE/NM0hARLtoZ+tr1LcpLHdftMWj6fTFmD0+nmUPxplv/0TEWpP8Dwe7sz5I7OZBWUcMdLc9B1iaVEQzlTzrFNx3nlxT58nhhPzUB/QvLgjgGTkU6PJ9bsT9bT5doYrvauQa9+dbhjx1wEIFWY/MOjRIYF8dywjzmVnAXC05j39pBaZJeUsW/FYZJnHWFBppW5Pz5FebmTn3Yc5oa3ZuCoYaLZTw7KSjwvU1IxjUeeM9X08ffijserjhYOaRLDppPHySwr4c1r+vC9NYGt8ak8MKhqYWxg8F/DEEwGBv8jnEnNwuZjJfhsIm9AoA8jH6jaBiA7vQCnw0VItQBGD56Kw+4mNNyP6Use4e6XbiK4mj9ePlYGjOpecU5y/GnKy5wgBBrSs2VUBePnPcLcd1fQomtjAhqFsTsuC12aSUkIJfpEHvJs/kT1iCCad2mE5tboPbI7EfWrMXbQ+2SeyqMwr4Txt39I+97NeOWbhytVjQVXD/zdazR+6nA2r0mgToPqPL/yB3Jcp5BWK17eFmKjwsg4U8iYJ/sBYLV6XLEVReDlZeX8IkGXpvHi5z8Sn5pOrxbR6BLsTjdOReKrS9Al819ewfJtnrac994+jYrVUsBc34+Hhk0j5XgObm8FdytfZKkOwSaqVQ/Ex9vGW988yLezN/P9tiTe/2I9Lz11Pfe1bcMtEzajaTorl+/ljju7sHP7MWa8s5ogTSOviYnscBVLsifda++htMteGz+LlZkDzkUcm94eDvT43Wtt8M9EIowcpktgCCYDg/8Bln6+gS9eW4xQBBMXPUajVnUqjm1ddYDPJyyjeadoxrx5CwfiUnj53pmA5PYxvSgrdeJyukk7mYfLpWHztnDb4/0vukfNumF4+3lhL3UQVjOQ1t2bXDQGILp5FONmPwiA3e3C32qlxOHA260iEBWmiK4yB09+cg8A6xbvYv2yvTRoEUVuRiEupxs0jR0/7mP3+kTaXhPzp6yTl7eVXgNbs23lHuwTt2HTJTUaRxAe4sue1Ey8/b0ICPMFICTUj7cnD2Pv7lS694ypJNp2HDrJ5vhUyh0ulsUdokaoP6cy8unTrB5bju1Fljow+5+rXLu2bzNmTt+A2wSZ7axQR0NszsZtU0jv5I1qglq1g3j1up4EeXsSrL19bfy4P5X0wlLy96SyOS6Zqzs2JDTMj8LCMpAw/vmF1IwIQrp1hFsSmKJx0/0dWXFiO0JVaHPVpSOLBgYGlTEEk4HBvxQpJakHTxIQ5k9IjV/3w9m4bA9OhxtFVdi/OamSYHr/yW8oKSwnL7OQawa1Zc/mJJxOF0hI2JVK9z6xrJu7FbMCcasP0vX6i4pmAY9h4xc/v8DJoxk0aln7V32ZpJQcyD9NoMWb1bfeyY7003SKiGJ3nV3MeGE+mktj1Gu3sP7b7ezbfow1i3cjdUlo9QDuHz+YDx+fhdR1VG8rPv5/foXW7p8O4rS7QFVJP5LOmaQMtGoBFNYJ56f1idw5zLMNFdOsFjEX9N0DiAwLxOXSEJrEnl7MxNduqjC9XN8wgt2bjuA2m/nknR+46+GeDB3RmWZd6nLvimU47GWErC0mX4KpTMdcrOEMBPfaTMZ9NZNO3Rrx8rtDEUJQNyqU3LwSpISIGkGoJoXPZt7L3K+2MH/5TraUZ1L7ZBl16oZxPDkTpURnw+e7mTFrNFlZRTRvZvSLM7gY3chhqhJDMBkY/EuZOW4e372/AqEIpmydQN1mVfc6Axj6SG9eHzUdH38vut5QOZm3Zp0wTiSlIyWE1Qyi101tWb1wJw67iyH3dqckv4TN87diL3My7eVFlxRMAP5BPsS2/+0eZB8cWsdXydsw7yvj6TZ9uem6bgD0Ht6N3sO7oes6I2LGkpte4Ik4BfghFE8113Uju9KmRxNWfrmJpu3r0aRtvUveJ3FnCnGrD9J9UFvqNo245LgLuf7enmxeuovSUicS4Sm1tphQzSqtW1Ze5xP5Bdz57SIcmpvpNw0iplo4UdWCaJopOZFViE+xxr7tyQSG+vLa2PmUFtup26Aam1YlgPBs7Y16pBdN69Vkxe3DeGjA++Q6NVAUrFYTMeFhpDiKMWWUeIw5txylsKCMgEBvxj3en627UqgVEUyj+h5B5uNjpU27unyQsg/NDEdwMGNoP157ZJ5HNAtBRM0gImoappMGBleCIZgMDP6lbF26E0e5E4vNTPyWI78qmNr3jGVJ6vsIISoiP5knsnllyHu4nG6GPdKLdtc2o3pUCABzt3ts1oQQHD14inKbDentTXBU8J8y921ZxzAvycP/+2I+F98Q/KGN7oPbVxx3u7RzYglA01B0jeAgL3LSC6geFcrdL/2671NxfinP3TIFp93F8i9/5ttD76Ca1MuaX52mtZiXMhWnw8Wyz9YhFEHr/i3x8fMiPNSv0tiv9+3ndGEhEvh4exwfDfS0PrlzVHfeeXoB0qSQmFNA0fwdJO7z9N0rL3MiFACB2XLu1/CBuGOeYw430s+G26IQcUpSvisXuwCTxUTd+uHYy13cf+skigvLePrVmyrE0i80b1UbZamKpuuYTCphNQJ4+qWB7Np+jEG3tMfA4FJICZqRw1QlRtzNwOBfyshXbsFsMxMaEUyXQRd/CR7cfJin+73JgvdXAJ4O9edvky2c/D3H409x6sgZUvemUKdxzYpj5wurkyfzMHtbQQgKnX+8naPm1rhZj8HnuIbikEiXzvHE05XGWKxmbnt6AEKAMCn4+9tAlxzde5yvJv5WcwEPLpe7wqXc7dRI3JHM6M4v89qIT3CUOwHIzy7iwWsmMLzlcxzalYLL6eb9R77kyX5vkRJ/CovVzM1j+jD4od7UrRt+kVgCaFcrAqvJhM1k4qqoc1tc3a9vic/VdSmMDmDtzmTKkZjMKjYvM517NqHvoDZ07R3DkBHnqsyatauHxWpGWFTKavpQ4m8iLiOHMrebsggTAd1qMnbSzWzfeJiS4nLcbp35szZfNKfZW/bgEBq6kARJE/XCgknad5L1i3Yy58Of0PWqE/INDAwujRFhMjD4l9J1cEe6Du54yePjb/2A4vxSDu88RqvusTQ4L28JILpVHcw2MyBo2LruJa/TMCYCRRFYbWbaXhUNgMPuQtd1vLytVzzvl0ZMI3FnCsEmC8GNA/Dx92Lg6J4XjRvx/I1cf3cPsk7lcHjvCb6csBSA6rWrblJ7IcHhATwxeThrF+5g4N3d+ejpuZw4dIaM4zlsWrqLa2+9ijXztnMyKQPNrTHzjaX0GdqRDQt34Ch38t7DM/lwQ5UNDSrRq0E0i4bfhlPTaFb9nLP4zyv3oSVmYvUxIa2Srtc2oX3rOpSWOKgWEchj932JUAT6xJU8N37Q2Tn789Wm51m1+iBvf74WhEAqUF43gOI6JhKchTz39Y9MGNATVVUQFnGR4SjAyZPZIECaoCS9BJfTzcKZmwDYuTmJ08dziKoXftF5BgYGl8YQTAYG/1F8A30oLSpHIvGuIjG6z4irqVEnHM2t0bLHpavMIuuE8sWSR8jOKqJRTARHE9IYe9d0NLfOi+/fToerL/Za+jUObkvG5XRj87bw2NS7aNK2arF2JiWLfRsT2fXzEQ7vSuGaIR2IaV+PHoN/e0uprLgcRVHoPqgd3Qe1A2DVnM2kp2YDUKOORyw0aBmFalIwWVRi29dn57oEXJpEtZgJrenZfkyMS0ZRBI3bncvNcrk0Jr2xnJRjWTw6th8xFyRP52UXM+npBZ7nNCm89PVomkTXqDj+5MOzcbjcCAk7d6dUOhchiN99AquPiSKTRnGEwE9asEiB061hMZuoG12N2csfo7TEQc1aF2+TPtyvC+s2JlCkuCmNtNFhyqfEtqlOUWIe3r5Wwv+A9YLBfx/DVqBqDMFkYPAf5e0fn2Pt3C007dCAiAtyXADKSuyERoayZfkeigvL6Xpj20tWtoWE+xMS7mm2umn1QezlHoftFfPjrlgwDX2kN3Mnr6Jhy9o0aBF10fEda+NZOn09BzceQtc1NDx5Rz98tZn1326nbtNa1Iu5uDLtF3atOcj426egKApvLnuKph08pfNjPx7F4mk/IQQ0bF0HgFZdGzP5h6cpzi9FCMHiT9ciAauPlWc+u4fvv1jPtGe/AQmPfDCSLoPaY7aY2LrxCFs2HsFudzHpjRW88e6t+PrZ8D0rTE0mj7EngNViok2zys959EQW9iAFtVxyvK4kp6SUUF8fz/quP8SWjUkURUjym1iRCkSEhdAwSSE+LoVWYZ5xAYE+BAT6VLkGIcF+rPv4CZ5a+gMrDyfhcjqpeVNTnnm0MXWiq2HzvtjZ3cDA4NcxBJOBwX+UgBA/CgvKWbswjrqxkfgH+1YcS0lM48kb38dR7gKXCxXJ1u/3cvfLNxNWRcTifK7qGcPSb7ajazp9bmp7xfMa9ng/hj3er+Jnl9PNa/fMIGnfCe56fiAfPTPX47MkQZa7EDYFRVXQ3BrlJXY2LIr7VcH041cbcTncAKz/No6mHRqQl1nImGteIzezGKEqbF65j84D2tCxdzPqnm0AfOpoBlJKTBYTNWqH4uVrIzEuGUeZEyEEK7/cyPvPfktgqC+PTR2JlNJjXqlL7r1+MiaTwpT5DxJZLwz/IB/e+PJetv+UQPcBrSqaFgOkFxTj2zSInCPZlNayIN2Cr1bt5vHBnkrBsHB/pFsjIMmBO9JCcJ0gnunShVc/nY2m6axesoeR93YnMLhqsfQLqqrQP6YhPyV7mgj3adKAmAaXLgwwMIBfjCuN9OaqMASTgcF/AJfTzdpv4/AL9OGq/i0QQrDks7Ws/PJndE1H13Se+mhUxfid6xJwOtxIKZFSorvc/PzdLo4SvZf4AAAgAElEQVQdOMX0uNd+9V6Nm0cyd8NzaG4Nv4Arbz9yIfu3JHFw21HsZU6+eH0JqlnF5XSjmlXCqofTd0Q3CgpKWT59PYpFpUOfFr96vT7DuxL3wz7PltzNnoazW1fuJT+7GM5GfY7Gp5F8KJ15U1Yx/+BbHNmdimpSmLDgUZL2HqfHTZ5tvFueuI6EbUkIRSE7uwRd0yktslOUXsBbk4dx+lQuiz7dgMvpRggT+3ekEFkvDICYNnWIaVMHKSUZWYUE+HuhCeg7dSaB+0rRg1WkACFh7Z6jBET5EuRl48aWTahdzZ+Uw+lErCpk9NOdaVYjHJMq0HXw9bPh42fjZGo2a1YfoEfPGOpFV69yLa5tGM3bbbvjtLu4un6dP/x/ZWDwv4whmAwM/gN89vIiVs/bhhCCx5zD6D6oLVYvi6faTVGwXtBct1Of5sz/cA3lJQ44W0kmpaS0qPyy7uftc+XJ3pciMtqzXWjzttCwZW1GPnM9G5fuplO/FjRpcy6/6eYHe2G2mCpFyqqiXe/mTF73ElMfn8Xcd1dQq34YO1cfBF1HKCpSSk9fNl1iL3Uwd9JKvvt4NUh4eNIwulzfqiLnK6pRTWYeeAeAr95dybcf/YTJrNKsUzThEcHENo9EdetMHrcYb18bHbpX3p4sK7Ezc942Fn+/Fy+bmfGvDsKl6+gWKKmpYioXoIMMVHj3580oQnAs4Qyph87wS68V/wBvNi7fB3nFoEmq1fRH6jqjb/0I3amzYMZG5q99hsAqeuet++EAn0xYjgAKTxQy4hKtcAwMzsfTEtrgQgzBZGDwHyDrdB4uhwuTWSUnowCAAaO6U5xfysmkDG55rF+l8VENqhPdojYH446BakOVOiYkwmYlNTHtikwez6c4vxRvfy9UtXJIf8+uVHZsS6bvdS2pczYC8wvVIkP4ZO1znDyaScsuDbFYzURX4UAdcgWJyt+8vYwju1JRFMGetTqa042Xr43737uDjYt3sGfDYTCpqJpG0u5jOMo9227zPljF+09+g83LwswdrxEQck6c3fHUdfS97Sp8A73xOk8w9hrYmu79mqOaFBTl3HPP/XANc97/EV1VcNUPRVUVCtJL6Nu0AWucSSglGs4AT3m/X7gX7sxCTIrChi2HcJkVHNVs1KkZTJfeMezZdAQFsKqCiDphOB1udKeOkCA1SdKZbNr7X7zddup4Dm6XhqbrnDyb8H4+GVmF5OSVENOo5q86sxsYGBg+TAYG/wnuf30IzTo1oGOfFvS/owvgqeRa/vV2dm1J5qnBU9G0c9479jKHRyzh8VwKrxOGC4W87GK+mvT975rDh09/w60xTzO6y3jspY6Kz7Ozihj31HwWzY3j8QdmnTOjPI/qUaG07xmDxWr+Xfe+kJr1wrHYzKhmFSEEZqvHr6rvsM4k7z0Buo50OImsH859b96Gf1gAwsuLMyfzkLqkvMTOog9XXXTdsIigSmLpF8wWUyWxBLB81iZ0TccEmMqcBPh50aZFbd4bch2fXt2LmsvTCN2aS/VVmUy8rg9d6kQRUCgoO1RCScMAHNW8OK642Lg3hUat6tCwY31qxEYy6L4e+Pp7Uf/GhjgCVGxdq9Myuuqcrhtv60hsq9o0bBrBXWOurXTs2PEsRjz8BY++soA7J3zDhvhjv3/BDf4zSDxVcn/H69+GEWEyMPgPUKN2KBMXPVbps9yMQspLHbhdGk6HC5fDhXrWN8nqZaFe05qkJJ4BAR2uieHHOVtACJq2u3SrkQtx2l1s/3E/kQ2qs2beNnRNJzejkOSDJ4nt6KlOc7u1ivEul3apS/2p3PnSYOrG1MLL10ZI9QAO70yh21lzT19/G4V5JQigfZ9m1KgdRkmpyyPkhEBqOuhaJQfu38M1g9qy7MuNePla+eiL0SQlppGWmk1AiyhiO9QjoF41OJlLzxtaUzPAj0ZewRw9mAQueXY3TuBwukmIP8WEacs4HSHxTnPz2L1fsnjt03z88nDsz7uxmtRLRocCg3x4+9M7L/q8ILeEhMNnkBLyAiU5WVk88+X3zHz0FppGVq6oPJaYxsmjmXTqHYvNy6iuM/jfxRBMBgb/AVxON3s2HKJWdDUi6oVzJjWbR697B82l4eNvY+hD12I7z2RSCMGHK58iYVcqAUE+REZXo8eNbXCUO2nWMfqy7/v6yI85sPkIUkKbXs3YuTaBgBBf6sWe21KrUTOIx57pz+YNhxl8a4e/ZetHVRWuuaVTxc8NW58TgWPeu4MXb5oEQFDNYMxWExH1wshJL8BsNVGWVYBblyyc+iM3PnAtfpco3f8t7nn+Bgbe1Q2nw8UnE7/n4O7jALw1fRTvfLSaHFUg6ofRuFM0N3Z9A8Wi4oi1oWguAsoExQ4XilOy7Yd4TjYBhEJJlBn/FCcul4bVZsZmvvxf4blZRfgFePHpWytZtWgXQdUCqNk4lFxZAAIQUGJ3VjrnRFIGT978IQj4adEuJsy+73ethcG/CaNK7lIYgsnA4D/AG/dMZ9+mI0gp+XDt8+zecBin3YXUdapFBDHkgWsvOkcIQex50aRGLa+85Dw1IQ17mRObt5WeQzrw8Nu34x/sW6mMHqBXv+b06tf8yh/sL8A7wBvdakPqOtNfWkizjg14Z/FjvHLbh+Sk5VByNgneUe4i+eApWnW9Mp+p8zmRks2rj87B6fRE1qw2M+mnczl+IgcJoOnM+XwjbreOKqFnjUia3B7N/Olb8TrmyUUzh5oxlTrQrApCl4SYLfj62a5oHtPfW8XiuduRqqAwyoqvkJTklzL+jsGYa/ry0cottKgbQbsLtvbST+UiFIG9zMnJ5MzfvQ4GBv8FDMFkYPAfIGnfCexlDmzeFk4lZdC2RxO+enclUsL1I7qgaTqfvbaEYwlpjH7pRhpUkVT9e3h08gimPjmH6OZRtO/d/HdtY+3fksSbD3xJYJgfb857iKAw/z9lbufjdLiY//6PlJfa8fazInUNXBo68MFjs+kzvAuHd6V4Oo8qiudlMXNo94k/JJjiNhzC4XRTGmHDYjNzVd0oulwbQ+yyPcSnZKG4NJp3bMDWnxJRFYV7bulK/UY1yD9WyGL7XiyKgq/JRM0NRTiCTNgKNEaM7c+I2fPZk3qKq7J8mfLOKDB5tu8CfC92dAdYs2IfmltH6p4clfLaPkTYzUTHRODtY+XD0VU3Mm7brTEdejbl6IHTPDj+15sdG/x30I0quSoxBJOBwb+UfRsSKMgqoutN7XnwzaF89Ow86sdG0uaaplisZr7e8zpOuwu/IB+2rjrI6vlx2MudvP3YHKavfe5PmUPba2OZtf+tKzonYWcKezcdocegNkTUDefLiSsozCuhtKScDUt2M+jeHn/K3M5n6Wfr+PbDVUhd0vn6Vnh5WSh3eSwUivNLzwk9IQCJ6uuDrksyjmf9ofv2u7kd3+5NpCjCgsmiEtKzLsnHs7nzoZ4snbaeNRmZLE8+Tote0bzzxED8z/paPTKiO4P7tCIowJvEvScY/+RcAlwW3v7qThJkAVuXpaH7K2zSi1m8KI7PtuzH4XTz9Iie3Ni92UXzuH5IO76ZsRHdJBAhNu4Z0InhvdugqAqrFuwgL6uIG0Z2weeCyJXJrPLsB8P/0BoYGPxXMASTgcG/kO0r9zBh2BQEgvitR3h48p10vq5VpTFWL0uF/1JQqB8SidliIqRawEXXS40/xYQRH+ET4M34+Y8RGP7nRHmyTuUy543F1GkSwaAxfcnLLOK52z7C5dJY8MlaZm9/mZadG5J66AxSShr+jm3BK8XL18bClMl8/tJCkvYe597XhhDdsg7rF+7g8O4UBj/cm3lTVoNLY938bdz78k34Bf2+PKZ6jWrQf3gn5m7Zh5QQf/QMS77YjgDcaQXoUX6gCPYfS8fb95xYEUJQ66yNQrurGrBsy4seTy0hKEqXKApIl8RapJHlduJ0uXFrOovW7b9IMG1ff4iSvFLe+3wUp11lFOWX06FJFKpJZf3SPXzyymI0TedEUgbPThnu8am6IM+s1Olk7bFjNA4Lo2Ho5TU/Nvh3IiVo/8IKtr8DQzAZGPzLyDyVx7efbcCtmtCKyziZePpXx2tujYYtoxj36ShOHs2k180XN6/9/OUFnEpKR1EVxvR8FRQTYz++i+adG/2hub454iMOxR3FZDHjG+RDbNemFfYGLpfGp68u5unJd9D2mqYEhPhSq174FV3fXuZg0r2fknUql8en3UudplWX1w+87xrspU7KS+0Me/p6VFWlXvMo9mw8zIFtR2nUph5vLX3SMy+nmx/nbKWsxI5vgDfev5Iv5HZrmEwqxeUOPlsTh6/Nwqie7TCrnhyuTavjqZbppmdMfUwmlcAiQaLTjZRg87GilrnRfM00r10Nk3rpRNvzLQta1qjB10NuYV1cIjdc1xjvED+WxB1CSjc396zsgp52Ioc3npyH0+Fm2ZKd5HUOJCjByedC4bkXbqC81IFEomk6+bnF3NltArkZRTzx7lB63NC64jqjFi8mIdOTw7RyxAhqBxrNew3+9zAEk4HBv4xX7pnBiaQMhL8fNWsF88CkEReNOX0si8N7UvEP9mXCQ7NQVYWJ8x5i0N1XV3nNhi3rcnDTEZwOFzmZJUhg2gsLGP/Nw6yev516MbUoKnYQViOA1lc1uOy5CkUgJbgcLj56fDazDr1H1+tasnHlfhRVYLF63MhjrsDK4HzWzNnE9pV7cNpdTB3zBZPWvlTlOIvVzB3PDqAot5hlH6/mzMlc1szfDsDsN5fSbWBbqkWGAB5PpU82juPQrhSatq+PaqqcwO6wu5j4xDfs2nmMvOreDL6pPfleblbuPoQiBD5WC8Ovbs2uLUd594WFuN0arTrW5/VP7uRMRgHxCWloms64R/qxa3U8tRrX5Jq+V5YQ3y6qFu2izonDH6fcj9Plxs+nsrjT3Oe8t3S3jpLpwu3SAZ2dO47xyKN9OHUsi5zMQho2i2TOB6twuzXmTv2pkmA6lptLuduNt9nM6cLCCsFUWFyO0+kmLMTviuZv8M/GqJKrGkMwGRj8y3C7NSQSi8VE50EdCAivvMWWn13EmH5vI3UdxWLGaXcBsGr+9ksme9/x4iCq1wvng2fmoaMg8GyPvTDsY9KOZYGXDdXLiqIIxk0ZRpsuDS9rrmMmj+TBTuPQNU/C8YlDaYydPJyGLWtTUljGzaMrt+pYPW8bK2Zt5roRnelz21VVXvP44TNMuGsa3n42BtzZDaEIrF4WalxGdOq126cSvy0JaTsnLFRVxdvPVmkryj/Ylw69qxYxG5bvZdfPR3A53Xg53CxavY/uN8Qg8SRUa2eNOYsLywCPaCkq8LyvWT2QOR/dXXGtppeIiF0pVosJ63kJ91kFJczdsJdGtcIZ8/JANqw5yCqvXHSzin++HV+rhRsHtcVsMTF63EAATiZn8s3UNZ7k9D6xgKddztfT1lM/XudUjDdX1atNkdPB5G1bSVuSyv6Nx3AHW3nqqevo3yP2T3kWA4N/KoZgMjD4F6C5tYpIx8uf3c3sSd+zdfluln36ExsXxjH74MSKL/u8zCJ0TcfpdCPcOormRispx8t86b8ahRC07dUc08uLcdpd2LytPPzuMEZ2eAVd9wgJl9ONxWoi80zBZc358I5knu77JiARFhNOCRPvm8Gn28Zz0z3dLxpfUljG1Gfn43ZpfPhcGlf1bVFl7tCsCYs5dTQDRVVIO57DS/MfJzctjx63df7NORXnlaC7NBQvgWq1oJoU7nttCHe0egGrl5l3lz5JZIOqG9n+QtKOozjPZILVggwOo0OLOjw98Gp8rGb8bDZu79ISgG69YzmakMbJlGxGP93/stbsj+J2a4yZ/B1xyadBAYtZpVbTUGr2CmVe5+spLLfTqlZNlCq8sKKiqzFzw3MkJaQx9dVl/LBkL3c/1Zd5X20mP8SEz0mFoZ9ez8jF3+HUNCxmN5FuiSnbzo8bEw3BZPCfxxBMBgb/cKY9OYtF76+gSccGTNownlr1wxn+aG+2LNyG26WRl1mArktU1fMlWC8mgrCoUNKO56CoAj2/AOnW+W7ySoaM6XPJ5rXB4f5M+OZBdv98iB43tsVkUnlpxj18Nel7ajWozqHEdKpFBNLzhlZVnn8hu3466PGCkhJMiqcBbG4Jh3am0L6K6I3FasZiM1/0/kIatKzDnp8PgYR6sZG07XXp7ayEbUkk7ztOj1s64R/ix7OzHmTG83MJrx1OdNt6tLm6KVOfnYuj3InD7mTN/O2MevHGS15P13W+n7EOdInuclLQx5+H7uuOv7eN526qHC1TTSr3jf17hNIvHDmVzcFj6UgkSIFL00lIzyShKJtGYaE8dFWHirEOu4tZn22g3O5i1P098PP3IjDUj/07UsnJLERKeO+5heS3DMLla8KOYEfiSQQCXUp0iwAB0qxw6/Vt/9bnNPjrkPw725b8HRiCycDgH86SqZ7ebqkHT5Ky/wSN2kWz+ccDYDIhNEmnG9oihOfLXFEUhBAVYkM1qWBSkbrEZFaxWM188fpils3YQMc+zXlm2qhKFVGx7esT275+xc+NWtXm9TkP/K55dxvcgblvL8PtdHt6tykKJrNKk/Oufz4Wm5kPVjzFjrUJtOvZtKLC70Jue6I/DVvWxsvXRkyHi13JnXYnp46kI4HnBryNruus+XozH25+lTpNa/H6krEVY4sLSjl5NBNUj/fSDwt2cNP9PQkMrTonR1EUohrV5ERKBlJIir1h9bFk7g++OJH+/4Pa1YLwsprRHRIvHwshNfw4ZM8FRaG6X2Wh/N28OJYu2onUJZpb44nnBwDQvH1dln7tEeN4usV4tj3NJpqEhnGvbxviszK5M7o5rg5ltO5Qn4BA7/+PxzUw+FsxBJOBwT+UX3Jq2vZpyd518fgG+lCrUU32bTpM8oFTCIsZ1WJGKAqDwu5DURWe/OxeqtUOY8wbQ5j8zHxq1QtnyD3d+P6L9XQZ2A6E4NsPV4OEn5fsovvg9nTsfbFvz59BVKOaRDSowYnE06Bp1KwbxsQVT+MX6IPL6UZz69i8K4uiWtHVqBV9rpeZrutknc4jrGZQxZakEIK2PStv/6yavZFZry2iZsNanEo8SVlxOUFnrRFcDje56fmVxu/bksSXb61AIslOLwShgAS3083+rUe5+ryE5wt5f83zTJ79A18XpGDytdA56q+3QrhcfL2tLH5jFMcz8sjOLeHlaT/gLyUD+sdwU2zTSmNNZhWBJ0pkPs+ZvcPVjXl75t28dN9M3E6NnqHVMbWuRr0awfRoGc014ryk/5i/68kM/k4M48qqMQSTgcE/jNLCUh7t8iKnDp/h4SmjuPmJATTp2JABD/Rm3bdxfP7qYqQO9WJrUS0qFHdhMfYyBwATRnyE2WLinglD+XT1MwBMun8GGxfvYMPCOKZseAWL9VwieGrC6b9MMAF4+VoRisBiNTP6rdsIjwzlxOEzPHH9uzgdLp6dNuoi/6hPXvyW72dvolPf5hRkFpC4M4Va0dX4cO0LmC7RO23q47Nw6YK8kuPIomIActLy6HdXdw7tSOaa27rgdLiwWD2Rtzcf/JKivFJUU+W8LovNTLMOVUfAfsHbz4vnH7qJEYWFeJnNhHj//dGVNVsO88XCbXRrF839t3WpFCX09bYSW68Gb/38Ew6XG4DSLPtF3kqDhrZH03TKSu3UaxdFRl4x1YM9kbWmrWoza/2zZKUVULtBeCVbAwOD/1UMwWRg8A9jz08HyUjNQtd0pjw0A9WkoppVUvYfx7taKM5yJwhBw2a1ePjt29m0eAc7f9yPpmlIXcdR7uTbD37gs1e+4+ob2xG/6RD2UgdWbwsp8Sd57P07eHfMl3j7enH1oN+Xe+K0u1g5ZwtevjZ639L+kl+oL3z1MHPfXkbtJhF06OtJhv4/9s47PIqqi8PvzLb0TgihJNTQewDpHQREBJQmVRFEFMWC2FAQRRFsiKiIICAd6b0jPbQQQgkEQkhCes+2mbnfHxuDCEH4FEHd93l42OzMnbkzu8n+9txzfmffhhOYC6wITbB69q4bBJOlwMraObsRQnBw8ynsBRaEECRcTCblagbB5W+shBNCcPbYJTxLeJOTaUaVJCSjAWGz0+KxRgwY/xjDH5rAwmkbObztNB8Xei35lvDCnGcFCeo1r0JSXBrD3niUhq2rFZs79XvKeN9sAPp3IIRg0lcbURSNpanH6Ni8GhXL3Wwm2bt9HXZGxKBpGv07OyJmVouNzNRcSpbxQ6/X0XdQM56btpwf5kQjSbBs0hBKFoomdw8XyofdPgHeyb8PAc4cpmJwCiYnTh4wwsIrohU2gAVHhZyqqCTEJPHOlIFcOBmHrJNp9Wh9Fn28mjKVSzH75EdkJGby0VPfYM63kJaSi0Bi96ojPPdhX757czFlKwfR5OG6uHm60uKR+sg66Q8jB2nm4+y/9ipGnRetgmfhoivBoU0nWT1nN1En4pF1Mpqm0aX/rS0AAsv4M+aLoTc816h9TZZ8vhnFrlD7d55OJlcjodWCSbqciqePOxWrV+Hg5kiq1A2l5O9EQUJsCi92nUpeRh6SLOHq6UJ4x9oodo0R7/WkRLAvUQdi0FSBpcBKzIm4orFTFj/HzlVHCasbQvWG5QFIjE1haP3xWApsvLdoNDUfujPrhL8bSZIo6e9JWmY+kiTh63Xr/nGVypZg81fX889yMvMZ0fEj8nMstOvZkBc+eJyDu88RGZOI2a7gajIQdy2zSDA5ceLkRpyCyYmTB4zAciWYtHocbz0yxZEwDSDBS989S3CFQL7e8w752QX0q/gCVrMNjAYadazDe4tGMy96GqqqMbL5u6QmZODm4ULylVS+2DWBwLL+ZKbmMKrdh+RlF/DODyNuEiy/JypjFlYtE5uWw+XcdSRsqupY/rIqaEYDBm8Pcgs9hu6UUqEBaIod1aaw7MtNPD66IyZXI4pdITM5m+lrX+Zi1FXKVy+Nm4cL+blm3DxcblpS2r3qKPmFXkdCE9htCuO+GnLDftXCK1CnRRhRB2IY/OajRc/7BHjy2O+sDbYs2k9Gcg5CCBZ/upH3H1DBdGB7NG4Xs6lVKYAXX+2Cn0/xbVsuJWewfeUxYk5exYggP8eC3aawd/0Jqj9UmRkfrMPkrUcLcaN+WBnqVSn9N16JkwcVp3HlrXEKJicPBMdOx3PxSiqdWlTHy6P4VhT/FRp0qMOs41P55uV5xEbGMXRSP8IaXs+tiTuXiF1I4OaKZDIRsf8iiz7fwoCXOqPTyXy5/U2O7YpmypCvWTJtAyu+3Ixd1lO6QklSEzPQVMFP0zdQu+mYW55f0zSmPjuHQ1skag0Jps7AdPxNNTkal4Ridyz9+ft7EP5IQx4d0uKurk1TxW8eawhNsHvNUT4ePQ/NrmCSBHa7xvPTn6TzwBa4e7pSkGtm5YxNePl50G14O2RZpl7LMBZ/sQm71Y6HpysvfjqgSCwlxqbw0cjvcXE3Mf674cVWvf2WOs3DWPnVFgCadLo75+2/k0/fWkFutpns5Byy+2fz9IFfiIhP4KWWTRkcfj1Zff2RM7z/3UY8j2cjaYAQyIqKJEl0H9ycpPgMFLuKPtlO/ZBApo7uXtTS5VdyLVaem7eaxMwcpvTpTMPyf43RphMn/0ScgsnJfedsbDIvT1mJEIIdB8/z9Xt97/eUHghCqpXhgw1v3nLbos82IRn0yJKMABCCn6auJf5sAmM/H4SLm4lylUvh2CSwWxVw1XPtSho6gw6DQSK8ffElTrtXHmH3kv2oQuLIl6UY+/rneJsq8OgzeZyLuEh+jplXvxlOqfJ31/sNwNPXnTdmP8OWRfvpOrglLu4mvnpjGUpuPtgVzDoZSZL56eO1dB7oEGMzX1nAzqUH0OlkDCYDDw9pTbWGFShTuRSXohPIy7Py4ZBZTNv4OpXqhvD5S/M5d/wyep2OVd/sYMhvokvFUbFWWb7Y9gZIEqHVHqxIi6JprD93DilfxSYEQgKr2c6V/BwOX0nAbLczbde+GwTT7uhYrEKjSCoKMHh78Oz4bjz8eDjZmfksXnEIs2xnW2Am/RcuZfmgfpw6dpnMjHyata7KxpPniLqajFVRmLJ2F8tfePK+XL+TvxHh9GEqDqdgcnLfSc9y5GJYbQqpGXn3ezoPPKqqcSU6Ac2uoDMZ0TQNoaooeQUc3BzJ7tURdOjzEGUqBzHyo/78sjqC5MQsriVmIZAQSIyY1JuHn2x+y+PbbQrTnp6FarEBULZGJbxNjl5vnn4eTFo+9q7nfGRbFPOnrKF6k0qEd6hFwsVkvH3dCQkL5uLJOHSKHWyOyj0UFdkgUbK0D6qqodPJmPMsaKqGLEtY8q1Fx/UozN8ROPrV7Vyyn4UfrebUntMIRQU3NzKupnH28AWqNrrZs+lXdq84yNSnv0Wn1/HJlluL1PvF5YxMpu/bx/YLFyi1MhudooGLAb0ssfnIBfSJCm6BOmqHlLph3MDWDdhzOpbM6hqeORr1fAKoWr00HR9ziCoPb1fSKrqQUcEFdBKRyckc2nuOyeOXA3CyWx2qtKrgMMF0k8jXK2SbLXi7OiPATv6bOAXTPUQIwWcjv+XIxuMMndyPDgNv3fj0v06TuqF0a1OTMxevMWZQ63t2nnNpaXgYjZT28rpn5/g7OLw5kqyUbNAE7m4GGrYM48D6Eyhe7oAoaiIL0GVoa8qFBfNGj0/QZB3o9Ch2ldMRl4oVTJqmYS8USwDPftDnruYnhOC7d5aRnJDJqA/64B/kw4fDZ2POsxBzJol18/aima0gBBdOxHHl9BVHLhaAJOHt50FeRi5nDpxnzddbeGx0Z0ZPH4TRpMfL35OuT1931H7jm2HMeO0n9q+JQNZJnD4Rz4Uj59EKm84qVhtbF+9n15L9TN/xNpXqht5yzhvm7MJuU7DbFQ6sP0blerfe7+/mRGIS/RcsRVE1hF1FtmrJlBQAACAASURBVAhAAgRqsBsnryYj2QRuVzTsu2M5WfkSOoPMuuURtO5Yk/LB/kSpySglZWp3rcfgVg2Kjq2TZV59vDWT9+/F7CZ4tkkjEq5koKkadrvKttXH2Tp/H77tA0kKlrmcm83UXb/w/sPt79v9cHLvETh9mIrDKZjuIfvWRLBh9jYQ8MmwmU7BVAw6WWbs0LZ/vOOf4OMde5hz6jiyLDH3sZ40KvPPzcXwC3KUsxtMBkKrlea1Oc9iNdvYvSqCoHIB1G56Y7LyL2siHL5LOg3Zw4DeoKN97xudqaMPX6Qgz0KDNtUxmgy4e7uRn12A3qinZLkAMlKy8Qu8szL6meMWsfa7HQBcjr7K9wcn4Rvohc2moILDQVrTkCUJVdWwF3oFAei8Pajdoir7fj6EBuRm5nH5TAJvPDadzORsZKHSqFMdGrR3eEf5BHjy1pwR5KT356s3l7F3w0kwmpA0h+9QYeoOkk4i5UpasYKp2/B2RO0/j8Ggo1n3B6fNx86TMdgVFaGTMJnB3Nwb/clcLOVM9OvflMWrj6OXJaQsO1mpeXw3fRNxV9KxWRX27ThD17faEpOUhiRJNK50c+PlxzvW5/GO15fx8vMsRBy4QMq1bJKir6LZVMxXc9CV9kUALnrnR4aT/y7Od/89JOlyetFjXTGGe07uPUei4vhhXwQ2D5A0OJKQ8I8TTOY8Cyd3R1OxTghh9cszcekLxEUn0qJHQ9bP3Y1/kA8d+926tL/tEw+xad4e7DYFrVogpeuFElZYSg+wb/1xPh75PUjw+OhOPPnaI3zxy0S2//QLleqX56VuU8nPMdPruQ4MGf/HuUBXzicVPU6OSycrPZepa15m5/JD7F5/givRCVSqH0JItWD6ju3K0+FvYsk1I7m70v3ptvR5rj0IDRd3F3q/2JWvX19MRnI2yBKq3pW5k1cVCaZf8fL3pGzlIIym02AyMGxKXw6uO8aZIxdxczFQt2VVGj1ct9g5t+gRToN2NdHpdcW2ZLkfNPQsgSFbRXGX8Tuez9qfX+ObgxGU9HRnUIN6NClXjoMRF9kycy8FZdw476YiuenA6hChfRrXpmuj6ri7GPHz+GODTXcPFz6YMRAhBBOGz+HIrrN0KFGGKD8Tl9KzqODje68v2ckDgDOH6dY4P8XvIW37NGH5jE1kJ2cx6tPBWM020pOyKFW+xE0l0k7uHcdOz8M9yRVbBR0mSebRqlXv95Tumlc6TOLq+SR0Opkfoj+lTvOq1GlelU9GzWHPqggkWeL1b4fzUJebRUGV+uVZevlLeoycQW6Oyvn4VPYfjaVdM8d9iI2Kd4gpVSPmpMOrKLhiSfItCrPeWkZBrgXFrrJ10YE7Ekyjp/bn2RbvodhUVFli+ui5PNS5Nj1GtsfDy4WvXp5PTMQF6jSvQonSfgx6qyffT/qZoHIBPDn2YTy83Xjrp+vVe3VahLFz+SEUV1ckSeLS1WyO7DjN7hWHaf5IfZp0rgNAvxc7ExxaAoNJT/Oudek+rPVd3WM3z1v7Gd1PQkr54x2jYPU3UVDSjU3zD9DzocpUrlWWDauO8s1nWylfpSTPvdeDDxfupMBqw6WsO50bV6ZR8yr4+nvw/0gcSZKY8O1QFJvCubQM1s5bhtmu8NHm3fQPr/OXX6cTJ/8EnILpHuIf5MPi85+iqRrmPCvD6r1OTkYezR9tyLjvnrnf0/vP0KLuerYfbkvORTcmjqpGgSWHM4m5hIWVRpYfHOFqtdjZte00QaV82PPjLrYu2Eu7fs0ZM2Mol6PiUewqJjcjKVfS8A7wZOP8X9iz+ig2ix2DyUBqYmaxx46zxSKXzUA674FdE1QOvV7d1nVIKyK2R5GXbaZMaAA/z9hE+TqhbFm4D0uBDUmS0Bn0dBvyx0vK507E8dnYBZSqHExqUhb2PDPHtpzk5I5T5GcXkJOei2JT0FRBfGEkqteoDnR/uo2jt9ktvki079uUMpVL8fITM9A0gdAEkwbPxGa2s2d1BHOOvE9AKV90Opm2vcIBSI5PZ9zjX1KQb2HCnGeoEV7hbl+OB4Lgcn7Y/E2gk/COymDhgY0sljcxfeUYvv1iG+YCG1GR8UgeOjRNw2TQ4+fpxt5t0ezaHMW8dYdI8NIY3qkxfVoVH2H7PStOnObtdVsp6eXBt317IEsSbgYDof4+9/BqnTwIOJ2+i8cpmO4xkiSh0+uIjYonP8eM3aqwf+2x+z2t/wxmJQcX/0fpOWI1GZobGzKS2Tf2DJIq0bxZVd6Z1Pt+T7GIqRNXcWhfDMKuokZeQFM1Ns/bzeB3ejJi6kAWvL+Chh1qU7FuCKqiMmPcIlRFRZIl6repRsdi3LYBZElHSPdrZF02UrqkL+VK+xVt8yvpzedb3mDexBUs/3Q9AF2Gt0MIR2+1spWD+Hj1K7gX4yj9W7545Scun0lE1sm06RVOwtlEzh2JAUUjMyWHx194mHMRsVgKbAydcP3eG4y3/1MUWrUUWnoGwtUVYbfDb9qXSLdIUN2y5CApiZkITbDo8828v+DZm/b5J6A36OlcqxIbT1/EUKCg2BT0bkaSrqTjEuhGXoEVya5wZmM0Hi56StYsRYirB4fsKgBXTyaRUdODj5bv4omWde44sv3NvsOoQpCRbyYyMZnVzw7kdFIKzSo+OI2GnTj5u3EKpr+JKvVDKVnOnytnk+j2dJv7PZ3/BHn2dH6MHY4irCB8kCU7SmIyqCURNomIw5fu9xQB2L32GAc3n+LitRysVgWjUYdngCfWPAveJbzw9POgTd+mbF16iKO/xHB81xnqt6mOf5B3UQPZV79+Chc3U7HnqOhRiUHlhxJb4iIdgjrfsG3b0oMs/XwTrkYZTXVUl+lkiWnrXyPmRBzNH6l/R2IJKGpmq6kaETuiseRbkFxdqde0En1f7oanrzsfrX/9ru+R0dVIYCkfslJzcHE18tbSF9m6aD/NutXHv9TNUY+ajSthMO5AAhq0/uctwf6WCSO7cPLhadjc3UDJp37LqjRuV4Nz19L5ak8Eulwb/qeskG/nWlQiZ6R8fCSwu+mxlXDF1SwRWMHnrtIAOlerwtxDR9HJEg3KBlPG15syvvend54TJw8KTsH0N+HiZmLWgUnYLPYHKqn030yaNRZNKKjC4e9jlFzwq2xCClQQiUYGDG52n2cISXFpTH9pITargsnLlUoNKlAmxJ9RY17g5O4zeJfwRNbJ7FkVQdzZRGwWO7MnLOPrtu/yxebXObLjNDUbV8LD+48Tehv7N6Wx/41RKFVR+WzMj6iKhsGgo3FXhzgaML4H7t5uVKpd7q6u5+FBLbj0xlKEEFgLrFjNdowuBlo98RCuHiYOrDtGyZAAQqqXIT/HjJdv8W09fossy8w8OJlT+85SNbwSPiW8qHWb1iX1WoQxc8s4zAVWKtW8uTrsH4VwWD0IkwGptD8vTOmDucBGsIcH9VJ0pKXYqNemOgf3nCW9ljeqp4G0el64ZAmMmXb01yyE+pa44ZBRp+I5eeIKbdpVJzjYkeW0/WQMB87F0ad5Xca2bcZjdarj6+aKj9N36T+Hc0nu1jgF09+IJEk3iKUlX25m47y9tHuiMQNfe+RPH18IgTnP8kAmr/6W/WuOMP+9ZQSWC6Dni12p06p4x+k/Q2m3WviZQki1XOShgIGU9ahNoEsYoxZqmGTDHX3jzkrLxWDQ4X4HguT/QdZd79lkkOCrecMdic3RV5k+Zh7gECFtejcGwMXNSK1mYQD4lPCiQ5+H/vT5PbzdyE7NwWZWCKlemkFv9fy/ixI69W2CalfJTMulZBkfPnvpJ2z5FmaO+YFFk1eSGp+OqqgINzeEXk/73o14bnLv20bHfsXd240mXer/4X6/UrrC3buQP4gYTXren9qXdauO0qFzbbx93Hj64WmkpeQgyzLfrH4J/xKeDOgyjVwLFLhqeEkGTO4SaoIFCYg6dJlL8WmULxtAakoOr72yCLtdZdXPESxbOYbLKZmMn78Jq11h+8mL7Jw8gtKenrz54gLOHrlMePPKvPlJP3Q6Z48xJ/9dnILpPrHuh1388N4KAH6avpF2TzQmOPTO/8BnJmcx6+V5uPu4M2LqQHR6HS+2eJvzERep17YWvcd2o2Gnug9cNZ4Qgsl9P8VmsXPh+CUiNp/gk53vUa3x7ZvA/j8YZBf6l//ypud/1y6rWHYuP8j05+Yi62Q+XvcqYfXL//Ggu6RkGT/e/GYYBzZFcn5PJD18BjNy+mAkoxGhCWwWO3tWH2X/+hPY8goILh/I0+/1+r/PZymwIjSBa2G/PkmSKBUaQFZKNgJY+ukG6rWuTu0W1f6v48uyTLfBjnYmG+fuRM3OASAfyM8qKDRFAhQFWa9n24oj7Fx9lDEf9aXD443QNI3oI7H4B3njG+CFi/sfC6n/AvUblqd+oRXEpQvJJMZnIDRHT74n+0zHa2Blajxflxrxdg6fvEJWZj6STkbWS6AKhEFC6Bx/C8xmG0KApgny860IIRDien8/VTiWZSeMW0zk3hgk4ODOs5w7FU/1us4cpn87AmdrlOJwCqb7xI7lh4oeC1UlMzn7rgTTzJfmsmfZAWSdjH+QD27ebsSejENogmPbIjm1J5rBk/rQ59Uef8l8P/58E1t3nqZT25q88kKn//s4kiThXcKL1Pj0X58gNT7tngimP8uWhfuw2xSQ4NCmk/dEMAE0alcDyW5j26z1WPKtfDduAfNiZrBq1naS4lLJzbU4esG5uJB6JY1rl9MoFxZ803GiLiYxcfZmDNHXkOOy6Plsex4bcd2V+cyRi7z+6DQ0TWPCgtE0bF8TgLKVgzh75KKjPEYILPm2m45dHEd3nWH/ppM8PKAZlWpdX/r68cM1LP50I5KLC8JiAQn0Rj0mFwMGo55s9bpqVRWNbyesoFX3enz7znK2LjuErcCGJMGTr3Sl/8td/4+7+u9k6bxf+PGbXUgeJvSKhr3ARnwbD5TsVE5mpuKVKiPpBCYBkiwzaGw7Nu49TcdWNagQ7HCALxcSwPARbVi95hh6bxOHjl+mSf3yTOjbnl+iLzOojSOKF3k0DqGXodA1PaiMX7HzcuLkv4Azvnqf6DWqY9FjV6NMaNW7a/aZciUVTdVQbAprZ21hzhs/oRR+uIOjH9iKwoqnP0tGZj6btkVhs6ls2HqKrOyCP3W8z/dNptOQNuj0MjazjeXT16Iq6l8y17+S7sPboTfqcHV3ocWj99b9OaRGWWRZxsXdRM3mVfH0dWfWvneZvul1dDoZSXLUggWGlODwttNcvXDtpmN8PH87Vy5eI21/LKlXM/h2wkq6lhvD6098gWJX2bXiMFazDbtVYcO83UXjRn8ygBrhFZA1BVXVeP/p7/hwyExGNBjHvtVHip1z+rVsJg77jg3z9/Fa78/RNK1o24Z5exBCIOtkvAN9eHhYGwa+1ZMlcV+x8MLnmNxMUBj9FEJQkJbNrqUHOLHvPLYCGwiHfcDq2TuLPX/8+STOHr5wQ3Tk30padj6bIs6x8OeDjhYuqkbFh8ojZJCv/9qjKBoaULqCH317NGRwjyYsnvYUw7o3QQjB6g0nmPz5euwl9FyxFHDuahrjP1qFomp0bViNDwc9TLWyJVmx5ihmTwM2P1ckDyNTvh+GX4Dn7abo5F+EhvS3/Pun4Yww3Seada3HspjpnD16icp1Qu46R0aWr2vdzORsNFXDxd1E1xEdWPHpOhCQn5V/1/MSQnBk0wmEplGxXnl+nLAEm1UhwNNEtkXB39cdD4+7TwIVQrBm5iYSLybTd1wPUhPSUQu/uZ4/GsuVM1cpX+vBCvc/1KUuyy99gU6v+8Oy97slLjaFt8cvxa5ovDu5N2FVg/n+zGckxCRRo2lY0X4Va5blhU8GELnvPM271WXK8O+Z98FqFk1bz8Koj3Fxu54TF2wwcW3bebCp6Nxd0HQ6NFXj7LE4LkbFU6NxJTb84BBKnZ50LJtZ8q1EHThP9P6zqDaHO7Q138Le5QdRFZWPhsxkTeYPt7wGTdMcjVkBTb1RtHTs35SVs7bj5evOzN1v4/O7D9uXpvblhynr0Kw2MuKuoQNKlPHnqbd68MnzP2LNtyDrZFr3dPgqLf10Pcs/30iLx8IZPX0QkXvP8naPT0CCfq89Sr9x3f/Eq/FgY1dUek6ch9lqRyklE5AEQi9x0WAhs7Yf3tdk3DGRlZiHkPVoOriSm8vSQ1EMf7xZ0bL8kWOX+Wr2DixWhQ0HopE1GQkwGfTIv1u6PxRxCVWA5KKnYXglDu05T1BpPwKDnJVyTv67OAXTfcTT14Pw37V4uFOefLs3b3T9AE3RHKXgEjTqUp/wTnVZ+dl6hBCUq14Wq9l2x1V5qQmZvN17OpePxiDrZFS7gqYJJBla9WlOt4m9qVyxJHqdjM1iQ5IlDEaHH06+ks++tF2Uci1NLe+bDfJ++fkw341biN3myF1SbNf7hxlMetbO2oLdplD9oSp0HNwaXWGiUUGehTnvr0KSYOibPXD7P8Tan+FOkpHvFqvZxgt9Z5BvMoIkMefbXXw0vT8BwX4EBN+87NG2VyPa9mpEXnYBVrPN0YtNCGwW2w2CKUyROF7ov1MmNACv0iWIiYzH5GogLSGDT576GgkI71Sbxp1qYzXbeKb5e+Sk5yK5uGKULdisCkgSmqphMBkIuM0yTIlgX8bNGMya73eRGpfK168v5tkpfZFlmWHv9OSxke1x93bFaDLcNLb1ow1o/WgDLAVWdizaR8mQEtRr40j+XxEzDUuBjez0XFS7QmZKDnMmLENogi3z99LzuU6cPXQBxa6gKhrHtp/6Vwumywnp5BZYi8JISc28kGWJ55vXYt7qI+hlGa+9Gci5dlR3PTk1PFFUjbwCK5oQ6ArFkKZpaIXROA2Bva6J4eXrkLT3An3qvEHPZ9rQ73lH5Htw/6acPZ+EQRWc3HWOCLvKsYOxfL3kn+ln5eQuEM4queJwCqZ/GFazjdzMPBp0qIPOzw8tJQ0AnV7HuHmjWTdrKzq9DsWmEBudwCs9P+ezdS/fUXXLzDeWEHsqDqGoNy6RCQlPH3fqFJZnH916kre7f4ROLzNt13uUrhLMrITPiM2PQZZ0hF/oyPklCWRnmbEKier1Q6lVvyx2qx1N1YjcHY0kS+gNOkpVCiL+TAJrv94CwNZ5u8lIymLAm47E5oWfrGPzwn2AI6o2/N2e6B/QvnwFuRZS4tMpV7XUDRHA35ORkoOSXQAlDCAEVauVuqPje3i7MXpqP9bO2U3XIS3x8vO4YXt4h9qs/HITAO36NaVqeCXSU3L4fNwSPnzmezRFRdMZOLTrHOeOXcbN04XstFxHY15g3PfPMmfyapLjM9D7eNG8a21GfNDvtnNq1qUuM8bOJzMlh4xrWTTtWo96rRwJ476BXn94TS5uJro8dXPjZRc3I8um72bptHXoDDpKBPuSk5mPwajHt6Q37fo3Y8uCveSk5zHonQfHfPReYNTpcC0Ai4twRPQ0Cb0F2jUKo3vLWriZDGxaeIC5n2wk2MeXVt2bsjsqlsGdwtH95n3YuGEFnhrYnB93HSVTy6VepJ2gsrBu22lsVoX5n2zk8ZHt0Bt01KgazJrFz3PicCwTxvzkKECw2u/jXXDi5P7zYH7yOLkl6deyGNn4TQpyLXQZ2hqhCSRPD4TFyugZwzC6GGk7oDnrvtvK1fPXkDw8uHAqnsE1xjLr4GQ8fG7veePl74HJxwubouAX6EVuRi52q0Kbvs0IrFKaGeMW0X9sFz5//gfsVjt2K3z92gLOx2RQ6ssc9GVUFLPKqgVbyN8rIbm5Iul0xMcks2/lQSRZgkIdJjSBiiA5Pv2GOWiqej0hHDCYDEiyI+KxZtZWdszfxVf7JxFYxv8vv79/hpyMPIY3ehtLgZXwjrV4a27x38SDyvnTplMt9mw+xUNd6zLk6dZ3fJ5OA5rTaUDzW26r2bQKc6M+Ie5MAhMHfw1ASLUy2LLzUBUVvYsJSZJRNfji1YV8sWU8tZtV4eiOaLoNa0XLXo2JPnaZtT/sQREQGXEFY2GELeHCNY5siSS8Ux1KVyx5w3kDy/qTn2NGCIF/0F/XOmPn0gMO3zJJotfznXH39WDj8gheH/A1r306gDaDWrNl8UF+2XyKms2qPHAVoX8VIWX8ebVva9btOc1hcwqSLGE3CUr4uJMWl8HyRQcJb12Vn09NxmDUI0kSQ7s1vuk4kiTRr2djHutcl9613+SKovLt8QRcXY3IOpkSwb5FxqO/Uie8PE+ObMO50wk8OaL133TFTu4nztYoxeMUTP8QLp1JZO+qCKwWO4pNYc/Ph3HRgd2gw+TpQ6fBrQFIT8zi4ac7EHnsChE7z6CZzeTZ4PTBGBp3Lr6X1LW4VGo3qkCpkAACSvlSoVoplk5bR+0WVfEs4cO0MT9it9m5dCaB5MSsonEJV7PQVI2Uj13xHZKHLVaiYH/hL5uqIWRHnkRuthm9QY+makXl0BgNqC5ukG91lJsDNVtWZ/B7TxQdv/9LXTC5GPn5q81kZ+ZgkTQitkbSZWjxbukrvtjI928vQZJlnv90EJ2HtCYvu4CE2BQq1iyL3nCHvgJ3waXTV7FabFjNNiK2Rt12X0mSeOWLwbzyl8/Csaz63qBZWM2OSrcrUVdQc/NBQLXW1blwJgmQKFelFDqdzKTFzyOEKBIbGam5/PryFOSaiT19lcq1yzG65bvYLXZ+nLySxbFfYjQZEELww4RlSKrCo8Pb0rx7A8qF3Vm07E7o83I3PntuDh4+brTo2Zi1C/Zx/uQVVE3j1R6fkpXhyNHb9NN+Hh7QlNCqN1cO/lsIquFPQ9eKRKxMQUOgVyRcjQbG9f+a3GwzW5Yf4dstr1LyN0uoNkUhKjGFyoH+eLpcX1o+deoqqur45qKpgs/WvMTV2FRqNqpwk+iUJInHHwCDVydOHgScgukfQOTBC7wz6BuQQOfmhmyx0+PZjrTu3ZhjO6Jo2KG2o1Q7LZeX2k5Etau4+7jRrc9DbJizA1dvD6qFVyz2+FmpOTzb5C00TRAUWoJvDk2mf8UXSE/MZP+aowx697qAQROgCSRXhzlm00casnnRQWyXdSS/dj2fRhIaIjcPycMdITQkofHid8/yxdj5WPKtGEwGR9K3xYbs44OEowy6eus6+Ja8HqUwuhjo99LDGGTHh7PBaKB+m5o3XYM5z8LUYV+Tfi2LC5FXChPKNb56dQEtejbm6RaTsBTYqFo/hClLX/jTr8nvqdqwAmUqBXExMo7ef8J24c+y8uttRWJJb9BRq2kljm6JBAHlq5Vm2MQnSL6STrNu9YrG5GWbyc3KJzi0BPvWHS/0SpLw9vfA5Goicv8FrGYbql1FCIHNbMNoMnBiVzSrv96KpcDKtStp7FwV4aiyW/w8Ff8Cd+1Og1vRrn8zdHpHU95ylUqiN+rQCR3ZKdkOQy1JQpLubPnvn8rRxESeXrUKoWmEmVwJsLgwakQ7Fs/YSn6uBShsRbPnLA/3bVK0HDxgzlIupGbgYTKy+YWhuBXmG2Zk5CGV8UfJyicorBTBoSUIDi1R7PkB8nItfD1jK5IkMeSplkTsOkdwiD+1G/0zmxo7uT3OCNOtcQqmfwAXo66iaRp2m0rV+iFMnj+yyM2762/yP8x5ZjRNoNhV8rMKGPlRf/q+0o3ti/YzuMYr1G1dnbcWPn9TPlNaYiaqomE124g/n8Soxm+SnZYLOMKz9VpXRTbqSbyUQs+R7Rha+zVH/qkk0anvQyRdTOF05BUkvTv2AgtIEmUrBZGZnEVethmDUUf/8b349NVFaCro3FyQEFCYEyEpCpLRIbbWzN1L7+c63FRV1XtMF9r3a46Lh6koEVsIwbRnZ/PL6qNUbVieU7tOY7cquHi7ORKjgYBgX67GpmApcER/og5dLDqmRTUTlR1JObdQAl1uXGa6W0yuRmbsehtN026bv5SfayHyQAxVapfD/x5UHDXpVJtDmyMBeHPOM9RoVJFZry1EaBqD3+mFh4871X8jnq/GpvBC12moisoTo9rT/okmbFt6EL8AD9z18GLnKRg83WnUPZzkmES6P9OuaGnXy98TTQj0Rh1C1pF+LRuA5TO3Mm7msL/oiiQmP/UtMcfjeHZKX557tyczxv4IioJQFIIrleLdBaPw/l0+17+Ja7m5SIAhxkJ+RDY2nY7tyyP4ZdlhNFVF0skIIZg9eR3X4jN4alw3VE3jVGIy4Pg9ScjKpry/H6diEqlZL4Sm7WuQEJ/B2Fe73NEc5s3ZzfbCyOnp3efIuJaNBLw/exg1G4Temwt34uQBwymY/gG06xXO7jXHSE/O4ek3Hy229UlQaCDDJj7BziUH6PNKN3R6Hf6lfJk3aQWKTeHo9ihijl+iasMbo00Va5ejbZ+mHN5yEm8/Dy6ejEPWSVSqG8oTL3elYu0QKta+XvL/yncjWPrZBjoNasm0kbO5diUN1ejiyDdydcFk0pOXlU9BrgVJkpD1Oo7vPY9qsYPJiCQE3v7uZF5NK2r2KnQ6JFlCNui4EnPtJsEE4PO7KELSpVR2rziC3WrnxJ6z6GUZk6uR0hWCiI2+6rgnIYFUrFGGag3Lc+rABfo836Fo/LRzU0iyJCEBk2p+hI/R965el/zsAlbP3ExguRK06+8o376dWBJC8NKj00lNzEJv0DN339t33NT2Tmn7eGPC6oei0+sICgng1C9nObL5JL6B3pw+dIH1P+zG08+Dtk80oUHr6pw6eBFN1bBZFXatOcZ3O99g6FuPMqD8aJKtjkpGVZIxW1S+3j/phnNVrF2OScvHEnPiMl6B3swcvwQJqN/q/3MJvxVHd57m6PbTWApsTBo8i7JhpRCaQNMEZSoHMfvQxFuOy88xk5KQSUhY0G1fk38CHStVYu/lyxxfexRUgaIqnI9OKirMEBIorkbUXAuXohMB0Mkyw5s1ZO7BYzStWI6KAf68NXM9RrFLzQAAIABJREFU+09eQpJgwfsDiToSx56dZygR6IXPbXr62VSV3XFx2DUNvU7GnGdx5Ja5GFg67xf27j7H4BGtcXO6sv8r+C84fUuS5A5YhBB3ZQDoFEz/ALx83flszdg72rfn853p+fyN3egr1wvlUlQ8eoOO4PKB5GXlk3Etm7JhpRyGiJLEizOGAvDjxBUkxiQhgMdf6kKr3k1uOkeHvg/Roa+jh9lPH/yMYteQjA6zTEmS+GjZ87z88Me/piUhNEG3oS05te+cw6xQknDxdmfce72I3HuWqg0rcGTbaQ7uOUdY3RCqNbgzR22/IG88fNww51koUcaPp9/rTVZqDuWql2V896kodpVHnnFU/Xy4ePRN45MsSdg0K0bZRLot/Y4FkxCCtMRMvhz9PRFbItEZdLi4m2jeI/y24zRNcPViKpqqopccCe8VapS5o3PeDb9Nyv7+rSVkJmeTl5nP5IEzsRV6X+1de5x35o2kUdtqzJ/mgt3uiDCBw+7CYDJgtypIsoRPgCeDX72123bd1tWp27o6AFUbVEBTNcpXv70J65ZF+/nhg9XUaR7GqzOG3LKC025TiD4Yg4e3m+N9JDnuX9LVTHR6HTq9So+R7W55/Kz0XJ5p/QE2s40mHWvx+swhf3TLHmgMOh1TOnVi4CcnSLE7bB/0Nhut+zZh2+rjqCYDXh4mAoK8eWr89Z6UL3dowcsdWhT9fOzsVcxWO64mAxs3RrJq3gEUu8r5M0l89PmAYs9/IPYKMQFW5IoG3E0GPn2mJ7PeX4tdCCKOXoaIOFRVZfQdRqucOPm7kSRJBvoCA4BwwAqYJElKA9YD3wghLvzRcZyC6T/AxxteJ2r/ecrXKIvVYmdEozex2+x0HNCC5z8bfMO+T771GJXqheLq4VLki3M7xv8wkh8mrkAYTaQl5/LEqHaE1Q1l9Mf9WfjJeirWLMPwib0pXbEkGRN7882EFSBLDHihI616NiK4fCAvt5uEQFCzaRgfLn3+jq/Lxc3Et4fe50LkFaqFV7yh79iSWIe79e0iOL1KPsnSs+uoH1qZ8u53loshhODd/jOI2HYKYbGiKio6vY6CnD92P9fpZJ58sSNzX5uLIkvMfH42n+x4947OeyfYrHZmv7eSzNQcnp7Qi7PHLuMZ4IXJzQgCXDxcsGX9Ok9BytUMDm05RW5qNl5erjRuV71onp/unMCORfto3LUeNZtVveV9mDthKacPnOep9/tSrXFlQu4w4XvmG0uxmm0c3BzJ+eOXqdbw+r3/fuIK1szeiatJjyXPgk4vM2nJi3z//moux1wDAVPXv0Zw+UDcPG/tyRV7OgG71Y7VYufIjmhS4tOZ8epCvP09eW5q/7vy1roQeYX964/TskdDQqs5hOAvG05weHs03Ye0uKEdzL3m4Ufrs+DTTUhCUKVaTYa81Jlr6fkUFNh4Y+JjlC57+8rR0X1aMG3+DiqXCySkpCNvUNM0LObbt8IJ8fNByKBWdqNy2WCq1w3hi+WjWThnD1fm/AIIHJ9HTv4tiH9fhGknsA0YD0QJ4WiYKEmSH9AG+EiSpJ+FEAtudxCnYPoPkJmcw9pZ2wgs60+1JpVRFRWb2c6+tUdvEkyyLNP0kQZFP2uahmJXbzIftFnt5GbkE96hNuEdat+w7diuaEDw/aGJGF2uj2v1WEO+n7Acu9nGl2Pn06pXI1Lj05BkCWu+jaTYlLu+Nk8/D+oVRjh+i8nViOk2q115Zivvf3WGdCWYhAAjQ16RiowBFUVlw+rj6A06OnWtc0MEZMvi/RzeEY2QZHQuLlSrH0q1xpVp2+/OKonqNa3EIhcDlnwrp/efu6tr/SM2LdjH5oX7UOwqsacTuJaQiWKxo0fi/eUvEhhSgh/e/5nowxepGl6Rtr0bM7DeGyg2BYvZxtljl6nZuBJz3luOEIJhE3oXKziP7zjNqq82Y8m3MnnAlyy48MUdzzO0WjBxZxORZImSv/mQt5ptLP9yC0IIrIUu9S7uJiRg6qqXOLIjmuDQgBuq4YQQxJ6Kx9PPvchqonp4BUqXDyQ2OoHeo9oxc9wiIraeQmfQEVq9NC0eqY/JzYT375Z9L51JJOpILM0618Yv0Iv8nAJe7PABik3hp6nrmHvsAzQkpr4wH5tV4cDmSJZFTSn2OjVN8P3mw8SnZvHcI00p6euJqmpIEv/XMmGfZ9vh7mGiIMfCY0+3wsXNxNSvBt3x+G4tatAmvDKbT52nZKA/vfs3If5yGk+NutkH67eE+vuy8ukBXEzLoGWl0KLnH3+yKaqiYbcp9B/W8q6vx4mTv5H2QoibjMSEEBnACmCFJEk3O+z+Dqdg+g/w6ajZnNgVjcFkIKh8CQJK+ZIQm0zfV7rddlxaQgajm75DTkYeY2YMpdPgVoDDc2hk0wnkZOTRZWgrRn3Uv2jMsV3RvDfgKwSC47vPMH72MwDkZuaTcCkVCltpqKoGQtC4Sz1a9mxEzPHLjP6deLuXxKVkkqaZsRkFMTkZLImIpF+jOgD8OHsPK5YcQgIK8qz07n99WTLuTBJIIAkwuBmZvPb1u8pDqtKgAjWaVSVydzT93+x5y31ybVbWXDxDZd8AGgVdX7I7vucscz5YQ52mlXnq7R43lYC7ebo48sB0MopdRTVbkRQVFYnje84Qf3E3BzeexGDUE3syDpOrgW5DW7L0y834BHhSo1FFfpq6lk0/7gXAaDIw4oO+N5yjIM/CS49M48q5JCTZgM6g4FPiem6ZEILkK+n4BXnf0uEbYMqyMRzfe5YK1cvgV/J64rvRxUC5sFIkx6cjuRlRCqy4erri5u2KwainaefajvfNb/hpymqWTFsHwNTNbxDWoAIurkZmbH6N2DMJjH9iBvnp2SBJ2K0KK2du5Yc3FyHrZKZufpOwwuhWRmoOY3t9gapp/PTFFmrVKkXjh+s6igckCYQgYstJ6ncs3prj9yzfcoylE9YhNEH8pRRe6tKct56di16v45N5w6lwlxYMOp3Mo0P+WJioisrB7afxC/SiWr3QG7Y9N3c1UfGOPoSLnu9H5aCAm8YLITgflYCbp4myhdVzFQL8qBDgx6HdZ1m75BCdHmtAiw41GfRM67u6BidO7ge/FUuSJPkCZfmN/hFCHLuVoPo9TsH0H8DDx72wNBv8S/ny/YmPUFXtD92/D208QX5OAaqisuyzDUWC6WxELAV5FhS7yo6lB6nVohoRO8/Q46lWpBSaTtrMdpIupwKQEJvC8w9PRVU0GnWphywE3Z9ui07v8EN6+dtn7uHV35oqZUrg5eFCmsWMLEvkmC1F2zIz81EUFVmSyMq6camt16j2nImIxWq28cbs4XedtK3T65iy6a3b7vPMtlUcTU5AQmL5I/2oFRAEwJTn5pKTkU/8hWSadKpFzcaVbhjXtncjVEUlMzWXJp1qM7rNJOx2h0BNupLO0e2nHY7NFjsp8eloqsbg17vzxPMdMbkakWWZy9FXiyoMLQXWm+YWuT+GhIvJoGkInY7G3cLp98r1/KYpw79j/8YT+JTw4pu9795y2czF3cRDnevc9LwkSbw9ZwRrv9tOmarBfD95LVm5NiYP/57Z+yYw8Zk5HNwaRatH6vH6l47IysENx7GabeiNek7vP09Yg+vLe5t/OkB2SjYiPx90MpLJhfSr6QibgizLHN0WWSSYcjML0ITAblXIsuSyZ+VVDqw/TqP2NTi85RRGvUzDDrUJCg3g1S8GFi3JFUfqtWx2/HgQXa4jcT7vWDKrMvdjsyrYrArrFh+iwUOVqNEgFB//v7bCb9akVWxbdgQhBBO+e4p6zasUbYtPz8JiV3A1GkjKzL2lYFo6Zy8/fbsLIQQTvxxI3caOe2QpsPH+2EXY7SonD8dSJ7wCXj531wPTyT+Df2Jj3DtBkqRJwBDgIr9+e3f8f/swayFOwfQfYOysp1kzayv+wX606NkI4I5apdRpVQ2dQYdBCNr/ZsmpeuNKePt7YLPYaflYOJ+8uACbxc7h7VHMO/gex3efIelyKiMm9+FC5BViTsWjaRo2q524mBRm7337nl3rb7GqFtYnLQega6nemHTXP7wNOh0rxwxk8vqdeJpMDHyoftG2YSPakJdrwWDQ0Xdg0xuO6R/kw6cbXrun807IzcGqqrjpDSTl5xYJpoAgH8yFJp8ursYbDCfBsczTqf/11+mN2c8wsd/nICAjIQMASSeh1+sYPvHxIsHq6n79vmReywZNQ9LJlLqFN0+VOuUQhdFBJInDO6M5tP4YTbvV440fn2PfhuMoNpXcjDwun0mgeqOKaJrGiT1n8Q/yIeQ25pKapvFK+0nk5xQ4ihG8PZFlCZOLgbRr2UTsOgPA3g0neG5SLzx93Bn0Vk/eHzgD30AvWvW+0d26QetqrJ6x0fGDqqHXSRj8PLFl5ODibqJlr+v7h1QJ4omRbfllYyTxkZdRcAi41759BqvZiruXKy6F96l5l7o071J8pCk/18LIHl9gNdscy296HY890oDg0n4c2XseSYJfNpxk58oIXN1MzNs9/i9t7hx7OgGL2YbBqOdKzLUbBNMHfTrx4epd1CoXRLOw65WvZ1NSGblqNa56A1X32bBa7MiyxKFDMUWCSdZJ6PQ67HYVWZZvcgV34uSvRpKkssCPQEkcwuZbIcTnv9unNbAauFT41EohxK3LZ+EJoKIQ4vaJe8XNR/xaylT8hF2APYAJh8BaLoSYUMy+vYDlQLgQIkKSpFDgDPBrssZBIcTIwn0bAHMBV2ADMEb8wWQaNmwoIiIi7ujCnPw15GcXkJdVQMmQG7+JqqqGJc9CRmouozt/jM1ix9vfg8UnP3CMyzEzvPHb5OeYqVwvhJSUPNISs3Bz1RNQyod35o4kuELgPZ376oRF7Exx9FZrE9gZX30dZp7fStMSVXg+rPMD20ojIjmBCfu3UyugJO8364C+MN8lOyOPnT9HsPmHnVyKjOOhLvWYsHjMTeOP7z3L9DHz8fZxJe7UZWxmO3qjnle+Gc70UXMQmsaLM4bRvl/Tm8ZuX3KAac/OQdJJqJqg+/C2jJpyYz+53mVGkWdRkJBQzQVgV5FkidGfDyH+chprv99FSFgwn28Zj8nVyFfjFrFt8QGEEHy48qUbkrx/xZxvJTergCFhY1AVFYPJwDPTBpGckMWjT7XGP8ibZztPJflqBmUrBvLF2rF3lAc0591lrPxyM5IEw6cMoFXPcNw9XZB1crHjow9fYPviA9RoUpkzxy5Rs0llWvVoeMt9LRY7M7/bQV6ehedGtMPfz4P4S6k812sGNquCBHSe0I6FsWepFhTI5Pat0Swqox75FFXR0Ot1zP/lzb80ynQ+Mp6pLy3AP8ibt78eekdR0OdWrWFzzAVkSaKXf0WiZ5+kQFPJqe/DVy/2pmFlx9LwhTOJ7Nl8iqZtq1O19t+X8P5fRpKko0KIW78B7wEeVYJE3Zl3nhv3Z9jXYeptr02SpFJAKSHEMUmSPIGjQA8hRPRv9mkNvCKEuH2OiWPfFcCzQoi7T5jlziJMVqCtECKvMCnqF0mSNgohDv5uIp7AGODQ78ZfFELc6uvY18Dwwv03AJ2BjXd7AU7uLe7ebrh73xx21+nkom1jp/XnyI5orp2N54kyI3nm4ycJqV6W/FwzVrON6IMXWJcyi15VXiXfbCc/JpkXOkxm2YXP7qlokZCLAssSMm+fXEqBaiPBnEG7oFrU8PnzJf0Xo66ybdkhmnSsRZ1mVf54wC3IzczH1cOlqGVLw5KlWf/YzX+wvP08aNKuBt+9Oh+hCfavP0ZuZh6evjd+2H79xlLSEjNJi09FsziWhFo/3phZry3EbrUBEutm77ilYGrX5yHKVinFK10/RrXYWfPtDka8/0RRNArAzcNEXmY+slEPOh2qXUWnd+RNjfqwH8Pe6onJzVj02p45EoulwIbRxUBs1NWbBFP8hWTG9PgUu1Wh9cCWXDwcQ5u+zej+9I1R8hnrXyHhUgplKgTecdL0sHcfp1Wvxrh7uRIUcns361+p3qgS1RtVYmj421yLT2Pr4gOUrljylhVxK9ccZeOWU46WP8CE8Y9SqpwfYS0qEBsRz4ARbZgeF0WOxcqphGucz8umbdWKPPFMazYuOUynx8P/UCzl5piZ+OJPpKfkMG7K44TVvP37tkrtsny3ffwdXeuvNChTmj2XLiOA1s2qkVFg5+C5K8gSHImJLxJMlaoFU6nav7cFjZMHCyFEEpBU+DhXkqQzQGkg+rYDi+dD4LgkSVE4tM2v5+l+J4P/UDAVRn3yCn80FP67VSRoEvAR8OofHbNQNXr9KrokSfoR6IFTMP2jsNkVPlv7Cxm5BXRoX5UvFuzEkm9l1ivzWRz3FWH1Qjm1P4ZeoztxLS4dq82RQCt0OgpyLTctKRWHqmqodgWji/GW2xf9uI+lC/bTpHkVXnu7e9ExO5d6DLnwccegHsy/mEiiORME+Jv+/Dd6VdV4tddnmPOsbJi/j7mH3uXw7nNcOptEr6daUqLUHzei/fHjdSz9ais+AZ7M3DoeL7/bN0guUcYPFw8X8jLykAz/Y++8w6uo1r59r9k1nSSUUEKH0HuRjvRelCICgoKIoIAFQQVBRRApYgEFFURBitJ7772F3gNJICEhve02M+v7Y8dASIJ4zvnOe9Tc15ULMrPWmtkzO3s/85TfY2TjTwcRQlCpTmlqNQ0BoGLtUty/m4At0QkGAxZPMwc3nsWRbkciEFLSqm+jPI9RMqQofgV9SIlPo3zNktmMJYB3fx7JOz3nIBRBtbplCArywSfAmy7D3DpO1kcEDId93IvPhi+kcIlAWvTM+TB5+sBVVKeK6tIID09k/qnpuZ6X2WKkzL/QL65c9ZK5bv+jPD5N07I+6fRHks13LT/MzhVHOJfhwCUMGA0K6JCR7mDhgVPs9UiBZn6o5X2obS7GoZvhIKBCYXcl3wtvdOCFNzo8eshc2bUhlCvnInG5NObP2MLsxS/nGBMZlYjDqVL+MS1OXC4N00N9FOPjUrlwPhJrKS/6VK9G9aAiWI1GqgcFESCsnLsdjZfVTJf6/zkh0nz+GvwvygpkRqxqk9MpA9BICHEWiMLtbbqYxzKLcdsp5wE9jzF58kSBcyGEAbcrrDwwV0p57JH9dYBgKeUmIcSjBlMZIcQZIAWYIKU8gNtCvPPQmDuZ2/L5C7HqyAV+PXgOVdNJKvugDLxinTIYTUY+2zA2yyiypTvw9vMgI9UOSMbNe/mJvAT3bt/n9eaTSE+x8faCl2nVJ7tXRNN0Fs13J6ge2HOZ5wY2plQZ95eGWTHTpdiDPngLGr7M7piLVCsQTJBHATJSbUzo/hk3zkZQu2Md3vv+ZSwPGWUJMcksmrKWwCJ+DBjXldTEdLYtPUi56sHUb1MdpERzZSqVIzl3PIxvPl6Hy6Fy6fRtvlz9xz3rNi85hKbqJMelMKTB+1RvVIF3f3glz5wWg9FA3c51ObD6OEhYs2AP6al2jCYDc7eNo0T5IrwxewDNutThwNoT7Fp+hMCgAu62JZmNkKs1KEvXl/POcbR6WvjuyEfcDYvJNefI6dAwmgzYM5xcPxfJ9DWfP/Y11mgSwpLzuRtBAA1aV2HJnK2oLjtGgyAhJjlb9dy/i5SSe7fu4x/kh9XTgurSePe5r7lw7CbdXmzOqx/3yjH+qzd+wp6cjoenGWe6jXc7TiWgeCB93+lGtYblmfP6j7gcLqQi0JqFYDUbOLYhlAF7rlCmfxWcqoYQgrsJyZQqXICd125QLgxmvfEro97vStmKQXmer65Lwq7fo3ARP3wLeFKyXGEUg4LVqFAhF+/OsTO3eO+zdQC8NqgFPTvUzrHehDd+4eSRm7RoU4X3p/YiI93By899y7WGAqePQlABHza8MABbprp7/QrBHJmRU+w1n3z+wxQUQjycZ7NASrng0UFCCG/c5f9jpJQpj+w+DZTKjIJ1AtYCFfI4XoaU8sk1UB7hiQymTPnwWkKIAsAaIUQ1KeUFyFLQnI078/xRooGSUsr4zJyltUKIP1ZDfAghxDBgGEDJkrk/Kebzf4OnxYQiBAZFEOjvzeRT04m8epeaLR/c4t+9PR5eFr7d9S5Xz4RTo1H5J64uO7zxFBmpdjSXxqovtuQwmAwGhdJlCxIdlYTZbKTgY5qw+lu8ebbkg0Tf/b8d4/KxG+iazrG1x9ncsio9h7bM2v/V20s5vuM8RpORwiUD2bx4H7cu3MFoNjJzw1gq1CrFx0teZc33e2jZoy7ema9JSonqyv3h5fq5CI5uP0/TTrUoU6U47fo+xerv9qCm2UjVdU7vuczpvZdo2K5GrvMB6jevxKHfjqKpOukp7v6BwmwkPdXmviZGAw3bVadhu+q8PmsABpOBT4cu4PTey3Qf1gpbuoNZry9m6KRnsiQB7kXEceXYDfYsP0SbAc1o1rNBnp6ZKg3KUbl+WS4dD6P1M/VIS0rHu4AX6ckZ/Dx1DV6+Hjw3ttsTJzIXLVmQ519ry4JpG7l26R5jen7BT4c/eKK5efH9h6tZv2gfDdtVx1OR7Fp2CC8/Dxac/oy4mGSun40AYMOP+xn+0bPZPJ2Xjt9g288H0XSJVNzbnak2UuNT+WLMz8zZMo6s4YqCxcsMF2PR0x3YYlNo6NmMpHIOzEYDLz5dj6e+mI9npAPn+QyuaIl8PnktX/0yPNfzVjWdcZNWcOnIbTx0wZvvd2XLqhO06VaL2g3L0ejpnN6eMxcjcbpUpISDR69zYc0ZkuLTeHNGP4qXKURcbAqhJ28DcGD3ZdJS7SQlpGN3ubD7WUBAfGo6XV+fi8vmolffJrzVPW/5gvS0RdjSl+DpPQRPr+fzHJfPX5X/amuUuD/Kz8pMBVoFLJVSrn50/8MGlJRysxBinhCioJQyLpflDgghpgHryR6SO/0kJ/unSjOklElCiD24840uZG72AaoBezM/dIKA9UKIblLKk7+flJTylBDiJlARuAs8HIgvkbktt2MuABaAO+n7z5xvPv9/6Vq/Ck6XSnyqjYFP18HLaiboMSGBgMK+NGpf/U8do06raiz+aBVCQNv+uZdxfzH/Rc6fjaBCSFG8/kQ/q9JVS7jFKgUoFhPeftmNOJPFhBAKQoDJbCQ1MR1N0zEJSE12e9R8/Dw4v/McZ7ac5uNVb/LC6HbcvBxF/9fa5DheRpqdd579ArvNyZoFe1h+bhovvd+dnsOeZsbwH7h0/CZSSkqUe3wj4ILF/DGajIBG6fKF8CnoR+3mIVSsVSrHWIuH22M24cdXAVg1bwer5u1EU3VUp8r4BUP5dtIqNizch67p6CmpnNp5nupNQihQOHcvz/EtoZQoGUB46C22/7SPIxtO8uP5GXw7/hd2LT+MwaDg6ePBs6M6/tEtyCI1KSOrbU7c/dQnnpcbTruL1fN3I6Xk2PbzKOlpuBwuMlLguwkreGFCT3wDvEhOSKdKvTJZxpKu63wycC6H1p8CRXFLEQiBlNL9u66jGBQCi/vz2tcvcevMLWq2r0lAyUDGdp6NM7OFy6Vjt5k3rTdx91PR7Br1gotzNS4CAZjNRgrnEapVdZ02U78jITUdUcVC0CU7n0xeTYaPGcLusX7DGbxL+zB99kAqFiuElJLzoRHUDinO9kAf7HYXZc0Wtu0+jkvV+GbyaoZP6ol/QR+Klwgg+m4iZcoXxsvbgpe3hQ4da5IQeYX4klAhyoB9XyQS2Jq2P0+DSdfiSU2eDLhISRqP1aMLipL3Q0o++fw7CPcf5w/AZSnl7DzGBAExUkophGgAKEB8Hkv+7n59uOfXf05WQAhRCHBlGkseQFvcMUD3kaRMBgo+NH4v7hjiycy5CVJKTQhRFrebLExKmSCESBFCPIU7HvkC8NWTnHA+/zsoiqB305x6Ov9JSlcpwdJrc7ClOyhUPCDXMR6eZho0Kp/rvsdRqUF5Zu+exJafD1KlcQhtejXItn/UrP4ULV0IR5qNW6FhDB7fne0rjlClfjlqN3c/6W/9aT9pyRlIKZnwzCw0VaP78LYUe6Sq8PLJMFZ+vR2XQwXp7pX2uwijfyFfJi99jRM7z1MypFi2XnC5UbtFZd6a9xKR16Jp068xnj4e+DyihxMTEcemhXuo3KA8jTo9CNFYPS3uJsEGgdXTQmpiOusX7kPqbpkAYTIh0DCYcv9oCDsfwfQXv8Fhd0Gm90V1qqQmuA3I3J5LpZSc2HsFs9VErVzuU1x0Eqd2nUdxONCtFpp3zrtk35bh5NMPVnPrRixFC/nQe1AT6jXNnmwfHRGHt78XtjQ7vv5etBrYmJUzN+ByauxedYJ7kQkMfKsj63/YS5teD/r/Rd+6z7GtZ90GkqZhMBvx9PXEYFRIjYrDPziQcYtf492xK4i4HUdwqUCGNquEwaAwbEJ3vvlwDaqicOx0OJMnrCL0bARCwPRZ/dBbNSOlWwLJsWm06Zr767scE0tCQgZCCqSQpPmCMc3oNiQV0AwK6deSGT11GVu+HsWi+XtZs/I4Ukqmzu5HjdqlOLAplB3GQ1gMCtHh8YzsPBtPHytzN71FWpqd4sGBWQbiqPGdGYVbQ2v+ZxtY4ROJKVklWMm95QyAEB44JSgoqBKSXDYCLPkG09+N/6EcpibAQOC8ECI0c9t7QEkAKeW3QC/gVSGECtiA5/KquJdSPv3vnMyTeJiKAosz85gUYKWUcqMQ4iPgpJRy/WPmNgc+EkK4cCdYDc+UIgcYwQNZgS3kJ3znkwfeBbzwLvD4ZOh/lcoNylO5Qe7GlrefJ8++2prny76O0+bEw8fK6pjvsiVBN2xfky0/7kNzqThsbqHY1V9vo92AppSq5E7Lk1Ly/nNfk5GSgQJUqFuWOs1D2PvbMVr3bYTZasJsNdGkS53cTiNXmveox80LkQxvOQXVpfH2ly9kK31//5nZRN2MwWQxMnXt2+xffxqjycDzb3dBdamkJWXwzKttUF3uXniq052EUYBpAAAgAElEQVS70rp3AzoOakFCTDJn9l6iQfsa2XqvuTJzXJDSbXwZFNo83wT/In4M//R5vHw98PL1oNvwtllzVi7Yy/J5u5ASXv/oGRq1rcqSubswmgz0f7UVv83dzo1zEUhd0rRlDcZ9nncj2J2bz3Hy6E1cTo17kQlcOn2LKXOeZ9qAL7F4Wvh007tMHPgtqck2TGYj784fQtUG5ShfpyyzXluEw+YiOS6VL9/+BdWlMeeNJTRoUx2fAp4UKu5PgULuZHezh5kOLz3NoPd60K/UCDSXRlpiGgkxSdy6GYum6dwOu09SYjoBgd507t+Y23FpbFp7GiEgPDwOp1NFUQTnz0byfP/GUDyI8+ci6ddnLl5eZmbNGUCRoAdevFL+BTAVMuGKdaEbBbF1PfC55cI7WiIAxam7e7plvv3OngnHbndhNBq4ejmaGrVL0bRTTUwWI6mJGcydvAanQ0UxOIm4fo9ajXNP61B1ndW+8dztVRSfNJ3vhuR9/YXiycKEJpQ0RXHbWYxB/skEWB5v4OeTz7+KlPIguT+HPTzma+Drx40RQgwAfvm9h1wu+8vhli84+Lh1nqRK7hwP3FgPb881yUBK2fKh/6/CHXvMbdxJ3KG8fPL5n0V1aUjd/TemOjV0XfJwzVidVlX54fQ0rp0K4+OB8wAQipIZMnsIKcHhRAeS7txnzVe3kVJy4cg1xn47NM/jp6fYUFUNv4AHVX2r5u9m48+HCAoOwGFzIqU7efxhg8me4UDX3TGi7yev4sqp2+7T0CXDPu6d7RiTf3yFPWtO0v65p6j+VHnu3LjHK40+QNd0gisWpXSFIjhsLkZ//SIh9cry8qf9OLvvMv3e6Ua5mg/CgF5+ngyf3p+k+DQ0VSMtKR2jycCty1HYM4UQb1+L5uqlKDavPI4QApPZSMHi/hjNJoSAkDqlszwgLpfKzvVn8PbxoGnbqgghKBbs746iJqYinC50Lyu/zd5IYkwyQhFsXrjb7S0DhCKyKvaadq/L9bMRhF2I5IX3ujO+1xeoNgcSt/I5gNlqZsGJqYRfvku5GiWzqjKrNa3E6V3ncThU5s7cip+/NwlJGZQvW5DRnWeSnJjOe18P4qVhLbFajJhMRsqFBDHlozVYzUYqV3hgUCz6bi9p8WmkJwq2bT3LCw+1OvG1Wtn95lBuxMVz+k4UM3YfJK2cCVtRnadiPLmlOtELmPnmNXdLnaGvtuLjCavwD/CiTQd3qFsIwVNt3B+rURHxrJi3i6DgQCrVzhmu/Z2Y1DSi7iViSlNJDTTiX8I/z7EAnUu8zpq7K6nsV5UyXn/es5vP/zYS/ps5TP8tAnHLCZzCXcB2H7DiLmRrAcQB4/9okXyl73zyeQwBQQUYu/BVdi09SI/XOuSayFyoeACFigfw0crRbPv5IG37N8kWVouJiKNZl1rsXHLAnaidbEMDVB0irsfkeeyrZyMY99zX6JrkrVn9aNG1DqlJGSyavhFN1bkflYjZw4ymanQZlD2/a/KyUSydvp6yNUqy/oe9WdWKkdfv5ThO3RaVqNuiEuAOFe5dfRxNdRuJEVejuHMpEqlLFk5cwdvfvUKzZxpi8vLAmIvMw5ZlR5j3wSoURaClpKEAz4zqiI+XGf8ifvQc3IyVCw9kPTJev3CH0H1XwNOTl97uQLcXHxgQ38/cytbVJwCB06EScz2KQ5tC6dAqhK1LjqBJkOl26ratxtm9F5FAtSYhtB7QnFXzd1OzcQXKVXWnSiqKwpDJz2at3WdkG5ZMW4d0uVjw3jLeXehOwvb08cjhcZy4bDQz3/6F3TsukZrmhNR4FOD+5WgyEtJRXRrL5+6kUbvqeGkav8zeQtV6ZZg2+RkmDV3I5EHfMWxCNzr3b0zy/VSELkGXoOWMGvhZrdQtUZwiupVCTc38dPIMpa1eTHm3G2azEcUgsqpLq9cqycqNb+T5/hn0Vkf6j2qHwag8Vr5DTbBTfGsKmq7jX6MgPtbH5wHWD2hE/YC8ZSnyyed/DSnlF0KIr3HnKjUBauAO310GBkopI55knXyDKZ9/FPHRSRzceJpqT1WgXC5ChLnRsncjWvb+4y+IBu1r0qB99pyu1MQ0RjT7EE3VsHpbKRVSjE5DW/H5OysQuiTsZhxvdp9NSkI6b8zuT9X6D0Qdj+68kBXm27D4IL9M30BacgZWTzOqS8dsNfLDvvdRDApePtkT1svXLEWft7sy/vl5qLpAKAKpamgOJ5qq5dBWAkhLzmB42+kk3k8FgwKajpe3BVe6AyklAUHuZOU3u84k/l4yiiJYePRD/B9qvrt12RFUl4YQoOuA08Xy2ZsQBgOp0fEkxCQzeFRbTGYDJpOBU3su43KqKALu3IjB5XBleXZio5NwOlQMRgNXQ2+zfuZ6pKoSdu42XoUKkB6TgpefJ636NqFs9VL4FfRBKArvdpqGpmr0GNw0z3vlW8ALg0FBdanudjOPwWA0ULdNdfbsueY2PAGTyYBPIW8yEtMwW4w07eiuavzli+24nCpXQsPZs+4ULqeK1CUHt56nc//GBAR4cSc8DpPZSPE8cvJCT91mwtjlIAQDBjfluYFNch2XF9cvR7H8xwOcOxNB+cpFmTy9LxZr3o3Yb1yOxmww4HDpeMRqf+pY+fwNkW6H+N+NzGr/HZk//xL5BlM+/yje6DSdxNhkFEVh4YkpBAb9sbjkv0NibAqqS8Npd+FyqszcOp5bl6MwGA3oThVd1bh80t0C6atxy/l293tZc5t3qsW6hftxuVQKFvTm8sHL6JqkWpMKtOvfjFpNK+LzSG5XxNUopJSUqlScC8dvoqkauiZRPK1oiSlcOnaDk7suUrRsYQqXCMDq8cBLdO1sJGnJGegOJyYfL0ZM6kHjLrU5tiUUp91Fh8Hu5sv3o5JQnSpmi4nlX+/gzo1YBr7dkUq1S+NtNYCUCEXBgMToacaZ6a1CwoWj1ylfPZghb7pFG8uUL8L0N5ai3rvP1gXbOb/rLG98M5Tf5u2kSp3S2DIc+Ph5UrZMIFJ1509Ju4OKFQtxOiKGjASV58uPRkrJ2O9f4cKBK8Rl9s37dfYmxi8emet9aTewGXdu3OPYtnPoEq6fjWDb8qMUKRnIs688nUMjrE2XWly/fo99Oy9Rr2FZvLwtrDx+BVE7iDohxek9vDXg1ri6fPo2JouRuk9XYdfuK0i7iz6vuHNNx07qwaJvdlO0uD8t2+ausHLpwh1UVUPTJKeO33pig0lKyZvrN7Hx0lX8YhwExDu4EBrBsUPXad66Sp7znmoWwqpSR4iKjOel11o/0bHyyeefSL7BlM8/isTYZFwOFbPVRGpiepbBtHvVcVZ+uY0WPevTb8yTKTA/CcEVi9L2+cbsWHkc/yJ+RIXdp1zVEnQd1JQ13+1BSB0pFMxWE2UeESUsU7kYy09PQdc0Lh69wdHNZwBBvZZVaNu7QY5j7V99nJnDvwfgjXkv0bJbHTb+fIiUxHSCCnkR5bAjdclv3+7i6rlIREYGfgFeFCxfjBGf9CWkdikUKUHXkS4XGRlODCYj7Qa6w2SqS+XErgs07lCD62fDqVS/HNuWHcVhd3HmwFU+XjiEUxtPIQFhNtKyfzMsHmZcTpXdvx7Hr6A3TR9JbG/WsQZlKhTmlfrv4bQ5uX3pDh/0n0tKQjrHt5+j36j2HNl6ls8X70UxKkhdElg8AL+CPhjNBnRdomVqEG1YsIser7Zl20/7EECd1jklLDJSbXzQZw7Rt+7TqGs94mJTib6bxOXQL7A53EZgoaIFaNmjLuCWGji6ORSz1czwMe15NVOde+v+S4gz17A7dCIT07PW/2jRMK6fi6REuUK8+sL3OIWCydeT9cuPYfW2ULlWKcZN7vnY90zbjjXYvuUcqSk2XhiSs7z/1JnbTP5kHQUKeDJnej8CM1urhCclse3mTaRRkFTFgv9FBxI450pg24YdvNKkPiUDcj4gePlYmZeHLlQ+/0z0x+dZ/2P5w+a7/0vkN9/N59/l8OYzLJ2xkcadatF/bFcAtxRA6dFoqo7JYuTbfRMp9hg9qT+Dpmq822Mm5w5dA5OJhu1q8OGSEQBcOHKdmxfuEBwSRGpiBo071nys2OOtS3fJSLVRpUG5XHNSPh+5kG0/HwCgZvNKjJw5kJKZSt32dAdHtpyhdOXijOw4Ez09A5me4Z5oNlOyfkW+2/UuU4d9z6FNZxAIdE3DZFCYvu4tipUpxLC677qTq61m/IMLMXXlKF7vNBPNpSE1nfLlAnDZnETfvo9mtqBLUAwKHQc0YeS0vnnm0UgpmfrCXA6tP0mb/s04uO08tjQHQlVRNA2XwwUWM4rFhHQ4kC4N/6L+NO5SG1uag0PrTqCpOm99O5RWfRsTfvkOmqpj9fEgPcVG+erBWcfe9vN+5r29FIfNScESgaSmOjP1k9z7jYqgZfc6vD6jH2aLiWUzN7J81kaQMHLWANr1d4f5HE4X/d/8kXt3EvGKc/DhlN481bJSttf1fJc5xMWmgJQoaXaMZgOjZ/SlfoNyFCiQsz/jw+i6TlxMCoGFfHKET0eM+ZlLV6IwGhWGvdiCPs82ICHDhqprdP9pKSk2OxY7jPSrQuH6xZiwZzcOl0r5QoFsHP7faaqaz3+O/3bzXa8KRWWlL1/6rxzrdKep/9XX9u+S72HK5x9F4061adwpe9GnYlDwC/QmLcmGYlTwyaXZ8L/KjqUHuXjoKtKpogDBFYM4ueM84VejKFGxGAazkZDapXPkIOVGYlwaoYeu4VfIlxJlC+fY32NEW45vP0daYjqXjt3gtWaT+HLfJEpXKYHVy8LTvdxabV0HNWPdNzvceU26RDEaKBDoA8DwKb1JS8rg8skwbEkOHMCRLaFUql2ajEwlcelwkp5io3RIUV4c24kfPlqNSdOo8lQFhnzUh9Xf7mLp51vApaFrOmarKZuxpGk6R/ddwdfPk+p13VVx7//sbsPx47R1uBwaCPD19yIx2h1eMygC34I+JN52G3lJMUnsXHUSxWCg11vd6PlKa3z83eHJUpVLcOHYDd7oMQchoN/o9vR9vT3g1vUCtx5V7ZaVKVqhGL98uT0ryV13udi3+jhe3haGT+3L7Ut3cNpcCEUQeTX6wb2w2Ym9HYN3pDv/af+OC1RuWJrLUbHUCC6Kp9nEJ3P6MXvmZq4eugG6TkaAD59/sR1fHyvLlo3Ifk1Una8/38qN6/d47Y0O/PzNbs4cD6NYcADzfhmO6aGqy/p1yxB2KxYJVKlcjE2XrzJ20zYUIZj/THcUBWoWdZ/DifA7j/UVnDwfzrylB6hbNZgRA5r/f22GnU8+/9cIId7MZXMycEpKGZrLvmzkG0z5/KWRUvLTjE0c3nqO58d0oEW3J9MycjpcnDt4jeCKQRQJDuSLreM5uu0cNRpXyPri/U9gMBowGBR0g0KFmiVp2KYaE3rOQtUl0mLBZDZyeMtZpi5/fN+uexHxfDj0e5wOF9tXHGXk1N64HCotutXJaiBbpmowy67PYWDlN4mNjMfqZSHyWjSlq5RASklGig1PXw9e/bgXL73fjeUzNhAVdp8ydcrSOTNPxtvPi8sX7mJzaGAxYzAoNO1WlyIlAvAu4IXLoRJYshAvT+uHlJJnX21DnWYhxN6Jo1rjECweZmo1q8RPs7eAEPgV9GbQuK7ZXssPc7az+bcTSAnjP+1No4c8MxmpdlS7E6lpJNnsoEtMFhOTVoyiylMVGN5wAnF34vEJ8CbFriNcOpuXHKLfm52yHePSiTA0VUNTdfauPUWvEW0xGBRC6pbli70fcD8ynjqt3eX3Ny7c5dS+y4TULMnlo9fQVJ2YyHiObT9H3zc7ExUWi8XDTIPnG3L4ejgNygZjNhiwl/XEGuVAIGjzbF26fP4jSWk2LC7B5jcGEX4rjhRfneRKXlhjnRgMCna7C6dTxeXSMD/kTdyw6QzbNp/F5dSY9uEaoq/Huu/73USi7yRSsswDj+fgAU1o1KAcPj5WihfzZ9bK1Tg1d7L2schI3mzeBE3TOXPwKkWL+fNeu5ZciI7h5cb12LjzPF/9sJsKZQoza1IvJs7ZRHKqjdt3E2havxw1Kz3cgCGffyKS/ynhyv809TJ/NmT+3gU4BwwXQvwqpfzscZPzDaZ8/tJEXLvH6gV7cNpdzBz9M8271n6ip+QPB87j4tEwhALzD06icIkAugzOu3/Wk/B7YvfDffJa92tMamIa8dFJ9H2rCxcOX0MIgaZpKOAul7+TkPeiv6/tcKFrOkhITkhjxpglIASRYbEMeiu7sfD6nEHMeW0hwZWKUS9Tk+eTAV9zcO0JKtUrx6xdE/h+8ip2/HIIKaHvW52zksel1NEyG8diMGAwCqa+MJcyVYoz/+RUdE0yb8JKZoz8kRVfbmP6qtFIYPrQ73DanIz97mXSM1TAPT89zZnVnuV3bl2PwW5zYTAqRN66n81gOrvzHFJ1AQKZKaZpMCikJ6bj5ePB4gsziI2Ix2A2MLj+B+i6xJ7h4PLJMGo0fqD4/fQz9dm4+AD3o5K4cy2a58qNxmlzUuWp8kxePprSlYtnXdeuAxrx2ie98PC2MnfcMlIS0jh78Cpn9l0ioGgB5u2ZyJ3UNPp+/QtCCFpVKctHPdow+dk2XG2fTKuKZRACkjJsaApkmHVmTVnHmTORSAHGwgbuP+1LfWcAjlvp9OndMJuxFB6VwBcr9mFwaSiKoHARP4oXK8DpA9cpXa4wxYOzV9MJIagUUjTr9wF1anIs4g5GRaFjJfc1+HL8CvZvCkVKyexVo+nT2Z3PNeKnJWTYnFwLi+HwyTDkfRuWDBfSD/x9/3Oe1Xzy+R+lBFBHSpkGIISYBGzCLbJ9CniswfTH7eLzyed/GK/M8JnJYiQwyO+JjKW7t2I5cyQMhy7RJLlqE/1ZIq7do1/18TxXbRxr5u/i9K4LrP52F6PaT8e3iD8vf/IcvgHe1G1TjXI1gylctACVapfC19+THkNaZFtLSsn3k37j9VZTOLPvMvci4klLtlGydEHQ3PlCLoeKy+5i+5KcwrQN2tekRpuaXAy9y6iOM0hNTufA6uNIXXLzXDhRYbGc3X8Fe4YTkFwLDc+aa7GamTh/CL4BXhhNBlxJaUTduMfxbefYvfwwPgFe7F93Gk3TibgaTb9q4xjTbhq2dAeqLlkzb8eDEnYps0Q/H2bYWx0oVa4w1WqXouMzdbPti42MQ6oaCIHRw4LRZMBoNlK1cQipieks+mAlRzaeJjCoALVbVMbqacZoMhJcISjbOoWK+TPonS5YTAquNBupiek4bE7OHbzKkU1nssZN6D6Dyb0/Z2itcdjTHbw990UGv98DTdWwZziJuhnLiI4zuHo3FgHYnC7O3I5iWJ95fPv+Bq4uucDEV39h3NCfCVatCFVSIMyBIhR3bbYuMafpNK9djjkT+7J82UieeSZ7ysatu/HgYcJWxIKhuBd+nYqxJjiOmL6BvPNlHzasOM78mVtISkgnN1qXL8ep0a9yYtRwKhd2e6IunryVeX8h7HJU1thaVYPx9hZ4W9KY+/WOrFY9/sJEyWK5yxzk80/D3Xz3v/Hzf0BhHmq6C7iAIlJK2yPbcyXfw5TPX5oFH/yKVFWEEHzwfd6K2Q+zb92ZTLF9gdXHgxpNKv7RlD/k2I7zOOxOVKfKgjd/xGQx4nRJhLcXc95cStPOtbF6mlk7dxvXToahS0l8Yga6Jvl+8ira9GmIh5e7h9fFo9fZ8MMeHBlOPnlpPqrRBAjqNQ8h8moUTqeK1DVAkBAem+NcpJTsX3caKSX37yZy77Y7/HTuwBWKli2MVwFPug59mh8mryKoVEGadMme01X/6cosOjyJvWtPcXTdcUL3XASgSOlC3Ll+D6Fr6EJBU91hIFXXERYLAkhItNGyR112rTrBtdBwhk7snuP8ylQowvxVuYcgx373Cosm/Uqd1tUYPv15YiLi8Av0wcPbypT+X3FkwykUg8LGnw8RXK0k7303lPLVg7NpQQFEXI3Gnm6nbJXi3Dx7G6fdha5qIKHkQ96ZqyfCsGc4sHpZuHP9Hv5F/ChevggBhX2JDo8Ds4nYu0nUKlKEqiWKcDM2gZcb1uGn9ZtxOVXCwmIxephRXRrlog18OLQzQihUqlmCF3t+RXKyjT5ta/Nq9855vncaVi9FCdXA/TSV195pz7Qbx3BoGopJYem2Exz56hiqS+NOeBwffzUw1zU8TNl1ll75oCez3/6FYmUK0fihhtcT32xC9L33GTu+G/cT3HPMZgN165TO8/zyyedvxFLgmBBiXebvXYFfhBBewKU/mpxvMOXzl+bM/iu47C6sXhbi7yVTtuof52DUbh7Cirk7kFIyaFyXbJVpifdTUQwiWyuSJ6FijWCQIKSOwWjAkeEEITCbjRitJhZMWUuH557Cnu5A6tItgPh7geojlaoFCvmClJgsRqy+nqSmu3Dandy9HcdvN2bRq9I7OO1OhACLX87zFELw9DP12Lf2FEWCAygVUpRJK8dw60IkqqbzYoMPcNpdGC0mkpLtWDKFIqWUnNx5HoPRQO2WVeg0oAlt+zRk78ojBAQVoG6b6pzZewld0wAdiUAYFHeFWaZnLy7a3aJk6rLc9Y8ehy3dQUJiBsNnD8pSHg8q9SB3x2FzoukSTde4GxbDvagkFCRvf5HdiIiLSmRU6ylICUVLF+KZMZ1ZOXcnaDoiPZV7t+9z5/o96rSqxktT+vLj5F+p8lQFHC6NxPupnNh+loQ78WA0IsxmWnarTbFi/ix+pQ/grmA7V+8SJw9fp3RQAe7cisPgZabX842o3ywk6zx+3fkOUkrsNhcpSRn45lEZd3jnJVIu30dxaRxdHcrQl+ryyd59FLBaqeThz5HMe6O5cm2DlSv1n67MslMf59iuaaEYDHaKFEkiOcULsPL68NZ07FDjidfO5+/PX6h4/k8hpfxYCLEVaJy5aXhmmzaAvJsoZpJvMOXzl0NKyYF1p0hOSKPfmI78OG0dpUOKUr1R7s1FH6VyndIsOvQBDpuToqUKZm0/tPUc01/7CSEEHy0eRs1HmpVePn2bGW8soXjpQrw3bzAeXg9aSKz4bD1aUgoGk4ESFYty73Ys1gLeSIORNKfGlqWH2bL0MB/9MIQOiek4HS4ada3H4S1nadPnqSzvEkCJ8kF8vHIMn7++iPioeHxLFMFuNvLiu10xW828M28wnw77AcWoEJLpGZBSMvv1nzi8+Qw9hrXi7a8GMezDXngX8CQjxcYrTSeTmphOcEgxnHYXUkpcdidpQGpSBoFBfqz+ehs/fbwKCYyYOYAOL7TAZDbSdsCDtis3zkciFCWzX5tEahomiwnfgj447Cq9R7ZFCMHqb3Zw8dgN+o/t+kRGLMBno3/m9IGrCCH4cOHLOa6/b0EfhMF9bKlq6HYnRzadYXJiGp+tftAiJP5eEhK3gRVxLZrwr9zCvhLQUJg6aC5Gs4lCwYG0fLYhOoKrF+4wZfgiTCYjr07qDgJMqosGTSrz9uzsn6OKojDlywGcPXqDSa/8iG53UdDPgzbtc+o+3b4Zy5iXFqKqGqPf60K7LrUecwUkSBhctw79atbAbDAQnpBIclUrWrKTZsPqP9F1fBwWc30UJYDRr23m7LlXqFypH1UqFfvjifnk8/fhNHCXTPtHCFEyvzVKPn9b9q05weejf0JKSaveDVkf/uWfXiOgsG+ObXvXnsLpcIGqsuu3Y9m+sHVd591+c3E4VKLD49m1+gRdBj5ovWE0GxFCoCiCvm934+DmUA79nitjNCKsFqTNzsTeX1C+ZklmbRmPyWLkqQ7uViqLZ23myPYL9B/Vjmada+GyO0m8l4TT5sIWm8CqiAfNuJt2qsXcXe9y+0o0DdtmNloNi2X/2pM4HS6Wzd5C3zc64pcpaHgt9DYZaXZcTpWosBgsnmbsyRmgu9urePm4jbWb5yJw2NzG1Fdjl5Gc7KDv6+2yXaPgCkGYzEacDhdCQvsBTanWqAJNu9YhPTmDM3svcWjjaRZPW4cjw8nNc5H8eHrqE92T+1HuVigWDxPxsSk59sdExKFrOopBcYdUFQFScvHYDVSXhtHk1iuqWLs07fs35ciWUOIT3K8TIRBSYrYY0FWBPcPJ3Rv3WPLpOqQucdic4O2N8PGgWPkgxs5/mZjIeDoOyrsQwLeAF1KCwajgF5B7ZeXxg9dxOlV0TWfLmtO5GkwtO9YgLiaZ+9HJ9H+1FQAWo/ujefO160RVNqJLA0uuXaBjnbwVu3ND1XUkEpPivjaK4kfRIkeQMoPyZX3+1Fr5/HP4u1bJCSFeByYBMYA7r8H9LPVELtb8pO98/nIkxqag6zouh4v46KQnmmNLszGu3ccMKDuC07vO5TqmywtNIS0NmZbG/mUHCN17kcMbTqGpGunJNhwZDrevWkp8H5EeeHvByzwzqgNDpjxHi94NKV3FXYUlpURoKrhc4HT3hbtzI4aVn2+ma+BQ+lccQ+jBq6z5fh/h1+7x2ZtLkVJSukpxFIOC1dNCtcY5PWelQorRontdrJ5uL1dgUAE8faxYvSwElQrkfmQ8O5YdZlTrKdy9cQ//wr4IBYqVDERxOSGzDN1pd3HtzG1cTpUB73aneIUghNGAphhY/NlG9EeStp/qUJOSFYIQEkxmA/XbVKNN30YYjAZebTSRL0f/yOzh37v1nRSB2SPvHmaP8ubMflSuW5oWXevQrFPNHPtHzhxIuRolKVqmMKbfG/8Kga5JUpMeJEQLIRgxvR/exQKRJiMYDaCqoKpIs4UWzzbEr5AvPUa0I6ReWaxeFqxeFjx9PajdLISMxFQWTljOpcNXMVlynr/N5WLMsrWM/341/d9px6A32jPlhyE4nSqzZm/h+a6fM/nNZaSm2GjUIgSr1YTRaKBr79w9RAaDQt8hLXhtQjf8Ax+EWK/djyMhPQOTomAxGmlfMef7YMPyo7zYeTY/fAnYZUAAACAASURBVLGN30WIpZTMCt1H19Xf0/z1j2n+3hSOxd5+6PoYUJR8YymffySjgRApZVUpZQ0pZXUp5RPHo/M9TPn85eg4sBnXz4aTdD+FkdOfz3PcrQsRbF24m/odahN3J57z+y/hcqqMbz+Fb0/PoGyNUtnG12xcAQV35Zzq1JjQYxYGo0KhSsHE3UvB19dKckI6VeuXo1lnt6fg0NazrJ6/h1bP1KPHax2wWE0oikL/sV1IS0xnx5L9BFcsRvSdJFIdTmSmh2TVl1tQXRopCWlcOXYDoQjMFhNmi5Hn635Am171+eHUVO7eiKFyg3I5XlvU7ftcOXWL+q2r4VPAE6uXhfmHJrFtyUF+mrSSV+q/h24woms6YecjWXJpBvtWneCHD1bitLsgs1eaLiXvPvs5JpOBIkX9SIxJwrNwAKqqUSDQB6fdlWWU/Y6Hp8XdL04INJfb8HJkOEhLynBrH5k0Rn89hMgb9+g6pGWu98aebsdkNWdpSAGUrVKc2atG53k/y1QLpsOLLZk7+kf3M6GHFcVspEylYjmSvqWURFyPAUlmjpo7BCmAeu1qcGDDaTYvPkCPV1oz9KM+lKpUDJ/MvLVBVd7k3q37xEcncXTjaZo9k70NzdLQUI4vPo1uECzcvIHFe95nzqbDnDoShuN8HCJDJeFuEr98t49X3urAiu1vo7o0PL2yX8f45HRUVadIYE7jJclmp/dPy1F1HS+zmV/696F8wcBsY+7dSWDulA1ICb9+t58GzStRvXYp1l+8yC8/ncTzcjresTrSAN8G7aDhmJfzvLb55PM77mfCv6eHCYjELVT5L5FvMOXzl8PqZeGdb4Y8doyUkrdaTiI1IY21X20BcOsYAVKXbP5uJyO+eJHUhDR8A32y5AiGfNSbpZ+up2iZQoRfiMRuc3Lndjxk2LADZauVYNZ6t1is6tL4dMRiVJfG1dBwvp34GwajgRmrRxNxPQazrxcLTkzlxXoTUFWJNBpRzAJ7ig3N6U4KVwwKT3WoSaOudTm57zKLpm1E13TW/rCPnkNaUK1xzgq+pLhUXmszDalLChbz57uDHwDgG+BNemKaO6woQfE0YDAZMFlMWD0tFC4RgFAERrMRr8IFSElxoEsJqoqaaiMyNR1N1Qnw9kQVCsmJ6UwbsZgPfxyGpmooBoWYiHgibsYgFIXmPerRtLtbFsC7gBcvTu7FhgW76PhiS9r1z7th7MpZG1j0wUoCggow79hUNn6/m5Wfb6b201WZuPS1bEbU7yTGpjB7zE+E7jiblWDu5WHk7fkv07BjzjCXEIKh73dj+Vc7qN+qCh2fe4ptSw9Ro3FFDm0KxeXS0FWdyydvMXjiM1w/G8HFk2HUb12NUpVLkBCTgoagUHBgjrXDo5NIruGHFALNz8SUxds5ePsu5lQNb8AACEXg5+9O8jabjdl0l65cuMPsTzdwwZaErYSFD59pR7cW1bIdI9XhQNN19BQXXkdSmLjzJz6c0ZeKD+UbqepDHb8kWcdYtSoUw32JKVUgDQpInWo+Rcknn3wIA/YKITbxkIyAlHL2k0zON5jy+dvicrhDYL8bSg+zcf4O9q44RGpiOpWfqsDsfR+hKArPvt6RZ1/vSEaqjQ/7fsG9W7GkSwNpGe62IPfvJmatoRgEHl4W0lPt6JmJyJqqMfv1H4m8EYMrJZ11X27GYDGhapo7YVlRwGpGmE0IlxNPXy/Gdf0MTddJS3FgLeCN4mnG6mHG288Te4aDBe+vIDE2hdKVilGrZRV8A33QdR2HzUV0+P3MprgXKVTMn9b9mrBy5gY0VUdRnXQc3IauL7fG6mnhqU61eGveEOKiEjFYLSyavhFd01B1DWk0oNndQpGFSxYkPDwRh83Jvch4fv12F4umbyK4fGGata1KWpINiSD04HUWfrSGAWO7YPWy0HtMJ3qP6cS5Q9eY994KWvduSEjt0jmu/Zqvt6JrOinxqZzZcyErj+jMnotcOnqDsKvRlK1SnOpPlUdKSWJsCounr+fEtrNIhzOzKg96jepA4y55K7v3fKkFPV96oHFVsWZJBtR6F3uGE2E0EljIkxcn9uTc4Wt80H8uUtMpHORLsx71OXP8FgZF4dd5O5m4KLuHr1KhQu57KSWap5Gom/cxpThw+pmxBXtQ3G6kQf2y9H4hd6Px43dWEhebgpcCtkIGFu0/mcNgCi7gx5jmjVm18BBauk58WipLf9jPhzOeY++VMNaeuUSf+tV5eVxnNq04RuvutQmp6g4De1ktWNJ0FASYDJQoWZDRL3TM8zrlk8+j/B9pJP03iMj8MWf+/CnyDaZ8/pYIIZi2dQK/zlrPpSPXsKfZsac/0CXTVI3kuFQArh6/QdydeAqXdJewpyams2/tSQZ/1IfK9cqSkpjG56N+4s71e7wypU/WGoqiMGf9mxzcHAoIFk1dh67p3Dx+zZ1krCg40u30Gvo0m5cfw65K95e9wYBwOJHCQGJssjspORN7SjoTfxpM1QblMFtNrJizmR3LDuNyqBzZHMrquduZvfM9QuqUIfxKFC++352vxi1n/9qTSF0y9ddRFC1TiDvXojEaTDRsX4NSmV4JIQTNe7rzaKSUFC9bGE3TqFgjmHe6zSLiahQmk4GWzzYg7FoM4VejGflJbyYOXoCUkti7iXj4emAyG1CdkHAviXXf7UFKSd9R7Tm29SwlQ4oxsf9cnHYX25cf4dcrM3M0FK5YvzxH15/E6VC5Gx5HpXpluXXxDhYPMz9MW0/Y5SgUIZi5dgw/TttA6MFreHqaQH9Q62z1tNDppaeJiYznxoU7BBbxI7CIH4WK++f5nrCnO0hPsaGpbumHefsnkZqQyty3fsaRmoFudxKRkMKKG/cweHngsDm5fPwGKfFp+D6UW9SrXjV+2XCcqMQUAs6lkxEXS4CAtBB/rBYvYl1Otp+8zsCENIIK+2U7h9W/HCE1xcbvriHdKChstpIbQxvWo6rTh08mrEIIQa16ZUjKsDFm2Uacmsbeq2EcfX8EzwxsnDVn1/kbnIyLxmIW6FbB/TpmHAGCJJeDgqZ8Je98/tlIKT/8d+bnG0z5/G2p1qQS1ZpUwpZu52bobT7o/impuagl+xX2I7D4A5XjCc9/za1Ld1EUwRdbx7t1jH4ekbU/LTmDRdM2YDIbGfxuV/qMbEvi/VR+/HQD2v14AITRgGJQMJoMNOtej67D2vBym09RXZo7SUBRwKAgNIF8yAFWq1kITTs/CDF5+Xo8UC+XEgT8MmsLV07dQgiBxcPMjbMR2DOcmK0mwq9GM3HZaBZ9sJKKdctSr23u+Yy6LqnbslLW2v3e6sSskYvwDfShSdfa9Cz+IBTVqF119q4/jcls5OlnGtCie11+mbmJncuPZo0Z3eJD4qMTEUKge7gNAKnJTPkBN+kpNmxpdopVCkbZdw0JhF+LYfqmcVw7dYtSlYrxWscZuOxuz+Cy2Zs5ve8yUkJamobJYkSaDBQvV5gPl41Cl/Bq2+k4HU40p4bJZGDs14No9ogQ5+/4+Hsx+N3ubFq8n04vNMMv0JvhdceREJPkzonKrEwTQMVapbi4/xKpMS5erPUOn++aSMmK7rCWxWRkev9OTJi4Ck2VqG6FBfxup6NV9saVuYp4pO3t3Yh4Fs3djdOpghDEVbNiTtS4ExrGnefiKVEqZ/ivUbMQvvx+CA6Hi8rVSpBis/8ekcQgHj0CXL17H5ui4vLXEWU8sBUCh+LgyyNH+Kh161yvSz75PMrfTYdJCDFHSjlGCLEB9197NqSU3Z5knXyDKZ+/PR5eVqo1qcTn+z/my5HfcePMbQxGA+nJGRhMBvqO7Y7BYMgaH3c3EZdDxeppJiE2mVIh2fM/fvx0A9uWH0VRBF5+Hgx8qxP+hXzoNbING77ZgZdFYcTMAfgE+hBQxI/i5d1tO979+gV2rz6Jf4AX25YdwQVYfT2wx6cgdZ2GnerwwZLsgo8dB7VACIWb5yMIvxhJnVbVuHr+Di6HC4PJSPy9JF6d2odZry8mqFRBWvSoh6e3lQ9XvZXn9di57BCzhn+PxceTDi+2YND4brTq/RQN29fknWfnMLj+JAaO7Uy/N9xhnDHT+9JzaEv8ArzwL+hOUH5lSh98/b1xqRqnD14j6mYMABYPM0Mm9ODiiVt0Htwcc2ablMhr0Yxq8wmqU6PX6A6UrFQMl0Ol/5udMFtMWblaA9/uyKwxS5ASDm85h/uzTbiNL5dKt+FtGPJhbwxGA1fO3EbXJZpTA13H5dD5bMQirB5m7DYndVtWxtM7u/em18i29BrZNut3h83hFhxVBAaLO0n+hQk9afVcYwZVG4vT7sJpdzG6/af8dGZqVs+9alVLsHb1aG5djmL8wG9JdmgUrRjEmI97snXXRZo0LE+RR6QrPDwtCEUgFIFqBGdBEzJNR1FceHlnTwh/mLIVimT939fDyneDnmHrhWt0rVUZiyn7R3ivRtVZsmAX3uFOEqtYMBbxAilRo3Nvq/JnkFJy7OgN7DYXzVtWRlH+tmGbfP5+/Jz578x/Z5F8gymfvx1pSel8/+5STBYTQ6Y+n1XlVapKMLP2fMSgiq8TfTMGg1Gh1xtd6Tayfbb54755ie8+XE3VhuWomUvbFJPVhKIIhCBbMu9L47vy0viueZ5X+SrF+HzoCdKTbdRsVQ2LnzfeXmb2rTqGEIIaTUNyJDwbDAqdX8zeay46PI4v3lqKX0FvOg1sioeXlUXHP0Z1aZw9fI0SZQtTJJdk5d9ZMnUNuqJgd+ms+34vqlPntenPcS00nKiw+0gp+XXejiyDKS3ZxuRB87l/N4HB47vSe0QbLB5mBk/owfVzEWxaegS8PMFmp9PQp+k+rDU9Xsn+ZXp67yVUl4bLqXJ0cyjzD0zK9dyKlCwIuK8tAqTdCeL/sXeegVFVXdu+9vR0QkJJKCGBAKH33otSBURQEBUEVBABFbGgUhQVRLEgRRCRphSR3ot0kBICJJCEkEp6L5Np5+zvx4QABhR93vLpm+sPTObsvU/ODJx19lrrvp3XRFEUNAK0uhK9paY16dSvKWcPXqUwu6A08Plg/Aq0Wg3VAiuzaP+bD7wOAB/88gYbPt1Bi16N8PDxJKhxDQIb1gBg8ITebP5qD+h0TumCnKLSgOk2gSH+dBvZkZ0/nyc1rYCLp2IorKVj+YHTfPrGRvz8vfl46bN4erlS0dedT5c+x77DV1gTdx2jXkOboCq89krne+QE7qbYYuP9j7aRmJTNm1P70rxJTVoFVqdV4P3FQCt5uuGeI9Eo4B1uxUNqsOeYCY9N4WJAPVrcpUT+Vzmw9wpfLtyLAOJiMxj9Ow/Ecv49/Nu65KSUF0r+PPqfzFMeMJXzr+O7d9azb+VhhEbgXsGV52Y9ec/7DpsDKSVavZZ2A1tyfPMZMhKz6P9ib1xLvOW+3v/WA+d/bvoA3DxcMBh1DBnf/Z73UuMzuBWTRtPO9dGVPP2bCy18NG45Ny/HUZhrRlVUEiMSWRv5BTaLnVr1/TGY9GUCowfhF+DL+PcG8/3szfyyaB8jpj+GEIK5L67k0olIABYfeOseFfO7CW5Zm5SkC84X8k5xfGCDahhMOlRVpXXPhqXHh52MIi+rAFWVbPn2CMMm9ip9r0ZwVSpW9iRTUWg9pDUvzR91z1oZt7JR7Art+jZj3fydqIqZxyf25tjW81iKbfQc1rY0AAJo0CqIdo80IuxkNAOe68TWxQew2xSEEAQ0qsnw1waUHqvRaHjh/cGMeWsgEediWPTWT3j5eJCWlIPFbCM+KsWpg/UHhswNO9Rjzi/1sJitWIttePl48NueUDKTc3juvccJaFSTjV/vo9vg1vgHVr7vHHa7o1QDKSwhmQPJGfgczMFQoJJgzeDEoQgeGdicuRNXEXEhjvEzHmPr02PILiqmUfUqZc7v4LlI5v38Kw1qVeWRoEDCriZitTpYuPgAq5f+cXeoEIJp7wzii7c2o6JCeC5uOTaEi5687MIHjpNSciJjOTEFJ2nrO4oQr95ljklKysJhV1BVlcQEZ+o5L7uI0BNRNGwVSCX/Cn94buWU87+FEOIK90nF3eZhtZjKA6Zy/nUYTHpn6kM4tY1+z4c73mL9x7/QpEsIuWl5LBi7BMWhcHb3RTx93Gn/WGt6P/Pg4MXkYmDUa2W7jpJvpjGh/XsAtOzVmPfXvQLA4U1nuXIqCkuBGRTVmSKxKaXn+sQrj5aZC5yyBVmpuVSq5o2mRDcp/totXD1cmDPyK1LjMrh8/BohberQvHtDrl+Mw2K2YXI1kBCd+sCA6fVvnichOo3EmHQatKnNuFlDObYzlBVzt9O0awOenNiTwBLhTYAGrQJLghpJXnIm5/aH0fqRpqXXYtmRd8hOz6fy7wquQ4+E8/6whQBM+XoM668vQLErHN50lkXTVwGQGJ3C2PeHlo7RajXM/P7F0tcGvZZNX+9HoxFMXzYez7s8/rYvO8iSN9Y61b9dTbyy8BmWzd6GrUQgVArBztUnGPjcHWuX+3ErJo1Xun+IzWLjkRHtOfDDr0gJV09GMmbOkyRGpVC9dmV2LD9MQWY+fcd2x7ukmFtKSVxeAVa9wM+vAm37N+DQgWPYKukxWexO6YdKHlz5LYZLp6KxmG0sm7OVTUPnUq2iV5lzyc0q5K1vd+Iwajhx5SYtqjnTuSaTnuDa9w/YbiOlRLXsY9neqyhWBxpVIr0N2EwaendtSud+D7ZlybbFczlnGw5p5WDKAup79ioTyA0d1pbr11IoLrYx9sXuqKrKKwMXkp9bhFQlo17rw+NjOt8TAP9VIq+nsGnjWeqE+DHs8db3lZgop5y/we0nrds1D7dTdKP4g0Dq95QHTOX86xjz4QjcvFwxmAwMfbWsS3xg4wBmrJ8KwN6Vh50BjN3BlePXUBWVs7tDCWlXl0rVfXhzwHxiriQw7oPhDHrxzs5KYW4Ru787gn/tKnQa7Ow8i4u4BTi7sa6djQYgPSGT6HM3UB0KBlcjdrsdrU5LUKMaf/g72KwOXn50HqmJWTTrWJcPVr/E5i9388OszQgh8PB1B1ViK7LhcDiDr/Ezh7D0vc3UaVyD5p3un3r57cAVwk5GMXrGIMJ+DcfLxwNXdyNfz9hEYV4xBXlm+o3qWBqgSSlZ/fE2LHkFyCILqsXKj/O2lgZM4BSGrFK9Ypm1zu0Pc4pkAkve+YkFk9fgV8ObVr0aOXcqFIW0kp2KBzFq+kA6P9YSD283Kla5N8DYufxQqWSEanfw08I9KA7VmcIToCgqUZfi4U8CpvOHrmK32XHYFc7suYRUJTaLndS4DN5/6mvirt9yzllSdH9442lWhM4DIDO7kLCIWzg8DSQVF+PIddCrSi14VCFqTTiKxcHHb27i46XPIoTA5GqgTuPqZKflcXDzOYKb1qR5pztp3/iYdPRFCg4tqELQvkUQHRrUIiUtjw53CZg6FJW45CyqVaqAS0mdmMO8BnveJ8RnjcKn5B7g6mZk7MdP8njLRtyMSqUov5jajaux5mQorgY9I9o3Q6fV4KKtgECDThhx01VECEFRgYUb11Oo16gaJhcDXhVcmf/5HaFYm9VOVnoequJca83XBzC6GHhsVAfiYzP4dM42Kvq6M3hIS5ITsujev1mpDc/9kFIy7bV1mM02jhyO4PTVWN57ayC+Lve3nSnnvweJ+Dem5OIBhBC9pZR3d4W8KYS4CDw4pXAX5QFTOf86TK5Gnp05/M8PBHqO6kzUxZukxaYTcSaKwpwikBKdXsvlE9eJu3YLu9XBmo+24unjTnzELQa91IsF45Zx6WgEWp0WV08XDCYDN68mUq12FeIikqhVvxqKQ+H1Xh+QlZyDRit48fPRVKrqRfLNdB599sEeZbdupDK938dkm50yBOePXENxKJzafgGbxRlw3X4mElpB3NVEWvduQo8hregxpNUD502ISmHu+BXYLHZ+XnwAWViEwajHvYIbAXX9iLmaBBL87qp/SonL4NCmMzisDtDr0bi6cuNmLuG/xSAdDuq1ql1GNuA2jzzThX1rTmAttmI2O8BmIyUmjRhfD3wruZN6M43o36KxmK1l1MTvJuAB5rADxvdk8bQ1zk48jYa2vRtzfO9VCvOcZsImFwNPTX7kvmPvpnXvxqz+aBuqKhk6pR+ntpzBYrYy9ZuxzHz6G6QqEVoJBj1Sq+VWpoWU+Ey2rPiV8HM38fN2IdVsxcPLxOItJ3BIiS7Lilux3fldUgXFxXaW7H2D+OhUmnUIZsrAz0m8kYZOp+XLHa+VNhaENKtJB30FzqZkI7Ra9u++wqTxPQiufafwO+zcTWbP/JlcvcQjwJuf5o/GxaRHKgkIYWPYY+FsNdenmtaNJV88T6UqFbh4+gazp6xDCKjcrjq/eRShEc5d2OGtGnNwRzRBPq9So7mNIPf22Kx2Xhi6iKICC5WqerLs50mlQfRtDEY9495+jB8+243VroDQYCl2BsjffL6XqOsp6ARc3BeOViv4dVcYC9a8yB9xuztLAufDE2m9ejEdNdVYPXZEeZF5Of8VCCFERynlyZIXHfgLFnHlAVM5/6fRG/RMXjQOgLjwRPasOEirR5tRtVZlwk5GYrMraI06qtfz49NJPyClc5dGoyg4bApanY7E68msnP0zDrsDFAeK1UH4qesc3XyGgpxCFIeCTm+gYZvaaA16AhrWwM3rwZo4P87bRmZKLkJowNUFdw8TWp2WkW8NYs6TX+Lu7UabR5uxb80xpATf6g8u8L4bm8VeWmsDgHQ+1TvsCh+sGs/5X68TGOJPlRoV+XnpYfb+dJq+T3fAzcMFi86GKrTY7QoOu4O3Bi1Aozio06wWn+2fUTrllqUHWfXBL4S0qc2HGyazNnIhz7V8h/yc4tJjLGYbWbecO0vZqbncuBRHow4PLkZOjc9Eo9VQ+Xe7WI+92ItuT7Tl1N5LuLq70K5PU5p0qkeVGj4c3PQbR7Ze4NDmczz7RtldxrvxD6zMj5GfYbfYmTH0c+IikhFC4ObtxvtrJ7Lmk+0U5hVz5WJCSZpXx/5Nv3Hw53NYzDa8fNzxcHXBlmrG6CKwBbvD7VSSEDRpGchVSy5jF++iQbXKrOhUl/xsp6q6Tq+jINdcei4Gg46pHz3B85NWYbM62LztPC+M7oKhpB5OUVTem7QWm9WBXkCeh57EtBzqBlRG7/YS0h7J1C4Opg8ah9De6e6MCr+Fw66gKCrZsdkYKoPQaCiyWJn7wS+cOnwNgNGv9KLhCC/S0nPJzy3CblO4FZ+F1WJ3WuL8jiHPd6bHkBasmL8bN3cTg0o0oarX8OHa1VuoVjsajaBQq7KnWgFH5izio6GP8GjDss0UQgjmfzaCd2ZtJrvYQn5tkBo4W5jMpetJtGjwx7uy5fzX8S9TFbibscBKIYQXTgWRHOD5hx1cHjCVU04JtRrWYMLCMYDzxvT1tPWoEnR6HT7+PsjLSSAEyYk5fLV3Okunr6NmPX9qhFTD5lCRKggV9EbnPyvvyl7M3PAqa+duoV3/FkSGJbB0xkYA3v/hJVp2u7/zvCq5Uz9SVERIu0AAWvVuwvbs7wD4+eu9CJ0W6VA5sukM3Ye1A5yimznpedSo61emBqVOk5qMfW8Iaz/ZTn5qNtXr+lG5VmW+/XAru9ad4ou9b+Lu5UpORj7ff7wNR7GV5bN+xuDuim+tKgx8phPL5/yCqqjYiopBUbl2NpoLh8PJSsmh86BWfDttDarNTuieC1w4HE5gg+oUF1pxmrrpQUoS4rNo0qUBl45H4urlSlDjmg/8TI7+co7PJ68G4L1VL9HqrmJ0cBakb/xqPy26hnB81yXOHwpHVSQKEsUh2fD1foZN7IWL24N3sIASHz89cVeTSne8UuMyaNgumPdXOzW49qw/xTfvbsavli9tezZgy4pfMRh1VPBxJ6XQjsOmYFA19GwRzONtGhAVmkj7rvUICq5K+5mLsTkUolIyuXAziRlLx/DDp7sIblaTlatPYl1+lBmzh+BfzZvKvh54eZiI97Birazh6SUbSIrPpkfTOnQMqOncYbQ6VdmDa1UmqLqzVk1ofTH6rLnv79d7UAuO7r1MQV4xIS1qk3/sOiDwzoKDN5JBBQRsPnOF85kZPN+vNV0fbczxA+H0H9b6vsHSbby83Xj942EAbFh9kh9XHqdZ60BeeaMv3hXd2L75DNusiUipwVJkZ9ra3TzyUTAS0PzuO9qgQTW2bpxCfF4OPX/8DlSJZ7Lmvn575ZTzVynplmtaEjAhpfxLvnLlAVM55dwHjUbg7uVKQa4ZrVZD1yGtOHvwKlJKug5uRc361fho+3QAfpj7i1PBW6Ohftv6dO7fDP/aVWjew2l3cfvPWc8sdtb0CDi16xLNu9Qvk+YA6D+uB8e3OZW7m3ZpyLQVL7LsnZ+4cDicoCYB9H22MxUqe6LTa1E1grzMAm5cTsDNw8TEtu/iKNErGv9xWWPi/s91QWfUkxiTxtGdYYRdvgUIstLyCDsZRcd+zXBxN6FarKCqSK22pFYlHxd3I50GtuDoz2cA4bQH0eqYMXgBWoOOfauPIe3OGzlSohFQuUZFeg1vx971p6CkGFgIiLiUgDAasDhw1h3dRV52IVGXEmjYJoiTuy6V1kH9duAyQsCa+Ttp+0hjRrzWj4VT11BcZOVg+lk8K3pgMdswuhgw6vWoRvCq6I7RRY+UkgObzxEflYJRA43a1cHT15ONX+2jeZd69H3GWec04dORfD/7Z5p2rk/91vdaovQd2YG+I++oan+ybgLfz99FUYGF6tXdiY/P5tkJ3Rk+uhMArVsGlR7btnYNTkbFodVoqOvnS6V67szbMInvlh0hfO9VpCpZuewI7855HKNRz9ApHXl//2GkVIi+no4Adp++xvFfI9H4G/EvNDJgWBtGPv/g1O7d+FTyYPGmSVw8H8vPG8+C6vwc8rLMDB3biaWf78PhqqXAeTA8TwAAIABJREFUaiHh8k0u30zh0MKXmPbB42Xmuno+lsz0fDr1boROf2+B96olR1AUlbPHI7l5IZbJMwfTbVx7Nm/OQBRIJBJVwmenjrM4+iy1PSuyZcAoFKny0rHNZFnNfNFhEA0rVuXc0xM5+FskjXv74V+5bIF8Of9N/LvNdxFC9AcaAqbbD5VSyjkPM7Y8YCqnnPsghOCLfW9zfPsFmnWpT3DTAPxqVSYvq4AW3ULuObZanarObjwBzbqE8Pjk+/t2DZ/8KFdOR2OxONi/4QzpyTl8sO5lcjMLUOwKPn7OtuyG7YJZduZD8rMLqdcqiJ0rjrBt6UFURSXhejIndoby9Bv9mfr1GBZO+YHoK4m83m8eL8waiqKo2Cx2jm05R5cnO3L9YhxdH2uBViOIuZLIuaPX2LHqOHYV5x1T4qxN0mqo36IW4Ox8C2kdxPXzN5FItFqwpOfwxUvL6ftMJ7R2Owqg1etQJKDRoGi0RFxKpPvIThzbeIqGHerRuFM9hBBM+XwU9VsFsu7zPeRlF6Gq0ikYCdhtCuYCCx7ezsJeS7GNl3p8hMVsw6eKF699NpIze8Kw2x1cvxDHgZ/OYCmyEheRRJvejfELrMStGGdAMfa9wXz/8XYC6voxad5TxF5LJqihP1kpuVy/lMDimT9jSc8BVcVgNOBSwZX87CJ+O3CZarWrsGTGRpJjM5i8YCQ9n2j7p9+R/FwzkWEJ2Cx2qlSvyM6z7z3w2M9G9Sc8KY3qFb2o6H4nHVuzpg86gw67K1SvdaerccHpk8iSxIjUSFAFQoK4VYTdVUt6oZ213x9n2DMdSU/N5diBcFq0rV3qJ3c/flpzivWrT2IXktymrti0kkpNKzO4QyPaNg0kJTOfaYt2IFQV0wPq0kJP3WD2pDUoDoUtK4+zYN1LGIx3jg0O8SMmMhUlp4j0vGJen7WBkEENGd+2FauOXkAqEhdVy/qYMFQpSczPo/vq71CkSpFLIQ6NytzQQ6zv+TS3knP5etVR8j0l7i4Gvp86jNr+vvd9yCinnIdBCLEUcAW6AyuAJ4DfHnZ8ecBUzj+S8FORrPtwM236NWfwpH7/LWtUDfBl2F0t/8FN75866jm8HZ4V3bEUWen0mNMM9rcjEZw7HEHfEe0JKmnRb9C6Np/vms7kPvOwWeycPxzBpePXeX/E16iq5Nm3BzG8ZD3/2lXwr12F7LS80h2W2yh2hbCTUaQFVsGuNSBxmv6GtAvGu7In6YlZ9BvXgzef+BJVkez4/iiFKVlYzDY0Oi12e0mFgk4LWi06nZb5W1/Dp+odHZ056yexf/0p/AIr89X0H8kpsiL1eg5tPEPTzvUJPxONVCV6kxGr2QolSukJCdk88c5Qos9EMdh3PB0HteK9HyfT+6n2nNx/lXOHI5zSCiW0e7QxVWreqcHKTsujqMCC3eogOT6TOk1q4l3Fk/TEbBKjUjC5GnHYnLtY7hVcmbflVc7uv0Jw05rUrOtH18GtSueRisKYpm/hsCu06Nu8pINOgN6AXYK9xCZHSrh+IY6UuExsFjur5+14qIAp7GRk6Wfj4mbErihsPxuBQaelf6t7lbC1Gg1NavqVmaPbIw35IP4saZYitrsk8VyJbpRRr0VqQSMFHTsFYk+1EbshAq3Z2REpXXQY3Q2AZOroFRQWWPhx5XFW75hKBe/7d5VdvBCLxWLHXEmLXevMwq06foFOjQIxW220Dwng0wkDuBCVxOBOjdh99hp5BcWYw9Kwmm08O+UREm6m47A7UBTJjfAk1n65l+en39HG+nTxs/z47a9sWHLYeV3SLFyJTWHS4E486leLlYv20b5LCBcCCvglJgLFLMmyO+vbhKpB7w5eFmf6b9v+MIqMzmJyR2weU3ovxOSiZ863Y2jUKvBPP59y/gP+vUVMHaSUTYQQl6WUs4UQnwF7HnZwecBUzj+S9wZ9QkFWIZePRtCoUwh1mv3v/QcqhKBN78aAs6vs52/2s2/zeRwSjmy7yKawuaX1RNWCKhMY4k9UWAJdB7Xk/KGrpTfd7+f8jE4jaNq5HvNHL0Zr0JGYWghC0GNEB+LCk0hPzkWr1zFial/efnopCIFGr2Pk5L4ENarBqojPUFVJdFgCG5b9it1mJzslF0eBpXQd4WoCBD6VPGjQrg7NO9bFr+a9mk1unq7UqF2ZHz/eilScgYaQEp8avlw6fQNPb3fmbppCQP1qzBy9jIvHIkFK4qNSSYxKxWG2AHB650UKcoo4sfcyoSejQaNBo9FQNcCHJu1qM+Gjp+5Z1y/Al55DW3N85yUGje2KwaR3GiBnFSGl5O0V44kOi6dh2zqlauY9h90b3MSGJ/Fq3/nYrXYcFjs4HFw8FA4ChF7v9IyTEmw2XD1d6DWsDfk5BQjhtHZp3ePeOqkHEX89BRwO0Gho3bUei3edZt3RUARQZLHxVJcH6x7dJr2oiDRrEXapcjktjRuJGcTcSOer3v1Ysu04UXEZhCrJjA9uQqL5Sum4GjV9mTitLxohMJttqKrTt89SbIMHBEyKooBNwTVZQV+gorpoadS0Mv0/+h5FVWlfryYv9m7H5KGd2X4qnHnrD+OwKxiTzXjFFHIxLJGEW9lonG41CEXFUmi9Zw2jSc+TY7twaMt5MtPzsfm7YDLqCahcgVfGLCTtVg4xJ2NZ8NNEmtWsxIKNR8gKBiR4RDrQK1qishM4UekG3dvXZde565iN4BFnRqqS4iIbM8at5Odzs8qkA8sp5yG43X1iFkL4A1lA2SeZB1AeMJXzj8TV3cUpAQCY3B6s7fI/zVuDPyM9MdvZjebmis1iJ+7aLU7sCKXNI42p17wWC3e9QUFuEQajgeTYdLZ9exi7zYF0qJzafYlTW88SF5GE0AgwuSBcTKDXs+jX90vXkVJSp3F1EqJT8fb15IlJzp0pIQRaraBe8wAGj+vKhV+v8+z0ARxce4yze8LoPaojR3Zcwmq2Mfrtxwg/GcVXk1fxzWtr+PrIDE7vuUxxoZVm3UKY9cTn2Ipt6FyNVAyoQmGOmczUPFRFxVJsIyc9n9qNayKE08pEaLWgOFBViZuXK1ZVoVbD6rhXcKW40IoQAo1G0LB1EPN+erk0iLwWGselk9F0Hdgc/wBfpswfwZT5I0p/1zcWj+HS8Uj8AnzxD6pMk/vY1dzN1TM3UFUVVZUInQ6p1cCdWoVSw1q12ILqomf7d0fRaqBDv2Y88UqfB+4k/p6nX+3LjcuJuHqY6P9MJxYePIPN7kCjEWTm3/Fus1jsFBZa8PUtW7jsahO0cHhxVmbTK7g2E95ajw0Vj2KBkl2MQVGxBOo5459O5RoVSU/KBq2GxLhMVnx9kMVrXuC9+cPZ9MNJuvVpTFV/7zJr3EYozrYgKUFf4EBaJIWRuUgkVofCrxGxnIlO5JOn+5KVV4SiqihSohiculYJqbngUJElKbiqVX155vWy6WcXNyOrDk4nO7uQ1CIztap44+Fqcuo1SbDZHMyYuo6gVgG43VQwJDkwZBaiunmgumko9oS39+wnyOjO6pkjMUuF45susHPVSQAUh8LhA1c5euQ6g4e2onW72mXOoZz/jH9xDdNOIUQF4FPgIs69tBUPO1jc02b8/zmtWrWS58+f/98+jXL+PyDlZhr7Vh2hcecQWvZu+ucD/ocYHvwq+VklFhQmAzqNBr1Og8VsxWgysPbKJxTkFDHl0U8wF1qZunAUDVvXZtqAeRTlFfP+2pc5ve0c+384iqKoCHd3tC5GPv5pEiF3pSGObzvPggkrqOhXkU+3T8O3WlnhSIDcjHwWTfkenV7HpC9H417BDbvNgcPuwMXNxICqE7Bb7QghCGpUg6SYdOw2B1qD1inomZOPzqhH5+mOtdgOQqLVavDy8WDp8Zl4eLuRmpDFohmbkA4HoUeuIhD0f7YTA8f1wD+oMlqdFqvFxoq52ynMM/PCe0PwruQMHrLT83m+61zsNgee3m6sPzf7D61MHobs1Dxe7TeP7NQ8FEVBVVSEXufUaxKA3oDMLwBAYzSU1HJJ2vRuxOx1k/72upNe+YFzhZkIh6R2joYKbiZeee8x3n5jAxaLnZHPduSZMXdENHMzCxjfaz4Oh0JIy1r0ndyDV7/ZDkhcU2yYCpxBn7mKDrfKLvww81lSErOZ9cZGbFY7QcFVWLL2j3WN7mbh0v3sXnXGmYvTCqRWg62CFmNrH9JzC1A1Ao0QPNe1BS/2asvH6w+TV1hMzRzQ2RQybQ4uno5BtdoxGHRMmz2Err0bPfT6cVGpfD17K9eiUnFoNXh4mrB5GlFVlbouJiKuJqHW8ia9qR6rRkXYVdqmGln1nfMz+XHxIY4fCKfPE61YuuIYdruCXq9l695p99RR/dsQQlyQUj5YYO2/GFPtarLGJxP+R9a6Mfy9/9Hf7W6EEEbA9Fc65f6937Jy/tX4BVVh9Jyn/vzAv4iUko0LtnP5aDjPznqSeq3+2tPr7PWT+PGzXYSdjEJVQacVTq82Caqi4rA5OLv/ChazDcWhsHXZIXoNb8e68Dsm2k071aNJ5/pUqORJ/bZ10Gg099hNqKrK/AkrsdslqYlZnDt4hb7P3d/K5YdZmzi1/TwIgW+1ioz7aAR6g65UbNLNzUCu1anP5OLuvHmBs07K4Gai9bAOxEalkZWYhfOXgGpBPnx9dGap7UzVmj58uOYlvp3xE6H7FBRF4UZYPDXq3tnpNpoMvPzBE2XOz2K2Oi09VElRoeVPvd8ehopVvRjz3hAWTFrF7f0krZQIqaA6JKqUSFUBBBKnHYtvVS8mzS/bVSilZOXcrZw7GM4z0wfQ8Q/sRTISctBpHRRX0nPTYqNCdB6LPt6JNb8YB7B/d9g9AVPCjTQcDgWL2ca1C3EMNOrQaTU4VBV9gAceMWbyCooxpNuQOQq7d4YxdnxXxk3qxY3IFEY+/8cK5r8ny12S3dAVbZFChVQFNCodxlzkxsYgiHNBraRD8dCzbucFjv4Ww1cTB7F70zm27z6DQ6+lRYsAFq4ay2cHj1Ok2Alq/dd0kWrVrcrEWYOZ/Px3YFcoyrfQtkF1Zn8xsvRaCyHot+A7YvPynGrteXdSfiMm9mTExJ7k5xezbOVxAHQ6LRrtv3Y35H+Nf9A+yl9CCOEKvA7UlFKOF0LUFEJ0llLufJjx5QFTOf+nURSF5W+s4eaVBCYsHE1Rnpk1szdhNVu5GRbPj4nL/tJ8Ia1rM+enyaTGZ3J6TxgtuoeQEpvBtuVH6D2iPRUqedKiWwirP9kOQO8RHcrModVpqde2LlOHfEFBThFvLXqWjo/e8YZMT8rGoaig1SKB5ITsB56PVyVPZ7AlBF73SQkJqYKqotFA9yEtqd24Jmf2XyEvz8yIKX1Y+8V+FIeCAHQC7FYbBdlFZTz6dv9wjF+WHnLe9LQaRr83tMxa98O/ViU6921C6LFInnmj31/qgMpOz2PLkkME1Pej1/B29wRaP37utEnRaATVgv1p1DqIQz+ewm614eXthtWgxZpvZsCznWnRsxFteje6JyjdtfYkW1YcpVmH2uxevA/VamPucwn8krAIo4vhvufz6vT+TFi3EwRYfQ2oqXbiotJQ7QpanYYhw9rcc3xIi1oENfDn2sV4jJU8qObhzlO9mhMamcSTHRqx+JWf0CsqeoCarjRuWgMhBIOGt37oa3Q3LT0rsksHqpeW4f3aklZnIVqrg4JkI8mdXKi+J5u8Nr5IICOnkOfeXYc+Mhf0zu/Puchb3Nx4gGv2bGxGydyDv7L0iUF/6RxqB1dl9PhurFp82FnYf9d3VwjB1bQ0Xunfid2/nEdJKuTNj+7Mfz3iFidvxFGpdkU++vwpzp2KoXuvhuj+A++6cv7P8T1wAWhf8voWsAkoD5jKKef33LgUy4LnF1Opug/vrJ/Cub2X2LX8IJYiKx+P+orJi8YiVRWhEbh6unDzahIHN5ymXZ8mNOl4fzXq+MgUivKLCWkVWHrTrhrgy5CXegIQUM+fdn3upA1r1vVj7eVPsBRZy/ij3ebknjAKcopw2BU2LDp4T8BUyd8bNy9XivItzqLvP7CMGDVjCC7uJk5sv8Ct+Ox7bEhUVaWgwIrQOGtU6rWuw4DxvZg4z1k/ZLM62Pztr9gsdnQGI30eb8H132J4fs6wMuuc2hXqfCoVAjSCKg8w/v090ZcTOLEzFKvFzsavD9DnqfZ/PqiEj8at4NqFm+gNeipW9qJl9ztCoMHNapIQlYKqSgwmI2NnPcHFI+GkxmZgVyRLTsyikr83uhIF7dT4TLRaQaXqPliKbSyeuQVVUUlLzEK120GvR7XamdLzA15eMAqBQG/UU6/lnTRpu47BBB2uSFJmHkh4tG8Tjm6/jMOuULeeH48Pvzdg0ht01OkQTHhSDjm5ZiY//jXBTWqQHp3GogNxVPLzIjejgErVvHlvyXMEBFZ66GtzP+JOx1L1UBoAuR4pNOzSkMSCUDT+CqrR+R0yZlgp9nPBqtgxJFixuenQ5VrRmu0UVfMkLy4LgwARqMHf8++JSQ4e0ZaYaynE30xn8oyBpT8/ER/Pi9u2IYTguc7NeKNzZyIvxTOp/wI8qnhxJj+bxNY6tJEahjRpyCcT/tz2ppy/juRfXcNUW0r5pBBiBICU0iz+wpZ2ecBUzv8pFr3yHTGX4ki8fov9PxylVsMaSCnRGXRIVeWNXnPQaDX0H9+LJ98czMTuczHnFPLLor28v3YS7fs3v2e+0GPXmf2cs1vtyVceYcSr99dg+j2u7iZc3R9crP7bvkvO2iJFJSc1h6y0PHxKgiutTss3h95h3sRVeHi7MXRCrwfOo9PriI1MJeZaCnFRafgF+vLkVKcMgxACD293CnIK0el1WM1WRjeeRl5WISOmP8bwqf34atc0zh2JoFW3+lQLrPzAdUa81p9LR6/hsCs07VSv1MakINfM2f2Xqde8FjWCq5YZd9u4FUlpOvBhsVrsTp834TSCNRdYWDjlBy7uv0TFqhXQG7TYbU6TXzcvVzwqe5OWWoBdkZzZe5khLzoD2uNbz/HpC8sBeHfNy7Ts1RhPbzeKCy1otBoUN1ek3gA2G3Hht3hr4KcIjUCr1fL6kufpMsQZCF29kULqzWwcGhWhwC+J1+jYpDoIwctv3d+eJbheVbQ6DYpNwaI6uHImBoe3CbO/nvp1avDBuF74B/j+l3SE1eoYiPjlAlqNoO+Idvj79WdS3Gr0z0oCktxJ6eqgYZ4JtUhPenoBAoFUVPSZhQgJFS5mktnVD6FC3auCjNCrDJh2GL/qFZm5fDQ5xRZCalUhpaAALxcTnqb7f7/1eh1vfVw2PRuRno5DVXGoKqEpKQB88eYG4iJT0CTlYGnqCRIcQhKVkfkfX49y/k9iE0K4UCKcIISoDVj/eMgdygOmcv4RFOUV8UbP2SRFp/Da8pfoNrzj35qnZkh1boTGARL/OlVp2q0hM358laTIZI5vOYPD5kCj1VCphi+VqvtgK7aBlEgJy975sUzAFBkah93uLCwOOxlFnUbV+Oa11dRtEcj0FS+W7mD8EdcvxrF+4R6ada7H4y/0oDDPTOjhcDAYQKMhMzmHZ5q8ybvfvUCHAU6dpyo1fPl8x7Q/nTsmLJ7ctFw0WoHQCNw874gmCiH44sDbHN96nqZdQlgybQ0pN9MB+H7WZnqP7Ih/LV8GjflzNemG7eqw9up8XDxMGE13UlbTB39OSnwmQsC3J97n4uEILGYrfZ/rgsGop17zAF6a8wRXz95g2MSygZ+qqqQlZpfsBt0bNLz97VhWz9tBrfr+tHu0CUtnbOD45jNIVcVcUEyzHo0xebgy5t3BAPQY2pr4yGS0Wg3NOtejINeMEHCyxNQY4MyeS7R5tCmLdr3O+V+vUbNOFd544iunhpPRiLTZS5XJVY3K9XM3SwOmo+ejsTtUNFpAgEMnMBp0zF70zAOvW6++TTm07yrnf4sFKdHmm0l8xA2Hq2CnJp23q7r/lwRLUko+OXGW4j5VMOp1uNeswKbYq4RmFmCXCp3qeDM0tyH2Ijv+TWqyZNlhpEY4fXpKEKrEkGvHkK+SZzZTmOU08E3LyOeZmWtxAK4eBpIqWkDAl4P706tR8EOf49CGDdkTHU2W2cybnZ31WX4BviTHZ4LVTguTL2cL83Gv5sGsXj3+42tSzgOQwL93h2kmsBeoIYRYB3QERj/s4PKAqZx/BGd2XiQxMhlLkZXv3l7/twOmyd+Mo1m3hvj4V6RpN6feTvuBrWAgeFf1IvpiLHqDjvYDW6LVaZnw8ZN88/paNFoNtUKql5mv95PtOLLlHAW5Zp57ayAfjPyKrOQcctLzOX/gCu36NSc1PpP467do3rUBBpO+zBxznv+WnIwCLp+OpmGb2vgF+IBGOK1JbrfD2x1sWLgbvVFH3RaBeD2Et1bs1URe7T4HhDPAGjq1P48+0+meY6oGVGLYFOeumF9gJSLORAPOdJHLQ8g1nN5ziQ1f7MXN3cilQ5dx83Rlydm5parlKfEZWIvtGF0MbPv2MDu+PYxUJWkJmbzw4ZMA9BnRnj4jnKm4mMvxCI0gqJGztf/dUUu4eiaGqjV9+Gb/m6XF6uCsf3pridM301Jk5eqJyFK9PSE0PPHKo7TscaeLa8iLPenQtxmuHiYiL8UzZeDnCGDcjEGc3XsJodHQb0w3AHyqePHok+2wFttwdTdhtzkwuhjw8HPHVmxHlRIXdxOPvXgnyOvZth6b9odisTvQ2hQ8ky0MmVa2Rs2hqOwOu467yUj3kCAiwpNL37NXMOFwc6ZIFSk5Fh3L0OYP34n2R5j0Oiw2O2gEBp2W6m4V0Gk0aNFgOlbIjp/CkIqkm9nGI70bsH/dWRR3A/aq7kjFjuJuwC3FGVhKAdaqrrimF+MwaXGoEouqYMlxYCyCIn94d+EWuix+/aE72HxcXfll5L2F99O/HMXRHaH4B/jSuG25fEA5f5+S1Nt14HGgHc6e2SlSyoferiwPmMr5RxBc4stlcjPSolfjvz2PTq+jx8j7dxf1GtWVNv1aoDfqS4OF/mO6UadJTZJupNHpsZZlxvhUrcCyo3csMQLqV6Mo1ymy5x9UhYykbCZ0eB8pJfVaBjFvxxtl5nBxN5GbVYiUYHI14OntzpSFz/DLkoMENqrBqe3nkVpBWnwGc59bgsnVwKrL80trkR5Eys00hEZgKbJiM1vpN/qPd4qmLnqeGvWqkXErmyde6YPpTwxrVVXlo3ErSpW3VYeK1WIj7FgE7fu34OrpKMbPGsrPSw7SqkdDDEYdikNBVSW5GQVl5ju4/gRfTl6Fw+bAP6gKszZOJfRYJABpidmkJmRRo06V+57LT5/vIv7aLYRG4F/Hj9cWjaFRB2fNWfSleGIux9N5UKtSVfFDm89hLzGwjY1MYcutJYBz1y0tMYu5Y5YiNBre/f5FFu9/kytnbtCkQzA7vjtC3LVkQp5pycJroUw7cYTl/oNx0eupH1iFvUsnoqoSk8EpY6C9T0HyF/tO8OOZMKSUzBzUi6FPtWXNd8dAlZhruGLIApu3RF8gcU1z/OFn8LAIIVg1aTjbzoXTrm4Aft6e+Hk3wFVnINdm5trxy8RJUWKJKDi29RIau4rIsSA8jaS1qYjGJjFctaBRJcKuorgZeP2jJ2jSrjZvLNlJeLyzPkpjB22xivvZbH5e8SsjXn5wyvjPMLkYeHT4n6uul1POnyGllEKI3VLKxsCuvzNHecBUzj+CCpU98arkRXpCBvVa1flvW6cwp4is5BwadaqPEAIpJaf2X+Xa+ViqBftRr3kAW5ceIDo0nqfffIxqte+9gc/8aTJndoVSM8SfmvX9uXT0GlJKLEVWboTF33fNj36axL71p2jQOoiAklb8vqM603eUM7Ar+Pgp8nOKGNfqHaQqURwKuen5VK31x0XArfs0o02fptwIjWPSV6MBiLt2i61LD9KiWwN8/b25ERZH16Ft8fLxwGAyMOKNgX84593kZRc5jW3VEqt7rQaTq5FmXRvwau+PSI3PwGDU833YPNw8XTAXWEiLz8JSZGXcfQrHQ3+NKE2NJd1IZe7oxXQb3JKj2y5Su3F1/GuVLSSPuZJIcZEFnUFb4nqio32/5qXBUtKNVKb1+RjFobBu3naWnpqDm5crj45sz6m9YQgh6PlEm3s67NZ/tovoywkI4Kcv9vDKp0/TfUgrTu6+xNblR7CabZy+fIOsp2pgTkhl9YmLvNDNOYfJcNcO4gMa/hKz87DYHCAlS1YeYseXE2nfvjZvPrscsyqpmATGo3kYcu18/ctGunYOwfVPgteHIbBKRaYOuPOwIKWkss2DOq6+fLf/J8CpzdS6T2NyLQ7OHooAoFv3EKLUIkJ98lHirGiznPYsuiKnKfPscd9hsNnpPSCE89G38LVIcrbEohGCbfvD8GlSjUc63+u/GJ2eyZh1W1ClZOXIx6lf9eEL2h0OhezMQipV8UQIQUpyLtGRKbRqG4TrnzxElPNw/FtlBYCLQojWUspzf2dwecBUzj+C83svkZeRh1Ql6+b+TL/xf/+p9UFEX7zJq13eQwhBn+d78PKXz3PpRBTbVx7FYrbx0UsrGflyL759ewNSSm5ciuPb3+beM4fJ1Ui3Ye1KXzfqEEzzbg2IOHuDcR8Ov++6VapX5NnpA9i0cBcfj/yK1n2aMv27F9FoNCTHprN37UkadwhmwPie7Ft/ivZ9GnP6YDgbFx2g84DmTPhg6H21i/QGHTPWvnLPz2YMXUhWSi6HNpxGOhwoOgNLZv7CO8vH0rmkPuphcNgVXu7/OQ69Ab2Hjo/WT6R67cqY3IxotBrir90q0VdSyUzOxs2zGq4eJroObkVUaKxTRPJ3DJvSjzN7LpUquMdHpeEottOpRz1eXzq2zG7N2X2X+WjcMkAw4rV+jJw+EMWuMmzqncL7zFs5pfpXGYlZzBv/LXM2TqVZx7psuPoJAsrIBAQ2qOYXyUJ8AAAgAElEQVRMnUrn329TXFJkrtVpcPF0wVXRornlYFXyWex5diYNvjfd+SCm9u7IsVORCIeEWDvJt3IIblCNTWfe40ZsOp98sZuU3IxSRfKk2AzqNiqbDv4zju8OY++GM/R/ugMdHnHuykanZ/LL5Qi61glk6eaThEWnoNUI/Ew6pEMBJF/9dIKxg9py/mI8NodCxJVb1PRxp0nzIDwmVuTQolPkZRXiapbsXHeK9Djnuer1WvbvnEZRgYXln+xg55Gr5Ookc7/ZS4cWQbjfFfStOXeJjELn57zyzAXmD+5T5vwvRyTx7boTNG5QjSKTSkFcHud2hCNtCkhJ6w7BTH5nAC+OXo6Ukho1fVj83di/fJ3K+T9FW+BpIUQ8UMRt8Xspm/zxMCflAVM5/whC2tVFaDQYXQx0HNzmzwf8DaLOx6A4nDfXi4ecvl2e3m5IVaLTa6ng48GOpftRVRUhBLduppMcm05uRgE16lbFo0JZDy+dXsfM9a+U+fndKIpKUZ6Z797dgFQlp7adJ+61/gQ1rslbQ78gMzmHbSuOoNHrwaDn4qkYft14GhSVncsyGDi68wNTVb+nNFCRIIVTx8m5k7KPzgNakBiVwtuDFuCwK3yw+VWCmwXcd57s9Hzys4tQFBWdTotfLV887vIwe+79x9n0xR7a9W3Kd+9v4sLBK3Qe3IZT289hsyus/3w33Z9oy+vfjCnVXqrVsDpPTO3H6nk7nXWnFiuJ12+RFp/O4W4N6FtSX3Sb6xdjsVkdSFVy7dxNZq8vq9LdpHM9GravQ9jR60gpyU3PL30v6UYa4b/F0Kl/s3uMhweN70G1oMoIIWhZ4it37mwMC785DJUq0KpZTSZ/NIylRy+wPeUKVrvC6Yj4hw6YAqtUZKhvEMd/vU6den5UL+ko1Oq0/LjqJMkRaWjcDFBkI7hhNQLrlu0uvB8Oh8LFywlU9/fGw8XAp6+uxW5TOFyYimfkeV7o1JpPDhwj32Jl5YkLGDMkWgQORSUr0ANtrgHFVYfe7iCoThWEUYfRqCM3Jo3sqFT0F+NY+Msk+v/UCEeWhVvxmcx6fT0anHXCJbXwuHmYePG9wWyOTkCXZ0djtxF2JZ6O7epiLrJy4nAEQcINk855++lU+/7fsRnzt5ObZ+ZK5C2KK2rwjDKjsSiIks7K08ciGT6ms9NDz2InNiYDRVHRah9ey6ucB/Dv3WF69M8PeTDlAVM5/wj8gqqw9uY3ZKfmEtDgrz9tPwzu3m4odme64XZ9UO1G1Zn5/QvEhCfRa1hb1szeTExUGjgUFLvC2FbvgCIxeZhYG7EANw+Xv7SmuaCYiR3eJy0hE4+K7liLbSgGIwteW8f0RaOxFttKt8ftdjuKQ6I4VISUSEAxW0ptRh6GDzdPZcs3+2nWLYTz+y9zbM8VtDotnQY4u/+2f3uIzOQcADZ/tYe3V75UZo4Vszez5ZsDuFWugM7VnT5PtqVCiShm+Okolry+mrotg9gY+xW3bqQyqfMsFIfKr5vPYDBokRotqiI5seMig17oSd3mtUrnXvvJdqQi0boYqeLvRUZ8BgJxX+uXfs925tSuUMwFxYx6804q0W5zoNU5TX41Gg1zt7zOsrd/JCk6lZfmjURVVZa9v5kd3x9Dq9Hwy7LDrPptTul4IQStf1cnF3Yx3un3ZzKi+njiU9mLCY+2IzQikYy8oocOlgDCzsWSHpPOoH5NeGl6P4QQqFKiEQKjSY/NVYu1igdN6vizcM6IP9TZupvZ83fwW2gcSFj08VMo7jpyK7uQ08iD7Jxc3t15AIPW+V++lBJVI51ZQwHCpMXu44KQ8O6kvgTX8+Pr5WNITc7li9d+JD/PjN3m4MnP1iHd9bikOTAm21G9XdALARLGvz+49FxcTHpUjYJrVjHCpjBnwlo2HHmLuW9uJDI8yXmOXwznwsnrfDt0JctdjHyw/HmatQkqncPLw0RBifq7FAK7lw4Xh0Qqzn+jgcFVqN/An8ZNqnPudAxqQTELpm/gzc9GUE4590NKGS+EaAF0whkWnpRSXnzY8eUBUzn/GDx9PPB8iO6wv4tiVzC4GLCarU7j2xKad6lP8y71AZjw+TOcOxFF+s00p9xASYBVnGcmOjSOZl1C7jv3g4i6EEtOutPQ1mq10/2ZrhzcfI7Y8Fu80vtjZq56gV2rjtOyewMUVbLvx9P0fboDG+ZtJTslh7Z9m+Pu5frnC5UQ1KgG05Y40xa9nuzAS5kFFOaaqV6yQ9Wsawj71hxHSklSWiEnD0fQsUeDe+bYtfIoqiqxF5h5+5vnaNH1zvvzxywmNS6DxMhk2vRpRrPuDfH0cacgp4haDarT5pHGbF58EMXh3Am4rdd0m+DmtYiLuIXeoGX+7rc4s+silWv40PqRsjvmlapVZNmJWff8bP/a43w5eRVePh58fWwmPn7eaHVaJn46qvSYsweusHfdKaQqcagK2el5XDlxnRr1/KlQyfO+163PgGYc3H8Vm8XOiGc6kJmai7XYzuaZzz30tQdIyyrglc9+xmFzELsjnRrtajDz8glsisLKJx5n+DMd2BEZgyol15MzuBabSsPaf26mnpWWz9XQeCwWOyajnriUbNIHVMNstSM1EqFIvFxMLHxyAO+t2YMtKh9juh1TS19eGtoJXxdXdh69yoCujWjbpBYAgUGVCQyqjP/6lxj37BIKqxqxGTSgqCgeYFQkqosekw2GjGpPq3b31ha2aRzAtYgrzpyHojJ1wvfkpOZjtTgwueiRuTb2f/UrUpVIm4PlC/fx1doXS3eIvpg9nL1HwqlRoyInYuKp4OZCQzcv5s/cisOuEBubjsOhoBUSbVYBQsKxQ1d58y99IuWURfxrhSuFEO8Dw4AtJT/6XgixSUr54cOMLw+YyimnhK7DOxB18SaJ15OZ8Pn9b4Q6vY7lp2bz5dTVRF+MJflmGkqJ9UXwXTslD0tw81p4eLvjsDno+WQHWvVuzP6NvyEB1aFQmF3EzNV3jDAHje0GQJ+nO5KTnkelB5juPiwVfD1Kd4cAOg5sycKDM5gy6ltibuXzyVubWLN3GhUquhF1LZn42Aw6PtaSoz//hpuHC8FN702nVKrhS3ZqLopD4YvJq6hYtQKf7JhOUa6ZoCY10Rt0PD6pD6FHr1Gnac0yAcr87W9w7VwMASHVqPD/2Dvv8CjKtu3/7plt6SEhCQRIIBB671V6kS5IESwgiGJDsKCiKKAiggiiAjZEEZBepffeO6GG0EJ6374z9/fHxgASBN/n/b7veXxyHkcO2Nm575mdndk557rO67yKB9D1ubZ/6/MsnuZtiZKXbePA+hMFNgF3wi/QByFAKAKTxUhEiA/v9ZyCwWRgzqnJhZLy0mVCWLj8VQBOH4xn6CMfI6Vk2NjH6PLUw1lc3LiZwYDRc7H6CYSPkRRflY03r5Dj9PrmfbljL7fWJSLxRps0TRJWzP+B8148fYM3B85G03T8w/yoVCua2MolcG/SkQooTgi55GRo57o0KRfFhnefY/+ei4SXCCQwMoC3ft+AS8+iR6c4ikf4AWXvml8zq9hKByBVCnRVPikaUkBwZAAr171Y6H6982JnXt2eQFZyLgi4fj0DR5iRAIw0f6QqjVtUwi/AQl62Helj5tLVdPp2/hxDgzBUXyNTnu/Gk729FXItG3r9nOw2F37+FpxON8XDAjEaVQJji6ObDQi3hj3qwcerCP/VGAjUklI6AIQQnwLHgSLCVIQi/B2oBpUXpjw4YmD2MfHW7KEAJMancHDjCW7GpzBxyLcMfv8xyteIQtd1ls/cTGpiJv1Hdr6LlNwJvyBf5pz8jJyMvAIdzSOda7J71RF8LEaqN61Y6DijyUB46dD/4Sf9a0RVjsTga8ZjdyMlTJu4mqaPVGLa+0vQFYWoKpH8cHACwcUD7/GVGrdkFFsX7mHDvN1cOnGN3Ewru1ccpv8bXQvW8fG30PRPBqAAmkdj+7KDqAaV2DrRaB6t0LL8PyP1RgaJ8clUb1qR1n0bs2DyGlSDSs3mlQtdv3qjCoz+ZjBXz9+i08BmPFlhBG6nGwtw42ISVR8QxTyx9wIul1c7tev343R5qhmJWTmcS0qlcUwUvqZ7vbYAduy+QG6AjqO4AB3MGSpx55IxBAtAEK34c1OX6AreqJBRsOPYZfq0Lbzhr8etMWfBHpbP3Q35+xMbEsjU/OKCQc3rsuzwGQISHFQPLUmffPKhGhQaNavA0f2XmX7iEPuuXQc0dKOdqxWncjglgeLmQD5r3JUAo5mgIB9UKZEeCLziISDZgdMgEAFGvp30ZKH7dvFWGk9OW4Cs7UPkORVrug2BwBFiIC/aTGJNEyaLkVkbR7Nu0QGWrjqONc9JXp4T24kkHBFm5mw4yJgB7XB7NMbN28ilxHTGPNGWb+cP5+K5RKrXikIIwXNPPcL6M5fIzXPQtFgIb/b7igGvdKBO88KvnSI8BP65GqZEwAI48l+b8faTeygUEaYiFOFfQGRMOGUqRvLTRytw2Fwkxqfw4+GP2bbkID9/ugqPy8OthFTG/XqvIPkPGE0GQksEk5dlZd/aYwwY1ZmhH/YmoJjfPV5L545d5cdJa6hWvxxPv/4ol05e473+M1BUlU+XjCC6cuT/6HMkXU/n9/n7qFqvHI3bVeOz759lzaKDbNl4hr07LrB/50X0XAcUDyThciqX4tNoWghh8wvypdvz7cnOtHHjYhK6lFSoHU1GcjYLp6+nVEwY3Ye0LrSqb/7na1ny1QY0DaaOnIdfkC8zNowmosz9iWHS1VReqP8uUkrqtavB2IUjaNO3Cf7BfvgH352qzEjJ4a3Hp5OZmsu7swbTf4S3MuuZD3rzy0fLiKlfjiXJ12hxXqV1pZjCNgdA6571WDN3Nzarkz4vtGXxTzuYvmkv9or+lC8RyqLnBxQ6rn7dsriP7fX22xMS3QdyfTyoqopEElshgoSIZK5kZqHlu4XbHK5C59q4+ADT31mMJsARHYJFEZgMCgNeuu2APaJDM0omSo5ev8zTz7fB/w593WfvL2Xf9nOkVjJhrOGLjpsgPxtbblQkPucWBiWFhZeP0SeqNj2m/4LicOKX5sGiCVy6jsGhIXJdJJxJJKLl3VFCm83F0cs30aXE6dFw1yuGcWkGOVF+KE6N4AQbB0tfB7wGoVdy7Fg9+V5eukTxCHxSPJQLLwbA1uOX2HTkIi5N48UZy2jSNIbnWjQosFoI9vNh4/ThnD99nXf6fYPT4ebFr5fC2kCGtm3AkHb/d4pEivAfiWzgjBBiE15a2B44KIT4EkBK+epfDS4iTEUowr8Iv0AfpPQ+uf+hJ5L5Sm2J14U6KyWH4PDC9TF/4K3On3LjUhICwXdHJxZqTPnJS3NJvZXFxZPXqdU0lg2/7CQnw1ueveqH7bwyufCb9YMw5unZ3LqWjsm0iy+Wj6BitVI8+WIbtm6JA033fhJfMygKSMmJo1dp+kjhzYgBBo7uTo1mlfAP8qV8zShG9/qC0/svoqoqV+MSGfhG1wI38D+QejPTK6wW3tyPNdvG8JYTGDymB92GtC50OwlnbhT4XB3ZfIq4g5eo0rBwn64dq46QfD0Dj1vj58lrqdfSqzfrM7ILfUZ2ocWk2aQdPsmy42dZ+fJTRIcGFzpPZNkw5h+dAMCy73fwy9T1+Hs8aDlOLjQo/NFc1yWrtp0iKt3MzQAn5lALbWLLkubnZEfCFYQQpDhs/DptMJk5Nr5YuB1/HzP92t8biQNYMnsbmpTovhZMDg8+dUux4PthWMy3o1vnz9zk1+934HS4uXJpAYs231b3HNx+Hleek6CjTto1rUL1xsHElAhh6RV/blqvIhBE+gZyOTkNm9OFs6oPpgwPZU7ZwC0LWqZ8OnoRy/ePLZh37m97+Wn+HkwWA4bSBjRFwXMhB3N4IIGpTrQkFxJJwysG3ntqFsPG9sRud6GbVFSzAY8iQVUwKApdGnq/n1B/X1xuL6HK9jhZfeIcRxJusuWNoQXbVRWF4qHe60srZsIWbkY6XcxYt5dn2zYolKAX4T6Q/+jmu8vz//7A9r8zuIgwFaEI/yIq14/hnR+GEX/qOo8+43XTbv14I1JvZnB8Zxynd8XxVLXX+XjZ69RsUXiaCODWlRScNhdmXzNpNzMpHlmMz1/9mcNbTlOydBCZiVnk6iqKKnC7PaiqQrHigQUuc9sX7ka32Xl5+qCHSmXdCafd5bUcEOC0e80jwyOC+GByX/bvukCtmqX4ctSv5Gbn4RsZSvfe97qe3wkhBLVaVEbXdTSPVuDwrdntbPxlF/t/P8avZ6cUmIPqms6gMT3JTM0hNTGTG/FpaB4NW7aVmW8vpOuzrQq96dVsURlLgA8OmxOHy8PrHT7m1a+H0mlgM3Iz8ji06RSVG5QnMiacKnXLoagKZoNK/dZV75nLrd1u/uvJr8T6q88HXvNOXdMRUuCrKbz2aKtC1z8Rd4P1O87icLop6bawdsoLqIrCjexsRq1dh8VoYEh97zEtFujL+GGd/3L7rXrUZe7cPV5yIVReH9r2LrKUl2Nn8axteHIdKGaVgMC7qzctJhUHXk2SejSD5GtulG51ybp1jV5KVVI33CQtLYl2Q2MJCrCQnJmHtbSK/ZSCUGSBlimo2O0HhNkzNrNsySGkWeCy61gyXYQHWLCm2rAB5cqHoTs1atcsxZYF+3HaXXw2Yh4f/vw8s7/dRkioH+UrlmD1hpN071SLoPy+h7UrRBKeCjlGjexyqneflXutA+IT0iheqywhwRb2+dnx6Dplw4sVkaUiFEBKORdACGEEqgM3pZQpDzu+iDAVoQj/C2jcqRaNO9UqeK2qCk+M6kLcvgt4nF4CsuTrjQQUD6BcldtmiEnX0ji2/Sw1mlSkTGwJLp+6Tv221ancIIaLJ66xZ80xnHYXWTfTQddRTEbwsaAYDfz6+e80aF4B4XajOV3k5eisn7ud8Ogwnnir+9/a/w++G8L8GRupWq8slw5fIi81i/odatGgSQUaNKnAtqUH8eQ5MGk6moDJ41fy8bSB+P2FA/X1S0mM6j4Vp91N6fLhCFVF4sbj1shKz2P0418SXqoYR3eeIyfTyqgvnmTCAq9n1dXzibzWYSLSYCaiTOh9b3qnD8bjVAxIo5cseFxuvn5nITcvJLLtt31kp+d624Kc+ozKdcvy7bZ3yc6wEluzzD1zfff0Y/yw+zAtK5WjfHgoUkq+fHcx21cdpWO/Rgx9rwefb97FlbRMRndsSbnQYvQd3obUpCw8Lo2XxvciOLRw0XFYaAAgMZsMlIoIKrjhlw4KYtGA/n/nqwKg88BmrFh7kqwsG6qq4PMnLdnP0zdycFscQkKVmmV4+/O7t/Hiu1354v3l+PubOb77Ih6PTu7hk9xsH0z0mjyMuTq34tKoVjuKH5/rQ9+FC3DaPQijilQEQlXo3qsefQd7ncOvJaSxevkRpEdHlQLdR0FRBP7+Ftw5XrlI32ea075TTY7tOs+WBfvyvc38KV48gDHv3j5fO7Sudte+Ggwq3059mt27zmMPUzl7PZmTv52lzZqP6fpyM0b1agXAhDFLcbk8JCUbGDG8Fct/P0yzsGJIKYtI09/FP0zDJISYBcyQUp4RQgQB+wANCBFCvCGlXPAw8xQRpiIU4f8iHnuxA0e3nkE3Gjmx7zIjO0/m6y3vUiomHKfdxQtNxuJ0uDGaDEiHA4/dReLFRBRFIaJ0CKrh9pO08PUBgwEk6G6NqxeTeOPLpzi86RRn9p7DaXWie3TmT15D31Fd/laUKbZGGT74dggT+k/jwLpjCCEYv+wN6uQ3r02/lYWmaXhcGnqeg8sXkti19SyduhWeMgLYvuII1hw7UsKVuERAoPqYCAsPRJpMnNp/CYNRRUqvt9SirzbRplcDAKIrRTJ7z4dcOJpAnVb3RoMA0hIzOb79LI70bLDnazhNJjx5dpZO/x39dsCI799bxFvfDSOiTOh9NVE1SpdgWv/b4vSMlBw2Lz2Ex62x+ufdhLWPYcHhkzjcHjJsdhYNfQL/QB9GfzHwL49tRmouFw4n8HK/FnhUaN7gX2/tM3rw99iSc1ENCr37N6Juwxhyrd5jEOBnwS/AglAVhK4TJ3P5/rcdPNu7BRGlvLqgq3G30PLs5NqcIL2yKqnmkwqzgmrzmpxuPngBzymFV8o3JM/hROtjZdPqE7RuV5Xh+R5SAMVC/FBVBbPFiK+fiZqNY/D1t/DUgCY4HR40TSc6v7VNnRaVGDn5CZKup9PlyYerMIyOLk50dHHSUnOI23kF6dRRgJXzDxQQpuBivqSn56Hpkvkzt2HLcbDxUhaPtK5Kjbpl/+VjXoT/aLSQUv5hKjcYuCCl7CmEKAGsA4oIUxGK8CAkJaSwf/UR6nWoSZlKpR484G+iTutqrEyezcBa75CdnofF10TStTRKxYSTGJ+Cw+YV9bocbgyA2ddEmUpe4XZwWCAzt7/P7tVHOLHlFIf3J6D/4WKpKGRl2hjz1CxmbRzNzcvJPN9gDB5NRzU93GXtcrjYveoIkeXCqdygfP7xSMVld2OyGLlw9Ap12lRnw4K9rJ2/l8iYcHKtLnJ9vFGlmNgIcjLy+Oyln3DYnLw5Y1BBc1uA+q2qsnTmFnQpqVgzirOHrxBbJ4Ypy0cyfsh3ZKbmem/UCFRVoWXPu9N84aVD76oEtOc5+P6DxdjyHLjtLnavPOzVVOk6iqqgqAolKpUkLz2X7NQcFFUteFDOTr+32e+DEFjMj2JhAeRm2SgWFkDxEG/1nEFRCPKxPNQcOZlWhnaaTK7FBEKg+anMKLmLiSO606zO/YXlD0Jacg4elwezaqRRkwocPH2VN6euBGDqG48x4MW2CLPKN7v2E3A2k+0n93P41+PM2zoaHz8zW5Yfwe3SMPsoNGlXjfDIYkR3iWVfyk06dCvHpV0JnEtOZ+mxc+gKcMT7HbWtU4FVm95k1ck46k78isBgC71N5Ui8nM4bY7pxNSGV+Qv2s2fnBapVK0VQoC+btxwmKMSfqGhvpHDz0kNMe/s3/AJ8aNWj3kP7iM35aQfzv9+Fx6wUuIs7jTDo24WM7dORKTOfpu8HP2INEgQfycViMuDUJWdO3ywiTH8b/7iI3J3VE+2BxQBSyqS/E30sIkxF+K+F5tF4qcFo7HlOjO8ZWHBjNr5/06n7YaAaVF774km+HbuEKg1iqJ2vYyoWHohiUNA9OgazgSfe6Enq9XSGfdyvYGx46RB6DW9Pr+Ht6RMzglyHty0L+caa1y+n4HS4KV2hBB8ueo3dq47w6DOPFBpdklKSl2XDP9gXIQSfPfctBzecAAmT1o5m39qjXDx5DaPFiAfBvC/WEVU9ii/fXICWawUpeeaD3lRsXoWwiCCiyhbnp4krOb7rHLoumfPxCt6efbuXV5X65fjp4DhcDjfhpUJw2F2YLUaEEIz++hk2LtxPZNkwqtYvR262jcgHNBNePGMDG+btQUN4W6cYjQhdgkGhfK1ofAJ8eO+Xl0m5msLU4T+QlpSNMKpERBbjhUleMXxWag66phNSonBB950wGFU6DG7J0d0XeG5UR6pUimJijw5cy8iif/1aDxwPkHQjA7tL8xYvC1BsGi63xpodp/8lwvTO5H7Mmb6Ruk0rULlmGT6ctQ5Xvonqxn3nqF8tit5DHmFa+jnUEzaEBLfTTW62HR8/Mz0Ht+C7iWvwC/Ch/iOVcNhdNC0XRd0SJUHAGfdlruTkt5HxGnmjS4nN6cbh9vDerxvQdJ30DDeLLh1FSDh2/Bpj3umOoio4HG6SU3KYNWEFm1ccRfNVGeXuRdsudVj2ww48Hh2b1cH6lYfxxAazY/1ZpFNnwts9KHtHBPDOdNqqlUdBB6kIXCFGNKMkpb5KijWRPr8tYNezQ8koo6K5dfTa/pQ9rWHNdTJvzi7q1C9Hpar/swrSIvwjkCWE6IrXQqAZMARACGEAHvpHv4gwFeEfgZ1L9nFqVxw9Xn6U0rEluXwigbfajUfqkkmb3ie27r03J5fTjTXHnt8ORWLPc/yPCJPL4cJoNv6lTqJxh5o0/pNbdXBYIBOXv86+348RWDyQRTM2gpT4BvsxbNzj98zRaWBTVny1AWE2El0rlmvxKXR5shmW/OaxDdrXoEH7GveM0zSv8Pr93lM5tfs8tVtV5ePlr3M17ma+yNxEYnwyS79c7xVhm0yAwO3ycHL3eSwWA9Ycb6xmw9ydPPF6V5Kvp/P5q3Nx2JyoBhWDEETGhN+z7eA7PI0sdzS59QvwodMTTZj5+s9s+Xkbw6c8xZrvt5B2M5Perz56V1+6P+DjZ87PHeWLrlUVdG/11I1kK3qSlW/GLuXdr5+hdNUyJMSnoigK4eUiyMuyc2zracb2moKuS16Z8Sydnml53+8L4MTRBBbN24vD4WbS+JX8tOQVHq3mrQyUUuLWNIzq3cQ0JTOXrUcuUrdSGSqWCaN81VKoQSY8bg2Eiu5vwGhQ6dHmoXp93oWES8ns2nSGhi0qUb9FReq3uO0z1L1ldbYdvIhA0LmFVwPkZzKxaNgTzGEzV7cm0PGxuoRHeoliz0Et6NSvEUd3X+CzUfORuuTnLzdhdetYQnyx2d1IXwPGaAseKaleKoLcbBsDG9UoEMQLr4e3V9Okef2jGjcuT7v21bh4MZmXX2nP/CnruFXDl9zyvow+vJtNrSrTumc94m9k4RaCn1cfIr2qH1LTCbyh8f28XXz0Tk+klIz/ZBU7dp6jXZuqvDu6G40ercLmuYdR3DoxtUqSkJCGwGugaXO7sRiNjOvclknfb0aRCnkuxz8vTvL/Cv8wDRPwPPAlUAJ4TUqZlL+8LbD2YScpIkxF+I/HofXHmDhwOppHY++qwzR8tA7HNp8kJz8Ns+zL3xn9070+SD5+FkbOfp6l09bQ6dk2hJYsxvlDlzi88QQt+zaldOyDW1L89OFiFk5eQ0BYAO/PezuIgEoAACAASURBVIWaze9fal8YajWvRK3mlVgwbV1BNVnytfRC1x0yoR+dBrUioJgvR7acQTWotOhZH4Cr52/xbt8v0TWdCQtepkINr6j5RnwKI7tPxW51oVmtSF1yYmcc2em5vPbVs0x76UfKVCrJvu3n0QMCUTUPPqpEGI2YLEY6P/MIj3Svx1tdJ4GUtOnbmOuXk3m161QcVgcmBXo+15pyVUvRovtfV86lJWaye/VRajSNpXyNKJZOX8uWBXvQdZ30xCwunryGx6Nx7XwiY+ffa4fy2PB2OJ1uFs3YhNvlJUooCqqPGYlA0zSsOXYAylQsidnHhMepcWjzaY5uO0udJuVxObwC/C9fm0vlRrGUvY9vlabp/DJnFw6HGwRYLLfJnsPtof8PCzmflMqwFg0Z2darw5FSMuiTBWTm2lEVwcqJQ7ielU1iy2I43RrFVBPrxgxBNSj43jHfw8Dj1hj1zPfYbE6WzN3DrxvfwP+Oyrd6VaPYOOtF777mG2cePnmV0R8vw2g28M1PzxITdXcEz2wxkpWWi9TB5fTg8tiQFhO5OXaEqmBySyb2b0/NOtE83eULXE4Pn+xfyJLtb/P5wC58v/0QdUuXZH96HLpH5/0RXTCZDIwc9WjBNl78oCcrv/sFVHBInS4vzSTWFIDJx4TL6cGQ7ITyFgLP52KyCyqW85LujAwru/dcQErYsi2Ol4a34+1hnWjZpgq6kDSNiUYIwYJTJ1l74QLP12+AIgRdqlXiM30zHl3HVs6HTqWjadgwpii69F8OKeUFoFMhyzcAGx52niLCVIT/aGiaxicDpnuf4IGc9FzW/7i1oImuEIIrJ6+SeiOdsEKMFjsOak3HQV6Pn+y0HEa1HIvb6WbR5JUsz/gJpZDy5Tux/OsNSKOB3GwHb3WbzFPv9mTgm13/ckxh6PhEU1Z8tZ48m52IkoH0inwBk8XIG98Ow2FzUb9tdSx+ZkqVj2DB5NUs/HwtCMhMyabH8+1Y/eN2MpKzAVg6czOjvxkMwO61x7HlOtF1HUuQP24tm4p1yxEY4k9w40C+OzKRvGwb/WqNAUAxm/hi/VtEVSxx1/4tuDCNnPRcIstHMObpWV4ioShoSKo1LE/D/MiWNdfOe32nk3ozg7dnP0f1JrEFc4zsOJGstFwURWHO0U/wC/bzao+EKHAMl5rMdwc/RM1HqhAYcrvqzGA00HVQS5ZMXettGmswYPA14xfoQ0hkMeLP3kSVOrqu89TobpSrWoqfPlrBrYQ0dEUnPTUXoQivfYLFwozJqxkzaQAhhbiwx19O4dz5W+gGBUVKxt9RZXbixi2upWchgbn7jxYQJoDMHBtuTUcYVL5cvpuYqOIoQoCAwBBfAvwfTvv0Z2iajsvl8Qr+NR23+17bA4NB9W4Lr63A+GE/YbC6cIZaWLftDC8904rUPCunkpLRbjiY8ulagoN8qNEohoyUHHSTgesJ6ZSKCOLmrSykLomJCfc2v83Xznk8OhJJ+5qxtK+Z/932KtwjCyAyujhDWzdi9q6D6E4NJVsjXssk0t+M1CU+xX1xH83ClOElpklx3gf/4GBfSpYIJiU1h5IlgguOW5MKd7fieaJGTRooIbzX9wdmGRQmzx/O631b8evmo3RtUoVh3Zr8j453EYpQGP76blCEIvybQ3Nr2PLsBa8rN4pFUcRt40gpiT95lZmjfnrgXNZsGy6Htx2ILcdO98CneL72G+RlWe87pmnXetyZifv187UFUYxC91fT8eSb8O1cfoj5k1eTk5HH+cOXcVqdaG6N1d9txZptIzMlm7F9pzPlxTm8+/gXZKVkI6XkVkIqbqcbt8tDUkIaALVbVMZk8UaF6rW63QC4XssqGM0GjCYDz33QizknJjFlwzt3EUG/QB8q1CiDyWygVLkwSsXcqyXyD/Ylsry3QW/JqFAMRhVFVejQvzEN2lUvWG/B1HXEHYonLTGLz4b/ULBcSklWWi5up6dAS9XisUYMHt+XQeP7Mva3EfR8sQMtHmvA+cOX+WTwLIbVexs9v9TNmmNnWN236V/2ZVw2J5rNibTb+XzV68zaPobLx64gHS5O7DpHYnwKiqLwSI/6vDVrCGaLEd2jkRCXSOcXOyLCQ3EFmtlsyWHkiJ8K/Z5KlgzGbDZi8TNRqUYZwiOCCt6rXCIMX7MRs0GldcXbqV4hBB8P60KlqDAwCFYfOMusFXsZ8kh9utSuxFfP9LjvefEgmC1G3pvSj9oNY+j+VBPWrz5ORnpewfv7jsTTof90uj3zNdduZnD6aALSoyMAU5aTJnVjSMnM5dHZcxm58nfe2LkJT66DrBuZ3mN2OZmaNUoxb9Ob+PuYEFYX2Fwc2B5HSPEARn/cm2ZtqvDRjIEYjX/vOXtE26asfvEpAm9Ib6pHEUz6cQhRMcVxplux5Nwmf1t2xHHtRjqqqvDdzEF8OXUgs79+BkW5f3Jt9keryM6wkpGSyxfvLKZfm9qs+uTZIrL0r0D+P/r7D0NRhKkI/1G4cuoqc95bSJXGsfR/+zFMFhNPvvc4v4xbhJRwaudZhkwcwM8fLMLt8qC5NW/rkZLFHjh3aGQxhCqQmvdKdtpc3Lx0i32rDtP+6cL1Lm/9+AIVG27m+w+WoBhVQiNDMJoLv6wSzlxnZJsJuJ1unnyvFwumrMXj1ji56xyvfvE0SAqiSAlnriN1HcWgYrc6iNsdx4CYl6nRvApv/PACKdfTUQ0q/UZ1xu3ysGbeXnTFQOeBTWnXt3HBNmNrluGXAx/idLgpXrJwobMQgs+XjeDmlVQiyxZ/oB2BLccBmo6KpGW3undpt7LuqEbT73ALFkLwzvfDmD9lDc261uXk/kt8O245iipo1LEm1yesZMi73Yk/kcDOlUdACLIy7bjsLix+Fk7sOEvytTSkLjEYVCJiwuk3qisVapRh8bS1eD0EBAaDivGOXm6V65WjbsvKHNx4EiEE9VpVY5m/lTSbHeGRZLidd322+IwMhq9ehclgYMqsJ7Gn2KharfRd6wT5WNj46rMkZedSNvTu86pNvVha161A85Ffg+bVxnWtU4UyYQ8WmT8IjVtWJrREEKOe/wmPR2fbptP069OAOs0q8vOS/bg9GppVZ+ue8/RsWwNfXzNWXdKqSy1cdjcDnp6Nn66TWkvFHaBgTM9D6CCFwGl3cWLvJV4c15tOj9cn/twtDEaV+vn92Fq0q0aLdl5t1K5tcVy+kES3XvUJDQtASsnydce5eDmJ6pFhqEDbbrUx3lGtWT48lA/e7MrS7cd54pG6RJUJIf7cLaQEk48Jj0XFqemoQRaM+eef2WykYuztSOeN6+ns2X2BBg3LE1Pem7qzW53kZlkLzFutWbZ/+TgXoQj3QxFhKsK/NfKyrJzceZYqjWIpFhHMuN5TuHkpiWNbT1GpQQXqtqtJy75N+fnDRQDoHo2GnepQpmIkKdfSCzq/d3y2zQO2BEJRGDrxSQ6sPYKuS07vjsNpc5F0JRlrtpXRHSZw48ItXv/hRVr08jYyFULw2PD2tOzVkLjD8dRsVvG+4u+tv+3Dlq+x2bn0IAhvpV5elo3I8hHM2j+Bm5eTyc2y8vlLcwAIKxWCLc9B9o1UNE3n5K44zBYjn656s2DeM4fiOX/8Kh6PxrqF+xg+ofdd2w0o5kdh7WR1XcdhdWL2NWPLtWPNzEOUK/7A43TjUjIep9d6IDEhjVrNbouP+7zcgT3rTuJ2uBjxxd2NWZt2qVPQdPfVzpO9OiRFsGPhHoQiEIqg3/C2KAYVXdMx+5mx+FlIvp7Oku+243ZpGM1G/IJ9iapSmvCyYZw+fIXFX21EtzkQfr44XR5e6TSJOfvHYcu183bfGbicbroNa0OFGlE07VKHj2NDeGvuWkx2D2UDg/jlx508ObgFQgim79vHxYwMFCFYdOks77dqxcXTN9i98TQtOtWgQlWv9YSvyUhMWEihx0cIwVcvP8a8zUdoXbtCAVk6diieSR+uoERkMB9/MQC/B6Tn1i09xPb1p+kzqDn1m3nTX3m5DoQQaJrO1cspzBi7DCXEl7Qw71yKKmhQuyzBof7M3fAGWRlWIiKDGTN+OZ78iFNwpkJwBkjd28cwKNiCI9fBgJEdOX4wnlZda9O4TVXMPqaCfm1/4MzJ63w2bgVut8ah/Zf5es5QDp+4yqyfduDOsLItxY5BVTiw4zzRVUtSOro4bTvVICUjD6Mdpg7pQaCfd1/7DnmEpXP3ULVeNMZgXzLsTp56qhklC6lg9Hg0Xn5+Dna7mx9mbSMmwMKbn/Vn3hfrSIxPAU3D7GPixQ8f+8tjWoSHgAT+Ya1RhBCj/up9KeXUh5mniDAV4d8Wu5btZ9LTM7xaB38Lv1z5Bp9AHxRVQUqJT4APUkre7jihYIwU8F73T8lIzEQ1qsw+PoWS5SIeuC0pJSOajeHG+UQCQvwZMKYX5w9exO30sOmXnZQsX4KEMzdw2px8N/qXAsL0B0IigmjW5f4mjgCNOtVmxVcb0HWdx17uwPWLyVyNu8nQ/O7y4VGhzP1sDXvXHEXz6OiaTsmyYUxYPILX24zn/OF4qjWrSEDI3W7SUbERGM1GpIRq9csVLLfm2MnNzKNE9L0ptoVfrGPuJytB1wkN9cXm0nA7Nao2iqHXC+04seMsXYa0oVSFEricbr5+eyFJV9N46dP+vDyxL1NH/UrJqFBaP3Zb6H1kexwn9lxgxvq3KBldnF+m/M6kl3+m9WP1efGjx+8iko8Na83nr81Dy8lD2uxIATfPXKdEVHEmLBrB0W1n6Phkc3KzbHw4+FsSziUiggIwmwQZGXns3Xaeg3suowuB9keQSAg0j47T7iLlZgaz319M4pVUAE7svcTzH3ntGppVKsueT17i6T5fc+7mLRLi06hWozR1G8RQo0QEm+MvA1AjIpz0jDwGTlmAM0BlzrtH2bTwTcx/ctUGsDldLNl9CpnlIsAuadG+Gp+/cLfb+sxpG8lIzyMvz8GOzWfp3LPufc+VpBuZfPPp77hdHs4ev8qK/WNRVYXa9cry+MAmHD98hfN7LuJ0uHGgowGoULd2NNUqeosVLD4mSpTyisu7dKzBoSNXUBTB16/2w51lY/LphYRHFuOFsT1wOd1MHL0Ym9VFYLAP0mwgrEQQ4yf3xz/gNrGz210IIdB1id12d2NgR4DElCxxuzX2bTvLvu1nMRTzB0UwcflONE0nJMiXpZOfRQjB4Fc7MPjVDrz18i8c2n0Ro0kl7lIii66eo23l8nSpfruNkNut4XC40TQdpCThUgozJ6zEkWPL95My8uonfaje0JsidXk03ljyO+dupdLcHM7BpWeoU78cH37yOKpapET5L0Rhz4x/G0WEqQj/lsjNzOPjJ6YViLelhKzkbCaseps1szZSoU45qjSKJScjl9Trd1SV6ZAU720NZFYEl48nULJcBJeOXyHpSgpVGsey6eedRFctTZNu9QuGuZ1uLh27AtJbkVSqQkmMZiMgaDOgObF1yyHwpsxqtqiCLdf+ty0IqjWtyC8XpuF2uile6t7oxKWT19m3/iROl4YQULVRBYZPegJFUfh861iyUnIoFhF0F/Fw2JzsWnOcUZP7EVQ8kNj86rika2m81GIcLqeb3i91ZND7dz95L57hLQyRQpCRbkUqXsftk3sucXb3OVxONzuWHeLX81+wfdlhdiw/jNPhZtqoeUxd8yaztrwDwInd5zm9/yI1msQyfvBs3E4325YeZPbO91n8zWZ0XbJ+wV76vtSOsEhv+sqaY2fp7O2YfMxEVwglbu95FEWh3iPeSFW9NtWo18ab/hnddwZXLybnNwSV2J0Sxcd73L2l+gJhMSNLhuMoZsKclEPFFrFEVyr5h1WV18unEMGEv78ZRfXq3fzyox5D6tajcvEwTKqKbtPp8OF3aL4KCEF2aQsej4aZewnTuF83se3QBYIPZmFQFJbN28e89a9jtzqZ9OZCUhKzKF25JEmJmV4xdextEp9ltbN8/2liSoTSsloM6Zl5jHhnPu78ljpSkyw/dZZtl+IZ2rg+jz/RmLMnrmGJCMTgdFG8eSpXr5QGXWVAjwaFnnvNGseybP5LSF1itbuIqFSSX3e/x4lDV3jr2R+QeEmJlOCwu9DNKhkZeWxZf5IefRoWzFOvYQz9n27G+bhEBj3vFXvXrxXNi4NbMXbrVqRUCIq35n9fkOsneXel17xUcUqcqTlousSg3j6HjSZDAQmbs2IvaRWMbDkfT43IEkSFeKNNPj4m3nq3O7/8uJPkC0mYzAaiKkTQ9YlGfPX+UsqUD0cr60ePr+bSsXpFKoQXZ/fFq9jdbhbZMiiVksOhbXFcuZxChT8VNBThXsj/QH3RX0FKOe5/Y54iwlSEf0t8MuA2WQLo8ExLSpQLRwjBoPG3K5Z0z/2bpEZVKU29DrU4f/gyr7cci1AEZl8z1iwrqlHl0w3vU72Z9ynW49ZQFIGuSTSPRsX6Mcy/OpOcjLyCCNX3Z77g1O5zfD3yZ7YtGc6ob5+jbf/7t3a4dPIaY3p/gaoqTFzxOtGVIwkqpCLrD0SU8YqpffwslImNYOr6293lFUUpMFt0WJ1cPXcToQjmTv6d0wcuI4BPFr6MwejVf5zeexGPR8Pt9LDmx+10e64NoSVuC5cbtq/BzpVH0D2at8dbvreRxdeEZtMg3+jQluvgwIbjeDwaiqpw40oqBzafxqgqhJQI4v3+X+JxezD7mHE5PYDAYXNh9jERXjqErPRcfPwsBN0RFdu/6TQ34lNw2l1kWn3oNKgV/sG+PPbK7XL0P5CZ4jWaFHj3TyhQrnJJcnKc5OU6yIy04LKomDwGHBX9qPlIYyb27oKiKLz51WBGdZpIYtx1Lu3N4us35vHSlNtpwo+m9Of3VceoULFEQdm5EILm0d5KrGFfLsbjPTAIXVKjZPh902gpt7IJOJ4NOmi6TkZ6HlJKtqw6xrG9l3A5PZjMRsZ+2pfw8ECiyt2O+o36cTUnrtzCoCrMHN6LIwevkJyYhcXuAlVBaBrjNmzF6dHYn3Cd8RUac+rENdwujaBQE1F9Myih3SLQEEq96lH3Pb9MJgNDXv2JpOQc6teJ5tOxvTl38joej46m6Yh8hqkYFXThrYgrUfpujZYQggH5/ePuXNbz0docvHqN9VmXsDp0/G7akUaFnCgLIEGRBAdaeK57Ywx/ivC8NbYH33+9hc3rTmC+rhGW5SGzhQFdSk7dSqJcSAj+ZhNt2lWjTbtqnDoUT3pyDs071sBgVJm69FVcTje1Pp2BZhSc27WPT7t2wKPrmFUVke30+jHZXfgWEh0swn8PhBAWvKaV1YCCi1lK+ezDjH8gYcrfwE68XrUGYImU8oP7rNsbWAI0kFIeFkK0Bz4FTHityd+UUm7NX3c7UBL4o8Spw9/pGlyEfy40TePwhhMFr9+ZP4I2/ZuTmZLN1KEzUVSFUd+9QFDxQG/Rjaqg53eaL1+nLMUjQ+j6fAcad/Wmi67F3QAhcFideNwaHreGwWQgN+N2lZGUEtVoQNfc+U+8Cr6BPvgF3TZQjIgOY9uifditTqQumfzcd1SqX4HSFbyEKulqGgHF/PDL98dZMmM92WleEfSq77byyud3a3r+jKBQf2Ztf4/4Mzeo2TS20HVcDhfD6r9D6s0MJCBMJqTJhMXXTGpiZsF69dtWw9ffgtPmwupwM7rPl3y/6/2C99+cOZg+r3bk6LazzPtsDU67C0VVeGvWs2TeyuTw5tP0e70LP45bwoF1J9AVBWE0kpvnYtzQHzBpbkJLBiME6JrEnmsHKREGA8M+eAxVVfhq/Vuc2HuRzb/tY2S3Kbw2ZSCxtaIKPKLMPibqta7KK594U5I5GXl89cav3LiUTHZaLo+90Jaeg1sw8815eDQdxWKmVvOqvP7Fk4REBPH52p3M2XkECZg9ApNTUMUcikFRuJqayYIDJ7CE3o4Crv52E+UaVeTRxxsghCAk1J8nB7fwpnnyoes6Ez9cxv69F8gKUAlAwVnGyJiB7enW4Hb14Z04cfUWqccTMdi98+iKwFrSwvvf/s7Ra9fQPBr4mrh8PQNjfr+1k0evUq1WGVRVITPPjkfXMRoUcmwOrrvy0HyN6CYV1eGm63Ot+coTj0RiEx5+yjyHQ9VRpSQv3YV2ugSG6jfoGNkHgMxMKwvm7SEyshg9etUviEjeSMwkJTUXt0dj36F4NE2nbdfabFp1jOxMK7lOFw4/BVOejjXcTE55A+/u28HyOmUItNxLFKWUnE9PYvTGrQT7WHg8tjw7tsVhL+2LGhlAnuJBKnjd2IHm5UrTr8Pdacg8u5NXPl/GtYspmDSJAIxWnUf1MN5Zu5GzySkEWixseH4Qvvli/hoN7jWhzct1IFwSVEDCt1sOYvB4o4ehx21IVQVNI6xk0D1ji1AI/k0iTEKIMsDPQATevfpWSjn9T+sIYDrQGbABg6SUR+8z5S/AOaAjMB4YCMQ97P48TITJCbSRUuYJIYzAbiHEOinl/j/tdAAwAjhwx+I0oJuUMlEIUR2vQdSdDbsGSikPP+zOFuG/A54/TAnxPr1WrBuDpmlMHTqTA+u87RH6/T6Myg1jeXRIG1TDbcJ05eQ1Zh2ZfNd8LXo3ZtuCPVw/f5Mn3nmMnYv3Ub5OORp1uf3j7Rfoy4SVo9nw03Y6DW5933Rbw061mfPBEsCbzpr9/mImLHiZeZ+tYdFXGzCaDMzY/C6RZcOo37Y6e9ccA6BOq8Jvtn9G8ZLB961mA0i9kUFGcnbB5zUaVSLKhVGlYXmada5dsF5wWCBjF7zK232+xOVwk30HOQRvxCqmWmlvWuuz1Zh9TdRtVZUmj3rn6PysN92yacFekBIFCSYDKgLN5cZhdZJ4OZkh4/twaPMpTmw/C5qO1HQQgn3rTtCwfXWs2VaObo/D6XAz/c1f+WrjO0RXLMG3W98h7VYWleve9tX59v3FbF20Dz2/SvGb0fPRne4Ciwiz2cgTr7QnJL/Ef/+Za6hWQIBulLg8Gj9vPUKv1jV57vtl3MrMwT9IEpg/vzSZ+fLDFZy4mMj6sDSsaTZiDmtkXUijUePyjJs9iKMHLrNj7UkUDcy5Ald0AMOa1KdlTBSTR8zD7Gdi6JjuBATc7n/29q/ryFDcBCsgJHhK+OAKMbLxwHk0i8BY1Y/AK25cLg/fTFnHrcRsEPBI26q8MbYHk57pzOcrdlKpVBhZ5zLwpNqxVjVjr1yCET1b8FSzulS5nMAXe/ZwJi2F45kpRDQMwG9zJrqqYSCaCTUmFxCjTyes5NixBIxGAyGh/jzyx7mnCpQQE1qGxqPNqqCqCsUjAvl+5QjcmkaTL74hS3fh71BwOSUeH0Gy08b6uIv0rXO3g3xaXg4f7JnK4URJalYQfrdcpK3YRwiC0LqluJ5nx+hnwKBKhA4Gt+SyIa1g/PlTN7ztUzxOrt7KwGGQEGDAlOHEkOXEfiKNIwbv74CUDq5nZVMp/P4FCSHFAxgaXpkVp+NoV6sii25cRkowCIFuVlE9OiWiQv+2JUIR/r/DA7wupTyazzGOCCE2SSnP3rHOo0Bs/l8jYGb+v4WhgpSyjxCih5RyrhBiPrDrYXfmgWeP9P5a/fFra8z/K4x/TgAmAQXlO1LKY3e8fwbwEUKYpZTOPw8uQhH+gMliolSFEqTfysTiZ6Z46VCmD/+OwxuOF5T8a26Ny8evoOs6RrMRt9ODalCp3ea2J5DL6eHgltOUjgnnk9/fLVjeeWi7Qrdbr30t6rX/6x5hMTWiqN62Jqd3n0MIQUBx7+1427KDuJ0eFEVwau9FIsuG0a5/UyrUikZVFcpUfLBr+MOgZEw4dVpX4+CG46CoxFQrTffnWrFuzk52LDtA235NC9atXCeafq904OiOOJ56o0uh81WsHc3EZSO5lZBK86510fJTb7ouUVWFZz943OvvZDZSrXkVEs4lErf/Ase2naXlY/XxON2MnP4M7z01i+SEFISi8NXoBSiKoEX3erTr1wQEmH2MlLqjdUp4qWKEl7o73WP2MSIUBTQN1aCgqgpOx21hcd3W1aiS3yQYIDPLhgAUITBoAjc6uWYPH6/dhtySRHG3hrVuMCOWj+T7MSuw2b3p2z37LpLYykDkdhuZuTr4Wzi06zzxcbeYPH6l1xxSAY+Pgo+PiUdbVWP2+OXsXHscHcnKsxf54dsXKV/Ca4QaEeRPSnQuuWYD7cvHcNVu5UJaBpouQYC7nA/KNQ2zQSW8RDCJidk47W5OHLmKR9fx8TUxc3gvdmw5y+SJa7AbJKWDffnwk17ULe+1NHikfFniszK4sNur12vVsgKn8rahlHRzMTqFAV//zM8vPAlScv7sTXSPjiY0NE0nL9fBqeNXmbR4B5lOJ+ZiJnr2qIuUOh7pxqiYScrLw2rQkZogz0/SukxZDiTfBKB6yXuLJvp+t5DkHD9wSNRAieWaC3sxX4QuCbqeg8muoRgEuiJxh/shhKBdc2/6e/fmM0x+bxkAXZ5pgkBgsZgIKWXBduUquknlitNFg4xiHCmWTf0ypahQvPCKxDsxakQXRtEFXZekvjuPC+vPYbAYQCooZgO9nrp/+rwIf8K/SZWclPIWcCv//7lCiDi8QZc7CVMP4Od8rrJfCBEshCiZP/bP+MMkLys/iJME3NvT6T54KLothFCBI0AF4Gsp5YE/vV8XKCOlXCuEeLOwOYDewNE/kaU5QggNWAp8JOU/TWpWhD8jIymT7NQcylaPum/5vRCCrw9P4vTuc1RuWAGLr5kze87jcWsIVRQ8JSqKwpLPV+OwOqnVuhrDpw6ibLUyBfNMHD6H43suIHXJtNWj7tsG4+9i3LwXmfbWQhRVLSjhf/zlDnz11gL8An1pkO9Xs3vlYX78cAl1WlflpSlPPtA1/GGgKAoTlo4qiLrY8xz0LfsKHgRnjl0j9VY2/V/zaoGEEAx4rRMDXrunIwDg7aX3XwHySgAAIABJREFUZudJXDgST7/XuzJt/XG2LNyLxd8Hl8PN4yM6MWRcH4Z91I+b8Sm81PZjXA4Pr0zuzwsf92Vow/dxuzws/WYTn654nVEdP8XtciJUBV3CpVPXGTX9acbPe4nkG+m0fEDrlOfG9SEkPAiX001YqRDKVS/N6K6T0VxuGnSszdhf725vM6hdPaau2EV4kD+Pd6jFjF37UBFkJmRiyHSj6JIqef78suAQecX8ADv4GGj5eG2uZMahaHf83GgaCQlpOPKcuIIN6CFGXh3ZmV5NaqIoAr8gH6TwimFdCvy65gBjBnVENah8+Wx3fly2j42HD7A34TxuHwUl3EzrJrE82b0hDjwUe95AVnoe2Sk5nLmYSF6ASr32len+wzyupGdQ2uBP78AYcgIU0CXZuQ4uHE8sIEyTR//GllXHqde1LN2ebkb3qpV4J3IfN/NycOWZuHE9m4tJaXiS7Wh5TtB0kNCkaUWe7DYNm92FR0pEjDdyatfymHnxTayeTFpHDKVuSE+alCnDjoQEulepzJRHH+XwtZtEBPgTHRLMrvUn+W3WNlp2rkXvoS1JzrZhuSEJOuci6REfMFvQi3mNKSOrlyFn9yWkw43q8mDIc2P0MRKueK/b82du4nJ5kLok+WIqiycPJik9h+yrGXyy92dcYf643R7cFzIZ268x/fs1eahrx+lwkZ1uZfueC1zcfAmhg2b30OupZnTq3YCoQgxZi/CfAyFEWaAOd2exwEugrt/x+kb+ssII07dCiGLAe8AqwB94v5D1CsVDESYppQbUFkIEA8uFENWllKfzP4QCTAUG3W+8EKIa3uhThzsWD5RS3swPsy0FnsKbq/zz2GHAMICoqPsLGovw74/4U1d5tcm7SCnpPbIbz370xH3X9Qv0pVHnuiReTiIvy0qTbvVIjE/C4/Tg0tyYfU2MXz2adx/9GF3TObHtDKd2nr2LMMXH3cRhc2HxNXEjPuV/jTD5B/ny3uy7NYKPPtmcdn0bYzCqnNl/ia9HL+DQuuO47C4ykrJp278pVRtW+F/ZPlBANg1GAwaz0euRKAS/TF5DrxfaFbQauR8un7zKipmbuHLqOlLC4mm/43G6QQicdicgWDx9HRVqRdOyV0Nmj/kNp80FQvDDuOVUqReD5tGRuiQ3w8rSbzYD3rYdioCAEH9e+MirqfHqse7WZFmzbUx4+htSEzN5a9YQhMHA3EmrqdoghkFvdkXkmymOW/gKFv//w957xldRbu3/35ndkp3eCAmEhBZ6DYTeQZReRERUmoINQQ92RY4FRRRRUYoICNJ7L4beew0tBEIK6b3tMjP3/8WEkAgonuc8v8/5nyfXG2XmnnvuPTPZ+5q1rnUtF+q1uF+38mzXCIZ0aILZaEAAAV7u2BUF93g7c8zxSIBruBcnouMx+huxyq68N6k3PXo2Zkh2C46Gx7Bo8hZEkZ2ufZrSOCIMg8GAu02jX/vmPNmuid7nLjWPMe/1JUso7IqOpaiKCweWn+b4jmu8PK4bfXo0prqLhx531wSyXcMiZEIMrvz2TRRDn29HWLNglmw6y5r5+7HbFajiwZpDF8lsakQRgjhHHqv2nEcY9ebCRoNMpZICgcICG3u3nEcCsncm0HFiFSwGE182/ojxy5Zx+lIOfu5uhAX44nBzYDYZkIFGzcJY8+sB8nKLQJKQZYkeLcJpHVED18AE7HcKEGicylxPC7+BLBg8CEXTMJaQk8hQnaypqsZXb65AUVQSYtNo+1hDpvTtxpxfd2GUNSpdLMbmbwaDhMlgoE6TEF55uRtJtzP5fe0pzh27AYogpISw9BvailOHYrAVO3j25a4E+LgT4OPOtO+ikJ0KslMFVxN2m5Ol07eScDyWid88w8xNB8kqKGLSgE4EeJW31sjJyOelnl9RlF9McIOqqGYDsl3BIMu07Vq/giz9TUj/70IX/pIklZXlzBNCzLtvPZLkjs4TJgoh8v6VE5VwlTwhRDa6Lvv+L5W/wN9K6AohciRJ2ovexO5SyWYPoCGwr+RLvDKwSZKkfiXC76rAeuB5IURsmbmSSv6bX5JHjOQBhKnk4s0DaNGiRUUE6j8Ymqbx3cQlnNkbzYgPB+rpGPTS90l9pnPjQjyaKiHsDg6sPvqnhAngyMaTfD7sWzRN6O1Eytx9IaBa3SolrtROJFni53eX4nQoDPmH7n8zfupQpk9cQnF+MYc3nqJNz8alLRYeFt36n8BkNqKqGu89+S1OuwJCYDQbEQgCgv86pfAoUFWNld/vJOV2Bs+/0xf/IG++3PwW7wyaCZKEl687RvOfO3XbCu282eNz7EV2XTBtdcGpaFD6Fq8X4UsCLh6JodOgSBwFNv3yCwGqQli9KtRqFsa107eQzUbMrmbcvFyxFzvQNIG90E5WSs5D17B75TGij8fitDuZ/d4KsnNtpCVmc/nkTRq1qkWDVjV5td1HpCVkUinEj7knvyg9tqjYwelL8YRXr0SgvyeJ6dn89O5akm6kMXHqEJr2b0iAvxdOp8IHW/ehWWQcJgnNLPj+k03UCAugIKeY3evOURDqgWzwxLdtDfwCPKhUJ5AbMSnEZ+ajqhr/GPQdN6ITadCiBl8uf4XWW84w6+P15FbxxOFUmDHndzq1CadL9/rs3Hae1JRcghoG0rBBVTb/chinXeHSuXg27n2Xm1fulLbNMTk1fFxdcXO1cLMwF2uyilEyoRhkJOCl4R3p0lFPYVndLNSqH8ztG2kEVPbivWs7OXQojpHhLZj9zAgSMnOo7O2BxWTEajGxcP0EEuMzqVUniMU/RiELgQZUC/Xnkwk6Gc1zBuAodOXcptoEeVSjeLwDVxdzKVkqC1mW8PCxkp9bhCzLuHm6MKhaAwY2qc1X37+GXKAQ08QT10utcXGYeLxnI6oEehNWK5BWHetwbO8VAoK8qNMoBFuxA5PZwOzVr6I/ToJvfoliz/EYwrKdSJKENSOf2g2rcu3kTdScYo7vvsyaIxdZc+Qiiqphd6rMfKG8x9XVc7exFztxOlRSrqeghPli9nLhiXZ1CK727/nbq8D/CjKEEC3+bECJdnotsFQIse4BQ5KAkDL/rlqyrRyEEJokSW8Dq/7VxT5KlVwA4CwhS65AD/Ro0d1F5AL+ZcbvAyaVkCVvYCvwrhDicJkxRsBbCJFRcjH6AFH/6oeowH8Grp+JY9+6E9iLHPzw5m90GRzJrt8OkhCTQmJsKgCSqwvCbifzThZTh3/HhJ9eKFeJVha/L9n/wL5sslHmiTFdmTJwOsX5NgCEJtBUrVzftxZd6uHMK8CRb+Po9vNsnBvFrx+vxtXdhW+iPqRKzb82tPy7kCTdN+duyiwozJ/qETXZvvwoz0x8vLTs/1/FgY2nWfXDLpx2J+lJ2Xyx+nXqRtRg/pEpRJ+IpVnHen+ZvlCcCopTKbUSeGf+WOZOWUdmSg7CaEQTINn1aFLlku7xXZ5qxYXD1xBC0PRxXQD84YJxfPnqIoxGmeff6cvr04fx/uBvuXDkOqDfk4ehWt0gZFm3MajZKIQrF5KQDbkITWD1dCE/s4A7samoisad2FTyMwvwrqTrxV6bspL4pGxkg0TbwfVYfe4SBChUOZbLrCnr+eX3t2nZXo9o1Th1kfNFd9AAc6YdSUj8vuUc69edRlM1rJKGWsuH0GBfkpNzuHU7Aw04tv8ac7/bSezlJFRF49KJWAryiunUvRG/rzjBybx8ZFnCYjZiNhuxmI389MsYADRNsHvnRSjRMFlc9Whfl8EtuXA6DndPFx4f15ke3Rvh5enC7Dm7yS0qoMvg+kz7YiNSoZOGIQGlpF6SJGYse5mEW+kUeQue2r8EY7LCukOHadO7Eu261sdcRszs6W1Fu5HKkIjJyLJM6051cPNw5aV3epXO6WmqhO3A0yRfjCFNdrA69DTPP/Xg3muSJPHdmtc4vOsS4c2qMe67tdy8k8nLA9pR1Lkf2xIvgR08b2agaYKXPlvFpu9fRJIkjCYD7R/TdYWJcRlMeOpHHHaFse/0pu8zrUlIzmbz3ks4nCq5QjBydEc8fdzo/Vw73npqFnHZhQwe2wU3ixlZkjDIEu6ulvvW2LBlTbz83HDYHOTV8aHQw0ihqrFxy0nO74lm/p737zumAg/Bf1Cft5IKuF+AK3/ixr0JeE2SpBXoYu/ch+iXAKIkSZoErARKfyyEEFmPsp5HiTAFAb+W6JhkYJUQYoskSZ8Ap4QQm/7k2NfQdU+TJUmaXLLtsZKF7iwhSwZ0svTzoyy4Av+5CKjqW+rlE1jNn/mTV7H1590IISG5mPUSdKdOgGyFdg6uOUpQjUqM+vT+SNOvU1ZyaN0fU9Vgsph4ecZIqtSpzNZ593Ns3z+0VahWJ5i4y4mA4PDGk9iK7NiKHUx/cS4zoj78H+uKjm49w5LP19O2T3OefX8gsizz8tSnmDVpKZIQeAT6cmT7BWTDJY5tPUOD5qG8+MUwzJZ/zQ/mLuGSJAlDGfIVUMWXzgMf7U3a3duNzk+2YfcK/R0matlhvtn0D/ZvOM2+bee5eTEBUXJdolYf58lXe9BjeHtyMgvYtuggubk2stJyCajiwzcb3gD0dil7157gmbf6ErTmOJVD/ek0qCW3LiUQf+0OrXs1w+JqLl1D0471mLZpElmpubR6vAm5GfnsWH6U2o1DqNUwBCEEDdrW4cKBK8hGA0UFxRhMBpbP2Eb8gesUV/HCxcXEluhrqEIgmWSKa3lRqZIfQggO7rmCw64w4+W+7D57A2dmMWt+2EtQLR/277+KcKhgkLC6Wvjgrf5ENg5DUVSqVfMj7loKkibYsukcAUHeZCRl07Rdbdw9XZEkia+XvkxCUhZHT9+kTUQNLObyX6Pz5+xh87rTCINMl671eG6M3odw5sxd5LuYsUky7duE4++np5VeH98TgAVfbUO9lYUQsHLOXqbMHVnuvlcPr0yR4sC72IzbknxkBb46uJoGzUL5euEL5dawefHh0pcNfx83XvtkEKqicmL/NSoFexFWuzJe7m4YDDKyJOHudj8JATi84wJXz94mo4qZtZeu0zAziTsZeQgBS3aeYvd3rzAotCkiD97Yth6HUyUrrwhNCAwl5CwuM5sjsfEo5zJxOhQUp8r21Sfo+0xr/LzdsJhNGGQZP283xrzfr5TU/bT9LVRVw1BShOBUVXIKixne6Z6j/vyoE2w8dZkBLRrgO7op4VZXtuy6BA4V73MZyHaNOzkPb4Zdgf94tEOX61yUJOlcybb3gWoAQog5wDZ0S4Eb6LYCo/5kvqEl/321zDbBI6bnHqVK7gK60OqP2yc/YDhCiM5l/v8z4LOHTP3nCtAK/P8KMWdusXzaRga/1I3LR69xesdZ4s7fRJJlhACTqiCKbYgSywBJljAYDfgEPriEfsUXGx643Wl3Env+Fk26NLivg7niUJj/7lL6v3rPAPGLNRM5GXWJGg1DOLfvEpcO69GP2AvxnN0bTUS38uXSfxdTR/yEo9hB4vVk2vaNoEajavQe3YXIx5owd/Iazh6+XuoefuvCbRIuxlE1PIj+L/X4l87Xvk8zcjLySb6dwVOv3ZME7lh+lNmT1xJaJ4hpK1/D9SE/gHfRtFM9Dm08haZpePq6E1DFlydf7UHXIa1Y8MUm9q89UXo+0MXmKYk5ZKTnk5GRz4rvdvLK57p/ksPmZMIT03DYnJgtJpZe+BIXq5lbl+J5td1kNFUgm42ENArji1Wvl9oC1C2jS/IN9ConTpck3URUMhjQNDi44RSxV5I5su0cLjKY3S207lgf9/qezD98CkkRmPIFOQEwf8E+Vs8/CEj0HxrJqxN7cvrgNdSMfPKFRla+QzcyVAWdHmtMZOMw8nKLsBU7mTN7JF99uokDey+DBI+N7kSffs1IT81l6ew9tO1Wn8CqvuzfeYmASp5UDb6/qfOVS0nYbE6MJgO161WhajW9ms5Q5nl9UEq4SZuabFx8CCSJyM51yUjJwWlXCAq9V05vNZqZGzGId6UFKOjO3Nej72Ufoq7eYMnJczRqVQnzbv3rvU0PvQjh+39u4MC2CwgB0xa9wMsjOlE5wBNXFzN9HmtcOkdhsYOlG45jyyhk9497cDoUHFYD9u7BXExKwd1gxGIy0rFJTWRJorlfNfCDEX0jiTp+jRH9WmEoIdxFDidD5izDoaq42ySCLCY0TdBvuB7NMkgSPSr7k5xbyKR3B9x3Xe62MZFliSHtGpfbl5yVx/xf9+AwSXyXlo0EmE1GPAQUFzqRnbrh6d2I7/9GGv6/E9J/UpXcIeBPF1NSLPbqn40pM7b6X496OCpMKSrwb8GHA74mJyOPI1vPoNkdCE1DFNuQXFxA03TBMHprkVdmjsJhd2JxtfDYiE4PnM/D353s5Ps1MLJBJiDEj5vn4xj7zfPMnrAQVdFK5nahZpPQcuNd3V3oOKAFhXlFXDp0FaubGbtdQZIkvAM875v/78I30IvMEsNIT797QtQbFxM4vTcaW5EDVy8rQVV9uHVWJ5BuntaHTfdo5/Rzw9vHileZ8/06fRsOu0LCjVTOHrpG256N/2QG6P5MOwQQc+42QTUrkZ9TiIe3G76VPHnxw/4cWXMUxamy8qtNbJm3mynLXiO4ekBJuxgILuNUvfCfa/SmwiVNYSf1/4bHhrZm289RpfdGtTtJuplG1Orj5Yjen6HDoJZcPxcHkkTV8CBiopNACAyygVee60Sv53XH6Uj3Skz9aD2SwUS1UH+ijl1BaIAQnL50G4AlM3dSXGjH4VDwDvEjP9+G0WTgxVe6svfIFaa9sRIEWBsEUKluAN17NcbT3ZVBQ1tx6EwsP0xYgdOhsObXQzTrUo/jh2MwGA1YXEx0LqmKvIuxr3bj84/X4+vnTtuudUjLL6CShztffTecTetP0yKyBlVD7o8GRnSow+ytb2K3OcnPKmBMx89BCF79fAiPPXXPVqZB/RCGju7A+qX6PWrUuCovdJ9Gv1EdeP/2SZyqxhmDgXVbJuBhNpOeXkBBvo1rFxKxFTuxuJiIi0mlTuMQnh4Yed86fli0l+37ozEUOHDTdGG/SZPwvZKPXNeHFZ+MpKDIRliQL5oQ/HLsFIk5ebz2WGvGDCqf1iu0O7ArCk5VI88ss3X3JEzIpY7pa+ft5cCakyiS4GN/eOHFx4isWvUvn42EjBzWfLsL7yO613FOh0Ac/hYQAhGbibVQRUgyoCG5mCrIUgUAkCTJCrwJVBNCjJUkqTZQRwix5VGOryBMFfi3QNU0QEIIkM1m1OJikMAkCxwlXjruPm4E1wzk8tFrtBvYmsgnmiJJEqd2ncfV3YUGbesAusYmJDyY3LQ8jCYDkxa+Sm5aHhf2R1O3VW3W/7CNrDvZaJrAM8CD7sM70rZfC4oL7OV8mMpi7cytHFx7HFXV8A/xx+Lvw/blx3i5Qcj/qBnnjKiPOLThBA3ahONfRtgdWM0PoQksrmbqNq3GRwvGsWluFAaTgdgrSUirjtLtIZqRP8PG2b+zYMpqAFJvZ/DkBD2a1rxDHQ7vuIAsS9Rs8Nc/OJIkUbtZGLPeWQ4CDm44zbc73gUg+VYamqLiKNbvW05GHgv+uYbHnu1Ax37NiOhcn4799QCxqqis+347mE3IJhPIBmIvJTL74mq0gkJdSF7iAG4wGqjbPOyRP2uTjvUQZguqqvHZi7/g5+tKh77NyHaTmJkbQ9xBM690aEX71uF8OX0YaWm5dOxcjx9W72f7hVSQJfo/qxONlp3rEXctBQG8/+kgVCRq1qmMh6cr3y6O0qNZAnJuZJJkUYjs15rRvVoxc+k+1v9+HheHoptSOlUKC+yl7uC52YVkZuTj6mrGWhLVc3O3UCM8EM8AK0Nf+wmhQIdnm7HlRgwuBiM3EpxUSvXD4pSY8uUmXF3MfPrBAHx93AguiSYt/HJzaUpt/5az5QiTJEk890o3nnulG6mJWbz42HScDoW5n2zE8nxVFDRkWSKwsjfvvLSYpIQsrFYLb77dix+mbCAoxJcOj9+LrGblFuHp7lLasiQpPxtFVVGtBlr3agSZxVw6cxtuFuBbKBPg7UaAt6473Bp9jR8OHcOpqMTn5LBw2GBS8gswyTJ+blYCPNz4R4/2rD0TzXOtm+HtXv5lwcVqRpIk7nT34YZXLofWr2PRwEFEVq3K+mVHWTgrirqNqvL5rOdK7UTm7DzG/KgT+OxMwqgKkCXGNGmEaOiHn7sr289sI7UwC8XHHZCY8F6fR37mKvBfj4XoFkl3DeuSgNVABWGqwP8baJpG+0GR7Fi4D6FqCKHR4cnWPP/xU2QmZ/Nhny8QmoZPoBcxZ25x/dRNfl9ygMFv9MHq4cqKL9cjhOCdX8fTYXBrdi3ax5XjMQghqNmsOl2G6oZzA8Y/wauR75KReE+fl5eez9HNp3h5xsg/XaOXvydIEkITpKfmIReoZKWdILJ7QyK7NXjocUIIFn+2notHrzP64yep36q8NYBfkDf9X74/YlKjQVWmrX+T+OvJtO/bDFc3F4b+ow+vd/+cGxfjMZlN+Af70qR9nUe+zk6Hwspvt5WU90PSjZTSff/49hn6jepApSq++AQ8WmPurNRcZFnv/ZYYm8ozjd8lvGko784dQ0T3RpzefQlbsQNkmehTt7h2IREhBCazkead65F8K52ajavh5uNOUb5Nbz9xVywqSUhGI5LRqCvhJfh+xztY3S283vmfFOUW0bZPc54Y1ZmgGuXF9w67k5vRiRzfdUFvKyLpLS4yknNQHE7WVymGHIkf9x9lYOP6BHl50LjpPcuR/KN3MBWpSLLELzOiyE4rZMRr3WnVpR4ePm4E/sEw0yPUi6JzmciKwBGkE4dqgfqYmPh0bKoKYR6EyRbGvNwd30AvJr0UB0Jj1cKDzJuxE5PJwHeLXiC0RiU+++d6bt5I00XtRQ5QBFvOXMFulbA7VX6/HsuVpHTaKn7E3kpHliXWbjrNiyM6lq6py6AWrF0chXAIrreKx6GqmA33FwycjE5ALanG9PRy5ZsxT/P7tRt0rl0dq8lE7HW92EJTBZWr+bFkzzvljp86Zyfb9kejGATejXxY9urTxDWKR811YHSR6DSyKcFZXrz99GwAbPYHFGHYBS6pKgXmIrZcvso7W3chSbDgqUFEVqvKiLYRdAwMobDAdl9qbMCojkiSxDf5l8nDhhFIyM0lsmpVfp29B7td4Vp0EtHnEmjasjrJiVls+n4vFlnFVsULqy0LYTbQoVdT6tYJ5tj1eM43d8PS0pNfxz9FzeCHu4NX4E/wHyL6/l9ATSHEUEmShgEIIYqkvxF+rCBMFfhbyMnI59qZWzRsXas0tbRx7m72rj2FZDSiKXaE3UFWcg5hDUIIaxDC2vQFrPp6I8unri+tnFKdKgfXHCOsYQi2Qt3LdMbYOVQND8LsakaWJQwGGd9ALzRNKxVnC027b013K+XuQgjB2tlRxF9P4dlJvVEUjdWLjiBcLEiyAeHigiTr5Mm/8p/3lrp05DrrftqFvcjBZ8//xLJrDyvUgPjryWz/7TARnevRomsDwpuFUucPERWHQ0G76wD9gB+fB0FVVBRF5frZ2xQV6tVrkiQx/L3+pWNkWaZO09A/mUUnWIpTJbSe3p2oVpNQug1tw/Uzt0hOyCI7LY/zh65x4dA1PlryKkIIege+pK8X3dJAUzXSErMY3fJDHHYnzTrWo1H7upzYHa0To7vrcTVTs3EIBdmFpN7OoMuQVoTWCWL220u5fvoWmt1BwuVEts6LYtWduaVRPiEEk/rPID4mBavVUrrtbnsWo6sFg60QzSShCfBwuV+rZTQakCUJRdUoLrDx66pj9O/ZlFoNq5KdW8SR0zdpUq8KbiXzh8XaifPUMBaqdKxbjX5Pt6F1ff1aTnimM5Nnb8WnnpXnWtdn6dfb8a/iixmBzamRnpavCyyE4OSRG1SrHoCb1XLv86BfFr9iAylWDQ2QVDDKEjWrB3D81C0EAqOPmZjUDGoH+hOdG8Mxw376rD6Dt8lGgepCmi2fqm7l9X5ZOYXMmL8bJcwLs01l3m+vEFTZl7qVA0qJydDn2rJ+5QlatatdqqUqi50HL6NpenQtPT2f3ZdjqRsYTF7nG2hCUNM7kDMZ6WS39saUUExyPTdmLtvHxGc6A9Crfjizf9xDdpaT9JwsVnqcx6HqjurL1x1l7tE0wmpW4tjhGGRZ5unn2zG8TPNeg9HAoBc6UyulLu9H/U6Yjw996ugvEQ2bhXLxTBwGg4HQEh+l6e+vQUsoxCpDcR0fbM2r4O3ugtnFRGpGHt8s3Yuj2InDqLDz/HVeqSBMFSgPR0m1vwCQJKkmevu3R0IFYarAI8NWZOel9lOwFzvwruTJghOfIUkS6UnZepm6JJd6+STGptLH41kGvPYETbs04OT2c6Wl9neRejuN95dN4NKhq+RnFVCQXciiySv5eO0kivKL2blwD0c2nWJsk0n8eOILLK4WPljxBiPDXy+dQ5Ik6rSsSX52AR4+uqbn2M4LLJ62Gadd4dqZW7TtG6H3XzO74GIFD28r3Ye1o0XXBtT4i/SVh4+bbiRoMuDt/+eRm7cHzSQ3I59tiw/SsmcTjuy4QJuejflw7qjSt+oPF7zEkmmbqNW4GhFdHx7Zuov4q0m83nEKNoeGZDSA0YjRzUqzjuVTgH+FY9vO8vnzP4IkMX7mCIqKFX75bAOubhZ+2PkOs95ezqVjMQigau3Kpcf1GtmRfetP0a53M1RVUJBTSJdBLbl46Br2IgfnDlzl17NTmfvBSg5sv6hrlgwyJpOR1795lhr1gykusJc2JK7esCpGs4zDrhOhgtwiVKeCLJvISsnB1cOFGxfiEUI3wez9TGu2L9iLwWhg4pwXsFTz5feXFlIcbAEh42YuX22YmJjF6egEFIsByduK0dcVi4sJN6uZYpuTZ99chN2h4O/jxvLvRiNJEi3ahhN9+AYeuqfjAAAgAElEQVQCGNClMZH17xHP8NAAVnw5EoBnW00hMzWX2KvJ2MP9sOTLaE5Vtw+QJabvOcbcCxf5adIAjuy5SkiIH/G30lh08DRpJgVsEianxJMtGzK6U0uq+XpRq0Ygh5MS+OHsSX44e5IPBrdhVf5vOHIELtSnT82zFGf68vH4ueRmF/HhrOdo2kaPcppKiKGwGDF4WwkoEdO/P3kNR07eJLJ5GNM+G8KYV7o98JmY/etuCl00TAUgjCC5yNQJ9Kfoah2qmYPp1aI+NT0qY68sUVTXHVsNF8y5glVR5xj+RAsCfNyRJQkXgwn0S0DP2rU4eyoVk8HAtbXXUZwqd5Ky0YRAaCoXzsQxfFQH1BJtlNFo4Nr5eK4eieGXPr0JLKPtmvLNMK5eSqRqqB/evu4kZ+eRabOBpJdrm+wqrlnF2ApyGDtyHrZKLiCBVQKlipFW4RVGx/8y/nsjTFOAHUCIJElL0avw/qyqrhwqCFMFHhk56fkU5hfjtCvYb2dgL3bgYrUw9I0nSLqZSlJMCrfP3gAgv9CJZldYOW0DK6eVVLxJEFDNj6zkbAxGI0azkYUfLce7khdFeUXIBgN2m53xbd5n4Ou9uHUxXm+fEJdGzJlbNGxXlyq1ghjyj76smbEFIQQCwamd55j95iLeXqi3znDYlVLjyITrKQSH+iMZZIxGmZ7D23Lz8h2sHq40eEDX8z8irH5VPlk1getn4+g+TE97a5rGgo9WcfXEDV6YOoy6Jf3N7jYNFgKO7LyIEHBidzQZyTkElFRTVa0VyHs/v/jI13zHov0UFzvBYACDQe+dZjLw4qdDy43LuJPNtLE/I8sSb897Eb8/2Cuc3n2xVBNzcud5LhyPxZGehZJn5tSeaD5aOJYz+69QrXZlgsP0t/n9G04RteoEIHBxs/Dy5/o5HTYnG3/ew7WzcTzzj154+Xnw9pwXGJdVQEZyNoX5dvyDvEv1OHfJEkDP5zqSnZrL4k/WoNoVJJORF5u/R3CtQC4cvIpfkA+PP9ueXcuO0KJLfV75+lmeeqM37t5WrB6uOBWVwP71iYlNofdjTcqld/Jyi5j80iKKk3KQAP9a/ox4uRvNGoZgNhlJzMyhqNiBw6mSmJKLw6liMRsZOLoT9ZuH4WK1EBp+jyz+EYFVfcjKyEcIgdNkoFn7UK4cvonV3UJebVecTgf5RXbOxCUzYrRezHDidiLZaZcQxboGSlYFw5s0JtRPvz/tWtVi1bKr2JwKEnA+KQFbioXstV4YiwTqa83wT6lGatIBVEVjyXe7SgmTh7sLX70/kBPnb9O9Uz2MRgO349I5ciIWJIkTZ+JITcujcmD5KOraPefZvvci5xOSKK5sxuaj0aNJOO8P6MpnC3/n+JV4ZBmuFUfTsl5Vhof24/2OHflx7UGkLBVjppPJH69j+NDWpKbk8sGLPVi96xyN6gQzrHNzhnZsiixJvHD0J9LT8pAkiYBAT4qLHIwc14WY+HTGfbYSp6IyZWQPfhi3CMWpsmHBAZaemFLGxd5Aw2b3yOuoH1aTVlnBI9MFYZaRFQUtOQdJknF4y6gIJCEhC5g1vA8RNf9ay1eB/1sQQuySJOk00Bq9+m6CECLjLw4rRQVhqsAjI7CaH48Na8f+DScZMLYbLiUpDS8/D/65bDwAT9V8ndysErHvH19TBKTH681DXd1N2AptnPn9YuluVdU4vfMCANNHzqL9wFYc3XwKTz8PbIU29q8+SvuBkYyd/jwbZu3QU1p6YBVDGX2H2SQhHA6QZEyuZrYuO4IADAYD2xcfxOFQibkQT7MOdajVqKxB7D04HXojXYPRQJOO9WjSsV7pvu0L97Fu1g5Uh8oXz//Ir1f0NN2ny15lzU9RtOrRiI2/HiTpVjr+lb3xeUg13tqf93F4+3meHt+DyC71HzjG088DNE0nTAKQdOGx2VL+T3fpV5uJPhoDksSKb7by0pfDkGWp9MenzwvdOLjhFKpTZcjEXhzu+gkAmsOBl7cVs8VE68fKV9alJ2WXpgNP773Mqh92MnBcN8wuJmZsK6+FAfDydcfL1/2+7WUhSRL9xnZnx6L9pMZnIBtkUm6nk3I7HSSJ3Mx8uvRrxutf3fPmqhRyL5VkMhr4bcpz2BwKrmW8rFKTc3jp6Z+wZRQgCb0quk5oJXqUuW9VAr14olN99hyN4alezfh+6hauRSfxyqQnaN7qr8nzPxeMZd73O9h88jomNzO1awQy5PGmfDp+ESQIDBEBSF5GWobfe6YaBFUi0NuD1NQsZKeghXcgNULLp4nGdW7J2fgkLEYjT4RHsPpsHEorgcdthRsn/XhqYD3gAEgSyfGZFBbYcHN3IWrDab57bw0Wq4m+nfTnx2nTe+hpMkgaeHu6smbuHgryihnyUjeyioqZsWIfzgIH7rcK0IQVeyULgyMbEuDhRkZ6Hm7nMpE0wfVwO6neV9l/KJ5zF0A2SDT08iLhThrXryfzz4/XYTDIBAV7s3Dh2NLPszv5OjsTr/DUx13Qbtg4VpTGnrQERka2ol7Dqvyw/ACFJQUF63adRWigKhrZDjubz16hXXgYfu73V5LmFdtQDBK2Ou742o0YjibqEU1JI7e2AdVNwi1FYE0s4PNnf2bi1CF07d/8L+9rBR6A/9IIkyRJu4UQ3dANtf+47S9RQZgq8MiQJInxXw9n/NfDHzrGx9tCTnI2qCoo9+uN7qIgu/D+jWX+SDVNMGmRXh0XdymBKQOnIxCsmFaVzDvZWFxNyAZdDNx1eAcUh8InT33Dq9+NZtqI2YhiO7JBpsfozmxbfRIAJb8Qze4AAarZiNXD9f41ACeiLvHpqDmYLSZmbHmL0LrBpCZksuzb7YTVDWbxlFWoqgCDjNXr3hd7vRY1+GiB/sPReVBL4q8nE1I78IHu3omxaSz+ehsOu5PPXlrIxqtfPbD0udeYLmyZv4eMO1lIJv1cJhdTaZUWQE56Hk6bQy/5l8BuczIgbAIePm58t/1tAqr4ElqvCitivy89pkqNQOKv3QFxtxHK/eg1ogNXT9/i+tk4kuPSWfjpelZ+vZnJS8dTu2ko1pLS8LK4cS6OHycuIrhWZVJT8kmMTeHN70cQ2eMeGXPzsrLw4nRizsbxVs+pmExGPHzdyEzJxbeyN7WahpWO3Twviq0L9qEh8fQ/etN1SGskSSpHlgCuXExEUzU0swGTJohoH847nwwq3Z9XYGPhyiME+LizZf5LnD4Wy9RZ+7AVO/nmk40s3frGA69BWbh7ufLmRwMZnJjJ+BcXsmXtKTbdzkQ4nBgAz+s5fDRvNDWC7xE8ySmYWK0Jldp6E9Gs+gPvcf3gQA68Ow6ANecvYTQYMGTa8D2TxzXXGFLbhePh7UZOZgHFhQ7OHLpO0651+PaHTWiKilYkOL7nCoNGB1CzThDD+0dwaP81Ro3tQtSaEyz5dgeaqpGVlsfzH/RFdmi4x+ZhzrFT+YSTkR/2oX0d3Z6mudGDHcIACIxHVbQWGolZqThVf1AlVKuEyWxAqAI0FadTJSvz3t9yUmEOk45vxK4pbFEv0z49nJMFKThUlW/2HuLZlk1o37wGq3/XU/T9ekVQVL0q+7af5UgdA5+s242Hq4Xd7714n8/azNH9mLPzGJ0aVOfktwe56dRfJIwyKD4mbP4S1sR8XJKLcAK/rztVQZgqAIAkSS6AFb13nQ/3vJ080Rv1PhIqCFMFHhlZKdkU5BRRre7Dn69B43vx9eif7ttuMMn4BHiTnZ6L6lTv7ZCgSeeGBNWoxI5f9tzbLuCDXlP5YvsHHNt8GqdTQVM0bpy5BYDJYuSpt/rj6efBnDd/1UWust5g1Orhgr3IjtFs4MIpfbwkS1jMBoptYDAZGDi6I8FhDxaEbpi7G8WhojhVDmw8zXN1g/n8hfncuJSAjIazhOzJZiMTfxz9wDnMFuNDo1cAe9Yc0+0WJKnUQfpBSL6ZhmSQ8Qv2pdPQthzbc4X2vZtRpYbessTpUHipxbsU5dswuZqZMGsMq376HcWpUpBTyKGt5xg4tut981atFUj8Fd3wcPfyo1w5c5seT7chtEyDYjcPVz5aOI6f3lvBpoUHEAIK7RrvPz0LVzczz73dlz4jOpT089Mb+n7x/CwSrydz/cwthMWCJiQ+HTGX1Te+xcV6z+lblmXqRNTgu30flzqB24sduHlZSwXTNy/FM+/9FaWpxBmvLaL1402xetxP1CJa18S/kid3ErJ46e3e9BnSstz+mfN3s+fwNWSDjKe7CxF1quq2Dy4mqvzNXmOuZhP2fBvCriAjSr95a9YOolOj8pGqKe+u4srFRH0NP4+iZu3yKb+s9Hz2bz1P3aYh/Lb1DPtP3UCOtOB9phBTkUZeUQEzPlpPRItQLhyLRZIlwhtWZUfCNVKbGPBLAmEQRHS4V22pVffA5AjEs7o3mbfT9dS1EDjtCnEXkvA+lYHi0KOzJrMBL8s94XxSRgGai/6zYDKaqGVNQ45IZ1ucH6osES3nEtkphOGtmxJzNZnTp28xavQ9LzVZkhCI0vYaZ68n4RpqwSjLeLu6YDEaaRpehcnDuiIbJbq2rQtt69JqUDN6f70Ih1PFrqg4VRWLXP7nKbJ2CJG1Qziw8yIrrtwpfcFSnCqVThZR2M2fEc92YU9MFA67Qv/n2/+t+1qBEgj+Y4wr/40YB0wEgtFtBe5+wDxg1qNOUkGYKvBIiDlzkzc6TkYIwZBJfclOzcPT35PnJz+JqUxriJ4ju9xHmDz9PRg3/XmadWvEsqnrOLj2KLnp+fpOAW36RjB4Yh+eeX8Qz9d6rfSL8PKRa+xbeYR2AyP5ceKCcnM6HQpNuzZk5rh5pWJyWZbx8PXgm90fsXvZYRp3rMvVS0ksnbkT2SDzyuQn+e2LjQTXqMSwN3s99LN2HdKKS8dvIMsSDdvWJj4mBUVREKqqNwEGJJMRSZb5fMw8CgsdvDVrJK3/wiyyLNbP2QN2B0YXM+M+6P/QcTNeW0B6iY3Cxh930rh7E25eSiA3swBvfw8KcwrJzypAcaooDoXwiOoYZRkJgSTLNGkX/sB5+7/yGCd3XUAyyJw8cBUlKpodvx1idcyM+8jbiPf6s2lOFDidCEC1ulKoavzyyXrysgp47q0+bJ2/hzlvL0WxOTCaDMiyhIKeEtQ0wdXTN2naoe5966jeMITqDXViWbZ1CoDFpcy/JTC7mDFZHvyV5eHpyi/rXi9XUflnCKtZiW9+HkXczXTad6n3l+PLYv1vR8Cma45wc6F2owBCa1TijS+HYLMrCATWkrUnJ2Zjtyu4uJpIS8m7jzC98/w8UhKykA0S+cEeGIwyvsedDH28FZsWHUYTAtko031IJM+N70FAkDfefu7Uy3JQ0MKKrZ4rj9eqS2ht3Zrhwq1kFu48ic2hMGnuFrZ9OoastHwKcosY+XZv5n+1HcWpAhKevlYi2ofTuW/T0vXUrFOZ6Kt3ABjweCdcrIGcuCwT5GElRRRhU1US5WI6tAunQ7twRo8pbzwbZPXih9aD+XDHdopjVVrWDuGTkT05m5hM67AQZEli2a+HWL74sP4s2VV6PN6YYB9PRnWMYPOZK4zoGIHF9OD7vHThQVYtPozmakEqsiMJDYTAHFeA+zUfMmo5+OH3Sfi5W7G4/Gvthyrw3wchxHfAd5IkjRdC/PCvzlNBmCrwSLiw/zKqoqA4VDbNjqKowIbRaMA/2If+r/QsN9bN20phThEAwbUCAQk3Lysf9fuS2HNx98295J+rGTyxD0HVAzFZjDhtOilRFY09yw5hMBowmoylompJlpAkeP+Jz2nRsylpCbpmb9CEXjw3eQgWVwvPfjAQgMYd6tGhd1PcPFzx9HGjx9Nt7zv/H9H9qdY061iX4kI7kwZ9T3GRHU8PCxI6URJWF4SiommC9NsZYDGzaOrGv0WYGrcL58LhaxjNBgKCvXnjsS/wDvBg0uwx5UTSVWsHcftyUun1OH/kOpIks/y7nbz86ZN4V/Ji0IRe7Px1P71f6MrGeXu4ceE2EtBjSORDqwBP7jyPYnfiHeBJTpHufF5cYH9gCwk3T1fcPSzkZ5XYIGgaGA2laR6Ak7vOlxpdNulQjyFv9GbjwgOc3XcFdy8rNRs+PNr2MFSpVZkpKydwYN1JPP09eezZ9pjMRlJScoi+fIfIljXw+EO0qSxZyi4s5lZGFo2qVmbiC93w8nDF08OF/o81IfpiAlMnr8fP34NWHcKJT0zjH99vpDjPzrTX+9GifvkKq5Pn4sjOKSS0kjebS1K8AF7+Hny78lUMBpmd+6L5Ys5OhEli+lsDiWwcxlsf9WfWjB2E1w0isk15Dy+A7PR8FKeKxWAipLI3SVkFBPh6MOr1HlQLC2DbBr3/YLsu9coZrDb0rczW3qNIzMuhfZV73R48XC0Ih4bRCZ5WC2aLkTHv9S3d//iQlhzcfgEBvDPzGZq3qV1uPS+O7YKvrzsWixE1xMLUVTEAvPlEc/ZE3yQuI5v3+3YuHR+bk8XehJt0DalBDW89Ute1SjgHR9UiI6+IAE83ZFmifU0zZxLv0CioMjdvpGKzOzHIEnE300vner1nO17v2e6hz8OxIzH8tkAXv2M1AxoU6lVzRdXcuOMniDt6iV3nYjg89ZWHzlOBv4b0X6phEkL8IElSQ6A+4FJm++JHOb6CMFXgkdDhydasmbGZ3Ix8ajSqxuVjMXo3cvP9j9Cw9wby6+SVCKG7UatOlemjf8Rpu993yGg2Elq/KvnZBVzYfxl3Lzeybbml+89EXeDSoSu8OW8cRzedou2ASC4cuMyOBXtw2hWK8oqZf3EGnn4euJe4D/8RQdX+vheLX2VvTu+/it3mxGFzkmN3YDQbkSSJTk+1Yt/KowhNoAJmq5lmnR4cpbibDvlj1GPyonHEnI8nuHoAX77wM1dOxmIyG9mx+ACDX7tHQN/9ZRxvpeVx9VQsmMx6Xz6zgcpl0khjPnuaMZ89DcCvUzfohJISwfhDsG3+HjRVoyCnEIOrFQ1w9bKWW6cQAlXRMJoMfLjkNWa8Mp/qDaoyfuZI5kxeg6pojHhH/zEe9nZ/Lh+NwexiYvwPo6lSM5Bm3RqSFJuGf5A3rg/QO+3fdIZZ762kWnhlPl/6SmkRQVlEdGtERLdGFNmd3E7LIjO7gBdeXICmCfz93Fm8eNwDP192YTFPzFxIUbEDj1yV75/sxYQxemoyJi2D199bipylkJVVwNL1x5lz4zxOg4bZKJi39kgpYYpPzmLs5OXk5ttwUUEuUDE6VWSDhNVqYdaSsRgMMlt3XmD6zO26HYJZYvO+S0Q2DqNx81Dm/fbgNQK8N/MZFs/cRUSHcBp1qM3b764i604u077ayuSPBtCrTGrxbiWd2Whg58pjbNt8nqsxadSuF8S380ZhthjJzy3GnCcQApoGBN53vgYRYbz+87N8NGc7ExduZ1aAGzsPXeFybAoTn+tMk/AqDHtGd6D/eFMU9pKI6tWUDBa+8CR21UGaPQdNaNhVlf4blmBXFb47fZiTz76Ki1H/PpCQsJqMyLKEJgQDFy0jvaAQV5OJZaMHkpiQhcViYvDQVvet8UGw2518/tlGFEUDCTSjTE6EH4qvwJriRFWU0sh0XpEdu1N5aJSqAv93IUnSx0BndMK0DXgCOARUEKYK/PtQKcSf5QlzEUJQlFfMiq824uXvweOjutw3duhbA2jUvh5zJy3m8lG92W1AVT8iejRh7be6A72bl5XWfSLwD/EjNS6NIZVf0NM4JVGkP6Ko0MbxbWe4fSWJN+ePY//KIxTlFxN99Bpx0Qm07dfygcfdhRCCFV9v4cqJG4ycPJgajf7ao6VBy+oEhvgSfz2Fp15/DKubBau7Cz2Ht6VpuzrMeHUBBgn6PteO0VMG33d84o0U3uw1HVuRnY+XvEJEmUo4g9FA3Qg9MhBcI4DoY3oKJ7AMuSsqsPH+U99z82oKktmCkCREYRH2PI1bZ289cM3D/tEbF6sFSZYYMO7hhR/dnmnPtl/24O7thmuVSqQmZTN0wr3mt0UFNsZ1+pT0+AyGTHyCMR8MYHH0N6X7P5x/zxpBcSpUbxTCqgQ9FZuVmkt2Wi4+lbwIKZOCUpwqX01Ywo2Libz62WC+f3s5RQV2rp6J43hUNJ36lRfo3opN4503lgGQE24hF4Uanl6oqobdrnAnOQdNE/eJgwFupmdhdygoCHLc4MvXFrP64hcALD5xlgJPcM8FVQiK3HUjUWRQrRIR9UO4HJ9K7Sr+LN98itwCPYphR2CSBZKrkcqVvZkxewR+/h4IIfh29u+Iu9Mogt6dHtyi54+IaB9ORHs9bfr80G9RFQ1VEpw7F1s65vypW0z9aSuXQhRMRgNvNWrO6n9uosjdCpLE7Zvp7DlwhV+OnMVRkhJUFI1bCZnlznWn+A6FSiGbD1/GqWk4HRrLtp/i2Lnb2OxOPv5pGxtm3ruvY9q34PTtJISAFzu2pEixMebkNHIc+XgZLQwO6oNdVXBqGm7XCpn6+hL6P92GBq1qMuKfS7mdkk3/jg2ZOLwzCTm5aELgUFWSKWbOonvnOXnkOqtXHKFvr2Z0eLzJA6+T3a7gUFRUiwHFXabYz4jwM1A7PADL8Ruc7O6OJU+AJhFZo0oFWfqf4r80wgQ8CTQBzgohRkmSFAj89qgHVzxVFfhbkCQ9vTbm82F/Oq5+mzrcidXbMpgsRp55fxBdnm5PZK9m3Dh7C78gX74dOwd7SRoHQP3DHL7BPjTp3IBOQ9owb9ISHDYnqbfTSLqewqjPhzHvrcU47QqLPlrxl4Tp/IErrPhmC/YiBwnXk1l4/qu//KwuVgtzot5FVdRSYfNd3IpOQHWqCCGIv3qnXBprxQ87ObDxDMHVfCnIKUQIWDNrVznCVBYvffE0dSKq4+XnQWSZ0v5Te6KJu5qM8y6J1DQoqY7b9dshJnw/8r51mS0mhk584oHnUZwqmxfsQ1FUxk4bzrB3+uPh547JbCyNJN1F1MpjpF1LAAFrvt7EmA8GPHDOGxfieavvdBRFZcpvr6I4FD5/7ieQYPLS12jR/V7PslN7r3Byz2VsRQ5mvr2Swqx8MJnQFMGhdcdY9dVGRk4eRMvH9B/NFUsOk52WB5KEXbJhC7NwOT2DEd0bcOLkTYYPb/tAsgTQqGplGgQGcDYhGd9LeeV8qdpWr8amhlfQAhVe6tGGPm0bsvzkBZySoJVrAKuizrJo3ymqyS5kX8iASjoB9TGZUJJ17V3fQS3wK2Nk6upm1r2/gNde7kbrJmEPXNefQah5oJlAhi6dU7kYn4IQgukfrycmyImKGVVROHAnSdft2Z1gMeG0K2w8f43YO5kYZJmgyh4YbYK6EcEMmv4ramg6pipp+FiykSWZWo06Yoo2YJAlOkXU4ujZOMwmA4G+5e0v/KxWvh70BLUq+2M0yFzJu02BswhFqGQ5C8iyv8OEiM/YuiMaNSqZE4VXORl1hXcXjSY5Mw9NE2w+GM17I3vwcttI5h09iSYE41ZvZMVzQ2kYFEheQTHjZ21Ck+HwvO1saBJKQJD3fdfG09OV18b3YPOms/QfEEHjtmFEJ6fRvmYYkzZ9jzBJ2AIkDBpMGd6Dq1fvEBrqj+sfdHEV+D+PYiGEJkmSIkmSJ5AGPLJeoIIwVeCRkXgjhcNbztKiWwNqPkKEZuz05/hxwgJqNa1O2/46oWnerTHNuzXmo/5fliNLD0JuWi4HVx9l77JD1G1Vi8xkC5IEdVvVJi8rH+Hjh9FgwLfGX1eFurq76G7EBvmhdgIPwx9JCcDjz3dkz8pj2IsdDH2zd+n2O7fSWf7tDhx2hdtX7+il/gI6Doh46PxGk5Eew+7XbtRsGKJX0gmBJDR6j+jE0U0nyc8qoEHr2g9c159h3ewoln6zFSEE+VmFjP5oYOm+bb/s4ecPVmAwG+kzpgv1WtVGj5cIzGXSrulJWaiKRuUSL6E9a45TXNLaZvP8vbi5W3CUtHw5uP5kOcIUFHqvIXG12pVxNygk3sxAluDo1rM4ix1MHTGb9clzALh9PRVZ1cutDJreHsU9Q6HJE1V4880Hk0KnqvLdrsOk5hXwzfC+5MZlcb1ePO173xM2P9GgDjX8fVE0jbqBAdy8mkyV3dkU25zEBtrRTDJmCVLteVjyFNyKFXoOaEbW7RzOiCwkCYpKNHqgv0TMmvYMX/+2mwM5SUy9eozmbWpQ0//vVd+990kL5s/aQFitDCo1G8Lon/Qmyw08zPik2SmurPfxG/V4ay7muLBu4UGEquLr50H9mpU5fzsZgDee60x4tQD6TF2IqglEskxITxseZgUPuRhjlZV8MWUwkQHP4GIxEeTryY2EDHq2vSfKzysopufH87GpCk3Cglg08WlqulchxBpATEEi9d2Tcf//2DvPwCrKdW1fM6um904oIYQuvXekCAgIqBRpimIHFLGXbQUFRUFEUBEQrDSRLr33UENNIb2SnlWmvN+PFUoMIG5xn/Ptk+sPZDHzzqxZQ9Y9T7kfg4O7grxIuWDmeIkdSRcIIPNUBv5e7uRoJXRv6YqeTezYjo2xZ7lYUoDJZOBsTi6ph9LZsukkskNH9zSieJoqTQO4gqrplAiddr3q0/3uBrhZzUT6uYTV+18/hm3mTxw2FGNSDUx4YjGOEgU/P3cWLnoc0w1sPar4P8thSZJ8ga9wdcuVAPtud+cqwVTFbaGpGpN6TqWs1M4PM9aw5PR0PH0qm8tdT89RXeg5qkul10sLSzm4LvbqzyaLCf8wXy5nFqA61fLZYa4i5yucP5zA5wem4uHrwQcPzyP+bDpGD3dUVScpMQ/FqZJ0OoXImHCsHpVrYeq2iOLlBY9z4dgl+j3S9d++DleIiA5l6Q3mynn4uCEbZCSHHd3hZPgbQ+g6tP1VgQEug849q4+Qm3YZq5uJLg+0q1DonZtRwMVTKTRpHwN2O7qmY7YY6T2iHePfvXouEGcAACAASURBVJ8D64+x5IOVvDNiFi9980Sl7rKbUVpsQ9d0hHCl3K7gtDuZM2mha3iuU2P57I08X78aI14awPGdZxg/1RVNPLzlFO+MngsSPD97DF0HtaZ936asWbAdIQR3D21HQIgPu389AhLcM7YLWZdyeWPwxxTkFfPEtBF8smoSyRezaNerEUIXnN53nh9n/c6p/ReQPYz4Bl+L2pjNhvI/jTQOD+P8MVcreVTMtdocp+JKU12J8K06GsfSfcdRNI0im4N5YwcR06SiuE/Iucyob3+hxOFEMeu0iYjAbDWhCYHTKLuMLwFhMWA0CdxMBgYPakXc8RROxV4CoOkfXOJrVAsgOdCJTQOTprE7IekvC6YGDfrx0exWgMZb3x/DevoSpmIdc/tIXmjdjsDqfsTUD8fHzUrbV6vTrFM9YvddpM8DrQivEchdUWF4ulloEVONglIbmhBXMyslub7UDnLQyvMMrdxSQByhWA3GaulD03rVaFqvYnPA8lUHKVMUhEHiaJJLiJllI3NaTGZT6hvk25OwGJuxcNIeLp5KRdJ0hCRhNMo0aFqDZY90Jq+ojGA/T3Rd59WxXyMdSKBGdSsBo+rR0OLLlOmLcDpUvE0yhdEmejetTXD4tcHI6386wBfv/Er12sG0G9OOb5a76gazc4u5r2MDkhNyWPndXrr1a0LbTo2J23gQXdEpyrMBkJdXQl5eMaGhlSNWVfzfRAhxpRvgS0mSNuDyYapy+q7izqKpOvYyB7qqo8k6jjLnnwqmm2H6g+mgqqgUZBcx4pXBmCwmdvy8l4uxCQgBmEyu1nSnk9pNazLvtZ9JjEtFaAJV1bC4mWnRtT7P3/0ul86m4Rvozdex0zBbK4uIdv2a067f3zeyE0JwdNc5vHzdibmr4pexj78nr335MG8O/Ahd1Vj09i8MnlgxGvLtv5axet5mnHYFgwxbf9rHjE2vAVCcX8oTd09FU3XCagbw3OcPs/i9FTTt0pDF09dSUlBGUUYeqeczyEjMYfsv++k9ujO3Q/+HO7Plp/3Yyhx06n/tOhiMBmSzCV12CRQhgclsZMwbFeuyDmw6cTV6tGdNLF0HtaZR2zosPfkRqqLhF+xK6czb/w7nDsUTWSeUWRO+5dLZNJAkpj/+FT8lziaqwbWIYPPujXhj5FyQJGSDxFOfjAZAUTUuhUBpkZlLrS3k+Np5aWgfWtepQUT5vLHZK3ezcOMhosIDWPzycNzMJuxFdpwOBSGBrciBpmouAXtdynRj3AVKHA50AZICsWkZ+NZxw6BYiQjyI/NUNrJNxUOFl98bggDOnkql490NiGoUTnxWHjXqVx6hMqZVM15ftxk3k4ludf7cOfxGGA3B7Nl0koOf7MLi6YEkIHFfKu3eeBBft2uF83t2nuPCuQwGPdKJwPLUYJcmta/+u6+HG6O6Nee7nbF4eJgZ2tSXHP081U0FGMpboBTHTvCoeG9mpeeTmZpPrUA/LMUqdh8jdbRrYl6SJHpHvge8B8Avl97G6VBBllBCPVED3YmsG4oEhPi7zis3q5DTR5IQQmBJdfBV//6UlEclkcDH250Niyobh343y+Unln4pj8QLmQhdoAvBtg0n2PvtPhw2Bc0ksf+gjcBafoT4eFJUbKdBhzDO7kuibdtoQkJuPVy7ihvz39oldz1CiCQASZKSgdsaPFglmKq4LcxWEy/Nf5SVczfTc0R7Am5QZ3Azsi7lkJmYTaNO9TAYDJitZsZNHcE3r3zvinjoAl3XCa4eSK8xXVn9xQaEAKO7FWF1QwhBdKto4g4msOH7va7Ik64jCoupVrsWT749iPsjnkQIV8FxTlo+EbUrdwjdKRbNWMevC3YihOD1Lx+mZdeKHXL1W0VhdTdjtznRNZ2X+k1j/IcPUb+F60v00IZYHEWlUO5VdCE26Wo7f3a6a5Cxw6Zw6VwmJ/ZdxDvUD9lqJva3WFfdlKZhMLq62cJqBd/2ef+2cCd5BTaEqjHv9Z8Y99YQmnWpj8FoYPhLA/nhk3UIXVAtOoTOQ1pX2r/PqE5sXXYQTdUY9HgPAE7sOcep/Rfp/kAbls3awIbFO8iOz0SSJQLD/ej8QDsoFytXjEWvJ+lMOpJBRqg6ui5o0tFlwJhxuZhMu43CxhYUE+SUlbHbkcmgyGZX9/1hWywCSM8r4lRiJq3qRiIn2/CNd6KaQErKZeDc1/D0cWfQuM7kZhexdd1JanWuidnDiENTMRgkAvc5QREIA6QF2Hj/xf4s/HwLwcFevDthKcIgIVuNfDVzI7bLJdjD3ZjdJpR17zyK6bqRPIObNKR3/TqYDYYKr/9Vlny5GUOhA83NDSFLODxlnnpnEQveGIvV3cKO3Wd596PVSCUqB/bFM3fBuBuuM+XeLjzRoy1Wk5HPL05CcTg5a69GqPEcsmTCar2PbHshwVYfypwK87bsY8XsrXhcKCM43Jf3J/UmMy2f+0ZVThefyszi7c3bCB0Wg/u6ZBKLS7GFeWA0Ghhx7yeYhMT0+WOJaRCBf5A3teqGkXgug5jGkXj5uuPt58GbHz7A0QOJ9B1U8SFGCMHZk6k0aFaDw7vOIRBEB/ni3r0R+QVlxP5yFEe59Yitlht2PwNpecW4FUoIXXBM5LJr88v/9vWv4v8ct+3SWSWYqrhtOg1sSaeBLSu8VnS5hKmPfU1ZsY0X5z5yVagc23aKmY/PI6RGEHH7ziFJEu0HtsJoMrJl6U7a9GtB38fuZsO321AdKlZ3C91HuJx5n5w5ls+enI/J24O81HwQ4O7jARJIsgxmI9hcT6jJp1PITS+g77jurFuwjRZ3NyKsVtA/eh3Oxl7CbnNiMMoknEmvJJg8vN354uBUHmk8GaEL4vacZUr/GQSFeBNeM4iUcodt15R7Gd1kJj0xh4ioYGrVD6djv2Yc2nyK+s2qs3PVIRw2hbysIkR5jQiajsVq4t0VL9Co/Y2NKW/E3t/jXOJFlkiMS+PdMV/Se2QH6javRX5eKd2GtMFWaueJqcORZZk8eylLEw5RxzuYPtUaENUokmUXZwKuSEPc6WReHDIToems/GoLtrwSFLsTFFcUKi0+C8liwuBuQVdUnpoxiu2/HuX7metp1b0hE2cMxz/EB4vFhF1z4BPohbk8+hgR6E3T2uHsTk1G95GQBByaf5gZO0qYPPV+JEmia5PabDt2EQ+LGVHoZObUNYRG+eOTL5BUgWosRVN1CovtLP58i0toGyQubI1n0ddjCIz0IznjMm/uX4YiNFDhyf7t6HR3Qzr1aMiILlNd10sH3alj05zIio41tZSs+sVsO5tAr4YVfYw8zH+/yLhdv6YkHktGzimkuKE/eU1NGHemsP77fXQb2oY3v9mEw9uA5CFTdiVScxO8rBYuXcyiekIPCsN/wiFXJyJkKZl2B4P2LEAVa5gQ04cDJwpZH3cOrZ0XIYpOTlIBzdtHE3CTCM2UdRu5kJuHm8nItM/vQ85W+X71YUwlCmnnC9CAuZ9uwhTiyejh7Zn5y9NcOJnK5mUHWLNoN/eO6Ujr9nVo3b5OpbWXzN3KskV70HWdAaM7sHr5YX5YsIsWHepwuI6NkmAZr1SJup2iyfOGElMRBgPIko5sNBDgfWN7kSr+Av99Tt+34rbjaVWCqYq/xeqvt3Ny73k0TefDx79m4scPUbtJTWaMm0t2WgGZKfnI6KgOlePbT1OQXYSm6uz99RBG8zUzyuDqgRjLW4H9wvx58rNx7PvtCDtTDrpe83WnUZtoxrzcn/3rYim5XELKuXT8QnwIqxnEhM/G8uynY246YuROMu6V/nzw1CK8/T3o9cC1SMzF45dY8/VW2vZtRts+TanZoBrxJ5JBCFS7k4yEbHLT8vEN8aG0oBSHTcEa4o/F3YJ/iCudJcsyk6YPY3zLVzn02yFURUMyGalZN4ySyyVciE0CVSWmff2/JJYAIqKCyUjJQwgdySBjL3MQu+MMG5fsxWF3ElYjiAWH3r26/bMHfubY5TRMsgF/izttgmpWuL7v/LgJHYEsoLCoFA+L0RVMMsl4eFkZ/tJAtq46iq6DbDazceluEuNz0VSdHauP0v+RzkQ3iqR6dDDnY5MoKyjhyLbTtOjWEIMsM2/C/SiqxqnUTF4YNQ9znsqOhBOMfa4XgSE+vPfwPSRlXCbAy52RAz7jsh9cLrVg6eLBpwP6kHUglaWzf8cpJDRVd/mGWYyusTU1Q/DwslJgtyFVtyCn2KlTPYh9a+JoHhlOTEwodRtXY9+2swAIWUKyu1J9+U28sPsZeGHFej5CcE/Dv/Y5/Bmjx3WjeoNwMi8Xs3FnLEk7k/FJc+Af7E1eQWm5d4FL+L7x5uAbrvHr8sN8v3A3DRpGcGT9CQySRJd7hzDhPVea9VD6HlRdQxEaK1IOci5Vu+rMrlllAkJ88A24+SDlMC8vkvMLEAJCPD1pWS+CPp0bsnfbGT44/gu6Ljh9KRtnSg4n4lLp/lQLUmcfIf5YMiaLEadDYcDDnStMCbjC0f3xOOwKeBpZfigOoWqgQ0JiNumhEmWdvSmxyTjPFaBkadSp6cvjD3chxOrOyYRMera8s59HFf//I0nSbG4sjCTgttMlVYKpir9FRO1gjCYjQleIj03kua5vM3PHvzCYTUgGGYxGTBY3LG5Oxs8YxZK3l5GVnIvT7rwqlmSDTNRdNQA4tfccrw6YDhJENa6O2c0MCDoPaY2u6yz7+DdKCsowmGSmr3+Zmg2qXS16/k+IJYA6jSP5dtfrFV4TQvDSvR9SWmhj60/7+OrwB8zY/AbLZm9g59rjSJpO9qVsEPDMp2MRuk61uuFkpeUT06QGbh7X6lPyMgrISs4tH2EBMoLB47sTXjuE90fPwWI18fKCv+5kPOXTkWz8aT8+/h6s+WoLuen53Df+bua/scxVZK9pnC3cxcmCjTTzv5dixYEmdMwYKFUrRzK8w3250CEIj4QSPHtF8fn4ocRui6N177sIjnQNoI2oV413Rn+B065w4VgyFh8PTO5mJEli6XsruJyRj0111aYIAbNe/pl6rWszecYIzBYjJqOBuyLDiPL2JbesCB9/D3z9PSnML2XCiC/JySxk/JQ+rjl34UaQJZyqxom8HJ5+tAvhtYPJSi9g5ff7aNykOt3vbUpMg3A8yh3C3/x1E2JvBgbZwEW7hhDwwbTVLFwwnk79mrDzUDyqtxlJE3jqbgRH+pAWYgdJ4FQ1LuXl/+XP4Xbo2q4u3647wIViG2p0AGPHNqVzf1c6clD3u9h55CIP39eW6JhQMlMv4+HlhpePq9ZI1wVfzNyIrgv2772AUZKw25yciU2+un7HwHosOLeVUsmBzenAElmIkuKFj9GTBVPHEVUn9JZdmLMG9GPl6Thq+fvRstq1mrT23epTvV44Scl5OCWXI3+pprLgwFFqZbtqax2KztfT17NpxWHmbXyx0tpjn+3J+y/8yGVvMJxxXV+PYC8mvd6fp3dvQtN1GiruJNvzEbKEwSbo0cDlot44KrzSelVUARz+N/+tAlWCqYq/RbchrfH28+CjR+dRkF6Ewd1M7NZTDH1xILOn/ICQJDSDzKfb3iKqUTXaD2hN4slkfp6+ij0rDyGEQNd0LhxNACA9PhsAR5kTR5mTOfveRZIkImPCcNicXM4qRNd0TBYjfsE+t90h9k+RGp9FekI2TTvXQ+jXHmCELnD3cmP0q4MY9cp9aKrG3jWx+If60KjdtSfgGjcYZBwcGUCrXnexb81RZIOM0WggIjqUiOhQ5u5777bOa+uKQ3z5xjKiG0fyr4WPY7aa8PCyMvjRrqQnZPNtWj72Mgc1G0TwxAdDObX3PP2f7sia9MloQiG57DjTW33JrLjdRHsGUdccWmlsykej+vGOmwWnUJk6rC9ebhbcPCzMeGweRqOBpz8bw5JZv6ObzEhCAk0nONSLPmO74SwpY8nUlagGM0armYbtYkhJyCYrq4jCLafZvf443cutGAwGmdnLniH+TAZRdUMxmgwc3nOBgvxSNAQLVu1l4r/6s2rbcXbKuVhMRu5pFMO0t1ayf/d5HHYFs8XIodgknn9nMObr5tEF24yUqIAs0HSB0WTAq9x2wu5QcIR7uNJyQvD5rIcpKHPw1CfLKDLrBHt7MrTljY0Wb4Sm6pw5dom42GS69W9KUOitC5L3nkzC7lQxyBIiyP3qtZ80siuTRnYF4Id52/j+y+0YjTKzfn6KyFpByLJERKQ/OdlFyLJErXqh5KQV8MRr9wKQnpTD5IEzsZY4eP3zkSwxHiXXfBnv2gXU0kOod5MxNkIIHE4Vi9mIp8XMqOZNb7hdYpJL7LvJJhp0qMVWPR1d6GgDq1NvdykX4lyz6pIvZt9wFE+j5jVYsukFHhk6m1xRigD8PS28N+or7ukYw6h37uedIV9gsjvA28qgAVURpTtK+eDk/yaEEIvuxDpVgqmKv02L7g15+evxfPbMApw2hcXvrMDqaXHVHEkSuqqTfDaNqEbVsLpbqN+mDuePJJT/sgSLBzz24QMAdLm/DfvWHiEtPouJsx+met1rT4wWNzOPvT+MFZ9v4O5h7a9GMf6nSLmQybM9pyJJ0LxrA6aunsLqeVto168ZoTVddVTnjibyyiDXQNtpv06mTpMat1xT13Xijyfz3BfjeH7uOPasPkJ0k5pERFfsyko+m46bl5WgiBu3rs//1wqKC8o4cySRY7vP0brHNefpDUt2kZeRjxDw08z1vP39M/QY2oa9Gw5Roptwq6MgYyTaK4j3Gw/g/vcW86PtFIPaNeKVYd2vruPjYcV80U7swQSe2ZVLrU6RnFm0m8IDSUgSfP6imUvnM9CcKiAhm4xkpBWwaOoqImPC0I1mJIMRTRMUFtho3LE+R3acRQgIq17xs7W6mWnY/Nq1i6gbAiaZ3Lu80fwNvLJtO6ufG80Lusr41b8ybvVKAg7k4yhzggROh4qu6ZSWOioIpg/HDeSpjSnkXconIMCTghI7ZxKzWHMwjl59m/DBip04ZB1PxUhwoDc13cwsfn0EuQWltG5Y44bGmbqu893MjVyMS2PcS/dSMyaURfO28/3X2zGUKUiyxIZlh1iw8YVb3guP9mvDc7NWYUKmde0bzwTctvYEilNFkoycOJhAZK0glm8/jr2OB90612bkoDYEh/pQXGTDvdxuY/fa45QWuewqVn+1k49/eJwJ23/GluVgTFgLFEXF9AenbCEEL3+wkn2HE2jdvBbTXx98w4ju8fh0ug9swp4Np2neshavvnIfiw7Fciw9kwmd20I/OxMHz0LoOtXrhFRY4+ieC6Qk5PD97N8pLbHTf0wHVicfxGAykH4yDaELDm89Q9K5TNf9V+xEFDpo1ap2pfOooop/girBVMUdoVn3RiyM+4QBAeNw2JxIsoRRgKLpyBI07lDxKbBRx/rsydmFEBoTVp3BFrOdUrUpHm5uvPXjpKvbqYpGakI24TWDMFuMDH6mN4Of6c3/BpLPZyBJYC9zcv7YJeq2iGLK/Irt5L99vY2yYpfn0ZoF23nuszG3XHPGE9+wZ/URDCYD8/a/S5+xXStts3z2Bha+vcwlwta8RIM2rnSEEIItP+wl5Xw6tRtGEHfYNT6lesw1sXWm6AK7QvYhmSRMBiOtejaipKCMdx6azbkjCeiaH8OXdOLuzvdilM2cSkrA7lRQVI0NR85WEEylZU4OHHRFBpNT8ojbmo9Bc+AtgcVsJKp+GKdOpCEZZCQJDLKMYnegyQbi4zIwWCxoqgZCUJBdyJxNL7Fz7XHCawRSv3lNSops7Fh3gqi6odRvdk0s/Xz0JO+s34qpry9Gu8DuUDEIQVJuPrszk0kqKECyaXgWlCI7dSyeFryDvek7sDl+/hULgr293Fmy/kU0TWfg0NkoukAgePvHTdh1FSXAiKKoWHw9cb+S+i12MmvctxiNBv618FH8q/nj634tpXpw21lWLdyN3eYkJ72AL9e/wPLv9yH08tmCmqDoOuNLIQQFJTa8PawYrpvlV3DxMoEnilEUjSUzN/PB3NEVzv3QjrNYTDKyLOHhZaVN13rkF5fxybebsSbaWCeS6dauLj8u3M26VUcJj/RnzuLHaNapLt/P2oSu63S7rwXeFivTGvbnibc+5wtWs6vFCd6dM6rCsQqKbBw4mogAjsQmkZiYQ1RUxQ7N3ScTeXHeGiQJHhzfhomDOwEwrt11jSJB8OW6yWSl5dO8w7WC792bTjHjpZ9RFRVddXXOntwXz8r9b2IwyDw3ZDYpF7OwlznJiM8EWWLIY93oeX8ratSpbPFQxd/kvyzCdKeoEkxV3FEeeK4fS6euwjfYh9CYcAIDPeg9ugsBYX4Vtntx4dPsuD8Jc+Ba5kkdKUnKxjN1Gt+0fgOz7LotdV3nucGfknwhi9BIf75YP+Uvu1v/VcqKbXz61DeUFJQyac44gm8xuLfV3Y1o0DqaxLhUnvzgwRtu0/aeJuxceRgk19//jCNbTuGwObHKFi4ev3TDCNLe3464PJyMMid3n70qmA7/fpJZE79Fdao0bBfDG988RkRUMCHVrq2xMPFnyu4qwXeOif6BvejXsQvjmr9CRmI2uuqqmdr8cgZDD7uEX9PaEfh5umN3FjGsS8UUjIe7GQ+riVKbEwRIQlDaKgyDr5WXhvem27D23PtYD1ITstE1HTcPC9Me/4bc7GJEueu6pOmoioJQDFisZnoOuTbi5q0nFnExLg1Jkvj0p6eoWS78fjl6EqXcgDMIK3ZFQSpSqObmRbOwMMwGA9YCDVmS0AAjEt+tnHB1XadD5eju80TWDiKiPBJoMMiMfqg9XyzYjtMNNG+ZvBLbtX7j64Ipy+ZtJT+nGNXdwP2LfkGVYWLP9ozr7Dp3Dy8rQggMBhnPckPSth1j2LvzHAaTgahagYyd1AsAVdV44pPlHE9Mp2aoP0tfHYG5PLpjsZpAkpBkCYubiezMQvwDPTEaDZSV2Hn3qcUoThWj2cBXv03E09sdm0PBXKAhaa5TXrP8MPu3nUXXBbnZRcSfy6RR0+os2vcm9jLn1XsjJSkHALvNyfnTqZXuOR8vN+pEhRB/IRNLSjEThs7lsed7M3B426vbXEzLRdV1VE3nzKWsq68XFpZhsymElqcgq0eHUD36mu2HpulsW3kEpcyOjuT6rpZAr+511WV++o9PsXfTST6aWD72Sxc0aR9TJZaq+I9SJZiquKOMen0wXR5sy7M9p5G97yIe3m5M+fqJStsZDAa6DphKRmF9Lp84hY6OqhRTqJQQZHE1LZQW20k4nYauC9ISc1i3ZA/htYJo0aV+pfXuFKvn/s6e1YfRVJ0vX1zKmz9OvOm2ZquJ93969pbrdRzQgugm1UGSCL2F+LrCyFcGMu/lH4iIDqFh2zp88+bPnDueTHh0GPc81IEPH5tPTkouJrMRrwBP9q+P5bsPVjHqtfsIj3J9CWmaTlp+AoEtVEI8Kgqu2p41yLBnIcIFzRs0RFU00uIz4brIRnZyLhkJ2UREhzD/442wM4vR9zbhyXvbk5aRz4Kle6hdK4jhg1sz9/PRzJy+nrBwX3alJ1OQW8orbz/E3c1dYzaCwv0Ius69efGR9zl/PJkfPttI044x5KXmcXT7GR5+vfKsuuz0ApwOFaubmbzsIlbnJfLNkSPU9wnEJEn4JCiIlDIChYTVw0xq6mV6to3m52HDKCgqY9GF1aQk5jJkTEUfofefWcyJA/EIIZjz23NE1AxiT2wCn6/eiwgwE1bflygvLx5q14Rgd3cOnU/lkV7XhFyzjjHs3XQKW7gVp9DRdfjx4Imrgqlx6yimfDKc5AtZ9BnmEhQvvzuYlKRcgkN9cHO/Vnf31qy1HL2YBhKkZBeQmHmZupGuyE2X3o0oK3WQm1XEhQuZPDzkc4JCfZi39HFkWb6aDjTIMoZy3yfV5qRdtWCOXE5DNsq071QXq9HIto2n8PXzIKqO6x7x8ffE57pbo2mbKBq3qMn506k8/mLfSp+FLEvMnTaCHxbs5OevdqI4VdYvP1xBMA3s2IgdJxIoKLExaYjLTPX8hUwmTv4eTdd5cnx3Bg2obBy7fP5WDm89jVBUPPw9yWrgg00SOIzXGg0sVhNd+zdj12+x7Nt8iuad6tGqS91Ka1VxZ/hvNa6UJKkW8CxQk+v0jxBiwO3sXyWYqrjjmMwmdKMB3ceMbDag6ArTzs4kviSRByMH0TfM9XQtSxYifB9jYMRK1mfspUtwCwLN1wphPb3d6NSvKdtXHkIrsjPn+cWYvT2ZMnsMnfo3u9nh/xb+Yb4u52uD4ab1QX+V0Bq37wvV/9Hu9H/UlfZaOWcjK77YhKbonNh2mp2rDqGWOVFVQc36kTwzfQSv3TcDxaHw3furWJ0zn1PH2rH36BZqPFXAz8nv8kL9nyqs/2jUCFr6N8Hf7EdND1ddjCQEwmRy+ULpOt7+XoTUCCQvp5gtG0+iKhrrVxxh3OPdeemNZaSlXWaXu4makYG0b12bj2eNZN/vp9izaBcBkkTCylPQvF6l93aFmCbVeWvBtWn1j7x54+2mfPQg86etoX7TGjRqU4uhs9cggBN5mfRM9uTckSQ0sxGDu5kG9cNp2bwmAA2DgyEY2q94ttJQYYALp1KxlzmxWE188c5qWnWtx+GifJzlXYl67GUuHI/jmR/imL/5Je5r1wj9uhlnvR5oQ60GEYye/iNX6vz7NIxhQ9x5Zu/cz90xtXmuZ3s69Lo2R0+WJWpEVb4PzsRnISsC3STh5+FGzVB/DhxOYM2GE/Tr3Zi+Q1oihOCetu8iBOTlFHMpMYeY+uFMXTyeHWuO0eXepriV1yfNmPwDx3eexV7HH8XLzLGUTF54cwAPP9kNX3+XseSNMJmMldJwf8RokOnZtwmrFu9FUVTKvI1cLijF39eV5vTzdOPbF4dW2OfI0SQUVUXTBFu2xd1QMBXklaBpGrIs0aFHQ7abykjLKeShUIhnTgAAIABJREFUHhW3lSSJN78ad8NC8SqquE1WAd8AvwH6n2xbiSrBVMUdxzvQC1EjFKFqqB4WzhZdJLE0GUWoLE9dfVUwXWF87UGMrz2o0jpCOcFzr8/FlhXEgd9dT91KmZ20xOx/7Nx7juyE2WKitMhGr9scOfJP4bJrcA2dBXAUlmK0mLG4mWnbpwnh0SHYnarLDdpq5tTJVIa92peii2vRhMBiqDy6RpZkmvtd+yK/GJeOh58XpSV2hNWCbJDpPnUITy1ZjUmW8Qp0pzTfRmCQN6fj0shMyEXSBboOJqOMpmo8P3o+548mITlVhC64eDqVtT8fJDDYmzZdby6c/oy7Wkfx+QpXKk0IQZ2AAFKLinAvg/ijKSDA4FCJqBfKx9OGVdh3x/Yz7Np5jkFDWtKwYcWC6SffvI+576zC6VQ5eiCe08eTuX9yL3aaXDPpSo+nY7Qr5OcUEX8hkymrN5OcW8BjHVvw7GDXPRHdIAKrnwfKZTtGk4E6ZVY+eWgxqoeBxT3z6dewLr6KjBAQGnlz4T35ke5Mnb+JyDA/Zrw0CE3ReO3dlSiKxr5D8az6/hk8PSz06NeEzetOYDEbmDDkc5q3j+bdeWMr1HaBK6Wmmg0oHq4o1vJNx5k4phuB5WNr/i6hEX40HNiArfvOU+woY/Hqg0wa3e2m23fuVJcflx2krMzBsAcqu8cDDH+2F5ezitA0nUde7MckPw8UVbuamvwjVWLpP8B/aYQJsAshZv27O1cJpiruOKUlDkrdJRxuZsoUnQARiEEyYJHN1Pe+eRh91/rjHN11noFjOlKzbhhq8YegZ9Gxl86R7YFoqkztJjXoN6rjP3bukiTR9cF2/9j6NyIhLo1v319FzXrhjH6p/1Uzv76PdGXbsv3E7b8IQK+HOjLy5YEU5hVTq2E17DYFtVEtcCoIdyvbtsbhnxnAhdQOtG1u4P46w25xVBdTxszH5uaBZDIhd65BlkHjyy1HcHoJJJOMW0sLzkIdYTHxyfS1SLhqY8KCvPEMdOfZGctIOpOOMBoQikq1WoG4B3gzb9paJEni1Y+H/S3RdAVJklg+YgRH0tKI9vHn+Q1fUFJsA1Wn4FwW638+SLd7m3LpYhYefu5M++A3nE6Vffsu8MvKiUiShFu5i3inPnfRqc9dPD/iS86dSAGgTngA37wylF+W7CVXtXBm1zkatKxFqmojJbsAIcM3Ww4xvH0TFAk8PSwsfHkYGw+do12DGnz8zPfIGhhLNazpDs7vT2DulGUIIRj2dA/GTLpxo0KHFrVZM+/Jqz/b7crVVJssSVxpwpvy5kDGP9uDoR3eRwJOH0kiIzmPan9wtZ88fThfTfuNHQX5KEBMreCbRpVuhd3m5OKZdGrFhOLhea2g/cTBBI4uOoSnpqPU9iEi5NaefxHhfqz86dmrNV03Oo6bu4WXZ1csaL9eLDkdKlt/P0VwqA/NW9b6y++liiqu4zNJkt4CNgFXc75CiKO3s3OVYKrijhMc6oPqaQRdYHA3kpft5JMm75FpzybKs+YN90mJz2bG5B9x2hX2bz7NDwf/hWxqjuqMpWPfHALv2ouX7/NEx4z/z76ZP3D2UDyvDfoYg8nAR2tfomaDG7d73y752UVM6DUVTRMc2RZHYLgfA8d1BVxDcZPPu1qoze5mqrWvjleI59U5fm7uZrr3aMSWXecwqhpb527GYVcoaBHIsZPePPThjW0XdF3w09K9pKVcpszpRJZldDcreoAborgMWZIwyjLIUKQ5UHwlfDfnYddd8+AiqvnxxluDeHbearIuFxNokTEDTTs25v0vxzJ51HycDhWzxUhudlGl46dlFfDB/E14e1p5/fHeeLhbbutauZtMdKpZE4D5qyawYflhvp+zhbISB19NX893s36ntNhGYIQ/QtNB01HMcPcL8xBC8NkzA2lT/1pE5pVPhvPTvO3UiA6mdZe6jL3/c9LTC7BaTXy0chKNm1Ynu7AENB2EhHuOg7dnreXk2XTMZiNfzRjF+HtdNTytOsawcdVRdKEzffx9rP1s21VfrlWLd99UMP0Rq9XEzKnD2Lwtjru71Mf9umvj7etOw2bViT+TgV+gJxZvC6VljgrXLzjCj9dmj+Z5u0JyxmVqR/553dwf0XWdicPnkpmWj8EoM+GdIXTt2RAhBCsW7Xa5pgMNvX24v1dThBAc2H4Wg0GmZaeYShEglwCsHBXas+EE0yYuxWwx8cnyZ64WcGdnFDBl/LcUF9l56+NhrFkdy77d5wF456OhVaLpP8F/b4SpMTAK6M61lJwo//lPqRJMVfwjtG1Wi8Mnk/FwM1OzWgBeJiteJq+bbi+uqxG58neD12RkS1t0zDQKjsRkDPvHz/vPWDlnE6VFNgDWLtjO0zNG/q31Mi/lut6vEAgkEk+l8MMna+nyYCa7d22g1BAOsoxDaExTfuerLcf57e5n+enDNSybtZ42fZqyds1zrJi3jaUzNyAJ8EgqQYkJwGis/EQPsHL5IRbM3w4CRKgnZWYVR3ULsx/vw2+7TtO4Vhi/HYnjXHIOkaHeJIgiRIAZQ7GGSch8+tko/AM8cbOYkA0yxS38aeTwIN3u5OLFLCb+6z5mvb2KoDBfegyoXGv26eJtxJ5JwWiQWbn5OCMH3DhVcyu8fNzp1q8JP87dhtXNjKqo5Jc6QAjSk3OR/TwwOzTc3I3k2hUwSKzcdaqCYAoK9eGZtwZe/Tnf5kRzN2ETXI3yBHi682rzlixbupvgeqEcO5sGOjicKkdPJFOjmkuUPvXKvfQc2JyAYG8CgrzQh9s4vs8VGYxpemvvrT/SsF44DetVdKxOyLsMwIcLHyMlIZvz2fkMeW4BBlni89cfpGF0xf8bblYTdWv9ewOoHXaFlMQc9HLBN+OdVYSE+ZB4LpMjB11WFbJB5pFneyFJEssW7GTJnC0g4PGX+9Hnwdv7PH9duBtV0dA0nb0bT10VTFvWnyA7sxBdFyyZv50yTcfhULFYjGRlFPxb76mKKsp5AIgSQjj/nZ2rBFMV/wjTpgwkMSWPsGAfPG7Djbt6dAiTpj3AkR1nGTSuC+BKw0iWjtz4a/9/hqjGkexZcxRZlmjZo/Ett3U6FBS7godP5VqiK8Q0r0mbHo05sj2OqEaRbFt2AFVRObAlm2odBXqwL8LXB0cjHeGvk6vkkFGcz9JpqxAC9q09yogX+9O+d2OWzd2Comh0GdKKsY/3wGS4cSpmx65zV8qiMCoynQY1p3/vZqTtT2FAdBSeEd58tGwbOpCTVkTLyGCSIi4jhGDuowPxL58xNufpwSzbfYLSxCK2rz2JqurMnbOFj2eOYMbiipFAp0Ph9LFk/AK9CAvywWwyIgFBATcX0QD5ZTb2JiXTolo4od4Vtw0M8eHTX57i1NEkZr+x0vWiJFG9fjjJyXmIrHzsOYX4B1goaRNG//YNbnocTdMpcbiGBssmGXcvK4pTZcIDc0hNyKZ5xxjq9WvEicXbETYdg0GmQ+voq/tLkkRMw2uu7V36NKH62hDSU/Jo3fn2urniz2Xyy5K9tGgTRdO2tSkqtlG7VjDrzp7nxXUbEcD0vr3oW68us1buRVE1FGDnkYuVBNPfwc3dQv9hbfn1h30IWUYyyJSVOUm9lIcqQFjNdOrTiKZtXYaRly5k4bSrSBJcir/9+sKeD7TizLFLGAwGWl2Xtq3fOBKjyYCEROuOdWjWNpqZH64lLMKP7r0a3WLFKu4Ekvjv7ZIDTuGaHfdvFcJWCaYq/hEMskz0X+gOA+g2oDndbtBF87+FYzviWDp1FZIQ9HqoC21u4auUkZDNM+1fx1Zq59nPxtLnkRtHfA0GmTcXuWwXdv56mI+fXYim6pQVWbm7XyzedYrwCXOwIrcR8fhjNRgJNHkRUC2QopxC3Dxcbt/uXm78EPseilPDy/fmAg2gQ6cYzsSloasaTl1n348nEafyObr3IpIk0bxLDDh1JIOEj9nMxbQcVF1gNRsxe19L/4QHeDNhYEcO7L/Irg2nMRoN1I4OrnQ8Xdd56v45JOYXo1sMdGpXh8lju+PlaaVLy+hK219BCMGgBUvJL7NjMsise3Q0uTnF1KkZjMloICOrgCde/gGHU6Vhuygy4jLp2vcuhj3ZncljvyIzqwCh6QSoMiunj8frOnPJG30OTZtWJy4uHX9/D8LDfclIuUxaUg6qU+XgljjGPN+LlF5NuFxQxnOjuxF8C7F3/OgljsUm0fOeuyq5Zl/Bqags3HwYp6oxrldrXpuwhPzLpezeGofTzwImAw890JY4v2Lsqmvu4o6EJPrWq8vgnk05EpeC0SjTvc2dHw3y5Cv3cs8Drfh2/nbq1Q+neataRNUOJv5sBoqi8fAzPa9uO/KZHiTH52Awyjww7vYbJXoOaUXLzvUwW4x4lPtVHdhxlnef/wGrm5nJ7w0msoYrpTjnm3F39g1W8X8VX+CsJEmHqFjDVGUrUMX/DEJNQZR9j2RuhmTt9ec7/C+ipKCMXasOEd2kBp6+7vzy2QbqtqxF75GduHA0EU3VUBWNxNMpt1zn4MZjOGwONEXj1y823VQwXWHnioOkXsyk9/AOZKbk8vAbnZGDl1Hbew26sDMu/AzHyiYzomYHPnx1OQUeniCbeG7WKNzLZ59Z3S1Yb62VAHjw/tZczi/llx8PAKABednFOB0qFqsJs8FA+OlSnFaZoYMbY20YwLx1+2lbrwb1IisLojZto/lo+nAKCsto184lgHRdoOs6RqMBW5mT5LTLaEHuIEnsPJzAS68MwMPj1rVLiqaRWVSCLgSKKjHwyS8xaBIxUSHMfGkQT479mhJZB1kiRVFYsffaQOR5y55h+KAPKUq4jMd9UXi6/Xmd1PSPhvHLjmN8ufMQzyz8lU9G3ktgiA8ZSa6hsZ++tIxZK27su7V/SxxJ5zO558HW2J0qr0750eVVtOY4P15nmnk9i7Yc4euNBxEIyuxO5PKiaF0X6BoousrOnWeJrOGDh8mIxWJibEvXA0WnFrXZOP9pZFnCYv5nfo3Xig7hnY+u2QT4BXjy4fyxlbYLifDjs5//+jBoAL+ga6Lz2NlUXn/lZyRJQiuxs2PdCfatOw6SxOQPH6Rz39uf21fF30T813YivvV3dq4STFXccUT+ONCSEWVLIeBHJNPNUyH/23ht0AwS41KRkAiI8CcjIZstP+0lonYIPUZ0ZMsPe0hPzMHs5U5hXgk+5empP9Ky510sfOtnhC7o99jdN9xGVTR2rj5KdnIOP3z4K6qi0aRjPT741TVjrMhhJGnzDjSHD817RPFiLddDUFZ6AYqiY/F0p8yu/OX3KEkS6YXFrjpcAVYfK0pxGQFBnjRpU5sxE3rSslMMqqrRa0AzDEYDI7rdOvLXqPG14veMtHyeHfs1ZaUOXn1/CB271adL9wb8fjIJhMBkMt6wY+qPGGUDA2PqsiUhAXGmCBQTugxnE7I4digRrdQJHgaQJIYOallh3wLFwem7PVG7uZMsFZFvs+Pv7nbL4+2NT+b99TtAQEmig13nk3jytf68/+wSFKeKweD6EhFCMGf6eg7sPs+oR7sQGenPtElLURWNA1vjmFQuMoQAW6njpsfT9PKaUwGqrjP181H8+vNBatcLZfGvh8kvKMWUV8bBA4nUNBmZ8sH91A++FrV1s5r+9Br+/8Rnn6x3fVEbZXQJ7MV2nA5XZO3wjrNVgqmKv40QYockSSHAFSfag0KI207PVQmmKu48wsHVBoR/r7buf4zMS7k4bQpWdwuqQ0GUt4sIXeAX4kOb+9qw4sstnDyQwMKpq5k4Y0SF/TVNZ+vygwAsiZ+N6lDxCbxx6mbeW8v4/ecDaHYnaDqaolGQV8yuNbE0bF2bI1sKWf1CQwQCz9x7aPm8a7/Jb9/H7A/WUD0qiE49/poYXbT9CN/tOko1oyeqvwmcOoXFxagX8zFajOzZYmfn76d48NlujBjTpcJss9tl19YzlJY60FSdf01fxUj3Ml6bMYywuVv5adEewiI8SUvK5YNJ36OqGr0HtSC8RgBd+jVBkiTsdgWLxch3mw+za9dFTLrAmK2DUNA8TXRrHk2TFjVxt5rQ8m0MGtGWofe1qnAOAe7u1PTzJbWwiBq+vvi63Twdd4Wl+2LRJVf9hqoLokMDqdM0gDHP38ORvRcY+UwPABIuZLHpt2M47AqfvLuaakEu0axpOsUFZdSoFcTjT9/N3l3nGT66w02PN7ZHK8ocCk5F5Zn+HfB0szDh5X4A9LuvBQBTHv76asfSla67/02oqkZiYg7Vqvnjdhu1irciItCHVCkTIUm06Fmf0SM6EXsoEQWo3iDiT/ev4g7yv+9WuyNIkvQgMB3YjuuRcbYkSVOEEMtuZ/8qwVTF38KpaTy9dTXHczL5V7vu9K1VF8nvS0TJHDC3RjI3/fNF/gK7fz3M2UPxDHi8B8GRN26b/ztMmf8YX732E3d1rMuAJ3rwy6frCa0RxOn9FzEYDXj5uiMbZIQs8PKrnP/6Zc7v/PjpesBlGdD1vpb8+vU2mnSoS836FTufUuNzcNgUjCYD9ZvFYLEYOXs6nRkTFmP1sNCtfzMUp46u6yTH5VzdLyomlHv6NUHTdKTydu1LFzJZvmAXTdpGcffAFjd8b2UOhZnrdqHpgstyGYP63sXpw5fI33weAahIGDQdVdVZuGA7K5V0lj06/C+LphZtolj81XZUXSc/TObDLbt4oFljfv/tOEIXXM4t5ttPN5GRkocQsHTOFkwGidIiG2n5ZSz78QCR1QOo3rsWiuIaitawTS3KdqfhTCrFp7odLx93vlvzHKXFdvzKo3yFBWXEHk2i0V2RBAZ6sXLkQyQVFBDl74csSZQU2Xh51Dwyki/z/LQH6NC7YtH+fc0bsO9iMpIO79/fm5gwV/3Mhg0nyUwv4NWJS1m4cgIBgV7IsoTBIKMpGmmX8oisEUBAoBe9xnUk9nwq/Qe1YMDglpWuzfXYCm3IBzIJD/HG7SZ1Ti9Ne5AlX24lokYAHf6iOP5P8NykpcRfzMbX141vF43neFIGSZn59G1d77bSoNcT5OGGJARIEOnpicXDgm4xojlUvp27jUEj299WZLKKKm7Ba0CrK1ElSZKCgM1AlWCq4p9nT/oldqddokxVeGPPZpdgMtVH8vv8jh/r3JEEPnp0HopD5eCm48w/+MEdP0bLHo0rdL89P+cRRtSfTEFOMSazgfkH3sXqYUF1avQb06nS/rnp+ShODUmCnPR8Jvb5kNJCG7qmExTkzlMfjaRVr7sAePK9+/l40nf4BXkzZfZozh1O4LWH5oIkoSgaPYa349zRRJx2J6Nfvdb+vmLBLpbM/h1F0Vjx3R5mfDee1x9dQG5GITvXHqdmnTBqNwivdG4Wk4EAT3cKSmxoTg3v+AKeHdeVN/PzcU8qZfioziz/bi9KiZ3COlaysnPJLSkjxNuTpItZvPX8D5hMBt6bNZLQCNd8uLXf7+PgtjMMfbI7DcpHk9SOCeXr5U8zYO5iVCv4m80smLERoamYzUZkWaJV5xhOHUxAcaroqoYqICejgN/Wn0QIQXpeIT39/UgOCCBr9VlK3Itw2lVsZU72bY7j9JEk7modhTnAk/1bTvPVB7+RU2xH83XHbDLiazaSmZbP0y/2pf79rjTW/i1xpCa6ROqC6esrCaZ7GtelVa1IdFVnx2/HWX3hAH0HtSAlKRdN07FYTeRkF1E7JpQvlj7Ozwt2sXV1LFhMZKTmk3S5gO1LN2Ewyozp04rH+t/aAHXW68s4uDUOo8lIUJgvbfvdxXNjvyIv6TL3PdSecc/3JjDEm0lvVZ6z978BRdGIO50GQH6+4OsN+1nw+xFkSWL7iXi+eHbwX1rP4SljCzPillhM8ulU3NxNyLKEyWTAy8ftqtVDFVX8DeQ/pODy4PYbsasEUxV/i1refggE7kYTDQKuFQQX5Bbz4tDPycsu4uVZo2nV7e8PzHXanK4p5rqOo+w/k+oTQlBSWIau6QhhwGlTuHfMzTuBRr7Qj9yMAiRg2ITerP9uN5qiufyBLmYx/bF5/HxpDgDV64Ty2dopV/fNSMhG0lR02YC3txvRjaszc8PLlY5RVFCKomgIXZCRns/9Hy8hu40V77MaIUkObjY5wiDLvPVgTyZ+8hPu8SVszs5kQXAWejs3Au8OYPgj3Rkwsj2PLVzBpfxs2tWoRrCXa07Y99/sIDMtH0mSWPXjfp6Y3IdL5zP56oPfcNgV4o4k8cvRd64eKzTIh18njeXgpVTk5DK+fnsNdrtCQJgPs79/An9/T2w+BpxFds5tOofFambIo13Isjn5fc9ZsiNNfLZhHw2NHmg2lUKbik+Ah8uzSoKw68aNzHz5F4rySxESaLKEZjai6QJdF/ywYBf33u9K19Vp5ErrWN3MNGt/4+68AE935n2ygeXrDlMcYeJs4WWenHwPS7/ZQeuOMVeH14ZX82fiGwNo37UeO9cdZ/PGWNI7+KJbddyydf4fe+cdHUXVxuHnzpbsppNKEhKSAAm9S0dQulQRRFBERFFERVFRVGxYsGDBLlJEBBGV3kF6Dy3UAElo6Qnp2Tpzvz82lEgx9k/d55ycw87MvTN3dtl5997f+3v3Hj932ftVxuSJLo3a2Al9CSwXOuvLS7EIQK/XMXTclziOZSOA+dM3cfuIG/Hxu77u6u/EYNDRt19TFi/aS8NGkXy6PwG9pmHMdnLi9EmSuqQTX/vKwP1qZBYUMz8zBWu0ieJgPUc3nuTg9mTemz6CAwmnaHtTHXdJlL+Qf7GtwEohxCpgbvnrQcDyyjZ2B0xufhfRflVYfuswTuTn0aHaJQfeTcv2k3n2PA67k6/eWfaHBEz128Zz9/P9ObL9BHc999f86hZC8OLsh/l28jLa9GpCZNz1/W78g3x4qdwmAOCpj4bxzTvLSDuWhsFkICzmyiyzC3Qc0JJ1c7eSdTaXcZ9fO4160AM3sX9XCsnHMnBW9SQfOwhBaR1vHr2vJ7F1rv2QenzuUmxBHtj9DBh2nschNWxOlXNFRThUlafGzKH4bB71vQ18/GSviw+peo2qs31DElJKatd3CbxtqoqqSRw+RnJDvXj+1QW89Eyfi6U4wnx96NugDgdtqRcDnUyHhcHvzMWhaRTq7WAQvPp4V25p6PIqGvdcH0zzqzB7/V5sDpV8H4HRwwAC7n+6J0aTkdjaYQSHXSrJEREdhM1qx+nU8An0pu1Nddi09AB4QOuOlzyQqteqyhcrnyQ3s5Aa9SPYfvg0kSF+lJwrJOnAaTr0bop/oDenigo409oTFJiVlsSa29vRe+ANruXByxBC0OLGeEKr+vGNJZmyCJe3lK/ByOhbL5XvmffVVnZvPYmUkikfrSIrVCEi0JeHXr6VqtUCMPqZWHAylWyrAz+jgmJ3ZReaPX+fJuiv4NEx3Xjk0a5IYPUHH0G6FXOOEynhiUdns3T1uEr1U2q1IwFjvp3grXnYNThx5BwtO9UjttzQ0o2b34uU8ikhRH/gwn/QL6SUCyrbXlzusPz/TvPmzWVCQsLffRluKsHxxDOMu/0jEIJ+w9tzz7hef/cl/a2c3H+K5AOnadfvhusaWeZnF6HolGtm311A0zQ+fHM5y1cdILOZJzqTjlY1o/hk+PUDyRte/IhSmx1TLjg9wRzigRKs597GTQk8buezd1cinBrCqOez7x8murxW2c7Nx3nlqW8RAoaN6kSKtZQlPx1CWBwIm0ToFEwmA69P6E+zqzhbfz7jJ+Yu2U1hsB4upM/rJOZ8DY9iSZ9ujXjiIZcFRXpeEfe+PY+iUiuTR/Uh3GhC4DI3Bdiy4wRvf7Ka2OrBvPH8rWgOle1rDhNbN5yYeFdAW1RYxvncEqrHBl91ZuLpz5ey9eApKLUTsC0DJETEBPPpqnG0ffsz8kpdbu6ehSp3V41H52Fg4dL9REYG8snHd18sWZJ5vphNiSmsyUthU9pp1yxex5sYVP/Sct/CeTuZ/pHLCVttH0RaWSlGg55nbutI/9YNeG/OBr5buw9NSvRSElmm4803hlC9xrWD67+bC8+Ny+/t8ZxcHp84H+uB8yBBEbBm43OV7nPmhgS+fWMFIrm8nI5Bh3egD598P5rgqtevWfdvRgixR0p5fUHcH4ipWqSMHD32LznXyWfH/mVjE0LogLVSymtXi/4F3DNMbv4U4hpG8fmaZyjIKyauUdTffTl/OzUbR1OzcfR1j9m6bB9vPjANIQSvzH2YRu0qOkR/On8La3cmcXfvFvTt0IDtW08gbRrBO4rx8jMy5ZXev3gdX4+8nfGfLiEpsBDNA+w2O5+278ZH323gmCWfauV1whSnCk7tYrs9O0/ikBKckgMJqWzKzUGTEgwKhjI7mkngMEJE2NUfbEMHt2NrThZHz2bjUMv7FWAskUgJy77byY5pW4iOD2PitBGsnHT/NcfwwdSfyC8o47AlnZnTN6IrttNrcKsKy3S+fp74XhaYOhwqzz78NYcPnOWO4e1JTMnAYnfgbXfNGjnsTvKyC5k+ZQ2lRVbQu4QNgfvKWFmwCykEsoqZjMwCDh48R6MG1di2+hBvLNtKiQEUvWDEwKaE+vgwoG69CtfbZ2ALfHzN5JaWsaMgm+yjpxBAFW/X9UVW9cdQPis3vHdLhvdu+Yvv41+Npkm+XLeL1KzzdGxcg2eWrcao0zH77oHUCnGJ46UGpf5QVt2IMV+lVdNfV/Ota52azDTo8VBAaICiUFxmZfa0TWxZd5TQCH/enzYC45/kO+Xm342UUhVCaEIIPyll4W/pw51y4OYPRyv3lwmNDCC+cfX/hPagtMjCliV7yDqT95v72PDDbhw2J3arg8VfrmdE6xd56e5PsVnsnMnMZ87KPZzLLmTSjLU4VY3ouqGoBlBUsJ8qRKq/PFtcOyKEH165F5PJAAh0iiCttIRDHsXYAvTYAnToDTr8A71JshTwxdbd5BbA5HyFAAAgAElEQVSVsmbJfnBoSKOOXgNvoFPreBQBwqEhikopqm6guJqOjxds4kyKS1O5aN8R7vpiHssPJOFpMjJr3GAebNUM1Sxxeko0L0FIoA8mDwPm3DJKCi2cPHiO3RuOXXcMtWqEYDTq0TSNpdO3sOCrLTx/33SgYk3Cyzl5LIPjR9NRVY15X22hpX8gwqFhMBnpcWcbIuJCqdm5Lovm7CBgfQFBaSpP3dAKc5l0pVhLiRSuZcgaNUOZcM9Upoz/Dt26U6hFVjSn5K46jRjWuMkVWYWKItip5fH6wV3syk7nvm4tePWubnSsH+saj58fPtl2qpYq9Gn1/5cJB7D24Am+XLeL5fuOMfG7tZTZHRRYrHy//zAAxVYbAz7/hkxhpThaT1zLKF56+tctm3uajVgjTJxvEYCziidSp6ABq5btp6TIQvLRDKZ/su5PGJ2bCshL5VH+7L+/gRLgoBBimhBiyoW/yjZ2h+pu/lDmTlrIjAnfElM/ive3vILZ65f9b/5oNi7czZcv/kDDtnGM/fCevyQV+clb3uTcySycDic3DWzFk58MR/mV6fi97u3ArjUHUXQKyYfOknUun7zMQrYu30/z7g3R63QoQuDnbWZnyhlWeebiaO9NZKKFEfd1x1CJX94bj6fy2HfL8PE20jQknFY1org5LpY3Nm5COlSKuwTxQdeelPgKHlqwDFXTWDlvF5bcUpeBgZTsyM1kwuju7P1+P7aMQkpqeIEQ2Jwqq3YdI3HaHkY+04MP3l2CJcjA+LMZdKgdg5eHkT7dG/HTruNkahaeHdyFomM5LJ6zE6+aoaSl5ICEmNrX1olZ7A42yyxsUQre3h7oUgpQNYnd5uDtF39k3bJE2neuy7NvDKwQqIeE++PUXOtE4dUDSPgxkSCbE5PZQL2hXZh75ixJZzPwsjsxOwWe+8uYv3c18fXDMXro2V6Si2o24OvnRWCAF2dPZmGz2DF46Knm6Umf3i0JD/K75nUv2XYI/4RCMCpU7+5Hl8aXypnM+Gw9jswySvQ21q8+xIA7r59d93dg1OvKl9kEgd5eFKlOhAOqlhgoKixj3MrV2FXX7KRQBO883g9vz6vbCpSV2vjgvZUkns6iR9cGDB3QCiEE/r6evD6yJy9MWoA0G3GaJPaqBvwLJbbzVgTg5fPXf5+4+VfxY/nfb8IdMLn5Q5n31iKkJklPyeLQlmPc0O2P9WGqDFPGzqa0yMLWpfvodmdbGratXPHT38PZ4xk4y0XBW5bspdudbWnUvvYvtKpIo3bxfJ/8HkII3ho9g8LzpWiaJCI2BF8vE7Mm3sn+pDTaNo7lg5+24Sh1YiiBoJujGXBfhyv6czicpBzPIjI6CM/yMiQfrt+OxeHAqWm0j4thWGuXg/f8oXewNy2DHvG1CPTyZF1SMkKAQ9Mos9gROoFUJQ5vhTJPiRCu19LTA698DZ8qvmTlFuJ1vAQhBDNeX4ZHoQ1Drh0ivDGUB63BgT5888G9ABQXljH4vq9xOjV0OsFzkwdTo044odUCrhgLQHZ6AWPun8r5BjqkWVCmWRk9titHd5+iz9A2PD16FlJKNm84xvtvLueue9sTHOILQMKRs1iivNCyy0jNLkTxM+FRbMPoYcAr0AsB2IwKxng/+jSOZ+XCfTgcDpIOpRM+IB71tAcGvY6pz7gCsTGTbueLiQup0yyaJ94Zgq58SS1h6wlW/rCbbrc244b2lz53XgdLUPJUQOXAumPERH6MzXmOGoFv0Lh5DMknskBK4utVLqvsr6ZD3Vie7teR07n5DOvYnCKbjQkjv2bhhs0s/3I7h1sqoLiW5RpVC2XAqE+wOZw8+XQvlqWcoNhm5+0e3Yjy92faR2tZses4UieYMW87jetH0bCOK4Px5mZx1Jw8gpef/wGL08m9j3eiblgwk15eSERUIE3b1yK/sIwq19EBuvkD+OdImyuFEGKdlLITUFdK+fRv7ccdMLn5Q2nZsylbF+zC6KGnZpNfp2H4o4iKDyPl0FkcdgdvPTiNoc/0odud7X654e9g1JuD+eTpuRezwYKv8dD/JS7MEj310T3sWJlIWHQQNRu6NGCRoVWIDHX5H93atC7LFicigJNHs8nILSIsyLdCX0/dP4OUE1l4+5qY/uOjmMxGboqP5WSOa9mwadSlh3Pd0BDqhl4SGd8UF8uQ5o05mpnN2GFtWDtrJ5sOJRPeKZIH2rVACMFLkwczb+YW2t5cmz4DW7BrUxJTji4kpmFV9m9OAkDRJC/0uxmjvuJXzdQpa1jyQwIIgcGox2jU0/zGeFdG3DVYt2gvhafz8fLzwlrdkxE330Cnpo04ezKH/TuSiYwOJu1cPg5g5dL9nDyeycfTXdmGEaF+SEWgSIGUoFM1VIsDo4+JGuGB3N3rBrYdSGXkbW1pVCOMhG3JZKbn07FbA+afPOV6fgiwlJeiad21Aa27VvRxspTZePnRr7FJycbdycTcGEvXrg0Y0KEh0nHpCXTo2BFaFazGYHSSnDeBYSPnc0OrGvj6e14sNvv/hhCC21pfGq+nXk9uVhGaJnE6VcyaFyV6Db1ewS/ZTl5SKXoJb85dQ36oQNU03tiwiU/79UFqEqFJpAJI11Lc5URFBTFt1gMXXy/9MYETRzI4mp3P6sOn0OsVvnrvHqoGV/y8u3FzHcKEEG2APkKIb4EKOhEp5d7KdOIOmNz8oTz91WhOP92XkMig62aD/RE47E7ef/pbTh3L4OFXB1KnWTQAr89/jGUzNjJr0mJyMwqY8sQ3dB3S9ldpqbLO5LJi1hbqtqhBi589GK9Gz+Ed6TigJduW7aNGgyjCr2MfUBkMRj3t+1y7flvDamH4eHpQUmZDJxQMBl2F/aqqcfSgywtISklmegHRNUIY3bEVnWrXwM9sIszvUskWKSUFeSX4BXghJdisDsZ1vmTM2eD5fjz+s2to2jKWpi1jL7Y/k15Aw451uPOedoy47RRSCPRmI7VrXCproWoaHyzezLe79+GjOTF6GBg6vD0dezS4brAEUK9ZNAaDjvCjNu7q1I4BXdry8iOz2bnxGHqDnvuf7I6m1zH105+w2RzY7c6LbevHhTPlhYEsXbSXTeuOoGUUoTg1cjMKWbEwgREjOjKi36WlsKk/jCYnq5DnRn+Np7RTFmykSa0IYiOu7S4vEAhFwenrAYrgxK6zHM7LpW71EJq3rkXCuuMIRWBxliIl2O16rI4ghBDU+4clRpjNRu64uy2Lvt9Nx8716DasBeuOJ9MprgZL5uwkhVMgINzkTbFiQa8oVK/iSggY8UgXnEBqbgG3D2xJzehgrBY7er1LP/dzvp+zA1XVsAqJtDtRFAPHU7LcAdOfyb9shgl4AZgAVAPe/dk+CVy/Ono57oDJzR+KoijE1P9rvvy3rz7ItpUHsVrsvDtuLlPXjQfA7G2i8+A2fDN5GSadIDgi4KrBUkFuMW8/NB2HzcFTn9xLcMSlWaFnB3xAxulcDEY9H6x+hug6v1zLysvHTJc72vyqMRxNSOGLF76nVqMoHnj19iv0Vkl7UlgzezPt+t1A4w6XBMGKIpg2/g5W7jxK6/rRBPl5VWin0yn0v7M1C7/dQaNmMURGX5q5qF31UgHX3EKXNuntMXM4tOcUNeqGc77MQU52EXpPIzq9jjfeHUzdy4rrXo3dO5L56suN2GwOUlOyGT2uJ3NmbqbNjfFEx7rOJ6Xk+XcXsfLcKdRAPVKvIyJPcOvdbTCbftlzqGGLWD5dOIayEhs160VcHOcF80cPk4Eu/Zpidzg5fiyDYT9bpmwQF06Dp8IZO6Y73bq/jinb6tLlXOUhbZcaL81dSZJajFeGE89zFj768rbrXp/J08j4yXcw4dWFaBIQrgK8ep2OCWN782WVTZg8DBw+mc53M3riV6WUsSP+eLf6v4p7HriJex64lKF94XMV+3B3fM0mrDY7DzzQmS1pZymx2+hV27VE7eXtwdjxl2xG1i47wLsvLkCoGm071+Xxl/vz4aKt7Dl+jkf6t6VO3XCyMwrwskms3jqqhVWhecMrrSvcuLkW5bXivhdCTJBSTvyt/bgDJjf/WEIiAtBUDaOHnvCfLWX4B/nw8frnSdqTSvPO9a/a/vsPV7F/41GklMx8bSFPfXLvxX3WMrtr6UAIbOXLMH8Gbz00g8zTuZw6mkazm+rR8rLZLKfDybgeb2AttbFq1iZmJ71foZBvyplc9h84S7UqfjSJqxjQpJzMonPvxjwwtvs1z71+30menbocJHidOI/BqXHyWAY6X09UQLU5weZk/pztvPjGwOuOQ6dXkLiWbnQ6hd63Naf3bRXtVfbsSGbHluOo1Q145DnxSXNSpBO888UaJjzas1L36+fv85iX+hEa4U9AsA+d+jRBCMHAIdcXTesVBQ+hpyzME71VY/ZHP+Gh19PvsnZPr1jFBpmF2saMzymJqViQci6X2GoVz19wvoTHhn9JblYRo57szlfzdyIMOtAkjdvH0rt7I+IiXYHEY4+4fKZsdieJh9oQHRVEcODVCzP/kzEa9XRoVYvJT3zDcwdOU3xzKGYPIzfFxOJ3lSLIMz9eh2p3IqRk65rD+IT5sjglBYvdwQtPf4dngROdELz68gCatoj9G0b03+Pf6vT9e4IlcAdMbv7BFOUUoZWUAXDbiCvLlYTHhFxcGrOW2di95hDRdSOILHcOrhodjL5cMxQWHVyh7YuzH2LOO8tofGM88U2i/7QxBIX5k5dZgKZJAkIrLjFICVq5Z5GU8mK1+tVfb+Lbd5eRqgNrrRCOpWTRrkksAf6uWab1aw7x7mtLAHj06Z506dHwYh/5+aX4+3uhKILVu5OwO1QkoLbzp0w6iD0j0GerGFQNVRHoDTpat/9l0XzT5jGMHtOVlOQsbr9GwOLp5YGuTGLKk+hUBWuIEWOunX17Tv+mewfg4+/J/U/dcvF1aYn1oibqAna7E2upDd8qrvuj0yu8/fYQpryxjHPJLl+oXZuS6DekNbklpYz9bjkHCjJxIlF0AtUkUC0wb/U+xt/bpcL5t204Rl5OMQ67k49eWYyGBA89hiqePDqkAzE/+1wBeBj13PArPYr+aXz60g+cPZXD+QiN4hQrQsKZnHxe79+NOmGXlqudTpWcvBLAtS6i6AShoX7IFIlOCJQiOw6HBCl59t5pdO7ZiCffvP1vGpWb/zrugMnNP5YVX2++mJm2Y2UiNRpG8d2U1Xj5mbntwU4XM5cAJgyawol9LvHuZ1teIiw6mJ733Ih/sA8Om5Mb+1WcDYlrXJ2XZj908XVO2nm2LtlLWamNE4ln6f9gJxq0rvW7x/DirFGsm7+TmDoRBIT4suizNdRvG0+NBlEYjHom/vgES6auo9OgNviH+Lp0W4/MQHVqGBSBs5o/On8vPC4LEA7sOY3N5tLv7NudSpceDZFSMm7ctxzYf4ZacVWZMmUot3dsxMb9KTjMkrIgsKl6jps1aqY7ee71AcTGhaI6NapFXVu3cwEhBD16X5kRabc5STt3nsjqgdRtGMmjD3dl0pz1SEUgFYlq0jFs0PVnhPZsTiI1KYMu/W/AL8DrmsctX7iXD99Zjtls5KMZ9xFeLYDz2UU81PcDSoos3PlwZwaPckkVGjaN5tX3hvDUiGmUldoYMrIjANO37GHv6TRUoREY4ElN3yqcOZGJMAhaXGWpuW6jKBRFoNcpoEmkKlFsTnRFNlKPZlw1YPovoNb0JyMSVJMEh0QCSRm5DJ/2PdufG3VxidxmcRAY6kt+QRnYnIx8vCu9BrWkftsaTPloNam2AtAATQOHyrqFe3ns1duuqnVy4+bPxh0wuflHsX3ZXr4YP5eSQgvdh3fEYNSj6ATt+zbj8wnfs/7H3QCs+3Ybdz/Th7a9XMLp00fTsZbZMXl5kJGaQ1i0q2RGu/L9KYfOsnr2Flp0a0jTmyo6NUspebzrG+TnFqMJl8Zo36ZjLEh573ebcnr7edL3PpcOZGidseRnF6LoFGYkvk1gVX8ad6hbQbuk0yv4BflQUlCGqmq0jwpj+Nhb8LrM86b/HS3Yvd1Vu2zgkFYAlJba2Lf3NFJKTp7IIjenmCZx1dg45SFO5p3n1unfIFSJvkRFOjSEIggLd2XkbVx3hA/fWUFMzVBefWcQHr8gzr6Aw6Ey8u7PyckpJrZGCFO+GE6fPk3JtVuZ9uN2NAldm0TTp8e1rSeOHzzLxFFfoaoaW1cd4r35D1/z2MU/7EZ1athsDnZtO0m/21uwf0cyNosD1akx/8tNJJ3JY+ToToRXC6BqtSp8verJCn3EBgW4PIfQMbxhEx7s2JLkzrkIISoIvlPyzuNQNeJrhDBj4RhSU7OZ8uICstMKkIoACed+h4npP520KgpkCxSLxCPXjiXcCApYbZeWt7POnWd0n/exWuxg0KP39CAjrQAhBLWjQunaoR4LUvMpTcnFUuZq5+tvRqd3+y27+W0IIWoA56SUNiFER6AhMEtKWVCZ9u5Pnpt/DGeS0nn1ro9IT86iKLeINV9vZu7Rt5l75G3qNI/F6VSRUuK0Ozl9LINJI76guKAUgEffvYvgagG07NaQRj9bYpJS8lSPSSz8dA0v3TGFvIz8K85dmFuMandyIX2kMiaRPz/HzpX7ObDp6DX352cX4rC5CpcWny8hJy2fUZ1e584mzzH3/RVYy2woisJHm18mvE4kwtubIysPk300o0JfUdHBfLNoDHMWP0ZMef01Ly8PmjWLRqdTqBUXSlCwSztj0OuoExrMzTm+BO0rI3xzKfUbRtKy7aXZs08/WENhoYVjR9JI2JFS6THnZBWSnVWE3eogac8plszagsPu5N4BbegbF03giSJ2Lj/M/OmbrtlH0flSpBA4NMn5nKLrni881BekRHVoNGrqEgU3blUDD7MBRSewKrB1cxJvTlx8zT5ua1aPd2/vyaTbujPyxhbkZBWye9URitMvnXv9yRT6TvuGgTPnMm9fImftxYw8spQddzup+WoD4hpE0qBpdfoOalHpe/Vvo1lYKLoyJ4oqqXKolIB9JZgzHFQ94rj4I+Pg7lScDhXVqSGtdhxWB2dScgCYv3QPn87eRM7hdCyFFowK3HJHC6avffo/UTngb0f+RX9/PT8AqhCiJvAFEAnMqWxj9wyTm38MtjI7ilL+ZSkgrmk0Xr7mi/sffGUARg8Da+ZsRVVVFKMRnc41dd+uTzPa9Wl21X6llBeX9pBc+nc5QgjGT3+Aue8sJbZhFN4B3nQd1Pq6X9zH9qZyPquIxu3jsZXZWTFjPd++49IV9XmwK2UWOz2HdaBGg8hL55gxim8mLaJNn2ZE163GzElLOJWUAarG7LeXkbjtBG989yiBYVXwqxrA2TP5gKyUKF0IwaQ3B1FQUIafn+el+1jOy+Nu47O3lhPQ3If7n+heIVuvTv1wEnamgITqsZVfYqoaXoXGzaLZse0oHoUlfPn6Ys6l5PDQy/2x5ZVh1ykgBF/N3ELPQS3x8r5SEGz0M+PQ6xA6BSsKmqZd00H9wMYklFIbJrOR/KwiYmqGEhDiy9cbx7N5/VHefWs5OqeKl/fVHagv3KeO8ZeExU/fP4PMtHwUReHNqcOp1ziKbcmnsTudSGDRhkQmlGWjKYDewLroUxyZ9Zt98f7xSCmRUuJxvJjQba4fHi071WHbjmQ8s0rAZKCk2Iq3j4lm7ePwMBtcn18hEJrGyCdcSQo5ecU4nBpCL9A7BUIIug9o4Xb6dvN70aSUTiHErcCHUsoPhRD7KtvYHTC5+cdQq0k09716B1uXJNCiexP6PNCpwn7fAG8em3wnt9zVlk0LdtO2d1NO7j/FCwPfw+xt4p1VzxJRI/SKfhVF4dUfHmfBJ2to3685oVFXmge26dmENj2b/OI1fvfeMn78dA0lFhW9QYfm1JBOlbDqga6AT6fww8erkIqOjQsS+P7kpWW9tn2a07bPJS1VXOMo9HoFp6qhaZJzJ7Mu7nvy/Tv56Nn5HN93ikVT19OodS0Cq167NAe4goEqVa6uAQqu6seEdwdfdd9zr/QnYXcKH+7bQ99p3/BY17YMbXOlR5TqVFF0CotWHeCDqeuoHhnIA/d2YEfiCWSmxGFzkpPueoje+0QPNt/xycW2RUUWvLxNSCnZuslletmmfRwTnpyHqkkELmdwh13Fw3T1gKlJ65okbDmO5m3gRFERdWwOzB4GDEY9N3WtjwTS0vLpN+AGAKwWO8vm78bP35NOvRtfNQAuLrSgqRJNVXn6/hnc2L8pP606SHignrI23hjTHeDn8mCSThgU2+ia9//fTuH5Uh4b+DHZGQUo5QG3yWygacsa7Fx+AAAjnpjLjSqrBPnwxconGXnTG9gsdpq1iiWqPCAfelsrzqXnY4sPp3FIFeo3jaHWL1hbuHFTCRxCiMHAMOBCtfLKaQxwB0xu/mH0HdWFvqO6XPeYuCbRxJVntj3b7x0sJVasZTbWztnCsAlX99Jp0DaeBtcpoXLmWBpHdyezcs42GraNp1HbON4dPZ1qNavy4pxHMHubOHMsnRkvfY+m6FA8jKhODSFAOlTKSuzE1KuGotdx9lQuDruK6lSxltmuWW+vTfdGvPXj43z95hJy0s4z6rVL2UEhEQEYjXoK80ooLihl0bQN3Ptc31+4e78NvV6HCDVxLCcXi8PJlDXbrgiYVn6/m7c+Wone14TBywOnqnH6TB4ff74Oe5QvFFoxC4WzxTYG9f2A51+5lcee6cV3s7dxc7f6F/VSP87byYwvNmBXNSI7R6LqBNKoA1XD2D6Ed7dvY0yr1nz8zgpys4u4pXdjWt1YGw+TgfHvDWHt+kO8Om8DHy/YytYjp5nyRH/AFSx26lbRgPSTN5ayfvkBFEXhXHIWZpOBBbN3YPYyMmnGfYRGVGHC5DsYd98MwKXJWrXqIADmEviy722kpOZw6MeVlAUpjGjZlCeadfxT3oN/AgmbksjPK0ZTNUxmA5pNEhjqh04IjB4G7FYHwVU8UXSC0mIrnt4e+AV4M33LBLLPnad6fNWLffn5mpn0XP+/cTT/Yf6+wrh/BcOBB4HXpJSpQogY4OvKNnYHTG7+1bTu2YSDW44B0OjG31YJftuSBN64+yPsVgcYjKQePsf6b7eRm5ZP8flSti7ZQ7Ob6/NouwloqoYiJTrFg6DIQErPl2ApsXLrg51o0C4eLx8TyYln2Lp0L2dSc7ktfhw39W/OU1PuvuK8xfmlfPjMPLLO5vHE+3fRtEOdCvtrNYwkYcMRkBBb/8/99V0jJAC9omA2GmgafaWJ57SvNmENNIMCXpqK3iZxKk7OnsghKi6YasNiqWHyYeHsnTgdKl9+up4PPhvGLf0qBl5nT+dhs7mWuw6fSKfnI83QJRSzIiCHZGsph3bsYcusA5BcgsOhcmB3KtXD/Pn0h4fR6RSM/mYURWCxOTibeaUW7XIK80tRnRqaIvl+6gakBpqikG+x8uLbi7nrrna0a16DiJhA0lLzUHQKMdFBpKUX4F/Fi4hqAdSoGUqjRq6ZwIAA7z/ylv/jqNusOkIIDEYdPW5vwZCHO2MyG7CW2dmwZB/pp3J56KX+vPbQV2xbfZA6TaJ5a95ovHxMxNT5/6yh5+ZfRxcp5aMXXpQHTdbKNnYHTG7+1fS+vxON2tfBw9N41aW2yrBv3SEcUocwG0B1IKUktkEURedLkJpG9doRnD2ejsPmQNqd4GFgZsJEgsIDcDpUbBY7S2dtZtyAD9A0SYMWsWiqRlpqDlJKfvphN49PvvOKVOltqxJJT83BZnUwc9JS2nRrWGH/7Q93oUb9aniYjTRoVfM336PKEOTtxeIxd/P1nv3EhlZBkxKlfAkrO7MQA+CblI+mgLOKJ6qPnsJaBqSAMJPCW6P7kLj/DEvm7ELnocfX14OdW0/Qok3NCkthNVtVR9t6CLtQKanvQc3qIQzu1ZnEOd+RcaYUBBRZ7fgCSInm1DiTkkNxkQU/fy/aN46lY9OaJJ3JZtzdna46lgs8/FxvnnvwK9JP5eC02NG8Teg0KK3uS2J6LhPeX8rMt4by9tR7mT11A6HhVeg/pBUZ6QWEVvW7mC0YEvLfLtFRVmLlszeXs2/7Cew2JwKoWS/iYsFnT28Tb3/rsuiwWuw8P+wzpIQTB8+SdTaP8HLrBU2TV2jr3PxN/HtnmIYBH/xs2z1X2XZV3AGTm389UbXDST1yju8/WUPLLg1QFEFoVCB6Q+U+/mFxEQiD6+HoE+TDC1+Nos4NsSSsPUhoVBDRdauRcSoHp8tjEqno8CsvhKs36NDpTSybvhFbYSkoCvs3H0NKMJWLnOu3rHlVX5m4RtVBCDzMRppcxTxSCEHzm66cNVNVjbXztuOwq3S/s+0f5lkz93Ai0w/vRRyGEruduxu7NF1P3D+D/JQ8V5kRKRCqhsNTIAWgCDIVG1NeX8KtQ1rz8Zf38vW0jezcepL9u08x9tle3NTF5cRusTmYOP8n7BEGHIFGHr+5PYPqu5bRPr21N3d/+C1ZZwvxDTDzyJ2dWTR3O8dPZSN0esbcN4Mv5jyI0ajn5Qd6VGo8Jk8P0s6eR1XBGeSD5mtGSInB04CtXPjvdKoEhAfw6HiX3GHeZz/x/ZcbaX5jPE++fccVpWz+a+w7e5zxvWaAKkCVUK43WzZ3Bx17uewiigvK0DSJX4AXHiYDDVvX5HBCKhExwYREBCCl5OkPl7Bh70m6tarNxAdvuf5J3bj5lZTrloYAMUKIy9NkfYDzle3HHTC5+ddTUljG2F6TcdidzHhtIULVqB4fxpSfnq/UAy++WQweZgNSQp3mNahfbljZsvsl/yAvXzMmfx8cNgeePuaLoleAU0fTKcgqdP1qUzX0ZiNSSjrfdgP9Rt5M1WsYQ8bUCeeL9ePJyyykdtPoSo930dSf+GqSKyMvL6OAYeP7AK5ixSvmbEOnU+g+uHUFY8/KkFZchF1VUYQgo7j44lYwiREAACAASURBVPbiIgtSUUDVEJrEI9+Ch0Ggq+VNsd2OPJjPsrOZ7N5ygvZd63H8SDo2qwO9XiEz/ZL9iaZq6IRASIF3gQ7HmnQGj1yA6lCZOPMBvh1zJ6nn8qgREYTJQ8+0TfsoEd4ITaJPKyIro4DI6lfOIq5Ysp91aw4xcHArWra+NBNnMhvw9jFjtdgRngacOgUUQefGNSlw2mnfohbR1QLZefg0YYG+HNmRwvTP1oNTY9OKRPoMbUudJv/dmmY78/bxzrppYDeDzgAKCM1V57DHHS0BOLAjmRdGzkBKeP7Du2jRsTavf/0gOekFBFX1Q6fXkXW+mC0HXHYVa3Yl8dTQm/G9hq7PzV/Ev2+GaRuQAQQBky/bXgwkVrYTd8Dk5h9Nbno+qYfP0bBdPB7lgYjd6sDDfKmYq7XMjup0iayREulwcvpYOvlZhQSVi42vR72WNXl5zsOkpWRz821X99bxDfDmrSVPsuenw7Tv04zl32wjLTWH20d1wi/QG51eQSgGAkL9uOOJW7CW2ugxtB3GXzCBDIkIIOSyosCVoSC3BFXVkJokv9y7KGnvKWa8vpAje08jdDrKSmwMHHX9Jauf82SbdmRmFWDZkEWIwY7aRkOnU3jhrUHMnrqBiPAqbFqQgN3mxJRv46OeXXj+wZk4FB0IQUmRhcXzdqEBAYFe1IwPo3d/V1agpmk8PXImPulF+IR7wskcFq04DeWlYaa9v5wNMSqqJpkytDetakRxNisfFIEEYuqGEV6t4n1SVY1xUxez+ngyXtlODk74njsndSM6oAo3xkZjMOj55LuH2L8rhZp1I1i4dB/ZmYVsWXkIIQRDujbl1emrWZdwArui4bO/EMWgB71EK9OoGvnr3pd/GwcLj6KLsuPj46SkyBtzgJ3m/dvTvlFd8vJK+GHzAd5ctAHZwIvAPYX8tGgfLTrWZurCHazYdoQh3Ztxe+cmBPp5US3En4y8IqpXrYK3+dq2D27c/BaklKeB08D1ywr8Au6Ayc0/loKcIka2fgFN1YitX403Fz/Fk73e5sT+03Qf2p5HJ98JuOq1jXxlAGvmbUdzqJzcl0qjG2sTGOZf6XM1ahdPo3YVl8VKiyy89ejXFOQV8+R7dxHfNIb4pjFsXZnItDeW4LA7OZWUwaQ5D/Heyqc5sisZTy8PLCUWetzV9mKwZC2zkXEmj6haVf+QJZ7bH+lK9rnzOOwO7hnfl7zMAsb1fQe71YFEYvDxpuh8ya/uN9Tbm+gddhL25rIgcSsR4VXo2rcZTVvG0rRlLPm5xWz8MQFwWQwc3X8GHCqg4R/iS5uu9VmzbD+KhM5d69O5VxPWrjxImxvjMJuNJCdlgCbRlTjQCu2AS89iNBlwVvfG4nA5Z8/bmUj7+Bjuv7UN05fsxOYjCesdc8W9e/HFH9i/5TjBCmQ1M2GrJnhzw2aEEEwd0I/W1SMJDPGlU/nS0ZhHu/LCs/NxlC/Hrdl6mG2ZaZTZHDiqCDwNAuGQIATDHu9GlaB/X+HcX0P3qh05kJ9Az69XYsk34BlsZ8mmprz98kI0KbF4KVgamhHBHqhVzfQY1ILMvCJmLd+Nw6ny3pwN9LmxPiajga9fvoszWflEhwW4dUx/M4J/b5acEKI/8CYQQvlQASmlrJQQ8RcDJiGECdgEeJQf/72U8sVrHHsb8D1wg5QyoXzbeGAEoAKPSilXlW/vjktopQO+lFJOqswFu3FzgfTUHDSnirXMTnLiWU4fTef0sQykhJVfb+aRd4ZcFBT3uudGet3jKtBrs9grzEBVFiklezcdw2Fz0rJLfVbM2c7eTcdwOlQ+e/EHXvvGJWwtzCtGK5/NUp2uh290nQhyzuUx8c4PQULi5mM8Pe1BykqsjOw8iZJCC/VbxPLqVw/87vvi7efJM5/de/H12ROZFw0FhSJo17MxdzzSlXMnMvhxygrqt43n5jvaVqpvoShgdeJQ7Xz19koio4LYuGQfLTvVo0nbWoydNJC1C/bQ9+62xMSHsfrHPeQUW+nQpzEjRnemSpA3mqrRc0Bz7h3yGapTY86sLcxb/BjxtapybOdJTL5mrIpA6nT4Bvowee4ocvVONk/7AU1K+jd3la7p07kB75zYiUOTzNq7n9FtWuFvvrSUc2jfGYQGODUCj1iw31iFYtWOSa9nxU+JeDZSafSzpc7bbm/Bnt0p2KvomGk5ifATGBU9VYWZ/OYKHuk2Hh1yEwN73/C736d/OtU8w/mw2btsP1uNEu0bViU3oKV/HGdFOg6bE5NJh9loACN8Oe8RqocGUGqx42HUo1ME3p4eGPWuR5CHUU+tyP9m3T03fylvAb2llFcvufALVGaGyQbcLKUsEUIYgC1CiBVSyh2XHySE8AHGADsv21YXuAOoB4QDa4UQceW7Pwa6AOeA3UKIxVLKI79lEG7+m8Q3i6FZp/oc2HyMYc/dSrVaVfEP9iEvs4DIWlU5tP0EDdrEVWiTm36e9ORs6rWuhU6vo7TYwntjZlGSX8Zj7w+l6lU0MBdYO38XHz83H4DOtzUnvmkMOr2CTq8QEeuqwG63OZg54Ts0u4pOr2fsOy4zyEWfrubbtxbjsNrRNMg85SoBcTY5m5IiKzarg31bjv8Zt4nIWlW5+5m+bFm6l8Fjb6FlV1e23ehWz5KRms3a2ZuJjAunVtOYX+xr7Mu3Mni1y4uotNjC+KGfu5zM5+5kxqbxdOzV+KLYNzstn2IBdp3C8qUHqBEfhq+PmZp1wnA6NVRVw+FQKSq0oKoamcczEBI0uxMfXzMlhRaGje1OtRohBFnsvNO+I5E1QqgZG4qqavh4GAn08qTIaqOK2YS3R8UguEePRsz/dgc6ixOdBQzLcgkYFoPtVAkJSxLZRyKTPx1G3GUp7Y0aV2f6vIfo9dp0nE4NqUBAqDfP3dABc7CZYF9vooN/eRn3v0TryLE4tcfoF++amSg6WcCJoxmMGNOZPL2TmlWDqBboMlX1Mhv55pWh7E06R6v61d2zSf+v/EtnmICs3xosQSUCJimlBC7M3xvK/652Oyfimup66rJtfYFvpZQ2IFUIcRK4IAI5KaVMARBCfFt+rDtgclNpdDqFCbMeqrDti20v8eo9n3FgSxLPD5rCxG8foWG5IWXm6RwebPk8KgLMZkKqBeCph5Sj6UhN8vmE+bw4a9TFvjRN46d5O7Bb7XS9qx2nkzJw2B1oqmT5jI2sn7GOxz57AE1KWnapT+rRdPwDvSgtKkN1qOgMOry8TRSdL+GLcbNxOlSEENRqVoOH3hnKqw9M59SxDMIiAzh1PJNbR3T40+7VgIe7MuDhrhW2aap0/U8WrrFWBv8ALzr2aszmFYkEh/mTdToXAImrhtsFzheXcd9r31BitaGTLj3RnM83kJddhBCCZz8ajK5LKJasUp7s0QG9Xkdcw0gO7nKJf9+f/zAh4f4XhenPPDiL1BOZCCEYN/FWJo3/Hp1e4cNPh1LsLWkSEcb+hFPsSzhFj16NqBYVyIBBLVkwZzuaa4joyjQm9+zOpIe/I8PmRG8ykJfrEq9brQ4c5YFaZl4RHhaBsEswCpwHS5i4ZTntWtbkxbG9ft8b8S9Ff1m5mtFPXT/LLSzIl55Bv80TzY2b30mCEGIesBDXZBAAUsofK9O4UhomIYQO2APUBD6WUu782f6mQKSUcpkQ4vKAKQK4fCbqXPk2gLM/296yMtfixs31MHoYyMsqKF92M5B5OvdiwHTq8DmklDiEHuHUyDiVi2axIBDojXpCfiYaXvrlT0ybMB8pJVmnc+k/qgtH96RydNdJnEXFOEwGfH09qNsmnpE3vUHR+RLim1Tnrmf6sHzGRm4Z3gHfAG/sVjseXh4oVgdGk4F31z7H9tWH2LPhGFaLHS8fEzM3PUdo5NWz5S4gpeTw9hM4HE6SdidTt2UtGrav/Zvv1cSFT/Ld5KXUb1ub+OY1Kt1u3Dt38MCzvfHx9+RwQiqLZm6hQ69GBIdf0oS9Pv8nzugdiNpmAg+VULt6CJmZRTjsKkaTnsdnLaLIR8Hor2PdoSRykjJ46r3BJO0/y2G1gJmphxgR0IwQb5cZZOqJTKwWByazgQXf7MBuc4INti8/xEPP9CQ9LZ8Xx8/HbneybvVBvl04hsBgH8xVfShJLwSnRBflQ52qITzzUj8+eW8VteLDaNGmFutWHuT915egOjXGPt+Hm7rX56ZGNdl97Cwda8ewNvEwVpuDEylZ17olbtz8e/g/cvoWQkwHegHZUsr6V9nfEVgEpJZv+lFK+cp1uvQFyoDLfz1K4I8LmKSUKtBYCOEPLBBC1JdSHiq/YAV4F5f50x+OEGIkMBIgKirqzziFm38ZYyYP5f3HZxEeE0KHWy9pTZrcVI+ajauTdDANYdC59EVWO4pBofPANtz3UsWyKeczC3E6VaSmkZueT0CoH5MXPs78d5cyY8I8outFUq9NPOmncik6X4LN6iBx+0nemPsQg5/sfbEfo8nIx9teI2FtIs07N8RoMhIeHYyqqoCktLCU1+6bypRVz1x3XF+/sYgfPl6NzWIHTcVg0PHZjteuWh/vlygtspCXVcRD7w6rUMC4Mggh8A90BTINW9agYcsrgy2jXodOp2Cw2vEotHEq8RyN2tbifFU/snwd5AdYURyuQscJKw5xLM1KUX4ZjYY35e1Fq7GrKjvPnKVxmg8+3ibuH9uNaR+uJd9DY7tvKb7eBvQOSauOroDRbnMipWvGLKewlGM5OdQODuaG5rGsW3sIKeG+4a4ZvDr1q/HhtBEALF++nw/eXIGmaqBqLPshgc63NGTiA65ZEovVTk5GIWfSzvP4yM6/+j67cePmdzET+AiYdZ1jNkspKzX1K6Uc/nsu5ldlyUkpC4QQ64HuwKHyzT5AfWBDucC2KrBYCNEHSAMiL+uiWvk2rrP95+f8AvgCoHnz5v8nca+b/2fimkTzyYYXrtjuYTYyedVzSClJ2n8ap9XB6pnrCYsNZdBTvVGUillWAx7tQVpyFjaLnXtfGXhx+8CxvRhYvjSz6uvNfPj4LHRGA1JnoO/wG8k4lcv8T9dRt3kMXQe1AiAsNoTelz1wazWMZMT43nz5ygKcTufFunJ6g/6aRpOJW5KwldkBkJqr4GtpYdmvvj9Oh8qoDhMpzi/Fp4oX03dN/MPMLS8wfuDNhPr7kLsnjcT9iVgtds5nFjLlx0f4aPsODu3aCWWSG0p9yU3LQtNcdhA21SWS16TkXFYBhVsz0CmC0vhqlDXzp8BuRa9p3PnUzdzepiEBQd6s3pNEdmEpAR2qknIwg4I4PXMTE3m5Uyd6DmpGamkRbRvFcHvv5hWu8f3vNvLNqj2IKAO+pzQUnULv8sK8cz5ey5ypG6hbL5w3Zz7wh98fN27+r/k/edJKKTcJIaL/qP7KNdSfAqFSyvpCiIZAHynlq5VpX5ksuWDAUR4smXEJtd+8sF9KWYjLDOrC8RuAJ6WUCUIICzBHCPEuLtF3LWAXLklBrfLCd2m4hOFDKnPBbtz8XoQQ1C4vznvBhPJqePt78txXD11zP8A3by7G6VDRG3SMm3wHN9/emvtunEhaag4bFiYQWTOUOs2uLqbuc28HNKdKyuFzRMaHM6D+eDy9TXy47ImrLs8Nf6E/r93zGXabqzxL50GtiauEUPvnlBSWcT6zANWp4bA5KCksw/83psg7HSqZZ3IJqx5UwQjTx+zBmD7tKL3JwsSUQrLS83nwedes2+hWLakTEoxJb6B5aBgzjMuxWe3c+3RPvH3NjG7ViqScHHySVbbrTqAUWdm9dD/WCDNKnC96ncLNzeIIDPZh/YGTvDh7NaomiY8JpqC9F0hJx5gYHKrKiHfnoyJJWJ9N/dgwmjePvXiNP2xIdEm4DAp+kb689nx/ateNQFU1Zs7ehjQb2ZeSS+LOZJq2i/v50N24cfP/QWshxAEgHVfscfg6x07FpbP+HEBKmSiEmAP8MQETEAZ8Va5jUoDvpJRLhRCvAAlSysXXaiilPCyE+A6XmNsJjC5f3kMI8TCwCpetwPRfGKQbN7+Z0sIynuz2GudOZDLmw+F0HtLuV7Vf/8NOkhJS6fdgJ6pWd6U+L5/2EwmrE4lrHE1hbjFCUajdvAYZp3IozCxAOlVc+RHXRgjBrQ+4zCMf6vYWqlPDarGzc90R+tzT/orj67WqxdiPhzPx7k+wldnZs/635Uj4B/nQc3gH1szdTpfBrX9zsKSqGmN6v8u55Cyi4qrywZKxV8zSefmYmfT1yArbhBB0qnFpGe/BF/pW2D+qhSsvpLjYyhcYsWQWkbB4P16nS2kUFsLLb95DFW/XMmJ+iQUpXSVMPNCz/O6h6BWFan5+JCSeRtU0KM/EOn447WLAVFpipcsNcazYcQx/bxMT7+9NVloB1WOCkZp0OZcDSIlf8H/bb8nNf5C/boYpSAiRcNnrL8pXlSrLXqB6eRb/LbjE3Nf+FQyeUspdl9evxBWbVIrKZMklAk2usv3KNQ/X9o4/e/0a8NpVjlsOLK/shbpx81vZteoA6cnZ2K0OZr78w68KmJL2pPL+o7Ow2xzs3XCEL7a/QnLiaT576htsFjt+QT68t+ZZAsL88Q/yZVjjZyjJK0ZRBINGd77m7NLP6TaoJV++thi9QUfT9teezfD0NrlqtukU179/I6NeH8So1wf95vYAhbnFnD6egerUSD2SzvmcYnasP4pOp6Nr/2ZknskjLTWHJu3iMBh/nUeutczGyBFTySmyYPTQ02dwKwpzi7n3qZ74e5mwOpyYDHp6tajDgeR00nMLmTCkC1FVLgnPC4rK8MlyYjNIjDZoUl4W5bPJK1j44x68qngy/b078DQYGHX/dBQN4uv8j73zjq6i6vrwc+a29JBKgNAJvfcmTZo0QVBEBEEUG9Isr4ogYgNFQUWKCAqIqIAUBZFeBekQekkgBdJ7uW3mfH/cGIy0hBKVb561srh35uwzZ2aRm3332fu3S/HxjMEMebotK37cS4dOtalcrdRtPScdHZ3rkiSlbHzzYddGSpnxl9drhRAzhRCBUsqk611PCFGZPJdQCNEPV8uUQqErfevc81RtVAkEWDwsNMnTILJbHaQnZRJYxo+/fdsogMPh+vIhNcmli0k8WON/PPpMe9dWjhCY3UxUqnOlGMGWY0dKidlsokmHWoVe44NPtuW+Hg1w97Tg7nn91hA1m1XhldnDOB8eRY9h7Qs9/93AL9iHhm2qs2/zCZrcX5O1P+xl+dc7QEBsRCK/LHSpajdoVZUJc4YUet7MXBvvTv6JuJRsUIRLKLR7PRrUL4/DqTLg0yWciI2nb7M6DGpQlwPfHUV1auwrf4bYsCCqlg8mwNeT3Gw7oCAEGDNtjB6ziCHdG7JqzlaQEisQdTaRA7mJnG1vwmCXqDujebDVu1SqGsKSVaMwFbJBs46OTvEjhAjBpa0khRBNce2CJd/A5AVcOdHVhRCxuKrrHi/s9fRPA517njKVS/L10Y9IupRCWIOKZKZk8UyL8WSkZNN5YCtGTn/iura1m4cxbOJDbF1xgPPnXFGqX77fw7hvR3B0x0m6D+tQYPzbS15kyce/0LBDLarUveJIHdt9hr3rjrBj9QECQkrw1uIRePt7FbD1Dy6UOj+tezWida9GRXgCd4bdO04z48NfqVIthHHv98NsNjLpm+HY8+QSPpu4EtWpIQTEXkgEIcg2G9kZHs2yJXvoN6B5oa7z/PTlnE5MQAlUcE/SCPL3pHatUADOxiVxPj4ZKWH5nnD2TtuN3WhAAnPnbyOpsglpECx5+TEyMq0YERgScjFlqshMJwtnbAIpEYDiVGnQsAJTVhxw9aQzCdJ9wDvNyYmj0Wxbf5yO3evdvQeqo/Mv5V8kK7AEaIdr6y4GeIu8XAcp5WygH/CcEMIJ5AKP5mlHXpM87ceOQghPQJFSZl5v7LXQHSadewKnQ+XryT+THJdGmx71mTdxOaUqBDH+m2exuJvxDymBf4hru+bMoQvkZFpx2p1sXfYHI6c/wfLZG9m36QSPv9SN2s2rFJi719P3U7Z6GSYMnoPZbKB+yzBysu006dqAMlVCCoyt1qgiE797scCx80ejGNf747xkbZfK9/Pt3mHsF0NpcBs6SsXN51PWkpSQSWZGLvt+P0ervJJ+s5srV+uJUZ3ISMvBaFR4+tVuvDPyW45HJYMQzJuzpdAOU1RCGk4pMfmZ6VKvHGPG9CQ1KZMd649RtX4oAd4eJGZkY4jLxZllQ/q6YzAaSPORWE0aCMH4pev5+pmHiYpOZvfmk9iyspASNJMBoyYJLl2Cd+YPA0VgPJeLCAB3ixGvC1ZXEycBJ6IS0IUEdHT+OaSUA25yfgYu2YFCkSeNNBioABj/3F2QUo4sjL3uMOncE2z48Q9+WbADp93JrlX7cVjtxJ6PZ9GUn6/SV6repDJ+JX2Jv5hE92HtORcezaIPf8GW6+B8eDRLT31UYHxOppWJA2egOVRMmDCoKtNGL0QIwbj5w2nWuS5ZadnkZFoJvkZ1W/LlVIQQSM3VuFVq0tVXbshsfjo//a4+l6IwY/se5u7aR4uK5fjikZ4Y/pbAXblqCFmZVqSEsuWvvk9fP0/enH6l2HXSnCE80X8mTqdK5SqF14p6a3AnPv1pJ42rhfLqYx0RAsY8Ppv0lGwMRgNfrx6FwyT49OUfOW+xojg1Ro57kKW7jrItOw4hQNUki3ceYsSz9zPmuU589dkG1i7fj9HLQucBzRnxmksWYs6sTXAwg9JmSeOaZTkuE5FIpATVTZcS0Pl/yr8kwnQXWItLTDscKFx7g7+gO0w69wSZqVnYs3NdCdHGKzlJMefirhrr6ePOvAPvY8224eHtzqXIBKQExSDw8r1axPH0gch8/aMcp8r+jeE47S69oL3rwwkpG8Co9pNwOpwMeasf/UY+gMPu5Ni+CMpVKUmjjnXo+FhLTu2PoGT5IHatOQyKwJqVy8td3iciPIrnPxlEx0I2wL0bSCn5YvseNCnZcyGK0/FJ1CwVXGDM+A8eZu/v5yhXIYByFW/eKNXH14P53z1LZEQi3kGevDxjFWGhQTzdq8UNe4h1aBBGhwauQpc94Rd4d+560nwFnkkailRwWp2UKxXEB3OGcuzgRS7HpDLtrRUgoE+nauRU8WB7eASzLu3hZEwCnwztyYhXu9FvYAsSEzKoVe+KBFz16qUxmQyYEDRoUJHoQzFkZFpx87YwtG/hImI6Ojr/GdyklGNv1Vh3mHTuCaLPxuV/K6rToipHd55CMSgMGHulr1XkyUvERiTQtGMtzBYTHt4u56h0xWAmffs8J/aep0O/plfNnRCbjMHoUgb3C/LBL9iHlPgMFEVQqkIgh7eewOlw4rA52bRkF/1GPsDEYV9x4kAkiiL4ctPrjPhkMABRZy6zd/NxpCYJKRvA2cMXsGbb+GrcD3R8tBV2mwMhRJGrym4XIQR1S5fkTEIyFpORsn6+V40xW4y0bl9wC1FKyZrDp8ixO+jTuBYmQ8GojJ+/F37+Xgx4ayFnY5LYc/wi1SuUpG39wrVi+XjhFhJTszD6mrE2DcI72AdTCbe89Zho2KIKC77YiMPuRNMkpiyV1tUqsONYJKqqkpGT3y6KkDJ+hJQp2Di3bfsaBAX7YLc7qVe/HL0ebEjk2Xiq1Q7F4nZjWQgdnXsSyb0cYVokhHga+IWCveRSCmOsO0w69wQN2lRn+6oDAHQe2IpJ372AECJfTDHy5CXG9Jzqqtq6rxoT5hfUBqrXqir1Wl27nL9l9was/moLcVFJjPzkcUqGBvDRc/MJKuNHtyfakpmaxeIpq8hSc+g36gEATh26iDXHjpuHmejzCQSUdDkg5aqWYvq614k8GUPlWqGM7vAObp4WaresysEtx3mr/6cYjAY+WvM/wvLENYuLRYMf5uilOKoEBeLtdv1Kvb+ybG84k3/ZhpRwMSmNV7q3ueY4d4sJk10FkwHPIjgitSqHkJiaRRYOss2S9Ix0Ji/dwvThvfLH9OzfjMN7I8nNtjH0xY6ElPPn7OUkLqdk8nLva6/nr9SsVSb/tbevB3UbF10MVEdH5z+BHfgIGMcVt1ACla5r8Rd0h0nnX0NOZi5AfuSnKHTo2xRPbzcij8fSqG0NjHnl4Id3nGLZrE1oqoamajjsKif2RRRpbu8SnnyxZXyBY7N2vJX/2sPbje8jPsPpUDFbXM7Ak6/3ZP7kn6nRsAK1/vYHuHKdslSu49oWmnvgAy5HJFC7ZVXefWIWDpsrUrXx+9+L3WEyG400LhdaJJuEjGycmoamSRIyrl1wIqXE73ASfgfjCCoXQIMqZa457lq8+XQX6lYIYfpXG8kINoAm8f/b/w//QG+mLXi6wLFXe7cr9DWsDifhMXFUDQnE1/3Wta10dO4V/i1VcneBl4AqN9BpuiG6w6RTrKQnZTC69ZvEX0zilW9eoH1/V97O4S3HGNf9fQDeW/MG9dtf1Zj6hqTEpTN5+DykJtmyfC9zdr5FbEQ8rz04FYzGfK0lqShkpWQSdeYy5apeLUi4b8NR5r7xPXVaV+O5jwZiNBbuV0RRFMyWK0nS3Qe2pPvAlje1Cw4NIDjUlUB9f/8W7N9wFCHEPyIbUFR27T/PthXHqGjxoGSdAF7u1rbAeU2TKIogJ8vGyQMXkJokJTaVJTM2En0+gcde7ET5qiHXmR1iIxOZ8ORcNFVSzt+T6HNZKGiUreS45vgcuwM3o/GG+VHXYuCX33MmPRmT0cDmEcMo4VF0h11HR+c/wTmg6A0481BuPkRH586xe/V+EqOTcdgcLJjwA+Byoib0noLd6sBudbBh4bYiz5scn4aqaljtTi6eiKFriSd5ufuHV+/FOxwoAq6lVXnhZCxvDZhB1PlE1izYSY+gZ5g3cXmh1/DFmAU8VPJp5o1bUuT1g0tfadHxqXx78mPqtKp2S3MUJx/MWMeluHSy4nN4JME+4gAAIABJREFUqlEjSvpe0ZUaP+9XmjwznZdmrsbd00yTdjVQFEFopWCWfrmF7WuOMHH4/BvOv3zuVi5dTCIuOplaZf3xiszA7VwGP325jdTEgtGs2Zv/oOnbX9Bl6nzSc60AZKTl8N3XO9i+6fotZJyqSoTvOTwaxOEsk8Lk7dtv44no6NwjyGL6KX6ygcNCiDlCiM/+/Cmsse4w6RQrNVpURSgCi4eZlr0ak5maxeYlO/OrzhDQcZAr7yQjOZOx7SbwVO0xRBy9eMN5y4aFoCIQBgO4WUBCaly6yzNSVQyKwMOiEFSqBCHlAji6/RQJ0QUFYSf0/wxNy/stVgRSUVgxa0Oh7iv5Uipr520mOz2HZZ+uJSstu2gPJo8SQT74/E3Q8t9KuTL+uFmMICUhQVdENzOyrazbexqAXUcjSUjLZuJXw/j+4DuM+uARBAKhiJuqaNdsXAGLxYTF3US9FlXw9ffEzcOMh7cbnj4Ft86+3X0ITUpSc3LZFxkDwLtvLGPR3G189PYqDu299jZsoj0DS6AdoYB7QC6ZqvV2HomOjs6/m5W4WrX9Dhz4y0+h0LfkdIqV8jVCWXD2c1Li0nDanQwo+wyqU0VRFExuJro9dT8NOtQBYO1Xmzjx+xlUp8qXryxk8m/jrzuvwWjA7G7Gmn2lKgqjAZG3pebIzsFht5OVkgUSPh/5NRZ3M899PIg2DzXFw9ud1KS/RC2EwGQ20LBNjULdl3eAFz4BXuRkWvEN8ML9FvKwrseB/ZFMHLcUb293ps0YTMmQqyvY/gmmvtmXHXvPUbl8EGVLX6k+83K3EFYmkIvxqZT08ybAxwMhBN6+HlSvX54xH/bnxIELXLqURv/W7zN0dCe69mty1fwdH2pC2UrBaFJSo0EFWnauw5E95wmtFMTa73ZTq3FFwvJywbrXq84PfxzFYjRSv6xrqzUr04rq1DAZDWRlXfl/cepYDAf2nKdtp1oEhfoSaPEixZaNUZp5475/tt2Mjs6/gXs1h0lKuUAI4Q6Uk1KeLqq9uIGK+L+Oxo0by/379998oM5/ggUTf+Dbd5aBhNqtqzNq1nDK1wzNzzeaMXIeq2asA6Ddo60Y993oG8537lg0W1fsJyDYB9XuZNe6o5w9Go3qVJGqiszIBLMZNA1Ul2aZ2c1EmSohzN73Pp+N/ZbfFu9EKAovfDiA6o0qUq5aaQyG6wdi4y4mEr7zNI071sFgMnB63zlqNAvDq4TnHXpKMObFhYQficZgEDwxrC2PPX57ek2RMcnExKfSvF5FTMa7I87ocKpEXEqmQil/LNeIJB0/eJFxw7/BmmvHzd3Eyv0TCz330LbvkRSXhkFRmLvpNYJK+yGl5FJaJv6e7kScjmf+l1uoWCGIuJhUKlQOYuhzHTAYFNJSshjcczp2uxMvb3eWbnqVbKeN05mXqOkTirvRfAefgo7O7SOEOHA7DWqLintIWVnl8VuWKioSxz4eW6z3JoToCUwFzFLKikKI+sAkKWWvm5gCeoRJ5x+k7cMt+Wn6GuxWB4+88iDlapQh6mQMweUCcfdy5/DmY/lj1bwmuDeiSu2yVKl9RZSwWdd6jHrgQ+xIVKmBpyd+oQHUrF2aAxuOYs2yYrc6uHA8BmuOjRc/HsiDz3TAv6Qv3oVweMJ3nea17pMRisDH35sZu95GKEq+lMGdomWrqpw55WqoXbdeuZuMvjHno5MYNn4xihA0r1eB90cX6nOiyJiMBqqVC77u+ZCyfiiKwM3DTKUbJH5fi9TETJx2FcUiOLTnHJ36NEYIQRk/17bgpHHLSEnJ5szJy3zw8QBq1yvL5ZgUvp21maAQX1TNpeRtzbWjqRpeJjca+ReqqlhH5/8H/504SlGZCDQFtgJIKQ8LIQr9y687TDr/GBVqlWV54nw0VcPsZubd/p+w+5cDeHi7M+/ENHwCvfPHWjyu1gU6tvsMuVlWGnesw/5Nx3hnyGx8/L34ZO2rBIcGUDYshIUH3uXnBTv4/rP1aKpGg7Y1ePWzwRzcfopxPaeg2RxITWPaM3N5fdEIylcrXai1SykZ328aTocr9yo1Po3hDV/HYXMQUj6ISStexquEB78t3M6P09fSumcjXvhkUH70rCg8/GhzGjethIenhZIlb2877kJsMkIIcm0OTkXG39Zct0NAkA+zV44k8kwc9ZoVzVl5Y8Zg5n6wmkuX0vjig1+4cD6R4a9cESj1KeFBWloOdruT9yauYNiz7Vk5fwfnT13C7GaiYq3SXL6UxhPPtL/jzq2Ojs6/GoeUMv1vn8OFbpGiO0w6/xgOu4PUuDSCygYCsGfNQey5dhSDQmR4FE+83Z+3ek/B4uHGY288VMB256r9fPTMVwgB/UY9wIFtJ7FbHaQmpLNtxX4efrELAF6+HjzyfEeMRgMZqdk8+mJnAEwmA8LNAjYHSEnchYQir18xKHnldpIewzuy7ust2HMdXDwfz9OtJmI0G8lNTkdqkvWLd/Lg850oG3a1lEFhqFjJFa2Jz8ziVFwiTSuE4m4quhJ1q4aVqF+9DBHRSbwy9J9tLRtcugTBpUsU2a5ph5rEJ2Qw96NfsVmdHPlbQvfkTwawZOHvrP35EEmJmXwyZQ1VS5UAIdBUjTNxqVjNgmUbj9KrT7HtBujo/De4t5W+jwshHgMMQogwYCSuBPBCoTtMOv8IuVm5DKs1huRLqTTuUo/3fnmDfmN78N17PxEaVoqqjSsxvO7L2O0aDtVG+O4z+If4Ybc58Av2JeJYNA6HE82pce7wRVp2b8D58GhXi4+/KXYbjAYefr6gc/DZK99hsJhRLWYsRkHf0d2LtH4hBE17NGLX2iM061Sb56c+Tk5aNrvXHMJUwouM1BwQ4BvsizUzF6PJgH/w7UWHUnJy6T5zIaqmUTnIn2VPPXZzo7/hZjYx7X99bz7wDpGRloObuxmz5eqPGlXVsObY8fQuulhkmy51+HXZPpLiM3hyTJf842cSksi22xkwuCW//XoExaBQMsSXNz8ewLJvdmDwMPPjtnAMTg1Pz8Kpmevo6NwzvIhL5dsGfAf8BrxbWGPdYdL5R4g4GkVSTApSSvauPUT8xUSGTHqUQRMexmA0kBKXRlxkAsLNDaFKvhiziNmvfY9UJSOmDaLHUx04uPk42Zm5DHmrL+6ebmxetheT2Uhgab+bXj8uOgVHthXsDmx2WPLhatr0bVbo9SfHpbFzzWFUp8audeEc3xvBK/OeBWDdtzv59KXFOOwqljIBPD/lMWo2q4Knr8ctPy+A2LR0nJpKrsPJqfjEm45XVQ2b1YHHHXIMpJRoqlbobaxVP+5lzvT1uLmb+WLh05T6Sx+3rIxcRvSaTmJcOg8/3ZYhLz1Q6HWkZeTwwfwNeDUvy3vDO+Pn43qu285F8uKyXxACRrZpwax5wzh54hLNW1bB28edZ//ncorDGpUj8mISvR+oX4S719HR+a8jpczB5TCNuxV7XYdJp9hxOpxEnYzJf28wKiTGuDSRLkfEM/q+N3n/sWkohjx1bimRgNOu4rA7+W3RTvxL+jJ905vM3fseW5fvZXjLCUQej+H8sWiWzlh/0zWM+WQgAaX8XHIEbiaC8tS2C4u3nycWd3O+AubUUQvzz7V4oD64W8BsIiUpi2pNKhfKibsZNUOCaR9WCV83C692vO+GY9NSsxnU61Me6vghPyzYddvXTknMZNB97/Ng7XGsX7a3UDa//HQAp1PDbnOyf/f5AudOHLhAemo2mqqxZsmeIq1l/k972LX/PHt2nmbO4itCk4djL2NXXQ7l7gvRhJYLoFPXOnj7FJR4aNeyGkMHtMLvDlYy6ujcK4hi/CluhBAbhBAl/vLeTwjxW2HtdYdJp9iZ8/JCZoycz5+SFmWqlqZmC9c22oyR8zm+6zTHfz+DpkmkzYbZrNDzqfbgdILTSZs+jdm+Yh+bf9xDXFQSy2esx5ZjRzqcSJsdoboSsc8fuUjsubhrrqFD36YsPjaFd1a8xPDJj/H6gueLdA9mi4kSXibXVr+UJMdnMPe91ezdfILRPaYiVA00SaO21Qku48f+LSd4qc80fvpyc4F5pJT8umgH8yatIC3p2r3Y/sSgKEzr1529rz7P4GYNbzj2yP4LZGVZ0VTJyh/+KNK9XYt9W0+SlZ6Dqmr8OGdroWx69WuM0ahgthhp3KJygXPV6pXD3cOC0WSgQ68GRVpLoJ8XHqdT8DiexK4vtpEUnw7AI/XrUMbXB4MmOHwgml3HLxRpXh0dnXueQCll2p9vpJSpwPXLef+GviWnU+zEnovDnmvPf58Wn872pbvRVI2QisFYPMxoqsRoNuK0ObFl5LB6xjqE0ehyMOZtIS7W9X++74jOWDzMGIwK1rQsNLtkzZyNmE0GVsz4DSklk356iUp1y2N2M+LuWTBfplHHOjTqWOeW7qNSjdLERR1FNbthz7Xx09wt/Lxwp8tx0yRGk4HXPhuE0+Hknae+wm51cO5oNI3b16RcmKuUfvevR5gzfhlOu5Pzx6IZP384s15bQnZGLi98NBD/W6yKq12/HGazEdWp0bFbvVuao8B8TSqiGFzOT9vuhZuvZ78mtOtcG4ubCbPZ9VGjSQ1FKPj6e/LN1tfISM0hsIhCnI/1aMSSl5YC4LA5Gf/SEmYueoZSvt4MqlaHGat3oWoqc9ftoVWtCkWaW0dHh3s56VsTQpSTUkYBCCHKU4S71R0mnWLn+WlDmJyUwYXj0dhy7dRoHsbUYbMAeOSVXoz4/Ck8fd35afoaju86jZQSIQRCUbCYjZjczDgdTqSEpMtpzNr+Fsf2nGXGi/PJSnP1VTyy/SS2XDtCEayet5X9O05jNBr5ePVYKtUKvSP38fJXz/LLlxuZ8+piRAkfJKA6VTy93Mh2qtRqVJ5+FUdh8bDg4e2O6lQRAjy8rjhtdpurkawmJQ6bgxWzN7Jl6R+oqobJbOS1r4YXaU2qU8Xp1AgI8ubbn0eTmZ5LUEmfmxvehDIVgliw7XUy03IoXT6w0HZ/bodJKXnvxEK2JR7mvsC6jK81BLPFVGRnCcBoMNDo/poc2HQCaTRwLiqZr7/dyZOD7qNRlVBMBgNGA3SoV6XIc+vo6NzTjAN2CiG24doVvA8o9Ies7jDp3FWSYpPx8vPC7S86SqFVSzPjj8lIKXHYnXz12rfs++0wSElidDKD33oEgPseas6J3aeZNnwOodVK03FQW+xWJ/Xa1eSTEV9jy7VTqkIQ8dHJtO/XDB8/T6YOn4tXoDcPj+3BtGfn4uHjTnJSFk67iqZK9m48dsccJou7ma5D2zFv3Pc4M7NQTCaq1CvH+DlDsbiZefPh6TgdKjLbRo8n2+Hp70XdFmEElrpSSt/mwUbEnI/nUkQCT7z+IPs2HHXlbgkF37/oUBWG+NhURj70GdmZVka/148WHWuye/0xyoeVpF7zyjef4CZ4+3rgfYuJ6+mObHYmHQXg9+RjpNoz8bfcuiM38YvBvDRqMcePxeB0M3D0WCwAdSqWYtXEoWTm2qhcqmh5aTo6Oi7u4dYo64QQDYHmeYdGSymTCmuvO0w6d435by5h6dTVeHi7M+fIVAJL+xc4L4TAbDEx4PWHiDl9CbvVwX39muN0OFk98zfmj/uOqo0r07xPU/ZtPsnl6FT6vtAJgD4vdGbuhGUsnroGoaxl+rrXOHsshiybSnpUCltWHmDZpdmcORjJkmlriTAqWNzMtOh6+9tTf8XTx4O3l7/Euq+30HVoe5p0uTJ/nVbVOBcejdGo0K5vEyrWvOKonQ+PZuoLX5OVnkt6ciYdHm5GcKg/3Ya0xWgyYs220W1I2yKt5Y/NJ8nJtWEzKyybv40NP+3n5KEohCL48NtnqFa37M0nuUv4mDwo71GS2NwkQtwC8DXfXoNho9HAW+/25dXxS0lPz2X40Db554JLeBFc4r/RwFhHR6fYUYEEwA2oKYRASrn9JjaA7jDp3EXWL9iK0+7EbrVzbMdJ2vW/ugdabrYVN08L474fw5PVR/FOv4+p2qQy4TtOIjVJ+PaThG8/CUIQeTSKryf8SMsHG7N/2ymsOfa8nnCSrcv2ULZ6GQxGA4pBIaCUL9ZsG690/QBrjg2Lh4Vvjk7G2+/WK6Pio5N5Z+gcNE0yfv5wSlUIAqBJl3oFHCWAE/vO8/M32zG6mal/X7UCzhLArDd+4MLJS/nvN/6wh8Gv9cK/pC9dBxWsgLPbHOz8+RBBZfyo0yIMKSU//biXmKhkBg5pTWCQK1JTq2lFkmv6IZ1wPiEXQ0oOOFXcLSZSE6+dUG6zOzl0IprK5QIJ8i9aROv0kSiWzt5Co7bVeODR5jccqwiFzxuNJSYngVCPYAzi9utN/P08+WrGkNueR0dH52/coxEmIcRTwCggFDiMK9K0G+hQGHvdYdK5a/R58QHmj1uCp68n9TvUzj9+/sgF4i8m4e5t4c0ek0FKnp8+lMzUbBw2B0e3nbh6MilB01CdsG/dYWzS9QdXkxpCVfHwstDp0RaYzEayM3PpPKAl9lw7qtNVMac5VRTlSiGrqmp8+eaPRByP4dn3+lO5zs2jL8u+WE/E8RiQkiWfrGXsZ09cd2xclKsFiS3XTtzFZC6eiSMlIZ16LcNQFAW/YF8URaBpEpPFhH+wDz7+146KfPrSYnatPQJIJi58jixV8s2XW7HbnURdSOLjLwYDYPJ1w+BhxhCVDU6JJiCwXACtWlahSbvq15x79HvLOBOZgKIIfpj+JP5FKLWfMGweGSnZ7N92iur1y1Ox+o1VzM2KkUpehWs9o6Ojo3MXGAU0AfZIKdsLIaoD7xfWWHeYdO4a/V/tTc/nuriq2AwuscMTu08zps14NFVi8bTkV8sd23kKo9mAIy8J+k/K1Qwl/kIiIZVDiL+UDpqk9YONOXM8lpzkDOJPR2E0G2nWtR5CCNr3bZpva7aYeP2b51j79Va6P9keT18PVFXj8LaTRJ25zLrFO7Hl2PnwuXnM2TnxpvdTqXZZzBZXO5LKda80wc1My2b32iOE1S9PxZplAGjdowF7N4QTdSaOnk+1Z1T3qQhF0Ll/c56b1Jczpy+jmUyY3Iw88UoPHhjYEqPp2oKQ0efiseXaMbuZuHwhCe+yAflfAOVfvgmGBpegSe1y7Es6g8UORoPC6Lf70LRFweTno+HR/LzmMB3a1eB0ZDxWmxM3i4mYuLQiOUxmsxGE68uoyaz3ZNPRuWe4RyNMgFVKaRVCIISwSClPCSGqFdZYd5h07jgn9pzhk6dmEVqtNK9/OzLfWQLY+sPvaKrrt9GWbcs/Hnk8itxMa/57g9nAMx8NptOgtnj6epCdnsOQaiPJzswhMyGFL3e8xXONXiE+r+/R4U3HqFSn/FVradWrMa16XekXNuPlb9mydC9OpwoChCKu2dh364p9xJyLp+eT7fANcEV+Hni8NaXKB6JpkgZtrkRsXus9jZiIeASCObveomTZAMwWE6/NHgbAmkU7kVJiy3FwfK9LwNGnhCfJbukIo4G6LcMKVM79nRenDGDa2G8JKRdA+4eaYHE3MfTptkRHpfD40Nb54xRF8MnYPsgxkjMnL+PmbqJ8xaACczkcKq++/iM2u5NtO04z9Ok2fLt6Hw1qhlKziH3u3pr7JD/O3sx9D9QltFKhpUwKoEnJp9t+JyI5hfGd21PC7AaCfBkCHR0dnTtITJ5w5UpggxAiFbhYWGP9U0nnjjP9mTlcPBFD3IUEti/dQ6fBruTlqFOxrJm78Zo2kUejXC8ElKkcQoU65di1ci+zxy6gfvva9H+1FxlJGUgJu1fvB6DjoLZcPBGLwajQ4CZaSsmX03hv2BzOHY3CnmPHbDHhlBKJIPpcAlnpOXzw/DckXUqjxxOtmTdxOU6Hk/DdZ5ny05j8eerf53KU1n2zle8+WMl9fZpy+WIi9lwHbh5mki+nUbLsleosKSU1G1WgQvXSJF5O46nxvQGY9PVwfvtxD5VrhhJ2k+3AsHrlmLnpjQLH+l4nZ2hrwi52Je2le+lOVCtR+6rzIs9JdL0W9GxXm0G9m1417nocSY5l6+VzdC5VjcljvyM9NYfzkYm07FIHg0Fh7c+HOHEilkcfa0Fo2QA0TRJ5Lp6gkr74+LpfNd83ew/y+UGXsOaRqRfx2ZqJUARTPnucmnXuTDWjjo5OEZD3dJVcn7yXE4UQWwBfYF1h7XWHSeeOU65GKJfOx4OUlK4Skn88KTalQB5RPgL8QkqQFp+GpkoSY5IZNOFhPnpyJpqqcWTrcfqN7eEaiERqkpysXO5/rA33PdQMd293vP1uXBW1dMZvnDoQ4RKUNBtQVAdOh4bBzQ1Nanw16SeO7DiFU5Wsnr8NKSWqUyM7I/equTRNY/pzX6GpGqtmrefpDwfxyzfbadCmOjWaVCowdtLgmfyx8Rg+JTx5acYQVn+zg49Gfcvwt3rzaF7F350iyZbM/MjFOKSTU5ln+abp5xhEwa0yo9HAx1Me5dd1R2nbpholShReJiDdnsvArYuwqU4W7N9N6YRsnE6NyzGp5GRZiYpK4YvPN2C1OdgYGUGHHnVxHkhh9/qTmMwGZi5+Blu2jVLlAvOb8UZl5InuClBPZWK3OwHYsPaI7jDp6OjcEYQQ/tc4HJ73rxeQUph5dIdJ547z6oIR7Fi2h1KVgqnZ4sr2cP32tSgTFsL5w64IqMFoQFVVBDD0nf7sWrmP3av3Y7c6OLQlnKqNK3H2YCRhDStSpmopKtYpR+SxKEIql6JfxVHgdDJoXB86DWzNzeq7KtQojclsAgH2jBzsOa7tPw0oXSWUjUt+x6m5oi5+wd5cOhWDEFDC9+qtMiEEwWUDSE1IRzEoVGlQntRPc/n1hz+o26YGrbu7mrpqmsbuDcdBMZCebuXtQbNQ3Mw4nJKZ45fTtueN25sUFZNiQghXUpFZMSOu062pZo3S1KxRuOTrzZdPMPXkrzT0L8+Iap3R8vr65XpqtO1ejx3rwuncu1GePlMKSMgNNpCbbGflgv043DX8s2zYFfjfE1+SFp1MybIBzFz7MkaTgdGtW/Lr+bMk5+YgXPn5GI0G2nSoeWceio6OTtG59yJMB3Dd1bU+FCVQ6RrHr0J3mHTuOGaLifsHXt0cVlEUIo9F57/XNA2k63/r6pnreeGzJzm0Kdy1VfRsF6o0rEhybAoXT8QwrOZonHaVgNL+JKdZXX+4hcKiD9ewZNpvDHy1B/1HdS1wvYyULDLTcihTKZguA1sTWMqP9ORMpg6dmT/GhORSVApOp4ZQXJV36QkZGIXEmm0j4ujV29tCCD7//R32/nqYWi2rsXbx72SnZgMw5bn5NDk9FYu7GUVRMLtbcNidkOdoSFXDzcNC5bzk8DuJr8mHcTXGciTtGC0Dm6LcgdL9t8NXku7IJTUum16hDXmvcXdWXDjKkKrN6PBwGK+82y9/bK06obw4ujOzf9tDwuUsAIzZEjQVnJL4qBSE3cnli0kkx6dTMtSfEu7uLGjalVdGfosVgVQE3fo0pEGTire9dh0dHR0AKeUd+UDRHSadYkNVVTSnlv9eaq6vMQaTgaqNKlGzeVVWpS8EXM5VUmwyGxZt5+yB8zjtrvBDSlwqRh8vUIwIQDEacNidbFjyewGHKepMHKO6fYjmVHlkZBcGju1G4/tr83Sj11AloAgatKuJFQOnD0fh2rh3CWl26NeM/WtNRB6P5pnJj13zXnwDfeg0yCWWWKdFFZbPcuVmaZokMy0Hi7sZgKcm9GbOhOUYjAZqNqjAU5P6knQpnYZtrl2YsXThTr6bt51Gzavw+vv9MBiK5vRU9a5MVe/bV/X+k4peQZzOuIwESnuUoGlgJfpUqHvd8V271+fIpURWxR8FKfGKyYW8BO7K5UOIOHSB+q2qElzGD4Bdvxzig+Ff4TAoUDYYpOTS/rNoWmcURe8NrqPzT3Cv5jABCCEeAlrj+q6+Q0q5srC2usOkU2wYDAbMbibs1oLSAY+98RAD3+yLlJLjf5ynRKA3ZSoH82rHScSei8sXo9RUDalJGrSrScOOdanTsipvDfiCjLRsej9zf4E5V3+1GbvVgaZq7Fh9kIFju5GRnEnUqUuubSuDAU0xUsLPE4ubGSklj43pSrPOdalYswz9R3Yp9H0161SHh0d0YsP3e+jyWIsCrU96DW1LzyFtXNfMo0rt6yd5z5+x0dXCZecZIs7EEVbIrbO7xcymg1l/PpyLq6IJTz9LmUeaFriXP7E6nGw4cobyQX44HE4UIZCAIoWrGhEY+nI36jepWEA+4cCW46gOFWG1o5yJBk1y+Gw0v/98kNYPNr7qOjo6Ojq3ihBiJlAFWJJ36FkhRCcp5QuFsdcdJp1iZW74J3w/eQXnD18g5uxl+o3tyaAJDwMw/92VrP56G3arA4nAkJ6KpmoYTQYen/AI33+yBqdD5cKJS7z308sANOxYm80r9rNl1UEeGNQag9HAtpX7+XnGWoS3N0JReGRkZwA8fNwxWYw4bK7E4pMHIjAYXM6Y6nSyZPJKmna8urKsMDw5rjdPjut9zXPXcjCuR1j10lyMSMRoMhCSF4X5J/EwWjj2+Un2bD7BFqMBd08L7XrUv2rcK4vWsOeMq9JxQtd2bN58AtWhMej5DhzceZZ6jcrTqEXlq55Fz2Ht2bXmMBnpuQgpkVKioKIUMbKmo6OjUwg6ADWkdCnYCSEWAMcLa6w7TDrFSunKIYyd+xwAdqudHcv/4PS+c1RrUoWjv591aTOpGhJwGC0Is4ZmNFGyUkk8S3iRk5VLp4Eu7SGH3cnmn1wSA+eORhMbmUjZKiU5uPUEaBKZnoEwGenwkKts3mgy8uX+ySyZ+jPBZQNZPuM3rDl2hBBIpxOLu5nzRy5S6QYRoLvNR18O5djhKCqFlcTb5+oy/LvFpdhUtm0/RaNGFalaNaTAuZTkLFSnhpSQ/RetrL9yISEVq8OJu9nIwT8iMCfaUFUKC7n+AAAgAElEQVTJgb0RTPvqyetet2LNMkxb9z+ebfcuDpsTIQTDxvehRfcGd/T+dHR0isC9uyV3DijHFe2lsnnHCoXuMOn8Y7w3YDr7fjuCpklKhZXGo4QninBVriElOFUQCpjMXIpMZNGJqWSlZRNQyhV5SU/KdI3XJEaTwruDviD6fDzVm1bB7OeDIyuXIZMeKXDN0pWCeWnmMKSUZKRkcXDLCVr2qM+6r7dRqmIwLXvc2cq1omJxM9Go+e3lIJ08Gk3sxWRad6yJW14u1Y3QNMkLLywgO8vKooW7WPL98/j6XpEbyDUZ0CxGMBnA49rzvf1IJyYt20iVUoE8VL8O+9afwmCA+9rVuOn1S5UPpHP/5mz/+RB9hnegz/OdC3+zOjo6OoXHGzgphNib974JsF8IsRpAStnrRsa6w6Tzj3HuUCQOh4YQgtjTlxCKILByGdKSM9GcEk1VUYDQKiF0e6INFndzfjI1wKn9ERikhmpzkG2zYcvIQSoGTh24QFi98kxb++p1k6aFELzw0cD898MmPny3b/euM23tDlavP4zHrmSMBgM7Nhzn7c8G3tROSklOtisipCga1lwHvr5XzpcpH0BUdAo4VRIiE8nOyMXzb9GvhpXKMO2RblyMSqZq1VIs+OF5cnPshJYL4GYIIRgxZQAjpgwo8j3r6Ojcee7hpO8Jt2OsJwro/GP0frFbQSFLRSElNQcVgXTY8fJx45X5zzH3j3cILnv1H956bapjdjO5olFCcVW/CQFSkpmaXeQKs387Ul7/UywhPYuF2w+SlZyDQ9OwWR3EXEgq1LwGg8KbEx6kYqg/3e6vxaj+X/BY+8lcOBcPwMvjevHEk/ehJGSw7ItNjOg57ao5LlxM4rmRC5ny8VomTFpJQKD3DZ0lTdM4uS+C5Li0Qq1RR0dH5w6wH1dl3DbgMi6l79+llNvyjt0QPcKkU+wkRCdxOSKePiMfICs9l72/HSY1JQevAG9io9MQRiN4efFT7Oc3nMe7hCdvLxnB6w9/BhIcTjX/m9GDQ9sUw50UDwkZWfT/8nuSs7L5+OFudKoVln8ux+4gITOLkt5eeLlZsIYqkCopZ/Fk5Js3jC4X4Oj2MySevsy68Bg01SX9sHrxbka+1ZtMm419Z6NwOlzSDnHRKcReTKJM+cB8+5jYVIQQWK0OIi8k3vR608d8y47VB0AIvtj0BqUr3lovOh0dnTtMXn/Oe5TtwH1CCD9gPbAP6A/cPBSP7jDpFDPRp2N5tuGrSE2jYae6vLv6dYbm5RnZcu0MbTqB1KRM2vduVKj5ajWtwjf73iE1MZOXe0/DmmPH4mak+7B2d/EuipcNJ86RkpWDQ9WYtm4n7atWwmgykJZrpfusBWTabHSpEcaKsYM4eCGWJm+Wxc+zaAnjB3efx5brwGgyIISCwWCgQYsqALwx71eOXozBD4mQIIVk+tsr+Wj+U/n2zZpUomnjipw5G8/oF2/e8uXQ9pNYc+y4eZg5dzRad5h0dHSKAyGlzBFCDANmSik/FEIcKayx7jDpFCvv9J+GPdcOwB+/HOTiyRjK13D1DLO4m/kufDKqqhVpO80/2Bf/YF/mbB3HiX0RNGxTw9UG5R6hcYUyKIpA2CUZu2J4Y98cRs4ZyMB5P5CcnYMENp4+z0e9H6Bz3aq3dI0nx3Tm43HLCQn144U3e+Ht4065Si4nRpMaqqcJWzU/3CIzMbiZ8fXzLGBvMhl4e3yfa019TYa80ZsZr35H2bAQAkr6MLDqKMxuZt5f9QqldOdJR+ef5d6NMAkhRAtcEaVheccK/cdGd5h0ig0pJRfCo/LfG4wKF8Kj8h2m/OO3mHsUXMaf4DLX6rH436aivx+zunTh7ZELIdHKMZHB5O82IjekYKhnwumpMLhp4cvwpZRsOx5BZo6Nro2qYTIYaHV/LVrdX+ua498b2o1Pl25j7/E9KDYb5SsHMXbSQ7d1T/c/3Iz7H24GwNuPfkpSQhYCyc9zNjL8OurqOjo6OrfJaOB1YIWU8rgQohKwpbDG91ZWrM6/GiEEvUc+ALga79ZoUY2m3f/ZMv5/O8eORtOn61QmvbacsNJBKIqg79NtMSQ4MDgh+ICDlmklGNO+VaHnXHfoDP/7Zi3v/riJaat23HR8ST8vwhIceJxNRU3LIul0DB6eFsDlfM19bxWDW03i50U7AUiJT+elblN4scO7XIpIuO68manZOOxOYqNTEYqCVBT2/naEMwciCn0vOjo6dxaBq0quOH6Km7zk7l5Syil57yOklCMLa69HmHSKleenDeXZj5/Q+4QVknW/HMaep0xepmEFPlsxCoDIyERGHvkWVdV49ekbt3FRnSpSkt+S5FJyOqqm4VQ1opNuXqX289fbWP31NlRAsZgY/PqDACTEpjK6+4ekptsAmD1xBd0GtGDFrA2c3BeBpmkseG8lr88bDkDsuTg2ff87DTvUIvyPCBZP/QXvEp5kp7oa9SIh+mwcb/T6kGWxs4v8rHR0dHSuhRBiupRytBDiZ66x4Xgz/aU/0R0mnWLn/5OztH3VPha8v4rG99fm2ff6F6lNCkC7+2uyZcNxJJIOna60balYMYiVS0fxwVNzGffAFPqPfqBA8+E/OX8shlf6TsfpUHn7m2eo17oaBqEQ4uuNm0FhbC9XNaGUkoTYVEoEemFxKyhOGReVjNOuIoSgbd9mbF57lMWztlDC10Lq5TRwd0MIQVAZPxSDQrlqpTFZXM2RK9Qokz//mPvfISMli6XT1uBdOhCnQyU325r/TAQuhQiD0YCOjs4/yL2Xw7Qo79+ptzOJ7jDp6NxFPh6xAFuunaRLO+nQrznVGlYokn3jZpVZsnIkUoJvCY8C5yKPx7B/03FsuXYWfrCKR0Z2cbV5kZKIo1H4BHizeflecrNcEaBV87cRZVGZufZ3bHYnHtEZLD6zhDcXvsBnr//Ixp/24+Xjzuz1r+Lr75V/nUdGdObQ9lPER6fgcKpEnLiEzerAmpHjGmC1EVwhmM9WjUEIQcdHW+Bf0he71UGzrnUBuHjqEtlZVqTm+iSuXjeUXctjsGYJfEoHYssrBBCKoFaLMHR0dHTuFFLKA3n/bhNCBOW9vrn+yd/4//NVX0fnHyCkfCAWdzNCQEAp35sbXAMfX4+rnKU/5za7mXDztBBWr3x+pGbx+ysY034Sw+q+QmgF1xiTxUj7hxpjsztR83SWVCHYtz4cp8PJbz/+gdOhkp6SxenDUQWuY7IYiTkXT26Wld1rjyA1iZuHmQrVQkBTwemkQuVAfPIq54QQNOpQixbd6qMoCoveX8Gzzd5E08CnlB/PfjgQe1YuAFKTNGhVlRJB3gipodnsxBdCx0lHR+fuIaQslp9ivSchJgohkoDTwBkhRKIQokjK33qESUfnLjL151fY/ethqjWqSGBeD7w7hZevB1/+PpELJ2Op0bhS/vHdvxzClmvHZDFiy8plwd63UR0aASG+OJwqa1fv5eSJaHwOJmDxdif2fAIy14q0WEDVKB9WssB1TGYjZjcTEjCbjQx5uSvbl//BpTOxSKeGVFWO7TjJ8d1nqNWioKxBclwa33+8BgCpaqgOlTqtq2NxM3F46wmEIujxdAdGfj6ESY9MI/5iEi9Mf+KOPicdHZ3/3wghxgKtgCZSysi8Y5WAWUKIMVLKq9sXXGueG7Vb+LfRuHFjuX///n96GTo6/wpiIxJIT86iRuOKBXKj/vj1MO89PgP/EF8+3jiegFIlSLqcxkt9ppOWlEXfp9rw4ydrcDpUFHc32vZtSnZcMn/8epj2jzTntfnPXXWtmHPx7NkQTtU6ZRnXcwp2qwNMJlAEOF1J6V4lPFkeM5P05EzeHjST9KRMnE6N+Ig4yNuKM5gNGBWF+UemoDpUTBYTfiVvLfKmo/P/ASHEASll4+K6nmdgWVnjwTHFcq0D818qlnsTQhwCOkkpk/52PAhYL6UslC6LHmHS0fkPcmJfBG88OgOEoM/T7Xjifz3zzzV7oD6rk78qMH7n2sOkJGbgtKvs236Gh1/qwbJZm9EEWHPtTFo65oaCoaFVStKvSkkSY1KuHNQ0hNGUnx/q7uWSGli/eBdnDl3A6VBdCdyKgmIQSKcTp9WBwcNMYmwK1RtXvqPPBOBoxGUA6lYqdcfn1tHR+c9i+ruzBK48JiFEoVWOdYdJR+c/yOnDF1E1idPu4NCO0wUcpmtRu2llDAYFxU2hZdc69Hv2fuwOjbTETIa94bItjGBoUKg///v6ObYt20NgaAA+gT4YjAZyMrLpMshVcVe+RhkMRgNGk4HmXetz9mAEcREJoCi4e5jpOKAV1Rq5thCjTl8iMjyaZg/Uw83T7baeyarfjzHle5cG3f8ebc+DLWvfxEJHR+f/CfZbPFcA3WHS0fkP0q53I35bspvUhAyGvHZjZwmgSp2yzNs+nsy0bCpULw3A028+eEvXbt27Ca17N2HehKUs/mAlPv5ezNrzDktn/MavC3Zw/yPNmbxiLBkpWTTpWJufv9zMvPE/4nSqNOpQmxGfDAbgcmQCI1pOQAgIa1CRqRvG3dJ6/uTI+cvY7M7817rDpKNza/wTopJ3mXpCiIxrHBdAob+p6Q6Tjk4hiI1MJCsjl6p1yxZZS+lu4Bfkw+zNbxR6vC3XzqbvduDp40HZsJBbbj/zV35btB2nQyUny8qBTcf4aeZGNFVj7YLt9B/9QH4i+gND2xJ3MZH0pEyeerd/vv3lyASEAGu2jQsnYm57Pa0rhLLn2AXMFiNPdC62lA8dHZ1/OVLKOyLupjtMOv8osecus+LTNdRuXYN2/Qvf3qM4Cf/jPG8Omo0Q0P+FTgwY2bnAeafDycyXv+XiyVie/3gQleuU+4dWen3mvr6Edd9sRSgKmqrR85mOtz1nt6HtWDr9Vzx93GnYrhZBpf1IT8nC09sdn7/oOJktJp75YMBV9vXa1KB59wac2HOWZ6YMvK21rF1xgFnT1mOQkpHjelK+5J2tSNTR+X/FvRdhuiPoDpNOsWO3OXi3/yec2R+BpqmkxWewbv4WyoSVIqxhpWvaSCmZ+8b37F1/lMFv9qFNn6bFtt6TByJRnSqqU+Pg9lNXOUw7V+5n45Jd2HLsfPT0l8ze826xra2wZKVmozo1DAbITs8psr01186Sz9cjFMGAEZ2wuJkZMqEvD73QBQ8fN4wmIzO3jefkvgiqNayIyXzzjxaD0cDrC164ldu5ivDD0disDoSA40ej6dC1zh2ZV0dHR+dPdIdJp9g5sP4IhzaFY822oRgUpJQgXD3Prse5wxdZ8/VWl1My/CuyM23c92AjvHyvFnS803R4qDHrf/iDjNRsBr3c7arz/iElQLoEHgNL/zsjG898OBBNk3j4utN7xI17z12LxdN/Y9U323Ft+cOQl7sD4BNwJZLk6eNB4/uvnTckpeTz135gz/pwBozqQs8hbfLPpSVm8Hr3D0i+nMYbi0ZQv12tIq/v0SdacfxwFIpR8NCjzYpsr6Ojc4V7MIfpjqA7TDrFTmjVUkiJS6G6YSWCygZQp01Nqje9fksMv5K+CAQmNxNOu5NZry1h7YJtTF//BqpDxex288pQm9XOnvXHKFc1hIp5ic+FITCkBF9tu35Cct37qjP+uxe5dC6eTo+3LvS8xYlfSV/eWHTr0RxNk0gJQshbCtdfPH2ZTcv2Yrc6mD1+GT2euC8/F2zLD78TdTIWp0Nl3pvf8/nOd4o8f/lKQSxcVeim4zo6OjpFRneYdIqdstXKMOvAFKJPXaJx1/qYLTd3dgL/r737DpOi2Po4/j0zG1mi5AySgyJBQBQDiIAB8GJAucYrqK85Y8Zw9V5zQlFUzCLqVVHBAAoIBgTJUYJkkCjsLhtmpt4/ZsAFZtnAhF34fZ6nH2e6q7pPDbvj2erqqlqVeOb7exn//lQ+f3Ui2Vm5LJ+7hgsa38DOrRn0ubI7V/7ngv0W9s3KyCa5TBJmxoNXvM6CX5fjcDz3xS3Ua1IjYm06tsfR0CNipytxLrqpJ+YBwxhwbf4N3b5pJ39t2Um9ZjX3GhxfuXoFEhK9eDzBRXrzHktKTcKXG+xd9Hi18K5I3KmHKSwlTBIXdZvVpm6z2kWq06BFbS4feg6/z13DnCmL8Rvs2JKOCwT47KVvSUj0MujfA/aUf+Hmt/ny9Ykc2boOT0+4h5VL1pO1K4eUMkms+2PzARMm5xyzJi+iTLkUmrVrWOx2lhS5OT6++/hX0sqncvzpbYr8pJ/f70jfloELOPy5fhYvXsno4d/R8ZQW9Dy/MxDsRbqx938JBBytOzWiYqU0Lrj1DOo0rkG5Smk8/O7VzPt5Gb3/uffg/twcPwlpKfhy/AQ8Wt5SREomJUxSqng8Hs4c1I3FizaQuyuHQFY2jmCCs3jG8r3KjntzEs451i7byIp5q7nhv+fz4r0f0/ioOnQ4ucUBrzPqyS8Z9fRYXMBx47OXcMq5nQ6YZORk5/L0dW+wesl6rn/6Ypq2bRCB1kbOqw99ylfv/4SZkZOVS7f+xxap/nvPfMWEj34FoEy5VCZ8Mp2d2zOZPnEhzdvWp37Tmiz4dRmBgCMnK5ffJi3C5eSwZOYfjPjlIX6ftZIh/Z4EjMy/Mrjkrn57zn3yOZ346q0f2LpxO/8aem4kmy0iReU0hik/SpikxFu/YiOjH/uMxu0acsagHpzQuw270rP5c902juveiqevfpX0vzIZ/MgF/Pr9An4cN4e2JzQl7Yhy7NyWQbkjylKvWS1Sy6YwckrLQl1zwbRlZGVkQyDAY/96ibGvfcdj44bsd8tvtx8+nc6PoUVvn772DV6aOjSCn8DB+3PtNnKzc/EmeNm8YXuR66eWScY8FnqdFHwKLpQ/JiQGv0Y69zya0c99zaZ128AXwG+GNyH4ee1OpnKzc5k2fh6X3NWP7z/+hc9enkCvf57A8J8ejExDRUSiRAmTlHhDz36cFfNWkZSSRJ0mtWhzcitOO+/vJ6FemPIAvlwfs6cs4eFBr5GT7ePrtyYR8PmD42YSvHz03Ff8886+hb4Vdem9Z7Ny0To2Lt+AAxZOW8rmtduoVrdy2PLVQ/uTU5OodWS1g25zpF059B/sysiibIUynHFx0Qemn39dD1LLJuOco+/lJ9HtH8cy9r0fOeaEptRuWBUITqY5ctpDOOcY//6PLJn5B/2vCz6Rd2LfDox59Xu2btzOJXf2JSsjm8cHj8DvcyyZvZrWxzejTqPqEW2ziBSTepjCMucO/MmYWQowGUgmmGB95Jy7f58yVwHXAH4gHRjsnFtgZgOB2/IUPRpo55ybZWYTgZrArtCx05xzfx4olg4dOrjp06cXtm1Simxet5V1SzfQqkuz4IKteQw6+hZWzl9NUkoid7x1HV37d95zLCszm7sufJFFUxZiQCA1FQDz5+JxLjiY2OfHcAx5/SpO+kfh529yznFbr0dZOG0pDVvX5dmJ9x9whuzZUxaxfsUmTu7fkZQyyUX7AA4zqxatY1D7IViligA0aFaT4RPujHNUIiWPmc1wzsVs6vq0ynVd69Nvism1pr1zS0zbdrAK08OUDXRzzqWHVvWdYmbjnHM/5ynznnNuOICZ9QGeAno5594F3g3tPwr41Dk3K0+9gc45ZUCHuT9XbeKKo27GBRztT2vD0I9v2+v4A5/cxsh73ufnL2bwyMBnGbhwDf+85xwAXnvwf8yfOA98PszjwQw6ndGBrZt2sGLeashKB+dwwFPXjqTNiS2oWKVcoeIyMx4bN4TNa7dRuValApcTaXNCc9qc0Jxsv4/f/9pEg3JHkOjRU1/h7NyWTmJqMj6Cn/OG1VvjHZKIELzTrjFM4RX4SIoLSg+9TQxtbp8yeRe1S9v3eMgFwKhiximHsBXzVuMCwSkA5v6wcL/jtRrVoPOZwT9CfDk+xr06Yc+xr0d+D1lZ4PPhAgHI9TPovr5s3vAXPmd4Uv9eVzE7I5uxIycWKTaPx0O1upX3JEtbN/7FZ69PYunc1WHL5wb8nPX1q/T99nXOn/AWBfXgHq5adm5CnytOoXzZJI6oWo6bntx/6RQRkZKkUM/wmpnXzGYBfwLfOud+CVPmGjNbBjwGhJtB7nzg/X32jTSzWWZ2r5WEFU0lLo45pRWN2zXEm+Bh184sXr3z3f3KtO3empS0FLwJXvr8398zVael5bn1FQjg8XqY+OkMBt3Xj8o1KtDmpJZ4khLBDEvwUr9F+KkMRj09jrMb3MBDlw7nj4VrWDrrD3y5fr55/0cmfzZjT+Jzy9nP8tq/x3Br/2fZtH7/wdMbd+1kdcZ2sv0+5m5dT7ov5yA/neib/+MSPh32NTu27IzqdXZuy2DxrJX4fX7MjMH/uZDRi57g3d8e5qSz2kX12iJSBM7FZitlChzDtFdhs4rAJ8B1zrl5+ZS5EOjpnLskz75OwKvOuaPy7KvtnFtrZuWAj4F3nHNvhTnfYGAwQL169dqvXLmy0PFK6bF+xUYua34D/lw/GHy+8539xgH5cn1kZWRTtmLann0Lpy3ltp7/JjfHB8nJwUHdZjRoeyTDvx0CwOqlG/j+o2kcfXxTjunafL9rb9+8kwta3Y7LzsGb4MUCPjweDy2Pb86iWavAjKv/fR49Bx5Pv6a3kr0rl+SURJ4ecxMN90nAAs5xxeQPmLRhGWfVa8kzx53997FAgPk/LuGImpWoXUIGOK+Yt4r/63wvAX+AI2pV4v1lz0XlOn9tTWfQiQ+Tk+2jzfFNeOCNK6NyHZFDTazHMJWtXNe17nVjTK71y3u3HnJjmPZwzm03s++BXkDYhIngbbeX9tk3gH16l5xza0P/3Wlm7wEdgf0SJufcK8ArEBz0XZR4pfSY+d28YLIEVKhcnuTUpP3KJCQmULbi3j+yLTo25vOtr7NwxgruPPtJsnflArBuxaY9Zeo2rsHFQ/qEvW5OVi5X9/gvgaxscAF8WT6M4DIgKxeuISfHh8frCT4qD9z54qW88+Q4Op/WmgZhllfxmPH6SQPIDfj3G7/04i1v8+1bP+Cc48kJ99KkBMzVtGDaMgL+AABbw/SYRcrKxevJzfGRvSuH2VN/j9p1ROTQYWavA2cCfzrn9luoMnRn6lngdCATuNQ591u04inwlpyZVQ31LGFmqQQXgFi0T5m8i4CdAfye55gHOI8845fMLMHMqoReJxL8QPJLwOQQt23jdl68/vU971uf0AwzIzcnl7cf+pDX7nqXXem7wtZdt3IzV/X4D7ec9ST+9F2klEkipUIaVz10Dl++PYVp380/4LV3bs8k/a/M4C27smWxsmkkpiRRoUo5rnv6Ytqc0IxOPY6i3+BuAHQ6tTXPj7uNgTf1PuAUBeEGe8+ZvIiszGwcjt9nrijMRxN1J/XvRHK5MliCl4btjozadZq3a0Cj1nXwJni58MaiL/4rIrFjLjZbIbxBsIMmP72BJqFtMPt31kRUYXqYagJvmpmXYII12jn3hZk9CEx3zo0BrjWzU4FcYBtwSZ76JwKrnXN5p2FOBr4OJUteYDww4uCbI6XRnEkL9rz2eD1c9nBwAPDHT3/JqEc/IRBwZO7YxXUvXLFf3eFD/8eqpX/ikhLx5eRy/uBuXHTPP3j0/97gx6/m4PEYXXoeRa36lTkvNCfQ9k072Lx2KxWqlKNOk5r0uexEvnh9Ijk5fvB6qXdUY4Z9O4QPXxrPmlXbOO28TpStUOag2znokQE8dvlwqtevQtezCz+9QTSVrVCGdxc/xaol6yM+O/mcqYt56Y73ada+Idc9dRFP/C823fwicmhwzk02swYHKNIXeMsFxxb9bGYVzaymc259NOIpMGFyzs0B2obZf1+e1zccoP5EoPM++zKA9kUJVA5dR5/UkjLlU/Hl+hl4T3/qt6wLgN/nD44LdA6/z79XHb/Pz7RxM0lNTSQh0Ysvx4c30cNxZ7Zj+fw1TP1yFv7QraZJn/yK1+CvTTuYPGoqO7dlYF4PCYleHv3iDgbd24+BN/XihtOfYP3KzTRr34DM9CzefGwsfn+A0S+O5/SBXahco8JBtfPYnm34cG1U/wAqlnKV0mjVqXHEz/v4la+xae1W1q/YxHGnt6VTz6Mjfg0RiTBHaZq4sjaQ95HlNaF98UmYRKKtUvWKvLvyJXbtzKJ85b/nSDr3lrPI3LmL7MxsLntowF51Hr98GFM/mYY/EKDeMY3xeIw7X7uNuk1rc2vfp/Dn5OI8HvD7cbuyCABfvDweIDj9gHN4PMbi6cto1bkJHo+xfvUW/AHHtx9O4/xrelChclky07NITEqgbMXUWH4kUfHbd/P57OXxdDv/uCJN4FlcNRpUYceWnTgXoGrtSlG/noiUOlXMLO9cjK+Exi2XSEqYpERITEoksXLiXvuSUpIY9J9/7rVv9qT5fPDYZyyduYKsjGy8CV7++HUxLgAj7x7FfR/eQp3G1VkyayW5OT4sN4cA7P0Iq9dLQoKH2o1r0O28LsHrJydSrmIZdqVnk5DopfwRZRn21W3MmrqE1p0akZyy/yD00iQ3x8f9A54lN9vHb9/P56jjm3FE9QP3mKVvz+CxK15m57YMbn1lcJGf7Bv63nVM/vRXGrSozZGt6x5M+CISQxaI2aU2H+RTcmuBvF8udUL7okIJk5QazjnuOfNRsjKySUxKoFKNipSrlMbGPzbhnKNitfIAXPufARzdpQmVa1Tkz5WbeO7Gt/AmeMjOzMYFHOYxel92Ctc+ddGec3u9Hl4YdzvTJy6gTZempKYlk5qWzMl9D407xx6PkZCYQG62DzMjIbHgGcg/HzGBGePn4vP5eXnIuzz44c1FumZa+VR6X3xicUMWESnI7jHUo4BOwF/RGr8ESpiklElJSyErMxvzenjh50eoWrcK49+eTPr2DM4YfCoACYleuvUP3XI6vik9Ljwevz/AL+Nm8uKt7+JN9NLv6h77nbtyjQr0HHBcLJsTM94EL0+MG9gy3wAAACAASURBVMJ3o3/iuNPbUv6IsgXWqVG/Kt5EL94EL7Ub1Sj2tXOychn3/k9sWbeNlDJJ9Di/M1VrVWLLhu188dpEjmxdl66HSGIqckgoIWOYzOx94GSCt+7WAPcTXG2E0HJsYwlOKbCU4LQCl0UzHiVMUmqYGU9PfpBv3ppIu+5HU61eVQB6XHxSwZWdo3WXpryz6KkoR1lyNTq6Ho2Orlfo8ief25nUcilkbM/k5HM7F1whHy8/8AnfjP4ZX05wEeTvP5nOiMn38sA/h7F09ioSkxI4onoFWnWO/MBzESm9nHMHXDMp9HTcNTEKRwmTlHxzJi/gwyfHcHy/jvS6rBuXP3xhkerv2LqTK4+5jW0btnPurWfxr0cGRinSwlvw6zIeuHg4aeVTePSjG6let3K8Q9qPmdG5934PyBbZtk078OcGB0W4gCP9r+CcWrvSs4KTZlrwtYiUDFp8N7xCrSUnEi/OOe4+4xF+/nwGz1/zKmuX7n97evmclaxalP84v/lTF5OxPQO/z8/YEeOjGW6hvfvEl+zYms6GVVsY/8HP8Q4nqq5+sD8du7ekces6HN2lCfe9NgiAu0dexXGnH8P5N/amffdWxTr3L1/NYtQTX7B9046CC4uIHAT1MEmJl5yaRFZGNpiRmBx8ki5jRyaJyYlMeGcyw65/HQfc/f6NdOlz7H71W3VpRmq5VHKzc+l56Skxjj68die3ZP4vS3EOWh4bvRm2S4KqtSoxdOTg/fY3aFGb+98pfm/6ounLeOTS4fhyffw0dibPfnfvwYQpIhCah0ldTOEoYZISzcx4ctKDfPvmRNr1aEO1ulX49u1JPHXFcJJSk2jRuQnZu3LAYNb388ImTOUrl+OdFcNI35ZBpeoV49CK/fW/+lSO7tKE1LRk6jQu/oDqw1n69kzMDL8vwM5tGfEOR0QOcUqYpMSr36IOV+SZj+mzYV/hy/XhcJStlEZaxTKkpKVw1lWn5XuOxKTEEpMs7dakTf0DHt+yYTsPXPIyWZnZ3P3qFdRvtv9ivyWJL9fPsvlrqNOoOmnlUqJ+vfbdW3P2Naex5LflXD703KhfT+RwoTFM4SlhklLnjMGnsmzWH3g8xo+f/orX66Hv7b2o26x2vEMLa+e2DJJSEklOLfzkl+Pfn8pLd31AZrYfHLz13y+49/X9b2uVJHcOeIHf564hrVwKr06+h9S05Khez8y45J6zo3oNEZHdNOhbSp3el3dn1JqX6Xdtb/w+H1mZ2Sz8aUm8wwpr7BuTuKD5LVzY4lbWLttY6HrPXPMa6VvTIeBISk6kSZv6OOdwMR5b4JwjJyunwHKBQID5vy4ne1cOGTt3sX7l5hhEJyJR4WK0lTJKmKRUqlClPGffcDoNW9enZqPqXLrPWnMlxRcjJ+HL9ZOTlcuv4+cVul7NhtVITvKQEPBx89P/pEP3lpzbagj9m9/OwhkrohKrc46Nq7aQk50LBJdTueHkB+lTdRDP3fDGAet6PB76X9Udr9dD646NqN+sZlRiFBGJF92Sk1KrSu3KDJ/5eLzDOKAzLz+ZF29/j6SURDr2OKrQ9Z4afy/TvppF82MbUbtxDZ6/8wMydgTnLxrz+mRatG8Y8Vj/c8UIfvziN46oUYHhUx9g7bKN/LFgDc7B2Ne/57pnLsHM8q3/r7v68K+7+kQ8LhGRkkAJk0gUnX7JiXTt257klCSSUhILrhBSrlIa3S84fs/7Tqe2ZvzoaQAc16vwiVdRTP18Br5cP39t3smKBWs5snUdKlYrz7aNf3HMSS0PmCyJyKHB0KDv/ChhEomychXTDvocHbu3YsTkuwn4HTXq7T8reObOLCZ88BO1G1en3ckti3WNXhd35cuRk6herwqNjqpLcmoSr854lE1rtlLzyGqFOsf2TTsoVykNb0LBi/uKiJQmSphESolqtY/I99gjlw9nzg+LMY/xyP9uolXnJkU+/7VP/JPL7z+HlLQkPJ7g8MaklCRqF3KeqGdvfodv3/+RanWOYNj395BaNvpTC4hIhDmniSvzoUHfIoeATWu2BgdrG2xZv73Y5ylTLmVPslRU40f9hC87lz9Xb2HpnFXFjkFEpCRSwiRSAqVnZjP4oQ/oc+MIZi5eU2D5W1+6nObHHskp53Siy5kHv2BucSQmBr9OfLk+0rdr5m2R0spcbLbSRrfkROLM73yMW3Mf63fNp0u1wbSqeAbf/LSIhSs2kJPr55l3J/DEzavJ8a2gasX7SErYf4bwJsc04Jlv7opD9H8rWzGNzJ1ZADinAeIicmhRD5NIlDnn+PqLWXzw9lR2Ze4/CeT6zHmsyZxFdmAnU/98CYBGdatgZqQkJ3LacSvZlj6S9F1fsWHL9bEOv9ASK5aFpEQSyqexfXtmvMMRkeLSxJVhqYdJJMomfDWXF54Yi9/vWLl8E7ff32+v4xWT6mDmIZEUqqU0A6BN09q8dv8FbNqWTuvGi9mw7U3Ai8dTPg4tKJw+l57Iq/8eQ0paEu1ObBbvcEREIkoJk0iUZaRn4QIQ8AfYGZp8Mq+yiVUY2HAkW7L/oE6ZNnv2N6lXlSb1quJcAxyPketbSaVyl8cy9CLpe9mJnNKvPSmpRZtzSkRKltI4vigWlDCJRFnvPu1Y9cdmtm3N4OqbeoYtUzaxKmUTq4Y9ZmZUSOsfzRAjpnylg59zSkSkJFLCJBJlSckJXHfb6fEOQ0SkYA4IqIspHA36FikFMv7K4O4zHuGajnewcmHB0wwAZObMY+OOEeT41kY5OhGRQ58SJpFSYOyICfw2YS5Lpi/npRtH7nUs4AI8veAbrvhxJAu2rwMg17+JJRv7s277f1i8oS9OM/eKSGHpKbmwlDCJlAI1G1XHm+AhuUwydZvX3uvY1D+XMuqPX5i2ZQW3/zYaAH9gJ84FcOTiC2ynVH47iYiUIBrDJBJDC35egtfrodmxjYtU74SzOzH0f7ezY/MOTjqvy17HKiSl4hwkmJdKScFB1ymJR1Kz4i1sz/yS6uWvxUx/G4lI4egpufCUMInEyJcjvuWlm94ABzePuIpuF3YtUv0Op7UJu//oSnV5ssP5/L5zI2fXbbdnf43yV1Gj/FUHE7KIiIToz06RGJk3ZRHZmTnkZOUy78fFET131+pNubxxVyol67F+EZFoUA+TSIwMuKMf86Yswpvgpf+NZ8Q7HBGR8PSQSFhKmERipH7Lury9bFi8wxARkWJQwiQiIiJ7aNB3eBrDJFJCBAIBxr8zmS9e/pbcnNx4hyMiInmoh0mkhBg7YgLDb3kD52Dt0vVc+fjF8Q5JRA43pXRSyVhQwiRSQmzdsA1/boCAP8CWtVvjHY6IiOShhEmkhOh/05msWrSWXTuzGPz4RXGLwznHs1N/4pvff+fa4zpzevNmcYtFRGLLANNTcmEpYRKJs3XLNvBA/yfwJngY+r/bqFavatxiycrK5ffNm3n11+lk+Xzc8uU4ejdripnFLSYRkZJAg75F4uydhz5ixdxVLJv1Bx88/lm+5fw+P7//tpyMHZlRiWPerFWc0/Nxbrt0JC7gSPZ6qVa2rJIlkcNNIEZbKaMeJpE4a9LuSH74+Gecg8ZtG+Zb7p6zHmXuDwtJLZvKG4ufJa1CZGf1/nbcHHKyfZANp++sTtt+LejRuGhr3omIHKqUMInEWb/relO3eW28CR7adjsq33KzvpuHL9ePmbFq0TpadGoS0Ti6ndaaCePm4HCc36sDHY5RsiRyONIYpvCUMInEmZnlu7BuXufd3pf3H/2EJu2OpHHbBhGPo037Bnww9macg7LlUiJ+fhGR0kwJk0gpcdlDF3DpgwOiOqYorawSJZHDmuZhypcGfYuUIvsmS3N/WMiD5z7BxNFT4xSRiMjhQT1MIlGwatFaFv+6lOPO6kDZipEdnL2b3+/nzl4Pk70rh1++/I2WxzWjWt0qUbmWiBwuHGgMU1jqYRKJsM1rt3DNsXfw7NUjuOXk+6N2HTPDm+jd/Q5vQvB1TnYut3YbyplpA/n4mS+idn0RkcOJEiaRCNu0JrisSXZmNuuWbYjadTweD09OfIB+15/OQ2PuoHLNSgAs+HExi6cvI3tXDm/e/0HUri8ihyZzsdlKG92SEynA8jkreeCcJ0gtl8LDn99JlVpHHLB8846NOfWik5jxzWwu+/cFUY2t8TENafzM3nM31W9Zh4QELylpyRzVtUVUry8icrhQwiRSgJH3vM+6pRvweD188fI3XPrAgP3KOOdwzuHxeDAzbnhxUBwiDapUvSIjFz/LmiXrad5RcymJiESCbsmJFKDlcU1JSUsmMSmBJm2P3O/4yoVr6F/1cs4qexEzv5sbhwj3V7FqBVof35yERP1NJCJF5FxstlJG36YiBRgw5GyadWxCmXIpNO+4/+za49+ezM6t6QB8+MSYA87WLSIipZN6mEQKYGa0635U2GQJoEPPNiSlJpGUkshJ53WJcXQiIhHkwAKx2Uob9TCJHKQ2J7XiraUvkJOVQ82G1eMdjoiIRIESJpEI2P1If3EEAgHGvPg12zZu57xb+5BWIToTXYqIFEopHF8UC0qYRA6S3+dnzZJ11GxUg6TkxCLX//atSbw65B38uX7WL/+Tu969IQpRiojIwVDCJHIQnHPcdOK9LJu9kmr1qvDK7CdITCpa0pSzKwfnHIGAIzszu8DrTf10GmZGl77HRnUhXhE5TKmDKSwN+hbJh3OO4be+yfm1BzP6ic/ClsnKyGLRL0vJ2ZXDxj82sTk0y/dufr+f1+95j6H9H2ft0vVhz9HrX93od21vug/syg0vHXj+pv898yX/veh5Hv3nc3z6/NjiNUxERIpMPUwi+di4chNjhn1NbnYurw15j77X9CI5NXmvMqllU+k28AQmvPMDbU5uSfUGVfc6PuXjX/jfM2PJ3pXN5rVbeeHnR/e7TmJSIoP+e1GhYlq9eC05WblgjlWL1hW/cSIi+TCNYQpLCZNIPipUKUdKWjLeBA/lK5cjMZ/xSUPeup5bX/u/sJNEppZLBcDr9ZJWvsxBxzTwnnNYuWANZsbAu/9x0OcTEZHCUcIkko/Usqm8MudJ5k9dTNvurfF48r+Dnd+M2sf2OoabXr6SNb+v4+zrTj/omKrWqczTkx8qVt3Mnbv46KnPKV+5HH3+r+cB2yMihzH1MIWlhEnkAKrUOoKTzj2u2PXNjO4Du0YwouJ7/rrXmDhqKl6vh+TUJHr/q3u8QxIRKTWUMIkcJrLSs3D+AAGPkZVx4KfxROQw5YBSOAt3LBTYJ29mKWY2zcxmm9l8M3sgTJmrzGyumc0ysylm1jK0v4GZ7Qrtn2Vmw/PUaR+qs9TMnjM9Hy0l3HejpnBZ8xsYccc7uFLYZX39sCs45cIT6HP1aZxxZY94hyMiUqoUpocpG+jmnEs3s0RgipmNc879nKfMe8654QBm1gd4CugVOrbMOXdMmPO+BAwCfgHGhsqPK2Y7RKLuiUuHkZvj47MXxtF9YFeOPLp+vmXTt2fww8c/0+iYBjRt3yiGUeavUvWK3PHmdfEOQ0RKMMPpKbl8FJgwueCf0umht4mhze1TZkeet2n7Ht+XmdUEyu9OuszsLaAfSpikBKtarwpb1m7FPEal6hUOWPbO3v9mxZyVAAyf+Th1mtaKRYgiIhIlhRrDZGZeYAbQGBjmnPslTJlrgJuBJKBbnkMNzWwmsAO4xzn3A1AbWJOnzJrQPpES69mpD/PTmOm07NKMStUrHrDshhV/kr0rh5S0ZDat2aKESUSklCvUc8XOOX/otlodoKOZtQ5TZphzrhFwB3BPaPd6oJ5zri3BZOo9MytflADNbLCZTTez6Zs2bSpKVZGIqli1Ar3/1Z36LeoUWPb2N6+lQau6nHrRSbQ5uVUMohMRiRDnYrOVMkV6Ss45t93Mvic43mhePsVGERyfhHMum+AYKJxzM8xsGdAUWEsw+dqtTmhfuGu+ArwC0KFDh9L3Ccth6diex3Bsz3BD90REpDQqzFNyVc2sYuh1KtADWLRPmSZ53p4B/J6nrjf0+kigCbDcObce2GFmnUNPx10MhF+sS0RERGKnBPUwmVkvM1sceqJ+SJjjl5rZpjxP418R8c8jpDA9TDWBN0OJjwcY7Zz7wsweBKY758YA15rZqUAusA24JFT3ROBBM8slOLPDVc653auT/h/wBpBKcLC3BnyLiIgIsGf89DCCHTVrgF/NbIxzbsE+RT9wzl0b7XgK85TcHKBtmP335Xl9Qz51PwY+zufYdGC/sVAipV3mzl1k78qhUrUDP0knIlLilKyJKzsCS51zywHMbBTQF9g3YYoJLSYlEkEr5q3i/NqDGVjvKsa+Oj7e4YiIlGa1gdV53uf3RH1/M5tjZh+ZWd1oBaOESSSCfh03k9zsXHJzfIx77bt4hyMiUmTmXEw2oMrup+BD2+BihPs50MA5dzTwLfBmJD+LvJQwiURQl77HklImmYREL2df3zve4ezFOUfGjsx4hyEisttm51yHPNsr+xxfC+TtMdrviXrn3JbQE/kArwLtoxWsFt8ViaA6TWvx4cZX8eX6SU1LiXc4e/h9fm466T4W/fI7J57TmXtG3RzvkESkpCo5cyT9CjQxs4YEE6UBwIV5C5hZzdCT9wB9gIXRCkY9TCIRlpiUeMBkad7URbz/6CdsXBm7iVjXLdvAspkrcAHHpNE/kZOdG7Nri4gUh3POB1wLfE0wERrtnJtvZg+G1q0FuN7M5pvZbOB64NJoxaMeJpEY+nPVJoac9hC+HB+fD/+G91a+FJPr1mhYjZpHVmft0g20OaklScmJMbmuiJQ2JWsWbufcWGDsPvvyPqV/J3BnLGJRwiQSQxk7dgHg9wdI35ZeQOnISUxKZPjMx9m8divV6lU5YNmtG//isevewjnH7c9fQuUamh5BRES35ERiqGHrelz60ACOOrEFQ/93W0yvnZCYQI0G1fB4Dvxr/96zXzH359+Z98tS3ntG88mKHFYcJWqm75JEPUwiMXbOzWdxzs1nxTuMfNVqUJXEpMQ9r0VERAmTiOzj7EGnULVWJQCOP71NnKMRkZgrOTN9lyhKmERkL2ZG1zP3Ww1JROSwpjFMIiIiIgVQD5OIiIjsYaVwQHYsqIdJREREpADqYRIREZG/qYcpLPUwiYiIiBRACZNIBH3/wVT+fcEzLPh5SbHPsXrxWq5ufzu3nHI/2zf9FcHoREQK4ICAi81WyihhEomQ9cs38sRlw5j4wVSG9HwIV8xu7dfufJelM1cwf+oiPnvhqwhHKSIixaGESeQgrJi7km/fmkTGjkw83r9/nbwJ3mKfs+FR9UlJSyYhKYF6LepEIkwRkUKK0bIopXCclAZ9ixTT+uUbue64uwEY8+JXPP/zo9z30a38MvY3zhh0KmZWrPNedP+5NDqmAWXKpdLu1KMjGbKIiBSTEiaRYvpz9WbMICsjm7VLN/Dnqk28cttbpG/PYPrXs6hQuRxDP7mdyjUrFem8Ho+HE87ulO/xNb+vJ61CGSpVq3CwTRAR2V8p7P2JBd2SEymmo7q24JQBx1O7SU2ueWEQHz43ljWL17F1/XbWL9vIkhnL+fT5sRG95ugnPuPKNrdw0ZHXsHTmioieW0RE8qceJpFi8ng83DziaubPWc0d172N3xfAU7UStuUvzBMcx9SoTYOIXnPS6B/JycolISmB2RPn07htw0LXdc6RmZlDmTJJxb5dKCKHAfUwhaWESeQg/Th5MTnZPgBan9GRyy7tQuaOXaSWTeHoE1tG9FoX3PkP/n3BM5SvXJau/fO/bbcv5xx33zKK6dOW07Z9A/7zzIVKmkREikAJk8hBOqVHK774eDo+n58LrziJozo3jtq1Tji7E19mvouZFSnh+Wt7Jr/9ugIXcMyeuZKtW9KpXKVc1OIUkVJq9zxMsh8lTCIHqXGzmnz0zW24gCMpOfq/Uh5P0Ycelq9QhqbNa7J0yQaObFydSkeUjUJkIiKHLiVMIhGQmFj8eZdiweMxnh5+CZv+3EHVauXxeHQ7TkTCceAC8Q6iRNJTciKHuA+e/Yorugxl3NtTqFGzIl6vfu1FRIpK35wih7AtG7bzzpNfsnb5nwy/ZzRZGdkHLL9pzRaG3/Y23777Q4wiFBEpHXRLTqQQFk9fxtjXvuOEfh05tmebeIdTaGXKpZCckoTX4yO1bAqJBYyxeuC8p1k66w+SUhKpWvsIjjm5VYwiFZESQ9MKhKWESaQAfn+A23o8TFZGNhPencKbi58p8uzd8ZKalsIL397J7KmLaX9KqwLXuPPl+HDOYRi+XH+MohQRKfmUMIkUgsv7F1cp++OrRv0q1KhfpVBl7x11I28/9DGN2zak/alHRTkyESlxNK1AvpQwiRTA6/Xwn3F38fnwb+n6j45UrlU6epcKwznHa0M/YsqY3xhwy+n0+mdXhrx5TbzDEhEpcZQwiRRCq+Oa0uq4pvEOI+JWL9nAmBHfk5OVy3M3vcNpFx5frHmeROQQojFMYSlhEjmMVaxaDm+Cl+QyRqWq5ZUsiYjkQwmTSAkw/+ff+X70T5xybueY9mSVP6Iswybdy4Jpyzj21NYxu66IlGDqYQpLCZNInPhyfZgZudk+7jzrMbJ35fDN2z/wwYrnSS2bErM4ajWsRq2G1WJ2PRGR0kgJk0iM+HL9/Pz1HKrUqkhWehb3nf8cXq+HB0ffQCAQXIogEAgQ0BMqIhI3Tj1M+VDCJBIjz9/xPpM/m4FzjsYtapGTlQvAlDEzGPrBjYx7YxK9LjmRtPKpcY5URET2pYRJJEZWLFhLVmYOSSmJ1G1Wk8UzlmNmdDmzLW1OaE4HzXskIvHmgIAW3w1HCZNIjPzfI+fx5PVvUa1uZQY9eC4X3dEHj9dDxSrl4h2aiIgUQAmTSITtnhXczPba37xdQ0ZMuX/P+zIxHNgtIlJoGsMUliZdEYmgX7+eTZ8j/sWFja5nw8pN8Q5HREQiRAmTSAS9/9gYcrJy+WvTTiZ9+Eu8wxERKTrnYrOVMkqYRCLo+L4dSEpJJCHRS5sTm8c7HBERiRCNYRKJoP7X9+bYnm1IK5d6SC3SKyJyuFPCJBJh9ZrVincIIiLF5ECT54alW3IiIiIiBVAPk4iIiAQ5cE4TV4ajHiYRERGRAqiHSURERP6mMUxhqYdJREREpADqYRIREZG/lcJJJWNBPUwiIiIiBVAPk4iIiAQ5BwE9JReOephERERECqAeJhEREfmbxjCFpR4mERERkQKoh0lERET2cBrDFJZ6mEREREQKoB4mERERCXEaw5QP9TCJiIiIFKDAhMnMUsxsmpnNNrP5ZvZAmDJXmdlcM5tlZlPMrGVofw8zmxE6NsPMuuWpM9HMFofqzDKzapFtmoiIiEhkFOaWXDbQzTmXbmaJwBQzG+ec+zlPmfecc8MBzKwP8BTQC9gMnOWcW2dmrYGvgdp56g10zk2PSEtERETk4Di0+G4+CkyYnHMOSA+9TQxtbp8yO/K8Tdt93Dk3M8/++UCqmSU757IPJmgRERGRWCrUoG8z8wIzgMbAMOfcL2HKXAPcDCQB3fY9DvQHftsnWRppZn7gY+DhUHImIiIi8eI0rUA4hRr07ZzzO+eOAeoAHUO31/YtM8w51wi4A7gn7zEzawX8F7gyz+6BzrmjgK6h7aJw1zazwWY23cymb9q0qTDhioiIiERUkZ6Sc85tB74nOD4pP6OAfrvfmFkd4BPgYufcsjznWhv6707gPaBjPtd8xTnXwTnXoWrVqkUJV0RERIrAAS7gYrKVNoV5Sq6qmVUMvU4FegCL9inTJM/bM4DfQ/srAl8CQ5xzU/OUTzCzKqHXicCZwLyDa4qIiIhIdBRmDFNN4M3QOCYPMNo594WZPQhMd86NAa41s1OBXGAbcEmo7rUExz3dZ2b3hfadBmQAX4eSJS8wHhgRqUaJiIhIMTinMUz5KMxTcnOAtmH235fn9Q351H0YeDifU7cvZIwiIiIicaWZvkVERGSPkjSGycx6hSa5XmpmQ8IcTzazD0LHfzGzBhH+OPZQwiQiIiIlTmgo0DCgN9ASuGD3SiJ5/AvY5pxrDDxN8In8qFDCJCIiIn9zgdhsBesILHXOLXfO5RB8Cr/vPmX6Am+GXn8EdDczi9hnkYcSJhERESmJagOr87xfw97Lq+1VxjnnA/4CKkcjmELN9F1SzJgxY7OZrQy9rUJwrbpD3eHQTrXx0HE4tFNtPHSUhnbWj+XFdrLt6/HuoyoxulyKmeVdT/YV59wrMbp2kZWqhMk5t2fmSjOb7pzrEM94YuFwaKfaeOg4HNqpNh46Dpd2FoVz7kATU8faWqBunvd1QvvClVljZglABWBLNILRLTkREREpiX4FmphZQzNLAgYAY/YpM4a/5348B/guWuvSlqoeJhERETk8OOd8ZnYt8DXBSa5fd87N32fi7NeAt81sKbCVYFIVFaU5YSqx9zkj7HBop9p46Dgc2qk2HjoOl3aWWs65scDYffblnTg7Czg3FrFYlHquRERERA4ZGsMkIiIiUoASlzCFpjifFdr+MLNZeY4dbWY/mdl8M5trZin5nOM6M1sUKvdYnv13hqZPX2xmPWPRnnziO6g2mtlQM1ub5xynh/YnmtmboXoLzezOWLZrnxij0sbC1o+VaLYzdLyemaWb2a2xaE84Ufx57WFmM0L1ZphZt1i2K0yc0fyZPSS+e/KUvcXMnJlVCb2vYGafm9nsUP3LYtGefGKLShtD+04OnXe+mU2KdlukhHHOldgNeBK4L/Q6AZgDtAm9rwx4w9Q5BRgPJIfeVwv9tyUwG0gGGgLLwtUvJW0cCtwaZv+FwKjQ6zLAH0CDQ6yNhapf2tuZ5/hHwIcHKlNa20hwUe9aodetgbXxbl+U2nnIfPeEjtUlOAh3JVAltO8u4L+h11UJDr5NOsTaWBFYANQLva8W7/Zpi+1WYgd9m5kBKrCOfAAABEdJREFU5wG7/+o8DZjjnJsN4JzLb56Fq4H/OOeyQ+X+DO3vSzCZyAZWWHBEfUfgpyg1oUAH0cb8OCDNgnNRpAI5wI4IhVssUWjjwdaPiii0EzPrB6wAMiIV58GIdBudczPzvJ0PpJpZ8u7f3XiJwr/lofbd8zRwO/BZnn0OKBc6b1mCCZMv0nEXRRTaeCHwP+fcqlD9P8NVlENXibsll0dXYKNz7vfQ+6aAM7Ovzew3M7s9n3pNga4WXLV4kpkdG9pfmCnWY624bQS41szmmNnrZlYptO8jgv9zXQ+sAp5wzm2NWvSFE+k2FqV+LEW0nWZWFrgDeCC6YRdJpP8t8+oP/BbvZCkk0u08ZL57zKwvwZ7A2fscegFoAawD5gI3OFe4xcKiKNJtbApUMrOJFryFfHH0QpeSKC49TGY2HqgR5tDdzrndGf0FwPt5jiUAJwDHApnABDOb4ZybsM85EoAjgM6hsqPN7MhIxl8YUW7jS8BDBP+qe4hgt/PlBP9q9QO1gErAD2Y23jm3PDKt2luc2ljY+hETp3YOBZ52zqVbdNaR3Euc2rj72q0IrjB+WgSackDxbGesRKuNZlaG4K23cP9OPYFZBHtzGgHfmtkPzrmo9HDHqY0JQHugO8Ee/J/M7Gfn3JKDbY+UDnFJmJxzpx7oeOiW0j8I/nDutgaY7JzbHCozFmgH7PultYZgt6kDpplZgOB6QYWZYj1iotlG59zGPOcZAXwRensh8JVzLhf408ymAh2AqCRMcWpjYX8OIiZO7ewEnGPBhxYqAgEzy3LOvXCQzQkrTm3EzOoAnwAXO+eWHWQzChSndh4q3z2NCI7Bmh1K4usAv5lZR+AygkMhHLDUzFYAzYFpEWnUPuLUxjXAFudcBpBhZpOBNoASpsNESb0ldyqwyDm3Js++r4GjzKxM6JfhJIID8Pb1KcGB35hZUyCJ4OKKY4ABZpZsZg2BJkTpl7mQit1GM6uZ5+3ZwLzQ61WE7tebWRrBXrZFUYi9sKLRxsL+HMRSxNvpnOvqnGvgnGsAPAM8Eq1kqZAi3kYzqwh8CQxxzk2NWuRFE42f2UPiu8c5N9c5Vy3Pz+UaoJ1zbgPB757uAGZWHWhGlP5QK6RotPEz4AQzSwj1RHUCFsaiMVIylNSEaQB7d6XinNsGPEVwbZlZBMc7fAlgZq+a2e4FFF8HjjSzecAo4BIXNB8YTfAX5CvgGuecPyatCe9g2viYBR+JnUMwObwptH8YUNbM5ofOMdI5Nyf6TclXxNt4oPpxFI1/y5ImGm28FmgM3Gd/PwZeLQZtOZBo/MweSt89+XkI6GJmcwn22NyxuycnTiLeRufcQoL/fnMIJryvOufmHaiOHFo007eIiIhIAUpqD5OIiIhIiaGESURERKQASphERERECqCESURERKQASphERERECqCESURERKQASphERERECqCESURERKQA/w89l6kAsswohAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5, \n",
+ " c=hazus_displacements,\n",
+ " )\n",
+ "\n",
+ "plt.colorbar(label='Displacements from Lateral Spreading (m)')\n",
+ "\n",
+ "plt.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/_sources/contents/sep_docs/tutorials/sep_tutorials.rst.txt b/_sources/contents/sep_docs/tutorials/sep_tutorials.rst.txt
new file mode 100644
index 000000000..45d443d56
--- /dev/null
+++ b/_sources/contents/sep_docs/tutorials/sep_tutorials.rst.txt
@@ -0,0 +1,15 @@
+Tutorials for using the OQ-MBTK for analysis of secondary perils
+################################################################
+
+Several tutorials are available for preparing data and performing calculations
+relating to secondary perils (coseismic landslides and liquefaction).
+
+These tutorials are given as Jupyter Notebooks, which are included in the
+tutorials_ directory in the main repository_.
+
+.. _tutorials: https://github.com/GEMScienceTools/oq-mbtk/tree/master/tutorials/sep
+.. _repository: https://github.com/GEMScienceTools/oq-mbtk/
+
+.. toctree::
+ liq_site_prep
+ liquefaction_analysis
diff --git a/_sources/contents/smt.rst.txt b/_sources/contents/smt.rst.txt
new file mode 100644
index 000000000..110836062
--- /dev/null
+++ b/_sources/contents/smt.rst.txt
@@ -0,0 +1,728 @@
+Strong-Motion Tools (smt) module
+################################
+
+The :index:`Strong-Motion Tools` module contains code for the selection of ground-motion prediction equations (GMPEs) and the subsequent development of a ground-motion characterisation (GMC).
+
+The main components of the Strong-Motion Tools (smt) comprise of (1) parsing capabilities to generate metadata (2) capabilities for computation and plotting of ground-motion residual distributions (3) comparison of potentially viable GMPEs and (4) development of the GMC with the final selection(s) of GMPEs.
+
+Here, we will demonstrate how each of these components can be implemented, in the context of aiming to develop a GMPE logic-tree approach GMC for Albania.
+
+Please note that this documentation assumes an elementary knowledge of GMPEs, residual analysis and ground-motion characterisation. Therefore, this documentation's purpose is to facilitate the application of the smt by user who is already familiar with the underlying theory. References are provided throughout for useful overviews of such theory.
+
+Performing a Residual Analysis
+*********************************************
+The smt provides capabilities (parsers) for the parsing of an inputted dataset into metadata for the performing of a residual analysis, so as to evaluate GMPE performance against the inputted dataset.
+
+The inputted dataset usually comprises of a ground-motion record flatfile. Many seismological institutions provide flatfiles of processed ground-motion records. These flatfiles often slightly differ in format, but generally follow a template of a .csv file in which each row represents a single ground-motion record, that is, a recording of the observed ground-motion at a single station. Each record contains information for (1) the associated earthquake (e.g. moment magnitude, hypocentral location, focal depth), (2) the associated site parameters (e.g. shear-wave velocity in the upper 30m of a site (Vs30)), (3) source-to-site distance metrics (e.g. epicentral distance, Joyner-Boore distance) and (4) ground-motion intensity values for various intensity measures (e.g. peak-ground acceleration (PGA), peak-ground velocity (PGV), spectral acceleration (SA) for various spectral ordinates).
+
+Within a residual analysis, the information provided in each ground-motion record is used to evaluate how closely a selection of GMPEs predict the expected (observed) ground-motion. The ground-motion records within a flatfile will usually comprise of earthquakes from the same region and of the same tectonic region type.
+Parsers are provided in the smt for the most widely used flatfile formats (e.g. ESM, NGAWest2).
+
+In this example, we will consider the ESM 2018 format parser for the parsing of a ESM 2018 flatfile comprising of earthquakes from Albania and the surrounding regions. We will then evaluate appropriate GMPEs using the parsed metadata in the explanations of the subsequent smt components.
+
+Parsing a Ground-Motion Flatfile into Metadata
+**********************************************
+
+Herein we provide a brief description of the various steps for the parsing of an ESM 2018 flatfile. Note that we use the symbol ``>`` as the prompt in a terminal, hence every time you find some code starting with this symbol this indicate a command you must type in your terminal.
+
+Following the geographical filtering of the ESM 2018 flatfile for only earthquakes from Albania and the surrounding regions in this example, we can parse the flatfile using the ``ESM_flatfile_parser``. The currently available parsers within the smt module can be found in ``oq-mbtk.openquake.smt.residuals.parsers``.
+
+1. First we must import the ``ESMFlatfileParser`` and the required python modules for managing the output directories:
+
+ .. code-block:: ini
+
+ > # Import required python modules
+ > import os
+ > import shutil
+ > from openquake.smt.residuals.parsers.esm_flatfile_parser import ESMFlatfileParser
+
+2. Next we need to specify the base path, the flatfile location and the output location:
+
+ .. code-block:: ini
+
+ > # Specify base path
+ > DATA = os.path.abspath('')
+ >
+ > # Specify flatfile location
+ > flatfile_directory = os.path.join(DATA, 'demo_flatfile.csv')
+ >
+ > # Specify metadata output location
+ > output_database = os.path.join(DATA, 'metadata')
+ >
+ > # If the metadata already exists first remove
+ > if os.path.exists(output_database):
+ > shutil.rmtree(output_database)
+
+3. Now we can parse the metadata from the ESM 2018 flatfile using the ``ESMFlatfileParser`` with the autobuild class method:
+
+ .. code-block:: ini
+
+ > # Specify metadata database ID and metadata database name:
+ > DB_ID = '000'
+ > DB_NAME = 'ESM18_Albania'
+ >
+ > # Parse flatfile
+ > parser = ESMFlatfileParser.autobuild(DB_ID, DB_NAME, output_database, flatfile_directory)
+
+4. The flatfile will now be parsed by the ``ESMFlatfileParser``, and a pickle (``.pkl``) file of the metadata will be outputted in the specified output location. We can now use this metadata to perform a GMPE residual analysis.
+
+Computing the Ground-Motion Residuals
+*************************************
+
+Following the parsing of a flatfile into useable metadata, we can now specify the inputs for the performing of a residual analysis. Residual analysis compares the predicted and expected (i.e. observed) ground-motion for a combination of source, site and path parameters to evaluate the performance of GMPEs. Residuals are computed using the mixed effects methodology of Abrahamson and Youngs (1992), in which the total residual is split into an inter-event component and an intra-event component. Abrahamson and Youngs (1992) should be consulted for a detailed overview of ground-motion residuals.
+
+We can specify the inputs to perform a residual analysis with as follows:
+
+1. Specify the base path, the path to the metadata we parsed in the previous stage and an output folder:
+
+ .. code-block:: ini
+
+ > # Specify absolute path
+ > DATA = os.path.abspath('')
+ >
+ > # Specify metadata directory
+ > metadata_directory = os.path.join(DATA, 'metadata')
+ >
+ > # Specify output folder
+ > run_folder = os.path.join(DATA, results_preliminary)
+
+2. We can specify the GMPEs we want to evaluate, and the intensity measures we want to evaluate each GMPE for as a ``gmpe_list`` and an ``imt_list`` within the command line:
+
+ .. code-block:: ini
+
+ > # Specify some GMPEs and intensity measures within command line
+ > gmpe_list = ['AbrahamsonEtAl2014', 'AkkarEtAlRjb2014', 'BooreEtAl2014', 'BooreEtAl2020', 'CauzziEtAl2014', 'CampbellBozorgnia2014', 'ChiouYoungs2014', 'KothaEtAl2020', 'LanzanoEtAl2019_RJB_OMO']
+ > imt_list = ['PGA','SA(0.1)', 'SA(0.2)', 'SA(0.5)', 'SA(1.0)']
+
+3. We can also specify the GMPEs and intensity measures within a ``.toml`` file. The ``.toml`` file method is required for the use of GMPEs with user-specifiable input parameters.
+
+ The additional input parameters which are specifiable for certain GMPEs are available within their corresponding GMPE ``.py`` files (found in ``oq-engine.openquake.hazardlib.gsim``). or for ModifiableGMPE features in ``oq-engine.openquake.hazardlib.gsim.mgmpe.modifiable_gmpe``).
+
+ The ``.toml`` file for specifying GMPEs and intensity measures to consider within a residual analysis should be specified as follows:
+
+ .. code-block:: ini
+
+ [models.AbrahamsonEtAl2014]
+
+ [models.AkkarEtAlRjb2014]
+
+ [models.BooreEtAl2014]
+
+ [models.BooreEtAl2020]
+
+ [models.CauzziEtAl2014]
+
+ [models.CampbellBozorgnia2014]
+
+ [models.ChiouYoungs2014]
+
+ [models.KothaEtAl2020]
+
+ [models.LanzanoEtAl2019_RJB_OMO]
+
+ # Examples below of some GMPEs not considered in this residual analysis with additional
+ # parameters than be specified within a toml file
+
+ [models.AbrahamsonGulerce2020SInter]
+ region = "CAS" # GMPE specific parameters
+
+ [models.NGAEastGMPE]
+ gmpe_table = 'NGAEast_FRANKEL_J15.hdf5' # use a gmpe table
+
+ [models.KothaEtAl2020ESHM20]
+ sigma_mu_epsilon = 2.85697
+ c3_epsilon = 1.72
+ eshm20_region = 4 # Note that only a single eshm20 region (eshm20 attenuation cluster)
+ # can be evaluated in a single residual analysis run in the SMT. If
+ # multiple variants of the KothaEtAl2020ESHM20 GMPE are specified in
+ # a single residuals toml the results of the last variant of the GMPE
+ # will overwrite the others (and only the results of the last variant
+ # in the toml will be plotted too). This bug will be fixed.
+
+ # Note that a bug exists for GMPEs which use the add_alias feature, meaning that the user
+ # must specify parameters that should be inherently used by specifiying the GMPE class (to
+ # be fixed). Some examples of how to circumvent this bug are provided below
+
+ [models.AbrahamsonEtAl2014] # Use instead of specifying AbrahamsonEtAl2014RegJPN
+ region = "JPN"
+
+ [models.NGAEastUSGSGMPE] # Use instead of specifying NGAEastUSGSSeed1CCSP or 1CCSP gsim classes
+ gmpe_table = 'nga_east_1CCSP.hdf5'
+
+ [imts]
+ imt_list = ['PGA', 'SA(0.1)', 'SA(0.2)', 'SA(0.5)', 'SA(1.0)']
+
+4. Following specification of the GMPEs and intensity measures, we can now compute the ground-motion residuals using the Residuals module.
+
+ We first need to get the metadata from the parsed ``.pkl`` file (stored within the metadata folder):
+
+ .. code-block:: ini
+
+ > # Import required python modules
+ > import pickle
+ > import openquake.smt.residuals.gmpe_residuals as res
+ > import openquake.smt.residuals.residual_plotter as rspl
+ >
+ > # Create path to metadata file
+ > metadata = os.path.join(metadata_directory, 'metadatafile.pkl')
+ >
+ > # Load metadata
+ > sm_database = pickle.load(open(metadata, "rb"))
+ >
+ > # If the output folder already exists delete, then create output folder
+ > if os.path.exists(run_folder):
+ > shutil.rmtree(run_folder)
+ > os.mkdir(run_folder)
+
+5. Now we compute the residuals using the specified GMPEs and intensity measures for the metadata we have parsed from the flatfile:
+
+ Note that here ``resid1`` is the residuals object which stores (1) the observed ground-motions and associated metadata from the parsed flatfile, (2) the corresponding predicted ground-motion per GMPE and (3) the computed residual components per GMPE per intensity measure. The residuals object also stores the gmpe_list (e.g. resid1.gmpe_list) and the imt_list (resid1.imts) if these inputs are specified within a ``.toml`` file.
+
+ .. code-block:: ini
+
+ > # Compute residuals using GMPEs and intensity measures specified in command line
+ > resid1 = res.Residuals(gmpe_list, imt_list)
+ > resid1.get_residuals(sm_database, component='Geometric') # component can also be set to 'rotD00', 'rotD50', 'rotD100' etc
+ >
+ > # OR compute residuals using GMPEs and intensity measures specified in .toml file
+ > filename = os.path.join(DATA,'gmpes_and_imts_to_test.toml') # path to .toml file
+ > resid1 = res.Residuals.from_toml(filename)
+ > resid1.get_residuals(sm_database)
+
+Plotting of Residuals
+*********************
+
+1. Now we have computed the residuals, we can generate various basic plots describing the residual distribution.
+
+ We can generate plots of the probability density function plots (for total, inter- and intra-event residuals), which compare the computed residual distribution to a standard normal distribution.
+
+ Note that ``filename`` (position 3 argument in rspl.ResidualPlot) should specify the output directory and filename for the generated figure in each instance.
+
+ Probability density function plots can be generated as follows:
+
+ .. code-block:: ini
+
+ > # If using .toml for inputs we first create equivalent gmpe_list and imt_list using residuals object attributes
+ > gmpe_list = {}
+ > for idx, gmpe in enumerate(resid1.gmpe_list):
+ > gmpe_list[idx] = resid1.gmpe_list[gmpe]
+ > gmpe_list = list[gmpe_list]
+ >
+ > imt_list = {}
+ > for idx, imt in enumerate(resid1.imts):
+ > imt_list[idx] = resid1.imt_list[imt]
+ > imt_list = list(imt_list)
+ >
+ > # Plot residual probability density function for a specified GMPE from gmpe_list and intensity measure from imt_list
+ > rspl.ResidualPlot(resid1, gmpe_list[5], imt_list[0], filename, filetype = 'jpg') # Plot for gmpe in position 5
+ # in gmpe_list and intensity
+ # measure in position 0 in imt_list
+
+Residual distribution plot for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_bias+sigma.jpeg
+
+2. We can also plot the probability density functions over all considered spectral periods at once, so as to better examine how the residual distributions vary per GMPE over each spectral period:
+
+ .. code-block:: ini
+
+ > # Plot residual probability density functions over spectral periods:
+ > rspl.PlotResidualPDFWithSpectralPeriod(resid1, filename)
+ >
+ > # Generate .csv of residual probability density function per imt per GMPE
+ > rspl.PDFTable(resid1, filename)
+
+Plot of residual distributions versus spectral acceleration:
+ .. image:: /contents/smt_images/all_gmpes_PDF_vs_imt_plot.jpg
+
+3. Plots for residual trends (again for total, inter- and intra-event components) with respect to the most important GMPE inputs can also be generated in a similar manner. Here we will demonstrate for magnitude:
+
+ .. code-block:: ini
+
+ > # Plot residuals w.r.t. magnitude from gmpe_list and imt_list
+ > rspl.ResidualWithMagnitude(resid1, gmpe_list[5], imt_list[0], filename, filetype = 'jpg')
+
+ Residuals w.r.t. magnitude for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_wrt_mag.jpeg
+
+4. The functions for plotting of residuals w.r.t. distance, focal depth and Vs30 are called in a similar manner:
+
+ .. code-block:: ini
+
+ > # From gmpe_list and imt_list:
+ > rspl.ResidualWithDistance(resid1, gmpe_list[5], imt_list[0], filename, filetype = 'jpg')
+ > rspl.ResidualWithDepth(resid1, gmpe_list[5], imt_list[0], filename, filetype = 'jpg')
+ > rspl.ResidualWithVs30(resid1, gmpe_list[5], imt_list[0], filename, filetype = 'jpg')
+
+ Residuals w.r.t. distance for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_wrt_dist.jpeg
+
+ Residuals w.r.t. depth for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_wrt_depth.jpeg
+
+ Residuals w.r.t. Vs30 for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_wrt_vs30.jpeg
+
+Single Station Residual Analysis
+********************************
+
+1. The smt's residual module also offers capabilities for performing single station residual analysis (SSA).
+
+ We can first specify a threshold for the minimum number of records each site must have to be considered in the SSA:
+
+ .. code-block:: ini
+
+ > # Import SMT functions required for SSA
+ > from openquake.smt.strong_motion_selector import rank_sites_by_record_count
+ >
+ > # Specify threshold for min. num. records
+ > threshold = 20
+ >
+ > # Get the sites meeting threshold (for same parsed database as above!)
+ > top_sites = rank_sites_by_record_count(sm_database, threshold)
+
+2. Following selection of sites using a threshold value, we can perform the SSA.
+
+ We can compute the non-normalised intra-event residual per record associated with the selected sites :math:`\delta W_{es}`, the mean average (again non-normalised) intra-event residual per site :math:`\delta S2S_S` and a residual variability :math:`\delta W_{o,es}` (which is computed per record by subtracting the site-average intra-event residual from the corresponding inter-event residual). For more details on these intra-event residual components please consult Rodriguez-Marek et al. (2011), which is referenced repeatedly throughout the following section.
+
+ The standard deviation of all :math:`\delta W_{es}` values should in theory exactly equal the standard deviation of the GMPE's intra-event standard deviation.
+
+ The :math:`\delta S2S_S` term is characteristic of each site, and should equal 0 with a standard deviation of :math:`\phi_{S2S}`. A non-zero value for :math:`\delta S2S_S` is indicative of a bias in the prediction of the observed ground-motions at the considered site.
+
+ Finally, the standard deviation of the :math:`\delta W_{o,es}` term (:math:`\phi_{SS}`) is representative of the single-station standard deviation of the GMPE, and is an estimate of the non-ergodic standard deviation of the model.
+
+ As previously, we can specify the GMPEs and intensity measures to compute the residuals per site for using either a GMPE list and intensity measure list, or from a ``.toml`` file.
+
+ .. code-block:: ini
+
+ > # Create SingleStationAnalysis object from gmpe_list and imt_list
+ > ssa1 = res.SingleStationAnalysis(top_sites.keys(), gmpe_list, imt_list)
+ >
+ > # OR create SingleStationAnalysis object from .toml
+ > filename = os.path.join(DATA, 'SSA_inputs.toml') # path to input .toml
+ > ssa1 = res.SingleStationAnalysis.from_toml(top_sites.keys(), filename)
+ >
+ > Get the total, inter-event and intra-event residuals for each site
+ > ssa1.get_site_residuals(sm_database)
+ >
+ > Get single station residual statistics for each site and export to .csv
+ > csv_output = os.path.join(DATA, 'SSA_statistics.csv')
+ > ssa1.residual_statistics(True, csv_output)
+
+3. We can plot the computed residual statistics as follows:
+
+ .. code-block:: ini
+
+ > # First plot (normalised) total, inter-event and intra-event residuals for each site
+ > rspl.ResidualWithSite(ssa1, gmpe_list[0], imt_list[2], filename, filetype = 'jpg')
+ >
+ > # Then plot non-normalised intra-event per site, average intra-event per site and residual variability per site
+ > rspl.IntraEventResidualWithSite(ssa1, gmpe_list[0], imt_list[2], filename, filetype = 'jpg')
+
+ Normalised residuals per considered site for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_AllResPerSite.jpg
+
+ Intra-event residuals components per considered site for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_IntraResCompPerSite.jpg
+
+GMPE Performance Ranking Metrics
+********************************
+
+ The smt contains implementations of several published GMPE ranking methodologies, which allow additional inferences to be drawn from the computed residual distributions. Brief summaries of each ranking metric are provided here, but the corresponding publications should be consulted for more information.
+
+The Likelihood Method (Scherbaum et al. 2004)
+=============================================
+
+ The Likelihood method is used to assess the overall goodness of fit for a model (GMPE) to the dataset (observed) ground-motions. This method considers the probability that the absolute value of a random sample from a normalised residual distribution falls into the interval between the modulus of a particular observation and infinity. The likelihood value should equal 1 for an observation of 0 (i.e. the mean of the normalised residual distribution) and should approach zero for observations further away from the mean. Consequently, if the GMPE exactly matches the observed ground-motions, then the likelihood of a particular observation should be distributed evenly between 0 and 1, with a median value of 0.5
+
+ Histograms of the likelihood values per GMPE per intensity measure can be plotted as follows:
+
+ .. code-block:: ini
+
+ > # From gmpe_list and imt_list:
+ > rspl.LikelihoodPlot(resid1, gmpe_list[5], imt_list[0], filename, filetype = 'jpg')
+
+ Likelihood plot for Boore et al. 2020 and PGA:
+ .. image:: /contents/smt_images/[BooreEtAl2020]_PGA_likelihood.jpeg
+
+The Loglikelihood Method (Scherbaum et al. 2009)
+================================================
+
+ The loglikelihood method is used to assess information loss between GMPEs compared to the unknown "true" model. The comparison of information loss per GMPE compared to this true model is represented by the corresponding ground-motion residuals. A GMPE with a lower LLH value provides a better fit to the observed ground-motions (less information loss occurs when using the GMPE). It should be noted that LLH is a comparative measure (i.e. the LLH values have no physical meaning), and therefore LLH is only of use to evaluate two or more GMPEs.
+
+ LLH values per GMPE aggregated over all (specified) intensity measures, LLH-based model weights and LLH per intensity measure can be computed as follows:
+
+ .. code-block:: ini
+
+ > # From gmpe_list and imt_list
+ > llh, model_weights, model_weights_with_imt = res.get_loglikelihood_values(resid1, imt_list)
+ >
+ > # OR from .toml:
+ > llh, model_weights, model_weights_with_imt = res.get_loglikelihood_values(resid1, resid1.imts)
+ >
+ > # Generate a .csv table of LLH values
+ > rspl.loglikelihood_table(resid1, filename)
+ >
+ > # Generate a .csv table of LLH-based model weights for GMPE logic tree
+ > rspl.llh_weights_table(resid1, filename)
+ >
+ > # Plot LLH vs imt
+ > rspl.plot_loglikelihood_with_spectral_period(resid1, filename)
+
+ Loglikelihood versus spectral acceleration plot for considered GMPEs:
+ .. image:: /contents/smt_images/all_gmpes_LLH_plot.jpg
+
+Euclidean Distance Based Ranking (Kale and Akkar, 2013)
+=======================================================
+
+ The Euclidean distance based ranking (EDR) method considers the probability that the absolute difference between an observed ground-motion and a predicted ground-motion is less than a specific estimate, and is repeated over a discrete set of such estimates (one set per observed ground-motion per GMPE per the specified intensity measure). The total occurrence probability for such a set is the modified Euclidean distance (MDE). The corresponding EDR value is computed by summing the MDE (one per observation), normalising by the number of observations and then introducing an additional parameter (Kappa) to penalise models displaying a larger predictive bias (here kappa is equal to the ratio of the Euclidean distance between obs. and pred. median ground-motion to the Euclidean distance between the obs. and pred. median ground-motion corrected by a predictive model derived from a linear regression of the observed data - the parameter sqrt(kappa) therefore provides the performance of the median prediction per GMPE).
+
+ EDR score, the normal distribution of modified Euclidean distance (MDE Norm) and sqrt(k) (k is used henceforth to represent the median predicted ground-motion correction factor "Kappa" within the original methodology) per GMPE aggregated over all considered intensity measures, or per intensity measure can be computed as follows:
+
+ .. code-block:: ini
+
+ > # Get EDR, MDE Norm and MDE per GMPE aggregated over all imts
+ > res.get_edr_values(resid1)
+ >
+ > # Get EDR, MDE Norm and MDE for each considered imt
+ > res.get_edr_values_wrt_spectral_period(resid1)
+ >
+ > # Generate a .csv table of EDR values for each GMPE
+ > rspl.edr_table(resid1, filename)
+ >
+ > # Generate a .csv table of EDR-based model weights for GMPE logic tree
+ > rspl.edr_weights_table(resid1, filename)
+ >
+ > # Plot EDR score, MDE norm and sqrt(k) vs imt
+ > rspl.plot_plot_edr_metrics_with_spectral_period(resid1, filename)
+
+ EDR rank versus spectral acceleration plot for considered GMPEs:
+ .. image:: /contents/smt_images/all_gmpes_EDR_plot_EDR_value.jpg
+
+ EDR correction factor versus spectral acceleration for considered GMPEs:
+ .. image:: /contents/smt_images/all_gmpes_EDR_plot_EDR_correction_factor.jpg
+
+ MDE versus spectral acceleration for considered GMPEs:
+ .. image:: /contents/smt_images/all_gmpes_EDR_plot_MDE.jpg
+
+Stochastic Area Based Ranking (Sunny et al. 2021)
+=======================================================
+
+ The stochastic area ranking metric considers the absolute difference between the integrals of the cumulative distribution function of the GMPE and the empirical distribution function of the observations. A smaller value is representative of a better fit between the GMPE and the observed ground-motions.
+
+ .. code-block:: ini
+
+ > # Get stochastic area metric for each considered imt
+ > res.get_stochastic_area_wrt_imt(resid1)
+ >
+ > # Generate a .csv table of stochastic area values for each GMPE
+ > rspl.stochastic_area_table(resid1, filename)
+ >
+ > # Generate a .csv table of stochastic area-based model weights for GMPE logic tree
+ > rspl.stochastic_area_weights_table(resid1, filename)
+ >
+ > # Plot stochastic area vs imt
+ > rspl.plot_stochastic_area_with_spectral_period(resid1, filename)
+
+ Stochastic area versus spectral acceleration plot for considered GMPEs:
+ .. image:: /contents/smt_images/all_gmpes_stochastic_area_plot.jpg
+
+Comparing GMPEs
+***************
+
+1. Alongside the smt's capabilities for evaluating GMPEs in terms of residuals (within the residual module as demonstrated above), we can also evaluate GMPEs with respect to the predicted ground-motion for a given earthquake scenario. The tools for comparing GMPEs are found within the Comparison module.
+
+ .. code-block:: ini
+
+ > # Import GMPE comparison tools
+ > from openquake.smt.comparison import compare_gmpes as comp
+
+2. The tools within the Comparison module include Sammon's Maps, hierarchical clustering plots and matrix plots of Euclidean distance for the median (and 16th and 84th percentiles) of predicted ground-motion per GMPE per intensity measure. Plotting capabilities for response spectra and attenuation curves (trellis plots) are also provided in this module.
+
+ The inputs for these comparitive tools must be specified within a single ``.toml`` file as specified below. GMPE parameters can be specified as within the example ``.toml`` file provided above for us in residual analysis. In the ``.toml`` file we have specified the source parameters for earthquakes characteristic of Albania (compressional thrust faulting with magnitudes of interest w.r.t. seismic hazard in the range of Mw 5 to Mw 7), and we have specified some GMPEs which were found to perform well in the residual analysis against Albania ground-motion data. To plot a GMPE logic tree we must assign model weights using ``lt_weight_gmc1`` or '``lt_weight_gmc2`` in each GMPE depending on which GMC logic tree we wish to include the GMPE within (up to 4 GMC logic trees can currently be plotted within one analysis). To plot only the final logic tree and not the individual GMPEs comprising it, we use ``lt_weight_gmc1_plot_lt_only`` instead (depending on which GMC we wish to not plot the individual GMPEs for - see the ``.toml`` file below for an example of these potential configurations).
+
+ NOTE: To specify a GMM argument which is a bool (i.e. ``True`` or ``False``), the user must specify the bool as all lowercase within the ``.toml`` file (i.e. ``true`` or ``false``). An example is provided immediately below for the ``CampbellBozorgnia2014`` GMPE.
+
+ .. code-block:: ini
+
+ ### Input file for comparison of GMPEs using plotting functions in openquake.smt.comparison.compare_gmpes
+ [general]
+ imt_list = ['PGA', 'SA(0.1)', 'SA(0.5)', 'SA(1.0)']
+ max_period = 2 # max period for spectra plots
+ minR = 0 # min dist. used in trellis, Sammon's, clusters and matrix plots
+ maxR = 300 # max dist. used in trellis, Sammon's, clusters and matrix plots
+ dist_type = 'repi' # or rjb, rrup or rhypo (dist type used in trellis plots)
+ dist_list = [10, 100, 250] # distance intervals for use in spectra plots
+ eshm20_region = 2 # for ESHM20 GMPE regionalisation
+ Nstd = 1 # num. of standard deviations to sample from sigma distribution
+
+ # Specify site properties
+ [site_properties]
+ vs30 = 800
+ Z1 = -999
+ Z25 = -999
+ up_or_down_dip = 1 # 1 = up-dip, 0 = down-dip
+ region = 'Global' # get region specific z1pt0 and zpt50 ('Global' or 'Japan')
+
+ # Characterise earthquake for the region of interest as finite rupture
+ [source_properties]
+ trt = 'None' # Either string of 'None' to use user-provided aratio OR specify a
+ # TRT string from ASCR, InSlab, Interface, Stable, Upper_Mantle,
+ # Volcanic, Induced, Induced_Geothermal to assign a trt-dependent
+ # proxy aratio
+ ztor = 'None' # Set to string of 'None' to NOT consider otherwise specify as
+ # array matching number of mag and depth values
+ strike = -999
+ dip = 60
+ rake = 90 # Must be provided. Strike and dip can be approximated if either
+ # set to -999
+ aratio = 2 # If set to -999 the user-provided trt string will be used
+ # to assign a trt-dependent aratio
+ trellis_and_rs_mag_list = [5, 6, 7] # Mags used only for trellis and response spectra
+ trellis_and_rs_depths = [20, 20, 20] # Depth per magnitude for trellis and
+ # response spectra
+
+ # Specify magnitude array for Sammons, Euclidean dist and clustering
+ [mag_values_non_trellis_or_spectra_functions]
+ mmin = 5
+ mmax = 7
+ spacing = 0.1
+ non_trellis_or_spectra_depths = [[5, 20], [6, 20], [7, 20]] # [[mag, depth], [mag, depth], [mag, depth]]
+
+ # Specify label for gmpes
+ [gmpe_labels]
+ gmpes_label = ['B20', 'L19', 'K1', 'K2', 'K3', 'K4', 'K5', 'CA15', 'AK14']
+
+ # Specify gmpes
+
+ # Plot logic tree and individual GMPEs within first GMC logic tree config (gmc1)
+ [models.BooreEtAl2020]
+ lt_weight_gmc1 = 0.30
+
+ [models.LanzanoEtAl2019_RJB_OMO]
+ lt_weight_gmc1 = 0.40
+
+ # Default ESHM20 logic tree branches considered in gmc1
+ [models.1-KothaEtAl2020ESHM20]
+ lt_weight_gmc1 = 0.000862
+ sigma_mu_epsilon = 2.85697
+ c3_epsilon = 1.72
+ [models.2-KothaEtAl2020ESHM20]
+ lt_weight_gmc1 = 0.067767
+ sigma_mu_epsilon = 1.35563
+ c3_epsilon = 0
+ [models.3-KothaEtAl2020ESHM20]
+ lt_weight_gmc1 = 0.162742
+ sigma_mu_epsilon = 0
+ c3_epsilon = 0
+ [models.4-KothaEtAl2020ESHM20]
+ lt_weight_gmc1 = 0.067767
+ sigma_mu_epsilon = -1.35563
+ c3_epsilon = 0
+ [models.5-KothaEtAl2020ESHM20]
+ lt_weight_gmc1 = 0.000862
+ sigma_mu_epsilon = -2.85697
+ c3_epsilon = -1.72
+
+ # Plot logic tree only for a second GMC logic tree config (gmc2)
+ [models.CauzziEtAl2014]
+ lt_weight_gmc2_plot_lt_only = 0.50
+
+ [models.AkkarEtAlRjb2014]
+ lt_weight_gmc2_plot_lt_only = 0.50
+
+ # Also specify a GMM to compute ratios of the attenuation against (GMM/baseline)
+ [ratios_baseline_gmm.BooreEtAl2020]
+
+ [custom_colors]
+ custom_colors_flag = 'False' # Set to "True" for custom colours in plots
+ custom_colors_list = ['lime', 'dodgerblue', 'gold', '0.8']
+
+3. Trellis Plots
+
+ Now that we have defined our inputs for GMPE comparison, we can use each tool within the Comparison module to evaluate how similar the GMPEs predict ground-motion for a given ground-shaking scenario.
+
+ We can generate trellis plots (predicted ground-motion by each considered GMPE versus distance) for different magnitudes and intensity measures (specified in the ``.toml`` file).
+
+ Note that ``filename`` (both for trellis plotting and in the subsequently demonstrated comparison module plotting functions) is the path to the input ``.toml`` file.
+
+ .. code-block:: ini
+
+ > # Generate trellis plots
+ > comp.plot_trellis(filename, output_directory)
+
+ Trellis plots for input parameters specified in toml file:
+ .. image:: /contents/smt_images/TrellisPlots.png
+
+4. Spectra Plots
+
+ We can also plot response spectra:
+
+ .. code-block:: ini
+
+ > # Generate spectra plots
+ > comp.plot_spectra(filename, output_directory)
+
+ Response spectra plots for input parameters specified in toml file:
+ .. image:: /contents/smt_images/ResponseSpectra.png
+
+5. Plot of Spectra from a Record
+
+ The spectra of a processed record can also be plotted along with predictions by the selected GMMs for the same ground-shaking scenario. An example of the input for the record spectra is provided in the demo files:
+
+ .. code-block:: ini
+
+ > # Generate plot of observed spectra and predictions by GMMs
+ > # Note we use spectra from a record for the 1991 Chamoli EQ in this
+ > # example rather than from a record from an earthquake in/near Albania
+ > comp.plot_spectra(filename, output_directory, obs_spectra='spectra_chamoli_1991_station_UKHI.csv')
+
+ Response spectra plots for input parameters specified in toml file:
+ .. image:: /contents/smt_images/ObsSpectra.png
+
+6. Plot of ratios of attenuation curves
+
+ The ratios of the median predictions from each GMM and a baseline GMM (specified in the ``.toml`` - see above) can also be plotted. An example is provided in the demo files:
+
+ .. code-block:: ini
+
+ > # Plot ratios of median attenuation curves for each GMM/median attenuation curves for baseline GMM
+ > comp.plot_ratios(filename, output_directory)
+
+ Ratio plots for input parameters specified in toml file (note that here the baseline GMM is ``BooreEtAl2014``):
+ .. image:: /contents/smt_images/RatioPlots.png
+
+7. Sammon's Maps
+
+ We can plot Sammon's Maps to examine how similar the medians (and 16th and 84th percentiles) of predicted ground-motion of each GMPE are (see Sammon, 1969 and Scherbaum et al. 2010 for more details on the Sammon's mapping procedure).
+
+ A larger distance between two plotted GMPEs represents a greater difference in the predicted ground-motion. It should be noted that: (1) more than one 2D configuration can exist for a given set of GMPEs and (2) that the absolute numbers on the axes do not have a physical meaning.
+
+ Sammon's Maps can be generated as follows:
+
+ .. code-block:: ini
+
+ > # Generate Sammon's Maps
+ > comp.plot_sammons(filename, output_directory)
+
+ Sammon's Maps (median predicted ground-motion) for input parameters specified in toml file:
+ .. image:: /contents/smt_images/Median_SammonMaps.png
+
+8. Hierarchical Clustering
+
+ Dendrograms can be plotted as an alternative tool to evaluate how similarly the predicted ground-motion is by each GMPE.
+
+ Within the dendrograms the GMPEs are clustered hierarchically (i.e. the GMPEs which are clustered together at shorter Euclidean distances are more similar than those clustered together at larger Euclidean distances).
+
+ Hierarchical clustering plots can be generated as follows:
+
+ .. code-block:: ini
+
+ > # Generate dendrograms
+ > comp.plot_cluster(filename, output_directory)
+
+ Dendrograms (median predicted ground-motion) for input parameters specified in toml file:
+ .. image:: /contents/smt_images/Median_Clustering.png
+
+9. Matrix Plots of Euclidean Distance
+
+ In addition to Sammon's Maps and hierarchical clustering, we can also plot the Euclidean distance between the predicted ground-motions by each GMPE in a matrix plot.
+
+ Within the matrix plots the darker cells represent a smaller Euclidean distance (and therefore greater similarity) between each GMPE for the given intensity measure.
+
+ Matrix plots of Euclidean distance can be generated as follows:
+
+ .. code-block:: ini
+
+ > # Generate matrix plots of Euclidean distance
+ > comp.plot_euclidean(filename, output_directory)
+
+ Matrix plots of Euclidean distance between GMPEs (median predicted ground-motion) for input parameters specified in toml file:
+ .. image:: /contents/smt_images/Median_Euclidean.png
+
+10. Using ModifiableGMPE to modify GMPEs within a ``.toml``.
+
+ In addition to specifying predefined arguments for each GMPE, the user can also modify GMPEs using ModifiableGMPE (found in ``oq-engine.openquake.hazardlib.gsim.mgmpe.modifiable_gmpe``).
+
+ Using the capabilities of this GMPE class we can modify GMPEs in various ways, including scaling the median and/or sigma by either a scalar or a vector (different scalar per imt), set a fixed total GMPE sigma, partition the GMPE sigma using a ratio and using a different sigma model or site amplification model than those provided by a GMPE by default.
+
+ Some examples of how the ModifiableGMPE can be used within the comparison module input ``.toml`` when specifying GMPEs is provided below (please note that ModifiableGMPE is not currently implemented to be usable within the residuals input ``.toml``):
+
+ .. code-block:: ini
+
+ [models.0-ModifiableGMPE]
+ gmpe = 'YenierAtkinson2015BSSA'
+ sigma_model = 'al_atik_2015_sigma' # Use Al Atik (2015) sigma model
+
+ [models.1-ModifiableGMPE]
+ gmpe = 'CampbellBozorgnia2014'
+ fix_total_sigma = "{'PGA': 0.750, 'SA(0.1)': 0.800, 'SA(0.5)': 0.850}" # Fix total sigma per imt
+
+ [models.2-ModifiableGMPE]
+ gmpe = 'CampbellBozorgnia2014'
+ with_betw_ratio = 1.7 # Add between-event and within-event sigma using
+ # ratio of 1.7 to partition total sigma
+
+ [models.3-ModifiableGMPE]
+ gmpe = 'CampbellBozorgnia2014'
+ set_between_epsilon = 0.5 # Shift the mean with formula mean --> mean + epsilon_tau * between event
+
+ [models.4-ModifiableGMPE]
+ gmpe = 'CampbellBozorgnia2014'
+ add_delta_sigma_to_total_sigma = 0.5 # Add a delta to the total GMPE sigma
+
+ [models.5-ModifiableGMPE]
+ gmpe = 'CampbellBozorgnia2014'
+ set_total_sigma_as_tau_plus_delta = 0.5 # Set total sigma to square root of (tau**2 + delta**2)
+
+ [models.6-ModifiableGMPE]
+ gmpe = 'ChiouYoungs2014'
+ median_scaling_scalar = 1.4 # Scale median by factor of 1.4 over all imts
+
+ [models.7-ModifiableGMPE]
+ gmpe = 'ChiouYoungs2014'
+ median_scaling_vector = "{'PGA': 1.10, 'SA(0.1)': 1.15, 'SA(0.5)': 1.20}" # Scale median by imt-dependent factor
+
+ [models.8-ModifiableGMPE]
+ gmpe = 'KothaEtAl2020'
+ sigma_scaling_scalar = 1.25 # Scale sigma by factor of 1.25 over all imts
+
+ [models.9-ModifiableGMPE]
+ gmpe = 'KothaEtAl2020'
+ sigma_scaling_vector = "{'PGA': 1.20, 'SA(0.1)': 1.15, 'SA(0.5)': 1.10}" # Scale sigma by imt-dependent factor
+
+ [models.10-ModifiableGMPE]
+ gmpe = 'BooreEtAl2014'
+ site_term = 'CY14SiteTerm' # Use CY14 site term
+
+ [models.11-ModifiableGMPE]
+ gmpe = 'BooreEtAl2014'
+ site_term = 'NRCan15SiteTerm' # Use NRCan15 non-linear site term
+
+ [models.12-ModifiableGMPE]
+ gmpe = 'BooreEtAl2014'
+ site_term = 'NRCan15SiteTermLinear' # Use NRCan15 linear site term
+
+ [models.13-ModifiableGMPE]
+ gmpe = 'KuehnEtAl2020SInter'
+ basin_term = 'M9BasinTerm' # Apply M9 basin adjustment
+
+References
+==========
+
+Abrahamson, N. A. and R. R. Youngs (1992). “A Stable Algorithm for Regression Analysis Using the Random Effects Model”. In: Bulletin of the Seismological Society of America 82(1), pages 505 – 510.
+
+Kale, O and S. Akkar (2013). “A New Procedure for Selecting and Ranking Ground-Motion Prediction Equations (GMPES): The Euclidean Distance-Based Ranking (EDR) Method”. In: Bulletin of the Seismological Society of America 103(2A), pages 1069 – 1084.
+
+Kotha, S. -R., G. Weatherill, and F. Cotton (2020). "A Regionally Adaptable Ground-Motion Model for Shallow Crustal Earthquakes in Europe." In: Bulletin of Earthquake Engineering 18, pages 4091 – 4125.
+
+Rodriguez-Marek, A., G. A. Montalva, F. Cotton, and F. Bonilla (2011). “Analysis of Single-Station Standard Deviation using the KiK-Net data”. In: Bulletin of the Seismological Society of America 101(3), pages 1242 –1258.
+
+Sammon, J. W. (1969). "A Nonlinear Mapping for Data Structure Analysis." In: IEEE Transactions on Computers C-18 (no. 5), pages 401 - 409.
+
+Scherbaum, F., F. Cotton, and P. Smit (2004). “On the Use of Response Spectral-Reference Data for the Selection and Ranking of Ground Motion Models for Seismic Hazard Analysis in Regions of Moderate Seismicity: The Case of Rock Motion”. In: Bulletin of the Seismological Society of America 94(6), pages 2164 – 2184.
+
+Scherbaum, F., E. Delavaud, and C. Riggelsen (2009). “Model Selection in Seismic Hazard Analysis: An Information-Theoretic Perspective”. In: Bulletin of the Seismological Society of America 99(6), pages 3234 – 3247.
+
+Scherbaum, F., N. M., Kuehn, M. Ohrnberger and A. Koehler (2010). "Exploring the proximity of ground-motion models using high-dimensional visualization techniques." In: Earthquake Spectra 26(4), pages 1117 – 1138.
+
+Weatherill G., S. -R. Kotha and F. Cotton. (2020). "A Regionally Adaptable “Scaled Backbone” Ground Motion Logic Tree for Shallow Seismicity in Europe: Application to the 2020 European Seismic Hazard Model." In: Bulletin of Earthquake Engineering 18, pages 5087 – 5117.
\ No newline at end of file
diff --git a/_sources/contents/sub.rst.txt b/_sources/contents/sub.rst.txt
new file mode 100644
index 000000000..60989f27e
--- /dev/null
+++ b/_sources/contents/sub.rst.txt
@@ -0,0 +1,272 @@
+SUBduction (sub) module
+#######################
+
+The :index:`Subduction` module contains software for the construction of subduction earthquake sources for the *oq-engine*. The components of this model can be used either independently or within a workflow similarly to what is described in this section.
+
+Defining the geometry of the top of the slab
+********************************************
+
+The modeling of earthquake subduction sources starts with the definition of the geometry of the slab. The mbtk subduction module contains tools for the definition of the top of the slab. Two are the approaches available. The first one, the most comprehensive, requires a tedious process of digititazion of the profiles describing the position of the top of the slab versus depth along each cross section (see `Pagani et al. (2020) `__ for a description of the methodology). The second one uses the geometries of the slab proposed by `Hayes et al. (2018) `__ (`dataset `__).
+
+The result of these two procedures is a folder containing a set of .csv files each one describing a profile. In this context a profile is a curve that lays on top of the slab and, generally, has a direction parallel to the dip.
+
+.. _first approach:
+
+First approach
+==============
+
+Herein we provide a brief description of the various steps. Note that we use the symbol ``>`` as the prompt in a terminal, hence every time you find some code starting with this symbol this indicate a command you must type in your terminal.
+
+1. The first step entails the definition of a configuration file. An example is provided herein
+
+.. code-block:: ini
+
+ [data]
+
+ # Path to the text file with the coordinates of the trench axis
+ trench_axis_filename = /Users/kjohnson/GEM/Regions/paisl18/data/subduction/trenches/kerton_trench.xy
+
+ # Path to the pickled file (an instance of the hazard modeller's toolkit Catalogue)
+ catalogue_pickle_filename = /Users/kjohnson/GEM/Regions/paisl18/data/catalogues/locations/PI_cat_filt.p
+
+ # Path to the Slab 1.0 text file with the coordinates of the top of the slab
+ slab1pt0_filename = /Users/kjohnson/GEM/Regions/paisl18/data/subduction/slab1pt0/ker_slab1.0_clip.xyz
+
+ # Path to the Crust 1.0 text file (see)
+ crust1pt0_filename = /Users/kjohnson/GEM/Regions/paisl18/data/crustal_models/crust1pt0/crsthk.xyz
+
+ # Path to the Litho 1.0 text file (see)
+ litho_filename = /Users/kjohnson/GEM/Regions/paisl18/data/crustal_models/litho1pt0/litho_moho.xyz
+
+ # Path to the file containing the focal mechanisms from the Global Centroid Moment Tensor project
+ gcmt_filename = /Users/kjohnson/GEM/Regions/paisl18/data/catalogues/focal_mechanisms/GCMT_20151231.ndk
+
+ # Path to the file with volcanoes
+ volc_filename = /Users/kjohnson/GEM/Regions/paisl18/data/volcanoes/volcano_list.xy
+
+ # Path to the text topography file
+ topo_filename = /Users/kjohnson/GEM/Regions/paisl18/data/topography/GEBCO_2014/pacisl_topobath_nf.xyz
+
+ [section]
+
+ # Length of each profile [km]
+ lenght = 700
+
+ # Spacing [km] between the profiles along the axis subduction trench
+ # specified in the ariable `trench_axis_filename`
+ interdistance = 100
+
+ # Azimuth parameter. When equal to a real number in the range [0, 360] all
+ # the profiles will follow that direction. Ortherwise, if `None` the
+ # profiles will have a direction perpendicular to the trench axis
+ azimuth = None
+
+ # Maximum depth of each profile [km]
+ dep_max = 700
+
+
+2. Create a pickled version of your hmtk formatted catalog::
+
+ > pickle_catalogue.py ./catalogues/cac.cat`
+
+3. Create a set of cross-sections from the subduction trench axis::
+
+ > create_multiple_cross_sections.py ./ini/central_america.ini
+
+Check the traces of the cross-sections in the map created. It's possible to edit the traces or add new traces in the file ``cs_traces.cs``
+
+4. Check the new set of traces in a map with the command::
+
+ > plot_multiple_cross_sections_map.py ./ini/central_america.ini cs_traces.cs
+
+5. Create one .pdf file for each cross-section with the available information: e.g., earthquake hypocentres, focal mechanism, slab 1.0 geometry, CRUST 1.0 Moho::
+
+ > plot_multiple_cross_sections.py cs_traces.cs
+
+This command will produce as many ``.pdf`` files as the number of cross-sections specified in the ``.cs`` file
+
+6. Digitize the contact between the overriding plate and the subducted plate in each cross-section. The information in the command below corresponds to the longitude and the latitude of the origin of the cross-section, the length [km], the azimuth [decimal degrees], the cross-section ID and the name of the ``.ini`` file. For example::
+
+ plot_cross_section.py -106.479700 21.250800 600.000000 89.098531 0 ./ini/central_america.ini
+
+Once launched, by clicking on the image it is possible to digitize a sequence of points. Once completed the digitization, the points can be saved to a file whose name corresponds to ``cs_.csv`` by pressing the ``f`` key on the keyboard. The points can be deleted with the key ``d``.
+
+.. _second approach:
+
+Second approach
+===============
+
+The second approach proposed is simpler than the first one. At the beginning, it requires to complete point 1 and point 3 described in the `first approach`_ section. Once we have a configuration file and a set of cross sections ready we can complete the construction of the set of profiles with the following command::
+
+ > sub_create_sections_from_slab.py
+
+Where:
+
+- ```` is the name of the file
+- ```` is the name of the folder where to write the profiles
+- ```` is the name of the file (produced by ``create_multiple_cross_sections.py``) with information aboout the traces of the cross-sections.
+
+Building the top of the slab geometry
+*************************************
+
+Now that we have a set of profiles available, we will build the surface of subduction . The output of this procedure will be a new set of profiles and edges that can be used to define the surface of a complex fault modelling the subduction interface earthquakes and to create inslab sources.
+
+This part of the procedure can be completed by running the
+
+1. Build the surface of the subduction interface using ``create_2pt5_model.py``. The input information in this case is:
+
+ - The name of the folder ```` containing the ``cs_`` files created using either the procedure described in the `first approach`_ or `first approach`_ section;
+ - The maximum sampling distance along a trace [km];
+ - The output folder ````;
+
+Example::
+
+ > create_2pt5_model.py
+
+The output is a set of interpolated profiles and edges that can be used to create a complex fault source for the OpenQuake engine. The results of the code ``create_2pt5_model.py`` can be plotted using ``plot_2pt5_model.py``. Example::
+
+ > plot_2pt5_model.py
+
+where ```` is the configuration file used to build the cross-sections.
+
+
+Classifying an earthquake catalog using the top of the slab surface [incomplete]
+********************************************************************************
+
+The ``create_2pt5_model.py`` code produces a set of profiles and edges (i.e. .csv files with the 3D coordinates) describing the geometry of the top of the slab. With this information we can separate the seismicity in an earthquake catalog into a few subsets, each one representing a specific tectonic environment (e.g. `Abrahamson and Shedlock, 1997 `__ or `Chen et al., 2017 `__ ). The procedure required to complete this task includes the following steps.
+
+1. Create a configuration file that describes the tectonic environments
+
+The configuration file specifies the geometry of surfaces, along with buffer regions, that are used as references for each tectonic environment, and the catalogue to be classified. Additionally, the configuration includes a ``priority list`` that indicates how hypocenters that can occur in overlapping buffer regions should be labeled. An example configuration file is shown below. The format of the configuration is as follows.
+
+The ``[general]`` section, which includes:
+ - the directory ``distance_folder`` where the Euclidean distance between each hypocenter and surface will be stored (NB: this folder must be manually created by the user)
+ - an .hdf5 file ``treg_filename`` that will store the results of the classfication
+ - the .pkl file ``catalogue_filename``, which is the pickeled catalogue in HMTK format to be classified.
+ - an array ``priority`` lists the tectonic regions, sorting the labels in the order of increasing priority, and a later label overrides classification of a hypocenter to a previous label. For example, in the configuration file shown below, an earthquake that could be classified as both ``crustal`` and ``int_prt`` will be labeled as ``int_prt``.
+
+A geometry section for each labelled tectonic environment in the ``priority`` list in ``[general]``. The labels should each contain one of the following four strings, which indicate the way that the surface will be used for classification.
+
+
+ - ``int`` or ``slab``: These strings indicate a surface related to subduction or similar. They require at least four configurations: (1) ``label``, which will be used by ``treg_filename`` to indicate which earthquakes correspond to the given tectonic environment; (2) ``folder``, which gives the relative path to the directory (see Step 2) with the geometry .csv files created by ``create_2pt5_model`` for the given surface; and (3) ``distance_buffer_above`` and (4) ``distance_buffer_below``, which are the upper limits of Euclidean distances used to classify hypocenters above or below the surface to the respective tectonic environment. A user can additionally specify ``lower depth`` to bound the surface and buffer region, and ``low_year``, ``upp_year``, ``low_mag``, and ``upp_mag`` to to select only from a given time period or magnitude range. These latter options are useful when hypocenters from a given bracket are known to include major assumptions, such as when historical earthquake are assigned a depth of 0 km.
+ - ``crustal`` or ``volcanic``: These strings indicate a surface against which the classification compares the relative position of a hypocenter laterally and vertically, for example to isolate crustal or volcanic earthquakes. They require two configurations: (1) ``crust_filename``, which is a tab-delimited .xyz file listing longitude, latitude, and depth (as a negative value), which indicates the lateral extent of the tectonic environment and the depths above which all earthquakes should be classified to the respective tectonic environment; and (2) ``distance_delta``, which specifies the vertical depth below a surface to be used as a buffer region.
+
+
+.. code-block:: ini
+
+ [general]
+
+ distance_folder = ./model/catalogue/classification/distances/
+ treg_filename = ./model/catalogue/classification/classified.hdf5
+ catalogue_filename = ./model/catalogue/csv/catalogue.pkl
+
+ priority=[slab_A, slab_B, crustal, int_A]
+
+
+ [crustal]
+
+ label = crustal
+ distance_delta = 20.
+ crust_filename = ./model/litho1pt0/litho_crust3bottom.xyz
+
+
+ [int_A]
+
+ label = int_A
+ folder = ./model/surfaces/edges_A-int
+ lower_depth = 60.
+ distance_buffer_above = 10.
+ distance_buffer_below = 10.
+
+ [slab_A]
+
+ label = slab_A
+ folder = ./model/surfaces/edges_A-slab
+ distance_buffer_above = 30.
+ distance_buffer_below = 30.
+
+ [slab_B]
+
+ label = slab_B
+ folder = ./model/surfaces/edges_B-slab
+ distance_buffer_above = 30.
+ distance_buffer_below = 30.
+
+2. Run the classification
+
+The classification algorithm is run using the following command::
+
+ > cat_classify.py
+
+Where:
+ - ``configuration_file`` is the name of the .ini configuration file
+ - ``distance_flag`` is a flag indicating whether or not the distances to surfaces must be computed (i.e. *True* is used the first time a classification is run for a set of surfaces and tectonic environments, but *False* when only the buffer and delta distances are changed)
+ - ``root_folder`` is the root directory for all paths specified in the ``configuration_file``
+
+3. Separate the classified events into subcatalogues
+
+The user must decide the exact way in which they would like to separate the classified events into subcatalogues for each tectonic environment. For example, one may want to decluster the entire catalogue before separating the events, or to decluster each tectonic environment separately. View the following link for an example of the latter case:
+
+.. toctree::
+ sub_tutorials/make_trts
+
+
+Creating inslab sources for the OpenQuake Engine [incomplete]
+*************************************************************
+
+The construction of subduction inslab sources involves the creation of `virtual faults` elongated along the stike of the slab surface and constrained within the slab volume.
+
+1. Create a configuration file
+
+.. code-block:: ini
+
+ [main]
+
+ reference_folder = /Users/kjohnson/GEM/Regions/paisl18u/
+
+ profile_sd_topsl = 40.
+ edge_sd_topsl = 40.
+
+ sampling = 10.
+
+ float_strike = -0.5
+ float_dip = -1.0
+
+ slab_thickness = 70.
+ hspa = 20.
+ vspa = 20.
+
+ #profile_folder contains: resampled profiles and edges
+ profile_folder = ./model/subduction/cs_profiles/kerton/edges_zone1_slab
+
+ # the pickled catalogue has the hmtk format
+ catalogue_pickle_fname = ./data/catalogues/locations/PI_cat.p
+
+ # the file with labels identifying earthquakes belonging to a given class
+ treg_fname = ./model/catalogue/PI_class_segments.hdf5
+ label = slab_kerton1
+
+ # output folder
+ out_hdf5_fname = ./tmp/ruptures/ruptures_inslab_kerton_1.hdf5
+
+ # output smoothing folder
+ out_hdf5_smoothing_fname = ./tmp/smoothing/smoothing_kerton_1.hdf5
+
+ # this is a lists
+ dips = [45, 135]
+
+ # this is a dictionary
+ aspect_ratios = {2.0: 0.4, 3.0: 0.3, 6.0: 0.2, 8.0: 0.1}
+
+ # this is a dictionary
+ uniform_fraction = 1.0
+
+ # magnitude scaling relationship
+ mag_scaling_relation = StrasserIntraslab
+
+ # MFD
+ agr = 5.945
+ bgr = 1.057
+ mmin = 6.5
+ mmax = 7.80
+
diff --git a/_sources/contents/sub_tutorials/make_trts.ipynb.txt b/_sources/contents/sub_tutorials/make_trts.ipynb.txt
new file mode 100644
index 000000000..c1a30f44d
--- /dev/null
+++ b/_sources/contents/sub_tutorials/make_trts.ipynb.txt
@@ -0,0 +1,177 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Jupyter Notebook example for preparing subcatalogues"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import h5py\n",
+ "import pickle\n",
+ "\n",
+ "# Load OQ tools\n",
+ "from openquake.hmtk.parsers.catalogue import CsvCatalogueParser\n",
+ "from openquake.hmtk.seismicity.selector import CatalogueSelector\n",
+ "from openquake.hmtk.parsers.catalogue.csv_catalogue_parser import CsvCatalogueWriter "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Configuration files\n",
+ "cat_pickle_filename = '~/model/catalogue/csv/catalogue.pkl'\n",
+ "treg = '~/model/catalogue/classification/classified.hdf5'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "crustal\n",
+ "crustal_deep\n",
+ "int_prt\n",
+ "slab_nht\n",
+ "slab_prt\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Reading TR hdf5 file and creating the list of tectonic regions\n",
+ "aaa = []\n",
+ "f = h5py.File(treg, \"r\")\n",
+ "for key in f.keys():\n",
+ " aaa.append(key)\n",
+ " alen = len(f[key])\n",
+ " print(key)\n",
+ "f.close()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "# earthquakes in the catalogue: 16553\n",
+ "# earthquakes in this TR : 10999\n",
+ "Catalogue successfully written to cat_TR_crustal.csv\n",
+ "# earthquakes in the catalogue: 16553\n",
+ "# earthquakes in this TR : 1212\n",
+ "Catalogue successfully written to cat_TR_crustal_deep.csv\n",
+ "# earthquakes in the catalogue: 16553\n",
+ "# earthquakes in this TR : 1933\n",
+ "Catalogue successfully written to cat_TR_int_prt.csv\n",
+ "# earthquakes in the catalogue: 16553\n",
+ "# earthquakes in this TR : 626\n",
+ "Catalogue successfully written to cat_TR_slab_nht.csv\n",
+ "# earthquakes in the catalogue: 16553\n",
+ "# earthquakes in this TR : 296\n",
+ "Catalogue successfully written to cat_TR_slab_prt.csv\n"
+ ]
+ }
+ ],
+ "source": [
+ "# for each label, create the subcatalogue\n",
+ "tot_lab = np.zeros(alen)\n",
+ "for label in (aaa):\n",
+ " csv_filename = \"cat_TR_%s.csv\"%(label)\n",
+ " f = h5py.File(treg,'r')\n",
+ " tr = f[label][:]\n",
+ " f.close()\n",
+ " if sum(tr) > 0:\n",
+ " tmp_lab = tr*1\n",
+ " tot_lab = tot_lab+tmp_lab\n",
+ " catalogue = pickle.load(open(cat_pickle_filename, 'rb'))\n",
+ " for lab in ['month', 'day', 'hour', 'minute', 'second']:\n",
+ " idx = np.isnan(catalogue.data[lab])\n",
+ " if lab == 'day' or lab == 'month':\n",
+ " catalogue.data[lab][idx] = 1\n",
+ " elif lab == 'second':\n",
+ " catalogue.data[lab][idx] = 0.0\n",
+ " else:\n",
+ " catalogue.data[lab][idx] = 0\n",
+ " selector = CatalogueSelector(catalogue, create_copy=False)\n",
+ " print('# earthquakes in the catalogue: {:d}'.format(len(catalogue.data['longitude'])))\n",
+ " catalogue = selector.select_catalogue(tr)\n",
+ " \n",
+ " print('# earthquakes in this TR : {:d}'.format(len(catalogue.data['longitude'])))\n",
+ " # Sub-catalogue\n",
+ " csvcat = CsvCatalogueWriter(csv_filename) \n",
+ " # Write the purged catalogue\n",
+ " csvcat.write_file(catalogue)\n",
+ " print(\"Catalogue successfully written to %s\" % csv_filename)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "# earthquakes: 16553\n",
+ "# earthquakes: 1487\n",
+ "Catalogue successfully written to cat_TR_unclassified.csv\n"
+ ]
+ }
+ ],
+ "source": [
+ "# also make a catalogue of unclassified earthquakes\n",
+ "tr_undef = abs(tot_lab-1)\n",
+ "catalogue = pickle.load(open(cat_pickle_filename, 'rb'))\n",
+ "selector = CatalogueSelector(catalogue, create_copy=False)\n",
+ "print('# earthquakes: {:d}'.format(len(catalogue.data['longitude'])))\n",
+ "catalogue = selector.select_catalogue(tr_undef)\n",
+ "print('# earthquakes: {:d}'.format(len(catalogue.data['longitude'])))\n",
+ "# Sub-catalogue\n",
+ "csv_filename = \"cat_TR_unclassified.csv\"\n",
+ "csvcat = CsvCatalogueWriter(csv_filename) \n",
+ "# Write the purged catalogue\n",
+ "csvcat.write_file(catalogue)\n",
+ "print(\"Catalogue successfully written to %s\" % csv_filename)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/_sources/contents/wkf.rst.txt b/_sources/contents/wkf.rst.txt
new file mode 100644
index 000000000..a10464fda
--- /dev/null
+++ b/_sources/contents/wkf.rst.txt
@@ -0,0 +1,373 @@
+SSC workflow (wkf) module
+##########################
+
+The :index:`workflow` utilises the tools in the model builder's toolkit to construct a seismic source model step-by-step. This allows us to create a source model in xml format from a seismic catalogue, a set of source polygons and a file specifying required model parameters. Using the workflow tools, we can easily prepare different versions of the source models, which makes sensitivity analysis easier and allows us to easily build logic tree branches. Here we show the steps required to build a distributed seismicity model with smoothed sources. In practice, the order of the steps is not strictly important so long as e.g. the completeness is performed before the frequency-magnitude distributions (FMDs) are calculated.
+
+Some notes on setup
+********************
+Though most of the tools we use in model construction are in python, some steps are executed in `Julia `_ using the `PSHAModelBuilder `_ tools. We use this for the boxcounting, Gaussian smoothing, and rate distribution steps, because these steps are particularly intensive and Julia makes the process more efficient. See `the PSHAModelBuilder Github `_ for details on setup.
+
+In general, the components of the workflow are designed so that they can be run directly in a terminal. In the examples below, we use a jupyter notebook and the python ``subprocess`` module to run the commands. To instead run from terminal, use the cmd output directly. You can see that most of these calls are to the wkf module specifically, but in many cases these functions are wrappers to other functions within the mbt or elsewhere in the mbtk. You can use ``oqm wkf -h`` to see the available functions within the wkf and ``oqm wkf --help`` to see the input parameters for each function.
+
+If you are running in a jupyter notebook, we suggest setting up as below, using tools in the package ``os`` or ``pathlib`` to manage paths and specifying the locations of the wkf tools (and Julia when using Windows):
+
+.. code-block:: python
+
+ import os
+ import subprocess
+
+ os.environ['USE_PYGEOS'] = '0'
+ os.environ['NUMEXPR_MAX_THREADS'] = '8'
+
+ # remember to change the path in these lines so they correspond to your computer!
+ BIND = os.path.join('/Users', 'kjohnson', 'GEM','oq-mbtk', 'bin')
+ BIND1 = os.path.join('/Users', 'kjohnson', 'GEM', 'oq-mbtk', 'openquake', 'bin')
+ print(BIND)
+ print(BIND1)
+
+ # on windows, also add these lines
+ #PATH = os.path.join('..', '..', 'AppData', 'Local', 'Programs', 'Julia-1.9.3', 'bin')
+ #os.environ["PATH"] = os.environ["PATH"] + PATH
+
+Workflow inputs
+****************
+
+The workflow starts from three inputs as outlined below:
+ 1. A homogenised earthquake catalogue in hmtk catalogue format. This can be a direct output of a catalogue prepared using the `catalogue toolkit `_ or a catalogue (from a csv or ndk file) converted using the catalogue parsers in the hmtk.
+ 2. Source polygons covering the area of interest. These should ideally be supplied as .geojson files.
+ 3. A source parameter configuration file supplied as a .toml file. The toml file will set up paramaters for many steps of the workflow and be modified while running the code. The configuration toml is created by the modeller. Please note that for all the relative paths in the .toml file, the reference folder is the one where the .toml configuration file is located. An example is shown below.
+
+.. code-block:: ini
+
+ name = "South America"
+
+ mmin = 4.0
+ bin_width = 0.1
+ rupture_mesh_spacing = 2.5
+
+ [smoothing]
+ smoothing_method = "Gaussian"
+ kernel_maximum_distance = 120.0
+ kernel_smoothing = [ [ 0.8, 20.0,], [ 0.15, 40.0,], [ 0.05, 80.0,],]
+
+ [completeness]
+ num_steps = 0
+ step = 8
+ flexible = true
+ years = [ 1920, 1940, 1960, 1970, 1990, 2000, 2010,]
+ mags = [ 5.0, 5.25, 5.5, 5.75, 6.0, 6.5, 7.0, 8.0,]
+ ref_mag = 4.5
+ ref_upp_mag = 10.0
+ bmin = 0.5
+ bmax = 1.5
+ optimization_criterion = "poisson"
+
+ [default]
+ name = "Default"
+ tectonic_region_type = "Active Shallow Crust"
+ completeness_table = [ [ 2000.0, 4.0,], [ 1980.0, 5.0,], [ 1900.0, 6.0,],]
+ rupture_aspect_ratio = 1.0
+ upper_seismogenic_depth = 0.0
+ lower_seismogenic_depth = 35.0
+ nodal_plane_distribution = [ [ 1.0, 180.0, 45.0, 90.0,],]
+ hypocenter_distribution = [ [ 1.0, 15.0,],]
+ agr_sig = 0.1
+ bgr_sig = 0.5
+ agr_sig_weichert = 0.1
+ bgr_sig_weichert = 0.5
+ mmax = 7.5
+
+ [msr]
+ "Active Shallow Crust" = "Leonard2014_Interplate"
+
+ [sources.26]
+
+ [sources.34]
+
+ [sources.38]
+
+The .toml file will be read by different functions at different stages of the workflow. In this example, a source model will consist of sources 26, 34 and 38 from the source polygons, and these are all active shallow crustal sources. If using the ``completeness_analysis`` function, sources will be added to the model after this step, but at least one named source will be required to start the analysis and if there are too few events in a source to establish magnitude of completeness (mc) and GR parameters these sources will be omitted, so best practice remains to specify the sources clearly in the toml. Source names or abbreviations can also be used here - it is not necessary to use only numeric source identifiers. Still, we recommend using a numbering scheme based on a standard format e.g. ASC001 (for source number 1 in active shallow crust), ASC002 and so on.
+
+At various stages of the workflow, values will be added to the .toml file or modified as the model is constructed.
+
+To avoid losing track of the original model parameters, the 'check_toml' function will make a copy of the .toml file that is edited and used in the construction of the source zones, and retain the original input .toml file as provided. The ``check_toml`` file will also report if necessary inputs are missing, if parameters are included for different types of smoothing and the number of sources in the model.
+
+.. code-block:: python
+
+ orig_config = "IND_full_config.toml"
+ config = "IND_config_working_130224.toml"
+
+ cmd = f"oqm wkf check_toml {orig_config} {config} \"{use}\""
+ p = subprocess.run(cmd, shell=True) # returns a CompletedProcess instance
+
+
+Model set-up
+*************
+To set-up the workflow, we start by specifying some necessary parameters we will need later.
+
+.. code-block:: python
+
+ # Set the resolution level for the h3 gridding
+ h3_level = 5
+ # Set max and min depths
+ depth_max = 35
+ depth_min = 0
+
+ mmax_delta = 0.5
+ generate_completeness_tables = True
+
+ config = "config.toml"
+
+For efficient handling of spatial datasets, we use the `h3 `_ package when smoothing the distributed seismicity and to create point sources. We set the resolution for these steps here for consistency. See `the h3 website `_ for more details on h3 resolution.
+
+We also set some depth limits for events to consider in the source model: in this case we are dealing with crustal earthquakes and so the limits for the depths of events are set to 0-35km. Note that some catalogues may contain negative depths if topography has been considered in the catalogue processing!
+
+The parameter ``mmax_delta`` sets a fixed delta value to add to the observed largest event in the catalogue when considering suitable mmax per zone. If ``generate_completeness_tables`` is True, the code will process completeness for each zone. It is useful to be able to turn off this step where you are running the workflow multiple times as this step can be quite slow.
+
+Finally we specify the location of the configuration toml file that contains further parameters for our models and will contain zone-based information to construct the source zones.
+
+Create sub-catalogues per zone
+***********************************
+
+In order to create models for individual zones, we need to partition the events in our catalogue over the source zones we wish to construct. To do this, we use the ``create_subcatalogues_per_zone`` function. This function takes the specified catalogue and the source polygons as input, and returns a new file for each zone containing events within the zone polygon. The input catalogue should be in the hmtk catalogue format and be suitably declustered. The outputs - individual catalogue csv files for each zone - are created in the specified folder. This function uses a simple point in polygon approach to allocate events to the relevant zone, with a modification for polygons that cross the international dateline.
+
+.. code-block:: python
+
+ polygons = "./data/asrc/src22.geojson"
+ subcatalogues_folder = "./model/asc/subcatalogues/"
+
+ cmd = f"oqm wkf create_subcatalogues_per_zone {polygons} {cat} {subcatalogues_folder}"
+ p = subprocess.run(cmd, shell=True)
+
+Calculate and apply completeness
+*********************************
+At this step, we wish to apply some completeness constraints. You may prefer to perform a completeness analysis separately, taking into account changes in expected completeness (for example, due to known changes in local recording stations or equipment). In this case, the identified completeness for each zone can be added to the .toml file before the other steps of the workflow are carried out. Alternatively, there are tools within the mbt for performing a completeness analysis.
+
+The ``completeness_analysis`` tool takes in a set of possible years and magnitudes and tests all possible completeness windows from these sets for their respective fit to the best-fitting FMD given the specified windows. Different optimisation criteria are available for testing the goodness of fit of the different completeness windows, from a norm difference between observed rates and expected to a Poisson likelihood of observing events based on the window selection. As such there are two steps to the completeness analysis in the workflow:
+1. generating the initial completeness windows from the provided years and magnitudes in the config .toml [completeness] section using ``completeness_generate``; and
+2. running the analysis for each subcatalogue with ``completeness_analysis``.
+
+.. code-block:: python
+
+ completeness_param_folder = './completeness_windows/'
+ cmd = f"oqm cat completeness_generate {config} {completeness_param_folder}"
+ p = subprocess.run(cmd, shell=True)
+
+ pattern = os.path.join(".", "model", "asc", "subcatalogues", "*.csv")
+ folder_figs = "./zone_completeness_figs"
+ folder_compl_results = "./zone_completeness"
+
+ cmd = f"oqm cat completeness_analysis \"{pattern}\" {config} {folder_figs} {completeness_param_folder} {folder_compl_results}"
+ p = subprocess.run(cmd, shell=True)
+
+Running the above will generate the completeness windows to test from the years and magnitudes in the config and write them to files in the specified completeness_param_folder. Then, for each csv file in the subcatalogues folder, it will test the completeness windows for the catalogue, calculate the FMD parameters for the best fitting window and write these to the config along with the completeness windows, and plot the best-fitting model in a png stored in folder_figs. In some cases, the completeness_analysis may fail to return completeness windows for a zone. This may be because there are too few events in the catalogue once the completeness windows are applied or because the calculated b-value for all of the possible complete catalogues is outwith the range specified by bmin and bmax in the [completeness] section of the .toml file. In this case, completeness can be manually added to the source or, if nothing is specified for the source, the source will be assigned the [default] completeness_table in the config.
+
+Whether you have used the ``completeness_analysis`` or have manually specified completeness for each zone, you may wish to check plots of event-density in time with the chosen completeness. You can easily create plots of this for each zone using ``plot_completeness_data``:
+
+.. code-block:: python
+
+ folder_figs = "./completeness_density"
+ cmd = f"oqm wkf plot_completeness_data \"{pattern}\" {config} {folder_figs}"
+ p = subprocess.run(cmd, shell = True)
+
+Again this will create for each zone a plot of the event density in time based on the zone catalogue and the parameters in the toml file. For any zones without a specified completeness (i.e. where the completeness_analysis fails to return a result or where completeness has not been manually added), the default completeness specified in the [defaults] section of the .toml will be used. Note that the ``plot_completeness_data`` function will not modify the config.toml, unlike the ``completeness_analysis`` step.
+
+Calculate and set Gutenberg-Richter parameters
+***************************************************
+For each source polygon, we wish to calculate the Gutenberg-Richter a- and b-values that define the total rate expected in that source.
+The compute_gr_params function calculates these values. To easily do this for each source zone, we supply the 'pattern' of naming for the source zones (if we have not already done so) to the function ``compute_gr_params``, which calculates the Weichert a and b parameters using the supplied completeness in the config for each zone.
+
+.. code-block:: python
+
+ pattern = os.path.join(".", "model", "asc", "subcatalogues", "*.csv")
+ cmd = f'oqm wkf compute_gr_params \"{pattern}\" {config} {folder_figs}'
+
+This will write a- and b-values to the config for each zone, called agr_weichert and bgr_weichert respectively.
+If using ``completeness_analysis``, we will have already returned the a- and b- values called agr_weichert and bgr_weichert so the ``compute_gr_parameters`` step is no longer neccessary. However in either case we wish to write the calculated values to the config as agr and bgr. First we must ensure that agr_sig and bgr_sig values are available, describing the uncertainty in a- and b-values. In this case we can set from the [defaults] section where we are missing these:
+
+.. code-block:: python
+
+ cmd = f'oqm wkf set_property_from_default {config} agr_sig_weichert'
+ p = subprocess.run(cmd, shell=True)
+ cmd = f'oqm wkf set_property_from_default {config} bgr_sig_weichert'
+ p = subprocess.run(cmd, shell=True)
+
+Which will update the config file to contain agr_sig_weichert and bgr_sig_weichert values. Then we can set the parameters with the ``set_gr_params`` function:
+
+.. code-block:: python
+
+ cmd = f"oqm wkf set_gr_params {config} -u \"*\" -m \"weichert\""
+ p = subprocess.run(cmd, shell=True)
+
+This sets the GR parameters from the config. -u tells the function which zones to do this for, in this case we use * to specify we wish to do this for all zones. -m tells the function which bgr values to use - in this case weichert.
+
+In some cases, we may wish to change the b-value and find the appropriate a-value for the catalogue given this new b. To do this, we can use the compute_a_value function for a specific zone. In this example we set the b-value of zone 6 to 1.0:
+
+.. code-block:: python
+
+ from openquake.wkf.compute_gr_params import compute_a_value
+
+ compute_a_value("./subcatalogues/subcatalogue_zone_6.csv", bval = 1.0, fname_config= config,
+ folder_out = folder_out, folder_out_figs = folder_figs)
+
+This will add the new b-value and the calculated a-value from the catalogue to the config as bgr_counting and agr_counting. Again, these can be set with ``set_gr_params``, which will update the bgr value for zone 6:
+
+.. code-block:: python
+
+ cmd = f"oqm wkf set_gr_params {config} --use \"'6'\" -m \"counting\""
+ p = subprocess.run(cmd, shell=True)
+
+
+Estimate and set maximum magnitudes
+************************************
+
+The simplest approach to defining a maximum magnitude is to find the largest recorded event in the catalogue for each zone. Again, we do this on a per-zone basis. The function compute_mmax_per_zone does this for us, taking in the zone polygons, the catalogue and the config file. When running this function, we attach the "obs" label to keep track of where this value is obtained from (i.e. from observed data).
+
+.. code-block:: python
+
+ cmd = f"oqm wkf compute_mmax_per_zone {polygons} {cat} {config} \"obs\""
+ p = subprocess.run(cmd, shell=True)
+
+To allow for the (significant) possibility that the largest event is not recorded in the catalogue, we add a delta value (the 'mmax_delta' we specified earlier) to the maximum recorded magnitude. The next step writes the maximum values to our config file. We also set a minimum maximum magnitude (in this case 7.0) so that any zones with a maximum magnitude less than M7.0 are set to have a maximum magnitude of M7.0.
+
+.. code-block:: python
+
+ cmd = f"oqm wkf set_mmax_plus_delta {config} {mmax_delta} 7.0"
+
+Analyse and set hypocentral depth
+*************************************
+Hypocentral depths are also determined from our catalogue data. In this case, we specify depth bins for the events in the catalogue. The code below will create plots of the depth distribituion of events in each zone and save them to a specified output file. It will also write a depth distribution for the zone into our config file as the fraction of events in each bin, where a bin is described by its mean (so in the example below, bins are written into our config file as 5, 15, 27.5).
+We have split the command into two lines for easier readability.
+
+.. code-block:: python
+
+ depth_bins = "0.0,10.0,20.0,35.0"
+ folder_figs = './model/figs/hypo_depth/'
+ cmd = f"oqm wkf analysis_hypocentral_depth {subcatalogues_folder} --f {folder_figs}"
+ cmd = f"{cmd} --depth-bins \"{depth_bins}\" -c {config}"
+
+Model focal mechanism distribution
+**************************************
+
+Similarly our focal mechanism distribution is determined from the available catalogue. Here we can choose to either use the our existing catalogue or to use the gcmt catalogue, repeating the first few steps of breaking this into source zones. If we have focal mechanism data in our catalogue (i.e. strike, dip and rake values) then we can supply our existing catalogue here, though we should be careful to ensure that the column names are correct.
+
+.. code-block:: python
+
+ pattern = os.path.join(gcmt_subcat_folder, "*.csv")
+ folder_figs_gcmt = "./model/figs/focal_mech"
+ cmd = f"oqm wkf analysis_nodal_plane \"{pattern}\" {folder_figs_gcmt}"
+
+Running this code block will run the nodal plane analysis function for all files that match the specified pattern in the specified location and output figures of the nodal plane distribution to the folder_figs_gcmt folder. Rupture types are categorised according to the method of Kaverina et al. (1996).
+
+In this case, we don't have a direct method to apply the focal mechanism distribution to our config file. This is because we often want to consider other local information when deciding on a focal mechanism distribution. Instead we review the plots from ``analysis_nodal_plane`` and add them to a different toml file we have named ``defaults``. For each source zone, we specify a nodal_plane distribution as a list of [weight, strike, dip, rake], for example:
+
+.. code-block:: ini
+
+ [sources.26]
+ nodal_plane_distribution = [[ 1.00, 180.0, 60.0, 90.0,]]
+
+
+Running
+
+.. code-block:: python
+
+ cmd = f"oqm wkf set_defaults {config} {defaults}"
+
+will take the hypocentral distribution (and any other parameters from defaults) and apply it to our config file where information is missing.
+
+Discretise model to h3 zones
+******************************
+Building a smoothed seismicity model can be particularly computationally intensive due to the spatial distribution we are trying to model. We use `h3 `_ to help with this, by covering our area of interest in hexagonal cells at a specified resolution (which we set earlier as h3_level). This step in the workflow generates the collection of h3 cells that covers our source polygons. The cell indices are written to the specified output repository, where they will be called in the next steps of the smoothing.
+
+.. code-block:: python
+
+ zones_h3_repr = './model/zones/h3/'
+ cmd = f"oqm wkf set_h3_to_zones {h3_level} {polygons} {zones_h3_repr}"
+
+If for some reason we don't want to generate h3 cells for all zones in a polygon set, we can specify the polygons we do want to use by supplying a list of polygon ids
+
+Boxcounting (for smoothing)
+******************************
+For Gaussian smoothing approaches, and for calculating the information gain of a smoothing model, we need to know how many events occur in each spatial cell.
+The ``wkf_boxcounting`` function requires the catalogue of earthquakes, the h3 mapping generated at the previous step and the config file. It will write the output - a dataframe containing locations of cells and the number of events in that cell - to the specified output folder. By default the function outputs a version with and without the h3 indices.
+Finally, we supply two extra paramters to the function directly. Firstly the end year is specified after the '-y' flag. Secondly, the weighting is provided using the -w flag. There are currently three options for this weighting:
+* 'one' weights all earthquakes equally
+* 'mfd' weights according to the rate of magnitudes based on the zonal MFD, so earthquakes occurring where the occurrence rates for the given magnitude are higher get weighted more.
+* 'completeness' weights according to the inverse of the duration of completeness for that magnitude, so more weight is given to small earthquakes that weren't captured in the past.
+
+
+.. code-block:: python
+
+ fld_box_counting = os.path.join(".", "model", "boxcounting")
+ tmp = os.path.join(BIND, "wkf_boxcounting_h3.jl")
+ zones_h3_repr = os.path.join(zones_h3_repr, "mapping_h5.csv")
+ cmd = f"julia {tmp} {cat} {zones_h3_repr} {config}"
+ cmd = f"{cmd} {h3_level} {fld_box_counting} -y 2018 -w \"one\""
+
+
+Apply smoothing
+*****************
+There are currently two options for smoothing included in the mbt. For either approach, the required parameters should be included in the toml file under the 'smoothing' section (see example above). In both cases, the output file is a smoothed rate in each h3 cell. Note that the rate returned by these functions comes from the events in the declustered catalogue. The next step will normalise these rates to be consistent with the rates from the FMD for each zone.
+
+Option 1: Gaussian smoothing kernels
+=====================================
+
+This approach applies Gaussian spatial kernels of fixed distance around each event in the catalogue. Multiple kernels and weightings can be specified. The ``kernel_smoothing`` in the config specifies the smoothing distances and their associated weights - in this case we apply three kernels with decreasing weight for increased smoothing distance. We also specify a ``kernel_maximum_distance`` as the upper limit on the Gaussian smoothing. The Gaussian smoothing approach takes the results of the boxcounting directly, so any specified weights in the previous step will be applied to the smoothing in this step. The boxcounting results file will be inside the boxcounting folder, and we set up a file to contain the smoothing results.
+
+.. code-block:: python
+
+ fname_bcounting = os.path.join(".", "model", "boxcounting", f"box_counting_h3_{cat}")
+ fname_smoothing = os.path.join(".", "model", "smoothing", "smooth")
+ tmp = os.path.join(BIND1, "wkf_smoothing.jl")
+ cmd = f"julia {tmp} {fname_bcounting} {config} {fname_smoothing}"
+ p = subprocess.run(cmd, shell=True)
+
+Option 2: Helmstetter (2007) adaptive smoothing
+================================================
+
+This approach determines a smoothing distance for each event based on its proximity to other events. This means that the smoothing distance will be small in areas with many earthquakes and larger where there are fewer, further spaced events.
+In this case, the parameters to be specified are a minimum smoothing distance (ideally close to the location uncertainty of a given catalogue), the nth neighbour to use for the smoothing distance (e.g. to use the distance to the 5th closest neighbour, we would specify n_v = 5) and the spatial kernel we want to use (either power-law or Gaussian), as well as a maximum smoothing distance (maxdist). Because the adaptive smoothing considers all events in the catalogue potential neighbours, including a ``maxdist`` is especially important for catalogues with sparse events covering large areas, but in practice we have found it does not impact the final smoothing results (either in terms of spatial pattern or information gain). These parameters should be specified in the [smoothing] part of the toml file.
+
+.. code-block:: python
+
+ h3_cells_loc = os.path.join(zones_h3_repr, "mapping_h5.csv")
+ fname_smoothing = os.path.join(".", "model", "smoothing", "adapsmooth_nv5.csv")
+ cmd = f"oqm wkf wkf_adaptive_smoothing {cat} {h3_cells_loc} {config} {fname_smoothing} "
+ p = subprocess.run(cmd, shell=True)
+
+
+In both cases, the output will be one large file containing the smoothing at all model locations. To split the smoothed results back into zones so that we can apply the correct rates, we use the following:
+
+.. code-block:: python
+
+ fname_smoothing_source = './smoothing/adapn5_smooth'
+ cmd = f"oqm wkf create_smoothing_per_zone {fname_smoothing} {polygons} {fname_smoothing_source} --use \"{use}\""
+ p = subprocess.run(cmd, shell=True)
+
+Specifying zone ids with ``use`` will return the smoothing only for the specified zones. The fname_smoothing_source input specifies the output folder in which to save the results. This will return for each source a csv of smoothed rates at the specified h3 locations.
+
+Distribute rates in sources
+*****************************
+Now that we have determined a smoothing, we want to distribute the total earthquake rate for a source polygon in such a way that the rate is highest where the intensity of events is highest, that is we wish to distribute the total rate of events spatially.
+
+``eps_a`` and ``eps_b`` are epsilons to be applied to the sigma values from applying the weichert method. If set to zero, the ``agr`` and ``bgr`` are used, but if there is an epsilon and a reference magnitude (the a-value type sigma is for the rate above a reference magnitude), then the zonal mfd is adjusted accordingly before distributing the rates.
+
+This will output point_src_input for each polygon.
+
+.. code-block:: python
+
+ folder_point_srcs = os.path.join(".", "model", "point_src_input")
+ tmp = os.path.join(BIND1, "wkf_rates_distribute.jl")
+ cmd = f"julia {tmp} -r 0.0 -b 0.0 {fname_smoothing_source} {config} {folder_point_srcs}"
+
+
+Write to xml
+*************
+Finally, we wish to write our crustal source models to .xml files that can be used in the OpenQuake engine. For this we use the ``create_nrml_sources`` function which takes the point sources we created for each zone in step 11 and other information from the config file to create source models in the specified folder. At this step, it is necessary to have specified several as-yet unused parameters in the config, such as the msr and the mmin, bin_width and rupture_mesh_spacing.
+
+.. code-block:: python
+
+ pattern = os.path.join(folder_point_srcs, "*.csv")
+ folder_oq = os.path.join("./ssm")
+ cmd = f"oqm wkf create_nrml_sources \"{pattern}\" {config} {folder_oq} -a"
+ p = subprocess.run(cmd, shell=True)
diff --git a/_sources/index.rst.txt b/_sources/index.rst.txt
new file mode 100644
index 000000000..3d2ec9c1f
--- /dev/null
+++ b/_sources/index.rst.txt
@@ -0,0 +1,66 @@
+.. mbt documentation master file, created by
+ sphinx-quickstart on Thu Jan 24 16:06:36 2019.
+ You can adapt this file completely to your liking, but it should at least
+ contain the root `toctree` directive.
+
+Welcome to the OpenQuake Model Building Toolkit's documentation!
+################################################################
+
+The OpenQuake Model Building Toolkit (*oq-mbt*) is a suite of tools for the
+construction of components of a Probabilistic Seismic Hazard (PSH) model.
+The main contributors to this suite of tools are GEM Hazard Team members.
+Contribution from extena users are very welcome!
+
+*oq-mbt* code is hosted on github at the following link
+https://github.com/GEMScienceTools/oq-mbtk. It is developed in close
+connection with the
+`OpenQuake engine `_, the
+open-source hazard and risk calculation engine developed primarily by the
+GEM Foundation.
+
+The *oq-mbt* relies on several functionalities included in the Hazard Modeller's
+Toolkit library (*oq-hmtk*). The oq-hmtk code is accessible on github at the
+following link https://github.com/gem/oq-engine/tree/master/openquake/hmtk,
+while documentation for the oq-hmtk can be downloaded
+at https://github.com/GEMScienceTools/hmtk_docs/blob/master/hmtk_tutorial.pdf.
+
+Currently the oq-mbt includes eight sub-modules:
+
+* *CATalogue Toolkit (cat)* contains code used for creating a homogenised
+ catalogue;
+* *Global Hazard Map (ghm)* contains code used to produce homogenised hazard
+ maps using results obtained using a collection of PSHA input models;
+* *Model ANalysis (man)* contains code for analysing oq-engine formattted PSHA
+ input models;
+* *Model Building tool (mbt)* contains code for seismic source
+ characterisation;
+* *SUBduction modelling (sub)* contains code for building subduction
+ earthquake sources;
+* *Strong-Motion Tools (smt)* contains code for ground-motion characterisation
+ activities;
+* *SEcondary Perils (sep)* contains code for calculating secondary earthquake
+ perils such as liquefaction and coseismic landslides
+* *SSC WorKFlow (wkf)* contains functions for building automated workflows for
+ building seismic source characterisation
+
+.. toctree::
+ :maxdepth: 2
+ :caption: Contents:
+
+ contents/installation
+ contents/cat
+ contents/ghm
+ contents/man
+ contents/mbt
+ contents/sub
+ contents/smt
+ contents/sep
+ contents/wkf
+
+
+Indices and tables
+==================
+
+* :ref:`genindex`
+* :ref:`modindex`
+* :ref:`search`
diff --git a/_static/_sphinx_javascript_frameworks_compat.js b/_static/_sphinx_javascript_frameworks_compat.js
new file mode 100644
index 000000000..81415803e
--- /dev/null
+++ b/_static/_sphinx_javascript_frameworks_compat.js
@@ -0,0 +1,123 @@
+/* Compatability shim for jQuery and underscores.js.
+ *
+ * Copyright Sphinx contributors
+ * Released under the two clause BSD licence
+ */
+
+/**
+ * small helper function to urldecode strings
+ *
+ * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL
+ */
+jQuery.urldecode = function(x) {
+ if (!x) {
+ return x
+ }
+ return decodeURIComponent(x.replace(/\+/g, ' '));
+};
+
+/**
+ * small helper function to urlencode strings
+ */
+jQuery.urlencode = encodeURIComponent;
+
+/**
+ * This function returns the parsed url parameters of the
+ * current request. Multiple values per key are supported,
+ * it will always return arrays of strings for the value parts.
+ */
+jQuery.getQueryParameters = function(s) {
+ if (typeof s === 'undefined')
+ s = document.location.search;
+ var parts = s.substr(s.indexOf('?') + 1).split('&');
+ var result = {};
+ for (var i = 0; i < parts.length; i++) {
+ var tmp = parts[i].split('=', 2);
+ var key = jQuery.urldecode(tmp[0]);
+ var value = jQuery.urldecode(tmp[1]);
+ if (key in result)
+ result[key].push(value);
+ else
+ result[key] = [value];
+ }
+ return result;
+};
+
+/**
+ * highlight a given string on a jquery object by wrapping it in
+ * span elements with the given class name.
+ */
+jQuery.fn.highlightText = function(text, className) {
+ function highlight(node, addItems) {
+ if (node.nodeType === 3) {
+ var val = node.nodeValue;
+ var pos = val.toLowerCase().indexOf(text);
+ if (pos >= 0 &&
+ !jQuery(node.parentNode).hasClass(className) &&
+ !jQuery(node.parentNode).hasClass("nohighlight")) {
+ var span;
+ var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg");
+ if (isInSVG) {
+ span = document.createElementNS("http://www.w3.org/2000/svg", "tspan");
+ } else {
+ span = document.createElement("span");
+ span.className = className;
+ }
+ span.appendChild(document.createTextNode(val.substr(pos, text.length)));
+ node.parentNode.insertBefore(span, node.parentNode.insertBefore(
+ document.createTextNode(val.substr(pos + text.length)),
+ node.nextSibling));
+ node.nodeValue = val.substr(0, pos);
+ if (isInSVG) {
+ var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect");
+ var bbox = node.parentElement.getBBox();
+ rect.x.baseVal.value = bbox.x;
+ rect.y.baseVal.value = bbox.y;
+ rect.width.baseVal.value = bbox.width;
+ rect.height.baseVal.value = bbox.height;
+ rect.setAttribute('class', className);
+ addItems.push({
+ "parent": node.parentNode,
+ "target": rect});
+ }
+ }
+ }
+ else if (!jQuery(node).is("button, select, textarea")) {
+ jQuery.each(node.childNodes, function() {
+ highlight(this, addItems);
+ });
+ }
+ }
+ var addItems = [];
+ var result = this.each(function() {
+ highlight(this, addItems);
+ });
+ for (var i = 0; i < addItems.length; ++i) {
+ jQuery(addItems[i].parent).before(addItems[i].target);
+ }
+ return result;
+};
+
+/*
+ * backward compatibility for jQuery.browser
+ * This will be supported until firefox bug is fixed.
+ */
+if (!jQuery.browser) {
+ jQuery.uaMatch = function(ua) {
+ ua = ua.toLowerCase();
+
+ var match = /(chrome)[ \/]([\w.]+)/.exec(ua) ||
+ /(webkit)[ \/]([\w.]+)/.exec(ua) ||
+ /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) ||
+ /(msie) ([\w.]+)/.exec(ua) ||
+ ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) ||
+ [];
+
+ return {
+ browser: match[ 1 ] || "",
+ version: match[ 2 ] || "0"
+ };
+ };
+ jQuery.browser = {};
+ jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true;
+}
diff --git a/_static/basic.css b/_static/basic.css
new file mode 100644
index 000000000..7ebbd6d07
--- /dev/null
+++ b/_static/basic.css
@@ -0,0 +1,914 @@
+/*
+ * Sphinx stylesheet -- basic theme.
+ */
+
+/* -- main layout ----------------------------------------------------------- */
+
+div.clearer {
+ clear: both;
+}
+
+div.section::after {
+ display: block;
+ content: '';
+ clear: left;
+}
+
+/* -- relbar ---------------------------------------------------------------- */
+
+div.related {
+ width: 100%;
+ font-size: 90%;
+}
+
+div.related h3 {
+ display: none;
+}
+
+div.related ul {
+ margin: 0;
+ padding: 0 0 0 10px;
+ list-style: none;
+}
+
+div.related li {
+ display: inline;
+}
+
+div.related li.right {
+ float: right;
+ margin-right: 5px;
+}
+
+/* -- sidebar --------------------------------------------------------------- */
+
+div.sphinxsidebarwrapper {
+ padding: 10px 5px 0 10px;
+}
+
+div.sphinxsidebar {
+ float: left;
+ width: 230px;
+ margin-left: -100%;
+ font-size: 90%;
+ word-wrap: break-word;
+ overflow-wrap : break-word;
+}
+
+div.sphinxsidebar ul {
+ list-style: none;
+}
+
+div.sphinxsidebar ul ul,
+div.sphinxsidebar ul.want-points {
+ margin-left: 20px;
+ list-style: square;
+}
+
+div.sphinxsidebar ul ul {
+ margin-top: 0;
+ margin-bottom: 0;
+}
+
+div.sphinxsidebar form {
+ margin-top: 10px;
+}
+
+div.sphinxsidebar input {
+ border: 1px solid #98dbcc;
+ font-family: sans-serif;
+ font-size: 1em;
+}
+
+div.sphinxsidebar #searchbox form.search {
+ overflow: hidden;
+}
+
+div.sphinxsidebar #searchbox input[type="text"] {
+ float: left;
+ width: 80%;
+ padding: 0.25em;
+ box-sizing: border-box;
+}
+
+div.sphinxsidebar #searchbox input[type="submit"] {
+ float: left;
+ width: 20%;
+ border-left: none;
+ padding: 0.25em;
+ box-sizing: border-box;
+}
+
+
+img {
+ border: 0;
+ max-width: 100%;
+}
+
+/* -- search page ----------------------------------------------------------- */
+
+ul.search {
+ margin-top: 10px;
+}
+
+ul.search li {
+ padding: 5px 0;
+}
+
+ul.search li a {
+ font-weight: bold;
+}
+
+ul.search li p.context {
+ color: #888;
+ margin: 2px 0 0 30px;
+ text-align: left;
+}
+
+ul.keywordmatches li.goodmatch a {
+ font-weight: bold;
+}
+
+/* -- index page ------------------------------------------------------------ */
+
+table.contentstable {
+ width: 90%;
+ margin-left: auto;
+ margin-right: auto;
+}
+
+table.contentstable p.biglink {
+ line-height: 150%;
+}
+
+a.biglink {
+ font-size: 1.3em;
+}
+
+span.linkdescr {
+ font-style: italic;
+ padding-top: 5px;
+ font-size: 90%;
+}
+
+/* -- general index --------------------------------------------------------- */
+
+table.indextable {
+ width: 100%;
+}
+
+table.indextable td {
+ text-align: left;
+ vertical-align: top;
+}
+
+table.indextable ul {
+ margin-top: 0;
+ margin-bottom: 0;
+ list-style-type: none;
+}
+
+table.indextable > tbody > tr > td > ul {
+ padding-left: 0em;
+}
+
+table.indextable tr.pcap {
+ height: 10px;
+}
+
+table.indextable tr.cap {
+ margin-top: 10px;
+ background-color: #f2f2f2;
+}
+
+img.toggler {
+ margin-right: 3px;
+ margin-top: 3px;
+ cursor: pointer;
+}
+
+div.modindex-jumpbox {
+ border-top: 1px solid #ddd;
+ border-bottom: 1px solid #ddd;
+ margin: 1em 0 1em 0;
+ padding: 0.4em;
+}
+
+div.genindex-jumpbox {
+ border-top: 1px solid #ddd;
+ border-bottom: 1px solid #ddd;
+ margin: 1em 0 1em 0;
+ padding: 0.4em;
+}
+
+/* -- domain module index --------------------------------------------------- */
+
+table.modindextable td {
+ padding: 2px;
+ border-collapse: collapse;
+}
+
+/* -- general body styles --------------------------------------------------- */
+
+div.body {
+ min-width: 360px;
+ max-width: 800px;
+}
+
+div.body p, div.body dd, div.body li, div.body blockquote {
+ -moz-hyphens: auto;
+ -ms-hyphens: auto;
+ -webkit-hyphens: auto;
+ hyphens: auto;
+}
+
+a.headerlink {
+ visibility: hidden;
+}
+
+a:visited {
+ color: #551A8B;
+}
+
+h1:hover > a.headerlink,
+h2:hover > a.headerlink,
+h3:hover > a.headerlink,
+h4:hover > a.headerlink,
+h5:hover > a.headerlink,
+h6:hover > a.headerlink,
+dt:hover > a.headerlink,
+caption:hover > a.headerlink,
+p.caption:hover > a.headerlink,
+div.code-block-caption:hover > a.headerlink {
+ visibility: visible;
+}
+
+div.body p.caption {
+ text-align: inherit;
+}
+
+div.body td {
+ text-align: left;
+}
+
+.first {
+ margin-top: 0 !important;
+}
+
+p.rubric {
+ margin-top: 30px;
+ font-weight: bold;
+}
+
+img.align-left, figure.align-left, .figure.align-left, object.align-left {
+ clear: left;
+ float: left;
+ margin-right: 1em;
+}
+
+img.align-right, figure.align-right, .figure.align-right, object.align-right {
+ clear: right;
+ float: right;
+ margin-left: 1em;
+}
+
+img.align-center, figure.align-center, .figure.align-center, object.align-center {
+ display: block;
+ margin-left: auto;
+ margin-right: auto;
+}
+
+img.align-default, figure.align-default, .figure.align-default {
+ display: block;
+ margin-left: auto;
+ margin-right: auto;
+}
+
+.align-left {
+ text-align: left;
+}
+
+.align-center {
+ text-align: center;
+}
+
+.align-default {
+ text-align: center;
+}
+
+.align-right {
+ text-align: right;
+}
+
+/* -- sidebars -------------------------------------------------------------- */
+
+div.sidebar,
+aside.sidebar {
+ margin: 0 0 0.5em 1em;
+ border: 1px solid #ddb;
+ padding: 7px;
+ background-color: #ffe;
+ width: 40%;
+ float: right;
+ clear: right;
+ overflow-x: auto;
+}
+
+p.sidebar-title {
+ font-weight: bold;
+}
+
+nav.contents,
+aside.topic,
+div.admonition, div.topic, blockquote {
+ clear: left;
+}
+
+/* -- topics ---------------------------------------------------------------- */
+
+nav.contents,
+aside.topic,
+div.topic {
+ border: 1px solid #ccc;
+ padding: 7px;
+ margin: 10px 0 10px 0;
+}
+
+p.topic-title {
+ font-size: 1.1em;
+ font-weight: bold;
+ margin-top: 10px;
+}
+
+/* -- admonitions ----------------------------------------------------------- */
+
+div.admonition {
+ margin-top: 10px;
+ margin-bottom: 10px;
+ padding: 7px;
+}
+
+div.admonition dt {
+ font-weight: bold;
+}
+
+p.admonition-title {
+ margin: 0px 10px 5px 0px;
+ font-weight: bold;
+}
+
+div.body p.centered {
+ text-align: center;
+ margin-top: 25px;
+}
+
+/* -- content of sidebars/topics/admonitions -------------------------------- */
+
+div.sidebar > :last-child,
+aside.sidebar > :last-child,
+nav.contents > :last-child,
+aside.topic > :last-child,
+div.topic > :last-child,
+div.admonition > :last-child {
+ margin-bottom: 0;
+}
+
+div.sidebar::after,
+aside.sidebar::after,
+nav.contents::after,
+aside.topic::after,
+div.topic::after,
+div.admonition::after,
+blockquote::after {
+ display: block;
+ content: '';
+ clear: both;
+}
+
+/* -- tables ---------------------------------------------------------------- */
+
+table.docutils {
+ margin-top: 10px;
+ margin-bottom: 10px;
+ border: 0;
+ border-collapse: collapse;
+}
+
+table.align-center {
+ margin-left: auto;
+ margin-right: auto;
+}
+
+table.align-default {
+ margin-left: auto;
+ margin-right: auto;
+}
+
+table caption span.caption-number {
+ font-style: italic;
+}
+
+table caption span.caption-text {
+}
+
+table.docutils td, table.docutils th {
+ padding: 1px 8px 1px 5px;
+ border-top: 0;
+ border-left: 0;
+ border-right: 0;
+ border-bottom: 1px solid #aaa;
+}
+
+th {
+ text-align: left;
+ padding-right: 5px;
+}
+
+table.citation {
+ border-left: solid 1px gray;
+ margin-left: 1px;
+}
+
+table.citation td {
+ border-bottom: none;
+}
+
+th > :first-child,
+td > :first-child {
+ margin-top: 0px;
+}
+
+th > :last-child,
+td > :last-child {
+ margin-bottom: 0px;
+}
+
+/* -- figures --------------------------------------------------------------- */
+
+div.figure, figure {
+ margin: 0.5em;
+ padding: 0.5em;
+}
+
+div.figure p.caption, figcaption {
+ padding: 0.3em;
+}
+
+div.figure p.caption span.caption-number,
+figcaption span.caption-number {
+ font-style: italic;
+}
+
+div.figure p.caption span.caption-text,
+figcaption span.caption-text {
+}
+
+/* -- field list styles ----------------------------------------------------- */
+
+table.field-list td, table.field-list th {
+ border: 0 !important;
+}
+
+.field-list ul {
+ margin: 0;
+ padding-left: 1em;
+}
+
+.field-list p {
+ margin: 0;
+}
+
+.field-name {
+ -moz-hyphens: manual;
+ -ms-hyphens: manual;
+ -webkit-hyphens: manual;
+ hyphens: manual;
+}
+
+/* -- hlist styles ---------------------------------------------------------- */
+
+table.hlist {
+ margin: 1em 0;
+}
+
+table.hlist td {
+ vertical-align: top;
+}
+
+/* -- object description styles --------------------------------------------- */
+
+.sig {
+ font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace;
+}
+
+.sig-name, code.descname {
+ background-color: transparent;
+ font-weight: bold;
+}
+
+.sig-name {
+ font-size: 1.1em;
+}
+
+code.descname {
+ font-size: 1.2em;
+}
+
+.sig-prename, code.descclassname {
+ background-color: transparent;
+}
+
+.optional {
+ font-size: 1.3em;
+}
+
+.sig-paren {
+ font-size: larger;
+}
+
+.sig-param.n {
+ font-style: italic;
+}
+
+/* C++ specific styling */
+
+.sig-inline.c-texpr,
+.sig-inline.cpp-texpr {
+ font-family: unset;
+}
+
+.sig.c .k, .sig.c .kt,
+.sig.cpp .k, .sig.cpp .kt {
+ color: #0033B3;
+}
+
+.sig.c .m,
+.sig.cpp .m {
+ color: #1750EB;
+}
+
+.sig.c .s, .sig.c .sc,
+.sig.cpp .s, .sig.cpp .sc {
+ color: #067D17;
+}
+
+
+/* -- other body styles ----------------------------------------------------- */
+
+ol.arabic {
+ list-style: decimal;
+}
+
+ol.loweralpha {
+ list-style: lower-alpha;
+}
+
+ol.upperalpha {
+ list-style: upper-alpha;
+}
+
+ol.lowerroman {
+ list-style: lower-roman;
+}
+
+ol.upperroman {
+ list-style: upper-roman;
+}
+
+:not(li) > ol > li:first-child > :first-child,
+:not(li) > ul > li:first-child > :first-child {
+ margin-top: 0px;
+}
+
+:not(li) > ol > li:last-child > :last-child,
+:not(li) > ul > li:last-child > :last-child {
+ margin-bottom: 0px;
+}
+
+ol.simple ol p,
+ol.simple ul p,
+ul.simple ol p,
+ul.simple ul p {
+ margin-top: 0;
+}
+
+ol.simple > li:not(:first-child) > p,
+ul.simple > li:not(:first-child) > p {
+ margin-top: 0;
+}
+
+ol.simple p,
+ul.simple p {
+ margin-bottom: 0;
+}
+
+aside.footnote > span,
+div.citation > span {
+ float: left;
+}
+aside.footnote > span:last-of-type,
+div.citation > span:last-of-type {
+ padding-right: 0.5em;
+}
+aside.footnote > p {
+ margin-left: 2em;
+}
+div.citation > p {
+ margin-left: 4em;
+}
+aside.footnote > p:last-of-type,
+div.citation > p:last-of-type {
+ margin-bottom: 0em;
+}
+aside.footnote > p:last-of-type:after,
+div.citation > p:last-of-type:after {
+ content: "";
+ clear: both;
+}
+
+dl.field-list {
+ display: grid;
+ grid-template-columns: fit-content(30%) auto;
+}
+
+dl.field-list > dt {
+ font-weight: bold;
+ word-break: break-word;
+ padding-left: 0.5em;
+ padding-right: 5px;
+}
+
+dl.field-list > dd {
+ padding-left: 0.5em;
+ margin-top: 0em;
+ margin-left: 0em;
+ margin-bottom: 0em;
+}
+
+dl {
+ margin-bottom: 15px;
+}
+
+dd > :first-child {
+ margin-top: 0px;
+}
+
+dd ul, dd table {
+ margin-bottom: 10px;
+}
+
+dd {
+ margin-top: 3px;
+ margin-bottom: 10px;
+ margin-left: 30px;
+}
+
+.sig dd {
+ margin-top: 0px;
+ margin-bottom: 0px;
+}
+
+.sig dl {
+ margin-top: 0px;
+ margin-bottom: 0px;
+}
+
+dl > dd:last-child,
+dl > dd:last-child > :last-child {
+ margin-bottom: 0;
+}
+
+dt:target, span.highlighted {
+ background-color: #fbe54e;
+}
+
+rect.highlighted {
+ fill: #fbe54e;
+}
+
+dl.glossary dt {
+ font-weight: bold;
+ font-size: 1.1em;
+}
+
+.versionmodified {
+ font-style: italic;
+}
+
+.system-message {
+ background-color: #fda;
+ padding: 5px;
+ border: 3px solid red;
+}
+
+.footnote:target {
+ background-color: #ffa;
+}
+
+.line-block {
+ display: block;
+ margin-top: 1em;
+ margin-bottom: 1em;
+}
+
+.line-block .line-block {
+ margin-top: 0;
+ margin-bottom: 0;
+ margin-left: 1.5em;
+}
+
+.guilabel, .menuselection {
+ font-family: sans-serif;
+}
+
+.accelerator {
+ text-decoration: underline;
+}
+
+.classifier {
+ font-style: oblique;
+}
+
+.classifier:before {
+ font-style: normal;
+ margin: 0 0.5em;
+ content: ":";
+ display: inline-block;
+}
+
+abbr, acronym {
+ border-bottom: dotted 1px;
+ cursor: help;
+}
+
+.translated {
+ background-color: rgba(207, 255, 207, 0.2)
+}
+
+.untranslated {
+ background-color: rgba(255, 207, 207, 0.2)
+}
+
+/* -- code displays --------------------------------------------------------- */
+
+pre {
+ overflow: auto;
+ overflow-y: hidden; /* fixes display issues on Chrome browsers */
+}
+
+pre, div[class*="highlight-"] {
+ clear: both;
+}
+
+span.pre {
+ -moz-hyphens: none;
+ -ms-hyphens: none;
+ -webkit-hyphens: none;
+ hyphens: none;
+ white-space: nowrap;
+}
+
+div[class*="highlight-"] {
+ margin: 1em 0;
+}
+
+td.linenos pre {
+ border: 0;
+ background-color: transparent;
+ color: #aaa;
+}
+
+table.highlighttable {
+ display: block;
+}
+
+table.highlighttable tbody {
+ display: block;
+}
+
+table.highlighttable tr {
+ display: flex;
+}
+
+table.highlighttable td {
+ margin: 0;
+ padding: 0;
+}
+
+table.highlighttable td.linenos {
+ padding-right: 0.5em;
+}
+
+table.highlighttable td.code {
+ flex: 1;
+ overflow: hidden;
+}
+
+.highlight .hll {
+ display: block;
+}
+
+div.highlight pre,
+table.highlighttable pre {
+ margin: 0;
+}
+
+div.code-block-caption + div {
+ margin-top: 0;
+}
+
+div.code-block-caption {
+ margin-top: 1em;
+ padding: 2px 5px;
+ font-size: small;
+}
+
+div.code-block-caption code {
+ background-color: transparent;
+}
+
+table.highlighttable td.linenos,
+span.linenos,
+div.highlight span.gp { /* gp: Generic.Prompt */
+ user-select: none;
+ -webkit-user-select: text; /* Safari fallback only */
+ -webkit-user-select: none; /* Chrome/Safari */
+ -moz-user-select: none; /* Firefox */
+ -ms-user-select: none; /* IE10+ */
+}
+
+div.code-block-caption span.caption-number {
+ padding: 0.1em 0.3em;
+ font-style: italic;
+}
+
+div.code-block-caption span.caption-text {
+}
+
+div.literal-block-wrapper {
+ margin: 1em 0;
+}
+
+code.xref, a code {
+ background-color: transparent;
+ font-weight: bold;
+}
+
+h1 code, h2 code, h3 code, h4 code, h5 code, h6 code {
+ background-color: transparent;
+}
+
+.viewcode-link {
+ float: right;
+}
+
+.viewcode-back {
+ float: right;
+ font-family: sans-serif;
+}
+
+div.viewcode-block:target {
+ margin: -1px -10px;
+ padding: 0 10px;
+}
+
+/* -- math display ---------------------------------------------------------- */
+
+img.math {
+ vertical-align: middle;
+}
+
+div.body div.math p {
+ text-align: center;
+}
+
+span.eqno {
+ float: right;
+}
+
+span.eqno a.headerlink {
+ position: absolute;
+ z-index: 1;
+}
+
+div.math:hover a.headerlink {
+ visibility: visible;
+}
+
+/* -- printout stylesheet --------------------------------------------------- */
+
+@media print {
+ div.document,
+ div.documentwrapper,
+ div.bodywrapper {
+ margin: 0 !important;
+ width: 100%;
+ }
+
+ div.sphinxsidebar,
+ div.related,
+ div.footer,
+ #top-link {
+ display: none;
+ }
+}
\ No newline at end of file
diff --git a/_static/css/badge_only.css b/_static/css/badge_only.css
new file mode 100644
index 000000000..88ba55b96
--- /dev/null
+++ b/_static/css/badge_only.css
@@ -0,0 +1 @@
+.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions .rst-other-versions .rtd-current-item{font-weight:700}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}#flyout-search-form{padding:6px}
\ No newline at end of file
diff --git a/_static/css/fonts/Roboto-Slab-Bold.woff b/_static/css/fonts/Roboto-Slab-Bold.woff
new file mode 100644
index 000000000..6cb600001
Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Bold.woff differ
diff --git a/_static/css/fonts/Roboto-Slab-Bold.woff2 b/_static/css/fonts/Roboto-Slab-Bold.woff2
new file mode 100644
index 000000000..7059e2314
Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Bold.woff2 differ
diff --git a/_static/css/fonts/Roboto-Slab-Regular.woff b/_static/css/fonts/Roboto-Slab-Regular.woff
new file mode 100644
index 000000000..f815f63f9
Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Regular.woff differ
diff --git a/_static/css/fonts/Roboto-Slab-Regular.woff2 b/_static/css/fonts/Roboto-Slab-Regular.woff2
new file mode 100644
index 000000000..f2c76e5bd
Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Regular.woff2 differ
diff --git a/_static/css/fonts/fontawesome-webfont.eot b/_static/css/fonts/fontawesome-webfont.eot
new file mode 100644
index 000000000..e9f60ca95
Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.eot differ
diff --git a/_static/css/fonts/fontawesome-webfont.svg b/_static/css/fonts/fontawesome-webfont.svg
new file mode 100644
index 000000000..855c845e5
--- /dev/null
+++ b/_static/css/fonts/fontawesome-webfont.svg
@@ -0,0 +1,2671 @@
+
+
+
diff --git a/_static/css/fonts/fontawesome-webfont.ttf b/_static/css/fonts/fontawesome-webfont.ttf
new file mode 100644
index 000000000..35acda2fa
Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.ttf differ
diff --git a/_static/css/fonts/fontawesome-webfont.woff b/_static/css/fonts/fontawesome-webfont.woff
new file mode 100644
index 000000000..400014a4b
Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.woff differ
diff --git a/_static/css/fonts/fontawesome-webfont.woff2 b/_static/css/fonts/fontawesome-webfont.woff2
new file mode 100644
index 000000000..4d13fc604
Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.woff2 differ
diff --git a/_static/css/fonts/lato-bold-italic.woff b/_static/css/fonts/lato-bold-italic.woff
new file mode 100644
index 000000000..88ad05b9f
Binary files /dev/null and b/_static/css/fonts/lato-bold-italic.woff differ
diff --git a/_static/css/fonts/lato-bold-italic.woff2 b/_static/css/fonts/lato-bold-italic.woff2
new file mode 100644
index 000000000..c4e3d804b
Binary files /dev/null and b/_static/css/fonts/lato-bold-italic.woff2 differ
diff --git a/_static/css/fonts/lato-bold.woff b/_static/css/fonts/lato-bold.woff
new file mode 100644
index 000000000..c6dff51f0
Binary files /dev/null and b/_static/css/fonts/lato-bold.woff differ
diff --git a/_static/css/fonts/lato-bold.woff2 b/_static/css/fonts/lato-bold.woff2
new file mode 100644
index 000000000..bb195043c
Binary files /dev/null and b/_static/css/fonts/lato-bold.woff2 differ
diff --git a/_static/css/fonts/lato-normal-italic.woff b/_static/css/fonts/lato-normal-italic.woff
new file mode 100644
index 000000000..76114bc03
Binary files /dev/null and b/_static/css/fonts/lato-normal-italic.woff differ
diff --git a/_static/css/fonts/lato-normal-italic.woff2 b/_static/css/fonts/lato-normal-italic.woff2
new file mode 100644
index 000000000..3404f37e2
Binary files /dev/null and b/_static/css/fonts/lato-normal-italic.woff2 differ
diff --git a/_static/css/fonts/lato-normal.woff b/_static/css/fonts/lato-normal.woff
new file mode 100644
index 000000000..ae1307ff5
Binary files /dev/null and b/_static/css/fonts/lato-normal.woff differ
diff --git a/_static/css/fonts/lato-normal.woff2 b/_static/css/fonts/lato-normal.woff2
new file mode 100644
index 000000000..3bf984332
Binary files /dev/null and b/_static/css/fonts/lato-normal.woff2 differ
diff --git a/_static/css/theme.css b/_static/css/theme.css
new file mode 100644
index 000000000..0f14f1064
--- /dev/null
+++ b/_static/css/theme.css
@@ -0,0 +1,4 @@
+html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*!
+ * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome
+ * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License)
+ */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search .wy-dropdown>aactive,.wy-side-nav-search .wy-dropdown>afocus,.wy-side-nav-search>a:hover,.wy-side-nav-search>aactive,.wy-side-nav-search>afocus{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon,.wy-side-nav-search>a.icon{display:block}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.switch-menus{position:relative;display:block;margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-side-nav-search>div.switch-menus>div.language-switch,.wy-side-nav-search>div.switch-menus>div.version-switch{display:inline-block;padding:.2em}.wy-side-nav-search>div.switch-menus>div.language-switch select,.wy-side-nav-search>div.switch-menus>div.version-switch select{display:inline-block;margin-right:-2rem;padding-right:2rem;max-width:240px;text-align-last:center;background:none;border:none;border-radius:0;box-shadow:none;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-size:1em;font-weight:400;color:hsla(0,0%,100%,.3);cursor:pointer;appearance:none;-webkit-appearance:none;-moz-appearance:none}.wy-side-nav-search>div.switch-menus>div.language-switch select:active,.wy-side-nav-search>div.switch-menus>div.language-switch select:focus,.wy-side-nav-search>div.switch-menus>div.language-switch select:hover,.wy-side-nav-search>div.switch-menus>div.version-switch select:active,.wy-side-nav-search>div.switch-menus>div.version-switch select:focus,.wy-side-nav-search>div.switch-menus>div.version-switch select:hover{background:hsla(0,0%,100%,.1);color:hsla(0,0%,100%,.5)}.wy-side-nav-search>div.switch-menus>div.language-switch select option,.wy-side-nav-search>div.switch-menus>div.version-switch select option{color:#000}.wy-side-nav-search>div.switch-menus>div.language-switch:has(>select):after,.wy-side-nav-search>div.switch-menus>div.version-switch:has(>select):after{display:inline-block;width:1.5em;height:100%;padding:.1em;content:"\f0d7";font-size:1em;line-height:1.2em;font-family:FontAwesome;text-align:center;pointer-events:none;box-sizing:border-box}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions .rst-other-versions .rtd-current-item{font-weight:700}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}#flyout-search-form{padding:6px}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block}
\ No newline at end of file
diff --git a/_static/doctools.js b/_static/doctools.js
new file mode 100644
index 000000000..0398ebb9f
--- /dev/null
+++ b/_static/doctools.js
@@ -0,0 +1,149 @@
+/*
+ * Base JavaScript utilities for all Sphinx HTML documentation.
+ */
+"use strict";
+
+const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([
+ "TEXTAREA",
+ "INPUT",
+ "SELECT",
+ "BUTTON",
+]);
+
+const _ready = (callback) => {
+ if (document.readyState !== "loading") {
+ callback();
+ } else {
+ document.addEventListener("DOMContentLoaded", callback);
+ }
+};
+
+/**
+ * Small JavaScript module for the documentation.
+ */
+const Documentation = {
+ init: () => {
+ Documentation.initDomainIndexTable();
+ Documentation.initOnKeyListeners();
+ },
+
+ /**
+ * i18n support
+ */
+ TRANSLATIONS: {},
+ PLURAL_EXPR: (n) => (n === 1 ? 0 : 1),
+ LOCALE: "unknown",
+
+ // gettext and ngettext don't access this so that the functions
+ // can safely bound to a different name (_ = Documentation.gettext)
+ gettext: (string) => {
+ const translated = Documentation.TRANSLATIONS[string];
+ switch (typeof translated) {
+ case "undefined":
+ return string; // no translation
+ case "string":
+ return translated; // translation exists
+ default:
+ return translated[0]; // (singular, plural) translation tuple exists
+ }
+ },
+
+ ngettext: (singular, plural, n) => {
+ const translated = Documentation.TRANSLATIONS[singular];
+ if (typeof translated !== "undefined")
+ return translated[Documentation.PLURAL_EXPR(n)];
+ return n === 1 ? singular : plural;
+ },
+
+ addTranslations: (catalog) => {
+ Object.assign(Documentation.TRANSLATIONS, catalog.messages);
+ Documentation.PLURAL_EXPR = new Function(
+ "n",
+ `return (${catalog.plural_expr})`
+ );
+ Documentation.LOCALE = catalog.locale;
+ },
+
+ /**
+ * helper function to focus on search bar
+ */
+ focusSearchBar: () => {
+ document.querySelectorAll("input[name=q]")[0]?.focus();
+ },
+
+ /**
+ * Initialise the domain index toggle buttons
+ */
+ initDomainIndexTable: () => {
+ const toggler = (el) => {
+ const idNumber = el.id.substr(7);
+ const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`);
+ if (el.src.substr(-9) === "minus.png") {
+ el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`;
+ toggledRows.forEach((el) => (el.style.display = "none"));
+ } else {
+ el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`;
+ toggledRows.forEach((el) => (el.style.display = ""));
+ }
+ };
+
+ const togglerElements = document.querySelectorAll("img.toggler");
+ togglerElements.forEach((el) =>
+ el.addEventListener("click", (event) => toggler(event.currentTarget))
+ );
+ togglerElements.forEach((el) => (el.style.display = ""));
+ if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler);
+ },
+
+ initOnKeyListeners: () => {
+ // only install a listener if it is really needed
+ if (
+ !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS &&
+ !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS
+ )
+ return;
+
+ document.addEventListener("keydown", (event) => {
+ // bail for input elements
+ if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return;
+ // bail with special keys
+ if (event.altKey || event.ctrlKey || event.metaKey) return;
+
+ if (!event.shiftKey) {
+ switch (event.key) {
+ case "ArrowLeft":
+ if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break;
+
+ const prevLink = document.querySelector('link[rel="prev"]');
+ if (prevLink && prevLink.href) {
+ window.location.href = prevLink.href;
+ event.preventDefault();
+ }
+ break;
+ case "ArrowRight":
+ if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break;
+
+ const nextLink = document.querySelector('link[rel="next"]');
+ if (nextLink && nextLink.href) {
+ window.location.href = nextLink.href;
+ event.preventDefault();
+ }
+ break;
+ }
+ }
+
+ // some keyboard layouts may need Shift to get /
+ switch (event.key) {
+ case "/":
+ if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break;
+ Documentation.focusSearchBar();
+ event.preventDefault();
+ }
+ });
+ },
+};
+
+// quick alias for translations
+const _ = Documentation.gettext;
+
+_ready(Documentation.init);
diff --git a/_static/documentation_options.js b/_static/documentation_options.js
new file mode 100644
index 000000000..7e4c114f2
--- /dev/null
+++ b/_static/documentation_options.js
@@ -0,0 +1,13 @@
+const DOCUMENTATION_OPTIONS = {
+ VERSION: '',
+ LANGUAGE: 'en',
+ COLLAPSE_INDEX: false,
+ BUILDER: 'html',
+ FILE_SUFFIX: '.html',
+ LINK_SUFFIX: '.html',
+ HAS_SOURCE: true,
+ SOURCELINK_SUFFIX: '.txt',
+ NAVIGATION_WITH_KEYS: false,
+ SHOW_SEARCH_SUMMARY: true,
+ ENABLE_SEARCH_SHORTCUTS: true,
+};
\ No newline at end of file
diff --git a/_static/file.png b/_static/file.png
new file mode 100644
index 000000000..a858a410e
Binary files /dev/null and b/_static/file.png differ
diff --git a/_static/fonts/Lato/lato-bold.eot b/_static/fonts/Lato/lato-bold.eot
new file mode 100644
index 000000000..3361183a4
Binary files /dev/null and b/_static/fonts/Lato/lato-bold.eot differ
diff --git a/_static/fonts/Lato/lato-bold.ttf b/_static/fonts/Lato/lato-bold.ttf
new file mode 100644
index 000000000..29f691d5e
Binary files /dev/null and b/_static/fonts/Lato/lato-bold.ttf differ
diff --git a/_static/fonts/Lato/lato-bold.woff b/_static/fonts/Lato/lato-bold.woff
new file mode 100644
index 000000000..c6dff51f0
Binary files /dev/null and b/_static/fonts/Lato/lato-bold.woff differ
diff --git a/_static/fonts/Lato/lato-bold.woff2 b/_static/fonts/Lato/lato-bold.woff2
new file mode 100644
index 000000000..bb195043c
Binary files /dev/null and b/_static/fonts/Lato/lato-bold.woff2 differ
diff --git a/_static/fonts/Lato/lato-bolditalic.eot b/_static/fonts/Lato/lato-bolditalic.eot
new file mode 100644
index 000000000..3d4154936
Binary files /dev/null and b/_static/fonts/Lato/lato-bolditalic.eot differ
diff --git a/_static/fonts/Lato/lato-bolditalic.ttf b/_static/fonts/Lato/lato-bolditalic.ttf
new file mode 100644
index 000000000..f402040b3
Binary files /dev/null and b/_static/fonts/Lato/lato-bolditalic.ttf differ
diff --git a/_static/fonts/Lato/lato-bolditalic.woff b/_static/fonts/Lato/lato-bolditalic.woff
new file mode 100644
index 000000000..88ad05b9f
Binary files /dev/null and b/_static/fonts/Lato/lato-bolditalic.woff differ
diff --git a/_static/fonts/Lato/lato-bolditalic.woff2 b/_static/fonts/Lato/lato-bolditalic.woff2
new file mode 100644
index 000000000..c4e3d804b
Binary files /dev/null and b/_static/fonts/Lato/lato-bolditalic.woff2 differ
diff --git a/_static/fonts/Lato/lato-italic.eot b/_static/fonts/Lato/lato-italic.eot
new file mode 100644
index 000000000..3f826421a
Binary files /dev/null and b/_static/fonts/Lato/lato-italic.eot differ
diff --git a/_static/fonts/Lato/lato-italic.ttf b/_static/fonts/Lato/lato-italic.ttf
new file mode 100644
index 000000000..b4bfc9b24
Binary files /dev/null and b/_static/fonts/Lato/lato-italic.ttf differ
diff --git a/_static/fonts/Lato/lato-italic.woff b/_static/fonts/Lato/lato-italic.woff
new file mode 100644
index 000000000..76114bc03
Binary files /dev/null and b/_static/fonts/Lato/lato-italic.woff differ
diff --git a/_static/fonts/Lato/lato-italic.woff2 b/_static/fonts/Lato/lato-italic.woff2
new file mode 100644
index 000000000..3404f37e2
Binary files /dev/null and b/_static/fonts/Lato/lato-italic.woff2 differ
diff --git a/_static/fonts/Lato/lato-regular.eot b/_static/fonts/Lato/lato-regular.eot
new file mode 100644
index 000000000..11e3f2a5f
Binary files /dev/null and b/_static/fonts/Lato/lato-regular.eot differ
diff --git a/_static/fonts/Lato/lato-regular.ttf b/_static/fonts/Lato/lato-regular.ttf
new file mode 100644
index 000000000..74decd9eb
Binary files /dev/null and b/_static/fonts/Lato/lato-regular.ttf differ
diff --git a/_static/fonts/Lato/lato-regular.woff b/_static/fonts/Lato/lato-regular.woff
new file mode 100644
index 000000000..ae1307ff5
Binary files /dev/null and b/_static/fonts/Lato/lato-regular.woff differ
diff --git a/_static/fonts/Lato/lato-regular.woff2 b/_static/fonts/Lato/lato-regular.woff2
new file mode 100644
index 000000000..3bf984332
Binary files /dev/null and b/_static/fonts/Lato/lato-regular.woff2 differ
diff --git a/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot b/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot
new file mode 100644
index 000000000..79dc8efed
Binary files /dev/null and b/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot differ
diff --git a/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf b/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf
new file mode 100644
index 000000000..df5d1df27
Binary files /dev/null and b/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf differ
diff --git a/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff b/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff
new file mode 100644
index 000000000..6cb600001
Binary files /dev/null and b/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff differ
diff --git a/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 b/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2
new file mode 100644
index 000000000..7059e2314
Binary files /dev/null and b/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 differ
diff --git a/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot b/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot
new file mode 100644
index 000000000..2f7ca78a1
Binary files /dev/null and b/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot differ
diff --git a/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf b/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf
new file mode 100644
index 000000000..eb52a7907
Binary files /dev/null and b/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf differ
diff --git a/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff b/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff
new file mode 100644
index 000000000..f815f63f9
Binary files /dev/null and b/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff differ
diff --git a/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 b/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2
new file mode 100644
index 000000000..f2c76e5bd
Binary files /dev/null and b/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 differ
diff --git a/_static/jquery.js b/_static/jquery.js
new file mode 100644
index 000000000..c4c6022f2
--- /dev/null
+++ b/_static/jquery.js
@@ -0,0 +1,2 @@
+/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */
+!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"
The Catalogue Toolkit module provides functionalities for the compilation of a homogenised catalogue starting from a collection of catalogues with different origins and magnitudes.
+
The formats of the original catalogues supported are:
The module contains tools to transform between these different catalogue types, retaining the most neccessary information. The easiest way to build a homogenised catalogue within this framework is to run a bash script which includes the required inputs for each stage of the model and to specify the parameters with a toml file. We demonstrate below how to set this up, but individual steps can also be called directly in python if preffered.
The bash script specifies all file locations and steps for generating a homogenised model. At each step, we provide a different .toml file specifying the necessary parameters. If you have all the neccessary files set out as below (and named run_all.sh) you should have no problems in running the script with ./run_all.sh
The first step in compiling a catalogue is merging information from different sources. This might include a global catalogue (e.g. ISC-GEM or GCMT), and various local catalogues that are more likely to have recorded smaller magnitude events, or contain more accurate locations. The merge tools are designed to allow multiple catalogues to be combined into one, regardless of original catalogue formats, and to retain only unique events across the catalogues.
+
As we see in the bash script above, we run the merge with oqmcatmergemerge.toml where merge.toml contains all the necessary information for the merge. The merge function takes the toml file as its single argument. An example of merge .toml file might look like this:
+
[general]
+## Set these or your output files will have bad names and be in very confusing places!
+output_path="./../h5/"
+output_prefix="homogenisedcat_"
+
+[[catalogues]]
+code="ISCGEM"
+name="ISC GEM Version 10.0"
+filename="./iscgem10pt0.csv"
+type="csv"
+
+[[catalogues]]
+code="local"
+name="local version 0.0"
+filename="./local_00_cat.csv"
+type="csv"
+delta_ll=30
+delta_t=10
+buff_ll=0.0
+buff_t=5.0
+use_kms=true
+#use_ids = true
+
+
+
This contains some general settings for the output, namely the path where the output should be saved and a prefix that will be used to name the file. If you are running the merge function as part of a homogenisation bash script, it is strongly recommended to make this consistent with the CASE argument (as in the example)! The toml file should also be named merge_$CASE. A minimumn magnitude can also be specified here, which will filter the catalogue to events above the specified minimum, and a polygon describing a geographic area of interest can also be added to filter the catalogue to that region.
+The rest of the merge toml should contain the details of the catalogues to be merged. For each catalogue, it is necessary to specify a code, name, file location and catalogue type. The code and name are for the user to choose, but the code should be short as it will feature in the final catalogue to indicate which catalogue the event came from. The type argument will be used to process the catalogue, so should be one of “csv”, “isf” or “gcmt”.
+
To ensure events are not duplicated, the user can specify space-time windows over which events are considered to be the same. These are specified using delta_t for time and delta_ll for distance, where delta_ll can be specified in degrees or kms by specifying use_km=True. For both parameters, these can be specified as a single value, as a year-value pair to allow for changes in location/temporal accuracy in different time periods, or as a function of magnitude m, which is particularly useful when using the GCMT catalogue, which has some significant differences in location/time compared to other catalogues due to the moment tensor inversion considering these as model parameters. This can result in significant differences for large events, some of which may be so large that they are better removed manually (for example, the 3.5 minute time difference between ISC_GEM and GCMT for the 2004 Sumatra-Andaman earthquake). For the window parameters, we can also specify a buffer (buff_ll or buff_t) which highlights events which fall within some space/time of the window parameter and flags these as potential duplicates. The units for buff_ll should be consistent with those used in delta_ll and specified using the use_kms argument (i.e. set use_kms = True to use km units or use_kms = False to use lat/lon). In the case where catalogues to be merged might come from the same source or otherwise have matching event ids, the use_ids argument will remove duplicated event ids directly.
+
The output of the merge function will be two h5 files specifying information on the origin _otab.h5 and the magnitudes _mtab.h5. The origin file will contain the event locations, depths, agency information and focal mechanism parameters where available, while the magnitudes file will include information on the event magnitude and uncertainties.
The next step in creating a catalogue is the homogenisation of magnitudes to moment magnitude M_w. The catalogue toolkit provides different tools to help with this. Homogenising magnitudes is normally done by using a regression to map from one magnitude to a desired magnitude. This requires that an event would need to be recorded in both magnitudes, and ideally a good number of matching events to ensure a significant result. In the toolkit, we use odr regression with scipy to find the best fit model, with options to fit a simple linear regression, an exponential regression, a polynomial regression, or a bilinear regression with a fixed point of change in slope. The function outputs parameters for the chosen fit, plus uncertainty that should be passed on to the next stage.
+
from openquake.cat.catalogue_query_tools import CatalogueRegressor
+from openquake.cat.hmg.hmg import get_mag_selection_condition
+import pandas as pd
+import numpy as np
+
+def build_magnitude_query(mag_agencies, logic_connector):
+"""
+Creates a string for querying a DataFrame with magnitude data.
+
+:param mag_agency:
+A dictionary with magnitude type as key and a list of magnitude agencies as values
+:param logic_connector"
+A string. Can be either "and" or "or"
+:return:
+A string defining a query for an instance of:class:`pandas.DataFrame`
+"""
+query=""
+i=0
+for mag_type in mag_agencies:
+logic="\" if logic_connector == 'or' else "&"
+for agency in mag_agencies[mag_type]:
+cnd=get_mag_selection_condition(agency, mag_type, df_name="mdf")
+query +=" {:s} ({:s})".format(logic, cnd) if i > 0 else "({:s})".format(cnd)
+i +=1
+return query
+
+
+def get_data(res):
+"""
+From a DataFrame obtained by merging two magnitude DataFrames it creates the input needed
+for performing orthogonal regression.
+
+:param res:
+:class:`pandas.DataFrame`
+"""
+data=np.zeros((len(res), 4))
+data[:, 0] = res["value_x"].values
+data[:, 1] = res["sigma_x"].values
+data[:, 2] = res["value_y"].values
+data[:, 3] = res["sigma_y"].values
+return data
+
+def getd(mdf, agenciesA, agenciesB):
+queryA=build_magnitude_query(agenciesA, "or")
+queryB=build_magnitude_query(agenciesB, "or")
+
+selA=mdf.loc[eval(queryA), :]
+selB=mdf.loc[eval(queryB), :]
+
+res=selA.merge(selB, on=["eventID"], how="inner")
+print("Number of values:{:d}".format(len(res)))
+
+data=get_data(res)
+return data
+
+def print_mbt_conversion(results, agency, magtype, **kwargs):
+print("\n")
+print("[magnitude.{:s}.{:s}]".format(agency, magtype))
+print("# This is an ad-hoc conversion equation")
+
+if "corner" in kwargs:
+print("low_mags=[0.0, {:.1f}]".format(float(kwargs["corner"])))
+fmt="conv_eqs = [\"{:.4f} + {:.4f} * m\"]"
+print(fmt.format(results.beta[0], results.beta[1]))
+else:
+print("low_mags=[0.0]")
+fmt="conv_eqs = [\"{:.4f} + {:.4f} * m\"]"
+print(fmt.format(results.beta[0], results.beta[1]))
+
+fmt="std_devs = [{:.4f}, {:.4f}]"
+print(fmt.format(results.sd_beta[0], results.sd_beta[1]))
+print("\n")
+
+
+
Using the above functions, we can query our catalogues to identify events that are present in both catalogues in both magnitude types. We can then use these to build a regression model and identify a relationship between different magnitude types. In the example below, we select mw magnitudes from our local catalogue and Mw magnitudes from ISCGEM. We specify a polynomial fit to the data, with starting parameter estimates for the regression of 1.2 and 0.7
+
agency="local"
+magtype="mw"
+amA={magtype: [agency]}
+amB={"Mw": ["ISCGEM"]}
+datambi=getd(gm, amA, amB)
+
+regress=CatalogueRegressor.from_array(datambi, keys="({:s}, {:s}) | (Mw)".format(agency, magtype))
+# Regression type to fit and starting parameters
+results=regress.run_regression("polynomial", [1.2, 0.7])
+# Results
+# Print resulting best fit
+print_mbt_conversion(results, agency, magtype)
+# plot the regression
+regress.plot_model_density(overlay=False, sample=0)
+
+
+
Alternatively, if we wanted an example with a bilinear fit with a break in slope at M5.8, we could say
This would give us a different fit to our data and a different equation to supply to the homogenisation toml.
+
Where there are not enough events to allow for a direct regression or we are unhappy with the fit for our data, there are many conversions in the literature which may be useful. This process may take some revising and iterating - it is sometimes very difficult to identify a best fit, especially where we have few datapoints or highly uncertain data. Once we are happy with the fits to our data, we can add the regression equation to the homogenisation .toml file. This process should be repeated for every magnitude we wish to convert to Mw.
+
The final homogenisation step itself is also controlled by a toml file, where each observed magnitude is specified individually and the regression coefficients and uncertainty are included. It is also necessary to specify a hierarchy of catalogues so that a preferred catalogue is used for the magnitude where the event has multiple entries. In the example below, we merge the ISCGEM and a local catalogue, preferring ISCGEM magnitudes where available as specified in the ranking. Because the ISCGEM already provides magnitudes in Mw, we simply retain all Mw magnitudes from ISCGEM. In this example, our local catalogue has two different magnitude types for which we have derived a regression. We specify how to convert to the standardised Mw from the local.mw and the standard deviations, which are outputs of the fitting we carried out above.
+
# This file contains a set of rules for the selection of origins and
+# the homogenisation of magnitudes. Used for the construction of the global catalogue
+# This version uses ad-hoc conversion parameters for ms and mb magnitudes, and that all Mw magnitudes are consistent
+#
+# Origin selection
+#
+
+[origin]
+# Specify preferred origin when multiple are available.
+ranking=["ISCGEM", "local"]
+
+#
+# Magnitude-conversion: Mw
+#
+# These are magnitudes we are happy with: don't convert
+# Homogenise all catalogues to iscgem Mw
+[magnitude.ISCGEM.Mw]
+low_mags=[0.0]
+conv_eqs=["m"]
+
+[magnitude.local.mw]
+low_mags=[0.0]
+conv_eqs=["0.1079 + 0.9806 * m"]
+std_devs=[0.0063, 0.0011]
+
+
+[magnitude.local.mww]
+low_mags=[0.0]
+conv_eqs=["0.1928 + 0.9757 * m"]
+std_devs=[0.0091, 0.0016]
+
+
+
The actual homogenisation step is carried out by calling
+oqmcathomogenise$ARG1$ARG2$ARG3
+as in the bash script example, where $ARG1 is the homogenisation toml file and and $ARG2 and $ARG3 are the hdf5 file outputs from the merge step, describing the origins and magnitude information for the merged catalogue respectively.
A common issue when merging catalogues is that there are differences in earthquake metadata in different catalogues. To avoid creating a catalogue with duplicate events, we specify the time and space criteria in the merge stage, so that events that are very close in time and space will not be added to the catalogue.
+We can check how well we have achieved this by looking at events that are retained in the final catalogue but fall within a certain time and space window. We can use the check_duplicates function to do this, which takes in a check.toml file and the homogenised catalogue h5 file. A check.toml file might look like this:
where delta_ll and dela_t specify the time and space windows (in seconds and degrees respctively) to test for duplicate events. Again, we can specify different time limits and write the limits as functions of magnitudes i.e.:
The check_duplicates output is a geojson file that draws lines between events that meet the criteria in the check.toml file. Each line segment contains the details of the two events, including their original magnitudes, the agencies that the events are taken from and the time and spatial distance between the two events, so that a user can check if they are happy for these events to be retained or would prefer to iterate on the parameters.
+
The process of building a reliable homogenised catalogue is iterative: at any step we may identify changes that should be made to merge criteria or regression parameters. It is also important to look at the resulting frequency-magnitude distribution to idenitfy any obvious changes in slope, which may indicate that our regressions are not performing as well as we would like.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/ghm.html b/contents/ghm.html
new file mode 100644
index 000000000..b25032953
--- /dev/null
+++ b/contents/ghm.html
@@ -0,0 +1,139 @@
+
+
+
+
+
+
+
+
+ Global Hazard Map (ghm) module — OpenQuake Model Building Toolkit Suite documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
The Global Hazard Map module contains code used to produce homogenised hazard maps using results obtained using a collection of PSHA input models. For the most part this is internal code used by GEM personnel for building various versions of the global seismic hazard maps.
Given a model, an almost equally spaced grid of points can be created using the get_sites.py tool. Note that this is atool added in 2022. The grids used for the maps created before the end of 2022 were obtained with an inhouse code that we abandoned in favour of the H3 library (see https://h3geo.org/).
+
+
To learn about the information required by get_sites.py, you can run the following:
+
>pythonget_sites.py
+
+
+
+
For example, for the construction of grid of points covering Europe you can use:
The oq-mbt is installed with the procedure described in the following.
+Note that this procedure implies the installation of the OpenQuake engine.
+It was tested on Mac OS and Linux systems.
+
+
Open a terminal and move to the folder where to intend to install the tools;
+
Create a virtual environment with python3-mvenvvenv
+
Activate the virtual environment sourcevenv/bin/activate
+
Update pip pipinstall-Upip
+
Enter the virtual environment cdvenv and create a directory for storing source code mkdirsrc;cdsrc
+
Clone the OpenQuake engine gitclonegit@github.com:gem/oq-engine.git
+
Complete a development installation with cd.. then pipinstall-r./src/oq-engine/requirements-py36-macos.txt and finally pipinstall-e./src/oq-engine/
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/man.html b/contents/man.html
new file mode 100644
index 000000000..8429ac75c
--- /dev/null
+++ b/contents/man.html
@@ -0,0 +1,139 @@
+
+
+
+
+
+
+
+
+ Model ANalysis (man) module — OpenQuake Model Building Toolkit Suite documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
The Model Analysis module contains a number of tools for analyzing various characteristics of hazard input models. Below we provide a description of the main functionalities available. We start with a brief description of the structure of a Probabilistic Seismic Hazard Analysis (PSHA) Input Model for the OpenQuake Engine.
+
+
The structure of a PSHA input model for the OpenQuake engine
+
A PSHA Input Model contains two main components: The seismic source characterization and the ground-motion characterization.
The Seismic Source Characterisation (SSC) contains the information necessary to describe the location of the earthquake sources, their geometries, the process with which they generate earthquakes and the associated (epistemic) uncertainties.
+
In its simplest form, the Seismic Source Characterisation contains a Seismic Source Model (i.e. a list of earthquake sources) and the Seismic Source Logic Tree with one Branch Set containing one Branch.
The Ground-Motion Characterisation contains the information necessary to describe the models used to compute shaking at the investigated sites for all ruptures admitted by the SSC and the associated epistemic uncertainties.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/mbt.html b/contents/mbt.html
new file mode 100644
index 000000000..c6842de75
--- /dev/null
+++ b/contents/mbt.html
@@ -0,0 +1,131 @@
+
+
+
+
+
+
+
+
+ Model Building Toolkit (mbt) module — OpenQuake Model Building Toolkit Suite documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Landslides and liquefaction are well-known perils that accompany earthquakes.
+Basic models to describe their occurrence have been around for decades and are
+constantly improving. However, these models have rarely been incorporated into
+PSHA.
+
The tools presented here are implementations of some of the more common and
+appropriate secondary perils models. The intention is seamless incorporation of
+these models into PSH(R)A calculations done through the OpenQuake Engine, though
+the incorporation is a work in progress.
+
Tools for preparing the data for these models are also presented. This can be a
+non-trivial challenge, and consistent and correct data preparation is necessary
+for accurate secondary peril hazard and risk calculations.
Site characterization for probabilistic liquefaction analysis
+
There are many methods to calculate the probabilities and displacements that
+result from liquefaction. In OpenQuake, we have implemented two of these, the
+methods developed by the US Federal Emergency Management Agency through their
+HAZUS project, and a statistical method developed by Zhu et al (2015).
+
These methods require different input datasets. The HAZUS methods are
+simplified from older, more comprehensive liquefaction evaluations that would be
+made at a single site following in-depth geotechnical analysis; the HAZUS
+methods retain their reliance upon geotechnical parameters that may be measured
+or inferred at the study sites. The methods by Zhu et al (2015) were developed
+to only use data that can be derived from a digital elevation model (DEM), but
+in practice, the datasets must be chosen carefully for the statistical relations
+to hold. Furthermore, Zhu’s methods do not predict displacements from
+liquefaction, so the HAZUS site characterizations must be used for displacement
+calculations regardless of the methods used to calculate the probabilities of
+liquefaction.
Spatial resolution and accuracy of data and site characterization
+
Much like traditional seismic hazard analysis, liquefaction analysis may range
+from low-resolution analysis over broad regions to very high resolution analysis
+of smaller areas. With advances in computing power, it is possible to run
+calculations for tens or hundreds of thousands of earthquakes at tens or
+hundreds of thousands of sites in a short amount of time on a personal computer,
+giving us the ability to work at a high resolution over a broad area, and
+considering a very comprehensive suite of earthquake sources. In principle,
+the methods should be reasonably scale-independent but in practice this isn’t
+always the case.
+
Two of the major issues that can arise are the limited spatial resolutions of
+key datasets and the spatial misalignments of different datasets.
+
Some datasets, particularly those derived from digital elevation models, must be
+of a specific resolution or source to be used accurately in these calculations.
+For example, if Vs30 is calculated from slope following methods developed by
+Wald and Allen (2007), the slope should be calculated from a DEM with a
+resolution of around 1 km. Higher resolution DEMs tend to have higher slopes at
+a given point because the slope is averaged over smaller areas. The
+mathematical correspondance between slope and Vs30 was developed for DEMs of
+about 1 km resolution, so if modern DEMs with resolutions of 90 m or less are
+used, the resulting Vs30 values will be too high.
+
In and of itself, this is not necessarily a problem. The issues can arise when
+the average spacing of the sites is much lower than the resolution of the data,
+or the characteristics of the sites vary over spatial distances much less than
+the data, so that important variability between sites is lost.
+
The misalignment of datasets is another issue. Datasets derived from geologic
+mapping or other vector-type geospatial data may be made at spatial resolutions
+much higher or lower than those derived from digital elevation data or other
+raster geospatial datasets (particularly for 1 km raster data as discussed
+above). This can cause a situation where irregular geographic or geologic
+features such as rivers may be in different locations in two datasets, which can
The HAZUS methods require several variables to characterize the ground shaking
+and the site response:
+
+
Earthquake magnitude
+
Peak Ground Acceleration (PGA)
+
Liquefaction susceptibility category
+
Groundwater depth
+
+
The magnitude of the earthquake and the resulting PGA may be calculated by
+OpenQuake during a scenario or event-based PSHA, or alternatively from ShakeMap
+data or similar for real earthquakes, or through other methods. The earthquake
+magnitude should be given as the moment magnitude or work magnitude (M or
+MW). PGA should be provided for each site in units of g (i.e.,
+9.81 m/s2).
The HAZUS methods require that each site be assigned into a liquefaction
+susceptibility category. These categories are ordinal variables ranging from ‘no
+susceptibility’ to ‘very high susceptibility’. The categorization is based on
+geologic and geotechnical characteristics of the site, including the age, grain
+size and strength of the deposits or rock units.
+
For a regional probabilistic liquefaction analysis, the categorization will be
+based on a geologic map focusing on Quaternary geologic units. The analyst will
+typically associate each geologic unit with a liquefaction susceptibility class,
+based on the description or characteristics of the unit. (Please note that there
+will typically be far fewer geologic units than individual unit polygons or
+contiguous regions on a geologic map; the associations described here should
+generally work for each unit rather than each polygon.)
+
Please see the HAZUS manual, Section 4-21, for more information on
+associating geologic units with susceptibility classes. The descriptions of the
+susceptibility classes may not align perfectly with the descriptions of the
+geologic units, and therefore the association may have some uncertainty.
+Consulting a local or regional geotechnical engineer or geologist may be
+helpful. Furthermore, may be prudent to run analyses multiple times, changing
+the associations to quantify the effects on the final results, and perhaps
+creating a final weighted average of the results.
+
Once each geologic map unit has been associated with a liquefaction
+susceptibility class, each site must be associated with a geologic unit. This is
+most readily done through a spatial join operation in a GIS program.
The groundwater depth parameter is the mean depth from the surface of the soil
+to the water table, in meters. Estimation of this parameter from remote sensing
+data is quite challenging. It may range from less than a meter near major water
+bodies in humid regions to tens of meters in dry, rugged areas. Furthermore,
+this value may fluctuate with recent or seasonal rainfall. Sensitivity testing
+of this parameter throughout reasonable ranges of uncertainty for each site is
+recommended.
The horizontal displacements from lateral spreading may be calculated through
+HAZUS methods as well. These calculations do not require additional data or site
+characterization. However, if methods are used for calculating liquefaction
+probabilities that do not use the HAZUS site classifications (such as Zhu et al
+2015), then these classifications will have to be done in order to calculate the
+displacements.
The liquefaction model by Zhu et al. (2015) calculates the probability of
+liquefaction via logistic regression of a few variables that are, in principle,
+easily derived from digital elevation data. In practice, there are strict
+requirements on the spatial resolution and sources of these data derivations,
+and deviations from this will yield values at each site that may be quite
+discrepant from those calculated ‘correctly’. This may produce very inaccurate
+liquefaction probabilities, as the logistic coefficients will no longer be
+calibrated correctly.
Digital elevation data and its derivatives are often given as rasters. However,
+in the case of probabilistic analysis of secondary perils (particularly for risk
+analysis) the analyist may need to deal with sites that are not distributed
+according to a raster grid.
+
Raster values may be extracted at sites using a GIS program to perform a spatial
+join, but following inconvenient historical precedent, this operation often
+produces new data files instead of simply appending the raster values to the
+point data file.
+
Therefore we have implemented a simple function,
+[openquake.sep.utils.sample_raster_at_points][srap], to get the raster values.
+This function requires the filename of the raster, and the longitudes and
+latitudes of the sites, and returns a Numpy array with the raster values at each
+point. This function can be easily incorporated into a Python script or workflow
+in this manner.
Zhu et al (2015) calibrated their model on Vs30 data derived from DEMs using the
+methods of Wald and Allen (2007).
+
This method is implemented in the OQ-MBTK here. It requires
+that the slope is calculated as the gradient (dy/dx) rather than an angular
+unit, and the study area is categorized as tectonically active or stable.
+
A more general wrapper function has also been written [here]. This function can
+calculate gradient from the slope in degrees (a more common formulation), and
+will be able to use different formulas or relations between slope and Vs30 if
+and when those are implemented (we have no current plans for doing so).
Zhu et al. (2015) do not present a model for calculating lateral spreading.
+Therefore, if one requires displacements produced by liquefaction, another model
+must be used here, with attendant site characterization. Currently the
+OQ-MBTK only contains the HAZUS model, described above.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/sep_docs/sep_models.html b/contents/sep_docs/sep_models.html
new file mode 100644
index 000000000..b4d3979c3
--- /dev/null
+++ b/contents/sep_docs/sep_models.html
@@ -0,0 +1,258 @@
+
+
+
+
+
+
+
+
+ Liquefaction and Landslide models — OpenQuake Model Building Toolkit Suite documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Two liquefaction models were are implemented in the OQ-MBTK. The first
+is the method developed for the HAZUS software by the US Federal
+Emergency Management Agency. This model involves categorization of sites
+into liquefaction susceptibility classes based on geotechnical
+characteristics, and a quanitative probability model for each
+susceptibility class. The second model is an academic model developed by
+Zhu and others (2015). It is statistical model incorporating only
+DEM-derived quantities for site characterization.
The HAZUS model classifies each site into a liquefaction susceptibility
+class (LSC) based on the geologic and geotechnical characteristics of
+the site, such as the sedimentological type and the deposition age of
+the unit. In addition to the LSC and the local ground acceleration at
+each site, the depth to groundwater at the site and the magnitude of the
+causative earthquake will affect the probability that a given site will
+experience liquefaction.
\(P(L|PGA=a)\) is the conditional probability that a site will fail
+based on the PGA and the LSC. \(P_{ml}\) is the fraction of the
+total mapped area that will experience liquefaction if
+\(P(L|PGA=a)\) reaches 1. These terms both have LSC-specific
+coefficients; these are shown in Table 1.
+
\(K_m\) is a magnitude-correction factor that scales \(P(L)\)
+for earthquake magnitudes other than M=7.5, potentially to account
+for the duration of shaking (longer shaking increases liquefaction
+probability). \(K_w\) is a groundwater depth correction factor
+(shallower groundwater increases liquefaction probability).
+
+
+
LSC
+
PGA min
+
PGA slope
+
PGA int
+
\(P_{ml}\)
+
+
+
+
very high
+
0.09
+
9.09
+
0.82
+
0.25
+
+
high
+
0.12
+
7.67
+
0.92
+
0.2
+
+
med
+
0.15
+
6.67
+
1.0
+
0.1
+
+
low
+
0.21
+
5.57
+
1.18
+
0.05
+
+
very low
+
0.26
+
4.16
+
1.08
+
0.02
+
+
none
+
\(\infty\)
+
0.0
+
0.0
+
0.0
+
+
+
+
Table 1: Liquefaction values for different liquefaction susceptibility
+categories (LSC). PGA min is the minimum ground acceleration required to
+initiate liquefaction. PGA slope is the slope of the liquefaction probability
+curve as a function of PGA, and PGA int is the y-intercept of that curve.
+\(P_{ml}\) is the Map Area Proportion, which gives the area of liquefaction
+within each map unit conditional on liquefaction occurring in the map unit.
The model by Zhu et al. (2015) is a logistic regression model requiring
+specification of the Vs30, the Compound Topographic Index (CTI), a proxy
+for soil wetness or groundwater depth, the PGA experienced at a site,
+and the magnitude of the causative earthquake.
+
The model is quite simple. An explanatory variable \(X\) is
+calculated as:
and the final probability is the logistic function
+
+\[P(L) = \frac{1}{1+e^X} \; .\]
+
The term \(PGA_{M,SM}\) is the PGA times a nonlinear scaling factor
+for the magnitude.
+
Both the CTI and the Vs30 may be derived from digital elevation data.
+The Vs30 may be estimated from the topographic slope through the
+equations of Wald and Allen (2007), which uses a very low resolution DEM
+compared to modern offerings. As topographic slope tends to increase
+with increased DEM resolution, the estimated Vs30 does too; therefore a
+low-resolution DEM (i.e., a 1 km resolution) must be used to calculate
+Vs30, rather than the 30 m DEM that is the current standard. This
+results in a more accurate Vs30 for a given slope measurement, but it
+also means that in an urban setting, sub-km-scale variations in slope
+are not accounted for.
+
The CTI (Moore et al., 1991) is a proxy for soil wetness that relates
+the topographic slope of a point to the upstream drainage area of that
+point, through the relation
+
+\[CTI = \ln (d_a / \tan \delta)\]
+
where \(d_a\) is the upstream drainage area per unit width through
+the flow direction (i.e. relating to the DEM resolution). It was
+developed for hillslopes, and is not meaningful in certain very flat
+areas such as the valley floors of major low-gradient rivers, where the
+upstream drainage areas are very large. Unfortunately, this is exactly
+where liquefaction is most expected away from coastal settings.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/sep_docs/tutorials/liq_site_prep.html b/contents/sep_docs/tutorials/liq_site_prep.html
new file mode 100644
index 000000000..496b82f80
--- /dev/null
+++ b/contents/sep_docs/tutorials/liq_site_prep.html
@@ -0,0 +1,896 @@
+
+
+
+
+
+
+
+
+ Tutorial: Preparing site data for liquefaction analysis with the OQ-MBTK — OpenQuake Model Building Toolkit Suite documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Tutorial: Preparing site data for liquefaction analysis with the OQ-MBTK
+
This tutorial for preparing site data for liquefaction analysis with the OQ-MBTK is a Jupyter notebook, which containts text as well as exectuable Python code. The notebook can be downloaded along with the sample data from here.
+
First, we need to import the Python modules that we’ll use.
+
+
[1]:
+
+
+
import pandas as pd
+import matplotlib.pyplot as plt
+import numpy as np
+
+from openquake.sep.utils import(
+ sample_raster_at_points,
+ vs30_from_slope
+)
+
+
+
+
We will be working with two different liquefaction models in this analysis, the HAZUS model by the US Federal Emergency Management Agency (FEMA), and a statistical model by Zhu et al (2015) that we’ll call the Zhu model.
+
These models require different parameters to characterize the liquefaction susceptibility and probabilities at each site. The HAZUS model relies on a classification of each site into a liquefaction susceptibility category, based on geotechnical parameters at the site. The Zhu model relies on quantitative parameters that may, in principle, be estimated through processing of a digital elevation model.
We’ll start with a basic CSV file with the longitude and latitude of the sites for our analysis as well as the geologic unit at that site. The geologic unit at each site has been added through a spatial join of the site locations with a geologic map layer in QGIS.
The HAZUS model requires that we have liquefaction susceptibility categories and groundwater depths for all sites. We’ll get these by mapping the geologic unit to these parameters, and the assigning the parameters to each site based on the geologic unit through a database join.
+
+
[2]:
+
+
+
# Read in the sites CSV with pandas
+sites = pd.read_csv('./tutorial_data/cali_sites_w_units.csv')
+
+sites.head()
+
Now, we’ll load another file that has the geologic descriptions for each unit as well as the HAZUS liquefaction susceptibility category for each unit. (The file also has the geotechnical parameters that are used for landslide analysis but are not used here.)
+
The liquefaction susceptibility category has been estimated based on the geologic description for that unit, as well as the location of the unit with respect to water bodies (rivers and creeks) from inspection of the geologic map. The guidelines for this assignment can be found in the HAZUS Manual, Section 4-21. If you are uncertain of how to proceed, please contact your local geologist or geotechnical engineer.
Let’s make a new table with just the information that we need, which is the liquefaction susceptibility category (called susc_cat in this table).
+
+
[5]:
+
+
+
liq_susc_cat = unit_table[['unit', 'susc_cat']]
+
+# set the index to be the unit, for the join below.
+liq_susc_cat = liq_susc_cat.set_index('unit')
+
+
+
+
We’ll do a database join on the two tables using Pandas, which will let us take the attributes for each geologic unit and append them to each site based on the geologic unit for that site.
We also need groundwater depths at each point. A high-quality analysis would use measured data or at least values interpolated from a map of the water table depth, but we don’t have that information available. Instead, we’ll just estimate values based on the geologic unit. These units are somewhat spatially arranged so that the groundwater depth probably correlates with the unit, but in the absence of any real data, it’s impossible to know how good of an approximation this is.
+
We’ll use a simply Python dictionary with the unit as the key and estimates for groundwater depth in meters as the value.
The Zhu model was developed to use parameters that can be derived from a digital elevation model.
+
One of these, the Vs30 value, can be calculated from a DEM quite easily, as long as the DEM has a resolution around 1 km. First, the slope should be calculated (which is very easy to do in a GIS program), and then the Vs30 can be calculated from the slope using Wald and Allen’s methods (2007).
+
The openquake.sep.utils module has some functions to calculate Vs30 from slope, and to get the values of a raster at any point. We’ll use these functions to get the Vs30 values from a slope raster for each of our sites.
Next, we need to get values for the Compound Topographic Index (CTI). The process is the same, using a raster of CTI values. (Though it is possible to calculate the CTI from a DEM using algorithms implemented in many GIS packages, in practice the range of the resulting CTI values is incompatible with the CTI values that Zhu et al. used in their calibration. Therefore it is strongly advised to obtain CTI data from a dataset that has a global range of 0-20; we recommend Marthews et al.,
+2015).
## Saving and cleaning up
+
+That's basically it. We just need to save the file and then proceed to the [liquefaction analysis][liq_anal].
+
+[liq_anal]: ./liquefaction_analysis.ipynb
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/sep_docs/tutorials/liq_site_prep.ipynb b/contents/sep_docs/tutorials/liq_site_prep.ipynb
new file mode 100644
index 000000000..33f555f76
--- /dev/null
+++ b/contents/sep_docs/tutorials/liq_site_prep.ipynb
@@ -0,0 +1,1018 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Tutorial: Preparing site data for liquefaction analysis with the OQ-MBTK"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This tutorial for preparing site data for liquefaction analysis with the OQ-MBTK is a Jupyter notebook, which containts text as well as exectuable Python code. The notebook can be downloaded along with the sample data from [here][tut].\n",
+ "\n",
+ "[tut]: https://github.com/GEMScienceTools/oq-mbtk/tree/master/tutorials/sep\n",
+ "\n",
+ "First, we need to import the Python modules that we'll use."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "\n",
+ "from openquake.sep.utils import(\n",
+ " sample_raster_at_points,\n",
+ " vs30_from_slope\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We will be working with two different liquefaction models in this analysis, the [HAZUS model][oq_haz] by the US Federal Emergency Management Agency (FEMA), and a statistical model by Zhu et al (2015) that we'll call the [Zhu model][oq_zhu]. \n",
+ "\n",
+ "These models require different parameters to characterize the liquefaction susceptibility and probabilities at each site. The HAZUS model relies on a classification of each site into a liquefaction susceptibility category, based on geotechnical parameters at the site. The Zhu model relies on quantitative parameters that may, in principle, be estimated through processing of a digital elevation model.\n",
+ "\n",
+ "\n",
+ "[oq_haz]: https://gemsciencetools.github.io/oq-mbtk/contents/sep_docs/sep_models.html#hazus\n",
+ "[oq_zhu]: https://gemsciencetools.github.io/oq-mbtk/contents/sep_docs/sep_models.html#zhu-et-al-2015\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Joining site information to site locations"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We'll start with a basic CSV file with the longitude and latitude of the sites for our analysis as well as the geologic unit at that site. The geologic unit at each site has been added through a [spatial join][qgis_join] of the site locations with a geologic map layer in QGIS.\n",
+ "\n",
+ "[qgis_join]: https://www.qgistutorials.com/en/docs/performing_spatial_joins.html"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### HAZUS site parameters\n",
+ "\n",
+ "The HAZUS model requires that we have liquefaction susceptibility categories and groundwater depths for all sites. We'll get these by mapping the geologic unit to these parameters, and the assigning the parameters to each site based on the geologic unit through a database join."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5)\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, we'll load another file that has the geologic descriptions for each unit as well as the HAZUS liquefaction susceptibility category for each unit. (The file also has the geotechnical parameters that are used for [landslide analysis](./landslide_site_prep.ipynb) but are not used here.)\n",
+ "\n",
+ "The liquefaction susceptibility category has been estimated based on the geologic description for that unit, as well as the location of the unit with respect to water bodies (rivers and creeks) from inspection of the geologic map. The guidelines for this assignment can be found in the [HAZUS Manual][hzm], Section 4-21. If you are uncertain of how to proceed, please contact your local geologist or geotechnical engineer.\n",
+ "\n",
+ "[hzm]: https://www.hsdl.org/?view&did=1276\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
unit
\n",
+ "
friction_mid
\n",
+ "
friction_unc
\n",
+ "
cohesion_mid
\n",
+ "
cohesion_unc
\n",
+ "
saturation
\n",
+ "
dry_density
\n",
+ "
uscs
\n",
+ "
type
\n",
+ "
description
\n",
+ "
susc_cat
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
Q1
\n",
+ "
33.5
\n",
+ "
1.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.20
\n",
+ "
2091
\n",
+ "
SM
\n",
+ "
silty sands
\n",
+ "
old wetlands
\n",
+ "
m
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
Q2
\n",
+ "
27.0
\n",
+ "
5.0
\n",
+ "
50000
\n",
+ "
0
\n",
+ "
0.40
\n",
+ "
1734
\n",
+ "
OL
\n",
+ "
organic silts
\n",
+ "
swamp deposits
\n",
+ "
h
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
Q3
\n",
+ "
33.5
\n",
+ "
1.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.30
\n",
+ "
2091
\n",
+ "
SM
\n",
+ "
silty sands
\n",
+ "
river channel deposits
\n",
+ "
vh
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
Q4
\n",
+ "
33.5
\n",
+ "
1.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.20
\n",
+ "
2091
\n",
+ "
SM
\n",
+ "
silty sands
\n",
+ "
levee deposits
\n",
+ "
h
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
Q5
\n",
+ "
27.0
\n",
+ "
5.0
\n",
+ "
50000
\n",
+ "
0
\n",
+ "
0.25
\n",
+ "
1734
\n",
+ "
OL
\n",
+ "
organic silts
\n",
+ "
floodplain deposits
\n",
+ "
h
\n",
+ "
\n",
+ "
\n",
+ "
5
\n",
+ "
Q6
\n",
+ "
38.0
\n",
+ "
6.0
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.30
\n",
+ "
2091
\n",
+ "
GP
\n",
+ "
poorly graded gravel w/ sand, no fines
\n",
+ "
active alluvial fill
\n",
+ "
vh
\n",
+ "
\n",
+ "
\n",
+ "
6
\n",
+ "
Q7
\n",
+ "
32.5
\n",
+ "
1.5
\n",
+ "
62500
\n",
+ "
1250
\n",
+ "
0.25
\n",
+ "
1887
\n",
+ "
SM
\n",
+ "
loamy sand
\n",
+ "
point bar deposits
\n",
+ "
vh
\n",
+ "
\n",
+ "
\n",
+ "
7
\n",
+ "
Cono
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.15
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
alluvial fan
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
8
\n",
+ "
Qt
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
terrace deposits
\n",
+ "
m
\n",
+ "
\n",
+ "
\n",
+ "
9
\n",
+ "
Qc
\n",
+ "
31.5
\n",
+ "
3.5
\n",
+ "
20000
\n",
+ "
0
\n",
+ "
0.15
\n",
+ "
1887
\n",
+ "
CG
\n",
+ "
clayey sandy gravels
\n",
+ "
colluvium
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
10
\n",
+ "
Qd
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
old alluvium, terraces
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
11
\n",
+ "
QvT
\n",
+ "
36.5
\n",
+ "
3.5
\n",
+ "
0
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2142
\n",
+ "
GW
\n",
+ "
well graded gravel w/ sand, no fines
\n",
+ "
T-derived Quaternary (terrace/coll./fan)
\n",
+ "
l
\n",
+ "
\n",
+ "
\n",
+ "
12
\n",
+ "
QvK
\n",
+ "
31.5
\n",
+ "
3.5
\n",
+ "
20000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
1887
\n",
+ "
CG
\n",
+ "
clayey sandy gravels
\n",
+ "
K (diabase) derived Quaternary
\n",
+ "
m
\n",
+ "
\n",
+ "
\n",
+ "
13
\n",
+ "
Q/Kv
\n",
+ "
25.0
\n",
+ "
7.0
\n",
+ "
85000
\n",
+ "
15000
\n",
+ "
0.25
\n",
+ "
2091
\n",
+ "
CH
\n",
+ "
silty clay loam
\n",
+ "
K-derived saprolite
\n",
+ "
vl
\n",
+ "
\n",
+ "
\n",
+ "
14
\n",
+ "
TQplp
\n",
+ "
36.5
\n",
+ "
5.0
\n",
+ "
100000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2244
\n",
+ "
NaN
\n",
+ "
volcanic-sedimentary rocks
\n",
+ "
Popayán Fm.
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
15
\n",
+ "
Kv
\n",
+ "
33.5
\n",
+ "
5.0
\n",
+ "
1000000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
3000
\n",
+ "
NaN
\n",
+ "
diabase
\n",
+ "
Cretaceous diabase
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
16
\n",
+ "
T
\n",
+ "
33.5
\n",
+ "
5.0
\n",
+ "
100000
\n",
+ "
0
\n",
+ "
0.10
\n",
+ "
2600
\n",
+ "
NaN
\n",
+ "
sedimentary rocks
\n",
+ "
coal-bearing sedimentary rocks
\n",
+ "
n
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " unit friction_mid friction_unc cohesion_mid cohesion_unc saturation \\\n",
+ "0 Q1 33.5 1.5 0 0 0.20 \n",
+ "1 Q2 27.0 5.0 50000 0 0.40 \n",
+ "2 Q3 33.5 1.5 0 0 0.30 \n",
+ "3 Q4 33.5 1.5 0 0 0.20 \n",
+ "4 Q5 27.0 5.0 50000 0 0.25 \n",
+ "5 Q6 38.0 6.0 0 0 0.30 \n",
+ "6 Q7 32.5 1.5 62500 1250 0.25 \n",
+ "7 Cono 36.5 3.5 0 0 0.15 \n",
+ "8 Qt 36.5 3.5 0 0 0.10 \n",
+ "9 Qc 31.5 3.5 20000 0 0.15 \n",
+ "10 Qd 36.5 3.5 0 0 0.10 \n",
+ "11 QvT 36.5 3.5 0 0 0.10 \n",
+ "12 QvK 31.5 3.5 20000 0 0.10 \n",
+ "13 Q/Kv 25.0 7.0 85000 15000 0.25 \n",
+ "14 TQplp 36.5 5.0 100000 0 0.10 \n",
+ "15 Kv 33.5 5.0 1000000 0 0.10 \n",
+ "16 T 33.5 5.0 100000 0 0.10 \n",
+ "\n",
+ " dry_density uscs type \\\n",
+ "0 2091 SM silty sands \n",
+ "1 1734 OL organic silts \n",
+ "2 2091 SM silty sands \n",
+ "3 2091 SM silty sands \n",
+ "4 1734 OL organic silts \n",
+ "5 2091 GP poorly graded gravel w/ sand, no fines \n",
+ "6 1887 SM loamy sand \n",
+ "7 2142 GW well graded gravel w/ sand, no fines \n",
+ "8 2142 GW well graded gravel w/ sand, no fines \n",
+ "9 1887 CG clayey sandy gravels \n",
+ "10 2142 GW well graded gravel w/ sand, no fines \n",
+ "11 2142 GW well graded gravel w/ sand, no fines \n",
+ "12 1887 CG clayey sandy gravels \n",
+ "13 2091 CH silty clay loam \n",
+ "14 2244 NaN volcanic-sedimentary rocks \n",
+ "15 3000 NaN diabase \n",
+ "16 2600 NaN sedimentary rocks \n",
+ "\n",
+ " description susc_cat \n",
+ "0 old wetlands m \n",
+ "1 swamp deposits h \n",
+ "2 river channel deposits vh \n",
+ "3 levee deposits h \n",
+ "4 floodplain deposits h \n",
+ "5 active alluvial fill vh \n",
+ "6 point bar deposits vh \n",
+ "7 alluvial fan l \n",
+ "8 terrace deposits m \n",
+ "9 colluvium l \n",
+ "10 old alluvium, terraces l \n",
+ "11 T-derived Quaternary (terrace/coll./fan) l \n",
+ "12 K (diabase) derived Quaternary m \n",
+ "13 K-derived saprolite vl \n",
+ "14 Popayán Fm. n \n",
+ "15 Cretaceous diabase n \n",
+ "16 coal-bearing sedimentary rocks n "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "unit_table = pd.read_csv('./tutorial_data/cali_units.csv')\n",
+ "\n",
+ "unit_table"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's make a new table with just the information that we need, which is the liquefaction susceptibility category (called `susc_cat` in this table)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "liq_susc_cat = unit_table[['unit', 'susc_cat']]\n",
+ "\n",
+ "# set the index to be the unit, for the join below.\n",
+ "liq_susc_cat = liq_susc_cat.set_index('unit')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We'll do a database join on the two tables using Pandas, which will let us take the attributes for each geologic unit and append them to each site based on the geologic unit for that site."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
lon
\n",
+ "
lat
\n",
+ "
unit
\n",
+ "
susc_cat
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
-76.540896
\n",
+ "
3.350158
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
-76.544763
\n",
+ "
3.350644
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
-76.528079
\n",
+ "
3.346550
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
-76.529860
\n",
+ "
3.356627
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
-76.527918
\n",
+ "
3.351601
\n",
+ "
TQplp
\n",
+ "
n
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " lon lat unit susc_cat\n",
+ "0 -76.540896 3.350158 TQplp n\n",
+ "1 -76.544763 3.350644 TQplp n\n",
+ "2 -76.528079 3.346550 TQplp n\n",
+ "3 -76.529860 3.356627 TQplp n\n",
+ "4 -76.527918 3.351601 TQplp n"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "sites = sites.join(liq_susc_cat, on='unit')\n",
+ "\n",
+ "sites.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We also need groundwater depths at each point. A high-quality analysis would use measured data or at least values interpolated from a map of the water table depth, but we don't have that information available. Instead, we'll just estimate values based on the geologic unit. These units are somewhat spatially arranged so that the groundwater depth probably correlates with the unit, but in the absence of any real data, it's impossible to know how good of an approximation this is.\n",
+ "\n",
+ "We'll use a simply Python dictionary with the unit as the key and estimates for groundwater depth in meters as the value."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "gwd_map = {'Q1': 0.65,\n",
+ " 'Q2': 0.3,\n",
+ " 'Q3': 0.2,\n",
+ " 'Q4': 0.3,\n",
+ " 'Q5': 0.2,\n",
+ " 'Q6': 0.1,\n",
+ " 'Q7': 0.15,\n",
+ " 'Cono': 1.75,\n",
+ " 'Qt': 1.,\n",
+ " 'Qc': 2.,\n",
+ " 'Qd': 1.25,\n",
+ " 'QvT': 1.2,\n",
+ " 'QvK': 1.2,\n",
+ " 'Q/Kv': 2.5,\n",
+ " 'T': 3.,\n",
+ " 'TQplp': 3.,\n",
+ " 'Kv': 4.\n",
+ " }\n",
+ "\n",
+ "sites['gwd'] = sites.apply(lambda x: gwd_map[x.unit], axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5, c=sites.gwd)\n",
+ "\n",
+ "plt.colorbar(label='groundwater depth (m)')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Zhu site parameters\n",
+ "\n",
+ "The Zhu model was developed to use parameters that can be derived from a digital elevation model. \n",
+ "\n",
+ "One of these, the Vs30 value, can be calculated from a DEM quite easily, as long as the DEM has a resolution around 1 km. First, the slope should be calculated (which is very easy to do in a GIS program), and then the Vs30 can be calculated from the slope using Wald and Allen's methods [(2007)][wa_2007].\n",
+ "\n",
+ "The `openquake.sep.utils` module has some functions to calculate Vs30 from slope, and to get the values of a raster at any point. We'll use these functions to get the Vs30 values from a slope raster for each of our sites.\n",
+ "\n",
+ "[wa_2007]: https://pubs.geoscienceworld.org/ssa/bssa/article/97/5/1379/146527"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "slo = sample_raster_at_points('./tutorial_data/cali_slope_srtm_1km.tif', sites.lon, sites.lat)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAI/CAYAAACbG7YfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3hN9x/A8fe5M0NkSCIRIvbeau9Rs1RVUUrVaosqqmqUorRVq+2vqtRoS1uq9ihq1Kq9xQoJkhCJ7OTmrvP9/XHjkiZWKSrf1/Pkee4994zvOR43n3zH56MIIZAkSZIkScqNNE+6AZIkSZIkSU+KDIQkSZIkScq1ZCAkSZIkSVKuJQMhSZIkSZJyLRkISZIkSZKUa8lASJIkSZKkXEv3pBvwIHx9fUVISMiTboYkSZIkPRaHDh2KE0L4Pa7rtWjsLm7E2x/LtQ4dN28UQrR8LBe7i/9UIBQSEsLBgwefdDMkSZIk6bFQFOXS47zejXg7+zcGP5ZraQPP+z6WC92DHBqTJEmSJCnX+k/1CEmSJEmS9O8RgIr6pJvxWMkeIUmSJEmSci3ZIyRJkiRJUiaBXcgeIUmSJEmSpFxB9ghJkiRJkgTcnCMknnQzHivZIyRJkiRJUq4le4QkSZIkSXKSq8YkSZIkSZJyCdkjJEmSJEkSAAKBXcg5QpIkSZIkSbmC7BGSJEmSJMlJrhqTJEmSJEnKJWQgJEmSJElSriWHxiRJkiRJAhwJFe1yaEySJEmSJCl3kD1CkiRJkiQ5ycnSkiRJkiRJuYTsEZIkSZIkCcicIyQTKkqSJEmSJOUOskdIkiRJkiSn3FVyVfYISZIkSZKUi8keIUmSJEmSgMyiq3LVmCRJkiRJUu4ge4QkSZIkSXIQYM9dHUKyR0iSJEmSpNxL9ghJkiRJkgQ48gjJVWOSJEnSv8aUmsH5w+HYrLYn3RRJkriPQEhRFBdFUfYrinJMUZRTiqKMz2Gf1xVFiVUU5WjmT5/bPuupKMr5zJ+et22vpijKCUVRwhRF+VJRFOXR3ZYkSdLTx5SWQe/yQxnaeBwjWnz8pJsjSTlQsD+mn6fF/QyNmYEmQohURVH0wC5FUTYIIfb+bb8lQoiBt29QFMUHGAdUx9HjdkhRlNVCiATgG6AvsA9YD7QENjzc7UiSJD2dVFVlwivTiYuKB+DErjOoqopGIzvmJelJuuf/QOGQmvlWn/lzv3PKWwCbhRDxmcHPZqCloiiBQF4hxF4hhAB+AF588OZLkiT9NyyZsopDm44733cY1EoGQZL0FLiv/4WKomgVRTkKXMcR2OzLYbeOiqIcVxRlmaIohTK3BQFXbtsnMnNbUObrv2+XJEl65ggh+HXaGud7/8K+9JrY5Qm2SJJyJgBVPJ6fp8V9BUJCCLsQojJQEKihKEr5v+2yBggRQlTE0evz/aNqoKIo/RRFOagoysHY2NhHdVpJkqTHZtuSPaQlm5zvr1+Oo51nT5ZOXU38tURuRMc/wdZJUu72QP2yQohEYBuO+Ty3b78hhDBnvv0OqJb5OgoodNuuBTO3RWW+/vv2nK45RwhRXQhR3c/P70GaK0mS9MRdCr3Cpz2+QmT+Cax30TknF/z86Up6lBhEj1KD2bP6wBNspSTdktsmS9/PqjE/RVG8Ml+7As2BM3/bJ/C2t+2A05mvNwLPK4rirSiKN/A8sFEIcRVIVhSlVuZqsR7Aqoe+G0mSpKfMX2sOZZlV2aZvM+dr7/yeWDKsWDOs7PwtpxkHkiT92+6nRygQ2KYoynHgAI45QmsVRZmgKEq7zH3eyVxafwx4B3gdQAgRD0zMPO4AMCFzG8DbOHqPwoALyBVjkiQ9g5p2r4/e6FigW6p6Md6e/jpf7v6Ydm+35PrlOBSNgtHVQNv+zZ9wSyXJEbPnth4hxbFo67+hevXq4uDBg0+6GZIkSQ9ECIHZZMHFzQhAamIaHf17c/Prd+SiQTTuXPcJtlB6WimKckgIUf1xXa9cRYP4ZZ3/Y7lWxeCox3pvdyLXbkqSJP0Lju04TY/SQxjZ9jPM6WZnEGQxWxnR4mNu/xu0cNlCdziLJD1+qlAey8/TQtYakyRJ+hd8PeR7Yi7FkXg9mcWfrMBmsdGsWwPSktO5cjbasZMCfT7pRtEKwc7jFk9ezu4V++k2piN12z/3hFovSbmHDIQkSZL+BSUqhxBzKQ671c7Sz1cjVMH677aw8MwXGFwNCCGo0qQ8ASF+vODZk4AQP96d1YefP12JxWRhcrcvWZvyAzerD6mqiqIoyGpE0r/p5hyh3EQOjUmSJP0Lhszuw4j5b+Ll6+ZcOm9Ot5DXJw8LT89k+rbxjFv2HgvHLsGcbuZa+HVO7w9DUUBv1JHH05WwIxEAbF+6h7Z5XqN7sYHcuJrwBO9Kkp49MhCSJEm6gyvnrrJo8gpO7wt7oOOO7TjNoHrj+P37P7l++YZze/5gX3qXH8bxHaGUqFqEQ5uO4embF4OrHkWjUP35Ssz8cwI1WlUhLSWDoY3GsWvFfhZPWo7NaicpNpm/VjsWjJhNFv5YtJOzBx6sbZJ0NwIFO5rH8vO0kENjkiRlYbXaiYlOJDDIG63u6fmyetxUVWVIo/GkJqWzdOpafjgzHVUIEq4nU7R8obsOUU3p9Q1x0QlcPHYJFAWEwOhmICEmiYx0M9P6fovR1chHL09DqILgMkFMWvMBvkE+ACiKgsVkQaNROPXXWYpVDiH6wjU0Wg2lnivGuu+2smH+ViJOXAIB0/8cT8lqRR/Xo5GkZ4oMhCRJcrLZ7LzdfQ7RUQmUKB3AjLm9cu2cFKEKMtLNCFWgqoKLJyMZ3/ULhCp4oV9T+k66c62w/IX9SIxLwWa2cnN5WM3W1di9cj8GVwP5g32Z2m8ONosNgOQbKYxs+xkh5Qry/vy36D6mI+cPX8TgYuD0/oucPXQRjaJj7K9DWfXNH/y5bC8WsxXVYsXFzcDVCzEUrRjMhWOXKFSqAG4ero/lGUnPpqdpRdfjkHv/3JOkXMhksnAjNuWOn8fGJBMdGY/VYuP0iShM6ZbH2Lqni1anZdySd6nUsAz9P+3K8q82YMmwYjZZ2Lv+yF2PnbhiGK+NeQmjmxGtXod3oA+71xwGRYPNpnLpXAw3riWCoqBoNVgsKpfPRLN/wzH2rD5E0YqF+THsfzTqWo/T+8JQbSo2m524qHiuR97AkmFFp9fhHeBFzdZVqd2+Ou83m8CwRuN4o8xgTKmmu7ZPkqRbZI+QJOUS16ITeav7HCxmK937NKBrr/rZ9skf6EX5ysEcORBOg6ZlcHM3PoGWPjnpKSbGd/2SmEtxDJ/bj+daVOK5FpVY/Okqjv55GtWuomgUuo960XlMRpoZU2oGyfGpnD10kVqtq3Dx+GW0ei3/2zOB0L1hfDFwPqpdzTxCwWax4erugtHNiJefB5dCHaUWLWYrKQmpRIRGElK2IKu/2ey8jkajUKNVFRKvJ5MSn0rhMkG8O6s3Lm5GVFXl5K4zOBLkCqIvxFCsUsjje3DSMyM3rhqTgZAk5RLHDkVgs9mwWu1sXHM0x0BIo1H47OvXsJhtGIzP5teDEIJfZ64nIjSKHqM7EBByq5jztqV7Cd17HkuGlVnv/cjXuyYAoGgUUBT0Bh2t32hE4061AYgKu8bABh9hNplRFA1anYafpqziRnQidpudbb/upfuIduiNOszpFtw9XVFVgSklg4w0M3qjzhkEAbjkMfLVOwtRFIUPFr6FX0EfUhPTEULQf0o3Zg35gf2/HwXgrandnUkaNRoN7Qa0YM2sjZSvW5qQcoVQVRWNRnb6S9K9PJvfdJIkZVO9VjFcXY3YrCodutS8677PahAEsHf9ERZ/sgqzycKVc9F89edHzs+CSxdAURRc3IwUrxzi3P7y4FbYbXasZhtdh7/g3H5oy0msZht2q4qiCGwWG1cvxjo/vxEdz6xhPyJUQYkqIQyZ3QedXsvAumOxZFizzb/KSDUDjmDtm/d+JPG2Ycx5Y5dSqEQAZpMFo5uBmEtxkBnLhh0JZ+OCbWj1Omq0qUqfCkOJOneVnhM7021Ux0f49CTp2fPsfttJkpRFPj8Pfl43BIvFhqubwbldCMHyn/dx5mQk3fs0pHBRv7uc5b9Pp9ciECgaBZ0+61dghbqlmLpxFHFR8dRsVdm53WDU89qoDtnOVblRWefrcrVLcDUilhvRt/L8BBXLT+ie8wgh8AnwoljFwgCMXjSI43+G0rhrHT5+9SuuhcdS/6UaHN5ygrQkk6MQq7sL3BYIWU0WBn/9Bl8OWkjBEoE0fPlWMHtw41GsZit2m8qabzYReS4aBHw/dgmdhrXDYNQ//IOTcgkFu8hdPYm5624lKZfT6jRZgiCA44cvsXD2Nv78I5SP3l/yhFr2+FRvXpG3pnSj/ZvNGPPjgCyfXTl3FYNRT+GyBdmxfD9pSel3Pdfu1YcQQkWj1RBY1J8v/xyHRnvra/XcoXB0Bh1GVwPPtajo3F6rdRX6fdaNEpWLsPDUNNYlL+DqxRjSkkzoXXQMnNmTCcuGYLzt38qvUD4CCvszY9tY3praHYPLrc+ea1UFo5sRRVG4Fh7jmOiBY+XbpdDIh3lckvTMkz1CkpTLGQw6EAKNRkGvf/a/EhRFodXrjbJt37v+CJN6fA04cghpdVo8fT1w93ClcqOy9P/01WxDWUZXPRqNBgWB0cWAb6A33+ydyKD6H2HJsKLRaRm54E38g32dvUE5tUen1+FXMB+Xz0SjKArpKSa2Ld3LxJXv8f34ZSTHpXAtPJbuJQZjcNGTkWam83sv0GNsRxJjkxje9CPM6RZ0Rh3WDGuW8y8Y8zOT1416NA9PeuYJQM1lfSTP/reeJEl3VaZCQYZ+2I5zodH3nDv0LDuyPRSL2QrCMWncZrE7s0JfDY+l/ovPUa52ySzHtH+zOaoqyEjL4OV3WgMQUqYgE38bxqJPVlCzZWVqt612X9f/YOFbbFq0E42i8O0HP2M1W9n6yx5+PDuDEa0+4crZq6CA3a5it9rZsGA7PcZ2ZN+6w6TEpwFgt9lxcTdiNlmcZT08vPM8qkckSc8kGQhJkkTj58sTHOLLzq2nqd+kDP4Bnk+6SY/d1fDrIBzDhzVbVibs2CWEECTFpTjn+NzObldZM3cLqYnpdHq3NS63pRqo3LAMlRuWeaDrm01Wlk5bR+yVG2i0GoQqMKVmANBxcCtO7jmH0cVRiiM1KZ2S1R2ZpP0L+95MXo3OoOOTDaNx83Tjm6EL8fByZ8ic/g/5ZKTcRi6flyQp10mIT+PdPguw21V+/XEPP68fkqsyStusNvZtcCxL1+q0vPj286QlpVO0fCEObT1FyWpFCCziDzgCphO7z5KSkMb3E37DZrWx7rstPPd8RaIuXKdszeL0ndzlgZeuv9f8Y2KvOHqghFCp0bIyXUe0A6BGy8qsipuLotHwZvWRpCWlc2TrSU7uPkvlRuXpMLgNB34/Qu/J3ShfzxGAfb553KN6PJL0TJOBkCQ9ZU4mRjLp5BqK5fFnXMX26DX//n/T9NQMhCqwWe0kJ5kQwlEiK7fQ6XVUb16BY3+exi/IhwmvfonNaidfoBfzjnzmDArTktJ5u85Y7HY7Or0OVVWx21SS49PYsuQvEBARGkm1ZhWo3qzCA7Uh5lKc87VQIeF6EsUr35pXdHOFmxDOudCZ/04Kb01/nbemv/5Qz0CSAISQq8YkSXrCxh1bwemkaP64dorNV089lmsGBeejZ/9GlCgdyOjJL6HRPJtRUFpSOgf/OEFKQlq2z975oifBZYIwuBowmyxkpJmJvnAdu83u3Cc5PhWrxYY53UJ6ign3vK5otBo0Og0KCjqDFqEKvP3zPnDbBs7siXd+T+ezv3I2mrMHL2bbb/yyITz/Wn36f/oqFeqVAsBut5MUl5yZWVqSpAche4Qk6SlT0M2HyPR4hIBAV697H/CIdHqtDp1eq/PIzzt//G9sWrSL1r0aUr99db4b+yvFKgbz+ocdHmvmY7td5a06H5Icl4JbXlcWnpyaJb/OL5+vJfzEZQAKlixAUlwyrwxpjU6vIyPNzOn9YRSrVJiXB7di+6978fB259yRcDQahfJ1SlOqWggHN5+kZc8GWVaI2aw2zh64SFDx/OTxdker0+Y47Ph8jwY836MBE7p8wYFNx3FxNxJSrlC2/YKKBzDs237O95YMC29VG0HU+Wgad63HiO8HPcrHJuVCqpwjJEnS47Iu6hgTjq+koJsPC+r0Ia/elU+rdmJD1HEKueejik9hrpoSyaNzwUPv8qSb+8ASriex/OtN2Kx2lsxYz44VB4gMi+HU3vOUea4YtVtXzvG4xZ+tYd3CP2nVoz6vjWz/SNpiSjERGxmPalexWmykxKeSL9Db+Xlw6QLoXfSAQts+jWn/ZnPAkXBycOPxXLsUh4u7ke9PTOX1sR355fM1XD4TjUBQs2Ulvp/wG5YMK3NH/YLRxUCLng3QaDSM7/wFx3c46pTZrHZ8Ajz5ateEbJOvbxrz0yAun47CP9j3vqrIh5+8QsylWOw2lS2Ld8pASJIekAyEJOkJmnV2C2bVRpQpgR0xZ2lbsDKuWgMvBVcHYMGFnXxzbgs6Rcu4Ci+CAk0CyjyWeUOPgrunG3m83MlIN+Pm4YJnPg+uRsQhBHh4uzv3E0Jw8eQV8gV6o9Eo/DR1LXabnV+mr6ddvyZ45vN46Lbk8XLnpYEtWL9gO0271MkSBAG8+PbzBBbNj6JAjRaVnNttVjsRN4uiZliIjYqnUMlAOr/XlpByBVE0CrtWHcRqsTn3nzV8EXa7nXrtn+P4jtNkpJlRFAUhBCnxaez//Sgtc8hlBI66YTn1BN0uNTGNdxtNIPpCDP2ndMWvYD6uhsfQ4OXaD/GEJOlm0dXcNWvmv/FtKknPqPr+JVkZeRgFhQpeBbN8lmBJY8GFnVhUO0KB0ceWoddo2RFzlklVXn5CLX4wBqOe2bs/4uTe81So48jBs+H7nRQuHUj52iWc+301bBFbfvkLrU7Dl1tHk8fLjZSENDQaJcscnYfVd1IX+k7qkuNniqJQq1X2Hiq9QYfBVY/FZAUUwo5dQm/QERDiR63WVVg3bxvbl+0FITC6GbBkWFFVwfnD4cx5/yesFhs6vRbv/J4kxqag0WmoUP/+ltZbLTam9vmWQ1tOUKJKEUb+MIC8PnnYt+EokeeiEQJmD/+J5THfYkox4Z3/8Q2lStKzIneFfZL0lBlRrg3za/dmTaN3KZzHN8tnH59YTYrV5HyvQcFkt3I+NeZxN/OhePnlpd4L1fDM54FnPg+6DG1N7dZVsuyzf+NxzCYLql3l4olIajSvgBDCsZz/i41PqOW3BBULQG/Uo9FqmNZ/Ln2rj2Tv+iMAuOd1RUFBo9Vgs9hw83ClXvvq6Aw65z3Z7SoJ15N5Y+IrLDo3k6Bi+e/run8u28uO5ftJiU/j8JaT/PTpSgCKlC+EuG3pWFJsMj4B3rkq5YH0b3GsGnscP0+Lp6clkpQLKYpCWc8gfF2yD/1oFAVN5qRFu7CjIgh282F0+Rey7ftf123EC+j0WvIH+1KtSTnyB/uiN+jQ6bV4+T/8sNjD+mztCPpO6kzF+qWxWmxYMqzs33gMgIYv12TQFz1x93TDblOxWWyUr1OSHb/tdx4vVEdl+r/WHiKPl3uO1xBCsPWXPXTI34+3ao4mOT4V3wLezjQGGo2Cl58j0WXRCsG0eL0hWr2W+i/VIH/hZ7tQriT9m+TQmCQ9pcaUb8fZpKtcTo9HBQyKlnEVO1DJO/hJN+2Ra9WjAa16NAAcZSJK1yjGq++1xdPXg+e713vCrYPwU5Esnb4Oj3x5cPNwQavT0qZPE8ARzDZ/tR5nDlzgj8W7EQhUu4opzew8Xqt3rBRr27dpjucXQjCi1Scc+/M04Fg6v2vlAVq/0Zg3p77GhvnbqN2mCp2GtnEeM/SbPgz9ps+/eNdSbiRrjUmS9NQwavVcSY93vi/m4Z9tHtHTxmyyEBEaSeEyQbi4Ge99QA4+6T2Hg1tOAjBr5zi02nt/KdvtKpHnrhIQ4ofR1XDP/R/Utx8sJi46geT4VN6a0o3WbzTOts+Aaa/R5JXa+Ab5oNVp+H7iclShEljYl0krh+PhnQd3T7ccz58Qk8SJXWdvbVCgVLWipKeYmDf6F6wWG9cvx/HqyBeJiYxnZNvPMKVmMH7ZEEpWK/rI71eScpPcFfZJ0n+IUaOjRr6i6BUtxT38WVinLwbt0/u3i92uMqDhBN5vN5WBDSfc1yTng3+cpG/ND5n5zvfY7SoAofvCyMjsTbm5WuteRr4whYH1x9HvuVGYTZZ/fhN3UKZGcVzcjSiKQtEKOffIaTQaytUuSf5gX3wL+PC/nR+BTRB59hq9yg/H8req8Lfz8s+Lb1DmKjYFytUuyfkj4STHp2Kz2rFb7ZhSMxjSaAIjWk0m+mIM8dcSWTR5BeDoUQrde47wk5eznPfHCb/S2rUrH7T8+JFOOpekZ8nT+60qSbmcoih8U7Mn10zJpNky6Lzza4waPTOf60Z+lwfPXPxvSElIJfridYpXKkxKYjpXw69jt6lcjYgjOT4Vb/+7F2+d+vY8EmNTiI2Mp8FLz1G1UVn6fvwKs97/icAi/nj63nt+kN1m59gOx5BSfEwiVy9eJ6Tco+05GzC9B7XbVsWvgM99n9uUmuEMPlS7So/SQ6jZujIjfxiYpZfrz9/28dMnKwkI8Sf+WhKqXeX4jjOc3htGzdaVGTD9NVb8byOXz0Zz7nA44CgMq3PRU7lROQCWTV/Dgg9/QdhVPlg8mIaZy+gXf/wbdpudk7vOcP7wRUrXKIEk3Ytd5K5J97JHSJKeYhpFQwE3L+ac387F1FjOJl/l5/C//vXrCiE4sDWUg9tC71i2ITEuhV5VRzGi3VQmvDYLz3x5aNSxJhqthoYvPYeX372DtQJF/DG6GhBC4F/QB4DGL9dk5Lx+RIRGMqrDdJZ/vemu7dTqtLTKzMlTqloxCpUKfPAbvgetVsNzzSs+UIBVpHwhila81XtkybCye9UhzmcGM+Bo/5Q3ZhNxKpIzB8Jo0LEmZWuVQKfXYjZZuBoeS+veTWjRs6FzRZiiUXjpnVZM2TCSlwa1BGDP6oNYM6zYrHa+Hfa98/zl65bCxd2Ii7uRgiULPOxjkKRnkuwRkqT/gLKeQeyKPYcASns++l/0f7dm4Q7mT14DQJlqIVw+H8OLvRvS6e1mzn0unYnCZrWTkW7h2I4zRIZdY9D07gyf3fue57948grfT1xOpfqlaNGjPsUrBlOweIDz89B9YVgtNoQqOLTtFC8NeD7bOXauPMCnb8zG29+TL7Z9yMAZrzkLkz4qN64lEheVQMmqIQ+8NP3c4XDQaSlVszjn9l9ACIEQgoCQWyu8FEUhX6AXCTFJaDQa+n3SFXdPV6b1/47oC9d492vHs2zcuQ7r520lLjqRlwa1oMfYjlnKk9R/qSYnd50G4SjpcdMnG8dw/tBFCpUOuuNqNUm6nUCRCRUlSXr6vF6sHqU9A3HR6qniU/jeB+Qg5soNRnf7BrPJwrgFfSle/s7Ziy+eisKcYQEBx/ecR1UFCz9bwwu9GuCSORm5zHPFKF4xmDOHwgkI8WVAvY/I4+XGnH2TyOOV86TgmyZ2/5qr4dc5tuM0435+h2J/m3fT/NV6bFmyl7QUE92G55wu4KfPVmGz2EiKTWb36kO0698sx/0exOJPV7NuwTZa9mhA0y51GFD/I4QQ1GpVmSJlC1K1STlKVi1yX+eaOWghEaFRGFz1FCpdgMTrSbw97bVsPWUzt49jz5pDlK9TEu/8jqHEkd+/nWWffIFezD8x1fn+2I7TnN4fRtOudfEL8qH9wJZcCr3C6b3neXtmL+d+eoOesrVL/dPHIUm5ggyEJOk/QFEUavsVf6hzrP1hF9ERsQhV8NOM3xk7r++dr6d1VFNHAb1Rj6JAHk83DMZbXxkGo56p60cA0M6/PxazlfSUDCJCIymfmUX6Ttw8XNBoNQjheP13+YPz8cmKoUx7ex5LZ6znvdl9sgVXddtVJ/L8NRSNQvm62a+3fdleFn+yijovVOX1cS/fs0cnJT6Vnz5fg91mZ+mM9fgEeiGEwJxuYcfyA+xceZCfp63lx1NTyeuT567nAkdx1KvhsQC8O6s35WrlPD/HJ8Drjsvql325gV2rDtJxYEtqtalCxKkrHNx8gsVTVmG3qWz8cScLjk1Bq9Uy5Ns3sxwbG3mDSa9+iaoKxvz0Dv7BvjleQ5L+Tn2Kkh0+DjIQkqRcomz1IqxZoANFoWLtu0+ajY2Mz5x/o6F974YUKxdEpbol71gtvt2bzfjtyw0UKOpPiSohdz232WShevPyePl50KpnQ0rdYfn33DFLOLnnPBqdhtVz/qBtnyYoiuKsUdZ95Is06FADD293PP082LRoJ2aThZY9G6LTa/m83xxsFjsxl+No3Kn2Pef3uHq4kNcnD6a0DFzcDNR9oRpr524jKuwaNpsd1a6i2gUZaeb7CoTen9OXHSsOEFjE745B0N1cOXfVWcj1433/w8XdgGp3DK/ZrHaEKkhNSMtyzPkj4Sybvo7qLSpxZn8YZ/ZfAASLJi1n6G0V6yXpv0JRlCFAHxwpjk4AvYQQGY/yGjIQkqRnxNrIY4w/tobC7vlYULdXtmr1tVtUZPrqoZhNFspUu/vwTt+xHYh7eyHpKSZUu53aLSqiN9z566LPhE70HNMBXWbiwLuZP24Z6xduR1EUqjevcMf98hf2w+CiByA1KZ1XSwxGURQm/jaMyg0dtbqCSzsmAK+avZl5Hy5FCEHM5Tj6TOyMX1A+blxLQNEoWVaf/TBpOX8u20fnYW15vnt953adXsc3e8ZzfNdZKtQtibdfXnwCPLl2KRYBFC5TAL8gH07+dY7GBWvd8z6Nrgaav1r3rvvcjVteV8c1FECAJcOGRqNgs9pxcTdSqmoRXhvdIcsxo9p8SlJcCrtW7KfT0LboM59f4bJPd/4p6enxNBVdVRQlCHgHKCuEMCmKshToAix8lNeRgZAkPSO+Or2VDLuVy2k32BFzjjYFK2K3q3z+zo+c3BvGG2Pa06RD9SzHnDt2mc1L92J00VqIP1wAACAASURBVHNk51lCShegbc/6lKlWhDLVQvjj1/2smr+DvD4edHor5+Gbm/QGHSf3nGPsKzMxuhmZuuGDHGtqpaWko9pVFI2G9OQ7/2HXe/zLFC1fEDcPV/78bR9Ws2MS8Ce9ZtF95Iu80LcpURdimP7md9yIScBqtYGAhGtJAMzc8iF71h2mXK0Szrk3URdi+HXGeiwZVmYOnE/TLnXQ6rQAJFxP4uAfJ6lQp6Rz2f/5IxFkpJlxcTdiMOo5uPkER7aH4uJmpE7bqs62Rl2I4eKJKzzXvAIu7v8skeTf5Qvw4vPfR7J0xjr2rjuCVq+lZsvKXDoTRf9PulKtafYg0mJ25CqyWmzoXfSM+ekdVFWlVpuq2faVpP8IHeCqKIoVcAOi/40LSJL0DKjjV4x1UcdRUCjvFQTAqf0X2Lf5BBnpFmaNWpolELLb7Izo9CUZ6bcSEF4MjWbHmiN89ftwAFRVIGx2zh6O4Pie8wSG+OJXwPuObVgyfR3pKRmYUs1sXryb18e+lG2fvh93Rtgdldo7DmwBwJalf/HVkB/x9vXgk9XvEVDYD61OS7Oujh4VNw9Xdq8+iNVsI/F6Mt9+8BM1W1Zm9vuLOfnXOee5tXotJaqGAI4kha17Ncpy7bw+edDqtBhdHUNsmsx8PqqqMrDBeEfFe62Ghcen4OXrQb9PujB39BJKVy9KWrIJm9WOzWpn/kfLqN68AgajnutXbjCg3kcAFK1QiOmbRt3PP9d9KVWtKB8uGkTi9WTiouM5sj2UbiPa33GYr1qzCuxacQCAmMuxdBvVIcf9JOlOBMpTk0dICBGlKMpU4DJgAjYJIe6cT+MfkoGQJD0jPqzUlpcKVyW/a178MxMuBhZ2TJB1cTNQuHTWZfdC4MzmfDub1c5v326jz+j2bPplL0LAnt+Pc3B7KIpGw6xNI5zn/btarStzbOcZhBAY3Q3YbXZnj8tNnvk8GD4n60TtOaOWkJGawdXUDIY0m8TP52dm+bxywzL8evlrupceiinFhEarwcXdSGARR8B0M3Gh3WpnzshfaP9m8xyHrjy83fnfzvGc2H2Gmq0qO/exWe3ExyQhVEfOpNEdpvH1zo9o3rUuzTODsavh1+ldbRSqXSU2Kp7QvWFUbliGa5fiAMhIN3Pp9P1lwn5Q7l5uvF5xOKbUDOaNXcq3+yZRuExQtv16f9yF8JNXUFDoPMyx2u7Hj39j6dS1VH++AgYXA/t/P0qX99vT+b1nr3iv9J/jqyjKwdvezxFCzLn5RlEUb6A9UARIBH5VFKW7EGLRo2yEDIQk6RmhUTRU8M7aU+BXwJuvN44g/HQ01RqVzvKZTq/Fw9ud+MyhpOCSAVw+dw2A5Bsp5PFywzWPC+mpGQhVYDZZcXEzEHEm+o6BUJs3GpPXx4PP+81lybR1RJ2/xnuz710YNCA4H0mxyYAjUWNOXN1d+HL7OHatOki1puXJ65OHfp90xTvAi5+nrMacbkFn0OFX0CdLECSE4NcZ6zh94AI9x3QkpFxBCpYIyHJug1HPq8NfYPGU1SDgwvHL2Kw2VFVw7lA4hUsXILCIP9WbV+D4jjNo9Rrn/KRytUtQu20VTuw6S++Jne55r3eSlpRO2LFLlKxaBNc8Wed32Sw2Z9kRoQqWfbWBmi0qEVw6iOBStxIlBpUIZMGp6c73qqqy6OPlCFWwf8NRBGAz25g3+mdeGdb2gXMjSbnDYyy6GieEqH6Xz5sB4UKIWABFUZYDdQAZCEmSdGenEqN57+BSPPWu/K9mNwoU8cPFzcDQ9jNISUxnzNzelKrsyEWUdFvQUbFOCQwGHWmpGfQc8QJarYbpq4awY81hhAor522naNkgqjQofadLA46eEUWjkJFm5uyh8Bz3SY5PZfYHP2EwGug3uTOvDGvDpNdmodrVu2akDiqWn85D2/DdmCWM6zSDju+0pOt7L/DKkDZEnovm3OEIarSolOWYY3+eZtGnqzCnW4gIjWLBsSk5nrvbB+04dySCg3+c4IW+TdDpdQxpPonwU5EYXQ3MP/wJ4xYP5MzBi2h1Wr794GdCyhWky7A2jJj7cCuyLGYr/WqMJjUxDd8C3sw99EmWFXrmdAvBpQs4e5w2/bCTTT/sRKvX0mlQS1Z8tYFydUoxceV7WZJKajQaSlQJ4fKZaAxGPWkpJgAUFI7vOE2lhmUfqt2S9C+7DNRSFMUNx9BYU+Dg3Q95cDIQkqRnzIzQzUSmJ3BVSWLllcP0KdGAjUv2cuncNVS7yg9T1jLppwEAlKlahFMHLqDRaihduTBe+TwILJyPImUcvQymVDNhJyKp1rA0v53OHkDYbXbmjF7CpTNRvPnpq4SUCaJeu2ps/mkXUWExvPXZq1n3t6ucPxLOqtlb2LFiP4pGwSfAk+4j29O+f1POHYmg36Qud72/a5diWfnNJqxmG3NHL6FN7yYYXQ0ULlOQwmVu9YjFXI7j/JEI3D1dQYBGq9xxIrPdZufMwYsM+V8vvP3zoigKQgjOHrroXLJ+NSKW4pUKU65WCQY1HE/Yscvs+/0oIWWCqN2mygP9G/1dYmwyibHJ2Cw2oi9ex5Rqxj2vq/Pzya/P4sq5q9mOU212ls1Yh9Vs5dSes5zeF0aFelkD1enbxnF6XxhFyhfivWYTiTgVid6oI+Zy3EO1WXo2CQH2pySPkBBin6Ioy4DDgA04Asy5+1EPTgZCkvSMqeRdkOMJVxBAqbyOeUElKhRCp9eiMerwLeDN280/xWa1EXkxFqOrgWYv1+CP3/Zz4q8L6PRaDC56XFwNTBn0AymJ6RzZeYbjf4VhdNVTploRChb1p1LdkuxadYjff9iBOd3C5/3m8vXOj3DN48KUtSNybNvn/efy17oj2Mw2hCLQarS45XVFo9HQ/5OuWfa9eOIyBldDltIb4JhjZHQ1oNVq8fBxR2/M/jWWeD2Z/jVGoaqCoGL5GT63H2FHI3ihX84r3yb3ms2hP06i0SqMXPAWIKjWtDxdhr3AL9PWYjDqSYpNQVVVNBoNBlcDikZBgHOJf04y0s3ojfosRVZz4hfkQ5NXavPnb/to/UajLEEQgNlkRqjZ53MFFs2PX4AnZ/aHodVpCSqefZWewcXg7PkZNrc/QxtPwJJh5edPVtK8e305PCY91YQQ44Bx/+Y1lDsVVHwaVa9eXRw8+Mh7xSTpmSKE4K/Yi3gaXCnndWv+yMXQKCIvxPDZwB9Q/zZJWm/QodEqmDOsGF30+Bf0ITYqgQyTo8wGOCqeq3aBolHQ67V8OK8PGiH4qMuX2G12KjUow6TlQ8lIM2N0M+T4C7ZzscHO4TiNVkOzrnUY/EXPbBOq1363lTljloCAsYsHUr1Z1qXisVHxnNpzjiqNy+VYof7c4XAGNxqPqgpQYF38vLvWIesUMoiUhDQMLnpUVUWn09HitfqUrFaELwd/j9nkWFlXtUk5Jq8YRnxMEitmbcInwMu5tH/0wrcocFu6gJXfbGbO6CV4+eXl653jnEvy/4mr4ddZ8NGvXD4TTfipSEpWLcLgr17HwzsPnr4eTOw8k4ObjxNStiBf7ZmIwcVwx/P0LPWu8/1nv4+kSpM753KSnjxFUQ7dYx7NIxVS3kOMWV75sVyrb6ldj/Xe7uTp6P+SJOmRURSFOv7FsgRBAEXLBnH6UESWIEijcQQrVosNq9lG7ecr8MLrDYi7mkhGugXFec6bRwhUu4o5w8qcj5ZTqUFpPpjXn9fHdmTk/DeZPmA+HYLe5t1mk7IU/7yp55gOzgBJIAgs4p8tCAI4sPkEFpMVS4aVLwZ/T3xMUpbP/YJ8aNSpVo5BEEBwmQKOIAjQarXOUhe3s9tVTu8PIzE2mV7jOmJ00QMCm8VORrqZ0/vD8PbPy+1/LB7ZdgqzyYJPfk96j+9EXFQC5w5HcOHEZX6YvDLL+VfM2oRqV0lLTufQ1lM5tvN+BRbxZ9T3A5i9bxLTNo1m4IwezB/7K29Uep/BjSZwcPNxhCqIvnidiFORjvuz2bl8JsqZWyj+WiKevlkzYl+Tw2OSJAMhScpN1i/a7Xxdqkph5v81liYvPYeXbx76j+/I2Hl96T26Pf3GdsDDy42Awr4YXPToDTra9WpIy1frOI+PjojjemQCtdtU4eV3WuKW14VNi3YhhCDiVCSXz2af09Ls1boY3Ry9FQoKzbrUzrZPSkIanYe2RpeZyfrG1QSWzlz/QPfp4mqkVusqaHVaQsoVJLCIX7Z9Jvf8mg/afsYblUdQs2UlSlYrgiXjVvBWtWl5qjYux8gFb+JfKB+KAnXaVsXoequ3JaRsEHqjDhdXA0X+ltunaZc66I06dHodbnlc6F56CAPqjSXhb0Hd3YQdu8TyrzdyPfIGAGvm/MGoFz/nvZaTObTlJDarnYjQSEpWK4rOoCNfoBfBZYIQQjCs6QTerjGKt6qPZMmUVXQv/g7dir6DRn/ra9/b3+u+2yJJzyo5R0iScpEyVUI49td5wFFhXq/T8eb4l3DL65plHkvLV+vQ8tU6CCE4d+wyXr4e5C/ogxCCi6eiCD8TjX+QN76Bt36RajQaqjevwLEdp/EJ9Moxq7TNYsNmcQQbGq0Go1vWycv/G/oj6xf+SWARP7oMa8OvX2wAyDZP6H58tGQwideT8fTzyLFG2tHtoWSkW3BxV7h48gou7i7OSdI6g5barR3DA7VbV6FWq8qkJqZnK/za/NW65AvwwmqxZlut1mN0B1r1bEgeLzfGvTKD2Mh44mOS2LR4F52Htrln++NjEhna/GPsNjvLvtjAT+dmcmrveczpFhSNgrunK2mJ6QghyOPpxsLTM/AJ8ESn12FKzeD0vjCEKrgWEcu677Zis9jQaBXKPFeC84cv4urhQpkaxR74uUrPNsHTM1n6cZGBkCTlAgmxyZw+FEHL1+o6AyEUmDNhBTvXHqVgMX++XPdelt4OcAyz3Vxqf/P91BXvEnXxOoEhvuj0WYe1JiwdzLWIOHyDvDEYs08idvNwZdg3vVk9ZwutXm+YrXjppkW7UO0qN6ITqVivFCFlC6LTa6nZ8laQkZqYxsj2nxMTEcfw7/rxXPOKOd6zoijO0ho56THmJeaOXkKR8oWoWK80pasVZdn/fic9OYMWr9WneKWs932z2OvfVW1S7o7X8CvoA0DZWiU5e/AiQkDx257n3aQmpiNUx1BdclwKQgi6Dm/Hmf2OVX6vDG3DV4PmAwp1X6yOf6F8zmNd87jQ+JU6bP1lNxXqlaJu++rMGvojLm5GPvhhAHarHe8AT1zdXe7cAEnKJeRkaUl6xmWYLPSsOQ6L2YrN4igRodEqtH+jIavm70C1qxhdDXy2dBClqtzfL2mAdT/s4vef/6J974Y0e7nGI2nrtLfmse3XveQL9OKbPRNw83DNts+GhduZNXwxFpOFwmWCmHNg8iO59v0SQhC6Lwz3vK6E3GcxUyEEx/48jYePO8UqZn3GJ3ad4cbVROq9WD3bhO5fpq1l96qDdH2/nbO22YqvN/LdmCW45nHhoyWDyeudh+AcskwDpKdmgBC4ebiSnmJyrLbLYU6W9PR63JOlC5f3ECN+ezyXG1B6+1MxWVr2CEnSMy7pRiqmVDNWiw0UMLrqQUDVhqU5ufcCF0OjyBfgmaUEx/G/zrNm4U4atq9KvdbZV5AkxCYz+6PfsFnsfDH8Z+q2qoTrIyg2OnTWG/T88CU8fT3uWO2+eOUQFMDF3UiFeqUe+poP6pdp6/hl2lqEEIxbPIhqTcvf8xhFUajcKHvywkNbTzK+8xegwOo5WyhcpgDl65aiYPEASlUrSpdhbekyrG2WY9Z8txWb1Y45w8Lls1fxL+jDd6N+pln3ejToWMu539WLMQyoPQZTagbvfPUGibHJHNh4lJ7jOslEipJ0GxkISdIzzj/Im9av1WX7ykO0e6MBJSoEY7PZGNfzW1S7QKfXMm5eX1wyh8XsNjsfdp+NxWxl3x8nKVO1CPkCsg4xubgZ0et1IMBg0DKsxWRSEtIY88PblKpWNFsb1i/YTui+MDoPbUOhkoHZPr9JURR8/1bUVQiB2WTBJXM+UYnKIXzz10TiohOeSCB0fOcZzOkWNFoNZw+H31cgdCfRYTEIIbCYrITuO8+pv86xYcGfGFz0jFz4FrVzqBrftncT5n24BIPRQMX6pelfZQRWs5VDfxynQr0yzuHAfRuOYk63YLfaWTptDXFR8ZjTLYx/ZQbLY+YCjozWa2ZvxuhmpNUbje+Z70h69gkU1Kek6OrjIgMhSXrGKYrCm+M78ub4js5t8yevRrU7hsVVu0pSfOrtB6DVacDsWNml0Wb/UnR1NzJz7TAObT/NruX7OLXHUQF+av/vmHsw61BV6L4wvh35C2aThdB9Ycw/8mm28yVcT2LGwAVoNBqGfN0Lz3yOZfFmk4XBjScQcSqS9m81560p3QAIKh5A0D+YQP1PWcxWfpy0kpSENDq+04JLZ6LI4+XO893qPdR5m3atw/6Nx7h8Npob1xKwZtgQQmC12Ag7GpFjIPTSwBY061oXF3cDGq0GnV6L1WxF0WjQ3jZnq3rziiwcuxTVrpKakIYlw4pGq8kyL2vBmCWsnr0ZRaNgNVvpMLDlQ92PJP0XyUBIknKhqg1Ls2LuNmw2O5XqlaR8zVurh7RaDVOWvcOmJXup3bIi3neo/RVcIoDgEgFsXrjduc3NM+uqqv2bjvPdh0uw2ewoioLmDj0OP0xaycE/TqIo8PPna3nzU0eW6bMHLxJ90dFrsva7rbz52av3lQnZarGh02sfWdbkdfO2sWr2H9jtdkxpGfx0dsYjOa+bhysTfxvqvL9DW04SdjSCvPny0Lp3kzselzffrWBm2paxbF2ymzovVMPoaiA5PpW8PnkoWDKQny9/zfBmEzl3KBxFgSpNyjN0zq26aPt/P4rVbAUFkuKSH8k9Sf999lyWWUcGQpKUC1WuW5L5u8ditdgoEJI9x07xCoUoXqHQfZ3rnS968FHXr3BxM/LhogFZPpvUYxZmkwWtXku9F6vTa2zHHM/hF+TjnBPkF+QYGrsafp2Pusx0Lhe3WWz0rT6SL7ePyzaJWghB8o1UPHzc+e2r35n/4VLyFfDmfzvH37WI6/3SG/SgOHrXcirp8bAUReGFvk15oW/OJUDuxGa1UaRCIfpV6UbU+at0CX4bc7qZATNfp03fpri6uzgTaAoBlgwrfgXzZb4XXDkXDThSH1SoV4YzB8LwDfLht5nr8fb3pOOQNnK4THrmyUBIknIpvwLexF9L4v3207DbVT74tjd+QT73dWx4aBSjXv4CgMm/vsMv52cSduwSP3++ltqtKztLYnj6ehB/LRGtTku/SZ3veP7Ow9rgG+SNRquh0cs1sFps7N94DEuGIyuyyMwSHRsZz8k957Lk7BFCMPblGRz84wQhZYMIP3kFISAhJonDW0/SpHOdHK/5IFq93oAMk5nUhDQ6vdv6vo65eOIKdlWlRKX7X4n3II5uP8WYdlPQ6rRM3fIhJ3efxWKyYLPaWfHVBoxuRmq2ruyYJJ/JfltWcUVReK5FZY5tP4WnX16+fnchcZHxKBoFi9mKTqfFwycPrd5o/K+0X3o6CUCVeYQkScotfpm5gVP7whACpg5YyIUTVyhUMoDJvw7GNc+dc8ys/HYLibGOoZQVs7fw7hev8X6bz0hPyWDz4l3MP/IpvgW8mbZxJDtWHKB87ZJ3DbK0Wg3Pd6tHzOU4upUaRmpSOr3Hv4zOoMNqvvWLXGfQUrJKkSzHmlIzOJBZYiIiNMpRD0QI7HaVcrVLPuQTymyfTsvLg+5//syOFQeYNmABAG9NeZWW3R9uLlFOVs3alBkoWtn84w7av92CH8YvQxWOUhtfDPiOfIHeBJUI4PKZaDQahXK1S9A1ZAD5g32ZuGo4E1e+R+S5q7i4G+lZ6l3sNhUUR7JLgWPivCQ963JX2CdJUhaFSuRHb9RjMOq5cPIKackmIkKj2L/55F2Pq9akLAYXPQYXPVUblwHIMgRzswfHL8iHjgNbUKpa9uBl/6bjJFzPWm5iz9rDpCWbsFvt/PrF7wQWy+9M2qgz6Phy2zi8/LMOdbnmcaFyw7Lo9FoKlQp0JHJUoPeETuQP9v3nD+chHN99DnOGBbPJwrEdpx/4+P8N/YF2vn2YOXC+c1tcdDxRYdec75t0rev4t3PRU7f9cwQVD2DJlVl8umEkWp0Gc7qF6AsxHN9xmqpNyzNsTn8Obj7OjegEQveep3uxd4i9coPg0kH4F/Klwcu1UDQKdds9R8vXG/HKsLa07NXoUTwO6T9Fwf6Yfp4WskdIknKxtm80wi/IB7td5a/1x9i99jAAxSrcPVFgg/bVCcmsaVW4lKO466QVw1j97R/Ua1/dmVH5ToY0m8S1y3HoDToWHvsM98xJ1lUaOQIahCD5RgoJMUnojTrqtqpM41dqZVspdvTP0yyZvhYPb3f8CuajYPFAoi/EoNFqCDt2GQBVVZk76hdC94fRb3JXytUq8U8eVRapSemc2htG6epFnCvcbvfim005sPk4dpvKK4NbPdC5k2+ksH7eVuw2lc2LdtJjzEtEXYhhVLspALw5pRttejehfocalD1XAq1O65wHZXAxULF+GVr0bMS2X3aTmpyOOd2CKTWDZt3rc3znacJPXAHAlJbBrpUH6Di4NZHnotm79rCjLpqHC+/O6vOQT0iS/jtkICRJuZiiKNTKLF9Rq2UlWnSrS/7gfPjfI5ABCP5bPqBytUpkCzJiLsUSc+UGJSqHOIfa7HaVS2eiEUKgqirblu2jUMlAKtUvTUjZgvx4aiqR568you3n2G0qNoudlwe3pmzN4sRFx3Ng03EqNShDYBF/xnWaQUa6+db1Lseh1WlQuNVDdWTbKdbP305GupnhLSfz+e+jHioYSryRQu+qo0hLMaHVallwZDL+BfNl2adg8QC+P/bZPzq/u5c7/oV8SbieRN58ecibLw/r5m3FarEhVMHOFQdok7miLF+gd7bjFUVh4Bev0/WD9gxv/jE3ohOIOBVJr3JD6fdpNzb94MgmjoAqjR05kN5vORlTagYAu1cfZPg/arn0LMiNc4Ry191KknRHWq2GCnVK3DEI2r3uCGM6f8nudUfu63y/fb2RnpVG8H6bKbxR9QPCT11BVVW0Wg29xnUkj5cbhUoGMnf0EsZ2msm2ZXsB8PB2p0yN4tRtXw1wTIZe9uXv2O0qA+qOY9bwRQyoN85RMsI9a200g4ueDgOep2DxQI5sD2XJ9LV4+XtiszrmGdltKl/cNtz0T4x6aQZpySYQjjk0a77b/lDn+zutVsOsvyYyYdlQZu+bjE6vo0nnOnh4uaNoFNKS00mKS8nx2POHw5nebw5bf9mD0dVAhXqlcM1jJD3ZxNXw64QdjSCgiB86vZbaL1SlaMVghBDEX010nqN59/qP9H4k6WknAyFJku4pLdnEZ/3mcWhrKJ/1m+cIBO5h84+7HH9eAgkxyQxqNJHRHaYD8MqQ1iy79D8KFPHHbLJgtdgIPxmZ5fhmXeo45yHVblMFq9lKSnwqFpMVi8lCekoG783umyU3kUaj0LJHQ65GXCclPpUFHy0juFQBAov6O/cJKvFwiRjjIuOdrxWNQvna2XuXrpy/Rt+aH/Jm3XHMHrGY9Qu28SB1Hd08XKnUoAzueR1pAoKKB1CtWQUQcP5wBLPe+9G578KxS3klqD8z3v6OQXXG8PvC7UzpNYupfWazedFOEq4no9Fp0Gg0LP9qA8Glgxj36xCKVSrMhaMRKIrCu7N64x+cj7b9m/H2jJ4P8XSkZ4GcIyRJkvQ3Wq0GrU6D1eJYUXR74c6LJ6+wadEuarasRJXb6mm9NKgF0wfMB4EzD9CR7aHYrDZncdEeYzpw5fw1XFwNtH+zWZZrVmtanjn7J2G32Qkqlp9Vszejqo7hLrtNZc+aQ7Tt25QSVUI4e/AiikbBv5Av3vk9MboZ0Go1eAd4AYIrZ68CoNNr6fZB+4d6FsNn92buh0sJCPGjy9A2lK1RLNs+i6es5so5xzUjTl3BoNfg6u5C41dq/+Pr+gfncwZTO1fsZ/BXvbhyJpqfPl0JwIbvtnLzd4tqVxHCkR9I0Wto0rUOu5bvJy0xnaPbTnHojxNYzVZ+nb6OxRe/omWvxrTsJZfJS7mTDIQkSXKKj0kir08e50qtm1zcjUxZPYzda49Qt20VXNwcQ1KqqvJeq09JTzaxfsF2Fhz91Dlv5flu9WjQ4Tk0GoUP2k/l9L4wmnWtm6XCeqESgczeM+GO7QkofGvV1/oF27nZqSKEYNEnK/HJ78W0TaM5e+j/7J13eBRVF4ff2ZYeEkIKvYbee+9FESkiXRAFBEFQijQRBKnSRIqAVGkiRXrvPUAogRBISEIIgRBSSM+2ud8fGxbWJBQ/C+i8z5MHdvbO3DsTyJ6ce87vF0bo1QgadayFo4sDSy9M5eaFMCo1KI1Wp6Vplzoc/fUcvlWKULTcywlFPkEIgWyWrcFfjRYVqNGigvX92wF32fnTEWq0rEC9NlWRJImSVYpyds8VDBlGhFEgBDa1TC9L4NlgzCaZCvVL0XlYGzZ/vxezyYxKpUIICL8R+bvFWv6o3qoio1YPYvdPh0BA+8/eIuZuLEF+t4HMtngB+jQDvXy/YNH5qeQr7s294AcE+4eh1qip1766zfdK4b+BENJ/rkZIelG6VpIke+AEYIclcNoshJiQw9iOwGaghhDioiRJPcCm7q4iUFUIcUWSpGNAXuBJjr2lECLmeWupXr26uHjx4ovvSkFB4ZWZP2IdB9afwd07Fz8e/9q6LZMdj2OT8dsfQOnqxRjc6BsM6UZ09lqWXZyKV0GPLOOFEBgyjNg56LK52suxd+Uxfvh8FXJmaz4S2DvYUevtSoxdPej5J2Np2bd3snsl242MND3DWk0jPPAe3b98l55jsmaTOhYaTGry063Cdz5uChtLWgAAIABJREFUxGezPmDnT0dY991OzAYjTd6vRf8Z3V8psDi0/hQ/DFkFEvSd3IW2/Vtwbu9lNs7aRcueDXi7d2NSHqfSq9TnpCSk2Zy7NeYnom5HU6RcQeszN2QY8D90jSJlC7Bhxnb2rTwGWLJ1n87uhZObI7P7LUE2WbJulRqVZebBcS+9XoW/BkmS/IUQ1f+u+fKXcxMDf/3zda+yY1z53X/rveXEy/yv1ANNhRApkiRpgVOSJO0VQpx7dpAkSS7A54Dfk2NCiHXAusz3KwDbhBBXnjmthxBCiWwUFP5BIkOi2bXiGAd/OYvJaCY5IZWQqxFUblA6x3OGvj2D+IeJqFQqRi8fwKENp2nQvnq2QRBYOpn+aBCkTzewb/VxcuVxZX3oD/z45VoCzwSTGJdMRpqesGuRL74IPFcgMieCLoQRFRqDELB10YFsA6GMDNtMz+4Vxzm6yQ+vgh4kxqWg1WnI55v3lbMrty6GYdAbEUJw80IYbfvD+unbuXPjHj9+GUHlRmXJW9SLyo3Lc+q389bzSlYvypD643l0Lx7vQnlYcnkGarUKnb2OOm0sBejl6pbk4JqTlsyQBFeP3+D09gvWjBLA9dO3Xmm9CgpvKi/8nyksKaMn1tTazK/s0kjfAjMgx87LbsAvf2CNCgoKfyGj35tLfHQiKrXFFNUtjwslqxSxGRMeeA9HF3u8C+VBCMGjewmYTWZ09lryF/dmwLRuJCekIoT404xOn7Bg6M8c23QOSS0xbFFfxq4aiD7dwJSeC4kMvs+Qeb3/1Pme5V7IA/TpBgDKZFMLBNCwQ02ObzmPbJaRVBJCFqQlZ5CRZsDe0Q4hBEXLPV+XKTs6fv42V08GYTbJdBvZlkdR8dy+EoHZZMbOUceje/HkLerFkAUfE+QXQtz9BPLkd+fxwyRiIuMy13+faT3nExZwl0Hf97YUXAMtejZEn27gyPrT3L5yhzPbL9r8VJckiZLVi2a3LIX/AOb/2NbYS/2KIkmSGvAHSgALhRB+v3u/KlBQCLFbkqScAqEuwO9/nVopSZIZ2AJMFq/SVqGgoPCnYDJabBQ0Wg1TNg2hTI3iNkabWxYeZM2MHQgBUzZ9TvnaJRj6Qy82zNpN3Xcqk56awZDGljqfzl+0psfotn/KutZ/t5Mt8/ehs9di0BuRVBKH1p+iUcea2DnomLR56J8yz/M4tcMfsAQGZWuWyHbM8AW9qdKoDFqdhqT4FJZ+tRHZLPCtXJhWH9THzdOVEhULvfLcPoU9WXphmvX11A8XWi0vCpbMR/l6FvuQxNgk4u4nABAblWBzjYoNynJ+7xUyUvXM7reE9eELAEsRddsBLQkLuMvNC6EIBEjg6OzA+I1fkJ6aQcWGZV55zQoKbyIvFfYJIcxCiMpAAaCmJEnln7wnSZIKmAMMz+l8SZJqAWlCiGd1+3sIISoADTK/euZw7ieSJF2UJOnio0ePXma5CgoKr8DkjYNp0K4ag77rRmRwNB/XGMfS8ZutHUp+BwLQpxsxGc1cPxsCQLNOtVjmN4mPx79HkN9tzGYZfboBv/1XnjeVDc/7vcdkNLFm6jZSk9JJjLN4mglZcOX4DS4eupZlfFJ8ClN6LeTbD+bnqLHzR2jbrykqtQqtvYb6batlO0aj1dCyez2avF/LOl4Igd++q1w7GcS33eYx5t0Z/DhyLUlxr742IQTf9VnM6e0XUWlU2DnqaNOvKSqV5cf3tVPZb2F5F87DwLkfImSBnaOOApkCmGaTma/encG7uXrj5uWKSiWBsHTUzTw4DhcPZ2b0XkTXggM5vzerZlRqUtorSQEovFkIQEb6W75eF14p/yWEeAwcBZ51H3QBygPHJEm6A9QGdkiS9GwBVFdgw++uFZX5ZzKwHqiZw5xLhRDVhRDVPT09X2W5CgoKORAfncj1c7cxm8z4VirM2GX9aN6lNgtGbiAmMp7dK48TGRKNEAJnN4v9hYOTHU3et/w3vekfzpdtZ7N80lYatK9Onnzu2DvZ0XNs+xfO/Tg2iY8qj6JNnk849MuZHMcVKpUXjU6N2fDU+NNkMOP4TK1PUlwKfvuusPKbTZze4c+ZnZdY/e2WP/pYsnDjfChqjQoE3MjsuHoRLu5OlnOAX+fsJvrOIy4dCWTH4kPMG7zSZmzI5TusnbaNO4H3srsUAHdvRnHitwuYjGZkk8yQeb1568NG1vdrtKyIzl5rfe3o4kDhsvmZsW8sRcoVYM6xCXy+oA8Tt1h+Vw32D+PayZvo0w38OmsXzm5OgCVLpNGq2bn4IBmpeowGEzsXH7RZy7dd5tAhd28+rz9OMWRV+Nfwwq0xSZI8AaMQ4rEkSQ5ACyy1QAAIIRKBPM+MPwaMeFIEnZkx6owl6/NkjAZwE0LEZhZgtwEO/Sl3pKCg8Fxi7sXzaYNJyLJM9ebl+Wr5J4Bl+8e7YG7iY5IsGjyerpzc4c+5vQEApCWn457paTWt70/E3Isn+PIdPHxysfLK9JeuDTq/P4D46ETMJjPrv9tB8651re+ZjCa+fGcGQX6huLg7YTLYfthWbVbO6iifnJDKh+WGk5ZpDfH0+lf/0HO5ExTF3MGryJPPnZ6j2/F153kkxFjWqdaoiX+Y+MJrSJLEnP1jOLH1AuVql2BSt3mkPE7NvA+LpciTDjqD3sjwFpPRpxtYM3kr49YPpkG7GjbXS0/J4Ov352DUG1FrVBTwzUuzbvVsnrV3YU9+jVrMtgX7SIpPocuItrh757K+71ulKL5Vntb75PfNi9beYkxbsloxBs39kG2L9lOpUVnGvzeLuAePkVQSGq2alr0bW88zZBg4seksALcvh/Mg7CEFSub7Q89a4XVGUmqEsiEvsDqzTkgF/CqE2CVJ0iTgohBixwvObwhECiHCnjlmB+zPDILUWIKgn159+QoKCq9K+I17yEKQkWbg2ulg63FJkvh+/2guHg6kTI1i3At9yMyBK63bICJTGBHAzdOV2PsJGDKM/DR+C/EPE/n46/deav6ytUqgUknYOWip26aq7dqu37N2gSUlpCAhgUqFWgU9xrSn+8in9UdRodFkpGfV5nl0L95GtPFlWThiHbf8wwm/fo+MVAOxDxIQssA1tzOVGpSiw+8EH3PCp1AeOn/xNkIIJm4ayu3Ld4gKfYghw0ClhmVp7/0JGal6VGoJ2fx0i2nN5K02gZBBb2TuoOU8jIgFLCKSJqOJgJM3KVK2AKEBEexYcohmXevSoENNuoxsx/KvNjCzz2L6f9eDwmULYDSYMKQbrKa2AK65nVlxfRY7Fh/k1oVQ4qIfM/THfty+fIeEmCRMBosdyaqbc/HM/7QLUGunpWrzilw7cYN8xX3wLqJk6BX+HbxM11gAUCWb4+NzGN/4d6+PYdkue/ZYKpD9hruCgsJfSuUGpSlWvgC3AyLxzJ+bn6ftoMfINqjVKlxzO9O0Uy0Abl26k2lfYcnK5C/uZRVanLThM7qXGwlYxAbP7Q146UCoQAkfVgbM4PGjZAqXts0o5C3mhVarQY/BEgQBzm6OvNWzARtn7eL8vqvM2DUKeyc7fCsXoVDp/NluK3UpMpgfjk/I4lb/PPIW8yL48h0AytcpwbUzt0CCHqPepd0nzV76Ok9Y+OU69q89haOLA0vOTMTN05W2efpau9CeDYI0OjW13rb9Mfvbwv2c3Gbb0h51+yEj356GSi0hSSrMJjMXDwZQrk5Jrp26ybb5+zAZzcRGxTF5+0g+rTmWtOR0BszsSbuBLa3XMZtkfpmxHaPexOUjgfwWu4wi5QugtdNgSDegUkv47b5Mm0+eBn+SJNFlVHtqv1uN1n2bcf92NEF+t6nbrjquuV1e+fkovJ5YTFdfn/qdv4P/Vv5LQUEBOwcds3d9SbFy+Qm9dpetiw9xeuelLOPqvlOZOm9XoqCvD/0mvs8Ph8YiSRKJcSksm7AZO8enukBdhr790vM/CI9h09y93A99aN3iSY5P4cDak4zrOIeURFtxQLPJzOZ5e9GnGwi+FM5nDSYQERTFgbUneRAWg0r99Ie2vZMdAOlpes7sznpPz2Pw7A9o06cxLrmdiAp9yMIT45m6ZSi5PFyIjnhEyJU7nN516aVrY45vvYBRb0KfbuCWfzhAjlpKPb/qwMcTO9kcU6kkVE+2wH73uSSbBbLZsg6zydK2H3gm2NoBmBSXwoUDV9Gn6zEbzWxftN/mfI1WjZRZbK3RqlGpJDRaDdVbVEStUaHVabF3tLM5x2/PJca3m87yMeuZ238pn9Uaw4LByxjWKNvfiRUU3hgU/XQFhf8oDk52loyPIMuHHoDOTsvoJX2zHF82YTNHt5xHUknUbFGBD0a1wbdSYcCyLbVp3l6KVSzIWz0bZjvv2A5ziL7ziF3LjzD30DjyF/fmk1rjSIpPwZypavws6c8YvMpmmcjgB/zw+SpyebhYsyuSSkKr09D6o8bsWHoYjVZNjeYVX+l5aHUajm05T9yDx5zacQmnXI5sX3IYsPirPQkYGravwbCFHwGwe+UxTvx2kc5fvE21puVsrte+f3PWfbcDdy9XCvh6E3o1grFrP2Pt5K1UaFCKLfP2YcgwggQanZbYBwmMfmcGMXdjGbG0H+0HtkKfbuTG2WAuHwu0ySCpNCpUSJhMZjQaNQ/CY/AunAe1Vo1slilbx5eqzSqgs9MimwXv9GtG9J1HJMYmkZaczsROc3FydaB5j/q8+0lz6zbiF4v6UrBUPnL7uNG0ez2b+4kKeYBsFhj1BiJuRCIyLTqiw5Vu3n8b5v9YjkQJhBQU/qOMWtKX7T8dIX8xL2q0KJ/juMexyYRciaBc7RI4Ottj72RnMfNUSVRpVNoaBJlNZvrX/pq05HTUGhXeBfPYmLA+wZBhzKw7kjDqjYx4axoJMUk5L1SSkCQy28UFZrPMvZBoOg1tTcDpW+jstUzc+AX5S3jj6OJAp6GtsXOwe65FSE7kL+5NyuM0hJDZu/qE9bhslpHVEoYMM7cD7gJwPzyGJWM3YsgwcuN8KNvvL7S2tINlS+39Ia2IvR/PoLrjkWUZSZIs4/1u89n3vdi28ADehfJg56CjZ6mhiEz7kJ+/3Ur99jWp3LA0NVtVxL/BU+WRBacnkq+YD6NaT7OYyUrgXSgPJSoXISH6Mef2XObigQDcvd3YELGI9JQMTmw+x8cVhqNSSbjmdiEtKZ20pHT0aQaKVy5ivbZTLkd6jX8/22fT6qMm+B+4StyDBEYsH8i+FUe4sO8KH03u+srPWUHhdUIJhBQU/iPcD4vB3smO3JkdRbk8nOmVg/jho6h4DBlGPHzcGFB/IvrMv/909hv6TOhIbu9cODjZ8W6fxtZzbl+NID2zg8tskrPN7gBM3DiEDbN2UalBaTzyulsDi9/jUyQPFeuXxmw206JbPfKX8GFEq6lE33nE40dJTOj0PbXersTEX4fadFHl9nb7I4/HsrYNgzm1058iZQvw/ZBVhAZYCrftnewoXb0o0RGxDJrZHXi6zaVSSTg623qYmYwmZnyyjFv+YdRvUwVZFujTDDZzrZm8lV/CLAKHn1QfYw2CAFxyOzOo7teEX7fMr9aoMZvMaHUavAvmwcnVge/2jmHT97s5tOYkCz9fxeg1n9FpeBu2zLMYs+5ZfoQPvnqPCweusnjEGuu2WUbq0y67K8cCX/rZOLk6MmX3WOvrQfM+fulzFd4cBNJ/rkZICYQUFP4DbP/pKCsmbkVSSczYNpRSVZ+2U5/Zc4XlE7dSsV5JBs/qTsDpYCZ0XwhA92GtSUvJwKg3cT8sBqPBhL2jjm7DWmeZI18xb5xcHUhPzcCrgAfVmpXLMgagRKXCfL3GYpKqTzfgnMuR1KR0NFq1RSvHbAmgDHojwxZaPmwP/3KaIxvP4lu5CLH3E6ydTef3BXDx0DVqtHi1bbCccHC2p0W3epzdc4XI4GjUGhU+hT3xKuhB4LlgHF0ccfeySAh4+LgxfdtwLp8IovF7NW0CocvHgrhw8BoZqXoObjyHT+E8RN2OpkGHmhzbdA4hBBrdU+2fZt3qsXrSZmvwmPgoifthz3pQCwqU8GHID71x9bAUJju6OHB0/Wke3nlEYkwSZ3f4U79DDfLkz01irCXDNqnzXPKW8EaWM4NSCdp80pwtP+xBklRUb/nnPDcFhTcZJRBSUHhDEUIQ8iAWd2cHPF2dnzv2xPaLGPRGVGoVV0/esgmE5g75mZTENOKjH9P0/VpcOhaEQW8EAYHnQ2n0Xg2O/OqHVqfBb38ADXJQWHZxd2LFlencvXmfUtWLPVdXSAjBzYth5PJwZvG5bwk8E0zFhqU5vz+A5eM3YTbL9JnQiaObznH5WCAH1pxEyII8+d0ZOPMD5n+xCiEstTtOro45zvNH8T8SaKnfAe6HPSQq7CEIMBmSObLJjw9GWTJpZWuVoGytrNYb+Yp5WYO1lMdpzNw1kiJl8gNQ8+1K+B+6jtlo5seRa/loQie6DG9D5cZl+abz9zx+lGSxFJEskgVgybA9jIxlZOvp1GlTlQm/fI4kSRQpV4C4B48RQpCvhDdqjZrF/tP4ZcYOtv6wl8CzwTy6H0+RcoUIv3YXIQR7Vx7jp8sziYmMpUIDxUZDISuyUiOkoKDwJjB/zxnWnriEJMGaId0omS9PjmO7fP4Wkz9agpOLAw3a2QYy+Yp5EnHzAUKAZ353WnStw4F1p9GnG+k0uBUpiamc2u5PRpqBxWN/zTEQAotGTfm6JV+49tVTtrF10QFks+CTyZ1p268pAC171Kdlj/rIskyvcl8S9yABWRaQuW0kSRLv9GlCtWbl2bX8CGVr+WYbiDwh8FwIfnsv07hTbYqVf3m/rzZ9GnN6pz8pSWkIs0AIS/Cm1amp/DsPrvthMXzVfhYGvZGJv35BiUqFyV/cG5/Cebh3+yFqjYqrJ2/i7uXK5J4LSX2cRpGy+S2t8YCdvY6PJ3WmVLViLDr7LQPrjrd6hukcdBQs6cP9sEfoM7e0zu+7QmJsMrnyuDBq1UDO7b5MgZJ5raKJTq6OVG1egY0zLRJvsZFxDP2xLxM6zsaQbkSlkshX3Jt8xb1f+nkoKPybUQIhBYU3lKOBoWQYTdhp1Fy5E/XcQKhmiwpsu/sDkiRZMzUP78Uz6eOlGPVmeoxsQ41m5fApbLnGhqCZgCXwCLkSgd4kQKcld373P2Xtl44GYki3ZFyWfrUR19zONO741GXHZDRnZjqenqNSS3jkdSf2fjw+RTzp+22X586RFJ/C6HdnYEg3smPJYbbcW4Rao36p9RUpk58Nt+Zg0BvZsfQwkkqiWtNyOLk64pk/t83YXcuOEB0RixCCX2btZNyazwDoMbotM/svR8iC25fvkByXzI1zIZhNMmnJaVi+DRJau6c/hgNO3iQ9VQ8qFZKwBGDO7s4I8QgBaHQaipYrgD5dT/eS40mOT+HLn/rZKEcDVGxYBo1OjclgRqPT4FnAg5ErB3LxwFU6DHoLBYWcEALM/7Eaof9W/ktB4V/EwFZ10GnUeOVyplmFrFmRi6H36LNoEyuPWDIPKpXKZrtqy+LDhAfdJzL0IREh0datG8AmYIoMjbFYMgDJien8v5hNZpp1qWP145JlwZ0btqKIOjst3Ua2wSIsLeHq4QxIBPuH8/O3v73UPCajyVqAbDKYuHEuhE9qjmVSj/nWtvuEmEQG1h1Pj1JDueF3G6PBxNzPVjK81VTCrkeis9Py/uC36DioFUXKFMgSBAFUqFcSnb0WOwcdlRs97ZJr0rEWXvncMOuNnPztAvoMIxqtBntHHfXb1eDt3o1p+F5NOn3xtN6qfL1S2NlrLc9GpcJkNBNw8hb6dAOSRk3BUvkYvfJTzu6+YrHuMJr5dc6eLGvaOm+P1Z7E2d2RQqXzc+tCKIfXneLnb7c8rRlSUFBQMkIKCm8qLSr50qKSb47vD125k8S0DK5FRFOrZCHKFrDdCilRoSA6O0uA41sx522jkpUKZVpi6Kie2Q6vTzcgywIHp6z6Qy/i6y4/cONcCA7O9nj4uOHk6kC7/lmVm3uN7UCbPk2IuRtH0IVQVn6zCQCfoi9n7ZDb243hi/tyeMMZ2n3agoXD1xBxI4ro8Eec+O08LbrX5+C6U0Tcuo/ZaGbVxM206tWQY5vPoU8zMOfT5Sw4+c0L56nzTlW+PzIOo95EyWdqr45v9SMlMQ211uJGX79tNao1LUdqUjrehTwY1mIqkkpCFjB6eX/AUoC9JmgOB9efZP4Xa2wnEhARFMV3/X5i6MKPUGvUSJJEo45Z/arvBd+3/j0xNgWjwcim2bsAuLD/CvduPaDQM4GvgsJ/GSUQUlD4l+LiYEdKhh4BONtlDVhadqmNTyEPzCaZyvVzruspUMKbZSfHE/sggZKVCxMScJeRHedhNpn5amlfaj1Hgyg7rp26Zek+Az6f9yFlaxbPdtz98BiunAjiwr6rBJ0PoVm3epSr7UvTLnVeOEdacjoqlYomnerQpJNl/IE1J7kfHgMC8hX1AiyGpGqNCq1WTbk6JblwIABDuhG1Vk2ezG3AG363UakkStd4uk6jwcScQSu4ExjJ4Lm9KFvLNiCNf5jIrP7LMOpNqNQqvl43iFLVilnf/7L1dGsx9qXD123ORYLrZ0Kwd9KRkWrJXD1R8TbqTejstRQtV5DV12eSmphOvmJeWe7/w286c2zTOdKTM0AIOuUdQMHS+XgUGYejqwOehTyynKOg8ASlfV5BQeFfwYqBndjpH0TlInkp5JlVWyctJYM8ed04s/cqyQmpNHi3So6dXh4+ufDwsegPndx1mYxMTZzdP5985UCo67B3WD97FyWrFqVklcJZ3j9/IIBtiw9x/WwwslnGmK4HAXuWH+XoxrMUq1DwuYXPFw4GMLHrPFQqFdN2jqRcbUuQ8uXSfvy28IDVdR2gSuOyzDvyNckJqUiSxNcd9yOEQKfTMGpZf/asPMaS0RsAGPx9L+q3q47WTsvZXZc4s9PfkjkauILJW4fjnMsRZzdLB5smM1sDYOegtdkyAwi79lQ7KTkhhYSYRNy9LM/31LaLnNl1yUZ3qFCpfOTK48LVEzcplOnPlsvDhVwe2Xt85fZxY2vMMmZ8uJBjv54lLTmd+jVrMGxxP4qUK4iDk/1zvkMKCv8tlEBIQeFfipuTA/Epaey8GIRv3jy4OT1VWg4LvMfw9nPRp2daPGhUnNkXQJ+v2uH5goLoum9VYseKE8hmmVbdXpyd+T09Rr1Lj1HvWl8bDSa+7bmQW/7hfDzxfRYMW4sxs/VcCAECq1N7ekoGR38999xAaN/qExj1lvOPbTpLudq+xD98zGcNJhB3/zGSBKe2X6Deu9Wp3boKRcsVBCAy2NI5p9Vp8CniiYOzPTf8blvqcySJ3SuOMWfgCtw8XRm64CMQmaKKkkS/6mPQaNX8cGwCBUvmxdXDmWk7vuTs7ss06VTbamEBEHMvnjz5cpOaGJV5j7B53l76TbEoNHsWyI0wC5Asa/Es4EGfiZ346r3ZmE0yB9acpNdXHXDzdH3uc1arVTR6vzZndlwEoH6HmpSrW+pVv10K/zEsgor/rfJhJRBSUPgXYDSZ2XHxBrkc7WlWoQSSJLHu5CU2nQnALAvMssyU7k+7hS4cuYFBb7IGGkaDmRM7/AkLvMfS4+OeO1fpqkVYf2UKZqMZF3en/3vtV0/cJOB0MBmpepaP34xaq8ZoMKHWqPAq4EGrnvV4HJPEzqWHUKlU1H678nOv91avBvjtvYxKpaLx+7UBOL3Dn4Roi8igEBDsf4eQyxFsmLmTTRELuOUfjlqjYur2EQT7h9Oks+W8LsPe4ca5ECSVipi7cchmmdSkNBLjUpi6fQRRt6PZNG8PRr0JSZK4eiKIgiXzAlCuti/lavsihODh3VhyebggyzJ9q462bos94dR2fzzyuuPq4UKzrnUoUNKHsGuRgMR7g1riW7UoGq0GWTbi5OaIUy5H7gbf58iGMzTsWDPHwLBuu+p8vtDieF/zBc9NQeG/ihIIKSj8C/hu+3G2nQ9EAr7p0oLWVUtjr9VaPLokcHhGxRigzlsV2bjgAOkpeusxISA16eW6whyd/7ytlQIlfQCLjUXJqkXo/fV7nNh6njrvVKHMM3U5nb5ojVaryewgy5kaLSsx79gEfvh8FRtm7qSArw8XDgZYemSfaZYSsiAjVc+GWTvZuuAACPhsbk/qt6uGY6ZPWcGSeVlxZQYAP0/5jU3f70Gj1VCxfim8CnpQrrYvkkrF95+twNHVgVq/CzbSktNZO3U7O5cdxt7RjvHrB1uFFp9Fo1OzcuJmVCoVoQERhAc+6aITuOZ25sTW88iyjJAF3gU9ELLg09pfYzbJbJyzh19C55ErT9ZtssPrT/PD4OVISMQ9iOfDCZ2yjFFQ+D1mlBohBQWFN4wHCUkYjCY0ahUxiSkAdKlXiaTEVCLCYuhbv6rN+EK+PpQoX5Br524DoNZY3NWRIPxGFEXL/rGOouSEFBxdHVGrbVPrl49bLCda9qhn06YP4FMoD4tPf8PdWw+o3KgMOjstJbLpYvPweXkPsfXTt3PrQhgqtcSlI9cxm2QcnO0ZMKM7x7f6cemwxWNLrVET7B9u3f76ZeYu5gxcgb2jHSuvfYfbMzU4vb7qwNsfNsTZzQmHZwLBFt3r0fj9Wqg1KhvT1Q0zd7Jm6jaEEAhZoNaoiX+YSP32NTi57YKNt1iuPC48CIsBLTbv+RT2pH776lw6HIhKpUJnryVfcR8MGQarHYcQgvDAyCx1SGDpHjMZTJjNMneDorK8/zDiEXEPEihTy/e5SuAKCv9m/lsbgQoK/1JGd2hM9RIFaFK+BJ3qWPyjTAYTR8fs5NaC03zZZg5m89N0SEaa3hoEAXjmc8egNxH/MIk1s7Pq0rwM84evoYvvMD6p9TUZqU8zTY+i4pnQ9Qe2LjzAiNYzMp3nbfEp7EnNlhWt7fz/L/mKeaPS/YdHAAAgAElEQVRz0FpazFUSWjstefK789aHjbh9OcI6rlDpfHwyvZt1iy8q9CFCttQibf1hX5brehbwsAmCnqDVaWyCIIAdSw4hm2XUGhWSSsI1txNVGpVl7KpPGZfptfaE4Yv7UrVpebR2WmLvJ1iPP7wby7k9VyhVvRilqhclfwlv3hvUEmc3JyrWt9T7eBXyoFyd7Lv+2n/2FuXrl6ZUtWJ8/DuX+LCAu/St9CUjW05lSP2vObvL/3mPVOE/gsDSNfZ3fL0uKBkhBYV/AQU83Fg+0HbbIzYmkfQUPSajGYPeiFFvRO1oaaO3c9BRrFx+wgKjQIJaLcqzb/0ZQKJs9aLZzJA9hgwj5/ZdpaCvDwfXnUE2y8RFP+b21Qir1YbZZLaOf1LE/FfT+5v3KVq+gEWrKK8bNy+E0bCDRW/HJbcTSfGWrFnNVpXIW9iLlIS0LAHas4rPf4RmXeuyffEhHFzsmbV3DMGXw7l3O5qyHiWoULcU7l6uJMQk0bRLHbwKeFCoVF4uHr5m+STKxJBh5Ma5EOZ+toLk+FQAhrWYwpZ7i/huz2j06QZ09tocszlunq7MPJC15ishJpGg8yEgwJBh4NaFMKb2mM/so+MpWbWYzdjQK3eICLpH3XY1sHd8dd0oBYXXHSUQUlD4F2A0mTlzK4IiXu4U9nTn7qPHdF3yKxpfFzwfGOj6aXObDzFJkliwfxSBF8LI5e5EQV8fmrxXA326gQq1c/bu+j2TP1xEwKlbCAHVm5Xn/MEAcnk4U6zC060tn8KeDJnbi9M7/XlvYMu/ZQtGrVbRtEtd6+tnP9wHz/2QcR3nAODu7YrWTkP+Et7E3k9Aa6chPTkDk9HM5nn7aP9pyz9cEN53chfafdoCQ7qBH0eu59qZWyBg+s6RzBuyksexyag1KsrUKkGHvANQa9RoNGrMJhk7B61VouDU9ovWIAgs9iNGvQk7B52la+0libufgEtuJ34cvoZ9q47h4eNG3mJeRNyIsgSBkkTa72rE7gRG8kXD8SBJHPj5BNP3jv1Dz0LhTULpGlNQUHgDGb56F34hkQgEvw77gNM376A3mkipkBvvVp50GtQiyzmSJFH+GTHDUpWzavq8iPDAKDLSDNg72tGsWx0Gze5BLg9nm3ZxgOZd69C866u32v8VOLo6WAuWl4zeQIW6pZh1YCzfdPqe2AfxpD5OAyzq2bev3qFK43J/eK6IoCgmdZ+PQW+0tNs76ngQHkPEzfsIWWCWBetnbMdkNCME1GhVkUoNSrNh5i5rIKR1sN0udPVwsuoVvSxLR61j24J9CDIzdMLixfblik9xcnVk1YRfKVe3JJV+V2f0IDwGSSWRkarnbtC97C+uoPCG898K+xQU/qUERj4k3WBEQiI8Jp76ZYpgp9WgVavoUq8iZrPMj+M2M6LD94QE3H3xBV+Sz7/vhXehPFRrWo6aLSvi4eOWJQh6EVdP3qRLiS8YUHcCCTGJf9ransWgN/Lz5K0sGb2e8/uvWo8LWfD94JWc+u0iNy+GERv12OJ2n8kNv9D/a16/vVcsrfICtHZaqjUvT/121Sldw5KhklRQsYHFIFWjU9NzTHs6DGxJs6510Og0ODjb4ej8VP8JCXqOfY9RbWbwjkdfBjeeSEaqHn26wbrdlx0H157EZDRjNlqCICRw88qFb9WilKhShMk7RtJtdPss2boarSpRp0018pXwYdjS/v/Xs1B4c5CR/pav1wUlEFJQeEM5HxLJvsu3MJllxrzXhDwujlQrlp96pQtT2NOdI9/058g3/Xm/TkX8Dl7jwMazBJ4P5bvBP/9pa6jevDyrr07n6zUD0epeLgAKPBfC2unbiQp9CMDKSVtJjEshKvQhRzf7/Wlre5Ztiw7w69w97FhyiMjgBzg4P90mTE5IRat7xpU+0+gVLF1V/w9v925krTUSQlC0bEHCrt3lw687UuutSggZjm/2o2TVYqy9MZvimd1yn0ztytLzU1h3ay49x7RHa6fBJbcTi05NxMXdiYCTtzAbzdy+fIftiw/SpeCndC34KXuWH8l2He/2b46kkkACnYOOPlO6sjJwNg7O9uxbdYx1034jNSkty3karYYxa4ewKuh7qres9H89CwWF1xVla0xB4Q3keGAYX/68Gwm4HB7FmPea0ryird+VvU6DfWZw4p7HFSEEWp0GD+9cWa4XHnSfaQNW4OTqwISVn+CWjSbNH+HRvXjWfreDwqXz0eHTFsRHJzK6/WyMehMbv9/LmuvfUblRGcJv3EPIglJVX75Q+1WRJEsyxNHZni1RP7Js3EaCL4XTb0pXfKsU5eimc9y8EErHwW+xYfYukAWHfzlLv8ldcMn9fO2inChWoRBt+jZl59LDCCG4cT6EzfP2goSNhcaNcyFW7SLLWiWrh1j1FhXY/nAJkiQhSRKGDCOSSkKYBZIkkRD9GEOGEZPRzK6lh2jdp6nNGs7u8ic5PoW5xyYQExlHUmwyVZtVQK1Rc2TDaRZ+sQqz0UxE4D3Grh2MECJLZig9JYOzOy9SrGJhimQqcSv8OxECzK9RR9ffgRIIKSi8YUTFJ7LiyAUMJjOyEIRGxz13vNlkpmSVwny9vB93g6Np0blWljErp24n8vZDVGoVQ96ZCQJGzOtJxTo5u9u/DFP7LOHmhVA0Og0u7k6Uq+1r1b8x6k0sHvMLo5b2o0bz8uTK40KBEj6vdP2MND2zBywjJjKOoQs/pkjZAtmOaz+wJRmpetJTMvhgbAfUajXFKxbm0pFArp26RenqxZm+c6RlXQYTe1efIC05HWc3R5sA5feYjCY0Wg2piWmsn7kTRxcHugxrbd0ePLntAg7O9tRtUxW1Vo3OTsuVjCBLUGqnsXbRlalZHLVGneM8z7bml65RnBm7R3Jq20WadK6Ns6sj+1YeBSFoO8C2Fiwq5AFTeszHkG5g19LDqDSWAEqlVjFq9SDSUjIQQiCbZRJiEulZ8nPiouIZsXwATbvWs17nqzbTCLl8B4All2aQr/irfZ8UFF5nlEBIQeENY/Cy7YQ+jENCoqBHLka2b5JlzJ2YBAIiHuCVCtP6LEOtVjFj8xA69Ms6FsC3YiGunbuNQW/i0T2Ljs2SCVv4ZlV/DvxylmLlCpCUkIpnPneqNiz90mtVqSSEsAQ9C0esZ9XV6TRoX40Tv11EpVJhZ69DkiSrMeqrcnDdKc7tuYwhw8j8L1Yz+8BX2Y7T2WnpNe49kuJS2LH4IFGhDzm47hQAq7/dQsP3auJdKA9g0QRafPZbgs7fpmxt3ywBij7dwPQ+S7h0+Dr6dAPtBjQnPSWDIxvPolKrcHSxp8PAllw8dI1ZA5ZhMpqp0qgsk7cO40F4DDf8bmM2mRn50yf47b9KoTL5adIxa3D6PCrULUWFZ3zDfr33I4YMI85uth1ulqBTZP7djPmJeoHRzIX9Vxj8w8dE3ooiLiqBktWL8fOkLZiMZtZN+c0mELp78z76ND32TnZE33lkDYSS4pIxZBjJkz/3K61f4fVG6RpTUFB4rTHJsqX4VquiSYXi5Ha2zVjEJafSdc46ZCHI4/cIkelrtX/DWXyzUWwG+GBEa7wLefDDlxusx3wrFuKr7guJCosBAWqtGpVK4utl/ajWuMxLrfWzWR8wqNFEZLNACJm7N+8zcnFfSlYpSmpiGu8Pfstm/P61p9i1/BjvfNyIt3o2yPaad27cY/IHC3B0caDtp82RJAk7Bx15i3q9cD3ffjDf4mpveiouqdaocXSxt9kScvVwzmKX8YSjm85x8WCANZuz86fDT1v1BciZwpXJCZaWd7PRbC1kzlvUi58uTrVeq/QzFiL/Dzp7HTr7p630cfcT+G3BPopXKsznC/twbONZrh6/YVmiEDg4O9Du01ZodRo+ndULgLtBUaydvBWdg476HWpYx66dvAUXdyc0WjVVm1cgJTGNnydt4sa5EC4dDEClVjFsaX9a9mr0p9yLgsLfjRIIKSi8AZjMMppM24p5H7dl4d4zHL0Wyi+nrnLgSgj7v+5j/RB/lJSKWZbRm8zEFnTAMzwRYZZxdMl5i0eSJKo3KYtaq8ZslrF31PHZ9C58WHMCcmYtilFvQmev5eG9+Jda882LYYxqOytzAtCnG5nedylLzk6k46CWWcanJKYxf9gaTEYzC4ZHUq9NFVzcs9bmrJq4mcjgB6jUKqKCoxm/YQhx9xNo0uXF7fnJCanWIEitVaHWqOk/vTsflB6OnYOO2QfGWk1TcyLk8h0bYchqzSrQf1o3HF3sccrlSNv+zQFo2KEGIZfvcPfWffpP7/bCtf0ZmIwmxraZwZWjgUiSpVOtSLmC+BT1ZOH5KaTEp1Kmtm8WFWyAQmXys/rW94T4hzFv0Ar2LDtC32nd2DhzO4Z0Izp7La37NGNM66kYDSZk2fIcZbPMobUnlEBI4Y1FCYQUFF5zZm4/xprjl6lY2IeVgzpT1Cs3n7aqw5FroRhNZh4lpSALgTozECqVzxMfdxfuPnqM7GGxgxACfvvpCJ0+bZajQGBuL1embBiE/7EgmnSojkajZvzyvqyZtYcCxb0J8g/Du6AHzTrWeKl1+x8JxJBh4FnB5sS4FIIuhFGzZcUs43V22syshkUt+dkMx7OUrFqUS0cDQViKkas3r5DjGgLPBnP7SgRNOtfB1cOZ0SsGsGzcRrwKeVC8YmGqNSvPgqFr0Kcb0KcbOLjuFB9PzNmYVJZl9qw8Zn3t4GxP/0yLjoEzP7AZq9ao+WRqV/5OQq9GEORnsU4RwiK+GHwpjLCACIpVKET3MR2sY/XpBlZ/s4n01Aw+/rYLLu7OuHvl4sqxG8RGxSOEYHa/pSCe1nRdOnINSSUhm2UkSUJkbrt1/OKdv/U+Ff46BK+X/cXfgRIIKSi85qw/eQWAkAex3Lr/iPKFfDh8LQSBQAKalC+OhIQsC1QqS2eRnUaDAFQaFWqtGiELNBo1WjsNK6ZuZ8eKE9RuWYFRCz+06RAqX7O4rchilSJMXjfwD627YfvqbJi9C5PhqcWGRqumTM3st4N09lrmHf6K8wcCqNmiQo6qyd1GtsW3alEcne2z9dgyZBiIDH6AEDCm7UxkWebg+lMsODmRImULMHnrcOvY5PgUIm4+NSPdu+o4733WCjdP12znVqlUFCqVj7u3LIKI+nQ9Z3b603no6xEIFPDNi4OTHUKWcXBxwDO/O3duRKHWqLLU8Wydt4ftiw4gZBmz0cywJZ8AUKlRWbYt3G8VnZRUEkIIdPZailcszPtD2xByKZx3B7QgNSmdqs3KkytP9s9LQeFNQAmEFBReU57UrNQrXQS/kEhcHOwp4unO5Ut3uBX2EJBQqyQkoM7YBagkFVPbtyC/uytfd2rONxsPUMQrN5980J59a05Rv3VlkCQ2LToEAo5v96fxe9Wo/ZyMyv9DwZJ5yV/cm4ig+wDkLeLJjB0jcHFzwmgwYTZZtuBszvH1oaDv044kWZaJiYzDM39ua9GyJEnUaGGbUdr/8wlWf7uFvEW9uBcSTVpKBu5elg9no95E3IMEm/FXjt1gxTebAMGjZ7b6jAYTV08E0eg5xctzD33FsnEbObDuFGqN+v9Snv6zccrlyMobc4gMvk9sVDzTey0EIXird2Na9GxoM1aj0yBJgCTZaEDVal2FWQfH8VW77zDpTVRqXJZceVwoXCY/ddvVoF77mn/zXSn83bxOYod/B0ogpKDwmpGSksGQIWuIvBvH4MEt6VutCjXcvOjwVhUO7b/OT0uPYlJB2fp58cmbC5NZJt1gQpdoZuq439BqVHzSvwm/jfoQgDnD13Ny1xWO77zC9zuHodNpLZYPQHjg/b8sEAJwcLJHUkno7LQMmNYVr4IeRNy8z7A2szDojYxe/DH13qlic86P435lz88nqfNWJRIiH3HD7zYFfX1YcGpijqrV84euzgx4HluPxUbF83bvxgSdv02TrnUx6I1Wd/spHy4kKS4Ftda2I0xnr6V8vVI8D0cXB4bM603nYW2wd9Lh9g9kQ45tPsfaqb9Rt001PprYySar55TLkdI1SjBv1XKLqjUWO43fawN1GPwWZpOZtKR0StUoTkxkHF4FPQAoW6cka2//QExELIXLFci2pkhB4d+CEggpKLxmXLp0h+gHFquHefP2o1ar0GhU3Al8iIO9Fr3eiCRJ1LTPw+cftuLg1WBO37yDfZoJIcvo9TIbN/rx46LDNG5SlltnQ8hIM2DnoCP8RhRfzO7OrM/X4OhsT6N2Vf/QGg0ZRnavOYWDsz0tu9TK8YPyq5UD2DB7N4VL56VmK0sW5/SeK6Sn6RGyYPuyYzaBUEaqnp3LjyOE4Ny+AAyPkxGyzL3b0cRExpGvmLfN9YUQ3LwQirObI0lxKVaNIoAGHWrSY3Q7+lQdzdopv3F+zxVm7hsDQG7vXKQnZyCpJKo2LcuDsBj6fNuZ6s0roLO39fbKCZ/CeV7pmf1ZCCGY2W8pJoOJbXcP0LRLXYqUy6qf1HZAC079dh7ZLNPx89aApS4oPvoxPkU80Wg1dB3ZjtGtp7Ft4X4kSWJZwEw8C1iCISdXR4pWyL7LUOHfiwClRkhBQeGfpVSpvDZ+V2azjNksE3UvngnfdCA4OBqVSqJJkzKsW3uaAgU92DGqN7GPkpkxaTvpGUYexSQhBBw7eoMvPm/F8knbKFDci1otyuPobE+DNlVQqaUX/qZ//Xwokz9ZgYubI9M2DMLDJxd+hwLZvvI418+FolKrkGVB6x51sz3fs0BuhsztaXOsZvPybJy3H5PRRMW6tvpBdo46ipTJx4M7j3Bxc6JYnWKc23uFklWL4V3Y02Zs1O1oPm8yieSEVCSVhKOzPTVaVcRkMDPgu+545vfg2ulbyGaZjFQ9wZfCrefO2DWaI5vOUqpaMauGUVToQ3pXGEFGqp6Jm4ZS4QWZoX8KSZLwzJ+b+OjHSCqJXDmogBetUIhN95dYXyfFJdO30khSE9No/kF9vljUl3O7LhF4JtiqEXQv+IE1EFJQ+K+gBEIKCq8Z3t65mDz5fb76ahOmZzIcw0e0Jn/+3Cxb3peUlAw6d5qPPrONu2atYkyZ0pl16wdiNsv07bOMmJgkXFQSDyNi+X7nMLzyuZMQm8zAFjNISUpn/LK+VKxT4rlrWTNrD4lxKSQ/TuPQ5vN45nNn/phfMRqMyGaBRpJIfpz6SveXt4gnAoEsCzYvOkSnz1pi56DDZDSTEJPInF0jCL1+j6Jl8+PobE9qUjqOLvZZtnaObfYjJdMpXsgCg97E6BWf2owrW6sElRuV4drpYD6a8L71uJuXK+8NamVzvYPrThEfnYgQgl9m7XxtA6Ezu/yRZUGJKkUYMq837tlYpjwh8tZ9Dvx8nOCLYWjsLArYRr2RE5v9KFenFPOHrMBkNKOz11KxYRnK1395sUyFfy+KoKKCwj/Apet3Cb0bS6uGZXF1tv+nl/OPU71GMZb+1IfFPx4mNDSGj/s0olSpp/o2dyNirUEQwHm/MNatPU3PXvVRq1X8uPgj/M/d5rt+y/k14C5blhzBZDCTr0geHt1PQJYF67/fR8U6n2U7vyzLzPpiHTcvR6DWWPR2SlctwvXzYZiMZoQsyO3tSo0mZWn3UcNsr5ETsll+InaMbJYRsuD49ot8N3AVQpbROegwGUwM/q4brbrXw8nVgbTkdLYu2I9rbmfa9GuKSqWiSpNy/DJzJwa9EWc3R4Yu+tgaBEWFPmT6xz/i4GTP2NUDc+wCe5ZKDUqzZf5eJCRqt67ywvH/FHMGLCM5IZXER0kkPEzkp9HruX7qJr0ndabDZ08FKg+vP8Xs/ksw6Z927SFZMkrtBrbkQdhDTJlF6yWrFWPCpmFZjHNTE9MY//4cHkbEMmrFACoogZLCvxAlEFL4x7kZGs2IqVuRheDo2Vss+vbvEZ973SlcOA/TpnfJ9r01a05bTESF7bGIiFhGjmqDvb2WwoU8QGTqyWS2sEdHxqHWqtFKEjWa5dztdHLnZY7v8LeIKaokFu0ZQSFfH4qXzc+ty3dIS85gxPcfkPcP1Mm4uDsxZmkfDv5yjta96mPvZMfC0b9YFZmfmJGun7OXVt0tNg+LvlzL0V/PoVar0NppeLt3Y8rWKkGBkj6EXYsk5XEa03ovZs5BD0pUKsy8ISsJ9g9HrVHx26IDNtmgnCheqTDzj30DEjl6lv1TmE1mjm/2wyzLGDPb2jPS9DwIf8i1k0FkpOpZMe4Xm0Do3O5LtkEQlmLwgbN70bpvMxJjk9g0Zxdmk0zQuRCGN53ED6cmEXAyiMcPE6nXvgbHNp0j+GIYhgwjP45Yy6Jzk//W+1b4BxCKjpCCwt9O/ONUi3KxwURMXMo/vZzXHrNZJiIiDiGeeHkJi2O0WebMmRCOHr1Bq1YVKVDMiwETO3Bqz1Wi78YRfS8eYZYRQtB/Ukfe7p59XY/RYGL2sPXIZkuUVaiEN4UyW9pd3J349ucBr7zmC4cDWTNjJ2VrFqdG83LcD39ELg9nCpfKS+j1yCzdYGqNCu9CHpjNMmq1ivSUDGSzjEolkZH61LXdKZcjSIAAk8HE0V/Psm76dq6fCbaOiY9+zM0Loc+1szi+xY+Z/Zai1qiZdWDsK9/fX0nU7WhWTdrC2d3+GDOeZgE1dmqObTyLIcOi+lympu02Z8cvWuO3+zIZaXq0dhpK1yhOqRolaNW7MQDO7s7WoArg1sVQ/PZcYnL3HwCJq8dvUKFBGQSW74chw0ByQmqOgpwKCm8qSiD0FyKEYMyxgxyPCOfL2vV5r/TrozfyOlGrclHaNC1PUGg0Q3pnbwr6Z3Ar4RFOWh0FnHOuqXgT8DsXyuPMuhxnZ3tq1izGmTMhGI2WDzUfHzfr2Ld71KNgCR+++uDHzCDIkh0KvBCWYyAky8LmA3LAtx1faX1CCH76Zgsx9+L5dEpnPHzcmNZ/GekpekIC7rJ79QnLlhhw+9pdIkOi0acbrefn8nAmNSmdW5fusHPFMdr3a8pns3uhs9PimtuFd/o+/Tcy7ufPmD90NWd2+aPWqLl2Opiwa3et2SWzWebQulMc3+zHnEPjKFGpcLZr3rPyGEaDCaPRxNndl/CtXOSV7vmv4uaFUIa3nILJaLJuJz5Bo1ET5BeCbJaRVRIRQVFcPX4DtUbFriWHadS5NoXK5if4YhhCFtRpW533n1GAVqtVDJzTi6Wj1mM2mek2uj33QqKRzTJGvYmDa0+yb/VxHF0dSE3M4H5YDMu/3sgXCz7+m5+Cwt+JQNERUvgT2R92m19uXAPgyyP7lUAoB9RqFUP7NPtL55h28Sgrb15EJUn83LwLNb0L/qXz/ZXk9rD8Rq7Vqila1JMxY9ui1xs5eiQIn7y5qFTJtuX59N6rVj0ZSSWh0app/r6tKN6Ni+Gkp2RQtVFpdHYanFzsSU3OQKNV450vN/ExSeT2ejm9nEVjN7Jr5QkAwoOiWH5mIu6erhgy4jCbZExGy3aNKtOqwfiM8rSkkqhYtyRn9lxBRiblcTp3btxjTNvvSHiYhFqjouZbFanWzKJ95OblytfrBpMUl8L8YT9z6rfzFiFKleUHuZAFcubrmLuxOQZCbfo25fqZYLRaNfXaVn+p+/w7OLPL36rwjASOzvakJWegUqvoMLAVW+buRq1RYzbJJDxMZOmoddwNikKfbuDUtvN0+bItd65HIqlU2Qo/thvYinYDnxaNpyamcfHAVWLuxvE/9s47OopyjcPPzJZseiCkQUILndBD7713pImACoiiIgoqioqi0gQVFUGUjtKl994JCSG0QIAkhARIQnrbMuX+sSEhJkC8FxS9+5yTczY73zfzzeyenXfe9ou7cRdFUki3yOjs9ID60G7fNmz8k7EZQk+Rm+n5zd1E4f/Lwn6WOH47mp8un0bFGkUJir/1jzOEcnLMhIbepHJlL6pVK82X0wcSHZVI6zbV2bo1FHd3J7p0LazfBdC2byC7fjuJxSyh02upUL001erlGwTHd4Yxe/wKQOC5V9vz/IQufLPtHQ5sPIN/gB8T+nxNVnoO/V9px8j3ejx2rbeu3c17HR+TTOq9DGZvfpuDG4I4vDmEmKt3qVynLGWr+jB4fBdGN/8UU4413NXrpdYMHt8VBDA42NHv1fb8OHElyXfTAKt21pKpG/IMofu4uDtRtooPOjsdCPDyZ89xamcY4aev4+BiT73WNWjUpc5D19yyT0MatA9Ao9U8Uzf7aoEPhPNUWHZ5LmvnbsPdpwS9X+1IndY1CNoZypYf96DICnci45Hl/ErDHmM60H5oCxxc7IuVMO7o6sD07ZNRVZWP+swmaOc5GnauQ0pCOrHX7uD7QNdvG/9ebDlCNp4YfatUZ1FoMEk52XzSoi1GyUJ8VhZlXVwLlQLbeHrMPnc4L6qgFUV6V6zxt67nv2HChFXciklCoxFZsXIsdeuWo27dcsycsY1Dh8IRRYEPPuxF8+aFtbeq1CnLmvPTGVr/Q7LSjdy4FEfQ/su06mmtjIoKj8NillFkhWvnYwAoXb4UWelGFny8gexMI5JFZu/a08UyhMbNGMxrbb9AssjIsszct1bQrGsd+oyxCr7On7yWa+djqNOiKh6lS/DCpO788vkmvMuWYtikHji5OvDBT6Py9lenVTUOrD2Rl/AddTGGM3vPc2jdKVr2aZhX4TX0/d6U9vdEp9fRsm9Deo8trHD/KByc7f/U+L8C3yoFDY+dSw7Sun9jKterwI7FB/lp8m9UrOXH+B9e5ttxi8lMzcbgYEfLfo1o1LUeJbxcH1le/zAEQeDTjRORzBaiLsbybpcvMWWb+em9X+k5psOTOj0bNp4JbIbQU8TT0YkzL45FVlWyLGZar/yFFKORbv6V+abjsyHS+P/AzYx8z9ybtZuTYszhXk42dUr5PFOeugfDW4cOhbNn9wU6dgpgwoSuREUmIEkKdnY64uPTcHV1YPu2UA4duozZLKPXa7uRcSwAACAASURBVElMzHjoviPO3SQnywSAxWShYo3Sedu6DWvBmYPhZKXn4Ovvye8/H6Ji9TLsWXMKY7YZQbCGL3uMaPHYc7gaGs03b6/Eu2wpEm8nI1lkQg+Hc/7YVbLSs0lPzkIySyiKQmyu56j/ax3pNaotWp2myAeEDkNb4FvFhwntpqEo1v5Dnw2Zh9lo4cjGIJacn0Wp0iXRaETaD7ZWmd29mci73WaQnWHk0zXjixRn/Sfwx07ayz//nVXTN/P1gY9Z9MFqcjKNXDoZgVYjoigKensdbp4uHN1wmkNrT7Jm1mbSkzIZOrkPvV4tvmG4e9lhvh67iFJlSjBt87uIoojB0c7mEfo/wNZZ2sYTRxAEtIJA+L1EMsxmzLLMrsjrf/ey/m9IMebQq0INll0JAeDXiFDmnDuKAHQpW4Uf2/T7exf4ADNmbOP0qeuoqookKSiKys4d5xk5shWvvtaB5cuO0rBRRSpV8kaWFb75ZjeKoiII0KBBebp0KTo0BtaqH61Og1mR8ClfCl///BtsSU8Xvt36Dsu/2s6GBQcAa5L1fcVxP39PZq59A0eXx3tM5k36lejw24gakbb9GxIXGU9E6E0AUhIyGPBaR66G3sSUY2LEB73z5v2xf80fKV/dF/V+r4DcXjj3Kcp42rPiKIm3klAUlVUzt/DlpomPXfuziFanpfWARhxeHwSCtTJO62jH3egEnNwcyErPBkXl3MFLiBoRr7Kl8K1ahrvRiQBEX4oFYP7by+k5tmOxPdG/zdyEIiuk3csgIvgGC4K/5NrZaBp0CHhq52rDxt+FzRD6i6jj6Y2vswvXkpN4IaDu372c/wsSsjPpsGURJllCIwjIqsqdbGt5vgocuR39t67vPgcPhnPieASRN+IxmST0eg3OzgZMJgk3NwdcXOxp374Gu3ed50xQJGdDomgQWAH3Us6kp+Wg0Qi8P7knhkdoZFVvUIHxs4Zw5Ww0/UYXrMzbt+EMa3/Yi4OTIU/aQ6MV+WrjW1w7H0OLrnWKZQSB1XME1kaJwQcu5Za6C9RrVY1B47vg7ObAjPXj//Q10tvr8CrnQWpiOgYHOz5cOY69K47Rok8g7j4lCo0PaF4VrZ0OAQjs+PREZf8KJv70Cie3h2LOsYAADdoH0LhrXW6ci2LlF78XaE4Ze+0ut67eKTBf1IqU8ff6U+H41gOasOGbHYgakYBmVfEu54H3HyRObNj4t2AzhP4i7HU6dg8egUmWMGiLJ+po43/jckoCkqJgkmUEwEGrw1GrI9FolWV4o3bR5eN/JbdvpzBr5jbMZgmDQUulSl74+ZXk9Tc6ERoajZubA6IocOjQFaKj72E2SyxYeICfG47ixx9HEhR0g1q1/HAqRjfudn0Dade3YEWULMl8886vyLKCTq+hcYeaOLrYM3R8Zxxd7KkU8OcaC3Z9oQVRl9egKiqmbDOmHDN6g45WfQKxd7Tj1O7zePmVpGzV0mSlZeNS0qlY+xVFkfnHP+PCiQiqBVbEzcOF2s0f3uW4ftuaLDg5jZws00Mrxf4xqCpqbv6zTq9l/HcvkZNpwqOsB75VfLgXl0y9tgGc3BaCqqiFpiuSgptnwTyhSyeuEnY4nLaDmuKTG347vukMwfvO02tsJ178bBAdh7XCpZRzsT8jG/8ebKExG08NQRAKGEE/hgSx6lIY/arW4O3Gzf/n/auqSpbFgpP+2al6KYqjZ66zeO1xvDxcGdS9AfVqPp0KrsZeflR2LcWllHgm1G5BE59y1Hb3RlIUDBptsZ6Qk4zZ6EQRF/3Tkf3QPCB6qtVqWbDwRQRBIDIyga9m7wCgW/c6tM/tAm0w6PLK40uUcKRz54eHw4qDqBFxKmFVbreYZcpV8WbYO93+62T+zkObIUsyKYkZePmV5Ju3V2E2WfjxwzWs+WYniXdSkSUFWbLKdHQY1IRxXw7C4Gj32H07ujrQpGvxvallKv078ln0Bj3TNrzNtl8O0HFoC1xLOfNSnUncu52KqBFYdG427j5uDK3wOunJmSiSgr2TAY1OJDPFavRfOHqFm+GxlKvuS2JsEu93nY7FbGHLj3tYHTOf2Ig7TB/+PWajheObzrA2dgGeZd35qM9XXDp9nYadajPl1zfzPH42bPybsBlCfxMrL55j5qmjAHwXfIr+1WpSztXtMbPySczO4ssjh3C2s+ODlq3RCCID16/mfHw8zfz8GFUvkFblyj9z1WmqqvLx3K2YLTIRUYmcDo3i+08HU7OKz+Mn/0nstTo2dx9R6H2dqCnW/M2Rl5h0YgcaQWB15+epU+rJr9HL25VPpvbl+LEIbtyIp1fPubz6ansQrB2jTSaJQwfDOXY0ArNZwte3BK+80u6/Pp4xx4yqqNjnGh6CIFC6XCnS7llDhmvn76dO86qPFWN9GKIo0mNkawB2rTyW56HITjeSnW4sNH7fmlMc3BDE+DnD6DioCYqicPlMJO5erpTwcCmWgfT/QL22NanX1moMR12+xe3IhLxrO7L6BCrWKkuzXoFYTBZC9l4gJSENre6B73lu922AnEwjqqqiyCpZ6dnW14oCub8V95tRfjroG84dDgfg1PZQrgRd/8cmndsoPio2iQ0bfxGbrobnvVaxGjZ/xhD6/MhBdlyLQBQEPB0dcdLbEX4vERWV47diCIqL5e0mzXklsNHjd1YMpv+0h13HLtO1ZQ3eH/3nypIfRBAE3FwcSEjKyPs/ISmdmjx5I+N/Zd2NC5gVa1htf+y1p2IIATRpUglRFDhw4DJGo4VFiw6ybPlYNm44w+3bKaRnGPOaECYkZHD3bhply7oX2k94eByzZm7HIsnIksKAAQ3p/0DjxPCz0Uwe9D2KovLxz6MIbFsdAL9KXlw5G23VLVOtGlbFJeTgZU7sDKPrsOZUqp3fyHH5zK2s/mZXgbEarYjBwQ6dXkPqvXwpFVlS+OnjdbTu04CfPl7P3rWnMBstCILAsIndGfp2t2Kv59/O2rnbWP7572g0IqJexJRlQlYUrp2N4trZKDQ6TZ6QrSiKvDhtIPtXHafd0OaUy9VPK1utDC9/OYStC/diZ29H8J7zNOxchwkLRnFmVxj937Je77DDV6zNKXMNJJ8Knn/beduw8TSx+Tn/JkbXzc/VcNTpqFLyz4lXxqVnIKsqFkVh5YUwvjpxDIuc36HXoigsPhfyRNaanJrF9iOXMFtkth2+REp69v+0v4VfDqVb25poRAGTWeK3LcFIDzSBe1YYUa0BOlGDg1ZPt3JPV3W7fHkPRFHAYNAREOCHi4s9P/8yinnfDUcj5j+deXo6c+rkdW7FJBXax7xv9xATk8Sd26kkJKQzf/5+OnWcwTvv/IokyRzeHILJaMFiltj564m8eeO+GEjNRv6IGhFJlvn8lcXMfH0Zr3aYwfFdYQ9dc9LdVD57cSE7lh/l3X5fW70KuexYfjT3JgouJR3pMqw5L7zbk98uzmRF6HT0f0jszskycfj3YM4du2pNClatXaE3/3zwoce/FXGHK2du5FeT/YtJvpvKoXWnWPvNDiwmC5JFpmqDCpB7ze87fmWLNeToW8WHARO6M+S9Pvx8fjZD3++DqqpsW7Sf2S//iEajIT76HjfORTN1wBxkSab9kBa8v2wcletVYNMPu5FMZlBVRI3IrF2TKeld/Ac1G/9sFIS/5O9ZweYR+pvo7F+ZsJdf41z8XQI8vXCx+3MhgAcjXveys1FUFXutlqEBtfnl3FkA0k3Ff7K/j6qqnAqLRlFUqpT3YNG6E1gkmVIlHEnPMOLu5oiz45/Pl1FVlY27zhEXn8qwPo1ITMpEznXtX42M52ZsEv7PWFVKR7/KnB/8FhpBRK8pXjituFxPTeLlA+swKzIL2/SjtqcPS5aOIS4uhZo1y+SNq1TJi7ff6ca5czdp1aoan0/bxC+LD7FixTHWrX+zQKWYp6cLERHW3jxarYgkKciyypXw21y/Fk/NhhXZsfI4INB5cBPA6v25ePoG4SFReSERi0ni6LZzyLLC7DdX0Dyi6I7MiqLmGSH3BVrv02lIUzYuPICLmyPzD36IWynnAtsnfD2MJV9sRlFVUhPT0Wg0lCpTgpc/6stXry/DlGNG1Ii06dcQgLVfb2f9tztp2bchr88dzvmjV/io/1wQYMikXgyZ1PN/+DSebSxmidEN3seYZcrzDCLA3egEwFoV5lbKheS7+f2y7kQlsG3RfoZ/MiDPoxOy9zwLJq7AnGNm36pj1tuQYM1BEsSCN6Uzu8NQZAVBFGjYuTantofiVc4DT7/CnkgbNv7p2AyhvxFXgz2ty1X4r+a+2bgpL23eiKzmaikBbctXpHX5CiwJC0VRVfxLlMQoWYpdpRaflM7EWb8TFZuERhSRZCVv3x2aVaVfx7pUKe+JViNiMkuIooBOazUQ0jONbD10gfKl3Wlev2KhfR8+fY35Kw9jschERMVjkfK9Bzqtho27zyFLMjWrlqFbm5p5SZlZOWZ+XHkYQRAY+3wrHP9i+QP7p1DhZ5Qs9N6xjCzJKisxK/QwKzsOplQpZ0r9wWAA6NChJh061CQz04jJZEGSFFAlTCZLAUOobDl3OGZ97etXEmcne65du4udnZZ7MfeY8/aviBqRwLbVadS+JqYcM2PaTSc9yRqm0tvpMJusmmSyoqCz01LK5+FeAI/SJXhv/otsXXyYxNspLJiyjrGfP4coirw0pS99X2mPo4s9ervC17BN34a06dsQY7aZAxuC8PIrSb2WVq/bhutzMWabSUvKQJYVUhLTWfzJOlRFZc+Ko/Qb15krZ24gWSRkSeHsgYv/akMo5kocmakFvbCCIND5hdasnrUZjVaT97mBVa9NtshkpWWjKCoaTX7uj5rrQVIVFXtXB/qM68TNS3EM8H6FAW93Z+j7fQAY9mFfrp65gVanIfTAJYJ2hXH2wEV+PP3FX3TWNv42VFvVmI1nHKNkIdVopGXZ8igPhAQ0osicTl1ZdSEMjSCgqCpXku7x3LrVbBr0fIHqpIcxZ8kBrsfcA0BW8sNsCODsaKBuNWuOQdD5aCZ9tQmNKDL/40H4ebvx/tzNXIi4jUYj0r9jXaLikkhNzybHZCGgcmkCa/hhtsgoikropVhro0mNSBlvN27GJbNpjzUEs+PwZZJTMxnRvykAi9ccZ+t+q3CtKAq8MbwNWu2T9c48KTItJuIy06nsVuqRHasTcrIwyfnq7nWLmXvk5GTgrbe6sHlzCD171cfV1aHA9kaN/Fm//gyoKh071qJ69dLcu53CdxNWMXPsElSs+Tin9lzkauhNHJwNpN3LwGyyruXdecNZMn0Ld28lo9VqaNGtDmM+7vvINTXvXo8fJq8hJSGd5PiTNO1aJ8+gKVEMbSuDg55uLxTuWG1w0LN+/knWfrcHrU6Dh6876UkZ6PRaSni50n5IM/asOkZ6UibDpzw7TTGfBjo7HaJGzPPYgdXD2mpAE7q82AZ7JwPbfz7Akimr8Sxbim6j2nFyawgDJ/YsUOXVsEtdRkx9jo3f7iAzNRuf8h6U9HJj/dztmI0Wln2yjoHv9ECr01K9cWXW31nIuUOX+KT/16iKijlXD86GjX8bNkPoH0RCViZdVy0n02xiSM2CZdNTW7XDTquld9Xq/HYxjBspKSiqyqXEBFov/Zkdzw/Hxe7RIS03Z3t0GhFJUXB3cyIjy4gkyXRoVhXPkk7M+mUfL/Vrwsxf9mK2yIDM18sPcOnaHRTV+uMsyQq/bg8usN/ouGSOBF3LddFbjTdVVZEVuJuYXmCsIivE38uXitDrtYiCgKyobNgZyt6jV1gy+wW8ShVPCf2vIsWYQ/vNi8iWzLTz9Wd+64cbEH5OrvSuUIPtN6/Q0a8S79RtVezjdO1Wh67dig5V1arlx8qVrxIdlcjHH28AoIKPG5Ycs9UzoLPeFGVJYd7kNczbPpHazSoTcugKPYa3oFXPelwOjmTr0qNIFpmwE9fycnniohIIPhhOw7Y1KF2hYAjT07ckWek5KIqK+3+ha/UwDm0MxmKSEAWBAe/1xMFex/Ylh3iv+0ze/fkV2gxozO7lRzi66QwBzao8cxWST4qyVUvz2pxh7F1xlKshUdY3VXAvXYKEm/dYPWsLjbrUZUvqEnR2OgRBYPC7vQvtRxAEBr7Tk55jO9LPczQ3wm6ycNJKDE4GRI2Ih587mj88ZNRpXYNhU/pyNTiSYR8+2ii28e/AJrFh45nl6u1Edl6JwCRZsCgKO65H4KTXY5JkDDotA2paW98npmTyvG9tjjjd5NCtaABSTUaCb9+mXYXCIav73EpPo0YrP0r7uOHp5kTlch6s3HaG+tV8cXI08PmCXZgtMjduJXI7Id94uRmXkpfr8yjSs4zYa7WoiprnyVJVFZNZKjCuTg1fRg3K76k0ckBT7PRa1m4PIS3DiNFk4XRoNL06Prx/zqJLQcw8ewhBgGmNOzG4cl3Sc4xEJ6VS3ccD3RPO9wEIT03AKFswyhKH4iIfOVYQBOa06MGcFo8XMP2zJCSk8dFH6zHlenliw+PyukVXr1+ea2G3QBAoW9kbjUZk2vKxBSqDkhPS88ZnZxiJvBxH5Vp+vNl9DhaThRVzdvDr2S/Q22lRVZWlX25GFAV6jWpDi271KPsE2yAMfKMT3078FUdXB1r2asDmBXuJCIlElhUmdf2SlHjr93DnkkN0G9mG8jX/XPPHfxJ+lX1o1KVuniEkCAIGRz2TOk4jIyWL3csO83PYbLzL5xupZpOFayGRlK/ph+MD3sNLJyKQc3ONZFlh3vHPiIu4Q0CLaoWMSUEQeG6CTRfRxr8bmyH0D+DM9VheW/Q7AHoXEZOLwMi69elRpSrHYm7SulwF9BoNKZk5DP9uDRZZwdnejhHt6vLrxfM46vTU8374DSopJ5uu65ahqCp+Lq7sbjWSXq8tJDElk8NB1xk1ILcDswoqKir5bUlaNvVn296L1s2CmterRPhDRYCoEXnnjU7MmbfHml+kFUisCUY3KHlBxT4ZVAGqBHhT0s0xb56dXsvIAU3R67Qs/O0oOp2GwAfKtO+TZTLz/u+7SczMIsQuBklVQIGpQfvo7ledLt8tJcdsobavD8tGDvivP4uHUb9UaSq6uHMp+S5jajR+4vsvLuvWBuUZQVqtSO0AP0LvpqGqUKF6GV58vxfxt5Jo3i2/MWFmWg4ZKVmUruDB8R35VWKu7k7YGfScP3UdU44ZWVJQVTAbzejttJw7dpUtvxzCmG3m7s17HFh9EllW+GLtePxr/e9NMjsNaUa7AY3RaEUEQaBsVR+0ei0aVSX1AYFZQRD+K4X1fwqXTkbwUZ/ZKLKCd9mSOJVw4pVZz/Pr9E1kpecAuZIme8LoNqodYm4Y/J22U7l5ORYHZ3uWXPkG+9wih+Q7KejstFhMEj7+npTx96aM/6ObT2amZrFg0goEQWDk1IEE7TpHaX8v6rSu8XRP3sbfgs0jZOOZ40pcArKiYpFl6jh5s+CV/nndo4fWyk9mzTKZkRVreCojx8SHLdsyNrAx24LC6TptMU0q+TFnZI9C+UJ3sjKQVYUcSeJGajLd1i0j3ZifnNm4Vjk0osCtu6kM6dGA/u8uRpRUVI1Aty61uC6lcOnibcylRJQUGckeypd1IyUxm7suJkokaXilbWPeDNmJm5OKXRpk+woYS6ggQFolsMuNpi2KDuX57EaUciiY/zK0d0O6tqmBvUGPITf5VlVVJu7fxc7IazQo6UNYxB3Msoy+vBaLYAYVfFQXopNSyDFbyLFIhNyMy9tnpsnM0WtR1PDxopz7/1YabNDq2NZjJIqqPjI/KCvbxNlLt6jm743HU5AuaNasMidPWkV9p07tS0CNMvz02e8oisrwid1wcnWgRmB+gn5sZAJvdvsKWZIZOK4DHZ5rxL51Qbh7u+Hi5siE3nPR6rQEtqlO4u1Ueo5siVOud8G1pBOKoqLVaZAtEmm5Ic313+/mvYWjntAZqXw+7HsizkYybs5wXp87nO8nLENQrRVrPhW9+Gz9BFyLSDL/t3AvNhkBAYtJ4s6NBHT6ZHYvPcyR9afyKrtUWeanSSu4G5XAqOlDkWWFq8E38toQxEcn4le1NJdORhDQoirNezck9todJiwYXaw1LP9sPQd+PQ7A+SPhJN1JRQCm73ifgEdIndiw8U/AZgj9A+gZWJ0doVdJTMvknV6tHiqh4evuylvdm7Pj7FVebt8QrUbEy8mJH3aewCIrnIi4yeVbCdQqV/Dpr6a7J30qV+dgTBQlDfZcTkpEHyDQ0OjBi20bUbm8J5XL5zdTe39SZ34+HES/RgFMPLKLGDUVSw0FvUaDxRMMWi3xOhPJHiZUINsPDqTdQgaSaoFdCpT0ckCUrWX/sgMk1QFFDzpnkWspSYUMIYASro4F/o9JT2Pb9auYZJlj8TG4ijoMopayRlfC0xIRzQLly7lTzduDun6lORMdy5iWDfPmj1i6jsjEZARBYOcbI/Fy+XOGSWaWifW7QvHxcKFTy+oIgvBII0hVVUZ/8CsJSRloNSLrfxiN0xPunNyhYwDVqpdGoxHx8XHjwqnrnDlwGTcPZy4HR7F9+TGcSzjQtm9DGrSuxoVT11FkBbNJ4tDmsyw69CEvvt+T4Y2nkng7BQBZMpOTZeKH3e8WOFbFmr58uvI1rp+PwdnVgR/e+xUBqN/2yXkJgvddIHjveYxZJj4d9A1+1cpYw6uKil8VH34OnVnkvKy0bBJuJVGuRpk8D8k/leZ9AgneG8aB345jMUlYzBIRwTeQpfwKMEVQMWabiDwfDVjFbwdO7MXGb3dQv0MtylYvw5fPzyNoZyiCILDg7EwuHAnn6IZTePi64/aIxHaLWeLMnvNIFhmtTkNOhhFzjhk7Bz1rvtrK0Y1BjJj6HA7OxRPmtfFsY+ssbeOZxM3Rnt/eGlKssS+0bsALrRsUeK+GnxfXbt9DqxHxK+VKeo6Re+lZVPAsiSAICILA9NadAZgbdJyotFRwURnUqxEdKhV+2usXEEC/AGtO0jfnT2HJVYQ054qb/tZrIAM2rb4fJUMFXgiow+m4WBAFTO5g56Dl2ybdORV3i/re3hy4GcW+yBvU8fahgXfpYp2rp4MjLnYGsixmSjs5M6VDa5Kyc/AvVZIXl21AQub5RnXQaTQsGdG/0PzIxBRyLBL2Oi2309KLbQipqkpiciZfLdrH6XPRaDUiBjsdrRtXfuQ8RVGJuZ2MqlpbBtxNTKOS45Pv1uvrWzLv9ZIZW0lJzCAjLZsvxi7BbLSWWR/Zdo6PF42iUbsarPhqBxaL1SME4FzCEZ1ei8Us5TVEHPFu0flMdVtUpW6LqgBUC6yAIitUqPHoXJ3dq46x5PNN1G1ZlUk/vlykfpXFLHH59HWc3ZysUhKC9frdjUxAo9Wg0Sr0GVd0h/PUxHRG138fU46Zpt3rMXnZuMdftGcYrU7LOz+9QuiBiyTkNtLUaDW0G9yUvSuOoqoKziWcKeHlyugZw/LmjfpyKKO+HJr3//kjlzFmmTA42rF76SE2fLMDyWzhavANZu6a8tDjh+6/wL1Y63G1dlqmbnibH95ahizJhOy9QAgXkCWZ17998SldARs2ni42Q+j/gF9eHcDZqDgq+5TCaJHoN2sFZlmmT8MaTBnQvsDYtxo2I8DDC0edjua+j1ft/q5jD2afPoqiqtzJyuTVug2p61maaS06MC/kBDXcPZnSrA0V3EqSkJnFZ8cPIQDjGzWjZ+WqVHBzY8DG1aBCozK+rOhV/Pwde52OvUNGcCkxgXrepXHQ5ferOfneWCRZxsnwcI/L5M6t+PbgCVpWKk+dMsVL8lVVlfdmbuJUaBSCICArChqNSGYxZCk0GpGXn2vGL+tOoCgK3yw9xPdTBxbruMXBbJZYNGsnKUmZjJ7UlSthMTiVdMLOXo+qqhgc9HmGECok3E7h9L6LZKRm41LCgcYdAvLW+dXG8RzcFEyj9jUJaORf5HVYNms7l85E8tIHvahevzzlqhbPgJ3//mpMOWZO7Qrj6tkoajTM3/8vn21gy88HsXc0YMwyodGKfLF5Eos++I3oy7GgwuxdkylTyfuhHogb52MwmyyYcswE7T5Pwq17fD9hOS7uzrz+9XAMDsX3wl0Pu8mJrSG06teI8rkG3tFNZwjaFUavsR2oXLd8sff1v9LlxbasnGatBqwaWJEXpw0m/mYi2ek5fLDyTcpUfvR3eNT0ofzw1lL8a5fHt7IPAtZGmKasR393reK1AgZHO2o2rUqNJlX44dQXrPryd36dsQkUFeEf7nWzURDV5hGy8W8jKSOb1cfC8CnhTO1yPkiKgskisf/C9UKGkCgIdKqQL7ipqCoWRcZOU/CrYpIlUo1G2patSNuyBavRjsXeRBQEDg4ZhUGbP69nlWrMPHUUkywz5fA+elWuRlxGOiIC2bKFm2mp/FncDPY09ytssBl0WtA9/OudaTQx7+BJ0nKMnI+LL7DNIsusC7mITiPSr17NAjlV2w9e4niItSpMI0LNyj4EVClN55bVi7XeRnXLs3JzEEaTxIWrcY+f8CfYte4MuzcGI1lkIq/e4W5sMoqkoNXrmbZgBJ5l3Fg6cxuXz0RRtV452vUL5IXpW5AsMsYcC1dCowlo5M/i6VtQFXjpg144OhfdciH0WASbFx/GmG1m+qtLWH7602Kvs0KNMkSH30YQweuBTsWmHDPrv9tjrSbMtvasMTjYIYgic/ZO4czuMEpX9CpQHaaqKpEXbuFc0hFPX+u+ajatTJlK3kReiOG5t7vzwzsrOLM7DI1OQ4WavrTs2xA7e7tCeUWRF2O4eDyC5r0Dcfd2Iystm/FtP0MyS6yauZllF79CkRVmjVqI2WjhxLYQNsT++NDzVBSF1TM3E3cjnpFTn8PD1x1ZVhAE/qtw3ZD3++Dk5kBWWg79xnfF3tHA7L0fF3t+p+FtaNG3MUfWn6JMFR8GvN2DpkGnMwAAIABJREFUW1fjeOmLoY+cV6ayD/NPf8HN8Dgadclv3fDcOz2QZRmL0cLQybbSehv/XGyG0P8Bn6zZy+nrMei1WnzdXfF0deLWvVRGdXi0IOvdzAx6bFhBqtHIl607MrBaLcDaM6fz2qWkGHN4vkYdprbIN6aOxd5k9K7fUVXr6+86WkMqqcYcolJT8sbJirX6rH15f7pXqsKFxHimtSpolD1NopJSSMnOQVZVIu8lsyb4PEMaWX/kvz94kqUnzyIgkGk082Lz/FBj5K17eRVzep2WuR/2x/FPeBiqVvSidrUynLscy4h+TYock5Vp5NCO85Tz9ySgQfm898+evM7iubup06gioyZ2KVTq7OBksOYpaUQki2yVvRAEJBVCz0QTuzSGU3svotNpiAq/jZ1BR4/hLVj7wz7c3J2oGViRX7/dze7fTgGgN+h45ZOCN7jsTCMTen9NTMRdRFFAoxVxdc83KFRVJT4miZLerkV2lAaYsfFtQg+HUyHAF/cH9Kv0Bh1lq/oQfysJQRCwmCXsneywdzag02tp1rMB8h806X6dsZk1c7YBMHv3B1RtUBGDgx3zT0wj8mIM73WdQVZGDgjWZOMN3+1iydR1iBqR2bus4wGS41OZ0O5zFFlh1YzN1GlVjcZd6yHdb++gQvCe89RvH/Cwj7YQW37cy7Kp61BVuHXlNqO+HMKHPWei0WmYs/9j/Os83uP6IBqNSJ9xXR47TpZkTm4Lwd27BNWbFAzXftxnFlfP3ABg3okvqBBQuLpPVVWunrmBo6sDfrlePr+qpfGrWppT28+ydcFeOr/Yhlb9GjP8oydfgWnDxl+NzRD6P8DFwQ6tKCIAHi5ObJs80hrSecxT6f6YSDLMJiRV4adzZ/IMoXPxd8i0mLEoCr9HXKahjy+Hb0XxYq0GxGWkowJGWSIm3erhiUpNocfaFUiKQttyFdAIIsNr10Obe/zZ7R//4/6kqebtgau9geTsHERBIM1ozNuWlJWDpCgICCRnFZQ2GNIzkIsRtzGZLEyb0PNPGUEAWo3I11MeffOY9uYqLp+LQRAEvlo+msq52mMzJq0hPSWbW1GJNG1XvYCRBNCuZx0kSSY1KZMmbavx+nPzrTdyVeXOzQRCDl+xdgg2SSTEJqPICiPe7cHAcR2xs9chiiLRV27n6VkVpUJ//uR14iITAWvOTuP2NRjyZue87TNGL+LEznO4ebiw8OhUHIrwKBkc7Wj6QPn+fQRB4KOlY9m2+BCl/b345dMNpCSk88VLC/nl9DQ+HfwtJ7edpc2AJkxe9hoAp3aEYsoxo9VruXQiIs+wAdi15DDpyZkFjpF0JwVUq0cmZN+FvPHpSZkoqorZZMGcaOHwhiBObDtL4651Ob3rHHqDnsCOtfEu78G7P7+SFxp7GIlxyexedpj7zd8Tbt3j9+92YsoxQw5sXbiXwE51CGhe9ZGJyv8NP769jD3LD6MqKp/+Pon67Wvlbbt9Ix5TjhmDox2Jt+4VaQitmb2FVV9sABU+2/wu9dpajb+cLCPTBn2DxSxx7tAl6raugYv7v7da7/+ZZ0kQ9a/AZgj9H/DZoE78VuYcnq5OdKpjfUIsjuRG09J+aEUNKtC3Sn4lUH3v0pQ02GOSJLr7V+WdAzsxyhIHbkZy7PkxHIu9SUx6Kh81a8vFe/FciL+LrKqYZJmrSfc4OOzlp3WqBcg2W5h3wKqy/ma7Zjjo8z0UOo2Gza+9wOc7DuJssGN4k/p52ya0b056jhGdVsPoB6rMADxKOvHTY0IJ/yvxt1MxmyQM9jruxaflGUKlPF3IybK2BbCz1xVohAjWm3uX/oF5/3/w1WA+H7UIVVFJjU0GVUUQBbRakVEf9cnrImz/QOVaSoK1BF4QBXzKlyq0tiq1/QqovQftv0zQ7jCadqnDBwtf5viOUCSzTEZyJtHhcdRo5I+iKJw7coWS3m6Ur/bwPCJFUZjY8yuy0rMRRQFVtcqq2Bl03Ludwpnd1h5HR34PYtzXw3Ep6cTwKf34/IXvKeHpQusBBfs3BXaszZaF+/LWq9Vp8pLADY4GWvXL94iWr+HLoAndObb5DLci7iBZZARB4N1FYzAZLTg622PIvU4t+zSkZZ+C34sHyUrL5pVGH2LMtPb40Wg19BzbkTL+XgTtCkMQ4OjG0xz47Tj2TgZW3vgOnf7J/RRfD4vGmGVCZ6fj5uXYAobQpCWv8eOEpVRtWIkGnfLDXJHnbzK1/xzsHPQ4uTlgyjYjagTO7DqXZwhpNCIanQaLWULMfW3Dxr8B4cEftSIHCIIBOALYYTWc1quq+slDxvYH1gMNVVUNFgShPBAOXM0dckpV1bG5YxsASwF7YAcwXn3MYgIDA9Xg4OBHDbHxhEk3mUg3G/F1LtiwTlYUsiwWErIz6bF+BUZZwt1gT8hIa4VOhtlE+9WLyTCbqOXhTWxqOnczM3DS2+Hj5MTCrr0p71biqa79qz1HWXbqLAAjmtSnftnSfL3/OK0qlWdip5bPrCTD5dCbzP9yG5VrlOb1j3rlGSxpKVkc3B7Gnt/PEhVxlyZtq/HJvGGF5oeeusGcDzfg6mxH7KVbmI0WtDoNb899nq8n/ooqq4z/aggd+he+me/feIa5b6+yJoLLCr1GtuLVzwpW3A0MeJ+MNOtNXjWbQZYRRIFxM4YQc+0OW385RLmqpfl2z2Ts7PX88N6v7P3tJKqqMOP3d6geWLjDeU6mkYzUbF4M/ABZsgq+jp46gPhbSfQe0w53bzfGNv6Quzfv4VfFh++PfVqsPJvFH69l4/e7EQQY/eUQWvdvjKOrPaJGfOj8y6evs/+349RoUpnw09eo1aIarfsX3STTmG3ip8m/kZmWzdiZQynp5catiDu81uwja2K6qjLgjc7sXHKISnXK8eYPLyNLMmMbTEaWrOXoq6K+p4Tnk2sIGRF8gxkjf6BU6RJ8su6dAl2lH8Znz83l2KYgRFGgzaBmnNgagjHLiM5Ox/Ttk6ndyvogdD00msPrT9GsdyDVG1V6zF5tPAkEQQhRVTXw8SOfDE5VvNW684f/Jcc63nH2X3puD6M4jyEmoJ2qqpmCIOiAY4Ig7FRV9dSDgwRBcAbGA6f/MP+GqqqF/eDwIzA6d/wOoAuw88+egI2ni4udHS52hcM/GlHM2za7bRcOxEQSm55G/aU/8FGzNlQq4U6G2USOJBF8N47roydQc9F3pJtNpCeb6LVuFWGjxj1VY0QUhLwO16IoMHHDTrLNFmJT0ugSUIVaZR7dTbc4REQlsPPQJVo09KdBQOGO18UhIzUbe0c7tLlP2DXqleP7dYVLvl1LONKkTTV+/moXqqJycn84GWnZOP/hRjf/i63cu5tGUjyQG+Zq3bsBC6duxJLbdXr78qNFGkLt+zXEr5IXk/rPQ5YUtiw5wpiP+xTQoHJwticjLQeNToOqiMiyjEYjIkkyr00fwktT+mHnoM/7bC8H3cCYbUJv0BF54VYhQ+jWtTu82XE6FrNE634Nibxwi7b9G9NrdLsC4344MY24a3fxreJT7GTjlz4bSOsBTXB0tce7nMfjJwA1GleiRuNKjAiYyN2biexZeYwylbypVEROz5aF+9iz4qg1d0lV+WDZOHwqelKzaWWuhUbz/OQ+rJmxicyULK6cucGtK7dp2rMBgyb1ZMfPB+jyUpvHGkEZKZl8OuBr7t1JZvLy16kaWLiK70GqBPqz+OLcYp3rfWq2qMaZPWGgqrTo25jUhHTO7r+AbJYIO3QpzxCqVK88leqV/1P7tmHjWeexhlCul+Z+oF2X+1eU52YaMBOY9Lh9CoLgA7jcN6YEQVgO9MFmCP2jMMkSM08d4V5ONh3K+fP+4T1kSxY+PX6QM8NfpY6nD6dv32JMnUBi0tMwSvm6YllmU55Ux+OQFQWLohSoQHuQhUeC+Pl4MO2qVmRG3855N+DX2jRBI1pfv9KqMfvCbxCXmoYKuDs+/in5seuSFcZ9sobsHDOb9oaxYf5oTpyN4np0AkN6BRZLGHbZvL2s/eUIbiUd+fH3N3Fxe/S6PLxdMdjryLTICAJs/e0UoihSrbYfdZtYb5BVA3xJvJOGMccMDvbo7XUc230eU0Z+HlS7vg9/CCtb2RvXkk6kp2RSKcCvkBDne9+P4L2B80AQqN68Gj5lXHEp4UT3ka0B8kJI9xkzbSCzxv6Cp19JWvcrbHyFHLyMZJaQzBLRl+NYcHRqkevS2+mKzGl5HP5FSLKA9fMrqodR3nZJzvulU/6QpL1v9XH2rTrO1eBILGbJahQikJ2Rw/pvd3L59HVQrQngNZpWIWTveYC8ireRnw5k5KfFa52wb+VRwoOuYTFJ/PjOCr45PLXQmLhrdzDlmKlY++EJ2BazVCAEl3QnhUsnruJS0pmuL7WlSoMK2Bn0VAn0x7mkI+Gnr+HgYk/751sWa502/j3YyueLQBAEDRACVAJ+UFX19B+21wf8VFXdLgjCHw2hCoIghALpwBRVVY8CZYDYB8bE5r5n4x/E6vDzrLochkVRSDZaQyUOWh21PbzRaTSs7jUoL48ly2zG1c5AhtmEIAh817HbI7sw3+dWehq91q0kw2xmTvsu9K5SsExdVhS+OXAcVYXdl64xukVDKnlay6gNOi3j2+cLuK586Tn2XL5GHV8fSru5kGkyM2bF71y+m0CTCn58M7CHtew+l8SMLObuO4aHsyNvtG1KRoaRrQcuUqWCJ03rVUAFJCn/Bhl66RZfL96P2SJz4eptfplZOGz1R3asO4MsKaSlZvNyt7nUCizP5K8GPzRnRKPVUK9pJY7useq7/b78BFmZJnQ6Dd+vH4dfBQ8mTOtLy84BHN1zkf1bQnH3cCY5MitvHwFN/Okx4uE3N4O9np8OTiYuKpFyRYiomk0WNFoNxmwz1y7cYubaNx55jnVaVGXVxVkP3d64U21WztqKJMlo9VqS7qYWqCb7X1FVlbvRiZTwcsXgYIdkkXi/+0wuHL9K77EdeW3OC4XGzxu/DGO2GXtnAxazhQ96z8bNw4XBk3oS0KwK34xbgsVkyZujt9NyfMsZzu6/QN3WNbAYLQiiQPzNRHyr+HBiSzAupZyZMXI+479/mYoPMc7AmisVGRaDZ1l3XNydKVfDF1EUMTjaUaV+hULjg/eEMXXAHARgzKxh9BzbqdD+pvSaSfDuMFo/14QPf32L7IwcRteZSFZaNqqq4unrzvzgGRhzewrVaV2TzSlL//uLbsPGP4hiGUKqqspAXUEQ3IDfBUEIUFX1IoAgCCIwFxhZxNQ7QFlVVZNyc4I2CYJQ888sUBCEMcAYgLJl/7vQg42ng4PWGv7QCAIe9o7sHjiS66lJNCuT/znd98446vXsGTKSc/F3aFLGr8hwW1HsibpOptmMpCgsOhdcyBDSiCKVPdyJTU1Hr9Hg/Yju0CUdHRjcMD9BdNfFCM7F3kFRVQ5FRLEm+DwjmuYnTX+ydR+HI6LQaTSUcXNh97owrkcnotVqmP/ZYKr5ezHnw36s3RZChxbVcHI0AAKqqmL5gwfhPlduxHMs+DptmlShUjkPOvWtz+/LjiNbFDLMOZw9cYOzJ6/TuPXD9ZsatarKiX2XkWWFrEyjtUxepyE71+Oj0Wpo3KYajdtU442Pe6PRiswYt4zQo1fp/VJLsjPMzHl7FaM+7I1bbi+duzFJXAm9yeHNIbQf0JAW3eri/xA19xqBFajeoAKXQ6Jo378hmWnZOLk6kJWezcqZW3FwsWfwhG7FTgD2Ke/B85N6svDDNUScjeatztNZEVa0dEZxWfTBb2xesJcm3erh6OLA/tUncHS156cz07kXl0zEWauK+5aFe3n1q2EFQrSXT11j9/IjVo9QLhmmLDJSsvh63C98e/ATHrTh9QYdxmwzqqKSmZpN9SaVyUjNQm+n47nx3RnoOxZVUUlLSCctIZ25ryzk+5NfFLluWZKZ0nsWF45eQafX8s6isWz/5QAdXmhJ/fYBNOtV2KMWdugSFqMFVVU5uS2Es/svkJqQzsSfx1Kmsg/3YpM5d/ASAEc3BpGZmkVqQhqmbJO1azeQnJDGsIpvYDGZ6ftmN8Y8wojf8uMetv98gD7jOtP1pbbF/1Bs/EOwSWw8ElVVUwVBOIg1n+di7tvOQABwKPfHxBvYIghCL1VVg7HmGKGqaoggCDeAKkAc8OCvrG/ue0Ud8yfgJ7AmS/+Z9dp4uvSvWhOzLHEvJ5uXawfipNfj5/LwfAdPR0c6VfxzCZYtfcsxR6NBEAT6Vy3ahv5t1GBCYuKo6eP1yE7Sf6Syl3teaE4UBJz/MFev1VpvkALotRrSM43IiopOgIwsq9Hh6mQgNDyWMxdimPNhP0YPakZEdAIvDWha6HhZOWbGfbIGk8nCmm0hbPvlNV5+uwv9hrdg9uR1XA69iYqKbxHVWg9SytvVmk8kQPlKXji52FOvqT9VahU2XOwM1kq5KQtfAmDDTwdYv+AgsqQgmWXe/2EEC6ZuZOuSIyi5N8WQw1cIaOSfZyT9kaD9l/Cr7EXMtbvsW3eG03svsvjYxyycspb9606jEUUcnA30f61oCYyiSE/OV5O/d/vPN9Z8ELPRzIZ5u1BVldM7z6HRarCYLGSnwaIPVjN8Sl9c3J1IS8qkRuNKeUaQoih88cIPHNv88IIMURRxL+3GG9+MIPJCDPXa1sTdpwQT2k/L69p96fhVpq1/m3u3U7BYJAKaVyX89HUsJgt6gw5Pv6I/X1mSeb7iGyTftZ6/Iqt8+cI8JLPVINv+035Kersxffv7VKhVFlVVuXDsCrVb1eDA6uMYs0yUqeTDjkX7sFgkfnhrKa/OHUEJb1fK+HtxJyqBCrXK4ujqgKOrA51HtmH3ssNIJgmP0iW5E5UAwLaFex9qCKUmprNg4goki8y81xfTqn/jYiVj27DxLPNYQ0gQBA/AkmsE2QMdseYCAaCqahpQ6oHxh4CJuVVjHkCyqqqyIAgVgcpApKqqyYIgpAuC0ARrsvRw4LsneWI2nj6iIPB8zaLy4J8cVdxLcXLEGLItFnycir4xO9rpaVW5cMjgcdTx9WHVy4NYG3yeumVL07duQbHQz3q2p1xJV0yZFuLOJ/LK4JZsP3SBgCplCKxl9XptPXCBzNxwwsQvNiLJMgO61sfXp2BF3MWrt1m5KQiLRUIFzJKc1xywRCknpn4/jDNHIyjr70mZco82hOo18eedL/tzKzKRDr3r4eBowNm1oNxE/O0Utq8OonrdsjRtl+9FM9hbvXiiKGBw0JORksWWxfn9bsBaOv/HvKD7RIXHMevNFflSHVhzTzJSraG3op4jVVUlaO8F7Ax66rYq7Om6dyeFkAOXETUiiqLQ+hH5SzmZRma89CPRl2LxLu/BgPHdaNipdoExd6IScSrhSE5mDs4lHOnwfAvWztmO2Wxh/5rj3IlOYPhH/diyYB8dX2hZYN7pXWF5/4saAQdnezRaDZmpWZTwdOW9xWOZ0ncOMVdu41fFh9FfDkGjERk7cyg/vLMSWZIJ2hPGZ8/P4/yRK1Ydvy2T0GhF7sUmk5KQRodhRYclb4TdJDk+3wiULFKhMcl3U5ncfTqrY35k6cdr+H3eTlRV5Yvtk6ndsjpH1p9i15ID2Gn03I6M59XA93BwceDHkJlkpWRRprJ3nuH35vejePP7UQAsfHcFG77eDoDHA92+/4jB0S4vX0qWZNKTMmyG0L8QW45QYXyAZbl5QiKwVlXVbYIgfAYEq6q65RFzWwGfCYJgARRgrKqqybnbXiO/fH4ntkRpGw/B1c6Aq13RUg//K3X9fKjrV7RGk4u9gZcaN6Dv2J8wmSUcDHp2Lh2H9oEE22b1K7J573lkWSEnN2dk9bZgurcNoELuDUVVVd76fD05RguCANX9vWhYpxz7jl+hc6sa2Om16O10NO9Q/Khxq861uBF+m1d6fYskKUz8sj9tuuWH/T4cs5TbN5PQ6bV8+dNIjmwOQavTMHRCFySLTGZaDv3GtEUyS2i0IpLFenNr1z+QrkObkZyQTujRqzTqUBODvT5vv2aTlBcWMjjoEUSBDv0bUcLDhVc+H4ijsz0OLvb0GpVf8bX22138Nnc7qgpvznmepl3rsXLWFrR6Lc9P7MH67/Zw/fxNVEWlRY/6vLdw1EPPe99vxwnZdxGLycLd6EQunYzgi02TmD5yPnb2emZse48P+35FRnImOjstHyx/nYBmVfCvU445YxZhyjGTlpjOt28sRTJLfP3qLzTuXBfnEo54lCmBm4cz6UmZ6A06Oo9oxciPBzDE/01kSSEzLZvku2lEXbyFLClEX44jNTGNkl5udH+5HTFXbrP9l4MgCMSE38ZstCBqRC4cv8rgiT2hIVw8foVh/m/i6GLP7L1T8Hqgkq20vxf2jgZyMo0PPX8gz3MXdvgyxmwTWr2WiOAb1G5ZnZb9G6Mz6MhIyuC7NxfnrsFETHhsXj+gPyJLMkE7rKr0eoOOj9e+/dBjGxzs0NnrMGWZ0dvrSY5Pw6ei1yPXa8PGs05xqsbOA/WKeL9IkRtVVds88HoDsOEh44KxhtRs2HhmkSQFJdddIsmyNafiAWdJozrlWfPdy4Rfv8sHX1mfCUTB2rTwQe4bD6oKKek5rN12FhU4Fx7Lx290e+jxszKMSJKMawnHvPfWLznKttWn8fEricloQVVh57ozBQwhY44l74b587RNXAmJyj2+ypiPH5DNcLRj6pJXOLgpmM6DmlCrSSViIxMY2346iqzgV8mL8tVKYzZaeGPGIKrWLceoKX0IO3GNwW90LJBH5OjiwCtfDCL1XgayRSYzNRutTkPkxVsYc8yIokDU5Tiu/oe9846Oqm7b9bX3lHTSIJSEFkoIHULvCIj0DoJSpAgICqiA0qUoAlJEUKmCIL0XaVJCL6FDQkIgCamk9ym7nD8mTIgJ6HuO33deda61XJKZvX+7DcyTp9z3rUiObjqHIAjo9FqKl3FDq9MiiALVGvhaMxZmk8SpHZdxdnWkRbf6CIJAGd+SBfpzFFlh94qjpCakI4gCRzeesfa9iKJoFYts2bMhYTcjeHIviqGz+jCl01dIJglVVTEZTYATens9a65/SWRwDJVql0NvbwkAazb34+bp+xhzTXw36SeKebqQmpBOpTrl+LDlHDKSs5i2eRzvzemHnaMdOr2WSnXL8+WQ1Tg42VHtJbmAjTN3kpmSRWZqFid+DmTwjHyNJmc3J7aEf0tUcAwPLoey7vNt1vcq1PQm4n4MWp2GuXs/AWDElwOZP3AF7l6u1skuQRBo2tViCRP7JIFtX+2jdMUS+DcuaLXxMkkxKcQ+SbB4vBlMFC/j8cptAT758X3WT99OvTdq4t/YpiX0T0MFW4+QDRs28vF0d2LmuE4cC3xAv8710RWhpuvl6YKXpwuLP+vFkTP36dSmBmVfKo3FPc+gXVM/jp59gKyoZGUbkRQFSVKIjEkptN4LHt2LZsqwdSiKwicLLBmfzPRcNi4/gSwpJMalo7fXIUsKXd4uKPg357t32fr9aSpWLcWhH3+zvh4d/rzQcQJaVyMgrznbbJI4eyAIOW8aLiosgZinSaiqwsaFh/hk6Tu06FwHrU6DtghT2183n2fVZ78giiKKrCBqRHqPbY+LmyMeJd3oNaY9u1Yet+o7hd2J5NbZYBBg+Ize9HhJO2jd7N0c23IeEDAZzMQ/iefCgRt0HNKKoxvOIksWP7WAdrW4cy4YFZWazfxoN6A5u1YcpW5rf6uflyiKjJw/wLr225924+cv94GqsmbqL3y+yaLb5OjiUEgocOaW8Sx+fy1ndl4mMzXfciU+IpGcTAOSSWLb4oM061ofB2d7tn61nxrNqjJv90Rm9lzCjO6LGLPkXbq+34G0xAzLziqoRfTTu7g7U6OZH67Fi+Hi7sz+VcfwKlucz38ej95eV0AIslYLf3Y8+6HwInkM+2IA787og0area1elyHbYA0eS1Xw+sNSV5v+zWjTv9lrt7Fh4++ELRCy8a8iISOLEw/DaFDeG//SXn9qn3bN/WjX3O8Pt2sW4EuzgIJigRmZuQybvBlJlnGw11OxrCc9O9RmwerjADx+8pyJQ9eQmZTNx/N6U6N+vg7MlTPBGPN6cQ5tu8ovP5wlKyMXewc9kllGb69lw9GPETUiTs4FS4eV/cvQf0QrPhu+ATMa0IggK0iSjCzJRfYAZaXnMKb9QlIT8xuXnYrZI5lkVEQ8vCy6SB/3XE5yQjqiKLDhwkzcX/LK+vXn80gmGUGQLX1HZpntyyxV78y0HFKfZzBsWk90dlp0Oi03zjzIs2wQiAlPwGyU0Oc1eD+PTsZksIzqPwoK5+DqE6iKytN7UTgWcyQ3y4CTqwNvDGiKb61yuBZ3QRAFPu+2CFmS6T0u3wPt97h4OFtEIM0SudmFPdVeRqPV0KBDLc7svGx9TavTUMzDmdxMA3p7ndVyY+vCA5hNEiHXwzmz/RJmoxlVUTm/9zpd3++ARyk3osPi0Om1eFcuuqR0++wDZvZYDAK8M70Xb0/u8drz+z2hQU/YsfgAd88+pHL9iszZ8yl2L5U3f0/YrQh0dlqMOaZ/mcOUjSJR4Q8MJ/5x2AIhG/8qBq7fQVJmNqIocGLCe3i5vHrc/q8gJT0HSVYwmmTMksLquW/zODIRjSiiKDKkGggJTgFFZeXcA/yw/yPrvi071mL/lktIJpkSpYoRfCcKRVapGVCBjr0DqNukUiFV6ajw56gqlK/sxf0bEUiSjKKoaJwcUDKyCb7xlKBzIZQq54mXj0eB/p/QO1FkpeeiyApanYZx8/vStGMtrv32EJPRTMe3LZNwiXGpSCYZvZ2W7ct+5VloHEM+7061AF9c8kp4gigiCqDVW75gAVDh/uUwKtcux4hZlpJQxRo+LHx/LYqicnzrRe5ffsyE5YPZ890JqjeqRG62ERc3J3xrlLVmLQCqNazEzd/uk5tfMwg0AAAgAElEQVRpYFDlCaiqyuR1o7l/8RFJeVm2XcuP8NnGD4p8Lh2HtCI6LI6rv95GkhTCbj3l15/O5TVgdyqkXN1+YHPCbkcQuOcaDdrXxNHVkaPrzyBqRGq18KP/pC4A1GpelYdXHqO309Hgzdqc3nUF2SQzYHI3ACZvGMvGmTso7etFmwFFZ1WCr4RhNkkoskLQyft/OhBSVZWvBq/k7I5L1tfuXwjh6pGbtOrb5JX7Ne0awN7lR4h5HM97C97+U8eyYeOfhC0QsvGvIikrG5MsYydoScsxWAOhg3eCWXPhOl1r+jGmddG+Uv83lPf24K3W1fn17AM83Jx4FpdK1Ype9O1Ul+2HgxDstQiA3kFHhSoFMwS+fqXYcWE6iqRw/2Ykl0+HgB4atKhCh571Cx0r8Ng9lkzbDcCk+b1p07k2h7ZfJSMthzIlnIh9bNGa2fX9KR7djkIUBVw9nfH0cuWDBf3wq1cBUWPJCaiKSnamAY1WQ4f+lvshmWWunw2mWcdahN19RrW65Tj2cyDGXDO3AoOZv+Mjbp55CIAgQuueDbGz12M2mflt11VcPV1o0b3gebfsHkDFGt6MaTkXk8FMREgMs97+loyUbK4ev8OgyV25fCiIZWMvImpEVEXBo4wHrsVd0Oo1KIqKbJZQVTi05jd6fvAmx38+jwDUf6MWvycnM5dZfZYS+/Q5TbvWJzEmlbinzwm5/picvOxOCW8P2va3BH2KonDlyC30DnrGLBzE2K/fAeC37Rf5VRQw5piIe5Jfbpy352NCb0bgU6UU45rPwmyS0em1HPz+JA7O9vg3rsLUn4oOzl7Q/t2WnNgcSGZqFkNm9Sn0/q3T95k3cAVuJYqx+OQMPPPKsLHhCVzcf73AtioqT+5FcePkHd6e0oMylQrbyji5OrL6+sLXnpONfxf/Nvf5PzRd/W/CZrpq4/+VU8GPWX3uCu2qVWZcG8tvyZKsUHf+SiRFwU6r4dC4IZTz+GuUjSVZYdK8Xdx6EI0KNKtfkcWf9wYsjdJhEc/x9XAlKyWbZu2qv1aE8GloPDlZRqrXK1dkz8eymXs5vjcIgDqNfRk3vRvlKlnKf4YcI1dO3Kd8tdKM67ioQHYFwKeSF2vPTufLsRu5+OsdhDxhSJ2dloU7xlOmQgnGtPvKWjZzK+7Cl1vHML7dAuQ8P7MqdctjNpqJi0iyZjREjUjnoS0Z9/WgV/apqKrKlyPWcOnILdoNaML5g0HkZhktDuda0SIWaJZAyRM4VMG9pCtNu9bHkG3g4kFLT9MnP4zkjQHNiAyOQZZk7J3syE7PoXLdCtZjH990jlWf/Iwx14RnGXcyU7MLSAFo9Rra9mvKR98OQ2+nY9uig2xfchgVlfFLh/Bm3ui7MdfE+w2nER+RiEYjMmvbRzTpXHCm5B2/iSTFpIKqokoWe4tJP4yiwZt1cCvxevsVRVFIik7Bs4x7oTLmRy1nEXL1MVq9luHzB9B3YhfSkzKQzTIfNPqczLRsNBqRHuM7Us7Ph2/Hr8OUa6acvzdr7yx57XFt/Pfxv2266lSltFrt2+H/K8e62fnL/wrT1T/nXGjDxj+E9v6V2TvmXWsQBKARBdwdHbDTaixmsvZ/3aj+r2cfcO9RLCoW49fyPp5cuxbOrl3XyE3Lxc4E1Wr60LpT7T9UYk6NT+fq8bvEPE0s8v2eg5vhXtwZnV5D8O0oPuy/mojHCYBl7LlNzwAqVitDt6EvJoyw/v+FeOKYL/pQp0kV9HZaFEXFmGvmyon7PLz+hJyXxrqzM3Op4O/N8Jm9EDUidvY6qjeqxIoT0xg4qbN1bUVW0NvpCgRBsqxw8VAQ9y4+yju+wPQNozmS8AMeJV2txrDFPJwwmyx/FnUa3IoXs3p/pT3P4NTWC1w8eJM+H3Vi+5OVvJFXairv7012Ri5jGk3nkw4L2LHksPXYFfK8yuyd7AhoV5OBU7qjeakBXlFUzu25yvoZOwCIeBiNMdeE2SgR9SjWul1GShYJUUnW6wnce43M1Gxun3mAIU9sc/6eT/BvVAlVtniWmY0S347bwLgm0/n9L6CyJLNi3Ho+ajGLRzfCmdlzCcOqf8yYgM+s9+AFDTrUxs5Rj0Yj4t+4Cmd3XWJQhQ8YWm0CUzaOY/7BqeyI+ZER8wdRskIJrOpORcSht07fY1yTaaz9bEuhc7Jh49+CrTRm42+Nqqp8c/s8x6NCmVCnOV0r+P/xTlgMYy/HR1HZ1RMfZ1d2jx7E6ZBwGlX0wc3xrwuEtFrLlI8oqvj5lqRVnYp8NnWHZSxfUdHpNJy/8IjFiwe+dp34qGS+GLkOk9HMiR1XGLegH2ajROse9a3GoRWrlmLbuc8Z0mExz2PTsHfQEf0kkQqVS6KqKjmZBhxd7Bk7tw/Dp3Vjx8qTxEYkUqFaabq82wIAZ1cHgi+HWgxbAY1eS/NOdShZ1gPnYo6YjRl4lHRl5IweqKpKnw/epH6b6jyPTqZmkyrYOeip09KPn+ZJgIqrlytDp/UscC3rZ+3i6IYzqCp8tmE0TV/KpORmGpBNEkgy6XGpoILOXsfMLeOo0aQKYxpOIyk2FWc3JzKSLdmpo+vPMGhqwT6ah5dDkcwSsqRwZtdl+n3cBY1GxC/Al28D55D4LJn67S2ls9CbTwk6dQ+/Br4EXwtHMsskRCVy9ddbDPikK7FPnqN30NO8awBBp+5Rt40lc6fVaaxBW4chLRlZ+1PSkzPR6bWsu7uEqOBojJk58FL2zZBjxGQ0YzZJ6O101tcPr/2NE5sDMRvNLBy6ipiweADinj4nLjyBcv75VoyDZ/ahced6uLg7U6ZSST7vvNt6HncCH/De3LeRZYWbv93Dq6wnY5cOJfRGOAMmd+fYT2f4/uNNVKpTga+OTmPBO9+SkZTJs5AYmnZtQM0Wr7Z2sfHvQMUmqGjDxt+KsPQk1j28jkGWmHThMF3KV3vtqPALRp3ew/Xn0QiCwMnuI/EuVoyBjer84X6vw2SSMJkknF+a4OrYsjrpmQaSU7IY3KsRd+88QxAEZFlBECz7JMSn//HaRrNF0VeF9JRsFk/YAgI8e5LA0E+7FNh2/MzurJi9j7IVihPQ3DIK/uXItVw8fAu/+hVYcuhT1s/Zy8ltl1BV6D92irXJWVXUPNf1PC0eVBaOXEOF6t58f3Iqiqqyeuo2Fr+/jh1+pfn6wMeoisrXI9ZgyjUxec0ostNzQLHMhmenZBWaWHr64BmGHBManYZnj+IKBEJ3zj207vsiQaERBXLSc3FycWDTw294HpWMRisyxP9jFEUlN8vAwyth1GmVHwS/MbA5h9b+RmJ0CtFh8QwoPw6TwUT1plX5YuckKlT3sd7XHu+346PlQ3Fwtue7SZtJT87kzpkH3Dp1D8/S7qy+uoCEqCQ+bD7TqtMz8fuRTFgxjMhHcTTrUg9UlYzkTFRFxWQws2zMGm6dfkDe1wogUKlueTKSs+j3cZcCQdCzR7H8mGdbIYgCXmU98a5Uihsn7lChZlm8qxTs6xEEAb8Glaw/d/+gI3fPPUSr19Kqj6W3afmYNZzbdRlVVVkeOI/OIyyyBB+1mElupoHHt55y9WgQxhzLxJxkknDzen25zoaN/x/keZyuw6I7qALDVVW9/Pq9/jNspTEbf2tcdfaogJ2ooaSjy58Kgp5mpHA+LoJcWUJWFMIzkv+fzyMyMok+vVfQp/cK9uy5RlDQU3bvusbYMRvx0OsZN6Q1xVwcaNiwIpUrl6RkyWL4V/emWDEHevcpaKSpqirrFhzkoy7fcOtCKPFRyWSl51LupWZqs0nCbJQ4ueNaoXNp1MqPWjVKc/9cMB91XUpmeg4XDt5EVVSe3IsmLiKR2+dDMOSYAJWw25HWfe0c9MzcNIZiHk5odRoks0zs00Sun7rP6d3XcHFzJHB/ELKsEBUax0D/yUzs8CW5WQYks8y+1SfRvxT4/L4XCeD9BW9T3t+bmk2q0GloqwLvPX+WjKqoCIKlX0ej06DVa6nRtAqZqdlsnL2Ly0du4lnGnfrtamLvZIdWr6WcX5kC65Tw9mDY7H7YOeqRTBKZqdkYc83cDQzh8uGb1u1m9FjEnH5LGVlnMoZsI5PXvs97c/oiSzKGbCMxj+MZ0/Bzwu9EIggChmwjDy+H8n79qaz8cAM3jt1kWteFTO44H09vixChqM3X+lFVi2VJs671+frXaWwNX0nPcW8V/Ow8jEajEVBlGUcnO8pX8+bmb3exc9QxfeuHHFx9nB8+2ZyvQfQ7mnYNYE/ienbFr7XqJt2/+MjqJP/kbv7zrd3SHztHPYqssHrSZmsmydndGZ+qZQovbuNfiMV09X/jvz/JCuCYqqrVgDpA8F99xbaMkI2/NXNvnAZAQGBNm15/sLWFQxH5f48ctDqalCz3/3wely8/xmiUkGWFH74/jU6vxWS0qD4vWXyUVq2qYW+vY++e64SGxqMoComJmSiKyo8/nKZjx1o45AUQD6494fDmCxhzTXw5ZgNmswwINGjrz7PHzwv0jKQW8eWoqiqBh26jqiqJsanERyZTr40/9y6FUrpicRxdHOg2og0bvthLqfLFada1oF9cw/Y12Ri0gLN7rnH1+D3uXLD08pQq70lM+HMEUcjLHFkyN5IsW8s/yXGptO3bmNPbL/Eo6Cmj5vcvdH4Va/jw45V5Rd7HyT+OYsMXu6nftgZjFg4kISoZV09nHJztmf/uSi4fvomoETm05hRl/cow/efxVKlbAfeSBc1+o0JiMOYa8a1VlvC7zzAZTHn9RSplXwqaHl0Lx5BjxN7JjuiwONxLuuJTtTQepdys02DPnyXj36gyVepXJCo4hr6fdGHN1F8wG8w8vfcMrV6LZJJxcXdiwnfDEUSRao0q8V6NT8hIyqTHuI588M2QV352GnSsjWcZd5KiUxizdAibZu/EbDCj0YjsWXqEYz+dRTKZeRYay4JDnxW5hr1jQcPgsUuHsGTE93hXLk3znvmB9vhv32Nk7QdkpmSREpcKgM5OS/12hSfsbNj4/40gCK5YrLqGAaiqagJMf/VxbIGQjb81F+IiMMoSjlodCblZVOePfY9alK7A6ntXUFH5tF4r9Jr8ZtnE3Gw0goCH/X9mJOnnZylfCAJoNKJVCFGn06DTafj++1N07lwXg8Eywl6wMbVg1sSthAuoKjq9FnsnO0ypOZgMJmLCn7P7/pf0rfk55jxHcp1d4b/CgiDQtmcA5w7epKSPB+WrlmLWpjE8fRCNZJZ5r8EMTAYzWr2G1OcZ2OVZSaiqStDph2i0InVbVaPz0FZ0GNiMs3uv41HSlYC21bkVGGKtWamKYsnACYKlEVeFpJhUBFHgy/2f/kf3DyyGqkmxqYz+ciAN2lvcd0q9ZEBrNJiRJQVZkol5nEDck0REUaTm2vcLrJMUm8KHLeegqiqlfb3o8+Fb7FhyCEVVEUWRhKhEosPiCGhXk+EL3uan2Tup3qQqhmwjqQnpXD9+m5S4PPNTAdr2b0qpil4sOTkTsEx0XTt6m+vH71DO35vosDhEjUjfSV1o2DE/qNwV/QOqqmLINpKRnEkxz6JNgy/svU5STApms0Tg7iv0/bgrP376My4ezpSr7gOoqKpFvuDP0uiteuyMWVPo9dCgJ0gvBdJ6ex0fLBtKx/feKLStjX8v/0V98xWBRGCjIAh1gCBggqqq2X/lQWyBkI2/Haqq8jjzHAY5nQm1m/D1zfP4uRX/05md+iW8Cew9GoMkUc4lf0z+eGQoH54/iCAIbGzXl2alyhfY7+HDaL768hDePh7Mnt3LmsEB2L7tCoqioNWKlC3rQXx8OnZ2WlQVMjJyOXzoNocP3earhf3onFkHk0miabMqXLwQSoc3axVYy8fXi3mbR7NsynaS49JwcXfCkGPivc+7obfXM2XlEBZ+sAlRK+JXt7z1niz9ZBuXjt2l54jWfLr8Hd6f3RNnV0dyMnIZ03IumanZ+FQpZR0Xl0wyWRk5ZKZl41nKjX0//MbmhRa/tLFfDqDjO83R6bV0yBNSBAi/G2UJfFQVBAHVbEZnr8OluCvGHBP9JnVGEAT2rjrBgythvDO1O755k1p/xNcj13DzzAMEQWDuzgkFen7AMkX2IhsFloDk0qEgZvVdypLj063bJceloWIZcY8KiSXiQbT1Pcks8+XgVWi0GkqU9aRNn0bIZpmQ64+ZNzAYnV7LB8uHggA6vZZGneoyef3YAuchiiLzD0zh9rkHzOr1DYqk4FnGnXYDWxS6poj7z/ioxUwkk8TEH96n49DWr7h6AcHSpUrvjzrTdXQHdHotsY/jEUVLCeGtYW3+1H18HTWa+VHM0wVDjpFGb9Vl0LTer/Uhs2Hjf5jigiC8rImzRlXVlyN4LVAf+FBV1auCIKwAPgNm/pUnYQuEbPztCMs8w+m4xaio+Ll34NG7/3n2wcuhsKL0gYiHmPK0avaFPygQCCmKyqefbMNolIiLS+PEifv06JEvDqjTafKmw0QGDmzKuXMhXLgQWugYn3+2iypVSrLi28HodFqaNbN8CW1afITLx+/xzsSOtOxaD5NJIvV5BiajhCHHxO77X1nXaNGpDquOTSbiURyN8xzrYyOSCDx0E5NRYtu3JxgwvgOuHpZrDL0dSU6WAbNJIu7pc+wc9Va1Zzt7PU4uDgA8uf8MU64JVYXvJv9CWmImAyYW7GfxqVLKWvYTBIGOQ1tTs2llWvRoQHZ6DrfOBXPxYBCb5u/FmGMi/E4kP91d9KeeSWJMCiaDGTsHPcnxaYXeT4hMtmoTqXK+UdeDvAmxF95nVetXpOOQllw6fIvk2IJebnYOOhRZxZBjJOZxHFsW7EVVVIx5U3ICAt6+pZi8fizPo5LoNLztK8+3mIclc6fRaV6pC3T16E3MBhOypHB07akiA6G2A5uTFJPC86gkBucJKL5opj676zLGXBOKrHJk7Snavt38dbewELIko6qq9d44uznx06MVGLINOBX7z7KeNv49/C9OjSX9gY5QNBCtqurVvJ93YwmE/lJszdI2/nbkSCmoKMiqmWypaE2d35NtNvHuye202PMDF2MjitzmXb96VqmVo5GPuBQXyYmoMCRFISvLgDGvsVRVwbWYQ4F9J0/pQt++DRn1flvatK1ORd98H7Pf928/e5bC9m1X6PTWIgYM+I7b18LZt/YskaHxLJpo0XOpULU0okbE3lFPzUYF/csAyvuVpnX3+tbeEM+SxXB0tsfeUU+p8p4kxqZwavc1JnRbSkxkEu5exRAEKFOxhHXcHsBklAi9HYnZJDHo0654VyqJIAhIZplNXx1AUQo6gzbpWJtyfqURBAG9vY6GHWvTfmBzNFoNH7SYw8pJm1k2fiOqqiKKQoHG6T/ik9XDqd6oEq37NrJ6d73MuG8GU6lOOUpVKIFWX1D7JzMlP1MuCALjvhmCi5tDIW0cRVFp2acRriVc6PnBm1RrWAl7JzvsnexwcLGnXrua5GTksnHmDh5eCUP30nTXCww5RuYPWsHCod8xZGYfhs3px4KDUzEZzawYt453K3/InH5LyUzNpmn3Btg5Whq6e7zC+0yjEXl7ag8+WjUC95L5Gcqn96NIT8xAq9Wit9fRoldhxfOD359gWLUJrJv2i/VaVVXlp9k7GBMwhS7O79LVZQi3zz0scDxbEGTj74CqqvHAM0EQXpg9tgMevmaX/ytsGSEbfztquHXhuSGMXCmF1iUnvHK7R6mJ7Hx8l9bevsRnZ3I1IRqzIvPuqR0c7fYe/u4FTVeblSqPRhCRVAVJlRn22y60okjtu85k3EnH1c2B9LRcatTwpnUbi97KhfOP2LnzKu071KRX74bY2WkRRYEhQ1qQnW3g+LF7lC3rSUxsCpkZFqE9jUZk166rSJJCRnouwaEJCKKA3k6H3l7LoIBZtO/bkHVnpxPz5Dn+ARUKXVtsRBIhtyJo2LY6Lm6O2Dva8ePpzzmx8yo/LznK2A5fI8sqiqzw5GEMP1+bQ+C+G6z/Ym8BJWVFVpjWdzk6vZaS5YqT+jwDeyc9kqTg5umMKdeMvVPBRlyHvOBLQLCqShtzTGSl5SBLMrJOw0crhvDsUTzdRhXde2LINqKz1xUIynxrlWPpyelFbg9QsWZZ3hrahlUfby7wum+NsoWapVVVJTI41qJDZKcFAcwGSyDb6M3aXNh3naPrz9Jz3JuMWDCQ8tV9KJaXQRvqP4n4p89JjkvlyuEgWvYuGIAcXnOK83st03rrZmxn86PlrJ+5naATd0lJSLP2Sv3y1T5GL3qXXfFrkUwSji4Fg+fUhDTMJgmvssX5PRkpWXzUbAayJOPg4sDSs3Mo7+9TYJu4p8/5bsIGUGHn4oM07lyPWi38ObX1PNsW7n9pYk9l/edbWXlpwSvvrQ0bL1DV/zodoQ+BrYIg6IEnwHt/9QFsgZCNvx060YE3y3z+2m1UVWXA8V9IMxn4KSQIVQUlrylZBbaH3mF2w3akmQy42zlYx+6nBrTm2zuXKO/iRlhaEsYME4nXk0EFo1HCt5IX3660TABJksy8efuRJIWQkDhWfXcSrVbDsuXvEBmRhE6nZf2GkQx+93vMZktmRRAgN9eEkvclJWpEmjSvQrMDk7hxNpiNXx1CUVT2rz9HrxGtqdm4UqFrS0vOYnynxaiKSvHSbqw9Ow2AYu5OZGfmYjJJkDe2rdFpLE3XjnaU8HZHEAS0ei2OLvZkJGdZtIkAWTLxLCweRVZw9ypGVloO6clZfDVqHV/8Mg5ZkhE1IglRyUSFxSEALXsEWL3DnN0cGTarN4fXnabTsNa8+U7LVz6bncuP8tPcvXiUcmXV+TkcXnuGncuPUq9tdWZuGV8gOHpBakI634xZy53z+RN/jsUcmLzmfRr/ztrCcp8F3v9qIL98fYBGHevSeURbjv10ljot/blw4AZmkxlFVgm+Fs57c/oRdvMpDy+H0vCtupT39yY5LhXJJFGirGehtaND4/I/Z4rK8g/WE3TybsHjiwKueeUyvZ2ugG5Q8NUwlo1ew9N7USDAx2tG02l4wYAxOz0HWVYwGyXMxkymvjmfufunUDUgPzsom6UXPep5x7Fk3/av/LWQbEGV+hULXYcNG38HVFW9DfyP2nDYAiEb/1he9PvIRYxAbA29zaGIYNJNBuoVL8POt95BFARGVW/EqOqNyDIbGX1mH8/s0nByziE706LJkvTSuLooijg46MnJMaIolkkwWVZYvOgIkZHJyLLC/n038jRl8kUCX5QwBAEcHXRMHvsTYnw6WanZ2DlY7CjsHfQ4uzpiyDWxdu5+UhIzqOBXmnotquLi5oQiKxgNZuKikpDMEtfPBFOitBvtejVg16rfkGUFjUbgrYFN6TqkBfYOepq8VYdPVg4lKS4VURTZOH8/iqwgy7IlUMwLikr4eJCTZcCYYyI+KoldK4+zcd5+ylYtRcvu9clMzUFRVG4HhrBh7j7endwVeyc7+k3oRL8JnbhzPoRVn26h/cDm+AUU/gLe//0pFFkhIzmLW2cfsuXrA6iKyq0zD3l4JYwn95/hW7MstZr7oaoqKfHpbJq3m+snCgYbfSd2plm3gFc+/17jOtLrpXJU1foVGVT5ozz9JAHPMm4M/6IfdwODmdFjESoqpSp40bJ3Y4JO3UPUiOxcfIhZOycVWLdiLYvX24vnGB2WHxghgEdJVxq8WYd+kwoKXb5gbr+lJMXk9S6psOubQ4UCodIVvRj2RX92fXOItMQMkmNT2TJ/D3P3TebK4SBObD5H1/fbM3rJYA79cIoOg1vh19ASNDsWcyxwfj5VS/PBsmGvvE82bPye/0Dj5x+BLRCy8Y9EEAQ2t+/P2gfXCHoeQ45sJkfKLwlJqkKKMReAO8lxxGVn4u1s+Q0+zZjLoafBfFyvJQElvMnomMviRUeIjk5h7AftrGuIosCq1UMJPPcIBFi39iyqCk+e5PctGY0S/fs34tChW+Tm5h8fLEFRanIWuqeJlokhwJhrZvr3w6jRqBJ6ex07V5/i5K5rmE0SV07eZ9/asyzdPwG/+uWJDInnvc+7snLabgIPWQQTv/zlA0qX9yT6SSIarZbG7WtQvuqL0X6Blj0C8o6t4l2pJLIsU7Vueab2Wsaz0Hi0Og1tezUg/EEMkcExjFs8iJkDVqKqKs+jU3Bwsken1yCZICU+jQNrz1iybxPe4trxO5StWpqZfZdhMpg5sfUCuyO/K+ShVqVeBa7+ehuTwUzM43iqNfDl6YNo7Bz0rJu5kyf3nyGKAt8cn8bG2Tu5dfahtaH7BfaOdnQZ3pb4yEQe347As7Q7nmXc8fIpnMF5QW6Wgez0XGRJRqPT8P3l+WSmZrHqi10WzSdFJSo4hh2LDyKIAiaDmeBrjwuNvnd6rw27lh4m8ZlFiDMhIv956/RaUuLTObvzMu9O703J8iUKnMOe5UfITMkq8Nrvy3ov6P9pd8r6eTN/4HIEAeq2rUFGciZz+y/DbDRz5fBN9iVvoPdH+QHXxQPXCb4SipAXe6tAdkYOmanZuHsVfRwbNv7t2AIhG/9YGnj50MDLhxyziYepzxn5227SzMZC23nYOVLKMX+KbOipXYSkPUdA4FCXoVRxK868+X2t72dlGVi79gw6nZaRI9swcFBTUlKy2bD+LC/3FouigFYr0qp1Nbr3CGDY0DVIUkEtmN83UtduWoUWXfK1aBxd7BHyxqctTg0CW5cdJ+RmJIJgUYJ+fM9iWaG31xEZGs/0H4ezadFhqtQuR0Dror2jFEUl4I3q1pLg25M6sfTDTRTzcKJZt/r0HNPeum3TTnU4u/c6Or2Wtn0b0bp3A35ZcoRT269Yt5nYbj7J8WkICNYGa1VRC5RosjNyyc0yUKZiCesEfmRwLF8fnkJo0FPKVyvDuFZfWNWOf1l8iKBT91BVyEzLQmenRVVUfKqU5otdk1BkhTGNpmMympHNMjq9lqkbxtKyV+FGa6wg4nMAACAASURBVIBiHs6890VfDq89TZcRbXEt7sKYBp9Z+3qszwTwC/Dl4eVQMlOzea/GJyw7O5ty1Sx+X3p7PZ9vHs/sPt9gzDViygtwRa2IRpvvP/Z7lfPosDg2TN9WoEcLIPhKGNGhsUUqOzftFsDKS/Mx5prwb1yFrLRs62dG1IiFPj9P7kZa19fqNMiSQnpiJlvm7ubD70YUeV9s2Pg9/0U6Qv8r2AIhG/94HHV6Gnj5sKvTu8y4coIHKfFoRQ0ZJgM6UcPomo3RiPl9KXE5GRhlGUetjue5WVRxK9jMum7dWY79ehdBEHB2tmfYsJZ4eDjRf0ATDuwPwsXFnvHj38SlmAMeHk74+FisF2bO6sGpk/fx8HDi6NG7mM0yDnZ6JJ0GzDJN2tdkxprhBY7VaVAzREEg/EEMEaFx1G9VjUe3IjAbzWh0WpLj0xk7tw/fTNpCqXLFad29Ho7O9sxeP+qV9+PUziss/XATdvY6Og5uwdDPuvNG38Y0frM2U3p+w7B60xn8WTcGftwZgInLB9NrbHtcizvjXtySNRs9vz/F3J0xmyWCTtwhNk+F2c5Bz8i5/bl/OYyuI9qit7f0xjwLjeOjtvOQTBJ9J3airF8ZJJPEoKnd0dvpqNmsKgCDp/fimzHrALh06CZoRJAU6z/MPcZ2YMS8AWi0GkKuh6MoqrVh22ySWPjeauwcJ2DMMRHQvlahBuV+E7vQb2J+BsWYa8zvp9JqUGSFwbP60G5gC4b6T8JsNGM2mvmwxUy2hK20erLVaFqV3bE/8uReFFPfWkBGShbelUvx8Q+jOPnzeZp0rY9XuYKfG0cXBwRRKKCFBJaAxsn11VNcvrXzZRyc3Zz46tdpBO6+Qrt3WqK3LziV12nEG/w8dzdg0UzS6rWgquRkGV65/p9FVVWuHb2FIdtIy76NrTYiNmz83bEFQjb+caSbDCwKOodeo2FK/dY4aC1fxlXcirPjrUG02beGyMxUNKLIiBqNGOpXv8D+K1p2Z8GN0zQs6UPT34kqAuj1WgRBsIyQvzTGPWpUW0aNerXuTNWqpflmya9kZxupU7ccer0Wd1khMDwBwU5HrSaVCjUKazQind8tqB0TF5nECsMOXD2d6fxOMxyc7Nh4cRaSWebO5TB8KpagZBFNvi/YuugwqqJiyDFxYM1pJJPE+EWDCL0VQeyTRFRVZdfKE9ZAKCs9hznvrCIxOoVhM3rS78OO2DnoGTajJ2G3Iji85pR17c7vtabHmPb0HNuhwDFvnnmAZJYsJb4jt1hzdX6R5/aykjSA+iLDpoKcpyGk0VruedWAirTs0YArx26RlZoDgKARmDtwJRqtiHflUqy+VLSVxwvm7ZvMjsWHqN++Ji7uzvjWLkfFmhZhzp4fdGT38iMAKJJCRkqmNRB6gW+tcrQb1ILDa06REJFI0Kl7CKLA9q8P8PV7qyld0YuvjnxOMQ9nPEq58c3p2Zzccp5f1/4GokCNplUZufCdAmPzL5ObbWBev6U8C43j03VjqNOmBrVbVad2q+pFbu9Z2h2NTmMNDnV6LcZcI+f3XqH9uy0JaF/7tffjdZz8OZBvx61HACIePmPonML2KTb+GfyXTY39j2MLhGz841h88xw7Ht9FFASK6e2ZVLeg4q9ZkVEBrSDS3rsSRyMfEZeTwaCqdXHW2dG0VDkOdx32yvWHD2+Nk5Mder2Wvn0bFXgvPj6N6OhU6tYthzbvCzsnx8jcL/YTHp5AVpYBRVF5FpXM9h3jMRnMVKxYAr29js7vNPtT11e6fHFGzezBpkVH2b/hHG+P74AgCCwYu5HbeSKOq49PoXT5wmPZAFXrlSc+Msnyg4q1lFOxhg96Ox2KotAwT6gR4M75R6QnZaEoKnu/P0W/D/MbkMv6lcajpCtJMak06lib0V8NLHCsxJgUZLNMk0512brwIIqcQ+/xHQncew1Drol2A5paAxuA6o0r06RzXe4EhtB1ZFv2fXcMs0FBEAXK+3vT/+Ou1m1FUWT0oncYPm8AD66EsnLCT7gWL0ZCZCKGbCORwTGoqvpaI94azfyYu88PQ44RY44J1+IuXDt2m6SYFIbO6Uv56t7sWHyINv2b4l2pVJFrmPP6ixAh5GoYdwJDMBst5amo4Bgu7LvGm0NaMbffUoth6+LB9J3UhfTEDKo2qFTo/AL3XGHVhJ/wa+BL0+4NuHs+GGOOiW/Hr2f9/aWvvBawlOM+XTuGJaO+RzYr5OZlggQE0l9h2gp5Rr+fb+XigRu8M703Hd5tVWib6NA4JJOEIis8C4kFID0pg6CT96jZwq9IGQAbNv4O2AIhG/849Bot4ouMzUs+Yi9Y/0ZfVt27TOOSZUky5DDl0lEkVeF0dDjudg50KFuF3pVqvnJ9e3sdQ4cWHg+PjUll1Kj1ADRs6MucL3oDcPLkfe7cibKMtech501o6e119BldtNaOZJZJjk+jhLe7tQwRGRqPo4s980dvJD4qmbtXHlOtXgXqtahKyM0IDDkm7B31RIUlvDIQmrR8CJEhcUSFxlG9YSVGftGHwAM3WDd7D3VaVGXAxE5UrOFt3b56w0potJbjpydnceO3BzRoZwmU7B3tWHNtASnxaXj9Lgt16+xDZg9YAcBHK4byS9gyZLPM6Z2X+e6Tn0G1lMxGfNHPuo9GIzJn20fWn/V6DTuXHUEURKasHW3V+gE4+OMpvp+8BUVWEAT48Nth/DBlq7VHRlVVDq35je6j8/udiiLmcTzjm83AlGui47A2nNp6HlWFB5ceMXROf56FxuHjV5qDP5wkKy2LzsPfwC2v8VhVVaJD45HMMqUretG8Z0PuXXhkKYEJlhJY8TLu3A0M5tbp+xiyjXw/aRP7kjdQqoJXoXNJfZ7O/LeXoyoqV4/eonqTqqCCvZMdletWeO11qKrKxf3XWfvZVmRzfrOaIEDr/k1p1bfJK/eNfBjNwdUnMOaaWDrqR9q/07JQgNZnYmceXX9MbpaBEV8ORFEUxjb4jMzkLBRFYcjsfvT9uGuBwPY/5dGNcHYvPUyVAF/6TOxSpJSCDRt/NbZAyMY/jsn1WlFMZ4edRsuI6oUbZ6u5l2Blq+4A7Ay7iwpIisK159EoqsqZmCfUK1GG0o4uDDyxjQcpz5kW0JZh/vmj2llZBg4fvo13GXdatrKInj7Nmx4yGMw8yPO3SkhIJywsAVVV0es1SJKMKIr4+hb+EnwZk1Fi3FuLiH+WTN3mVZm3aTR71pxh85KjCGAt0ZgMJuS8BuxRs3rxw6w9VK7lQ70WVYtc99qJe9y5+Iih07pz92Iorp4uODrbs/LTX8hKyyEzNYfOw1pZAy9VVdn89UGMBosFhaqobFt61BoIAVYxxt9z/eRda1Dyw9RfWDJ6HaUrlqBB+1pIJhlFlkmISnrtfRg8vTctezWylpZe5vDa36wj/6oK2xcdQpbyAwBZknkU9OS16wPcOHEHs1FCMstcPWKZvjMZzMRHJDKr12IiHkaDqlr7lM5sv8Ta24sBSI5N5f7FEADi8zJRDTvWQRUg6MQdzCaZLwd/x8Kjn1lkEZzsqBLgS3JcKic3n6Nqg0oFnN+jHkZbAigsYpiNOtejwVt1iX/6nCZd80u4siQTFRxDKV8vHJzsATj4wwnWTt2KKTffnNvBxZ6xS4fx1rA2PLkbSVZ6DlXqV2Tft0exd7Knxwcd0Wg1uHm5ImpE7Bz1eJRyQxAEstNzeHz7KVUbVMLByR7X4sX4+vgM69omg4nk2FTrM9g0Zyd2jnp6ju9E5MNoFg1bhUdpN3qO70Ts43jeGNTitb1Qqqoypf08cjJzObvjEteP3WLa1gm2abf/ZVQEW2nMho2/Ow5aHRPrFjbALIqevjW4lxxPdHY6NxNjSTcZLGUzUcPlhCgepSVhUmSW3blAuVh7nkYk0qtXQxZ9fZhbtyLQaEQcnfqi02kJD0/A28ediKdJVKhYAllWmDRxK0lJmYiiwJgx7fDyKkZsbCod33p1r0bM00SmDviO5Ph0AG6cCUaWZC4dtwQWL7IzAIIoEvEojgZt/HmjZwBv9Hy1rk5UaBwLRqzBZDCzd7Wlr0dvr8PZ1YHy1cpYDFVRC2SS4iKSOL3rKpIpf9ot7E4kD69ZGpX96lcoNB7/gjffbcmJLRcw5prITrdIFcQ9TST8bhTFvd1JiEzi8e1IDDlGq1VIUVSo7lPk611HtWP1Jz9b9XKadK7HuT1XyUrLxrOMO/aOdgya0v2V676gYce6bJ67G0VR6D2xM5cO3sCYY2LCqhHM6r2kkDhhVEgscU8T2L38KA8uPaJEWU8So1Mo5uHMxlk7LQ3ckpxvDqvTkJtlZO3dJUQ8iKbeGzUY33g6USExaHUavrv6JRVqWIxp/ZtWpXrTKty/+AhBEDix6RxjvhlSIBt0+8x95g1YTnZGDh6l3Fj/YCkOTvbEhScgmfOzjsV9PFhxfh4lfDwJOnWXOb2XIIgC5fx9eHovEkEUEEWBziPbEbjrMoNn98PF3YkmXepjMpgYVedTstKyKeHjydq7Swo1R+vt9YxePJgNM7blebUJeRpN8N2EjYQGPUGr03Lj+B1Ejcjp7RdZdu6L1z6Lly1Rbp9+QP/S71OjuR9Lz86xNWfb+B/DFgjZ+Fej12iY1+RNAELTEtkedodWZXwp6+zK5bgIDJKEVhCplebOl2sPoqpw5XI4Gq2IJClotRqiIpNZu/YMkiQjCAKyrPDgfgxnzwaTmZmLLCtotVpq1iqLRiNSvkJxnJ3tX3lO2787YQ2CAJyKOaDRahj00ZvMHbUBFzdHGr5RnePbr1hKL6X+3G/MplxzIe8tVVWRzDLzto3nxm8PqFjTh5LlirNn1UmObblAp6EtcXRxwKi1ZJ7MRgnJJPFZr2VotCKV65Rj8cF809u9q47z09y9VGvoy4K9n/DzwyUMqTGZTGO+F5gh20hKnqlqSkI6j+9EUrNp0RksgPiIRESNUKgHpfvo9rTp25hLh4NwdHGkSZd61G5ZDa/yJTi55Txndl7m1C8XGZpnZPoqylQqybbI1ZgNZqZ3/5qn958hCAJOro7M3jmJn+fuITMtm7uBFlVrvb2O45sCObXlPIZsI24limFnryMjJRPZrOSXxQQVVKjd0p/wu5FM77qQKvUrUrdtDdKTM5Aly8j/y7pCejsdn6wdw+h6UywB64ojDP9yoFWZWpYVpnddaM20pSdmEBMWT+W6FRgwpQcRD54hmWSmbhpHiZc0lUKDniCZJWRJIfFZMpJZRhQFcjIMfDV4JRf3Xwdg+Py3rX1W6UkZmI0SMWFxGHNMOBTxme09oTPt3mnBj5O34OTqSK8POwEWEcfgK2HIsowgiJgMZu5fDKG761AmbxhLyz6Fy3SCIPD18enM7Lm4QD/Tw0uh3DsfQp3WRTeI2/jr+ZdNz9sCIRs2XlDVrQSzGlr6SWRFYfrVEyioaASRclnOxOX96xAbm8rq74exevUpypXzpFx5T0wmCVUFUbQ40YOKu7sTX8ztw+ZNF2jarDIhIbGs+u4kqgrz5vWhQcPCZqoAslTwn6HqDSzqzAGt/TkQainJ7FlzxqLFg8qZ/UG0yRNKzEzLIS0pE59KXoV6PCrXKceIWb3ZsvgwWWk5+FQuSQlvD36cuYvDG86x/MRnOLs6kvo8g43z9yFLCmtn7kZvr6N4aTe6jWzL2lm7UWQFs0nCbILg608IOv2A5LhUWvZowLoZlozI3fOPuPHbfSpW9yE3u+DoduSjGOq08Od2YDAOznb41iz7ymdydvcVvhm9FoBZ2ybQ8M2CmbTbgQ/Zvvgw9dvVJHDfNa4fu4OiKMiSgizJbF9yiP4fdynyS/xlXthgPL33zJKhcrIj/ulzajTzsypLH11/mu8m/EQZ35I07lyXvSuOorfX4VrchYSoJCSTjEYr0rxHQ94a3paQq49p2i0A31rl6OU5HLPRzJN7kdwNfMisnR+zceZ2qjaoxMaZ2zHmmpj+ywTKVCpFibLFKebpQmpCGqIoMqHlTKJDYmnRqxH13qiFVqe1BkKV6lagYt79c/dyZeGvRXu1vTmkNWd3XCIzJYtaLapxbrdFA0rvqOfR9XDrdkfW/sbDK2EM/Kwnbfo3I3DPFbqO7vDa++davBhTNn4AwI7FB/hlwT7qvlHDYiLr5crB709w5XAQqBZRy/kDV3DM2DjPmLdglse/SVV2x68lNjye9/wtWlGiVizUf2bDxl+JLRCyYaMIXkycpRsNaAWBds39uXE8DFVVadPGn/Lli/P1128DsGHDOchzfarmX4bWrapRxtud+vUrAFj/P2P6LquD/fnzj6gfUBFRLFyL7/JuMy4cuY2qqtRpVoVPlg5izdz9BJ0LpqK/N50GNcW9uAtanQZFFElPzuLx/WicXOwZ32kJkiTTbUgLRs7oUXjt91qjtdPyLCyec3uvExOeACokJ6Rz58Ijmneph4OzvdULDcBkMJMcn4aDkx0tutUncP8N63uKrDC91zdodBqObw4skHHSaERKlvOk/dvNObY50Pq6IAg8uBIGQG6m0Trq/YL05ExCbz6lRpMqXDxww/qlf+3YbQQBfl6wj8ad6jJoag+WjllPbpaBU79cpJiHE4YcI3aOeuwc9aiygmuJYpY/qyonfj5PZEgM9g56ajTzw9XTmR3fHKZe2xp0Hm6RPfhg2RA2zNxJ3dbVqda4SoHz6jziDTqPyG9sX/jrNDbO3EF2Rg4+VUsT+TCGIbP7WifbAl7q/an7Rg1uHL+DRqPBt3Z5PEu7s+S32ayfvo0Hl0NRZZUN07czY/tE7Bz0DJrWi2/HrUdG4XHQUwBObTlP4O6rKIqCZxl3uo19k3em9S70jIvCs7Q7PwR9zc3f7rF3xdEXT4K0hDT6T+7G9x9vBlUlOS6VhMhEgq+EsituLZM3fFBorXvng0mKSaFln8ZodQW/QjbO2I4sKVw5HMTj25FMXD2STsPbcu3YTZS8AF+RFTbM2M6ORQco61eGby/NR5YU5vReQlpiOtO2fETlehXZEfMj53Zewr9JFUpVfH1PnY2/kP8+09X/cWyBkA0bRSAIAvs7DeZo5COaly5PTc9SlF3lRlpaDg0aFMzklPXxyNMWgnr1ytO3X6Mi1xw4sCl37kZhyDVz7NhdEp5nsHDhANKSs5DNMp55Ja4aDX354dRUMlKz8atbniM/X+TAxkAUWSEqLIELR2/zzqSOTFj0NssnbyPs7jM+7fMto2b2QJYVTAYz54/cpmW3eoTcjKB1t3poNCLh959x/eR9Dm04ax2Zf4EoClTL8wWzd9RTvaEvIUFPURUVUSNgzDWzfNLPdB7SEo1WRJYUi16NyRKkyGaZB1ce07Z/E87vu071JpWp1bwqgiAwceUwqjX0ZevXB0lPykRRlLyeEosIYnamAZe8aTBDjpHRjWdgyDHhWcqNj1e/x+UjNzGbJEKuh3Ny63lys4w8vf+Mxm/VpYyvF9GP4xGAEfPf5qc5uyjv782Hy4fy5P4zKtUuR1JsKiHXwln1yWaMOSYQLBkgeyc7MpKzuPrrbXyqlGL1pE3EhCcwYdUI2g/64x6zjJRMQq4/xmQwU7JCCQ6n//TKbWdsn0TojXBK+5bELc+MFaBctTKWYEKnUrZavrL0xpk7ilzHlNe0nhybypZ5e+j/aXeeRyURuPsy9dvVtvqNFcX2r/ezbeF+i8WIRkSSZHz8yvDWsLYEtK9DQmQic/p+gyAI2L2iZ+vmqbvM6rkYWZLZvewIywK/KGAoWyXAl/DbEZiNEs8jE5nW5Svq/R/23jo6ioP9375mLR5CAgkEAiQ4BHd3p1gLRYoUlyItULRo0QJFW6TFXYoVirt7cAjESIh7sr4z7x+zLIQEaZ/+nvfpt3udw2GzO7Yze3buveXzaRxIl7Ht2LngIFgk1I5qDv9yAkmUiAmLo3eJkYgWEW26DovJwqoxm/jh5BRePo9h1bebMelNOLs7sejsdPwD/ey9Qnb+duyBkJ1/JBbjDUwZy1A4NETj8uX/k334uXkwKLCG7e8SJfLnuFzTZoG4uzuh15uoV1+2tLh26gHXTz6kVY/aBJSRR9HLBhZk2bLeDBm8DqPRzPVrIQRdCmZKn9Xy+PE3reg8VC7N+RbJi2+RvCTGpKDXZrUFsZhFgi49IzYiGaPebH3OQumq/uTO60ZcZBKtetRmXJdliBaJgxvOkxmbgl5nRKEQsgVBKrWS+QdG4/XGVNb0rV9xbOsl8vvnZdnozSTFpoEEp3ZfpXzdEjy8+hxJApWLI7qUdBAlkCTCH7yg49BmPLsbQUffodT5pDKTNw2j+Rd1uXjgBteP3UVCsApSQs1WFbOIKCbFpJKZpsNkMPMyNI7iFf3x9PEgNiKBiMcvcXRxwGSVIXDN7cL8PyZw5fAdSlQuQqFSBWjUuaZ1OylIkkTvUt9gMVuo1CzQ2sAsgihhsE6GgVxefHT1GdEhsRh1RjZO2/VRgVDQmYe2bTi7OmI2mTm2/gxqRzVNetTLcsNWKhWUfivDBNCoax3WT9lJUnQyN44F0WtqZ1n2wfF1cFHrk6po07QEnX2YZV0HJw0IMLLud2SkZLJ1zl42PVueJdB6k1fj+yCrWUuixO5Fv1O9ZSV0GXqqNCvPlJ1fc+/cI1r2bcTJrRdIS8ogKToZfaaB3tM6E/4oytZrFHwzhI3Td9F/dnfbPhacnMqWWXvYNmef7blHV4PpO6sbtdpWZd13O6jZtgoRDyM5ueU8ZpPldT+QAEq1Eic3uQx3aPUJTNbzq03TMaTyOBxdHJh1aALl6uZsHWPnb+Jf1iRkD4Ts/CPRJ/UDKQWL4QpKTXWU6rIfXun/EYIgUKNmMUBWfd6z+jRHt13GbLJwet9Ndt2fY+vXKVgwNwEBeXn6NIaGjUpz48wj28103ez9KBGpWL808wb9IjdiP4kGQaBR11qEP4klNjIJpUpBt+HNmNDtZ+v+oduI5gSU8mXt+cmIokTw3Qi2LzuOyWgiKSYFS6Y+m8eVV34PylQPoFL90tk0h1zcnShU3IdtCw5mKZN5erlw58Q93D1dmbVvNIVLFWDKZ4u4eeIeAKH3XxD+MBKLKIGg4PLhO2QkZ3J+33VunbyPZBFRqJX4BvhQvl4phszrnmW/+f3z0qRrbc7vu0GHwU3ROKopXb0oqYnpSJLEpE3DeHorjMDaJWwj+027Z1XeDrkbwcj6UzDpTbZjv3kkKOuXu9kCahXOuZxp+nkt0hJSQRBwcNZQtUWFj7ru4Q8jrR8AqNayIhum7mDvksMggDZdR/uhLT+4jcSXySTFpGA2WXh6I4SQexGE3Alj4pYRbJi6k2e3Q7l/8TEdR7TKEggVKl2AYUu+RCEIaNN1iBZRVgvP1MM7AiFZWkD+HIoiICgoXjmAPmW+QbRYqNwkkB4TO9FvdneObTzLshHrMBvNtl6e26fuE/4oymZEJSgEdOlZ+78cnDR0G9+R4xvPkRCVhEKpwNHZgYIl8jO0+kRiwuN5fO05P56dSkD5Qvw8esPrlSU5oL958i6XD96g/qc1ObnlvE0SQZIkdBl6JrSaxb6kddnKcnbs/FXsnyQ7/0gEhQuSRf4lKQjv1ib5bzOh6wriopJsmjNGvYmwxy+5cDiI6k3KUrJiYZav6E16mg6NRkV0WAL7157FZDAjGoxcOnyHy4eDCH/0MqsnlcHEssOvp7MkSaJYuYJEBMeQO487nw1uAshBmVIpULJiYTr0rc/Ns4/pNbY1J7dd4urRuzTtWovTe65h0BrpM7kDDy48Zunwtaz4egPLzk3l8qHb6NL1VGxUhmndlmLSm1A5qPD08SAjKYP4F4mIFhG91kByTCpFyxWy7VdQCiDJhq4u7k6YTCJFyhTAxcMZbboOQQCFUiCwZnHm/zHBFhw+uvaM22ce0vCzGvgG+DBqaR9GLe1je6/f/jqYO2ceks/fmwJFfShfr/R7r8H9i4+RRClLAJfTL1zRbMaSqWXf0t9RqpTU7ViDLmPbU7yy/0dd6x6TOhF8OxRnd2fa9G/C2omymKNCKZD0Mtm2nF5rICMlkzy+ntm2oXZUU7RCYZ5cf06ttlUYVfc7TEYzjk4a9DqjrX/q4eWn+PjntTndRzyOYs34Lfx8fS5Tdn7NzgUHafR57RxFGm0ohGwuvwnRySBKGHUmrhy6ze2TDxi3YRhJsamIZhGLRZSvkwAvnkRbH8vbyF/Umz4zsttsOLk6sjlkOcmxKcRHJuFX0hdXDxdZRFQCo8HExLbzKFHFH9EivYrNbJ8H0SSyaOAqfIvmY8X1OegzDZzZfol9y48Achn21PYLnNt1lfbDWlCtRcVsx2DnP+Pf1iMkvD1O+79M1apVpRs3bnx4QTv/5xHNEZi0u1A5VEfpkF3l+f8vPq8wkbSk16PiSpUCtUaFXmfEwVHN5uszSE/RMrLtQrQZekb90I2yVf0Z03Y+mSk6pmweyuU/7nB8y0UsFhEJuawy57dvKFP9df/H+QM3WTB0LZ75c/PD/tHk8c2d4/GkJKSx4pvNKNVKvlrYE1cPZ0xGeQTeydWRtnkGYLaWmgICC/LiaQwmoxmlSoGgEBAtEkqlAoVSgUFnRBBAqVKSK48bKy/PxM3TlZiweJaN2oAoitw+/QCFQqBN/8a0G9wMX39vlColBp2RNRO3kZ6cyeB5PcjtI/dDJUan8GW5MZiMZtw9Xdkeuuy9lhgfQ2J0MqPqTyUxOlk+h5acv+Mk0WJNjcjUbFuFmQfG/+X9jqwzicdXnyEhkaeAJ+5eboxaOYgJrWejzzTQfWJHen73mW355LhU+pb+GrPJTNnaJWk/rAVTOvxge/3NQNjN04UVV+fw8nks0zotwKA3ElC+MCtvzvvo41s+aj0HfjqW7fm8BT2Jj0qymc9+9nUbekzsyNKv1pKWlI6njweCQiA5JpWbJ+5isYhoHNSMXTuEBu9Rq36beoho+QAAIABJREFU0PsvWDZ8LY+uPcNisuDm6QKSHGwVLlOQR5eDUTuoZNsX62eySKAfq2/L52TLrN84/9sVWvVtzOpxmzEZzKgdVOxNWJvNfPb/EoIg3JQkqep/a3+ORQtIfnOH/Ff29azLd//V9/Yu7F1ndv6RKFSFcHAf/bcHQZIksebKdfrv3Mu96Jg/vf60dQOp3rgMDk5qVGolao1K/lKXQLTImj1XT9xHrzViMYvs++UM+YvkZcv9H9gXuZzKDcsweNbnjF7Rl9l7vmZv+FJ+C1uaJQgSRZH5g37BoDUSExLLdWtZKic2zNzLpd9vcn7fdbYv/B2QlaBfjUO7uL8ei3ZydUK0BgYWs4hCoaBG6wp45vOwWYIAFCiWj3V359sanPMVycusfWMoUqagrKNkFnkeFI5f8fw2uwUHJw1f/dibCeuH2oIgkLMlkiSrKGem6bLpHP0VvPLnpu/3XZFEbEGQSq1E7aCWA7xXcZb1gUKpwKdwHoav6J9tW5IksWbcZgaU+4YLe6++d78xoXGIolyiin+RSMjdMJZ99Qu6DD1mo9w/9CYRDyMxm8zoMw08vPwUlUaFUi2fLxcPZ1w9Xhu8pidncvjXU1RuWo7+c7vTondDpu4e/afOiy5dZ3usUL4ONhOik0EClYMKtYOK3YsOMbTGRHpM7EihkgU4seUCR9efxWQyseT8DCo1DiSgQmFKVMlZ/uFd+Af6MWxxH9ukZGaqlsA6pdmXsI4l52Zy1LiNQxmb8S6c17aOSf9aJbvHpE6svDmfRt3qIlj7r1RqFQq7DcffjiT9d/79r2D/BNn5V2MRRWafOEPvbbt5Gp/AraiXLLt4hbMhYQz57eCf3l7pykWYvmEQK09MoO/Ediw+OJrJq/pSsW4JRi3ohkceNyrXL2UNkpQ0+zz7L2qlSknJKkWY0281Hf2Gc+VIUJbX4yKTbA3PkgRRIXHvPB6PPG4oVUqUKgW58rhme11h9WITFAKNutSk9ZcNyVvQEwcnNd3GfsK1I3eJjUjAYrag0qiQJPmm/OakEMDhtafZu/yI7PulEOgztXO2feVEgaI+1O9UHc98Hgxb2PNPTQQlxaSwevwWjm08my2A2jJ7LxazBYVSNmtt3qcBCoUcpLnnccfBRYNSqaTdVy2ZunsMG4KXZxFsPLjyKH1KjmDpsDXsXniAsAcvmNllEQad4e3DsPH16sFZ/lYolYTceyGXtwToOKJ1ltfL1C5J0QpFrNYbjvgUzkPH4a0oWa0oQxf2Rpv2OnBRO6gpV7cUgiDQflhLRv8ymPx/cqS8VLVitsfdxnWwZd5eBYtmg9kmupn4Mpmvak1m74ojNguN26cesHDgKoLOPuTJteesHL3xT+0foGiFwvSe1hmVRoVokYh6Fmt7TRAEgm+F0ntGFyo3LUfpmsWZuvt1OfjxtWdsmf0bN47eYfah8Xw+th2Lzky39wrZ+Y+xf4Ls/Kt4GBvH+EPHyO/uyqJ2rTkXEsb2oHvoTGa+OfAH05o3RhQlFIKAq0ZDyMMoTuy6Rs3mgZSvlX3qB2Qj1Mw0HaWrFLHdXPIV8qJj/4YAFC6Rj5rNX2vKFCqej803ZqDPNODpk7Mq9IUDt0hLzsBssrB90WHqvOEzldc3Ny65nMlM1QLkqEX0ih7j2+Ho4sCF/TeICo7NYmchiiJpienygpJEyaoBtO3fmGELewJyL8fupUcw6o2oNCpa9W7A4+vP6Tsje5Bz8eDNLL/wfN5h+Po2wbdDOb/3Oga9kR2LfqfVlw0/aj2AmV2X8OiqXE7xzOdB1eavm5xLVAkg4lEUonVce8Ds7tw+cZ/o0DiMeiOrbs7D28/LdhONCYtDoVTg7ZcHvdbA8hFrEc2iNcvzWv9meM2JDF/eD5Anu0q+EVzUbFuFQmUKEv1cvrk36Vmf09suYjZCyapF6TQyayCk1qgoWa0oj64EkxybwtBqEylZNYBnt8P4cchqvArkJiU2Fe9CeZi2ZwyF32E18rE8vRVqexwTHk/V5uW5c+ZBtilCQJYZeBsJQu+9AOTskXcO/nIfQ8fhrXgeFE74w0hGruhne/5NG5D2w1rSb1Y3Hl97xtBq43HzcuPe+UeYjWYUSgXNezXgm9WD/tL+7bwfiX9fj5A9ELLzr2L6sdM8iosnJDGJvfceUjyPF5IEaoUCSZLotW03SoWCzysGMrB6NUbUmoUu08DeX88wZU0/arXIqmx8+/wTpvddA4LA5181pduIFh91HM6ujji/R633+ol7Nn+v5Pg0EmNSbOPtSpWSn85+x7yBv+CW24XPvnr3PlVqFaH3X/D8bgRhDyLJH5CXz62Cf4Ig4ObpSnpSJiq1EoPWyJcVx5GakEbXMZ/QZVRrlp2dyvVjd6naNJACxfK9cz/dv23HndMPMJssVKhf2qYEnJ6cyZXDtylZNYBCJX2zrWcruUnYMg8fi1FvRBIlBASMehPadB2LBq/h1vG7eObzQO2gxmQwYTGLuORyxjW3C4SCyWDm8sGbfGoNTM7tvsy8XssAmLJ7DFVbVCCXlxvaNB0KlRJ9hs4W5IXei2Bs0xnWpnQFY9cNo0GX2oA8Jh71LBqL9bodXXuKio0DAQVfLc1Z4qFYZX+UGiWiXsSgNdhsPAAKFM/H7EMTKFAs39+S9ShRxZ/jG8+iUClpO6AJ+QN8mPTJPIwGE0jw4slL8gd4Y7GIxIW/3ww3l5cbj64+o5VLT/L7ezNz31jSEtMpXtmf+BeJuHm6ZintvYlao2LCxq+yPf88KByL2YLZZOGRVXBz0aBVhN1/Yc0gyedVtIiE3n/xH54NO3ZeYw+E7PwjkMQ0dIndkCyhaHLNQ+30yV/aTrE8njyKi0OSoHBuD2oU9mNx+9aEJiVz9EkwJlHEIknkd3Mnv5srxle/liVYPX1ftkDoyZ1wTCYLokUk6GIwxcsVYsXkXZSoUIixS3qisvZ8vI/HN0LY8sPvVGpQik5Dm5ORquX2mdc3xISoZHoGfsvkDUOo3aYSAD6F8rDoyIcbe5/fiyAlMQOFUoGgFHBxfz1hJwgCi09M5vy+61SoX5qV47cSbS2zrZ++h2bd6+Ab4E37wU0/uJ+ytUqwJXgJTm6OOLzRuDqmxSyiQ+MQBIFfbs/l1on76LUGWvVthMZBTamqRRmysCf3Lzy2KTK/iSiKxIbFk/eN7M0rJm0ZwfppO/EP9KPWJ1X4efRGzu2+ApI8vl6xUVk0jhr6z+oGQOPudQh7EIlSpaBSo0DSkzMQBIELe6/ZpAWuHLxBjdaV+enmfK7/cZtCZQoyuuHULOrXrx6LCoFHV4NtgdDFvVdtQRCAJEo4OGmYuf/d16nZF/U5teUCN44FZXst6PRD3HK7/C1BkCRJrBm/FVGUUArgkdedE5vPy7pARjOVmwVSs00lDDojfqUKsGrMJhDk9Sym7AFq4stkEq2TcXEvEhhSfSKSWcQ5lxOpCekIAkzeOpI6Hap99DE279WA83uukBKXRv85sqyCb9F8RD+PRZIkilYIIOzBCzy8czH8HYGlnb8BCbBnhOzY+d/DYjiJZHkOkg5T+l8PhKY1b0yNQn74uLpQo7Ds0dSkuNyInMfFmQcxcaiVShoXC0CpUjJkRid+mrwbhUpBkVLZBRWbda7B6b03SU/R0vvbNswavI7EmFRSEtK5ceYRNZsFEvsikfCnMVSsUyKLUN4rpn+xguS4NO5eeELZmsXJ75/3lWOHDVGU2LH4CGqNihKVi5DLy+2D7zX0YSTftJwLCOQL8KHTkKa06FU/yzL5iuSl8yg5M5K/SF4eXnkGgEqjwsnl/f5cAJd+v8n2Hw7i6uFM0NlHuLg78/PVWXjll7NX0SFxGHRGHJw17P/5OAdWnkCSJGLCExg0V77ZterdgFa9GwByVkBQCARYx/Intp3HvfOPyFfEm5U352Zxuvct6sPETcMB0GXquX/hie2cCYKCzt98QpWmr0uSn45oTZ121XB2d+LJ9ecMr/MdggAD5nXnysEbKJQK2gxsBkAeX09a9WuCQWfA2c0Jk8GEg7MD7l5uGHVGRFHE2c2JDlaTUYD6nWuxb/kfGHVGEARUKiWdRrbJds4sZguntl3Exd2JWu2q8vDK0xzPrWgRuf7HHVp82eiD1+FjcHDSoNcaEBQK1A5qfArnRalSoFRpMGiN7PvpGJJFpHG3OjTtWY8ja898cJtyJVhANFsw6k0Y3mhunvXFUvYlrs3WT/YuPPK6s+zSrCzPjd/4FWd2XMK3WL4PyibYsfNXsQdCdv4RKNTWG5rghFLzYdXfd6FWKmlXNmdV2g6BZWhYNACNUomzRv7ybtOzLsUC/YgKjaNOq+xCe175crHq1ATb34WL55Onn0QJ3yJ5iH+ZzJBm85AkiZIVCzN3R/aSgJOrIykJsmCgo7MD7rldGbm4F3t/Oo5/2QJcOnwHSZSIDY9nVt9VODppWH9njq3X511Eh8YjCAJ6rRGj3kTrD/TfjFz6JX4lfImPSuLTr1rg6PL+7YuiyKyeK2zj9wAGvZGgcw+p1aYy9y8+YdDc7uxafJiqzcujcVRjsYiIFpGUN9zFX3Fi6wWWDJdF/HyL+jBtxyhuWSfiYsPjiQ6JpVCpAjkey/Z5+wl7GIkggG+xfHyzeiDl6sjXOfh2KM/uhFG/Uw3yFZEnkk5sPo/JIGeBwu69YH+q3PgrCAKx4fHM6LwQQSEwZddoVgct4O7Zh1RoVJb9y48Qei+CKs0rsOX73Szo+xPf/z4BR2cHSlQpyp74tYgWEQdnByRRsk3Nvcmvk7Zx4KejSBKM/Kk/n37dhk3Td+f4voT39H/9GQRBYOGpKRzfdI7KTcrhXSgP3oXy4OQq24xcO3qbBxefIigEFEqBs7uuvLHuuyd8xq4dQoUGZZjR5Uee3AjJ8prZaGH3ot/pPqHjXz5uR2cHWv5NgaAdO+/CHgjZ+UcgKPKAkAfEKARV+Q+v8BdJ1euJy8igasECCIKAJElcOnqXRzdD8fXPS8mKhdm/9izBd1/QfVQLCrw1ufPdr/25cuw+hUv4UKh4Pu5cfIokSei1Rp7dj8xxn3P2fsORTecpW70Yha1+U6161qNVT1kaID05k7SkDPrX+A5JlLCYLaTEp5HvjTHjnKjWrBzVmpfnWVA4wxd8AUDYoyj2/XSMyo3KkqeAJ8/vhlO/U3VyebmhcVTTdUz28tQ7z1ViOg5OGlnrRpBLQY7ODlRsUIZRjWcQExaPxkHN+gcLcXF3QpuuIzYsAV2mngGzumbb3u3TD2wlqsjgGGb1Wk6jrrU5s+MyxSoWybFH6fmdMHSZetQaNYJCQKVRUeuTKrYgKPJpNN80nI7FIrL5+99YfWseLrmcadm3ERf3X0cQBJp+US+LdtHm73cTfCsEAYFtc/Yy8qcBNO5ejwt7r7J3yWH0WgM3jt7BbLKgTQ/mtx9/p9vETrJHl9MbweM7BuBePo+xNSOv/nYz2yJ+plbbKoxuPB1duh6FUtZvAljYfyV1O9XA2c3po6/LuyhUqgD9rGVCkMteHj658Cvpy6LBa2zPVW9diZS4dK4cugVAvU9r8PJ5LOEPIjGZzK8zlYJcIpvSaQEmg5n6n9Ug6Owj3DydiXwag0Kh4NCaU+Tz96Zx16zq32EPIhnfajaSKDH70HiKVij80e/DbDKTFJ1CXj8vBEEgOjSO4FshVG1e4W85T3b+t0bb/xvYAyE7/wgshjMgJgAi5szlaFy7f2iVP82DmFi6bt6JIEDn8oF816wRdy4+5cC6c+i1RmYPWU+PUS1YPWMfkijx7N4LVp2amGUbjk4aGrZ/PeEVWL0oleqW5OGNUPp/l90NHsDHz4veEzuwe9lR5g5cQ7Vm5Rj7c18UCgUvQ+L4Y+M5ytcpSdu+DTi6+SK1WlXk8uE77Fh8hHrtqzB0XrccRQjVGhWT1madrJnUYQGJ0Smc3H4JSQKz0cyKMZuZtGEo9f5EP4fZZGZY7amYLSIaJzWzD3yLX/H8OLo4oFAqCH8YJesDiRIJUUm4uBfA2c2JBp/V5Ont0By/aDuPasOVP2RLDpCDNrPRQoOudRi9sl+27MqVQ7eY1X0pCALdJ7Snx4QOWMwiXca8LpvGRyUhihJmo5n4F4nM7b2CmfvGUqlRWXbHrLYGL1nF+ALKFcbBUYME+FtLdAC6DD2iKKJUKXHxcEGXrsOoM7Jl9m/otQb6zvq4z2TfWd25uPc6ANo0LS+fx1C8cgB7E9byPCichf1+JuReBCDHHC+evKRk1Xebqb6Lc79d5Y9fT9N2YBPqtJevbdiDSI5vPkf1lhVZN3UnDy89RalSoFKrMFt3uObbLXSf2JEbx+9iNpp5dCWYgiXy06JPA3Ln8+DgyuOkxqejcVJzcPUJW2O1WqNiV9RKMtO0rB63hSPrThMfmciCfiup0aoSLrle96ftW3GEpJgUAHYvPsS4ddld7u9feMy6KTsoW7sEJqMc/Fzcf00OEiWJai0rMvKnAQyu8i2SKOFXwpcV1+b86fNkx449ELLzj0ChrgyCAiRHlI4fN5n1Z7kXE4tFFDGJIpfC5BuRe24XJFFCpVbi4eXKwQ0XbGq/kaHxRIfHkxyfgV8xH9w8slt9qNRKpvyaXajvTSwWkcw0Lb9O34MkSlz6/TZhI14SULYg4zosJCEqmf2rT6FQyhmqm6cfcNZ6Iz207gzt+jfC7x2GsG9js+yQsj7e9sPv1OtQjRdPo5nQ7gfMJgsz93xN8YpFctxOUkwqqYnpWMwiKrUSX39v3HK/nhLqM+0zdi46RM3Wlfj1ux3cOH6X+p1qcOngTQx6I1vn7qNh51qMWT3Aph1UpGxBPhvZivXTd8sRgAgvnkYT+yKBUzvK0KpPwyzH8Pj6c4wGE5Io8fByMDP3jc12nBUalKZs7RIEnXmIJEkkx6XaXot8Es39S0+o17E6Xm8oc3cY3ooCxfMjCFDVat9w/egdFg9ejSjKN+BRqwax5fs9/PHrSYw6IzeOBX10IFSopC8NOtfi/G9XCShfmILF5WunVCnZOuc3wh9G2lSlS1QJIKD8x2VLzCYzd04/oECxfLjmdmFerxWYjGZunbyHb4APn49rx+qxm8lI0bLLKq4Jsnimxfy6t0eXaSCgfGGUSgVKZw2JL5OJj0ziwaWnLLkwg2Zf1EefaeBlSAzTPl30xv7lRnEXd2cGL+jJkXVnAFlENOjcI2p/UgVtuo4Le6+Rz98bjZMGAajaLOcM74wui0iJT+PBpScIyJpfb/bNXT54k67j2iNaJAxaA6EPXmCxiCjtAov/OfaMkB07/3soVIVw9r6IZIlHUOWs5/Of4u7giNmqrOxkndQpWrYgU9cO4PmDSJp+Vp0tPx7hubXEJZpF+tWfBZI8HbT5xkxc3D7cYPwm2nQ9wxrMIPZFIm65XTDojJiNZhYM+ZVvVw/AoDXaxAJNBgsWs8VmQgmyWnXud2gR5cT3e0fz27IjVGxUhuvH7nFuzzWUaiX1Osgq9wdWnSDBOg20e+kRJqwdnG0bv3y3k9+WHcE5lzMqtZKWverbHM8fXAnm57GbKVHZn10vfiIqOJphdaZgMYuc3nlZzr5I8s33wv7rdBjajBKVXysUb/r+N5Bkted8RfKSEJWEgJCjT1frfo25uO862nQdvaa+tq54ZRGiUMj/5hwaz8oxm4h8Gs2Qhb0QRZGfR2/kwM/HUSoV7FlymE1Pl9jWFwSB6q0qZdlX0On7mPSy2CCCrF7dc2pn7p59QGJ08kcHQQBBZx4QExbHJ0OaM/TH3giCgCjKSt6Ozg6IkoQkSQTWKcnCM9M+WmRydo9l3Dh+FyRYdGaqrb9IEiWinsWwePAaVJqcG5eVKoXtczXm18EUr+TP0osziQmLY+GAVaQnZWDUmxhWY6LsXJ+D3MGgH76wPXZycXwdaAPTPl3IzpcrmdVtCY+vPQdg0qbh3DxxlwX9fmbRwJV8f3A8lRoF2tZx93IjPTkTSZKQsOplCQKi9Tj9yxWiZLVilKtXihtHgzAbzczvs5wJm0Z81PmyY+cV9kDIzj8GQZEbQZGzp9bfgVkUcVSr0JnMCMLrm0+leiWpVK8kAIOmdeLayQfERcnBwqsve73WSPDdCCrWKfGn9vn0dijJ8WmIFhGD1kjDT6tzfOtFQu5HMrzhTKZsGcahtWeo2rgsZrPI0c0XaN27HjuXHiUpOoXqLcrjmuvjTWcDAv0Ys2oAAE271mHIvO6kp2TiZ81KVGxYhqObziOJEpHB0Vw8eJM6n1TJso1Dv562lZsmrh9C5UZlba/N77eSmLB4Xjx5SfUWFajYsAzuXm5kJGdSuEwBarSqyO7FhzGbLSiVSrwLZhXlK1E5gNAHL1BrVPxwZCJXDt/Gu6AX1Zpnzxp4+3mx5s78LM8d3XCWxUPWkCuPOyuuzMLLNzdKlZJhi/vYlrly6BZ//HoaSZQwixaSopO5e+4hhUoXwCNvzkFly35NOLHlPEatgW7jO5IQlYhea+SX+z9+9LkHiI9MYHzLWZhNFsIevKBYJX9Wjd6IyWhi9qEJdPm2Pae3X5JLr7fDeHojhFLVi31wu4kvk7l38Qn6TAOOLg5EPI6S7TqsGkEALrlcmLxtBD/0XUlKfCqSKOHl60mf6Z3x8M7FsQ1nad67gS1D4x/oh3+gHwtPTWFgpXEgSYgWyabn8woHZwc6jmiZLbNTtXk5bhx7bf/ydcNpJEWnYNAZcXRxwGQycXDVMWvfG/wyYQtLL86yZXTmHZ3E8c3n8SuZnxvH7pIrjxv+Zf2Y9+VPmI1mwu6/wGyyZJGoOL/nKhM2/alLYicbgl1Q0Y6dfyutS5fgfkwsoUlJTGzSMMdlVGolq09PZMm4HTy794KXYbL9hFKpoHiFQjmu8z6KVyyMW24XzEYzjbvUoErjQI5uvgDIU1mZKVqmbXk9adZhkOwy37JXfVLi0shT4D8LDD3yutuyOQB1PqnCjycmM7LRDJ4HRTC370o2PVqIRx53nt4KJeLxS+q0q8LZ3VdxcXfKVjrLW9CLpJgULGYLPw77Fc98Hsw7NJ6M1EyKli+MWqOi01ctuX36AcUqFsbD2z3L+vP/GM/Dq88oUqYgHnndadu/8Z96PzsXHMRiFslIzeTK4Vu06d8k2zKuHs4ICgFBIeDgqMGnkCeT2sxGrVGx/uky3HOQJihYPD/bX6wC4P6FR/QpMQJJkhi8qDefDP64Um1kcDQDy4+xlZAMWiOXD14nI0XuidowbRdPrj9DFGWbEovFgleB7Jmwt3l6K4TRjWdgMYs4OGsoXaMYJSr7y9N8r+QElALthzanUqNANgUv4cqhW3gXyoOnjwfz+/5MWlIGTq6ONrXyN5FEspZK3pB28Mzvwfbwn3I8rq9XDWRYjUmkxMkTglFPZe8+lUZF3Y7VqdmmMi7uzrb3/+x2GF3yD8TT1wO1Rs3UXd/Q9Vu5r65O++qA3Kfl4u6EQWciT4HcqDUqvN7IFv7LKjp2/ibsgZAdO1ZUCgUTmzT44HIOThq+XSrbULwMS+D6qQdEhsYzd+h6+oxrS9GyBRFFkb1rzpAQncLnw5vj4ZXd5wvkfoq1N2aRlpRhU45u0KkaF/bfxMnVkcB32HqoNSryFvzwTfKvUKiULyqNCrPJgiRKLB6+ntptK7Fk+HpEi0ih0gX49fZcPPK6Z9NFmr5zFKd2XOLoxnME3w4jPSmD8/uu0W1sO9syTq6O1H4rywSyvs7pnVdQqZWUqOwvB5g5jJ+/TXxkIi+fxxJYpySNu9dh6+x9KFVKKtQvk+PygXVKMWHjV4Q9jKR1v8Z0LzTYNkof+fQlZWqVfO/+bp+6b+tNOrf7Cp8MbkFcRDzP7oRRqUm5d+ovnd9zxeaq/orHV5+hVCsRkG1JHl8Nlvu3JFkx+9L+67QfmnOgZTaZ2TRzD3sW/4HJKB9PQLkA5h2ZBMCno1pzdP1ZQO6/6jRC1jxSqpTUaF2JWyfusW3OPoLOPrSVuR5fDWbPksN45c/NmF8G4eLuTK48bnLPknWSTaFUIJpFVColSy/OzPHYQu+/YGS9KYgWEXdPV9KSMmyvWUxmTAYTGkcNa4J+4I+1p/ht8WEyUrVkpGZahS5h+/z9jFzRH5PRzKKBssL0iBX9WB20gOCbIQRavde+nPk55/ZcISMpk3J1SjK68XR6TOpE5Sblcjw2Ox/BvyyitAdCduz8B/gWyUPBoj6sn/c7eq2Rl6EJ/Hp+Mmf23WTTwsOYjRaiwxOYtm7gO7eh1qjwyudBRqqWy4fv0H1MW/pP/wy33C7ZtIIe3whh7fQ9lKlRjN6TOvAsKIJJny1GqVIwZ+83FCmds87Oh4gJi+fQujOUrVmcmq0qMv/QOH7/5TSndlziyqHbXDsSZLtZhj+M4nlQOLXe8D97hUsuZz4Z2JTUhHRePIlGlCSKVyxCYnQK2384QIHi+Wg/uFmOU25b5+1n14+HrQGYiIuHCysuzsDnPZ5WMWHxDKo8DkmSqNqsPFN2fk3jrnVwy+2SzeIhKSaF0U1mkBKbyqRtI+k+vgMAfWZ+zsZpuyhWyZ8Tm8+TlphBzbbZA7VXNO5elwM/HUGXrqfLt+3ZtfAA677bjkIhUKSsH8uvzs1xvSrNKrB28vYsNxmj3oRKpUQCilXy5+mNECKfRiOJIhISugxdjts6uv40iwatlvtlFAoEQUDtoKLHpNeaPV/O+BxndydunbhPrymfZTkf8/r8xOWDN+XSkkqJ0XptRVHi8bVnqNQqDv9yihZ9GjKw0re23ii1RmXzJjObLYQEheNd0CvLsWnTddy/+BjRImLUm/DKn5vMdJ1NkVuSIOjsQwC8fD2JePySzHT5fb4qNUsS+FktWS7uu8a53ZcxGcxMbDOHmm0r8/nY9rZReXdPN3ZGrebJjWeMa/Y9Bp2RSW3m4ODiQNdxHWxZJTt23oU9ELJj5z/ExV1uDFUqFbhAvpauAAAgAElEQVTmkr+cXxl1SoBOayQlIR2PPO9Xgx7XbgGRz2IRBFhzZWaOgomzvlxJfFQyT2+HUbF+KY5sumD7tX1gzSlGLOr5l97DxA4LiA6L58DKEyw+NZkSlf3pOdGdM7uvgMmSbfm7F57kGAi9oseEDpSrWwrXXM4UrVCYb1vN4d7FJyjVSiIeRdFjQge88mct68VHJmEymm0BV2ZKJoOrT6TvjC58MjBnm4+wBy9knaZMAzeO3+XR1WBK18g5i3Zm52ViwxMwG81smLrT1tPSZUx7+Z/vAO5feMzR9adZHbSAAsVynsQrUCw/O6N/AWD3ooOsm7zdllEKtY69v40oivzx6ylyebmRlpSBs5sT1VtVIjNNy/Ujd1AoBJKiU/jl3kJS4tNYOXoDLrmc6Ti8dY7b2/HDAVvTsFIhkMs7FxufLs6iY/TkxnO2zNqLQWsk9H4Eu6JW2V67+scdm2ZTnc41CShXGL1Wz4sn0Vw9dAsE8PbLQ/jDSHQZeluA8rbA49xey9mXuNb295bZe9k0czcOzrKMgkqtJDUxHY2DGqMkZ/0AAsoXZmKbuQxe0BNduh5BEFA5KDEbzUiSnLVq0kPW0fLwyWULvjJTtZzccoF75x+z+fly236VSgV58nsiWY/RIopo03Ss+247n49tl2PgbecdSHbTVTt27PxJSlUqwvif+hDyMIpW3WsB0KhjVeJfphB06SkProfQu9Z0Zm4cTPla7258jQ6Lt9lRxL9MxsvXg4XD1nH9+H18A7xJiU8jI1WLQqnAZLSgVCvxzPe6uffVSP2w+d0/qqT0Jgad0XazeyX2l7egF1O2DOfKH3eoUL8ki4dvIDNVi0suZ9r2f7/aryAIVKhfGlEUZSNNs+zHJlpEjm48x+XDt9kavMQmWilaRPpM/Yzk2FTiXiTwIjgGi8mCNl3PT2M203ZAkxxvZuXrl8bRxQF9pgG91sA3jWYwYkVfWn3ZiLSkDK4fuUPpGsXxLepD6ZrFbSPhVVtkVwl/UyHbnEPw9/b7A0iNT5N7egQBlYOKoYtz9sC6d/4xJzafQ59pwDW3C7tjf0GpVBATFsfcnstwcHbgM6vXmkded8ZvHP7e/TfuVpcN03aCJN/4Ryz7MksQlJGSyY75BzAZzAgKAbfcWUuzjk4a9Bl6BAG0aTpehsRSorI/IXcjaNC5JiH3Igh7EEHNTyrj7uVKgnU4wKgzZdlOrjxyj5ckSawet4W9S/9AFCV06XqALGWxwmUKYDGLVGxUlhObzqPXGpjbZwUz945h9bgteOb3oFjFIhxec5LWA5vabGQCa5fEwVlj+1wiyFNubxNyLxyfwnnInc+DkDvhmM1m/Er42oMgOx/EHgjZsfM3ULNZIDWbvR79VSoVdBvRnCe3w6wu8hZ2rzyJm4cz/qVfu7DHRCRw+8wjytUujl/x/Dy/F0HVxmUpVdWf4DvhXDh4C4PW+LrHwvqdrlAo2Dz3INWbl0OpVmIxWchM1XFk0wXyFvCk2+jsHlfvY9r2kWyZd4CytYrz/F4EGalaqjYtR9Vm8r/TOy9jNppRaVSYjCYWDvmVmXu+wcX93Uq+EU9e8nXjGRh0RgpadXkkSQ4yUuJS+bbVHPL6eXHr5H3SEjMYs3oAM38bDUD4w0hGNp6BJEr4FMrzzpvZ/QuP0WXIN12sGYdlw9fy8lkMJ7detBmAbny6hNLVi7Em6AebS/rbzPljEjt/2E/1NpUpXLogkiSxePAqTm29QKt+TRi0oBe/TNjCi8dRDF7Ym4IlfOk6viPxkYmYjGZGrOj/zqmzvAU9kawyC75FfWyTUfmKeLP4fM59Nu+j7aBm7F9xlJT4VJQqJY5v9SVtmLaLq4dvIwhQukZxJm7OGlgNW9KHRYNW4+Lhwu1T9zGbLRxZd9qmEo4kq3KXrV2S+Ucn83XDaei1Bow6k03Oof3Q5nxu7f2KeBTFwVUnbJlQkMfdXXO7oNcZAYkuY9rR7It63Dp5j+ObzqHSKPHI646XrycTNr0+vibd62U5VpVaxYorc7iw7xqCIDeHXz5wk+bqrnz2TVsGzpPH9r/vuhij3kRseAJfzvicAyuPUbZ2Sbnfyh4M/TnsPUJ27Nj5u2jfrwG3zj/BYrIQdPEpX7dfxIqj31LA3xuDzsjg2lMx6E02M1GzyUJUSBwKhQIfPy/5hvmmAav1f9EiEvE4irEr+3Lz5AMeXH2GQWdEtIhs/eF3uoxs+aeyQsUrFWHa9hF833MF144GIQgC03aMpFJDueE4IToFi0W0ZU2e343gwv7rtOhZ/53bPLPrCpmpOiRJIvT+C0D+JZ+3oBeiKHL3/GNUGiWSNYDZseB3Gn8uO7kXLlOQ1ddn8+RmKJUbB+a4/YSopCy2HK8QzSK7Fx/O4hi/ZvwWxq0fRr4ieW1+Y29Tsloxvts52vZ3YnQyxzacxWw0s3/FEYoEFuLgz8cwaA2kxKex/MocXD1cmLB55HvPbVJMCg+vBDNgfk9Es4Xa7aq+d/mPYWyTGWSkZKJQKPjs6zZUblrONn3l6uGCSy5nFEpZGygyOJpNM/fQY2JHfKy2LGEPXmA2mklPSJezSghI1g+XQhAQlLKg49ldV5AE6DzmE3RpWjJTdRzdcJaGn9eyaSAB5PbJhVKlwMHZAWc3Ryo2LItLLie6je+AUWfEYpab7AEqNynH6NWDiAmLo+07Sp5vU6h0AbqX7khCVFKW5u69S/+wBUIeed1JiklBNFvY9P1utKk6jqw7Td1ONeyGrXbeiz0QsvOvJjIllVPPQqjrX5gAr79/CqtS3ZLsfTyfHlWnkJqYgaOzhpiIJAr4e/MyJA69Nd1v1JtQOShxcNLYVKI98rqz8uI0Lhy8xd0Lj7l29F6WX9zJ8elM7PQjqy5NJyokjkG1ZOHCnMoGOWHUm7h44Ab5/b0pVU22cIgNT8CoN6FxUBN8O5RKDctwZOM5Dq09hW+ANxkpWjKsI9YBgYVIS0xnXr+V6DMNjP1lUBb/s6rNyrF78WFEUaRE5QAeXgmmWMUiLDoxmeldl5AcmyqXxpAzaA0618xyfN5+efD2e90orcvQs2b8FrQZekx6M+f3XrUFhgqlAoVSgXchLzJTtHImyKrODLIv2p8lVx43cvvkIj05E08fD7zyewCyyri7Z85TgG+TlphOn1Ij5VKRIAcZa8ZtYequb6jR5t09Vh8iISoRs9GMg7MD1VtX4uaJe0zttBBBgJn7v6XHpE4olAq2zN5Lanw6R9ad4fxv19gauhwnV0dObL6AySCvX7tDFbz98lCmZnHunntEzTaVeXDlKSF3wzm6QZ46EwQBpUpB3Y7V2Z+0lpNbL9Desy9unq7UaV+VyOAYRq8eRMSjSLbPP8DF/dcpU6sEufK6c3zTOXLlccevlFymOr75HIsGrcHF3YmGXWpna2p/Fxum7WTL7N+yZCssZgujm0zn658HsODUVAZUGIvFbEGXrkelUWHUm3l05ak9EPrT/LsyaPZAyM6/FrMo0nH9VrQmE4vOXeLCsAG4Omg+vOKfRKlSMuqHbqyevpfSVf2pWFcWXczt7S6PIltEVBoV3Ua1Ii4ykUFzXhuSehf0otOQZnQa0ozORUeRbvXhesWL4Bi59FTUh2lbvuLCwVu06lUvx2yQJElkpGhlHR1BYP7A1Vw/JisRzz34LVcO3yb4Tph1dN7Mptn78Cvpy9KR620moL2ndKJk5QDyFvTEr0R+1k3bxe3TDxBFibVTdjJxwzDb/srUKM7GR4sw6o14++VBrzXg4KRBEATGrxvK0Y1n8S3qQ5kaxclIycQ3wOe953Hnwt85su5Mjv07AeUL4ezmyOTto4gLT2DhwFUkRCYhiSL5AnwYsqAXAClW8UpPq1TB+1CpVbTq14SbJ+4yaP4XlK5ZkrFrhxH1PIZPBjf/4PoA0aFx6DMN1gsAoiQhGkwcXX/mPwqEJm4ZydrJ26jSrDylaxRn/pc/2xq2T++4SKVGZen8TVv2LD5sKx0a9UbSrXpBnUa2YtXYzbjkcqJa8/LoMw1UahJI6RrFQBC4feoeUcExtv298o3TZegx6Iz80G8lokVEn2lg3/KjAASdecj4DUNRKBXoMw3ERSTw06gNHN98DkGAr1cOpEn3uuxZfBiz0Yw2XcexjWfROKg5teMSotnClB1f2zJHr/b7Kut0cNXxHEs29849YlT9qWx6vgyzyYzFZEGhVODg7EhmmpbN3++lYqPAv+TXZuffgT0QsvN/gjPnH3P3fiSd2lWmYAFPnoXE8c347UiSxMLZn1OieHbncqPZQobRaLPV0JqMfykQMupNqB1U7+1DeLuHCOSMz5y933D58G3cPZzZvuAgSODs4sCgudktG1r1qse+lScRFOBXPD8RT6Np27ehbbqsWrNyVGuWXTvFYpEblie3/4F75x9TsVFZZh/8lojHLzFo5ebslyGx7Fl2BJBLS6IoIRrN3D3/GCcXRzLT5PHmoxvP023MJ8SGJ7BgwGr0WgNKtRKVIOToDv+mWOObU3Au7k606tOQn0dv5NTWCwxZ0JPfV58gISqJT0e1yeJb9gonV4cs98E3b5Lh9yMQLRLLv1rL5O2jKFDUh5CgMBQKBd4FPUlPyuDWyXt8124eoigxYkU/WvV9v1hj0JkH7PxhP/pMA3N7LWfD02U06FLbtm+zyYxKnfUrNCEqkfN7rlK+QRmKVihCsUr+aBzVGDINIMgijiq1ilZ/UigSIPR+BOd2X6ZmmypUa1mRai0r2l5r0acB53+7CoJAc2u50snVkaUXZ7B+6i6eXH9Oiz4N8LZKEXT8qiWt+jbi5vG7zO21DEmU2DB1J5lpWpzdnNGma1Eolag0KixmC6WqFyUtMYN2Q5pjNplzPD5JEqnRpjJNutfl2e1Qhv7Ym00z92DUGUCCJUPXULV5eRp3r8PzO2GYdEa2zdkr23VYM3frp+5kys6vkSSJ2T2WcW7PVRp3q8O49UOp27E6h9ecBKBk9WKEPYjAkClnVPWZehycNIxY0Y+lw9YiCALadJ0cOP27kht/D/YeITt2/llcvR7C93MPYhFFLl4Opka1AG7eDifNevPevf8GE8e0zbaes0bN9y2bsu76LT4rXxZvV1ceP4nm+q1QGtUvRcGPUPXdMHs/23/8AzdPFyavHUT5P2mxUaFuSSrULcnW+QewmGQfsVirm/fb9J36KS171sM1tzM3jt9DpVJSr6PsKh7+KIoJ7eZjMYvM2jeGYhVko87I4GhG1p+OLlOPaBGRRImgsw9JTUhn1LI+LP5qHX4l8nP5wA1MWgOCUoGzhxNIAhonNa37NqRex2qMazMfJInGXWoS8eQlw+tMQZ9pQOOkpuNXLfEP9KP+pzXe+14TopK4sO8a5eqWomiFIuxZcoiT2y4iiiKJL5MJvhWK2Wwh4nEUU3Z8nW39TiNaYdQZ2TZvvzxObfXkUqoU1skzi61PplDpAjg6OWA0mLh2+DY3jgZRtUUFWz/R4sFrKFW9GP6BOauBWywWNs3YhT7TgCBkDeIMOgMj60wmJCicrhM60vf7boAcHA2vNYnU+FQUSiWbni8nOiQWyWIBJFw9nNn4fAUqlRIn1z/nSWc2mRlVdzLadB27Fhxge+TqLCWlig3LsjtmNYIgyH5uwO3T9/mu3Tw0jmoWnp6Of6Bflm06OGlIjk1FkuRg3mi143glaKjSqBnzy2DKNyjNF/5fYdSbmNllEb8l/MqkrSPYMf8AZWqV4NyeK4gWkXHrh6JxUDNyRT/bPoYt7kO/snexmC0Y9SY+LzCIAsXzo3FUY7T66gnK19nLYpWKAHJf1cX915EkidM7LjFkYU9G/TSA+p/WRJIkKjcphyAIHP7lJGd3XabL2HYoFAoafV6HJUPXYjHL1hu1O1Wjaovy9myQnfdiD4Ts/KOxWERmzjuA2do8mZam4/DRe1isfkiCACEh8cTFp+Gd1z3b+p+WL8un5WWvrJRULSPGbsVkMrNt11V+3z1KNnp8D/tWnwIgPSmTcR0W8cW4tvTIIej6EC171WffT8fISNHiUzgvnQoMQeOoZsyqAegy9FRrVh5HFwd8A7zZOn8/2xfI7uFJcal0GNyM/atOkBidAsDuJX8w3mqWen6vbEoqWkScXB0xGU2UqByAu5crHnndWX19NhkpmXQuMASQJ30WHZtEoVJZhRm3BS8mLTEd36I+TGg7z1busZhFytYqQY1WcnYiM03L5HbziXuRyPgNwyhXt5RtG6MaTCUlPg2FUsH6hz/i4uEi9/YIAhoHWaFaskikJ2dyYd91ytcvnaUXR6VW0XZQU3bM349CAQgCSrUKl1zOeOX34HlQOEq1ElEU6TW1M/6Bhfh10jain8eiUAiygat1XB8klo9cx6QtI3Msk4XejeDJ9WfyMUkw8+B422uPrz4j6lkMkiTx2+LfbYEQQEpcKmajGbWDwJoJW/Av64dgNU31yOuO20f2w7zNq0ACq9npqzLYm6g1KpvOT0ZKJlM6zJcDHL2J45vOMnDeFyTFpPD05nO06XoW9l+JR143ytcvLTcZW0RePI4in78PL59FI1osBJQvhCTK5wBkEUVJgnodq1Ovo2x7MXRRr3ced4Fi+eg6vj3bZu+1Na9HPIrCw9sdSRRxze1KSvzr/q2oZ7G2c5UvwJv4F4nkK+KNqzVD+LZadOv+TSheJYCJbeaiUitZcHIKQxb2Ys+SwzT7oh49v/v0L51vO/8uPq6r0o6d/1HMFhHtK30RoHRJXxTC6y9uSYLnoXGsWHXqg9vKzDRgtAq6abVGWnVcRL8ha0l/NZ6dA7VaZtWj2TL/92xTTG9isYi2Hpfz+2+ybdFh0pIyeHwjBIPOiMVs4eCak2SmakmOS2XKZ4tYMHANE9r/QEpcGpIkEROagElvxmQ0ExsWD0ClhmXQOGnQOKqp0vR1Ca5q03KoHVSoHVQMmNONdfcXsvDk5CyO5i65nClWqQgaRzUFiuXLscTl6uGMb1G5hyd/gDcqtRKFUkGLXvWp/sY52DZ3Hw+vBJMQlcT8L197UEmSREp8GiaDfH4zUjKp274aX07vTJ8ZXZiycxQdvmpBvU+r8/j6M2b1WMqASt8iWsuWmWla+pcfTRffQRgNJiwmizzefn4Gv9xbyLM7YUiixJ1T94kKjkGhUNCgcy0mbBqOg7MGUZQIvRdBqwGNQQDRInH3zENGN56e43XK5++Ng5MDjq6OlK5RPEvTdkCFwji5OKJxVFOz7esJMEEQmLh1FMUqFUFQ8P+x99bhUZxt+/9nZi1CCCTBQoK7u7u7F2ihhZYCheJOoWiBoi2UQpHiLe5SigZ3T4BAAsTdZX3v3x+zbAiElud539/3ePo+OY+Dg+zsPffOzs7ufc11ndd5cnqLH1tm7abflG60+qQJcw9Nfe918XfQOeuYtXciNVtXpceYTvzx6zkSo5Mcz9/84x7d3AfxUZFhhD+L5NHlpw5eF0C9jjWJj0jky2oTWThgFcuH/oLZaCYxOpn75/yJDIqmWrOK/P5qDXnyuTjKVdeP38WjcD6m7xhNk571WHB0mqPD8UMxeG4/Njxclq1EtezcbIpXLoY+3ZjtZuPcriuEBUaiUqtYe3MRK87P5ufr32W7Xt/GLxO3kxKfRkJUMiu+2kD3ke3YFvhjbhD0P4H4f/TvPwS5GaFc/KMQmBLDjwHnqe7hw/DyjdFp1Xz2SSO2/nZFke73D2PY583ZvOMSZrMNq9WGRqPC8z1eX2/CyzPPGxkDMBothEcmcfV6EO3b5NzCPXnt55SrWZyNc/YjyTKehd3R6HL+Wr16EsHEzksxGy0MmNyZnSv+wGK28PDKM0Yt+RgEOLnqKFqmECFPIhE2m0I8zTTy9FYwn5QbS9XG5Zm0figxYfGo1Cr6TeiC2WTh2Iaz2CxWOg9pSdtPmjhes2ytkux4vhKT3oTXe0p9kiTxw/lZRATFKBo3f9N2r083KNkYlUTzjxpk40YlxaQ6/n6zw02SJL7ZPprfFh2kcfe6PLjwmHWTdyCrZRp0rkXIk3CGLhpA8INXXNh7HYDkmBRMehNOrk48OB9ATEgcwibQOmkpVNaL/lN7ULZmSfYsO+J4HbVGhcYp6/xXrF+WOm2rK5o6skTddjW4dvg2STEpgNLV9SbCAiOY23sZGp2GJWdmkZaYTqWG2cudbvnzsDXoJ+LCEvApl119ummv+jTpWY9uee0K30LQekAzvEu/G1z+q2jYtQ5eRT0Y3/RbLGYL53ddpu/k7tRuW43fFx3EbLJgTc7Ab+81Og9tg0teZzJSBK36N8KkN/FZuTHZRCNByeipNCoMGUYe+D1m1Mov6PhFK148CEGlUVOnXQ3H+2raSyl9Xtp/g+AHr+jyVVu8vBV9pKNrT/H83kvK1y2NSqWizafNsgVMxSr6MOP3sRz95TQ9R3fEt7w3Lx6GIoRA66RBCDAbzYoatX0/nbOWsjWz9J7Cn0Vx9eht6rarTsmqSklTn24g7Q0fs/S3mglykYsPQW4glIv/aKSaDNyKD6G6R1G8nPIw+vpeQjISuRb3kmoe3jQqWIqWzSuwZccVQCkb1K9bEl8fD2LiUkAo4oMd2/29AaMkSXw1pAVXbwQhbIKHAeEYjRaiopPJSNXzTZ8fiQiOZfzKz2jcpaZjnx7DW9Osex2e3H5BtSbl3kua9jtwi0y74u7Fw3dAUhai9ORMipYuxLqbC4gIjiYtMYNlIzYiSyq8fDzQpxtIiU/DarHx8HIgOicdi49lZRcCrj3j6e0XWMxWTmy+wMhl2W023tfqbbMpXT86Fx2ZqXrSkzP4EN258MAoLCYLWmcNkcEx1GieZW7ad1IXLh++hdlgYtwbXBGARt3qODR0RjWaqRiQmuHC3utIsoQsy/Sf0t3RSefkosPJ1YnoV7HsXqrwgjQ6Da7uLvhWKErBYp48uvyEPXaSOYDRYObrutPZ9vwnMlIzmdxmPmajmW5ft6NszVI07lEXnYuWhZ+sBEmiSKlCbJ+3j4Hf9kaSJLbN3UvI43BkWebUVj9GrBjMszvBXNp/g+YfNaSMfWF2dnV6p3z4GpIkseiPGexbcYzGPes5gqC7Zx+x+NNVFC5VkIXHv8HV/a/LZCc2nuH8riv0ndyduu2VgCQ9OUOxkLDYCHkczsoRG9A4aRylSlmtonabauQv6M72oJ9Ijk2hUPECzOm1zBEEaXQa3DxcSYxKRqPTkK9AXgwZBgbO7M298/607N+Yhl1r2zWBsgtmBlwNZPHg1ZiNFm6dvM/PNxdx98wjNkz9DUOmkT83n0elVXP9+B1KVPHFp6w3bQY2JS48AQmJOfsnOlSu+03pyr4fTlCpUTmcnLWkxKcxYEYvipQs+M65sJgtjGnyLfp0I5tm7sa3fBGmbfmabfP2ERGkdLfpnLWMWjn4L89pLj4AAsi12MhFLv4zcCr8MZPvHEIIgYtax7kOY3BVa1FJivibq1qLEILJ3+xx7COA6bP3k5CYjkqlYtPazynyAa3SQgi+nrCDsLBE8uZ1YmD/hjx5FoXZbOXU2QCK6TSEPI3CqDfx69wDjkDoNTwKu7+z7W3UbVOFQ+vOYrMJen7VmrBn0YQ8jeTLuUoKv2AxTzbP3ce1Y3exmhVLiiIlC/DdgYlMbLuAwDsvqdywLG4e2RdQ3/LeCsdGQKU33OozUvWkJabnKCC4c8kRtszeC0CBoh5kpOkxG81UblSOXqM78sAvgM5DW1O0TGFMRjOrx24h6mUco1cOYvSqwSwfvoHCJQrQql9Dx5x3Tj/k/oXHrL42H++Shdg2bx+LBv1Mq/6N+frHQdkCxF5jO7Lsy3UKgVsIhE0QGRxD4RIF+O7QZO6cfUSHwS1IS0rn2+5LeOUfhiRLOLnoSIxK4srBm9w4fgebVTjE9QCsZmtW6/aErUTaF8n75wIYsXyQ8jm0r8HBhM18VnYMgTeDCAkIo3KjctRqU41ydUpx/ehthBCUrVWKpJhkRtWfjrAJ9i47zOGUbdmsLF5Dn67n2LozjgCxWZ+GzDkwOduYteO3kBidTHpKJhf2XKPT0PeLCUa9jGH16E2YjWYCrgRyNH07KpWKGi2r0GdiN+6f9+fJtWcYM40Kydled6rZsrLDa83JRUfhEkpQ0eGLltw+/QBZllly6lsMeiOLB/1MoWJejPxxMCa9iQUDVpKZZiCvRx4kCQr4ejHv4ORspGx9uuILZrPalK4sOxx6nwIsRgtXD9/m6uHbaJ01SBKsHrsZq9lK/kL52PpMsVb5Yn5/vpjfnyntvuPmHw/QOKkJvB3MmR2XaNi1Ni3t4poAZpMFQ4bR4VUW8jiC1eO2Ysg0YLbrKY1bM8TBSTObLCwa+BPBD0Oo3Kg8lw/epGaryszaM8Gh6p2LXLxGbiCUi/9IpBj1jL91AItQFjlhMZJgzOCXRh+z8+VtKrsXobqHD6mpmcTGZS9vREUrZQ+dTiIoOJYihfPxPDiG6OgUKlYowqmzAZQo5kWjBlm+Xyazled2oqYlyUpRbw80GqVE1LplJUpX8wUJnFy0VGlYhsx0Ay7/YudP5fpl2HpvEWaTGa+3DEcBgu6HcO34XYx6E5IElRuUZeTST5FlmeWnZ5Acl0r+gu7ZAgpDhpHLh24xYe0Q8hXIS1l71010SBwjG36LyWih95gOfD67T7bX2rP8mOPvxJhkrHYDzwd+T3h87Tkmo5kL+2/yW9BKzu++ht+e6xj1JlZ8tZEf/Waz7vYiZfyFx/hfCaRKk/LM+WgFZqOFczuvsOH+EvYsP4bNauPk5vP0m9yVAnaX8oyUTPb9cAKtk4aSVXx5ciMIWZao3UbJ2tVuW43adkPUSa3mEvo4HFCcyTNT9Q6lbcW65F1UalSe4pV9sglLyup373Dz5FPUl4UQuLq7ANBnfFdKVyuBRqfBbLLwcbGvHKKMVovC79Ll4CqyfOgvXDl4A9rCUYIAACAASURBVIvJikqtYv8Px/g95Bf06XoWfrKS2NB4fMsXIfplDMImKGXv6gOlPPfHr+coXsmHBl1qkxidxMSWcxyEaGGzcXrbBa4fvUPfyd34aGJXHl8NxNnNCZVaJiNVj9UikFUyH03qluM5adi1DrvD12Gzm5EWLObFrtC1PLgQwKRWcxFCYDZZEDaBwc6JS4xO4exvl+j+dQfHPLXbVqP/tB4E3grm8/n9AKjVpirDl33KT6N+dZyr1zDpzSz78hdHx2L0q1hsVlu28qvGSYMkK8HV74sOYTVbuXrkNuXrlHbw0pxdnZi8aQQ75u8n8mUsao2aEpWK0mV4W34avQnfCt5onDQMrz2NZr3qUbySD7dPP8SQYSTqRSySLHHz5H1ePgqlTI0SOZ6jXGRB/Afxd/5fIDcQysV/JCa8EQQB9CxWHR+XfEiSxLhKWYafVtv7v7HFi3lSp3YJnj6LYuzk35XWYp2ajAwjKpXMsoX9qFrZR5nHYkWWJWw2gdUqKF+uMHu2jyQtTe/IKK27PBv/a89ZM3UX5/fdZPyqz2jV5/0t40EPQ5nZbxUqlczC/eMoXt4b97/gKhUq5oVao0Jy1eFbrggrzsx0PCfLMh6FlOMwZBgJeRoBEmyde4BHV54q5ZijUxy6Nv5Xn2GxWDEbzRzbcJZuQ1vj6Z0VfNXrUIOL+28oC9Qbx6Bz0SqLmZ2zkZmm58aJe1jsInURz6O5fuIeGp0azyL5+LbHUswmMzoXnYMkbshUym0Fi3mRHJeKSx4n3L3cHK9x7dgdwp8pGkaJUcl0GNyCPPlc6Dmm4zvnJDEmGZtNKCU7SUKSJEraFa3TkzMx6o0Iq+KPpdVqqN+lFjN+H4ssy0zd8jXjms0iMiiGoLuvWD1mE6NWfeGY+7uj0zix8SxlapSgfF0lKJYkiVptlCBscpu5WTYdEpSvUxrXvC45fnaxIfGOwMxqsZIYlYwQgjPbL3L3zENFrdtZy+z9kyng60nxij6Ofef0Xsrja89Qa1R8f3Imt089IC40S0JBkmV++nojJoOZ++f9Gbp4IP6Xn2AymHHzyINaq8FqMeFROB81WlTO+eICtE4avqo9lehXcdRuU5X5h6fy5EaQIkJosTk6zmS1jM1iw2K2UPgtkUtJkhjwTa93tnUd3paHfgH47bn2zuu+Pod5PfMw8Ns+73DQpmwawcZvdnJmxyVHQC6Eokv07M4LfMoVwcXNmZb9GtGyXyMeXnpCQmQSTXvVQ61R8+PFuZgMJrq6D0YIePkolEkbh2M1W5U2fft1abOKf1m2IBf/HfjbQEiSJCfgIqCzj98nhJj9nrG9gX1AXSHEbUmS2gLfA1rABEwWQpyzj/UDigCv86vthBCx/7O3k4v/C7AKG5djgx2Pl9fpSZdiVUkwZDDj7lFkSeK7Wl3x0LnYOUCSg5hbplRBvLzc6Na5Bo3qK4tbaGgCEmAwmLFYrFgsNtRqFWlpWd1gQoBaJWOyWdGoZWQJXFx05HHNKoMU8vXEb/8t9JlGhE2w7OstlKtZAh/7XWt0SDxu+V0dRqT7fz5NSrxC5Dz6qx+jlrwrkvgm3L3cWH9rIcEPQ6n+HksAk8HEsLrfEBeR6DDIFDahONaHJzrG1WldFZc8zhgzTWQkZzK5/UI2PVrqeH7q5q/oN6kLd876s33+fowWE7JKZurmESTHpnD79CP6TerKrzN3c+OP+wqBXAhSE9OZ0+cHdC5aPO1ZLZs1y20cYPiSAahUMmuuL+DBxcec2naRcc3nMH7tUMrWKknZWiWRUMpctdtUZcxqhUuUmpDGT2M2E/E8iuS4VHqO6kCfcZ1ZPW4LFrMFWZKp0aoykzeNxLNIfjZM+81BlFapVQgJilf0QaVWEf48iiNr/swWuBxe8yclqhSjs93J3qNwPgbO7O2QWgCFN7Xo01XcOHbHwbtRa9WM+2UYbd7jq/b4+jPCn0dm22a1WFk0cCUB1545FuIXD0PQaNU4ueh4ePExlRuXR6VSkRKXitVsRaNVk5qYTmxYdh2p7qM6cGSNot5s0ps4ufm8vRymZNe8fDxJMqfwmT3rlxSbwq7Fh/AuXZhuI9o5MogRz6OJDVOsOW6cuIfVaqPNgKac2naBlLhU0lMUorHtdTBiE6wevYnKt7/P0QZDCEHQg1f8OGw9eT3z0LxvIy4duInVYkXrrHnHqb5W2+r0HJ092M1IzeSbzot59STcEQSBYs+y7Mt1BN1/RZ58rmwKWI6z3Vg2J7uM9OTMbFmM378/rFisvHWf9FpQMhd/g39gRkiSpIJAY8AbJa7wB24L8cYd9XvwIRkhI9BKCJEuSZIGuCxJ0h9CiOtvHYQbMBa48cbmeKCrECJSkqQqwJ/AmwzDAUKI2x9wDLn4L4LZlrUwSUDl/N5YhY1v7h7hYvRzBND0xHOqexRloLUOKpWMzb7Pi1dxbFzzebb5mjUpzxm/J4SFJTCgf0P8Lj2lbOlCNKiXJbLm6qpj4dze/HHqER3bVcPF5V0eCEC9tlXYsuAQoCwU677Zw/zdo9mx5Ch7Vv2JRqvmp7Mz8C5ZgNqtK3H1xH0Aajb7MK8jL28PvLzfL+QYF55IYkyKgxej0akp5OtFxXplaNK9tmNcvoJ5mb1rLFM6LMCkN7/THSXLMqWqFsNisrBdgM5FR+3WVWjUVZmj0xBF+fjU9ouO8UIIVCplkTdkGIkMjubLhf25efI+D/wevzG7xNWjt6nfsSbpSRncPfMIo97EjyM38vP1BRSv6MOG+0uIi0hULB3sWD/1N87uvOxo+14zfitWk8XRxadxVTNwRm9HAHbn1INsJrRWs5W9K47SeXgbprVfQExoXPbsg4CVIzYQcOUp/lcCSU1Iw8XNifjwBOp2rMF3R6dz5/RD/HZeyTpPKol+U7pTr2NNvv/0J5xcdAxd+il582dl9r4fuIq0hPQ39pERNoHfrqvZWsZNehM/j91EVHAMSNDso0ZM3jSSGTvHs27SNkrXKE5saDyGNIPScSXD0MUD6Tm6M7VaV2XL7N0E33vJs9vBuOZ1ISMlE5vVRuHiXux48bMj4Fk8aDX3/QLQaDXkL+ROs96Kh5skK6Vdk95E6wFNUalkvIp6sMl/BRazhY+8h5GRnJkti5IYncSl/TfoOCS7EnZCVBLjms4i+mWsfW6Je+f8kWSZYhWKEvkihrfx4sErx99PbwZhzDSSGJNCWGAk5rckJxKiknl294WjzTr6RayjUywneBTOR5dhrTnz22Ua96zHud8vI2yK2Obrz6BwiQL/cut/Lv7zIUlSS2Aa4AHcA2IBJ6AHUFqSpH3AciFE6vvm+NurQii/Qq+/5Rr7v5zixfnAYsDBEBRC3Hvj+QDAWZIknRDC+Hevm4v/XuhkNcVdPYg1pOGs1lDYOS+z7x3nSkwwr0N7i7DxJDkafTkLGo0Ks9mKSiVTq3rWj6XJZOHazWB8fTxY8t1Hju1dOlYnJ9SpVZI6tUrm+NxrlKzsQ+UGZQi4rojtuXkqd8rn993EbLQgyxKPrj7Du2QB2vRtSNlqxZFVMr45WHz8OyhSqiA1W1bi5p9KEFCqcjG6f9WGE1v8uLD/Bq37N3aMrVC3FP0nd+POmUd8NitnTZVytUux+OQ0ooJjadKzrlIiVMnYbAKVSmbId/3QOWnROGmo0rgcLx+F8eRmMPfO+9OiT33MJisT1g3jm67fExMSjyxJ/DR6E7JKplnv+rQdqGRRdC7abPpEBYt5vXN3rnPRIcsyNqvCs1GpZSxvCAfWbluNig2yyOBJsQoXTFbJqNQyZqMFo97EmnFbSIhMBKGYuY5fN4y147eQkaIkn68euY0hw4DNYiMzJROQuHXyAUH3X7Lsi5+zHZOzmzNtP2vOmvFbuLDnKsImOPPbRX65s4TilRSlZi8fD+LCE0AIGnavQ/SLWF76h2GzKuKDWicNFnuZpqCvF1EvYjBkGHno54/VYsXZzYlFJ2dwYc81ln2xBpPBhLuXG7P3T6aqPftRt0NNwp5HERIQBgKa9K7Pqc3nEQIeXnzC1/Wms/LKdwAE3g7GZrFhlSz2rsQMHl1+ys/jtpCakI7OWUv3ke2x2WyK8aqzkk006RU9LrPJQp321Xh48SmSpEgwvI3RDWYo79kOYRP2MrVCon5Nan4NSZJoab82L+2/weLBq5GQ6Daqg517p8PNw9WR1Qx/HkXxij6EPo2gapMKFKvkw99hzOohjFk9BJvNRmxoPI8uPkGWZWS1Clkl0Wtsp7+dIxd2/LO6xjoBQ4UQoW8/IUmSGugCtAX2v2+CDwqPJUlSAXeAMsDPQogbbz1fC/AVQhyXJGlyTnMAvYG7bwVBmyVJstoP8Dsh/tsoWv99iDOkk2jMoFzegu9tM5ckiQOthnInIZSq+YvirNZwNyEMs7AhI6GRVY5xv4ZfI7RfBvWdijG9agdKFM9aXOcsPMzd+yEIIVi78jNK5dA99e9gzo6R/Dh+O7JKZsQChTDaZ3Q7Vk/eiau7C3XtmkOXj95l8/yD1GxekZGL+/+lKNyHQpZl5u+b4MiS6NMNfFTsayxmK/5XnhEbmsDHUxTCrCRJDJjegwHTe+Q4l8loZlLbBTy7HUz/Kd34ceQmzu68gs5Fi8lgps/4Tnz5XX+GLf6EiKBoRtSfgUlvZuzqzxmxdABDakzFbDSzf+UfLD4xjfEt5yjWFxLYDGaC7r1i4vrhfHd4CjEhce+4y7+NoYs+Jn9hd8wGMwV8PClZ1ZdJreZhtVip26E6c/ZPyja+76RurJ+yA6+iHnQd0Zbt8/YhIREbFu/ImJWsWowd8/ahf218KkGbT5tycpMfJqsJEPbbOkHo43CFjA2o1DKjf/6SjkNaI8uyUhqy/zpZTVb2Lj/K+HXDUalVzDs0lR3z93FkzUku77+pZM40Ms36NKTvlB6YDSZc8jqTFJNCSnwqT28+x6g3Ub9zbYbXnEx4YAQFfL1o2rsBJoMSjKTEp/H0xnNHILT4s584s+MipWuUoMeojrT6pAkBl58S/iwKgNDASF75h6FP12MxKm3yQggadqvFwJKjyEwzZAtO0pLSGVDya5JiUhi2ZCA9RnWgRovK3PrzAS37N2bK5pH4X36Kp7cHRcsU5uL+6+xcdJAWfRvx0aSuJERliTm+jeKVfEhNSMsmLKrWqh0ct8DbwZgMZoRNEPE8ks0BK4gNiychKon5/Vc6SPHRL2P5fF5f+k7q+kHfHaPeREpcKhf2X8f/8lNAabvvNbYTHb9o+V65g1z8syGEeF/MgRDCAhz6uzk+KBASQliBGpIk5QMOSpJURQjhDyBJkgysAAa/b39JkiqjZIvetGweIISIsJfU9gOfAtty2HcYMAygWLH3p0Zz8Z+PwOQY+vr9ikAwuGxDJlR+v/FkHo2O5oXLEpqeSJrZQKvC5QhNT8IsrBhtFpxVGtY17M+QK79jlm3cuxfGAyk0WyAU/CIWg8GMk5OGsPDE/7VAKI+7CzM3Dc+2reOnTWnTryFqjYqA60GsmbaLW6cfYTJaSIxJoXXfBlSsW+p/5fUBRxCp1qhQa1UOteptCw7Se0wHtE5/bR4b/CCEQ2v+5OWjUIRQusheczSMdqXuvcuPU7ZGCZr3acAvk3c4tm/4ZhcVG5RV1J1tgrTEdPatPAEoJSpZJePmkYcRduuFas0qAtlLgxkpmczr9yNxEQlM2TQSWZbYMmcPlRqWY/DcvkiShFFv4ruj09C5aKn0RiboNXqP60zXr9qi0WkQQuDl7alkNSTBGv9wJAnyF3Qn8FYW32zy5q9p92kzeo3pzPVjd1g3eRvCaqP1gKZUa14ZlUaFRqeh+6gOdB7aFpvNRnxkIkOXDCQ1IY3L+69jswnObL/AlYM3GbbsUzp+0ZoipQoBWWKcGq0GLx9PNs/cSf+pPShRuRgX9uxmz7IjjszL0V9OOTSBol/Gcnj1ScdxarRqCvjau+xSMzn3+yUAQh+HU6NVFbROWn65t5SpHRbw/M4L8hd0x6d8EYyZJkcXVtWmFdm79Bip9rKdLEs069uQuh1qkJqQTrq9tHZg5Ql6jenEgmPTsVqsjnJitWaKPpTVamPRgFVYzFZCn0TQuGc9xq39krUTt2Xjhin+ZGoq1CvN8GWfEhEUzaktftw7648QAt8K3gB0G9mOm3/cw5BhZNDsvnh658fTOz+LPlut8P3sx2rUm9g2bz8vH4UxccMwNn6zk+TYVIYvHegoj75GUmwKw2tOJSM1E99yRRyfgyTLNOpWJzcI+hch/QNTEpIkTchhcwpwRwhx/6/2/ZcKpkKIZEmSzgMdUIhIAG5AFcDP/uNcGDgiSVI3O2HaBzgIfCaECH5jrgj7/2mSJP0O1COHQEgIsR5YD1CnTp1/4Mfz3wMhbIjUmWC8DHkmILsomQi9xcwnFzbzOCXaMfZkxOO/DIQAzkQGMuHmfmxCYBbZU+1CCEq6eaGWJLS3VOQJULPu7gUsJhv9+igeSBPGtGfhkmPoDWYuXQmkScOyDjn/v3KK/3eh0aqxWm1889FKJTMCqLUqBODl/fdaRh8Cq9XGrmVHiX4Zx6BZvfDy9mDxsWlM7qi0s7t7uTmUed8HQ4aBCa3nY8w0IlBKN6+P9208uvyU5n0aYNSbsm0vUcmHMtWLE3jnBZKseIW5urtgzDRhs9kwGZSOsPfhzO+XCbj2DLPRzNpJ20iMSiY2NJ6Aq8+o2rgCVZpU4OsGM4gNS6Cgryfr7i527KtPN3DvnD9lapZQSk0vY1g5ciNhTyOZuGE4NVtXxauoJ2ajhRXD1mV73ZUj1lOqajHSk9I5tfUCwiqQ1Wq8SxfBs0h+ipQuTPC9l0Q8j8JqtTK28UyC7r2kSuMKLD07m1Nb/Vj19QZMejPpyRmsGrGBpr0a0LJ/Y/7ccp6YV7EUq+RD5YblObDqBGaDGf9LTziSup3g+68cQZCskslfyB2ds47IYOV7odLIqKwqJCSGfD/A4XTv4uZMmVqleBUQRkFfT1aO3MC9Mw/pMaYTK87PISo4hgK+nmidtDi7OrHlyY+EP4uiTK2SbJ29RyEN2wTFKvrwzY4xSJJEbGg8KpUKSZZwy++KPsOAs6tTjqrisiyR19ONtKR0ZJWSHWs3uCUtP2lKj3yDFHVqrYrKDcuj1WloP7glRUoVomSVYjToXItrR+5QsJgn5euWwZBpROukZf19hbgvhOCnMZu5dOAmBXw8kCQJtUamYv0yPLkZjNlg5vqJuxzfeI4TG89hMVswGczM2Zd9zXt6Mwij3ojZaCHyRawyj1ZNh89b5GgZk4v/k6hj/3fU/rgL8BD4SpKkvUKIJe/b8UO6xgoAZnsQ5IxSa3P8KgkhUgCvN8b7AZPsQVA+4DgwTQhx5Y0xaiCfECLeTsDuApz50Hebi/9QmB+B/jigh9RZCOcuoD/A7fhMXqUnZBsaq09jws0DzK3ZCTdNzi2th0MfYLS9u0CrkOhToiajru0hw2omr1GNsAlsksjmC1a/TiksFismk4XL14I4eOQOG7dcwsVFy6rlA/DxflfL538Kyd7F9RreJQtQvEJR/th+mU8mdkat+Wv7ir/Dhf032L38GGaDhdjwBBYfm0qFuqX59f5iAq4+o1arKn9bRrCYrVjMiueXJElM2zKStZO2kxCdjLDasnXaFC6uZNFafdzY4V9Vq5VS+pu5cwzfD16DSq1i0Ow+jP35C6Z3+p6Hl54AOHzCckLxCkWR7QKJpasVx5RpIt5OMnZ1dyEtIY3I4GisFhuRwdGkJaSRr6A7ABNbzlH8qFQyLT9uzImN5xylsFWjfmXL05XU66iIW+778RiPrz5zPC8hcXrbBQ6tPqkcnyyh0anxLe9N1MtYQvzDEDbBtSO3WTdpG8H3X2E1W3l06QnpyRk079uIPzef59HlJ8gqGa2zDq2TBq2TljW3Fjve99nfLimlNEnhPgG0HtiUhxcf45rPlW4j2tF6YDPcvdxYN2kbSdHJtPq4CUs+/xkhBBUbZCmUS5LEyivfEfY0AovZyrim32K12Ni/4hjlapeiSa8GDtNagLyebtisEfQuMARJlqjfqRau7i6MWJElalmwmBd1O1Tn0v4bhDyJ4OCqP/hkes8cPytJkvjp+gIuH7xJhXplmNx6HiFPwhk8rx9tP2uO3+6rCCEIvKUosk9oMYffQ9bYgxo1TXsrEhPhzyL5uv43mAxmRiz/jG4j2xPxPJo/t/hhMphJjkuhz/jOuHu60WV4Gya2msfLR2H0Gd8ZFzcnJElCVqlwdX9XyKlqkwq4e+XFqE/AalE0i8xGM8fWnebu2UdsDljx3msxF2/hP8wH7F+AD1BLCJEOIEnSbJT4oxkKteffD4RQWty32nlCMrBHCHFMkqR5KK1pR/5i31EovKJZkiTNsm9rB2QAf9qDIBVKELThA44lF//JUBVRIgGcQS6KSFsKmTspjw6N1A0JRREaQG8182fEY4q55mdc5ZbvTLXqsR+nIp++s10rq/imajtKuHmy++VdANLqW5AsatSRAo+3VJeLF/Pihd2Y9OKVZxiMZgxGMwuXHmP18oF/6y7/d7h+8gE7lhyjYYfqDJjSBVmWGbGoHz9P3YkkS7i6uXD1+D1klcyNUw+pXK8MX87tnW3h+legtt+xSzLZgqqCPp4U7NvwfbtlQ558rrTo05CzO68ghOD0jkusODeLC3uvc37vNV48CHWUFk7tuESf8Z1p92lTUuJSOb7xHElxKSRGJ1PQ15MVZ78FIOxZJOd2XWHAjJ547ypEoRIFaNG3IS/9Qwl9GkmDzrXQOWeV62q0rMySP2eQGJ1M/c61SI5N4eQWP8rVKkmZGiUQQlC5cXkeXniCrFKRmWZAVqv4bcF+h8GqzkXHuZ1XsilLFypeACEEl/bfwKg3MffgZC7vu0Fmup6diw5RpHQhLuy95tjHJa8zs/ZMoHbbaljMFnwrePPyYQggceyXU3h65ycuLIGarauSJ58rkiSx4sI8wp9FcvPEPep1qvlOGXLjtN84uvZPEIKW/Zvw2WyFqL9yxAYyUjIxmyw06l7X0R04atUQ+3470KcZEEKwc9EB5h/OcrxXa9SUrFocfYYBV3cXR2bp+4E/UaXJaVZcmJftGA6v+dORxfMq6sGY1UOwWqzc/OMeBXy9KFnFl3wF8qJSK1mhPPly1ke6fPAmT64/Q59h4NSWC5StXYpou+fb3uVH2R+7kfaDW2Cz2pjecSEmg5mkmBQ72V75boU/j+LumYckxyqmuxaTheMbztJtZHvyF3ZH56xFVsl4FM7H0EWfOIK1X25/j9Vqs3eF2rCYrKQkpNFzVJbA464lhzm17SJtP2tO2VolqduhOid+Pe94XgiIDH63gy0X/ydREKXL/TXMQCEhhF6SpL9s0PqQrrGHwDveAUKIWTkMRwjR4o2/vwO+e8/Utd+zPRf/QAizPyJ9LbgMAdNdMF+BzCBAwlNr4JcK5xjg38pxoyEjoZZlPJ1y9ltaF3g5x+0mm5UnKTHUK1gSWZIUrqsOMipbcA6WWb/pAr26ZV1ayxb148atYMqUKsTd+yE89FdUioOCY7hz7xV1a/91l9jfYdFQReguPCiaRp1rULKyD50GNaNum6qs+3YP9/yeKCrIZisv/MMJfx6DT5lCdPvy3eDvQ9C0Z12S41KJehVHvwmdHdv/2OLHmkk7KFHJhyUnpv2tcFyNlpW4dPAmNpuNvJ5uFPT15KMJnWn9SWM2ztzFhb03QAia9lTKjLIsE/UilriwROLCE9m5+Ahf/6BwgEwGE2OazMKkN6F10rAzZA1OLjpePgrl64YzsFkFskqiaNkifH9iuoPfUaFeVuu8Z5H8DHgjIyFJkkOIz2qxcunADZ7fecHlQzeVTIyLhkbd61LAx4PdS484snBpielsmrmLXYsPISHRY3RHRv4wiNunHmAxWUiNTyUhMovo27xvQ2q3rUZqYhqGDCNrbi9myaDVXNx7DZDoOKQ1XYa3JTYsnu3z9tK4Rz0KlyyI356reBX1pGjZ7KarAE+uP8OQYUStVVOudil8yincmDetHaQcsnbVW1bh4E9/IAH1O9cmPiIBs9Fi5x8pcHZ1Yva+SUxqNQeLXVog8FaQ4/krh29x+OeTlKhcDK2TEmw36q74u60cuRE/e+fb0jOz+HLRAAoW88LZ1YmOX7Z2zJGZpmf30iPo0/Sc2HAWk9HsOL+Bt4LQOWvROmtp2LU2sixTpbFia9F/Wg/89lzjk+k9HO9Vn2Hg63rTFesRnQatswabzUaPUe2Vc6JW0bBrbWJD4xm/btg7JevX88iyTOehrbM9FxsWz9a5e7GabWz+dhcSoHHSonPSkGnOKqULm0AI8f9LOfz/JqR/WtfYa/wG3JAk6bD9cVfgd0mSXIHH798tV1k6F/9LEIlfgkgE4xnezKsKhKIFlCcCd7Ueg3BjRrUOmGwWnFQaehbPuZU9n9aZeOO7TtIyEkVc8hKYEsPUKm1Z+OgktkyB5x9anJ20lCmV3bDRxVlLy2YVycgw8iggHBcXLUajGUmSyPeeu+B/BR6F3EmISgakbB5gQQ9DuHM2AEOmCec8TniXLMCrpxFIEg7BxX8XnkXykb+Qeza15i3z9mMymAkNjOTe+QCHHtD70GZAE4QQPLvzEu/ShUhLysAtvysehfMx/PsBXDtyF4vZwu5lRzm24Sxz947Hu0xhh7N70TJZi/PmOXsd3VZWq40JrebSYVALjv96zkHAtloEEc+jOPPbZfpN6vpB77NZ7wY8u/MCIQRFyxZRFnwhUGvUDFsykC7D2wJQsUFZFnyyEkmSKVaxKH57rtqbwQT3zz0CYOvsPWSm6TEaTOQr5E5aYjoajZqh3w/g4r5rLOj/AwLwLOpB0dKFaftZc9w88tBrXCeuH73Dsi/WYDZa2Lf8KLXaVuPGsbuoNCqcXLS06Nc423EPW/oZCz7+9Da2fgAAIABJREFUAY/C+WjSqx4JUUl4FsnPkjOzOLLmT+q0r4FPDgFU3fY1WP9gGSa9idSEdAaVGwNCMGbNUNoPzgqcKzUsR/+pPTi46gQWk4WqLSrzeaVx9BjdkXWTtmMxWQi4GsiqKwtwdXchLjye9OQMnt4MUkx2nbW8CgijQr0yfDTh3c9i3aRtnN5xCYRQFJ5tin2HJIFzHifWP1hGenIGxSoUxWazsXf5MaJfxvLprD58+m12Kxd9mgGTwYzFpLTy74laj0otO4Qu9/1wnPO7r2K12Fg6ZC2D5/bNUTDxbUQGx7Br6RGsZuX6UuxUlMXb0SFoh6SScoOg/wIIIeZLkvQHiqgiwFdv6BQO+Kt9cwOhXPwv4XV5QqBUUJXHeqsrAiMZVjWy7EZpFy/uJYbRzrsCzQqXRQIuxwTjotZSy1PRZTHbrJTK40WiMRONrGJR7W4kGTO5EfeK6h4+bA++QawhHRuC/BpnulerRttGFTDFman1hofTm9i9/yZ+l55itQoKeOVBo1Fx7MR9xoxs+z8yYVx+bDKXjt6lcv3S2fzDCvl6IYRA56ylQu2SfLtlOEd/9UOlURH8KAyA1n3/up08Jxxee5pNcxSz1JiQePqMVZR6a7eqwpUjd5BlidLvOQdvQpIkytYsyU9jt4IQXNx/gx/9FMH4qBcx2Kw2R/tzcmwqv367m3afNqN5n/rUbl3V0QpvtVg58OOJbHMH3w/h5wdb3+EZqDRqKtQtzYeiWtMKWAxmrBYrc/sso4CPJ80/akRGaiZ7lx91uJU36laXRSe+ITY0gWYfNWDj9N85aO9i6zlG0Y6p16kmL/1DQcCM38dis1gpXaMEbvnzsHb8FocyeXxYAsnRydRqW41Ppvfil4lbObbulONcmE0WMpIzFDVqSZAcl0pCVBLOeZwcTu2u7i6Url4C9wJ5GVRuDMImaPNpMy7svobWWUNiTApFyxZBpZb5rv8PSpZn/yTyF8pH0TJKgPTr9N8c5S+/3VezBUKSJDFobj8Gze1H9KtYhlSZqJDOx29F56zFardDKVTci8lt5xPxPAoXN2fGrx/OqpEbKVKqIM36ZF17SbEp5PXI4yBKR72MVZzqJajboQYWk4VHF59gNlrQ6DR4FsnvyOr57b7K9nl77STlGBafnEF8RCIqjYr8Bd3xKJyPLxd9wslN5+k1tiN5PbJbzDi56JAkpdvuyfXnzOiymAXHplKtaUUO/PQHm2fupkK9Miw8Ps0hhrhjwQF2Lj6cTYSx97hOuORxJl9Bd/b9cNxevrNhswnGr/nyg6+5XPzj4QSkCiE2S5JUQJKkkkKIl3+3U24glIv/MYSwga4dGPbiWP10HSDPaELTLKzzX8ntlAK46/LyODka/+QoDoc+ZHCZBuTR6FgXeBkBLKnTg/ZFK3Iw5AEPEsMRCCrmK0RnX4WcO7BMPXqf20C0IUslOcms52xkINM7tIe/6E7P5+6icJSEzWHSmpAYQMP6ZbIpTL/73gTbFh3B/3oQn8/sQaW3xnoUdqf70HfLXKWq+LD40ARCA6No0rUWznmc6Du2A2PaLiL4USgarYYCRfNTrXH5DzvJKIvwruXHlDZ2CSKCsrrwJq0fSrev2lDI14v8hdw/aL7E6GRkWcKQYSL8WRT9S4yiXO1SfLNjFLXbVuXOmUcOm4mAq895eisYbEpreO221Yh6EUPpGiVwdVdUjuENovjbZEsJVl+dj4ubM2OaziIzVU/jbnXo8HlLiryVxTMZzbx4EMK1o7eztG8ExIUlYLVauXFc4YZtn7eXtp81o6Cvl6PVGyD6ZaySBUBi/dQdJEQlMXBmbxp0rkVeTzcKFc8uo+BRJD/xEYqQn6ySUWlUjoxN8INXGDNNyLJE4ZIF+WLhADy88zGp+RyETbB76WHWTdqmKIpfX0jxSr4s+PgHXjwIUYQp7Vykszsu2YNLE1cP3ST43kvK1SnlGHdw1Qm+WJBlwdJ6YFN2LzmsZO1uB2E2mdFo3+WV3TuviDJqtGrcPPKw4Ph0rh66Sf1OtXBy1RF8/xWgyBoUKVmQ315mF4xcMWwdp7ZdUBSqSxZk1ZXviHhu72JTybT+pAkFfb2Y0GIOgON6eBPCJrBZbSTHpnBu1xWWfbEWSYJFf3xDtWaV6D2uM7XaVCUjOfOdElXP0R2QZIm9y4+RGJ2MWgPRL+Oo1rQiW2fvxag3EXg7mICrgdRoUZmoFzHsXX4sWxAkSRLNejagXJ1S3DvnT2xYAk7OOlb4zaKEXfQyF/8i/oFkaTs5ug5QHtiMIv68g6wM0XvxP1d4y8V/FYQtEWE4j7BlBSMicysY3uTM28AWi6wpSyWPiixouJK+pVrxKj2R1xafFmHjz4jHPEqKRG81Y7CamXnnKIEpMehUaiRZRiXJeOnyYBPZS21vI9OavbVbCMHufTdZvOIEMbGpREQm8fue69jesJyR7XehXm+Ul3KC/7UgDq47i/+15ywYsv4vx4Y+i2LdzL3cPhsAQLmaJWj7caNsfB2zyaJkHyQwGXJuWX8bVosVo8HE09svHCUoCRgwvXvW+5FlKtQp/ZdBUERQNCFPIhyPy9QsQZsBTShbUyEnJ8Wk8ODCYx74PWbWrrEcituAbM+WCYTdfd1CbFg8n1eZyKR2C5jffyVVm1R4p/Qgq2TK1SmFd+lCyCqZNgOaUryiD/t+PM6z2y8IC4xk97KjjG48E+sbZGchBBNazmVKh4Wc3OKXbU6VRpWNIG612HL0wFKrVciSEoSkJ2Xw23f7SYlPo2ytUmidtdw4fpeM1EzH+DdLjA261GbuwSk066MQz79aPohilXyo2qwSw5Z9xs5FB9iz+DBqnQqrxUa83bvLbDRz66TiyeaS1xmVWs52TlzdXRympqCUckpVK46Tqw6NTo2TqxOvApRM4cOLj9m3/JiDsJ6akJ6N1/QaSTHJrB69CZvVhs1m48dL8yhdrTifzvqIsrVLodao6TelG1onDfU71cKn3LvluDO/XXIEa/ERiVw9fIuytUvh5KpTCNqVixH6JMLRiZiZpueXSVkqJ837NsTV3QUkpSvs6No/MRvNmAxm9iw/yheVxzO/3w+Mqv8N0zsu5LcFB7J/pmoVvcd2Yt7BSZSuXpz6nWvSwp4prdKkAk6uOlRqlcOkdvHna9HbO0NlWUKtUZG/sDsaZzVx4QmsmbAVk95ERkomF/dl0/3Nxf999AS6oTRjIYSIRJH3+VvkZoRy8cEQQo+I6wzoQfYCr9PKj701GoWg/0aQYnmJLboauHzG/cweXIoJeieIichMYXm93tyODyXFrCfVYmDVYz9+atCXDIuJA6/ucS7qGd3O/MK+Vl/ipNLwQ73etDuVdVcrAVXze5Ni0uOuVUoTV64H8evWi5jMVp48jaRJo3IkJKYjBDg7aXBzc6Z968rUq1vqHU7R23DL72Lnpahw9/zr79SU7itIiU/jxNaL1G1ThavH79GwUw1mbh7uWBRnbBrGjsVHKV3Nl9qtKv3lfAChTyMZ02IO+nTlTlySlCCjVuvKf+lJ9jauH7/LgoGrQZIYvWowGSmZbJy+E+c8Tvx87TtWjdmM/5VAEOBbPmvB7DikBRf33qBRjzpYTVbSkjJo9XEjHl0OxJhp4t75ALY9/YF1U7bjt/e6QnCWFE2lsauHUKpaMfRpSqcTQMkqxVDrVJgNCtE3PSUTq9mCLGtIjErGOa8TQfdeIoTSht5tZDtObDyLSq1iwvrhOOdx5uxvWUT6t0nhEUHR3Dvnj9VqRaPTIKuUFn2XvM7oMwwMrTYJo96IZ5H8bH7yI5IkUad9dR5efIwQ0GloG2q3zeKtla5egl/9fwCgv88wEiKTCL7/ClklZ8v4IElsmLqDPcuOsOiPGVw+eAPf8t6EPY1k7/KjpCVmeZF1GtqavpO74126MKVrlOTeuUf8vnA/vy/Yz/Bln7Fu0jZMpqyMh1MeJ6a1m09KfBqz9k2kZquqgCJe+DpA0Tpr8SqqXA+zei7h+rG71GlXjQXHpjNkQc5mv7/O+F0pgdmhUsuUrFaMtOQMfMsVodUnTSlZxReL2YJao8JqUQQ0D//8J30mdMHL2wNZlhV5AAGyJNOkZ30Cb79Ao1Vz59RDLCYLkcEx2Gw2hFXw8MJjmNkbq9WGsNlQa9QE3g7m/vkAZu+dQOE3RE/n7p/A05tBFC1bhPwF3YkNjSclPssuSlIpwWZiVDLDa03LFniqdWpq2mUecvFv4B+YEQJMQgghSYocpJ0k/UHIDYRy8eGwxoNIA0xgDQcMgDNSnuEIyyuwhoD1BQDClkSaXkuXJRbSDUcwVtJDEfCx5CM9QI+xug3XSA1bVl2ldIYHzwrHgpOEHAfDD/xGny61CEyNxYYgIjOZgOQoansWo3geT74o25Ddh2/j8kCNqZCVyy1fsOjhKb6vo2RIzCYLJnvXSEhYAv0LuKGLTEY4a+jcqy4hV5+TN91A1cp/719UomJR5v4+iuf3QxycHpvNxuZ5B3hyK5ih8z6ifG2lJvd6URFCcPXEfYSAm6ceER+ZRAH7IuVTuhDT1n84Z+Hk1guOIEiZG1QqiWELP842Lj4yke8/X4ssy0zdNALPItkFHO+ceeTgudw6+YAHFwKwmMykJ1u5deoBs/eM4+6ZR/hWKIq3vUvpwt7rnNlxGQQ4OWsZuSarS+xwtWI8u/2CT6Z1x93LjSmbRjJ8yafERyQojuhFPfEurczzOggCaD+oOUkxKWybvw+r2Yok4MtqkylatjAPLz7B0zs/Hb9szZ+bz1OnbTW+Xvk5/aZ0J08+V1zcnDGbLJSuXoLgB69o/3mLbItfamIaMzovIj1ZIdl7Fc3P4Ln9qNaiElqdhsjwBPRpekwGM5HBMZiNZrROWnqN7UKlhuVxcnWiROX3l1IKlShIUnQyNnspqEarKjy6+ARXd2ckSSIlPo30pAz8Lz9l0BzFeuXBhQB2L8lS+Jckia5ftXdwgRp2rcPpbX4YM01IksSjK0+xWq0Iu/Fsy48b4126MLsWH8JqtrJt9h5HIOSWPw/zD03h9pmHtOrfGLVGTciTcK4fU0qHt089JDY0/p1S4NFfTnF6+8VsittNe9fn6x8/Z8Wwddw7+whJlrh71p8aLSrx+YKPGb7sU379ZqeS0bRYmdt7Of2n9SAmJI6JG4ZzaPVJKjcuT6+xnej+dXskWWZI5fHEhSciSVDApxD6dD2D5/fjxcMQxjefjdlkYcrmkSwfth6LycrBn06yMyTLPFatUTs60gAmtp5HbFiWHpnNYsVisQdykoyQ7KRoCebun0jVJln75uK/AnskSVoH5JMkaSjwBR8oy5MbCOXiw6HyAefeYDgBLp+h6GuCJHsgeSgKvqmhTXFSx2CxqvjhdGMyDFokJHRPnVAHmzC9MqFFhUeoM4YMM7ctIQC4BCn8h/so5YGFK0/QanJ5zsUE4q51xhJp5fzTQJo2KMvUqm05Nd8fk8WKNkaFMcGKXCJrQXQ2WVDHpWJx1aF2d+HkmtPIcamoNSpOrT6N2WTh+YMQajarQJlqOdu2mE2KgapKraJ6k/JUb5LF5flj2yUO/HwKq8XGwi/Ws/XB9wDM3zWafT+fpn67qhxef46IF7F4FclH/oI5l6v2//wnl4/c5eOJnanXrlqOY/J62smlivohABaT9R2+yI6Fhwi4+hwk2Ln0MCOWfoosZ3XLdBnWhksHb2E1W/lofCeuHL6pTGuzkc8rL1qdhgada2WbMzYswVEOu3P6EbuXHaHXmE5onbT8cO5d9Qx3L7dsZaacIEkS3b5qy8ktfsS8ikOWJaJfxRH9Kg5JVoKJVn0bMvanLxz7FPTNsk3RaNWsvfM9hkwjzq5Z2aCYkDiG15hERmqWoGbZmiVp9UkTx+MipQrR9tNmXNx3nZ5jOvLjV+t5ejOIUau+oFabnM//m1hwbDrrp+zg9LbzSJJMmZol6TGmM/M/Wu7ojpNliRotKzv2KVe7FAV8vYi087nK1y1NiSrZg62Pp/ci4EogWictHYe04uK+6yDLIATGTBN12lVn95LDSCoVkS9jyUjNxDWvC6e3X2TF0F9wctXR4XOFp2Y2mBVRT7uYo3uBvOxZdoT05Ez6TelGcmwqv0zcpgTFUtZn0uHzlngUzkdCZKIjYH52O5igey+5fvwukcExyCoZn7JFeBkQSuCtIOZ9tAKVWqZIqUL86p8lWHjt6B0u7b/OoLl9yUzV8+T6M279+ZDe4zpRqUE51k/d4SjxHl13RjFstVhJTUjjzI6L1GlfI8fvTFpSht1RXoVrXicyktOzyubCqgRDsgw2G7O6LmLCryNoM6DZ336uucgB/8CMkBBimSRJbYFUFJ7QLCHE6Q/ZNzcQysUHQ5IkJPe54D73vWNmHv6EigUu/X/snXd4FGXf/T8z29IrhEBCQi+h9947IqACIlVAUEBRBERF6U1AqlKlKL333ntvoYUkJIRU0nuybeb3xyybrAmKz+PzvD/fN+e6vC4ze8+9s4W9z3zv8z2HhzEluBKqkAwZGVSgi8z7umWmGV43BQCSDHPrdCfJnE1EcBKTZirC0TK7PUhMyUKrVSvRAaJM2wqVcN6UwqwVaxg5qw/zPlmHJkuPTi3ScUgrjq1RDNbMRrO1O8hslnB4TRv7jVMPmTF0FVqdhoUHx+NfpRRxLxLZOv8Q/gGl2DT3oHXhy+9yW7VBOb7foGSQtX6vAS+CYildybtQN+nIkDh+nbkPQ66RGYNWcCB2eaEtvl2HtuHQL2esqdzIMhqd2iZAMzUhHZPBhEanBkHJCuvuOQwXTyeWnJ+Kl68n/lV92Pb8J+s5PuVL8CIoBlDMGQvDW8PbEXTjGU9vPyPmWRzrvtvO9gUHmbJ9LBXrlrV2SeVH6N3n/PT5enwqehMXnkBksBJ70ahLnhWZo6sD6x/9SMidcMa3m4Fao8bZ04nkuFQ8vN2oUCfP2+nA8mMcWnUSs1mi37fv0q5fCwRBsCFBoHj3mE1mkCVUGjUNOtdm4sbPrI9npGSycfpOPH3c2RG7mtsn7rNj/n5ys/TMH/ozW1/YRnEUBic3R75c/TG9vuzGZ40ncXDFSXYtOmxdNASVyKStX1hT6S0fF+9P7EkJ/+LUbVej0M+4Yt1ybI9RblyPbTiLWqNGMhtBEHh0LYSWLxJx9nQmNT6dnMxcbp8MpF6Hmiz7dC0mo5mczFyuHbpNr7HdKF+7DH2+6sGlPTcYMr0PJ349x69TdyKZJZJjUxgys2/eGicr22HD5vSnQafaAFSoXYbQu8+t1yaZJV7k05UJImh1GmSzbE2vT47Li1J5GZHA3IHLMOQaObvtCjVaViXoeihGvZG1326l+6hONOlWj/0/HUOW4a2P2tK0R33Obb/K88Bwlo5cg6O7I1siVhRwSJ+660s2zdxDo7fqcnrTOdIT0wDysvZkCSxblUaDxIkN54qI0P8xWIjPG5Gf/CgiQkV4YySmZZGRo6es9+u1Ke3qt2TqxlybY4Is4JgiUNzVkdS0bEz5xLEAdauXpmQJVw6ffmhzfMKM3fw4uRfXYsIwmhQSExyuuERr1Cr6vdMAzxwTa/rvVLpRRBBEAQdnO3JzDKjVKh6eVXy0BFFA56AlJ1OPSi3yzoh2lHpNCOu+1WcwGcyYjGYuHLjNwCqlmDV4BaGBL1CrRYwGhYSIKoHPFw8qdA6tTkOFWq8PCT6z46r1rtzJzeG1PicxYS8BGU9vV1r1bszVg3do8W5DfCsq+UlGg4lPGk0iOyMHjU7NmKVD2P7jIUxGMxnJWVzad5N38znxvoJvxZJWInRq80UeXwuhw8CWlAnI2y50dLFn8vbP+emLDRxcqfy2ZKVm8/Vbs7F3tGPQlN68PaK9te362f0IZg9cRlRwLMF3wq2akmm9F7Enfg12lqgJUMTdleuXZ+ml6YrzdLe66HMMOLo6WO0MwgIjFL2MpUKxYOhymrxdv1ACVq9jLYr5eBDz7CWjl3zI2590snn85zHrOL/jihII6+5E7TbVre7UvhVLvfZzKgx2jjpys3ORzLa3zeVrlqHx2/Vtjk19bwFProUAsPjijALWBslxqZzbfoWqjSuyfd5+rhy4hTafA3d6YgYLhq2kXoea3D//CEEUqFSvHJf33sBo0RFJkmwlMgA6Oy2eJd3wKOlOQlQysiwjS7K1Gy9/BIxaq8bZPU9KERMWn3dxAgUqA5FBMQQ0rUTP0Z0Jvh3G7ZOBDJnRN+8UMS94FuDBhSc4uTuiUou4eDqjtdNQvXkVvlz9MSq1itbvK3lqzXs0YEiVzxWhtV7xHfq9Y3ft1tWo3boa53dc4Vk+smYymBUXd1cHenzaib1Lj2LINVqtE4rwFyHzjzJUFAQhgz+oYcmy7PJncxQRoSK8EZ68eMnQhTuQZRjYvh5JaVm4O9nzSbcmaPIFNfZoUo2pG0/YnOvmZMeE91tSv3ppNu66zrmrwaRaSuMATRuU5/3u9RnYuxF9P1lrPf4wKIbTl5/SslFFlvxyxmZOk8lM3Rp+LP94nfWHVxRFnN0dmb9/HGd2XadGk4oE3Q5n84LDiCqRkTP7sPnHI5QqW5wPxhYkB6/QtldDHl4PRRQFqjepxIvgWEyWRf0VCXqFmYNXkJWew4SVw2jSpfZrZiyIvSuUaD21WsXHs/u8dtyikWtJiFSqQftXnKRmsyqEBUaQlpCBm5cLWanZZCRnKvlhBjOV65dDo1UhqgQElUCtloULsnuM6sTNE/cRBIEbx+5jMtzm2Pqz7IpdXYCUDZnWh4OrTlp/aiSTTFZaDr98s4X0pAwGfd+Lw2tOs3L8Rox6I2qNClEUMFkWXFmSeHI9lDr5toxeoWwNP8rWUAhj/ggOUATA5LsWnZ1WqXoVAmd3J9YHLUWSpD/NWgMoU600Cy9MJ+JRFM3fbfin4/Nj9+LDNiSocoPy+FX1YfzakeRm60HOE3HHhr1En2PAzlFHfGRiASI0of10S7u/iMlCbExGE+9+3pW9S48iy4ord8dBrRg0pTfFS3vi7uVKZkoWao1ayfLq1Rh/C4F9ci2EbT/sR5+tZ1qvhWx+/jPJcalkJGcybPYHrP5qk1XL5lrMmfqdatH2g7zu4vK1/Xl85SkA74zpQkJUMtGhcaQlpJPyMg1DrpHkmFSa9WxIs54NbUgQKNuY3+/4kh+HrSAzNYsaLQOYuGEUj64EU8eSg7dl9h62zt2HLMsYjSY6DGhJCf/i9B7/Nqc3XaTXuG4FSNArbJq5ix3z9xc4Lksyaq2K1Ph0Vt9fgJuXEmhbhP/9kGXZGUAQhBlALLARS2MtSkTYn6KICBXhjXA7JBqzWcJolthx/h5ZuQZUokhxNyf6trYlAM72WjIsZnCliyt7/fZuOibO3kuopaKTH+u3X+X97vXxKeGOVi1ieOVGLMmcvPAElSigVouYLMctekjGz9hN81p+xFs8YHqOaEP/L99CZ6+l/zglfqJm00q06F4PR2c7XDyc6ND3z/O42vdpTJ2WVcjJ0jO++4/kZOlxdtZZ1mTlyRXvFJmE6GSQYcOMPX+JCNVsXpnAi0GotWq8fDz5ou103Iq7MGHNxzbO074VvXn+WIkFMZvM3LvwCEEU2TJvP6MWDMTNy4V3x3Th+K/neWtYW/YvP0novQgEUaTjgJaUf40G6tbJQMwmCdfizqTEKVsM2Zacq98TIUdXB5zdHMlIyef0LSjbJsmWc28ev2fNtqrVugq9x73Nvp+Pc+fUA5zcHN7I5PH38K1Ykml7v+L8ziu4ejrTaUgbNFoNcc/jeXw1mAada+PsbmvQl58EpSWmE/k0hioNKzB66VBcijnj7OFEt4878OjKU2b3W4xnKXcadatL9P3nTOk5n6z0bKbuGkftNrYdR7dPBpLyMo3SVUpxcEUe0XfzcmHJ5ZmoVCKnNl3gx+GrEASYsX8i9TrUZMK6Ufz0+Xoq1StHw84Fvx/JcakYDSZ0Dlp8KpQkLjyeYj6eDJnZl9KVfTjyyymqNatMs3ca2hh/VqhTluU35xL3PN5G3+To5oBkNiOKitO5Vqdh+Nw8U90uw9pyfudVkOGbzWOo9ztt1Eez++Hh7Y7OXovOXssBy2sdOrsfV/ffJCo4ltFLPrSOj3waw42jd2nUtY41SqRJt3psj1lNSlwqHiXdEEWR+p1q8ejyUyo3KE9Y4Atys/WoRJHnDyOtcw2Z8QFDZtg2AeTHtcO32WQR2ReG1Ph0Dq8+xfmdV9mbtOG18xThzyH8AzVCQHdZlvNHFawQBOE+UGgcWH4UEaEivBHa16nIxtO3Sc3MoWKpYtwPj0UQBDTqgnffQzs1ZPmhq8iyTGxSBiZJYsrGE2iiC5qxqdUqypb2JCMzl7uPInF01GFIy6sW3bofQeDjKL4a2ZHLt57RomEF7j2K4vDpBxiNZlKKObLy/Pe4uDvi5Fp4ZEZJ/2KFHv8jeHq7cfvcY/S5iidKqt6AWqtGEARavdeQ87tvKCJPS5t23daFV15kWck5+n2VYsqm0YTci6BUOS/mfricJ9dD0WjVHF1/zuoWDfD1hlGM7zSLoBvPLLERoNGobNqMh03vw7DpSlVpw7RdCKKIALgWsyUJ+XFkrZLYnpWajUojYjZK2DvpbK5TlhURq1qj5rutn7PwkzWUrVaaz5YOYcX4jZiNZj6cokQqfPB1Tx5dCUZrr2XMT8PwqeBN3XbViQqOpbivZ6HZZ+d2XmXp6HX4B/gw+/DXBXQ/APU71qJ+x1rkZOUS9TSGlJepfFx7PJJZwrOUBxueLi309aUlpjOk8hiyM3LR2mn4fuc4Ri0aAsDzR5GMbzMFk9FMclwKO+YfYPfiI9ZKya9TdlqJUFRwDJ83n0x6UgZqrQrJrHSMiWoRB2d7lt+ci0olcnTdGRaOWGWtmh1bf5Z6HWpSs2UAq+/Of+3nMGnr5/w6eQf1O9WiVusAvukyh8S7qkjWAAAgAElEQVSYZBYMXcGkLZ/b5GvpcwwIAmh0Go6tP8uRX07z9OYzKtYrx6JzU9HaaclIUtr0RbVI5UJcvKs3q8JXG0YzZ8BSpryzgHknv+P05osE3Qhl5MLBVG9Whb5fKd2Xi0euwZBjREYm7P5z5p+ajD7HQPyLRCRJcR7/tLGSJv/btJ3sjF1treQIgrKFKIpKYOroBt+QFJeKnYOOH058R1RILDp7Le998VaBaywM+hw9s/stLkCCBFFAVIk2xzNTsjDkGl5bVSrC/1pkCYLQH9iG8i/xAyyeQn+GIiJUhDeCt4czx2cPV7xfcg2sP34TN0c7ejYt6NXxYccG1Kngw8I9FwgMiwXAy92J1tWrsv3AbQAcHXQ0q1+W4sVciYtPpfuHiljYZC7kbk+AXL2Rq7fDeB6ZzMTRHTlz+SnZOQYeBUUTFp9G89fofV5BlmW2LT5G0O1wBn/TnXJv0DpfrUF5SpT25MXTWN4f2wUHBy0OzvZ0GticOi2rsvCzDahUKrp/1IahU3sVOD8yJI4vO80hN9vA1C2fUq9t3taQSq2iSn2l7b5U+RI8vBIMApTIR9qyM3L4utsPhAW+yPdCwJBjJDzfnXR+9Pu6B3aOOgRR4J3RnQodA9D2g2YcXXcWJzdHdPZa4iISrAvgq+ceUecrEqKS6f1lNz6a/QG/BS22Pv791s+t/28ymihbw4+dMYrgODkulZSXabiXcMWvio/NuLmDfyb07nM+XfIhS0atJSstmyfXQ7l+5C6te9tW68IfvODrrnOUPyQzWWnZ+FT0xmw0o88xKFEgr9kKiwyKRp9jwGwyk5NpZna/xdYqwd6lhxVxLSCZZUxG86sGKgRBCaQNvh1GuZp+7Fx4iPQkxTzUlG9b1Nu/OAvPT8OzpDuyLLNs9FoblULHwa1e+97nR/0Otahv8S3qX3YUZpMZs8nM7VOB1jH3zz/ix+GriH+RiEarZvDU3vw6bRf6bOXGIuJRFOd3XmXHgoPWWA6TwUzEoyib54p4EkVGciYnNpxTNHAGMzt/PMSt4/fIzdIzZ8AyG+fpPuPf5sFFJTS478SeZGfkMKz6l6TGp+Pk5sCA73tZc8Qkk5kZfRfRY1RnqjevwuiG3xAVHEuXoW34ZOFgy2clY9IbSXmZysrbP1if59aJ++xaeJAuH7WjVa/CK7b6HANGva0BqUqjonxNf5JfppEYlddWX7N1QBEJ+nfxz6wI9QOWWP6TgcuWY3+KIiJUhL8EQRBwttcxpmfzPxxXq1wpohKUbRONWsVHnRrSuUEVGtctS3BYPMU8nJi3/AR6w+vdlT3dHalTvTRtm1Xm5w3nMRjMvExIIyomheH9m7P813MYjRJrtlyieb4k88Jw/3Iw25cdR59tIDIkjnXXp//pa7Vz1LHy3HeYTWarIPgVwh9HYTaakWWZF8FxNttJ2xYe5vyem5Qq50WmJVZg59JjNkQoPz6Z15/K9crhWsyFhp3zKrs3TwTy/HEUxkLeoxMbL/LFT0MLXJdWp6Hva0JNTUYTB1aexGQ0MWJuPz74qgfOnk5otGpr5ecVTm26YO1U27X4MB/NLnzLIvTuc8a1m47JaGbannGYjWZm9FUI05SdX9KgU77Xc+w+N44qi+7CT9ZYYzkks8SlvTfYueAgg6f1sW4hbZt/gJSXaZazZWSTibD7EXQd0Z6bR+/Sf9J7r9UDVW5YgYp1y/HoylNElWg1GwSo264mJzdeAEmm/+RedBzchkMWMXjVxpXY9/Nxdiw4hJefB7EW8bAgCji5OZCRrNxgvj2ygzVvC8DexR5jokKYRi3+0Ea8/KbIyqebcy/hStCNUGRZZt6Hy0mwLPT6HAO3Tz1AlvIaDox6Ayc3XuT5w0hUahWePu4ICFRrUpmPao4jKz2bnLQcDHojKpWKxm/XQ6NTI6pUNOvZgJtH76K109jYFAC4ebnyzaYxlK1eGpVaxZPrIWQmZ2EymEiNT+enMesYNKU3J349T1x4PNcO3uHaoTtM2fmlUjUySxzfcI4vVo6g37fvsm3efmRJYnKPeSy6MJ1K9cqRkZLJN51nAnDnZCABEZUo7utZ4L1x8XBm9JIhHFp1ku6jOlGnbQ1C7oRRv1Ntxrb43kqEBFFg/NqRPL0Zil+Ab6FVxiL874Qsy8+BHn82rjAUEaEivDEiXqZw+l4IzQLKULn0HzsyA4x9twXzdpyjcunitK6lEJX6tcpQv1YZJs7e84ckCCA1LZtzV4I5dTGIgIreJKWoAYGASiVJy8ixaobcX7Mllh/2jjqwCE8dnP/aj+PvyQZA54EtOLPjGvocA++PzetOiQl7yZb5hzDkGokIilHEvTK0eqfBa+dXa9R0GNCiwPEKtfwx5CgCWlEl0nVIa64euUtGcibVmlQq9Lr+CLsXH2HTrD3IMmQkZTJsVh65OfzLGdZ+uxVRLdJteDuqNqxofUyX7+46PjIJyWTGu6zy+Z/eeskaeXBgxQkcXR2sXV4Xdl+3IUIly5VAlmTsHHT4V/XFxcOJyOBYVGqBqwfvYNQbmT1gGfsSFcF8/oqGKAqYUbZ8ajSvytiVHxf6Gk1GE+smbSUxOpnvto8lKTaVpzdCadk7L2S0VZ+mlK5SCpNJonwtf8LuR1g9dR5fDbaOiwrOy3LrNLgVCVHJ3D4ZiCAKZOXbvhUEgUXnp/HT5+u5f+4R67/bRr0ONW2qYW+Cj+b0Y9ln6xAEgTptazChg0LWi/t4otaqFYsErZo+E7pTtoYfuxYdAlkhLJUblOfJtWBkWWbUwg8pX9ufwZU+z3O+BhDAKJu4dug2fSZ0p+/Entg56CjhV4zwhy9o+0HezU1GSib9/EdhyDUS0Lgiiy5Mp3ztMvhWLpnXXi9DpbrlCLzwmLjweOuxqJBY3Iq7kGhMsYa7Dpram3M7rhAVHItaoyYsMIKwwAhOb75ofc5X28iFwWwyk5ulp9k7DWnzQXPsHe0oaTH+nHXkWyb3+IGQO2GIosBnjSeRm6XHvYQr654sLjSjrQj/eyAIwnfAclmWk1/zeFvAQZblQ6+bo4gIFeGNYDJLDJy3lWy9gV+OXuf47OE4O/wxoejWKIBujQpqZzKz9Fy7nRcIrNGIeLo5kpyajdFk5tVvoVmSeVWjDXr2ktXzBuDkoGXygoOEhMejEkVMZonQ5wkYDSaeP4mhdIUS2DkW7BapXKcME1cMJTTwBV0HFSQdfxU+5Uuw+fGCAscdXR0QRRFRpbja9ZvQjdbvNcQ7n7uv2Sxx+eAdkmJT0NlrafVuQxuBdGJMMqH3IqjVsiqiWtE/qLUqOn/Ymo/n9ef60btsmr2P6R8sYeK6kQW6rV6HrPQcJElZbLIz8hZyQ66B5WN/tf69e8kRvlw1gn7f9OT++ceM+EER2948cZ/pfZS4iXFrPqZ17yY061HfYoon0X5ACzxLunNp7w0EBLoOa8PLiAS+6zGP1IQMPlkwgMUXpvEiKJqm3esjyzIPLz9l69x9PLgYBCji41fQ2CkLmNZOQ6V65Qi+GQwINsJrg96IxqLdAjix4Rz7fz6GSW8iMzWL2Ye/pXJ9W63Mi6BoxrWeSlZ6NrIkU6t1ADp7LZJZstl+EQRQadRotGp6fNqFx1eDla0iQSggpvar4kN6YgaSScJkMHHrxP2/TIS6jehA0+4NkMwSa7/bpoTrAs4eTvQe9zbF/TypXL88zu5O1GlTnTptq3P39AO6DGuHT0VvqjaqiJObAzVbBpCelIGUr2okqkV09jpyMnLIzdKzeeYeylb3o1XvJtRoUZUaLaraXMu+ZUetAasPLytdZFqdhuU35zKt949c3neTKg0qsHXuXkLu5P1bVqlFAhpXotfYbqS8TKOYjweSJPFVRyXMVa1VU6FOWcpUL824NtMw5BhQadQgS7Tq09SmKnV4zUl++mwd/lV9af1BMzZO24ksSSREJtH1o3a8eBLF7sWHade/BY3fqkd4YARmk5m0BCWGIykmmaSYFLzL/PlNWxH+0XgAHBQEIRe4AySgpNBXBGoDp4DZfzRBEREqwhvBLEnkGIyYJRmTJJNjMOH854WYQqH5ncGgySSRmp7DwF6N0WhUnLkUREh4PPlvDiVJpmJZL5auO8OziERkWSFndjo1jeuWZdzbC3gRHIdbMSdWX5yC1q7gXWCTzrVo0rlWgeN/FbIsc+fsY5zdHalUp4zNY66eznz360imfLAUs1nit9n7eXd0R5sx66fv4cDq0xhylVbzs7uuM//QVwCkJ2cyov63mE1mSpXzYuzPw/ht5h5qt6rKr9N3kZGaRUZyFtGhccSGxXNux1U6vaEepfsnHTi1+SK5mbm0fC+vQqJSq1CpRatJpGxJmB88pbfN+TeO3LVWey7tu0nr3k2o3qwKW8J/wmw0WwNf19ybR9DNZ5SuXIqln64j4rFiyDd/6Ep2RK+0ITL12tdgUjdFLyKqREYvGgwo/khpielKFSMnl6inUXyy8EPqtK1ujadY++1mtv+wD/9qpVl2bQ52DjqyMnKsOpns9BzMJjOiyjYA9eKua1YSBPDoSjAIIoIIflV9eBEUDTJo7LR8s/FTZBmCrofQ4t2GVKhThojH0daW//x4Z0xXFn28Cp2jjibd6r3RZ/J7eHi7cXn/TU5vumA99vRmKDMOTMTFI0/8fnn/TULuhPPeF2/hacmca9o9z8PIxdOZXl+8xe4lR3B0sadasyrcO2Pr03X37ENa/U6X9TIigdjweHwr+yieQJJsrbyAUv2aumu89e8+pUZYvxOCSkClUeMf4IsgCNYtrsToZB5dCkKWFaH59H0TLDEoSviwSzEXdkQXNLT8bcoOTAYT0aGxhAdGIEsSklnm7NZLnNlyyaqRCg98QYkyxfD08SAjOZOKdcvx4OITGnerVyBepAhvhn9S15gsy/uB/YIgVERJmi+J4i69CRghy3LOH50PRUSoCG8InUbNnCFd2HTmDt0bV8PL7fUdSb9HXHwasfFp1Kzqi0olotOq+XhgC1ZtvGipUCjVnxLFnOnStjp7j9xVMrVEwVIVgopli/MgKJpDJwNt0sr9fDz4fEgb3p97CFmG5Ph0EmNTKFX2P3cX+OvMvexbeRpZlvn+t1HUb29bHajasDx2DjpycwxIZomveyxg+Iw+VLV08dw8mZf7ZTKaCbkXYW1bT4hMwmQ0oc828PxxNIEXn+Di7ogoCtw589BKVlSWbr38i9Sf4eCqkyTHpiDLsHL8Rj6a/QF12lVHpVbx/lc9FG8XScankjctezUqcH7noW04s+0yJqOZdywmjYEXnvDgUhDt+jVn58JDHFt/jvgXiQiiQLFSHrTqkzePIAqIom1rfviDSGXBtXRj1Wqt6KjiXySSFJOCbFLCWVPiUnl0OYhuIzpYz9239CiyDHHh8QRdD6F2m+rK4mgxAkyNT+Uth/44eTjS64tuJEQlcnrzJao2rojWToMhx4igEjCbZGRZqQQlRiczeceXrJu0FS+/YkzrvVAJFFUJrPpqE7mZuSDAhsnb2Bz+s42uqtPgVrR8rxEandrm+F/Fppm7bP6WJJmvOk5n0fnp2DvacXHPdeYMUIj2jaN3WH5jbqHzfLxgEAO+74XOQcuIWhPQ5xiU8FSzhEarpnXvJiRGJ1PMx4OcrFw2z9rDjnkHkGWZ4qU9GffLJ8Q9T+DdMV0KzB1yJ4yfxqynQp2yxIa9JCokVvkMTWb6+Y1CVIssODOFyvXL41HSnXK1/AkLfEHlBuVx9nDCxdOZKTvHcedUIF2Ht7eZW5ZlnlwPIaBpZW4eu4csy/gH+OLk1paU+HSuHrhpFa6/Cr6NC0+wErfg22EcN27/l9//IvwzIctyCBDyr5xbRISK8MZoX7cS7etWsjmWmpnDxLWHyco1MGtIF/y9FAHpzaeRzNhyklLuLoRei0IQBJo3KI9GreLE+cc0qV+OtzvU5MjpBxhNEvY6DR1aKuX5McPaMH/lKTQqkQRLareDvVaRcfzO4yYiKpnE1Cy6DmrBkd8uUbdVVbz/hXb5v4Int8IUHxS1irCHkQWIkKOLPT9fnMKw+pOQJZnH158x/q15ePl6UKqsF1EhsTbjTUYTMWHx+JQvQdkapWnRsyE3jt8joEklzu+6jj7HQJKFwLyCzl7LjD3jqN60Mm+KS3tvWucIfxTJ9L6L6fxhayo3KE/yy1TavN+UnIxcRv44EFEUSY1P48Cqk5QJKE3L9xpRvqY/u2JXA0pl4MmNUCZ0mIEsw95lR8nJyLURdkc/i0MQRVRqFZIkMWrhIM5uv8KmmXto2Lk2Y1cNx7OUGzo7LfpcPa7FlcwzAO+yXlRvVoU7p+5bydOZLYqe5KsNnyIIAk17NuDSnus4ONtj0BtZOGIlPhW8lQgIlKgRs8lMekIGG6Zst7ZYP7j4hDlHv8PLrxiRwTF8332etXV+yPT3afFuI1q824j3fT/OM5E0ywoJApAhOTaVqwdv0+JdW8JYmE3AX0WzHg15di/C5ljEoyiOrDlN+wEtmPfhz9aut+z0P77ZdXR1IOJxFC17N2b3osN4l/Vi1qFvSEtI48vW0zCbTAz/YQBBN0I5v+OKVaOTEJlEvQ41KVaqcBf5eR8u5/mjSHQOOiasHYlBb2TnggMIokhYYAToYeWXv2HvbEf/Se+y9MosQm4/48RvFziw/DjdR3WiYZc6NMwXvfIKv03bwc4FB5EliR6fdmb/z8fYMmsPDbrU5sWTaMVJWhCo1qwyOZk5vHgSoxh4Gk2IahUe3oVn+xXhL+Af5Cz9d6CICBXh38K28/e4ExKNWZKYtO4o3/dvT+XSXkzZeJzY5AwiE9JwsAMxzcS9R5GkpOVglmQu3XhmY5JYorgzaov4193NkTFD23DxeihnLS63Hm6O1AzwZUT/Fly+GUpGpp4X0cl4uDlQqoQrn/7wAaPn9n1tVMXfiY+m9WLWhytx8XSiY/88V97QwBccWnuWxp1r0bhLbcpUKcWzB0qbu9lkJjY8gcSYVNyKu5CVnoM+x4DWToPOXouHZVtJFEXGLh/KiPrfcuv4faW1WxTwr+ZLVmoOIXcVPUalemX/EgkC8KnoTezzeGRJRhQFcrP03DnzkKPrzqLPNVCyrBcbHi+yjp/edzFBN0JRa9W4FnOmVqsAm/d3yai1VmKVnpSpiNAFQFA6rD6Y2JMzWy5Zt6eOrT9HWOALzCYz53ZepceoTlSoUwb/ar4E33pGdloOt04GUr9DTVQqkR+OfYvRYCL49jPGtvgeWZI5t/0Kw2b3o5iPJxN/+4x+376LWwlX+vuNtBo6au00fLd1LBFPotg0fSeGXKOSdC8KaLRqtHZaytX0w9HVkfTkTBxc7MlKy6ZcTX/O77pGQNPKVKpXjsoNKnD1wK3Xvp9zBixD/k22CoL/Lgz47j38q/mSEJnEma2XeHY/ArVGhWcpd6uBJQACfLdtbKFz7F9+nC2z9xLQpBI3jtxBVIm06duML1crIvNLe65hMpowGUwcWnWKuPCX1mojQDEfj9eGBQMUL+1JzLM4QMazlDvVm1ehw8CWXN5/k1kfLEGSJIJuhGAymnl4KYi3P+nA/fOPCbkThkanwZBrpOdnXdBoCy5Bd04Fos/Wo9KoOPKLsoWMrNgpJMUquWYarZqQO2EY9UZKlvNm+A8DcPd2I+haCK0ssR1FKMKboogIFeHfgr+XO2q1iGSUCYqK58MF29kwoS9iviRPwUmNk0nNqMGt2bDjKnEJ6RgMJisJEkWB8hYfoMDHUXw5bRcIULFMcXSWH8o2zSojSTLb9t8kI1OPWiWwdOb7lPcrhs5SRfhvkCCAirXLsOGe7XaELMtMfHs+Wek5nNlxjTXXZzL/8ER2/3Scc3tuIIoC8VGKC/Xo+f2RZRnfCt68fJFIpTplbCoJSbGpvHyRaL3rF1Ui733amVLlSzBr0M/o7DR8vW7UX77uiRtGcWz9OdyKu3Bw1SkSo5PoOboTqyZsAhnMJomLe65zbMM53v64A1npOZhNEhqtYO0Myw+34nlJ8yXKFGfu4a+5c+YhjbrUwctPqcr5VvRmau9FGHMNhNwJR2unQaNTAnM3zdpNclwaOZk5SJaOocUjf6FqowpMWDcSrU6DRqumSsMK+FYsSUJUEm5errh5uZKWmM7ohl+TEJnEJwsH23QbGfRGQu6EMWByL3wrliQ24iX7Fh+lRsuqtO3fkkr1yuHoquRrLRqxmnRL23vo3XBkSWbuwGWse7yI1n2a2BAhnb0W73IliHgcCTIY9cYC1b2/Cy3eacS2efuJeBSFAPT9qodVz/PWiPZc2X+T/t+9R4XaZYgNj8fJzcHqsi1JEsu/2IBklrh28DaCCLlZepuOuEbd6rFp5m6yM2RyMnOsW7WuxZ2ZeWAi5Wr6/2FX4nfbvuDkxgv4VixJ9eZVrMeb9WiAfzVfIp5EYcwxIgiQk5XLzoWH0NppkSQZfbaB1V9t4viv5/gl8McCcw+d2Y/pvX8kJyuHrFTFYsHZw5EvVn3MnP5LkUxmSlfx4dn959aKXbOeSkxKQONKBeYrQhH+DEVEqAj/Fro0qIKrox3fbzhOcmY2GpXM9aAIhnSsz8ytpwHIwczauf2p7FucFo0q8Cwika17b3DhegiyrGgggp8p7bdRliRrvd5Ert7E2h8HIggCfj4e6PVGklKykCQZjUaFp5ujlQT9TyEqNI7oZ/HUaV3VZjGWZQkHZzsGftODAV93x2wyc+XwPTxKuFK9SV5run+VgoGfXqU9adCxJlcPKXfyarUKnwre+FTwZsXVmW90Xae3XWHF+I1UqFOG6TvHorXT4ujiwHufdyX6WRzrvt9ObraestX9GLlwMA8uPuGt4e2Y2HkWRr2J++ces+jcFDbP3od/gA9lqvkWiN/4dtNnLB69FpPBxMQNo3B0ccDe2Z4Fw1ehVqsYtXgQv03fjdlkslaOSvgXo+uwdhgNRjbO3IMx14hKo6J608q8eBpN/ItE0hIzuLj7Ou36Ke3cKpWK5bfnEXo3nPK1/FFr1Nw8do+0hHQks8Tmmbv5cs1Ijqw5yaOrwejstbTs1Zg5/Zdy7dAtS+VNy81j9xj3y0gbsz1nz7zAUVmSUWtUOHsqhCI329YJ/edbc8hIzOSrjjMxGUwU8/Gg28cdeFOYTWYeXwvm0ZVg2vVrXqhfTn7cOHoXfY4BlVq0upoDfLJgEJ8sUMJ+t8zew6ZZe1CrVfx8Yw6lK5dCFEV8KnqTEJmEqBLxq+pLQmQioyxC9OjQOMY0mUROpp5vNn7KgeUnSIhUfHhKlitBlXzWCfkhyzL6HAM6e8VYtMeowg07nz+MVFr9dRpqt6nG/XOPMeQacPNyxcXTkRBLx2jEo6hCI12qt6jC1siVDA34gpfPlUgeD293pvScR512NfhoTn++7TrLot0S6fJRuwLXUIR/A3nNuv8oCIJQCVgBlJBlubogCDVRYjf+9EeziAgV4d9G04AyzB7ahVlbT5FjMLH84FUc8hEUSZIJi02ism9x7HQaqlUqSdCzl9bFUaUSGGYJfmzXrDKXboQSFZvC+JEd8c+3WOh0GkZ/2IrtB27TqVUAJYr/aajwfxSRwbF82mYGAgL12lZjzr5xHFh9miZd61jb5Z/eCeebnj8iCAJzD4yn4p9kbkmSxLP7EYz9eRhfrhjG5QO3qVCrDD4VvG3GvQiKxt7ZnuI+hWs4Vn29mYyULJ5cD+Xuucc0ypdzdWz9OUWILMtsm7ef6XvG02FAcy7uuWH101FpVPgH+DJ25XBG1J3I7iVH6Pxhaz5dMsQ6j7OHE4YcAzeO3WNMs8lUaVSBwPOPSYhKQhAEfhoj8fxRJGajpfKnEokNj2f999vxC/DFbFIqXmajmdT4dGo0r8qt4/dBlilZzlbsbuego3qzvMpD6SqlEEQBQRDITM1i8Ser+eXhQox6A5N7zuO7t+eSlZZlbUE3WITrWek5NkRo0tYvGFl3IvGRiXiW9CAtMY3gW2Gc2nSB9gNbsXT0WsxGM1p7DV6+xfCv4svP12eTFJtC3fY1CjV0lCSJDZO3E3rvOcPn9qdsdT9+nbqDzbP2IAgCokrg6Noz/Pp0yR9+F/pPepfJPeej0qisIvLf4/TWyxhzjQj2AvfOPqJ05VIcWnUSjU5Dh8Gt6TuhO15+xchIycTBRWnzvLj7Gllp2ZjNEnuXHmXmoW+Y3GMe2enZ9BjVCaPFryg/ZFlmcs/5XD98m/qdajPr0NeFVmAfXw2m46CWnN91jbrtavDtls/Zs+QIQddDGDSlN4ZcI581/hZJkq3dZa9w++R9IoOi2Th9F1np2Yo+aNlR1Fo1L4KikSWZG0fuEv7gBTKK4aksydTv+O93ghbhfwXWABOAVQCyLAcKgrAFKCJCRfjvoFEVPw5MG0qTL5ahN5oQBQGdWoXeZEYlCtSvaBtpUbOqD6eTMqy+NpdvhFK3hh9Ojjpmf93TOs5kMvMiOhnfUu5oNWr6vF2fPm/X//3T/48g4mkMAgK52Xqe3gmnct2yTFj5kc2Yg2vOkJ2hbCsdWnuOsUsH/+GcC4av5tKBW6jUKlbfmkOXD1sXGLN72TE2TN2pkKvDEwlopNzBy7LM6a1XiAyOoUItfx5dVRoo/PP52Ty4FMTxX8+DoGhpGnauTWZqFtP6LOLprWfIkky7fs14d0xXtHZa7p59hD47F6PexNkdV22IUHZ6DjeO3gOU8M3IpzHKAwLo7DWUq+lH4IUn1m4xUSVafHrMhN4NtwkRTYlPY8WtOZzfeQ2fCiUIaFyJzNQszu24SrmafjZbHkd+OcWyT9ei1qqxc9SRk5mLWqMiKjiGu2ceEh0ciyTJiJb5dY463Iq70HV4+wK6Fxd3JzaH/4zZLNHL6yNrN9LCEasUjxu1CrPRjGsxF+v2pdksMX/IclQaFTMPTKSYr6dNa/v1w3fZu1Tx4Yl/kcgvgT+ye/Fh664l41AAACAASURBVGdkNslkJGdYx8uyTFpiBs4eTjbvSUJkEqIoYMjW8+uUHcw58q3Ntd84dhedvQZRJeLo6kCTt+uRmpDOT2PWYzaZCbsfQcv3GrF17j6O/HKaUhW8WX5zDnXb12TTzD2IZom2/Vrg5OrAhPWjGFF7AktG/cLZbVeYdehrm+dKS8zg5jGlm/P2qUCeP4qkbHVbC4HrR+4yo89CBFGg+6hO1rDXPuNsnc5XBy7g5fME6nXIC3y9uPsaPwxehsloRjJLyJJM4LnHHMjYhEotMqbJJF48iSI3S09MaByCAL3GvU2nD9vgH1CaIvzN+AdWhFBME2/8jqD/sWuvBUVEqAh/Kwa3r8/qo9dwd7bHx8OVEh5O9GhSneK/a7efNKYLer2JK7dCMZllTl4M4mbgC7atGIbW0nosSTKffL2F55FJlCzhyvpFg1GrCo9U+LuQnZnLknGbyUzL5vMF/fHyLbziAtCwQ02qNa5A2KNIRs0rPNKmcZfaXNh7CwRo/AYeRrdOPUCfbcDOUUfoveeFVnyuHLiFIdeISi3y4GKQlQjdOvmApZ+vx2QwUa1JJSZv/Rzfit6U8Mvrolsx7jfSEtLRaDX0/qIbbw1vx9Dq44h59tI6JujmM6tPTvWmlXEt7oo+J5EeI239kBxc7HFwsS/QuaRWq/hi+Ue06duUbiM6EBUSiyRJODjaMXvAMhKikpUgWrUKQRQxGU2AjM5eS8dBLa3zfN9zPiF3whEEgaWXZ1C2urLgHfnlNCaD0lbv7uVKTpZC1Lz8ihPQuBIancZKsCWzhFqtYlPYcuu8Br2R2yfuU7qKD74VFU8ilUpkwPfvsmrCJmRJRhBFUl6mWZsU8/+07lhwgGTLFu5nTSZhNksMmfE+709Q3P0dXe2RZRmVWoWzm7L11vitulw5eBtREChbw48hM/sCSsfgxE4zeXQlGL8qPvx0fba1c07noAMBBJWIzkFL/ItEPEq6odaoyc7IYVqvHzHqTai1KtY9WoiTmyM5Wbk2F3twxQmuHryNZJZIjEri2d3nVG9ehc3hP5Gbpbf67EQGRYMsk5ul5+mtZwW+cy6eTpSvXZawwOdIJolRDb7h4/kD6WmxUQAIf6gI4U1GMyF3wqzH0xLTycnMtRob+lf1xb9q3o2R2Wzm9JaLGHONSFLeCqyz11rfi4Xnp3F5303m9FeqaLIMddpULyJBRciPREEQymOhcYIg9ALeSMRXRISK8Lfik25N6Fi/Ev3mbCEmKR1nex0zBncuME6lEpky7i12Hb7Dyt8uYDSZSUnLIjUtB69iigg3K1tPSHg8kiQTGZPMgRP38C3pQcPaZf5j139g7TmuHLmH2Syxesouvls74rVjtXYaZu0uvGvnFZp3r0eFWn4gCHj7/Xlb/8BJ77Dyq834VvCmWpNKrP1+B0G3QilV1osuQ9owd+gKEiKT0GjVOHs6ce3oXTbO3sfASe9QqrziKWQ2SYTee45Wp7YhQQCV6pUjOjQOSZKp17EmJqPZhgSB4uETG/YSnwrerPpqE8lxKXQZ2oZBk3sR8+wlG2fspmyN0vT+shvLLs9gyehf8C7nxb0zj0hLzGDc6hG07qN07niV9sSrdN725qZnywi+Hcbm2Xup07YaidEp3Dn1gKEz3y/wXryMSMSQa8TOUUdSTDKX9lxj18KDlK3hh0qjQhQFUl6mgqx8FlHBMTTt0YDFl2aSlpjO8rEbiAyKpvf47jbzTu+1gPvnHoEMK+7Ox7diSa4fvsPaSdsUPVbFkvhWLkXPMV3wKOXOvbOP6DsxL8KobrsaXNl3E6PBhFGvELJDK09ZiVDNlgF8/dtnRDyO4q0RikfO1xs/IzIoBi+/YjbC+DkDl1ldtWOexRH5JJrylu936z5NyM7IJjEqmdC74Qyp+gXF/Yqx6s48S5VNuSlQqVRWYbNRb6JO2+rcORWIqFLRtEd9dA46zm67jFtxF8pZtmZdi7ngmu+rUaddDWq2DODprWeMXFiwaimKIksvz2DzrD1sm7cfY66Rw6tP2RChLkPbcO3gbdIS0xnxwwBA8Rsa22oqklni4wUDC9UV7VxwgJtH7yIDTm6O6PUGjDlGxdjSAp29jjZ9m3F+xxWuHLhJvQ61aNClboG5ivD34J9kqJgPo4HVQBVBEKKBcKD/m5wovC7b5f9H1K9fX7516/XtrEX4/wNRiam8O/1XjCYJN0c7js8ezpdTd/IkJI7h/VvQt4ft1taydWc5cDKQ9s2r8NWojlbdgCzLTFt4mNOXgl555KHVqPju8660afbXWsffFCe3XeXnb7YjyzJdBjTjk5l9/iPP8ybY+9Nx1ny31aqxcXC2x2Q0Ycg1UibAl8+WDGZSj/nkZhvQ6NQcSPyFn774laPrzyFJMo6uDuyJWWkzp9kscevEfYr5eFC+prIodnYYYHVZBvAs6c6vTxeTlpDO4KpjMRlMiCqRndErGdNiMtEhcWjttUza/BmNu9ZFlmWuHLjF3EE/I4gCHQa05LNlQ/h3EXjhCSvG/0ZAo0p8vKA/3RwGIMsyGjsNFeuV47El+kEQBGq3rc7Mg1/b6H+UbShzAXPD90sNJzkuFZ2DlmrNqtCoa12eXA/h3ParALh7u5GVlo1HCVfWPlporTDl37YKuRPOZ02+tbac95nQncoNyvPbtJ007d6AITPef6MuxoEVPuNlhCIILubjwYagxdw//5ija8/QeUgbGnapgyzLdNb1Q5ZldA5afjw7lUp1y/H4ajDndlyhdZ+mBDRRtg6/6/4DN4/fQzYrFbHuozry6dKhJMWk4Obl8m8ZPQLEhsczsv5EstKy8atUigVnp+Bewu2147fN28+G77dhNkkENKnEkkszCoxZOe5X9v10FGToMKgVDy48JibsJYOnvU//Se8VGF+YwPp/MwRBuC3L8n9ND6ArXVr2HfvHN3h/F8LGjfvbX5sgCI6AKMtyxp8OtqCoIlSEvx2ujvaIgogoSMhA4ONogsPiMRjNrN92uQAR+mxoGz4b2qbAPEGhcdx/rARvvlqmDUYzkTEp/7Frb/9+YzR2GrLTc+jQt8mfn/AfhFqrsiEo+hw9aq0anb2Wxm/VoVQFb3It3jlGvYlHV4Pp9UVXTm65hElvsskvewWVSqRRPhO70HvPcXRxsEQeKO7PXT9qy5R3F1j8g5zITMnG08edJ9dDrdUjk8GERqOk1o9tPY2nN5+BoHRehd4L59Ca0xQr5U7jt/71u/aaLauy4sYcQFn8/Kv58vJ5AmqtmuCbeds3pauWYt7JyTbnXth1lYt7rvPOZ10IaGJLmkcvG8rPn61Dn2vg7qlAHl1+Sr9v3+XK/lsIgkCKZdsrOS6VsMAXzB20jJjQON7/qgfDZitboBXqlMHBxYHMlEw0Og3eZYszw5LDFvvsJW3eb4q9sx2yDCX/wOV89JIPWfTJanwrlGT6gYmYjGamvrcAo97E9SN32BG9GkdXB9oPbMmpTRfQ2Wv5tNG31G1fg1mHvrESoFfIzdIjmyVrI8KB5ScYuXAwxV4jqv+rKFnWi/odanJ+5zWiQuPY+sN+RhVSQXqFlu81YueCA2Rn5NJnQvdCx/T/7j2SYlKQzGY+mtsfF09njAaTdVvs9/i/RIL+x/DPqY9YIQiCJzAFaA7IgiBcAqbLspz0Z+cWEaEi/O3IzNFjNJmRZEjLysXLyxmVSsROp6F2IRlNr3D2ylNu3ntOr7fqUs6/OCt+u0CixVn6FSqVK0HPvyEv7HUQBIHWPf+7Yuywh5Gsm7ydMgG+DJ7cy9qx03VoG85uv8qja4rouePAlgyc9A6pCRmUq1FaCcXM94N1ftd1SpYrTnEfD/yr+vLx3MJ1S/kxvv0McjJzEUUBNy8XkuPS2Dx7r2K6qBJxcLLDbDIjmSQWjVyDIAjIyHiXKY5LMWe+7fYDIXfCFesAWTFtdHR1YOX4jQgCTNo85t8iQ68gCAJLr87m0eWn+FUpxaeNvyUzNQtZkkmKTuHwmpO07deCiEeROLk78sOgZRhyjVw7eIvtscp12zsqW1It32tCy/ea8HmzSQRdDwWgXE1/llyawfb5B0iISuLR5adUa1aZhMgkYiwdjtt+2E+P0Z0xGU04ujqw9PIMzm6/Qr0ONZk7cJn1WiVJ5vG1YJaM+gVZlun3zTsMmdG30NfV+K16bI/My9nKzdZbt7xEUUSwuGpPWDuSET/0p3dJZav24aUgYkLjKF3Z1n7hq/WjWDVhI7dO3MdsNFOhTtl/qQqUm60n9E44ZWv64eiSFyp4/9wjLu29qVyfSrRux74Opcp7szNuDbIkF+pLlJutx97Jjklbv7A5np8EGXINnNlyCS//4tRtV+Mvv5Yi/J/BNuAC8KqM2B/YDrR/7RkWFBGhIvztKOnhoohMZdCoVSRn57J1+TCiY1Op/Ls28FeIiEpi1pKj6A0mLt98xv71o6hepRSPg2PRG0yIosCwvk0Z1Pt/tkoTdCuMSb0Wo9KomLd/PGUC/lrC+O+R8jKNT5tNxmwyc+vEA4r7eFhFySq1igiLTkJrr6VMgC8uns54llRiTOyd7GjduxHndl5HpRY5vumSEjgqy7yMSGTi2k8KfU5Jktix8DDRIbFWo8RXmW+gkA6VRlmEMy3hpHEWPxdBFPCp4M23mz5jaq8fiY9MQkBApVZRp201Zh/6mi8tqeJaey2JhVTvYsPiWTRyNc7uTny5eoTNQvtHsHe0s7ZK//JwIUfXnmbT9F1kpWWzavxv/DplB9lp2RQr7WlNXpdkmT4lPkKWZWYc+Jq67fM6lb7b/iVbZu+mTLXSNHqrLoMrjSH22Ut0jnYsPD+NGs2rkBiTbK3KiSqR2QOW8vjKUzR2Wn6+PpuB3/cCoEGXOhxfdxazWWLyzrHsWXzEet6epUdfS4R+DzsHHfNOfM+ZbZdo3acpDs55VT0XT2eqNa1E6N3nuHu7Ye+kIys92+b98/Irxvfbx5KTlUt0cCxlqv91MbEkSXza+FviwhNQqUXGrlI0X7Iss2vRYavtQfla/vQY1QlZlrl26A4qtUiDzrULVGxEUYRCehwu7b3B7AFL0dppWHJxBv4BioA6/kUi49tNIyMli6m7x3Fo5UmuHrgJAkzf/3URGfpv4B9YEQJKyrKcf+91piAIBcWHhaCICBXhP4JmAWW48TQSR3st5Ut64Oxgh9sfLHi/T5oHGN6vOXWr+ykCVm9Xins6v+bs/x72rjhFlqVL6vCG84x+TbfYmyL2ebzViFGWZcIeRLJ13gG0dhp2LjlifS5DroEVEzezd8UJ1t6Zy7b5h9i55AiNu9RmX/xqdi89xqY5+5RJBQE7RzvU2sKdgff/fIINk3cgy6DWKttbKpXI1xtGceK3C1RpVIFTmy8Tej8Cr9LFeBmRgFqnBlkJe11w6ns8vN3QOehQqUREjYrSFUuSEJXMs/vP+WL5Rywe9QtefsXoMKBFgedfMf43Ai8EodKoOLzmdIH26jeBi4cz7fq1YMvMPdg56jAZzKRkKFta0SGxqDVqRJWIi7sTidHJgNJtlp8IFff15PPleWL49MR0QMaQk2vNN3Mv4cqwOf3Ys/gwJct58fDiE2QZ5BwD984+xM9iTfDpkiF0HNSKYj4eeJZ0R59t4N7ZRwBUblDuL722qo0rUrWxralh5FOFEM8/NZkXT6IJf/CCQRU+RVSpWHBmSgETRHtHOyrUKfuXnvcV9NkGIp9EW/8dzv9wOV5+xQh/8ILbpwIB5XswbHY/BEFg548H+W3qTmRg5MJBvDX8T2/AASWfzmQwIZnMXNp3w0qETm+5SHxkEpJZYuP0XeRk5FiNHF8+j/+XXlMR/k/ghCAIfYEdlr97Acff5MQiIlSE/wgWftKdZzFJ+BRzxTGfgPV1KFPak4mjO3H9TjjvWzREgiBQ/08MCP/bKFejNJcP30UUhQJhq7+HQW/EqDf+YcWjcv3yNO5am1snH1C+tj9nd17DZDRb77qtDPH/sXfW4VGcXxu+Zy1GEoIEYhDcLbi7BndocSjFKdYCpXhxhwLF3d0dgrsTJECIECcuazPfH7NskpIA/Ur7q+x9XVxkZ2fekWx2zrznnOcx/Rf6OoKwgEg2z9iHJMGVI3fo+n0rqrXwYtfCo+h1Bmq3qcTX49tkmhK5uO9GmmEF6nWtjnef+rx6EECdTtVwzOHALyPlNvKwwCgKeuUj8FkIkigxdf8osuWWi2N/PvQ9R1afIToslrPbr2DQGVg5ZguzT4xn/rmJ6a9Fio7HV5/jlMuR3J450VirQeCTtStxUfHcOf2AEtWLfqDEnMMtO0tvzOChzxMWfvureXm+Eh68eRqMaBSJColGEARUGhWNetTJdD9Go5HEWNnOQalSYutgg16nZ1DFHwh8Gkz5RmUoV68UT2/4IRkllCoFVdPoWQmCQJEKBcyv63SsRp5ibrz1C6PyZ6YG/e69Ztfcg5RvVAav+qWIi0qQ/c92XWV2z6UAjFk3iNodq7Hqh80mTSYDlw/czFQN+v+DTRZrWg5qzP6lx0GSZwGT41MIehEify4FqNWhKuXqyZ//148C0KboEAR4Y6rp+xwa96zD0+svUKqUVGqSWrdWrEphc3q4crNylKtfigX9VuBSMDf1TGrjFv48BOkf2zXWDxgObDa9VgCJgiD0ByRJkjJV4LUEQhb+FJQKBYXdc/6ubRrWKmZ2oP87cv/iU7bOOYSgEGjUtTqVG5XOdN0Q/wiG1JtGcqKWwXO60jSNPk5alEoFE7fL9RE+e28w99tVZpNShUrAoDWi0ihl3zFJ1lZxcnYku6sTcVEJ2NhZk9M9G7b2Nux4tQS9zoC9k12G+3pP1Zbl8b3hh2iUMOqNnN95ncSYZO6ceYQgCHg1LGVO62TJasfrh4EYDSJWthpznQ1Arrw56T21MzeO3+PCrmuobK3MnWhpEUWRAZXGEfRclvSo1qo8gxb0IIuTHdVaZl6PJUkSAyt8T2xkHCqNilUP5xMZFEWBsp6oNWpC/cMZWnU82mQdxaoWJuhZCHU6V+erH9sxotYEgv1CkUQJxxwOrH++mCxZM78uSqWSMnVL4HvtBdlyZ8W1QC7evgwj6PlbDHoj14/coffPXfDuV5/osBgGLOz1UYuM++cfc+/8Ixp2q52hsSjIgfLO2fvRaw10HtuGcU2nEx0Wy8U910GQUCgUdP6hDaGvw+WUJ7KIYu2O1Wg5oDH3zz5CpVFRu/2XTxcPWtiLZn3qs27CdopUKohXg1LkL50Hvzv+6HV6+kzvYl63+8QOBPgGo1QpMy2IzohG3WtTsXEZ2f7FUX5YuHbkNlM6LsDa1opRawaQx2RBs+zmrC97ghb+dUiS9P9OGVgCIQtfnMCYWDbfu4eXmyuNC325J9W/goSYRHz23aRQ2bxkyWrHroVHKVIhP4271eL53TcYDSIGvRF/3+CPjnPz1EO0yTqMeiMHV53LNBB6z4U91wnyC6VJ91qE+kfSbmgTfPbd4NTmS2iTdWTNaU/NNpVoO7gxs/quJDYyHiQYsbyPuY7E2s4KazurT55j+2HNiAmLZffCYwCmmZMYdCl6k4idCo213DLu3bceTrkc2TJ9H171S5o1btJSqUlZZhz5gdjIePPshyiKspihWkVyQoo5CAK4cuA2o1Z9+8naIL3OQESQnCJRavV08eiPQhAo6JWfn4+OY0D5MeZutzD/CPZErDVv++uD+XTLP5B3ITHmAu5PMevkBA4tP8HW6XuZ0HIWP+0eSU6PHLz1CwVgXp8VLLsxM8Ntrx66xeuHATTtWx9tkpZx3j+j1+o5tuYs29MUQ6dl97yDbJ2xD0SJpIQUFEql+doB6FN0XNx9lTzF3bHOYoWVtRVth3kDULVFBfZErUOpVKSTDPiS5CuVhyn7x5hfO+XKypzTEz5YL7enM0uv/fz/2kfa1vtHl57yU5s5IEGi3sCFXVe4vP8mCAKj1wwwm85a+AuQ/pmdeYIgtATef9melyTp8OdsZwmELHxxeu3Zy5voaDbfu8+uro4Ud868ffjvxrhWc3n9JBABgeyuToS8Cuf0tsu4FchNg85VObPzKiGvw1FplMRGxeOYSd1S+XolWD9N7r5q1jPjIMigN3Bh3y3CAyLYNvsgBr2RMjWLMuOgfPOxdbDhxAYfVBolnsXdGTxfNtoM849ArzVgZasx23f8HgRBICwgtaPUzsEGvVZPdlcnytQuRs+J7ajYqAwGvZFG3WqiVClpMyhjg833lKiW2qIe8iqcoTUnkBSXzNhNg6nRuhK12lXCZ88NANQa1Uedzd+jUiup91VNrh64aU5biZLE81svuXv2EXpdqnp++9/UGcW/S5CDReDZTT/iouJxzPFxb7o7px6wbOg6ABJjn3Lj6F0GLerFFJOC83vLDkmSWDp0LdcP36bbTx3wKObG9M4LMOiNXDt0i5FrBsjriRLJv1HdTos8yychIfutzTr5I/uXHqdgOU+2zdhHTHgskgQ+u66hsVIzbMU3FCjjad4+7ezcv4HFQ9aYU8CSBMkJWnQpegBuHr9nCYQsfBRBEGYCFYEtpkXDBEGoLknS2E9tawmELHxxtAYDIrLSv9bwWVYvfxtC30SgS9abCnANSKZvZkkUcXJ2oHKj0uxZdpKHl5+zfuo+hi3snm57o1Hk7M5rAGx6NBuDzpBpsLRi3A5Obb2CUacHUZTNRyPjubjvJiWqFcL/cRAIAkiy1cV7Rq7sx5LhG8hTxJWarSv+rvPbvego+5acIIebEwqlgGiUSIhJIiEmCZVayeX9t/DZc4Mu37eky5iWnxWw/JZL+2+QGJeMUW9kRvdl9Jkexfgtw3AtsIOdcw+R0yM7wS9CmNZ1MQa9kSY96+BWMDe1O1RBEGTvNisbDbsXHuXywdtIkoCgVCIZ5bqpGm0rU6ZOCWyzWGPQ6mn3XXPaf5c+EMrq7IB7IRdC/cNxLZAb+2xZMjrUdOxfetz8s9Egkq+kB54l89Dr567cPnGPbpNkcc1XD95wYt1ZtEk65vX9BbfCrqZtjMS9SyBvcQ/6z+nGlYO36DK2Tab76zSmFSmJKehS9PSa1gU7B1uG/dIPAO9+sqv9yDoTQTIZgptmiv5OGPQG/B8F4lbY5Q8HZrk9c+L/KBCAyt7l6DGpI3fPPkSvNZC3hPsntrbwRfln1gg1A8pKkiQCCIKwAbgLWAIhC38uOqORoYcO8yA0lAn16tK0cGF+bdOaJVevUtnDnXKurp8e5Hdw5u4LHr0OoWOdsrhk+/Lu82NW9+fXcdsoXaMorb5twM75R3HJn5PHN16iVKuwd7KTZwYkMqzF2bX4ONvmygab0eFx1GlXkf0rz1C2ZtEPWu2D/MLQJutQqZUUq5Qfa2s1vjdeMrvfSqztrKjfuZqs4SOKBPmlppbyl8pD4261MBqMZi8s/ydB7Fl8nDK1i9GgS/UMzy0lMYU143cgGkViwmNp+HUtHl1+SrCfLJL4XiXZoDeyadperh66w+JLk9MpKn8OXvVLsmnqHox6IwadgVU/bKVpr7qc2nQRUZR4FxrD2gk7CXkld8xtnr4HtZWahJhEQl6Hs2fRUTwKu1CsSiFTQTAUr16E0JchpCRo0dhocMiehc3+y0mMSTSnV2Ij47h39hElahQlh2s2lt6cSfDzEDyKuqFQKEiISWR0/cm8fRnKqLWDqNm2crrjbtS9NndMXVGj1w0iXym53un4mrOE+ocxtvE0NvotJZuLEwqlQjZkNRgJevaWPMXdyO6SDe9vGvDwoi8tBjSm5cAPrWXSkhSXTHx0ItldnbC2zTilOXbLUDZO3oV7YRdq/OZ4/w6MqDOJVw/e4JjTgbWPF/Dk6nMCnwVT/6uany2L8J7srk6ytxoCufM6Y22rQRJlv7h1E3bQdpj37/4sWvjPkRV4Z/rZ8WMrpsUSCFn4Q1x5E8DlNwEk6fVMPH2WpoULU8w5J7+0+vyiyc/lsX8oP647jt5g5NIjf3b91P3TG/1OKjQoRYUGqTolI1f0pWuxUcRExqPWKPn12hTzbJF37zofbB8Z/A693oAAhAdFMbT+zyTGJiGKIrny5mDgjC7mbrOBM7swd9BanJwdGLOiL89uveTGiTmAXB/ToGsNnt16hTZFT/cfU60G9iw+xqbp+9DrDOxZepz5J8czvs1cIoOjubDnOvlKuGdYtKy21uCUy5G4qHgMeiMKlYL+s7/i527LAOg4sjl7Fh3DEJsEEvg/DiQ6NIYcbtnwfxzIxPYLUFupmLZ/lNlA88iq01w/do9Oo1tSwqRyXKCMJ6sfzKF/+R8QDSI2DtasGb8dURTRWKtRKBRUalKGhxd90esMiEa57ioi6B2HVp6Wu9XeRNKkV10KeXny4qYfwU+D0CbpSE5I4cr+Gzy6VJ8ytUugyZWVq4dusWLkBqLeRgMSao0axxz2hLwOZ/CS3uZ00tWDtwh8Fow2SceasZs/CIRqd6xG6TolEI0iZ7de5MAvx/Hu14DAp0HmYvGIoCgKlPFkxZ05bJ+9nzObLwJyOjDoWQgPL/qiUivpOKYV3SZ0+OhnbeG3v3L98G1UGhXO7jmo3qYSw2r8SERAJG2GNaPvjK/J4ZadEb9mrAf1v0avM+BrEvuMCYtl68972T5zPwqlQrZcOTb+d40nGuUCcVESeeMbhLW9NQqlArWVCvtsWcySBhYsZMIM4K4gCOeQExK1gB8+Z0NLIGThD+HplBVJkrBVqynunNolFpmYRNcdOwlPSGBhc2/q5P//aZqkJUVvQBDkOpEU/V+TcpMkiYS4JESjiCQp0SXrad67Tqbrf/19SyLeyi3bXUZ6c2zjRYx6OaXz9mU4cwasYccL2YohTxEXFp9OvVmEvI5AoVQgGkUcsmehYJm8LDjzYXFqXFQCep1BFjp8HcGAqhPM9TAAZGJBoFQq+O6XPvzYZi5IcGbrpVR/LWdHuv7QilYDi7jFZwAAIABJREFUGzKuxRye33pFqZpF5ad0YOvMA4T6RyAoBPb/cpJvZ3+N/5MgVo7ZgjZZx+Mrz9gTusq8L2ePHKy8PYuHF33RpuhZMWoT2iQt2V2dWHplGk65HDEaRVIStTy69BQrGw3tv/MmMjiKczuvok3WsX7iTvIWc8WgMxATHkdWZweT5pKAS/5UReN5fX5Jd/4GrQG9To9oFNk6fS8tvpXrmwqVz4+AgLWdFeXqZ9zx5+TsyIqRGziw9DiiKOL/MICBC3uxedoeKjfzIr8pwHQtkJvvVvSneqtKXNh5lTNbLiAa5dkLg87AQx/fNL+veOb2+QW91sDINQPI4SpLBqjUSlAIIIBSraR/mVFEhcgClDtmH6DTmNbYO306pfe/Qq1R0XJgIw4tP0Xp2sXZMfsAoighikYeXPDl2a2X6SQFPkZEUBRnt15CNMqzkk+uveChjy8LfaZw//xjqrepZLHW+Av5J7bPS5K0TRCE88h1QgDfS5IU+jnbWgIhC38ITycnDnXvxouoKGrn8zQvP/rsGYGxseiMRuZfuvxFAiGvgm4MaF6Ve6/e0t/7rymcFASBiZsGsX3+Uao1L4dHYZePrp81pwOTtw4xvx6zog+bZx3k7atwVGoluT0zlxSo074yZ7ZdJiwwkjGr+me6XudRzbl3wZeXD/xRKBUkmAqJFQqB4Ut7UeAjNibTvlpizv/rkvWorUCv1RP6JgKD3sD3TWYQ+DwEx5z2TNwxzHzzKVGtMFcP30GSJIpWlG9u+hQ9RlEO8hLjkpnSaQHjNg8x6xc5e2SnftcaPLzoa65viQqJZnDV8Rj0RpLjUxCUAiNWfEOdjvLvc9Tqb3HK5cjexcfQpehJNqXCAL6Z0x0rGw35y3ji7JFqne5WyIWUJB1GvYEsTnbUaFOZc9svgw1Ua13JvJ5nCQ/WPFlARNA7CpXPx62T93ErmJuYiDie3fCjTudqZM3pSLBfCAZToH1szVk2vlxKy4FN0Ov06a6lIAhUbuZFrrw5ObPFh/cX1tbRll7TUtvLt8/ax42jd5EkkWVD15CcoCW3Z04GLe5N7nzOWNtZcXqTD1GhqSrcKpUynUv935UhS/oweHFvJEmiTfbeJJmKw/VaPaPqTeZQ3MbPGicpLjldWYouWceLO6+p7J0afFqwkBGCIPxWqOu9mJWrIAiukiTd+eQYFvd5C38GD0JD6bJ9JwLQs7wXo2r+t4XQ/B4E8PJBADVaen20diI6LBaFUoFjjo9LYoiiyJLvNnBigw+SKKHSqChbpzhTd4/46Hatc/Yz22oA2GW1xcpaQ5shjVGplKz8fisgi+ituPUznsXkItXrx+4xpfMiBAF6TGzP25dhHF9/XlZZNhUxW9tZMWnXCLPQXlrWTdjB7kVHMOiMH7wnCLLR69AlvQEIexPBiHpTiI9OZOKO4eRwcwJBIK/pWK4cuMmCb1eSr2Qephz4HtEocnn/DQqW9TTX9cS9i+ddSAx5i7tnOJMwteM8bhy7i2iUANmp3b2wK7/en0eH3H2JCY8FZAXlJn3qo1arOLDsOO5FXFl6fYZZsiA8MJJrh25z49gdbp+8j1KlZOCi3jTrW9+8r31LjrJmrNzI4pjDgfDASKysNeb1VozcwP7FR2WHe7WS7C5OTDsyFs/iv98e46/i/X0j7bV9/SiAsU1/NqUo5c/QSf32zx5z1/zDbJyyC22i1jx2lqy2LL89K13g+1/jr3aft3b3kDwGffx75EvhN27EHz43UyosMyRJkup9agzLjJCFP4XSuXNzolcPopKSKJ07Y3+x/xIFS+ehYOnMZ2oALh+8xYxeyxEEgal7RlK2dnpxyXWTd+Oz5zqdRjanSY/aXDty11zgrLHRMHH7sE8ex7wzPzL966UEv5BnjBNjkhi9uz9rJ+wkII02kgBmUUWAO6cfyrMkEtz38eXumUemICIV0ShmasLZ+ftW3LvwhBd3X2HUp3Y/CYJ8Uz2y6gwXdl8jX0kPph0Yw5aXSzIcB2DZ8LXEhMXim/CcjZN2IkkSLQc0Tpcuc8hmj0O21GBSr9MztvE0Hl1+SpdxbXly7QUpiVo01mokCfRaA1Fv37Fm3BazNtF7w9Mjv55Ko+wdxqNLTylVqxhXDtzkl2FrSU7QolQpaDeiOTncstO4V510x9tqUBMcsmXhXVgMjy4/IzosBgR59hDAtWBuVCaT0a/Gt6XL2LaZnvv/ClEU2TZjPwFPg6neqgJz+6xApVEx//wkPEuYAjaJVEV0MPvCfS412lRizfit5teSJJEQm8SW6Xu5uPc6uT2dWXhxSqau9Bb+m0iSVPePjmEpwbfwxRFNT4vujo6UcXH5T+T2E+OSuXToDmGBUZ9eORPO7ryGXmtAl6Ln4IpT9Cozhp86LECbrCPYL5S9S47z9lU4i4aux2gwkj9NYPXeif1TFCidl9X3ZmFlSjcpFAIRgVEEPntrXkelUZHV2ZHAZyHsmHuY6LAYTm6+aA4GmvetR612lTMsXl03cScBJqPY01suMrL+FM7vuopNFmsW+Uymc1rlYUG2ybCytUKpVpIQnciLO6+5efzeR8+hYNl8aKzVGI0i+5ccY8+Cw/zQZBqQOlPxW17cec2zWy8xGkS2z9xv1j1SW6lo3r8hHkVdKVa1CPsWH8WgM6Cx0dBrWmdZPiDNkHqtgQJlPRnvPYMF36yU67W0eowGkeb9G9F6cFOUyvSSAwqFgqc3/Fg3bhuPLz3lq/HtGbN+MFVNqtp5irmhVClwyJ6FRj3rfPTc/1dc2nuDbTP3c277ZRYOWE1yQgrx7xI4vvYsAImxiQysNJaY8DgQZL+08Vs/HZinxdbe+oPvCkmUOLH+PAnRifjdfc3a8du+2DlZyAQp1Wbjz/73JREEoYMgCPamn38UBGGvIAjlPrUdWAIhC1+Y5devU3jeArw3bCLpNzUVfxUX9lzn66IjmN1vJUbjX6O9Msp7NrO+WU3PsmOZ3X+1WR3499CiX3001mqs7azwu+/P25dh3LvwhMsHb+GQ3R6lWomVrYbsLlm5e+EJD3yeIigEbLJY03dqp0ytHNJy4/g92jh/QxYnW8o3KEmvqR2p4u2FWqOSx7K35ueDoxm5sh9z+65k45TdfFd3qrn2A+Dx1eeMXtMfK7OKtVzwq0vRc37nVQZX/ZEjq88wp+8KHl1+xuxev5AUL2/frE99PIq6Yp8tCz9uHUa74U3Jljsr+Up4yKrYkqxonBkpSVoeX30GyPYfgkK+WepSdMzuuZTG6k5M6zz/g4Aot2dOk9yAgFvB3FzeL4s7Gg0iJWsUJTwgklvH76JN1qFUK5FEkQ0/7aSgV37K1iuJSqNEpVGRwy0b2XJnJcA3CG2SFrWVilyeOek+qYO5ky4jTm04j15nIC4qHtdCuanVvqr5pr/ux20kxSXLnm1bL3/yd/i/QG2ahREUAk65HNFYq1Fbq7HPZk9cVDwzuy/FYBK4VCgUTNk/JlM176T4ZGb2WEqPwkPZ8vNe8+/KMYcD47cMSxdgCwoBK9tU5ezPUQi38J9lgiRJ8YIg1AAaAGuAFZ+zoSU1ZuGLsvLGLSQgICaGW8HB1Mrn+Zcfw6Ih60iMS+bywds06V6b0jWL/un7DHweIisFA5cO3aHx1zUo8zv3W7Z2Mfa+XYEgwKw+K4mNTECUJNwK5sbeyY5ll6bw6MozKjcuy4ape8yqu3mLudJheLMPxtPrDLx6GIBHYRdzTcumqXtJSdRi1Bup0KgMbYfIWjcLz0/kybUX1GxTkazOjlw9fAdBEDDojSQlJCMoBPOMk15rQBAERFNaTqFSkNMtG+GBkUiihKAQWPvjDvNMikqtQmUK0nK4ZWP1PVkiIO5dAl3yDsSgN6JUKRi/ZSgFynhmWlAeHhDB8JoTiA2PA8AQHku/Od14fPkZrYc0ZUyDKUiihM+ea9h9u5KvJ3Qw+4HdPfMIQaFAkgy8eRKEUiVbU1jZaHAwCV4aDSLWdlY06V2PY2vOoNfqeHbDj2JVCqFQKlFbqZh/YTKCIDDi129ZPmI9xasVYcy6QWbhyZsn7nFszRma9KpHpaapD6M6kx6SJErcOHaXS3uvE+YfwYhV31K2bkle3X+DJEoUrVTwd31m/iqqNPdi4IIeBL8Iof3IFiTEJDK2yc/smH2A/UuOERsZZ163SOWCdCs4GH2ynhGr++Oz+zqJsUmMWTcQl/y5WD12q1l2YPOU3ZSpXZyS1eW/lRptKrHqwVwmd5iPNllHvxlfUbCcJ7N6LMWtsCsVGpUhJiLOnFa08CfxzykdTsv7vKw38KskSUcEQZj2ORtaAiELX5R6+fNx4oUfGqXyf2atkaeoG68eBqDX6pnVZwXdf2xL4094ff1RBszszC8/bDcHCzndP+6qnhnvZ3XGrO7P1cN3cMnvTCGTv5dbgVy4mWpwGn5dg6PrzgPgd/8NYQGR5MqTvqB0dJMZvHoUQJasdqy9OwtrOysqe5fjjakWqGS1wuZ1C5TJS4Eyqd05lZuVpcW3DfC794aek9pxYr0P147exaOIC51Ht0AQBCbt/o4dcw5RvVUFWn7bkBvH77Fo0BrylfLg7tnH5rGGLOn9QV3HqrFbObzqNAgCams1Giu12YAzM05t9CEyWNZKUygVdP6hNfW/qkWAbzB3zz4kT1E3gv1CMej0HF97Fr87r81mnS4FcpE26SIHeQbU1lnIW8KDTt+35sbRu/Sc0okS1Yty8/g9Qv3DqdupOme2XESSJARk2weAaq0qUq1VelXv5IRkJraejV6r59Le6xSrXJCG3evQvH8jRGNq7czNo3fM7f6Lvv2VhZenUbFJORxz2ONRJL3o5t8FuaA9tQDc2s6KiMBIRFHCoDegsbFCm6RFqVKiQCDFdJ2WDF4ra0UZRFaO3sSkPaPSzZZKEuYg/T0eRdxY/WCe+fXhlad4fvsVL++/wWf3NVRqJb/enYNznv9uAbWFDAkWBGEl0BCYJQiCFZ+Z9bIEQha+KHObNaV/ZBSuDvbYW33aAPSPoDcYmbzpJH5voxjbpR5l8ssq1jMOjubwqjNsnL6PyLfRLBq6nkbdav6uWqXQNxEcXXeeElUKUblJ2U+u792rDnXaVebKkbsUKJ0H13x/LAhUa1TUalsp0/eLViyAnaMtibFJZtG5tBiNIr43/AC5bib0TQSexd35elwbqjb3wt4pC84eqe7pkiQREx6HY057JAm0SVr6Tu+cZn8F+W3Fh1e9kniZOsQkSSLw2VvK1i1B17Gt6VNqlPk8CpXzTHdca3/czu4Fsvq2Uq3kq+9bU6djtU+ah5asURS1lRpBgO6TOtJxVCsmtpnN9cO3UWpU9J/TDUmSWPX9FrTJWnTa1NRs8SqFmX36Jw6vPMX5nVfQm2bTIoPecWzNGbpN6JBOAHHN4wWEBUYyvul0OfMnCJSqVezjVg+CYJZwkkSJJ1df4HfPn0LlC1ChSVmum2bZYqNSNY9sHWwQBME8I/JPwcbOmi5j27B/2XHqdKxGywGNuHLwFlVblOfAshM8viKnL3O6Zyc8MBLUSlwLyk0T/WZ+hVFvJOj5W9p/15z8pfOSnJiCWqMySy+kZffCIxgNorkxQKGw4sXd15ZA6M/knzkj1BFoAsyVJClGEAQXYPTnbGgJhCx8URSCQJGcf80X1Ln7fpy950eKzsDkjSfZO6knADZZrGn4dU22zDqIta2CnO7ZMgyCYiLimN3vV/RaPaNXfYOze2pgMLblHEJfh7PfSs3i8xPx/AyvIzsHGxp2qfa7zsH3hh8rvt9KYa98fDv7qw8sBJ7dfsWpLZeo0apiui4yhULBgtM/cnbnVSo0KEW2NC7eIIsnth3cmP3LT1GmZjE8iqRanaRVnX4XGoMgCMzosYxHl59TsGxeosNjiQh6h8ZajVKlZPqB0RSvUuij53Hr5H02Tt6NNlmH/6NABi3sybaZ+6nWogJ5i8vXTpIkpn+1mKsHTRIYgjwb0GZYM2wysZhIS5k6Jfj1/lyS4pIp5JVfPk+VUg5AAI2NFY171kGXouf57Vf0MHmDvad41SIUr1qE4Su/wdvmq9RrpfrwoVGvM7Cg3wqCnsvWJoJCYMaxHz96fDZ21ozfMYJJbWanFq5LsnDiDxuHsu7HbVjZavC99oJnt14iAMNXfvPJ8/670nNKJ3pO6WR+/V7vZ/CS3tg72ZGcqOWb2V9z5/RDkuKSqdtZ/tuwc7Bl5KpUtezTWy4yr+9yAGq0qcyIVf1ZO34bD3x86TO9C0UrFiT8jSw2ajSKuBV0yVCiwcJ/G0mSkoC9aV6HACGZb5GKJRCy8I/FJZsDoiihUSnxyJk+EMia04Ffrkzh6a1XVGyYsYrwroVHuXf+MZIosX7yHsasSr0ppSRqEU03M22K7k87h1l9VhDyOgL/x4GUb1CKKk1TZ58MegNjms0kJVHLiY0+bH66IJ2+kP+TIB74+OLimZNS1YukG/fVowAafFWD/jO7ZrrvKwdv8XOPX0CS9yWJEi/u+qO2UiOJEtok+bx3LzzKT59ozVcolUhICIKAUqWgxTcNaPFNg3Tr3D79kOtH7pqvKxIkRCewdMhaRpsc2z+FW8H0gpbDV35DLs+cZHdxomH3WgiCQIeRH7d3USqVKNVKs+L3hok70VhraDMktc5qbq9lPPR5km47/8eBqa3iJqLDYxlefTwRgVEMXNyLLVP3oFQpEI0SXg1K0axfQ7PFx5ClfQHQpeh44OOLZwl3crhl59+GxkpNjbaVmd1zGeObz8DKxsqcls1IKXvdhO3m2Z5L+66T1dmBE+vPk5KoZWLbuSiUAgqlXIDtVb/UB9tb+PL8E5Wl/wiWQMjCP5aYhGRzq363BuU/eN81fy5cTdoyKUlabp54gGcJd7M6tEs+Z3MRr0u+9AW6k3cOZ8vMA5StU5wi5fP/aeeQwzUbkW+jkSTInju9R6AkYbYckCTJPMtwcpMPO+YfIfhlmDl4qdykLE655O3P777G/AFrABi6qAcNutYwjxEdFktWZwcUCgUXdl83p4isbDVok3RkcbLDqDdgUCmQTLMZVVv8Vrj1Q7zql2TAvO74Pwqg/XfNM1zH1t4GkzF0unNMW0/0e3HIZk//Oamec4mxiaitNelqknRaPSkJKeaiaKVKyayTE1g8cBUBvsHoU/RcP3KHNkOaER0Ww7TOC3hx+xVGg2jSOZJTXfuXHGX4ivSK31f23yDy7Tv0OgOLB6w2d0CpNSr6z+3xQeAEoLHW/G6NnX8ay4atI+h5CMF+oXKaRYDgF6GMXjeQgqaaN5AD8IigVMkJhVKBs0cOJFFCqVJgNBgxmtx0fmgynYbdajF67cC/9mQs/OuxBEIW/rHsvfQQgylQuPDwFcVccrBj3iHsHG1pP7SpuZMHYELb+Ty/8xoJiZXXp+OSzxnvPnXJmtMBvVZPrXbpDTgLe+Vj8s7h5tcRwe+4fOgOifEpvLjnT7tBjSiVptj4/8ukHcM4s+0KniXcyZY7KwdWnKJk9SIUKJUHtUbF1D0jObTqDPU7VSWrswN6nYGFQ9aZn6AFpYBSpTTbUADcv+CLNlmezbl7/gkNutZAkiTGNp/FA5+nFCrnyfxzP9H8mwZcOXwHSUwNsuIi41Fbq+UOrtIeGPRG3At93FYE5Bqapr0+1DXTpcgaSB5FXClepRADF/RgyZB16dbpOq71R8e+dfI+rx+8oVHPOjjmyLxb6Ojq0ywetBobO2uW3ZyJa4HcRIVE07/sKBJjEuk2sQNdx8nmtWVql2Da4bGMrDORpPhkvhovL9859yCPLj1FNIo45nTAo6grz2++BEHI0J+sRPWiKBQKVGolkiRhNMjXURQlXt7zzzAQ+i/wXqcqbYrw1YM3jG4whb0Ra8ypam2yjpxu2YgOj0USof/c7rTo35AytYuz7Lv1+F5/ka5e5dQmH75b+U2GtUQWLPx/sXyaLPyjuHD/JfN2XyA+WUvraiW4olKiFAQaehVmxZgtnN1xFQSJ01sv0/OndlQ3idb5+waRkqTF2s6Kt6/DccnnjCAI1Gglv//qUQAnN12kUpOyeNUtkW6fkiTxXeOZREfEmdMpd8/7sj9o6R8Wi8yS1Y5WAxoC0K3YCKLDZYuNdQ/mkD13VsrWLpauNkipku03EmKSMBpFKtQvSY+J7bBzSO28aTOoMTdPPUASJdoPbQrIXk73zj9BEiX87r8hMugdpWoUYV/YSgKevmVQ1TTmrqKEIGDWxbmw5zpLh20gfykPpuwdab7JfQq9zkD/8j8Q+TaafCU9WOQzmeb9GhATHsfm6XuRRIla7avgnaYb6bc8u/WSSW1mYzQYubj3OouvTM903QPLjmPUG9Em67hx9C6thzTl3tlHaJO0GPRGts86wPNbL/lmTndcC+TGJV8utr5JLzOSp6ibXJANtBnajK/Gt+P1owAUCoG8aSwvAp8FY9AZyFcqLxteLMH/cSALvllJ2JsI880/6MVb/qvEhMdluFybpDX/HOofzoAKP5jS0CJqjZqQV2EIgkBBr3zU61ydmPA4YiNjSYqTbWEcsmdJ94BjwcKXwCKoaOEfw+vQd4xZdZigyFhiE1M4dM2X07P7c3p2f0rnd8GgNyJJIgadkYCnb5nRcznx0bJdwtBFPcnpnp0qTctStlZ66wpJkhjV+Gf2LTvJxA4LzA7gaYmNjDcHQcAHXVqfQpIkrp98wP1LzzJ9Pzo8Fr3WgCRB/LsEwoOi6F95PF0KDmPr7IOkJGpRKBQsvTgZl/zOSKLIPR9fQl5FpBsrT1FXNj9dwJbnC8lXUr552zrY4FWvJEqVgkJlPcnh/t4BXUX+UnkoWjG/7KshQPGqhajcLFUDZ+WYLcRFxfP05ktun3rw2eccERhFRFAUumQdz2695NCKk+h1Br4e35b6X9VAbaXiysGb7Jp3ONMx4kz6NAa9McPfS1pcC8hdSUaDkdJ1igNQtl5JrGytUCgV6JJ1XD5wk1k9MrfvaNK7HhN2fMeYjUPoMrYNEUFRXDt0O92N/fqR23zrNYYhVcZxZNUpQt9EMq3jfCKCoqjaogKFKxSgVK1itB7c9LOv1b+NEtUzni1VaZTmh4eHF59i0BswGoxmUcz3Ni/7lxxj9bithLwOIykuBY21mub9G7Dh+eL/hFL9/xzpL/r3mQiCoBQE4a4gCJl/WfwBLDNCFv4xpOj0sv+TKR4pnjcX9jap3UYDZn+FxlrFyS2XEA0iCqXC3BFUs3VFaraumNGwSJKUzgzUoE9vDCoIAmPXfMO2eUfIV9Id+6x2NOxS7aNfyE9vv+JdWCxlaxVDm6Tj2EYfdiw8BhK06FeXpIQUvHvUpkApj9R9rBvAlpkHqNayPJ7F3Vk3aRf+T4JAgk3T93Hfx5dZh78nu4sTjtntCXzvIv8ZxdyCIDD94GhiI+JwyGGPQpH+GWjsxsGsGL2Z7C5Z6Teza7rutaIVC3D79EOQMHeAfQ658+WkbJ0S3DxxHwGBX8duI/B5KIMW9CA5PgW9SWRw49TdePern6FqsLWdNXqdLOCoS5ZnDn577O+5e+YhAGprFdGhMVAqL9ldnNgWuIKLu68z/5sVoAc7R7uPXqfK3qn1ZqPrTyLkdTgKhYK5ZydRoloRbp9+IF9zSXanf2aSKQC4deIeR5K2ZjT0fwJJkg1sdSkG87KqLcpz9dBtAFIStCTEJJIlqx0VGpXGytbKXJQvCNB/djcAIoLeyX+TktyxJwgCTXrV+6hhsYV/NcMAX+BPUdK0BEIW/jEUy5OL4W1qcu7eS2qU8qRT7fT6Pg7Zs/Ddsj5496nHhb03qNGyPH4PApjYeQk2dlbMPTrGXDydFoVCwfR9I9m77CQ121T8QJgQoJp3Oap5f9q2Zufi4+xdcYr4d0mo1EpEo4gkSbjmd0abpEOhENj7yylEUeLCvlvs9ltgDqiqt6xgTuUBFCmfH5VahUFnQDSK5lZugNG/fsOS7zby/M5r9q84TZlaxcju4vTRYxMEgazOjhm+5+yRPdPOsHGbBnH79CO2zzvCoBoT6TmxPa1N6by0GA1GFEoFR9acY/moTeQp6krvKR25c/YxRr0BfYqeCJMXW5+pnbh84Kb5qTD+XQJ2jrZIksQV002zanMvfmw5y1ww/t7Xy8om41b7cvVLcev4PQSFgoCnwRSvVgQbO2vUGjV1u1RHkiSCX4aYZ2pSkrQcXnkaxxz2NPg6Y52puHcJiAYREZHR9adQt0t1Tm64gEqjxsbOKt0sIUDTj6T5/u3ERsYxpMp4wgIiUSjla2ltZ4VXw9LmQEhjo8EmizUATrmysvrhPPqWHIE2SUeFxmXIU0wWlOzyQ2uC/UJJSdJSvEohSlYvSuE/sWnBwt8XQRDckdWipwMj/pR9ZGZS+HekQoUK0q1bt/7Xh2HhH8T4dgu4ffYxgkKgy0hvun+iMDczAp6H4HvzJcc3X6J09SKUqVGE+UM34F4gFxM3DcQmizUBz0P4tuZk840b5OBDkiSyu2TF3tEWpUpJwIsQ9FoD1nZWbHs8x3xjyAjfG35snLqX8KAoBs7rRvk0+inTui3j0sHbKJQK2g1pTJ/JHTId549y38eXiZ0WkZKoxSaLNfveLk/3/vH151kweC1W1mo01hrioxNRqpW4FchNqH84usQUrGytyOWZk4TYJMZtHEzQs2B2zjtMvc7V6TZBLlbeu+QY6yfvQa8zUKRCfl7deUlyfDIgkcvTmZrtq9JtQjuWDV1HZPA7mvWtT5Xm5bGy0WA0Gjm37TILB65GEKBUjWL8fGRspuc0t+8Kzm2/hEKpoM2QpljbWbN30VFss1gz+/QEcns6c//CY0bVnSRvIKTORFnZalh0aSqvHwUwu+cyuR5rRAv6z+n2pS/9P4ZTm3xYNHA12iQttg42pCSk4FowN+2Ge7N85EZ0yTrcCrmwzncBSfHJ2NrLYpKJcUmE+UcEhEjZAAAgAElEQVTgWdIj09m+/zKCINyWJKnCp9f8Mli7ekie/f+UeOMDnk0a8clzEwRhNzADsAdGSZKUcVvqH8AyI2ThX03VZmV5eOU5wO/2/nrP1aP3mPHNKrO31+vHQZzbfZ3It9HERydy+chdytctwfDGMxCNcsu1Qqkkp6sTCbFJJCem0KZ/A0pXL4ydgw0vHwZy6fAdAp6F0DbfMOq2r8SY5X0+2G/8uwQWD99IWEAko1b0TRcEARQq58lNU8qqwEeMSr8EeYq6olQpsLa1okTVD8UV10/ZAxJok/WgkBWWjXojAU+DcS+cG89i7rjmz8XeZScw6Ays/WkHC878RNPe9dKNE/g8xNzx9vTmS1r0rUdcZCwPfHwJD4hiz/zDnN7kQ1JcEnqtgfsXnuBRxJWVd2ejVCqxtrNGoRBISdQS7PdxLbW4SLn4XRQlds07hGgUEY0ScZFxTO+yiK7j2lK1RXncCrsR/CIEhVIgTzF33vqFkjWnI26FXChQxpPStYqjUqvIljvrR/f3b6dk9SIIClBbq/HuV5+vJ7TH2s6KlEQtZ7dfJvhFKEOW9GZqxwVc2n+D4lULM+/cJOwcbM1ijBb+c+QQBCHt7MavkiT9+v6FIAjNgXBJkm4LglDnzzoISyBk4V9N8z51KV2jCFY2VuTK8/8Tr7tz4Yk5CAK5DiJ/SQ/i3iUiiSJ5i7gS5BdqrnlRKBVsuPszOVycMOgNaJN1HF57gdEt5yKKIqWrFUY0igS/CkOSJM7uus6IxT0+aAm+fPgOb1+FoU3Ws27yHqo1T6/n0/G7ZhQonQcrG80HgopfGidnR369MZ0DK8+Qp7BLulqd8MDIdOrM2sT0NUtKpZIJW4fy8NJTDqw4hdJGg322LFw/fo9KjcukS0kVq1yIk5svYdAZUGlU5CuVh2a96zKi7iSi3srF0gkxiWaHctEoEvA0mPjoRByz21OluRfVW1fC7+5rhiz9MLhMy+AlvRnnPYO3fqHo9Uaz3o0kwdMbfkzvspDlt2cx//wkNk3ZRW5PZ9p+503IyzBy5c1p7p5z9vhvWz0kxSfxy3cbuHP6IbpkPYIgUMgrv9lDzNbehvnnJgFyOnJs0+lIEjy/9YrQ1+G4maw3Plb/ZeEv5q9LFEV+YkaoOtBSEIRmgDXgIAjCZkmSvv6SB2H51Fn415OniCuJcUnsXnKCwOchBL8Mw6A3fHpDEy6eOXnv2GnvZMf0ncOZsP5bxq7qx6JT4yhUNi853LKZxxRFCUeTeJ9KrcLW3obD6y6gTdah1xq46+PLvUtPUalVqK1UeNUplqEuSpHy+UEQsLbVfNDSD3LarUKDUh8EQUajyPGNPhxefe53neenOLr2PAeWn2LJiI0cWnXWvHxkw+lEBmfe0RUTEcfiYevJ6uzIkouTqdy0LPfOP2F6t6Vc2H3dvF5KopbFQ9Zh0BlQKAV6TWxPk561AZi0eyQeRVxQaVQ45rBnyNI+5DebxEoMqzEBnVaPSq3i+/WDWHV/LqVrFsvgaFKxyWJN0HM5Tfn+i1/1G00mg85AttxZGfZLPzqNacWueYcZVmMC8/qtwGgUMxn5v8PtMw9o7dSLE+vOExEYhWgUMRqMHFpx0rxO3LsEszu9lY2GMnVKotaocC+cm1x5cyBJEpPazaWxugszvl78vzoVC39DJEkaK0mSuyRJnkBn4OyXDoLAMiNk4T9AQmwSI5rMRK81sHbyHhRKgbxFXFl8bsIH3l4ZUcQrH1bWGiRJoljF/JQ0pYYqN04V2LOzt0ZjrUGv1WNrb4Mizbj+vsHERKS2X6vUKiRJomGnKrT+tgG582Y8o5CvhDurbkwnMiSaYhULfPb57l9+ig3T9oIEkSHv6Gmqv9HrDBxbdx6lSkmTHrV+tx5LeFCUuYPrvQs8YJYoeI9CKaDSqNBYqUmMSyY+OoEja85y8+R9arauxPM7r9Em61CqlIT4h5u3E0XRfN2UKhURwe/o7DkEg97AtP2jWHJtBgFPgshbwh1rWyt2zjkIgCRCRGAkYf4R6TzV3nN83VnObL1MhxHNqdQ0teDd2s6aLFntZB0bo4goiggKBbXaVSY+OpHqrSqQp7g7t089IJdnTh5e9GXd+G0AXNh1ldaDm1C8yh8X1fyncnHfdaZ1Wshvy0wVSgXeJnuVe+ceMb75TCRg4s4RVPb2YtbJ8YQHRJLTPTtKlZKIoCiuH7kDwPmdV01eZR9acVj4C/nnlA5/ESyBkIV/NOExCTwPjqBCIQ+sNSpT664+nehfSqLWJNUvd/iIRnjz9C3RYbHkcP14pxVAicoFmbJ1MMGvwqnXvnKG6zhky8LsA6O4fe4xNVt6cWT9BYJfhtFpWFMcs9ujVCkQFGqy5XKky4hmJCdqadajVjoriIxw9sieziX+c4iNiMNoEE2WGnIA9uz2K9ZN2s3jay/kAtX4ZDoOb/aJkdLT86d2hL2JIjQgApVKidEoolQq+GnbUDb/vB+3gs6c33UdXYoehULBj1uGML7NXIwmaYKE6EQOrjiFKElkc3akYFlPWvSTu6xEUWRM0xkYRRE7R1tSkrTsX3bCfJNd99Munl57hmg0MnH3SMrVK0Xwi1DzsRUo42l2N3+P0WhkaqcFXDkglyA8uvyU/rO/xr2wKxUalUGtUbHizizunX1MIa98HFx+kvCACC7suoqgUNBuuDfz+63AZ/c1jAajOfUJckrOJZ/z77p+/zbunn6YrjEAoP5XNajWqiJRb6M5/Otplo9Yb04rn95ykcreXmyavJvTmy/SboQ3rQc1IVvurLgUyEX4m0jcC7tmKKNgwYIkSeeB83/G2JZAyMI/lnfxSbSbugGjKFHYPQerhrRnZJOZvLjnT5MetRi2QPagyuHqRP/pnTi59bJZWblMraJkd/n84tYyNYt+UGydGJfErG/XEBsZz6hlvSji5UkRL08uH7nLmkly55O/71tm7RvBwhNjeXzdDzsHGzkI6p4aBKUkagnxj5ALkj9jhupTdPzOm7DAKAw6A70mtiMqNIYxzWahS9EjSRIqtZK4qITfPW52FyesbNVEBL1jz9ITuOR3ptHXNfGqVxKveiWJDovl3M5rgFwo7Xv9pfnJ0jGHPdVbVeDU5osoBIH6XavToGsNzmy7TNUW5bGxs+bl/TeIoiTPzhhSb7AaGzUqtcKsSnzk19NUalKObhPbs+3nfYiiSPGqhT+4dlM6zDe3bQMgSaweuxVBEJh68HvK1ilBDtdsNPi6JgBDlvRmYts55oDn3PZL3Dn9kJREraxflYZeUzvjlOu/XRzdalATLu27SXRYjHlZZPA7ZvdYhihKGI1G8+9RpVbi3a8+4QGR7JhzAL3WwPIRG2jaux5WNhpW3J5F0PMQPIq6WeqE/scIWExXP0AQBGvAB7Ayrb9bkqSJmazbDtgNVJQk6ZZp2VigD7IM3lBJkk6YljcBFgFKYLUkSTP/+OlY+C8RGBGDUZRI1ul5FhiBv28wb56+RZLg+AYfhs7vZi7Ebd6nLs37yF5Y2mTdZ9tEpEWSJO6clwunqzQpw7GNl7hz3heDzsDysTv4ebfsTRYbGS8/KUuSeRbKs5gbkW+jmdpzBZIk8eDyc75f0Yek+GT6VRxPQkwSJasVYvrekX/4umTJasvYtd+aXwe+CDEL3QkKgZptKtJlVHOCXoSyd9kJSlYrTL2OVT9rbEGhMM+6rZ+yF4/CLpzfdY0qzcpRrm4JRq7sx+ktl2g9oBH5SnlwctMFIt9GU7djVXpP6YCTsyOi0Yh33/r0Lfc9RoORrbMPsv3VEopULIDvdT+srDWkJGmRRAmHHPbMP/Uj8VHxPPJ5gihKNO5ZB4BmfeqzdfpejAaRA8uO03VcWxyypaZUHl56mu7YbR1tiY9KwMpGw6kNFxAE2XMsLW2HeXP75AMQ4NSmiwiC3AXlmMNB7jIziPSf8zVthv6+2bR/I3mLu7Pz7UqWDl3LgV9OoFQqqNCoDM9uvkSfrENjo0FhJf/9Lb89E/dCriTFJ8vLlUqyONqaFdo11hpL55iF/xmfMyOkBepJkpQgCIIauCQIwjFJkq6lXUkQBHtk9cfraZYVRy5wKgG4AqcFQXifVF8GNASCgJuCIByUJOnJHz4jC/8ZSnrmplrxvNx8HsigFtXxKJSbrM4ORIVEk6ewK4+uvKDUb6T+I99G8/Z1OCUqF0SpUpIYl8yCIeuJj07kuyU9yJ03ZyZ7g1Pbr7JszFYQoGHnqhT1yo9SqUBpo8G9oCzUqNPqWT99P6IoolSrGLmkJwAHV59l+4Jj6PUGRINI2JtIAAKfh5IQm4Q2Wcfd83/Ox9+jkAvdf2zLpQO36DK6BZWbyM7ng2tNJsQ/nDPbruBRyIVC5Tw/OdaIX3rTuYAsvJgYl8QP3rNISdJydO05NjyeR90OVanbQQ6qwgMjSYpPwWCqTcpfOg8O2bJQsGxejHojRoOIXmsg/l0iRoORty/DADlN5pAtC/HRifT8qR0ehV1IScrGiFX9yVPMnQKl82I0ithltSWrsyOJsUnYZ8+Szm8NoEnPuuxekKrIHx+VgGcJD+Ki4jm36wo+e64x7+xECldIrb8qU7s4654uoEfh4Rh08sxQDrdsDF7UkyxOdmR3ccK98Id1SP9lBi/uzYD5PeQXpvqxF3de03dmVxKik/As6WFOI9ra27DyzmweXHhChcZlLLM/f1csM0LpkWTFxffz6GrTv4wu01RgFjA6zbJWwHZJkrTAa0EQ/IBKpvf8JEl6BSAIwnbTupZAyMJno1QomNuvRbplq65PZVr3X7h/8Rk/dljI1F3DKG3qqgoNiGRA9YkYDCKSUcTZI7tZ10cSJVaO28HELYPNY4miyNmd19Gl6Gj0VXXePH2LXqdHNEoc3eDD+b03Gb6wO6JRpEqT0rx6HIRTTnsS45Nld3hBwM7BhvjoRH6dsAuD3ii3FpfNy4CZnZnacwX+vkG45HPG/3EQbQY2+tOuVfuhTWg/tEm6ZaIomv+SRfHzOqCy5nCgbocq+Oy9SU73bIS9loudJQkMhlSV5ZiIOEY0mEZsZDwgq05vm3WQyLfvEBQKJmwZgrNHNuKiEug/qysqtYrC5fObZ3EWnZ+Is0d2c0H3942n8fphAIJCYMy6gczsthSFSsHUfWPQafUUq1yIu+cece/sI5r0qot7YVfaDW/G3iVH06XZvt8wiCmdFmAIjUFlZ2X2L0tJ0qLX6rF3ykLYm1RlZICY8Fhmdl9KtZYVGLt56O+57P8Z0hbeD17c+6Pr5sqbk4bda//Zh2TBwmfzWTVCgiAogdtAQWCZJEnXf/O+F+AhSdIRQRDSBkJuQNqZoyDTMoDA3yzPuArVgoXfgcZKTVRorDn9FeofYQ6E/B8HIUmgNxVvhrwONxfjqjTKD4qSD685z5qJu5EkibA3kbQd0ADfmy95eusVolHCoDfimCMLxSsWoF+1icRFxVO0fH6+Ht2coxt8aNajFg7ZssjF27YaFCkG1NZq5h0ew9Vj97h99hEpSTrsHGzY8Gg2uT6hRyNJEo+vvkCvM/Ds9muKVy5I6Rr/f/2gKbuGs2vBUUpWLyK36n8mY1Z9Q/8ZXbDPloXHV56zf/lJarerjLN76vVb+t2GdC31hbzyEfYmAr3WgJWNhqldF6NL0aO2UnP18B1C30Ty/ZpveXrzJW/+j73zDo+i6uLwO1vTe0IChAAhlNB7700BqaKgVEGRojQVBZH2IQqiCAgoooICigjSpffeAoSekJDee9syM98fGxZCAiSA2OZ9nvAkM3fO3DsbsmfPPef8rkaxdfleer/1vDWPK+xSBHnZBmzs9WxctMPadPHQhpOM+XIoMaFxTO8zH2Oekb2rj7A2Yinupd1wdLUnPdHijNk52eJfuzzv/zCGJRN+IKBeBRp1qcee1Yf44o1vEEWJd759k7b9W9C8R0OC9l+mcbd67FtzhLxsAzfPhz32s1ZQ+McgKzlCRSLLsgjUEQTBBdgoCEINWZaDAQRBUAGfA0P+jAkKgvAG8AZAuXJ/bvdchX8HYxcMYsHbKyld0YvWvRtZj9dtE0ilWuW4dvYWgCVqI8todBo69m/G8JkFJSpS4tMxm0VkSSIpNhV3bxc+3z6J9Yt38cPsjZSvWprqjSoRfSuBjORMDLkmLhy5zpwN4+k/oavVjs5Gy+K9H3J232Xqt6uOzkZL6QpelvsD2Rm5zB76NQv3THnoun78+Hd+W7wTQ64RQRDQ6jUsOzqT0v6F9dMeRXZ6DskxaYyc+2qJq3QEQcDF06J9WKtlVWoV0bFbq9ei1qiQJMtf1LBLkdRpG0hqfDpZadlEh1i2wcwmMyd3BHHqjwtkJGXStFs9Vv1vg6Vr9KGr+FT0wsHFnjfmDmDFB2vJyczh5rkwtDoNgkqgWb42mzHPhJwf4UqOS+XWxdtUrOVHg4612bf2CLIMg6ZbXt9qTQJYdGw2ADu+28eCkcutUaMtX++mw4BW1shPbnYeiRFJRF6P5a1FD2/QqKCg8M+kRFVjsiynCYKwH3gOCM4/7AjUAA7kJ6Z6A5sFQegORAO+95gom3+Mhxy//57fAN+ARWusJPNV+G9SuW55lhwunM+vt9Xx2fZJyLLM9bNhmE1mdq89hk95T14a93yhfIUX3+pMdGg8hlwjr01/8e7xMZ14cYxlG2vn6iMseme1dWug++ttiQ1LZN2inQQ28qfzK80BS1PGbq+1sdoIqOPH8Ol9+Hb6ekxGS75MXrYBjU5dZHNFgItHrluVumVZRkAgKz2nxM/HbDIzstlUMlKycXKz57ugTx94z8dlzOeD8CzjRnRIHKd2XiAvx0BKbBqLDs9gzaeb+HneFsxmkYA65Qm5EI4kyxjyjBgNJgQEZEkm5lYCoRcjUKkFmjxXG72djuyMHEx5Zl5+rzvdRnTEzduFg78eJyk6Bb9qZQkJCgcZti3fy1uLXqPbmx2JCY2nUZe69H6rYILzN5N+4rcvtlqjgoIA3UdaXtfVszewevZvVGtcmU93TXnqz0dB4W/Nf+ydtjhVY56AKd8JssWS4PzpnfOyLKcDHveMP4BFGO2MIAi5wBpBED7HkiwdAJzCUqEXIAhCBSwOUD/glae2KgWFhyAIAlUbWLaCajR9cEM8B2c7pnz/5gPPA6yetxWzSUSjVfPesmG0e7ExwxpPJfpWPAd+O4VvgDeBD2iG2P31dkiSRGhwFL7+pehTbgx2jjYsOjityCaLQ6f1YfagJRgNJmSgY/9mVK5XofgLzycrPYfk2LT8ZGUTWek5uHg4ldgOWJyq2LBESlf0KpAnYu9sx2szXyI7PYcZ/b4kITKJN+dZGsL2f687FWtapEECmwTw3bR1GHKMDJv1Mg4udvSf1J2w4EgkSeL41nPIosTxzWcQTSKCSkCtVdOiV2PcfVw5uuk0nw1fhiSKVKpbAZ2NpSVBo+frYDaZmdjWIoJ79eRNqjWqRL0Od5tgbv1mD7Js+X1wK+3C9N/eoWqjSoiixA/TfgEZLh66woWDV6h/z3UKCgr/LorzMccHWJmfJ6QC1smyvFUQhJnAGVmWNz/oQlmWLwuCsA5LErQZGJ2/zYYgCGOAnVjK57+TZfnyE65FQaFIstNzeKfrXKJD43n7i0F06Fe8UvE77N9wiutnw+j5Rnurg7J91SHO7A2mSr3ypCdnIahUVK1fgdjwRNKTM4v1iUoQBHq92RGAkc0+QjSL5OUYOLXzAt3faF9ofPUmAUxYMoxZAxdjyDFyZk9woTHFwcXDiW7D27HrpyN0GtDisZ0gUZR4u9V0Im/E4letDAsPTS8UVbN3tmPujoIK8IIg0KTL3Q7PI+cW7Jjf7x1LAnxmWjb2znbkpGVzfPNpJLNIlYaVmPn7uzjnzzk9MQNZljEZzWh1Gr4+Pw+1RoV3eS/O7Qsu0PDv+plQqyOUnZ5D6xebsG/NEZw8HPlo3QTiwxPxq14WWZILvH53tgEVFP4zKBGhgsiyfBGoW8Txjx4wvs19P88GZhcxbjuwvbgTVVB4XE7tvkRsWALGPBMrZ28skSN0/VwYC8auwmgwcW7/Fb45NoNbwZF8PeUXDLkmnN0d+GLHJNy8XXDxcGRw3Q/ITs9FpVbx8vjnHxgNup/Og1rx7dR1aHQa6rYNfOA4O0cbkC0yBnYONsVex/2MnPsqI+e++tjXA6QlZBB+NRrRJHLrUgQpcekc33YOtUZF50GtiQtLICokjnrtLNpSJSEv28CoJh+SHJuGzkZDl2HtSUvMYNjH/XFyd7Qmw3cY2IorJ24QF57A+GUjrAKeYHGSBLWALFr6J9XrUBOApRNXsemrP3BwtefzA9OxcbBhVMMPEASo0rAS8/dNY8isfmz4chvtX2mBf+3yT/ScFBQU/t4oG98K/3qq1CsPgoDeTkeDDjUAS3JtelImHmVcC6if348pv5eMLMnEhCfSvexo+k/okr+lYkmErljjbrqbIdeILMvodFoa5b/xFoeeb3agVa+G2NrrsX2IgxPYuBLvfj2c0EsRdBvertj2/wzcvJ2p374Gp/64QKPn6rBtxT7WL9gOAkTdiGXrt/sQBIF67aoz7edxxbabnZ7Dp8OWkRCZDIAxD5r2aEid1oGYjGbeajqFm+fCeH5YO3qM6myVwDi54xy+lUtTqU55XEu5kJuZa/1kK0syE9vNoP/7vdi4aDvIkJuZy+0rUVw/cwtjfhXatVMhvOA0iIq1/Pg5clmJHTgFBYV/HoJ8v2Le35gGDRrIZ86c+aunofAPJCU+naSYVALq+JGVls2IZtPISMmm0yvNeDtfiuNBbP52Hwc2nCbkUgTGXBPu3i68PX8AF49dp8ugVpS5p2rr+rkw1s7fRr22gXS/x1EJPnGTU7sucXjLWdy9XZi2ahSOrvZ/2nr/DE7sOM9XE3/Cv1Y5Jq8cZZUIMeYZ0dno+PLt79m58iCCINCwUy3O7b+MIceIIMDw2f14cWzxujG/1WoaoRcirF25S/l5sCJoLlqdhpvnwpjQdrpFbkMAjU6DaDQjy6Cz1VnyiAT46uQcTu04zw/T1yGa7vY3EgSsydE6Gy3fXf6Cd9rPIPZWQqF5vLdyNB0HtHrCp6ag8GQIgnBWluUGz+p+tj6+csUhE57Jva58MuGZru1BKG09Ff4VmE1mlk9dx5xh33Bs23mGNZjMlBcXWPvNuJVypnLd8giCwI3zt60djw/8dgqA377ayfs95hN87EYh292Ht2PgpO7IoozORkvtVlXISs+hfrvqBZwgsCjVT189poATFHopkil9F/Drop3EhiVy+WQII1vP5Pyhq3/iE3n6LB7/I4lRKQQduMqZ3Zesx3U2FrmSIR+9SNNu9WnRoyFvfTmUCvmRMlmG76evL/Z9okPiEc2WBPROA1uy/OwnpMalsf6LrRhy8nD1ckKr1yIIAmaDxQlSa1QYc42IZhGzSeSz4cvoPqoz7fo1x8HlrsMp528relfwZNm5uSBAblYeADb2+gLzuHnm1mM/KwUFhX8OiiOk8K9g95pjbPl2P4d/P83Hr31NdGgCZ/cG8+OcTYXGVm1QEVcvJ1Rqga6vtSHkYgSrZm8i6NBVpr+6uND4nMw8pg+0CElqtGrUGjVfjFvFtFcWc3LnRcBSiZUQlVzk3JLj0hAEgTvRV1mSSYpJZeagJU/vATwFVn+yiR6lRjDt5S8RxcKdpivWKoeNnR5Zlikb4F3ovLOHI1NXv8UHK0fh7uPCrPUTcHCxx8ZeX6LqtonLhlO6Yik6DmjJ+CXD0NloGdtyKt9NWcsHXecwd/dUvgmaR2DTytjY67FzsmXSyjHUbm3JrRIEkESRjYt3MOqLIay5vYTuIzuj1qjQ2+no+kYHVt1YRNkAH35f/AcZSZbG+VUbVyogrir/17rKKSjcQX5GX38TlA1whX8FmSnZGPM7Rt+jjkBUSFyhsfZOtqw4M5u8bCN2jjbE3IpHlmVUagGHIpoLXj8bZu3fk5MlcmZPsFWH6tTuS3iX92BcpzmYzSJDpvSkz6hOmIxmgk/cpFyAD/XbVadDv2ZcO3uLUr7uHN16HrDkE73bfR63gqMY9Ul/2r/U5Gk/lmIjyzKrP92EJMoEHbxCWHAklWoXFMH8cNVoTu++iG9lH8pVebTelpO7I9+e+4TwK1E4uTswo98CKtQox4DJPR+qMdW8ewOa5zdKPLP7AvOHLyMlNi3/NVJhMpjxrVKaT/+YQvDR68SExjP/9WUICDTr2RCNRs2JbWf5aeZ6Qs6F8dG6CYxZOJQ+47uSFJ1M9WZ3u3FXaeCP1kYDCNRtV4OwixFkpmZjY69nwJQ+j/cwFRQU/lEojpDCv4LIkFjr9zWaVubS0euo1Cr6T7zb4TnschTRofE06lwLnV5rqcACSlcsxax1Y7l8MoT2RaiwJ0Qno9aoEc0irp5OuJVyJjUhA0El4FPBg6BD1zCbRUwGM3t/OUGfUZ2Y9spirpwKRaUWWH5sJmPmWtpkRdyI5dTuS8iSjE95T24GRZCXY+Db6etp/1ITS0NBQXjmSbqCIFC5fkXCL0eht9XhU76w+KzORkvzF+oXOCbLMvt/OU5ejoFOA1sWajzoWsoZ11LOvNl4CmHBkZzbe5mAuuVp2rVesea1ZOwPJMekWhtNevq6o7fT5c9HR732Nbl46AomgxlJlBCABp1qc3LbOURRIis122rLp4KXVfzzDq37NsXT1x1TnolarQPpNqITYZciqNqoEnpbXbHmqKDwr+JvFq15FiiOkMK/grptAjm44TSCAJ0HtGDWurcRBMHa5C/schTjOn6MIAjUbVOtgLgqQO2WValdhFQEQLOuddn87X7iIpJ4+/MBlCrrzrzR3+NZ2pUug1qTmZbNms+2kiXm0Ce/4/S1s7fIyzFgY6cn8macVTOrXGUfFvzxAWFXo/Cv4cv45z/Fxk5PjSYBnDt4hWmvLEatVjNv86NlQtwAACAASURBVDsE1PErcj5/FnO3TeLG2TD8qpYutuzGju8PsOy91cjIRIXE8cbH/YscZ+tgg6BWIcnSQ6vi7qdKo0okxaSQl2PAbBSJvBbDknE/MP23d6xjuo/sTNC+y+Rm5TJ0Vj9K+5ciLDiChIgkRswb+Mh7BDa521TTyc3BusWmoKDw30BxhBT+NmQbLNtP9vqSfxJv17cJ9i723LoeR/32NayRiaATIaxfcQjJYERSCZiyDVw5FVoi244u9ny1f2qBY0sP3m2jZedow9qrn2E2idZKqmHT+rBi5gYCG1SkepNKBa71r+mLf01LIvHyYzOICUukRpNK/O+1rzEZzJgws2fd8WfuCOn0Wmo0e3Cn7aJIjktDNItIokzyPSKr92LZ0lKjUqlw83GjZvPiC8W+8+2bBDapzJJ3ViEaLFufLl7OBca4ebuw4PDMAsdGzh9c7HsYcg1cOxVCxVp+OLo6FPs6BYV/K/+19DjFEVJ4pqRm5/Lq0p+JTc1kdt/OdKljeVM8GRrJyO83ArB0aC8a+/s+zEwhUhIy+OT99ciSzIGdwXy9ZTwxt5P4YOiKu4McHCHXRI5aS0RoAuX8vQrZOXP4OsvnbqdWw4qMmNwVjaZ4/0VUKhU6/d28l65DWtN1SOtHXudZxg3PMm4AtH+pCWf2BiMIAi26FW/r6K/k5M6L7NtwGnc/T3wrevL6nH4FzkuShEqlIiczjyunQpAlmeTYNNbO20Lk9Vj6T+pO+WplHmg/OiSOqX0XIIkSHr4eJNxORKUScL7PEbpDXrYBna32oflHRTG2xYdEXIlCo9OyOvwrHF0dS3S9goLCPxulakzhmbL/Sijx6VkYRZHFe44BFudozMpNGMwiBrPI5nNXSmw3OTET0SRiyDMREZLA89U+YOKrywoOEgQEL3dUNnqK6qF4+2Y800auJCIkga1rT/BCzal8N39Hseew5P219PEfy4qZv5V4/gAtutXjx6BP+Onip9QsYWTmr+Dzt38gNjyJjNRc+ozrikdpN+u5ua9/QxeXYcx8ZRG2DnoadqqFSiXgG+DNugXbObjhFNNf/vKh9tcv/IOYW/HEhSdSrUllVBoNkiyw/ssdpManFxi75tNN9PIZwZDq75CZnxeUkZzJ2rmbObzx1APvYTabCT0fjslgJjczl2/e/fEJnoiCwr+E/1jVmOIIKTxTavv5IAgCNloNbav5k56Tx7aga5jEu03vXqhbDYC07FwGf72O7p+v5Hps4kPt+lb0LFTynZZ8N1FWrVZh56DH08cZb183Lp0OIzE2rcD4qSN+QBIL/u/cuPJosdaVHJvG9pWHyE7P5bevdj+WKjxYdK2c3P4Z2zNlA7zR2+qQZZlSZd2txzNTszmw/iQAp3ZeIDkmlRm/jOWXsEWMXTQEAQFBJaDVPzzaVr1pAHobHXpbHbVbVcXZwxEbez32znbYO9sWGPv7kl1IokR6ciaXjlwDYPagr/jx443Me+Mbzu8vWsowOTq1QGfxrLTHe90UFBT+uShbYwrPFH8vd3a8O5SkzGxMZpF2c5YjihIqlYBOrebFRjVoUqkcAOtPBxN0OxazJPHZ9sMsH9b7gXbVahU6Gy15+WXu9yOKEjlZBnKyDAAsnrkJvV7LyCkv0OK5mtjZ60lLzipwjUanpl7TSkWZK4Sjmz1O7g7kZObh7OZQooTgR3Hu4BVmDlqKo4s9n219l1K+7o++6Bkwa+3bHN8RRIXqZQs0lrR3tqVC9bJE3YzDs4wbrqWcEQQBR1d7qjbwZ8KS17h8MoTYWwm8XPFthk7rw3ODC28jdujfHN8AHyRJplojf5p3rU/QoSuUDfBh24r91GhWmYC6lv5EbV9qyrZv96Gz0VGtkeU1y0zNRjSJaLWaAo7ptdOhnN17idZ9GuPl646btwupCenobLS8+Xnxc4sUFP6t/NdyhBSJDYW/jMW7j7Fs70lkoF750kzr1R5/L3frJ/TZm/az5ngQAF1qVWbeK10fYg1CrsRwYFsQ7qWcEE0iR3df5ublaERz4eaAd9DpNZTx82DJprEs/GgjOzecRhAERk/tQdU65Sjn74Va/eDAaVxEEsHHb1K/bXU0WjXXzt6iWkP/IvsRPS7vvDCP4OM3UWtUDHy/B/3GPf9E9m5fjyHmVgIN2pdcDLW4mIxmIq7F4FvZB52NttD5yyduMqXXfPKyLZV1v8ctK8JK0Qyp8Q5J0Smo1Cq+DfoUr7LuyLJMQmQyzh6OhF6M4Ifpv1I+sAxxt5MoH1iWIdP7olarSEvIYFDgBIwGEw7OdvwauYScjBxCzodTuaE/tvZPz4FVUHgaPHOJDW9fudKAZyOxETz/7yGxoUSEFP4ynqtVmVVHzmM0m3mtVQMqeroTmpCCj4sj9nodJ0MjrGNN0oOdmTtUCixNpcC7jf4at63G2L5fYZTN1m0zF3d7Auv5cf5YKLk5BowGM+E348nLNfLWjJ70GNQMN08nHO/beimKS8du8EGfLxAEASd3BxbtnYKgUj3UcXocmj5XmxvnwwGo2TTgiWyFX41mbKc5CIJAg/bV+fD7N5/CDAuj1Wnwr1Xugee9y3uiUgnY2OsLiNYWh5T4NExGMzobLUH7L9NxQEsEQaBUOQ8AZr2ykNT4dK6fvcXHm96lRrMqxIYl8OPsjXiWdUMUJWRJJi/bgCRK2DvbU7tN9Sdar4LCv4p/TnzkqaA4Qgp/GZVKeXD0ozeRJBm9VsOE1ds4cPUWDjY6Nk8YjKv9XWfERls4qnA2PJocg5EWlctz5vAN/jd2NU7Odsxf8yZepV3wrejFqv3vs2XNCX5etg9JlKjbLID35r7MuWMhfPj6CmTZUt795dQNTPqsH36VShW6T1HIsszU/osw5wt6psanM6L5dExGM96+7kxfMwZHFzt2/nSUdYt20qJbXUbPfeWhSvcPos/oTtRvVx07Rxu8yj7ZtljEjVgEAfJyDNy8cPuJbD0J7t4uLDvxP8KCI6ndulqJrp3y4xiWT15LTGg8i8evIvxKFG/MecV63tndkfTkTEwGM3OGLOG1mS+zYdEOQi9EoLPVUbGmL7FhiQz+qI+1z5SCgsJ/FyVZWuEvw2gWSczMRpf/ZnTw2i0MZjO5RhM345IY06EpDnodno72jGjXqMC1uy7d5I0VGxj/01aW7j3B2qX7MOaZSE3O5NCOi9ZxDk62vDS8FQPGdKDn4BaMntoDAK1WBdx1SuKiUko8f9U9ulTdXmuDIddIXraB8GsxvN7kIwbUep9vpv1KWmIGu9YeIyokvsT3uEP5amXwKutOcmwap/dcIi/H8Fh2GneqRY2mlfEo7Wrtdv1X4eXrTuPn62Bjp3/04Hto/FwderzZEbVGjSHXSNDBguK1H29+j27D2qHWqEiKTuWLUSssfaXyNcjCgqPITMli87LdT3M5Cgr/Dp5VxdjfKOqkRIQU/hKyDUa6z19JYmY2zSuXZ+nQngxuWZ9v9p3Ez8OF6mVK0evLVRjNIgazmbNh0Xg42mMwmfFwtOd6bCImUUSUZC5HJ9C2QyChVy3RjpoNCwp8qjVq+g4vmIy78KONqNUCZklGb6Ol95CWJZq/IAg07FCTY9vO07hzLUbO6Ud2Ri4n/riAWqMiIyUbBEt0wpBrRKNR41bK6YmeWXpyJm80n4YoSpSr7MPC3ZNLbENvq+N/v7z9RPMoCRnJWdjY64vMExJFibxsA/ZOj96GvJ9WvRuz/bsDJEWnMGzmS9bj4ZejyMnKpd+7L7Drp8Oo1CpKlfNg6pq3+PWL7Wj1WjYt3YVKrXqqeVwKCgr/XBRHSOEv4UZcEvEZWcjAoethxKRm8HanZoxq3wSNWkVSZjZRKRnW8bM27WPOlgOIksxHvdrRr2ltjt28TZbByPjnmuNoVrN383m0Wg0e3kU33LuXuOhUzCZL3pAhz8TPX++n5XM1iz3/5Ng0jmw5i2iWOLLlHJdP3uTdJa8BsOPHw3w5/kdMBjN6Ty2jP+1PYCN/7J2e7I03PiIZs1nEkGPkVnDkI8eLooQhx2jVVHtSZFlGEqVibydt/noP30z+Gb2dnsWHphXQ+cpKy2F0i2kkRqfw0vguDPmo+AKn6UmZfDF6BaX8PJiz5T1cPC0O5umdF5j16iIQYOCU3nx1dCbXTt+i8fN1cHS1Z+S8AQBUaVCR8CtRvDC8fQlWr6Cg8G9F2RpTeOaYRJFbCXe3otQqgbj0TACiUtIZsPQX3lm7nXuzaWRZxmgWMYkiG05fxtPRnrWj+7NlwmCOrD3LiBe+IPxGPKHXYvj124OPnMP42X1w83JCrVah1Wvw9Hm083Qvjm72BUQ554363vp9sy51rN+nJKRTpV4FPHxcS2S/KPxrlaNxp1o4uNgxfPqLDx2blpTJoDrv82Klcaz7svhNIR9ESnw6A2tNonuZ0excfaRY12z7bj9mk4jJYOLs3uAC5y6fuElGciaSKLH12/0lmsvqOb9zcsd5Tuw4z/fTf7Uev3o6BKPBhCHHSNBBS5l9h1ea4+hqX+D6lj0bMnByL1y8nixCp6Dwb0R4hl9/FxRHSOGZM2/bIWZv2m/dIi7v4UqdcpZqr9mb93P+dgxBt2Os5/UaNf2b1rH+x3muVgB/XLzO1vNXiYtOYcP3hzHkmqz27+Qjh16NITo8qcg5tHuhLqsPfsCMrwfzxntdmDSvX5HjHoROr8X1HqmH5Ng0lk/7lZO7LlqqsvLzhxq0q45XWTfO7A1mYte5bFhaMC9FlmW2rzrEihm/kZaU+dB7qtUqJn/7ButDFtBzxMOjGRePXCc7IwdJlPh9+b4Sra0oTu2+RGZaNqIosW7hH8W65oXX26PRqtHZaGnQoWC0rWrDitjY26DRaWj3cpMSzcW9tCuyBLIos2fNUZKiLU71c0Pa4O3niaASuHDwCqd3XXyEJQUFBQVla0zhLyAiOQ2D2Wz9OTkrh52XbiDKMmVdnbDRapAkGZ1ahVGUMJhF1h4PAsHS6Gv9qWAiUywSC681rYfeRodabcaQZ0aWZLavO43eRsfvq44iyzLTlw6mYlUfdDoNtvYFE3PrN68MzR9vHRVrlCXudiKiWcJsEvntq91sXr4fWZaRJRmNTs3737yO2SQyc/BSjHkmbl64TYP2NShX2QeA4zuC+HrKOsxGM6GXIpj6w0iWTv6Z7Iw8Rn/aH7dSJYtU3aF640ro9FpEk0SHl5s+3gLvoWbTAFRqNTo9tO7VsFjXdBvejtZ9GqO301nFaO/ojzm7O7IyeB4ZKVl4lC5ZtKzP2Of57qN1AJiNZqa++DlLjs3Cq6w7XV5ryw8z1mMymFnz6SYadqpVsoUqKCj8rRKZnwWKI6TwzHm/WxvSsncQEp9MnslMLV8fPly/C4BhrRrwYY922Nvo+PHIOc6HWyJDqvwwj1arRqdRYxJFZBnicrJZ8vvbBJ8NZ8msTWRl5CEAF07ewpBnQhAENq8+zplD19Fo1cxf/SYVq/o8lXW8s3goW+tXYPlH663HRLOIvZMd2Zm5VG9ciRf9x6G302PnYINoFhEEoUDOjjHPEsmSZBljnpmNX+9l//pTiKKINt+RKgmiWcRsEnH3cWFV0CdkpuXgWUJHoyjK+JdiVdAcMlOyKV2xsFjtg7izLSXLMp8MXcbBDado0aMBU1aNQmejLbETBKDRqGnQsRZndlsiPrcuRfDj/zYwaGofarWsikarRq1V07x7/RLbVlBQ+O+hOEIKfyoJeek4aW2xUd/Npynv6crPY15BlmVMosjnO45w9GY4sgyx6ZmM6miJYHSqEUDQ7RimbdhDeQ9XXqhbFYNZpFHFsny4fjcGk5kybs5E5GXRtlsdnF3tmf/Br9g72vDisJZ8OXUDdg42pMRnYDaJSKLEqYPXnpojpLfV8dzAlnw/a6O1n1Cl2n58tGokelsdH768ELNJRM420G1MJ+ydbKnVvHKBfKFWPRsQFRJP9K0Ehkzpyek9lyxl+YIaZ4+SqaDHRybzVvvZZGfkMu7LQTR7vjbHt5/Hr0ppares+sTrdXSxx9HF/tEDiyA9OZMjmy1d4Y9vP09qQsZjR7sAZvw6jvee/4TLJ26ADMHHbgBQtaE/312cS3Z6Ln4PUbZXUFB4MP81iQ3FEVL401hyYxerww5jp9GzpvnbeNoUTE4VBAGdRsPrbRsRlpiKwWymU40ATKLIz8cvsGDnUWqUKUWbqhU4eD2MyJR0hrS0fMof1KIec7cdZOmeEywTYO3o/twIjiIjLYfU5Cz2bwli3YmPuBEcxc9L96HWqNDrtTRtH/hU12jvaMv0n0bzx+ojPPdqCxq0r2E9V7NpACFBt9Ho1LTp3ZAKgWWt50IvRTJv1Hdkp+eQlpxJ+75N8CrrRpfBrdBoNeRlG+gyuFWJ5nJy5wVysnIRzSK/Ld7J7jVHuXrmFoJKYN6md6lSr/zTWnaJcXJzoFzV0sSEJuBd3rPETt79aLQapq5+iym9PiM9KZPX7imh9yjthkfph1ysoKCgcA+KI6Twp7Et+hwmWcQomQhKDaejT+F8jRyjCVudlvmvdKHr/JWMX72V6mW9ORsehSzDmfBozoRHA/DZ9sMs+OMo7ar7c/haGLmmu3lG2y9cp6anI2q1CpVKwL2UE3k5RiYN+oa8XBN6Gw0/7H0PxyfoHRMfmczMQUuQJZmpK0fiU94TgAbtaxRwgACunApl84r9qLVq6rSsWsAJAlj6wVrCr0Zbf979y3EGfdADt1LOPDegRYGxRoOJw5vO4lXWjZrNKiPLMr9/vYeokHj6T+xqjTDVaFIJMT8ydft6LCqVgGiWsLHTkRKfVuSajHkmLh69TvnAMiWubLt+Lpx1C3fQoF0Nnh/08D5MKpWKL/d/RNTNOMoGeD8VGRLXUs4sOTbrie0oKCjchxIRUlB4Orzs15SlN3fjoLGlgXtF6/FrMYnEpGVgr9My8offAfjghTZk5ORiFCXOhEU90KZZkgo5QQCOeh0dn6uPVqchOzOPTn0aYMwzWTXGJElGpbr75iuKEt98spWw63GM+KAb/tUeHUL4ddFOwi5HIcsya+ZvY+KiIQ8cG3c7CUEQMOQaiQ1P5Pb1GFLi06ndogoqlQoXT2dUKgFJktHqNbh5OePkVvS204Jxqzi69TwAM1aPITszlx8+3oTJYCLiRizzNr8LgN5Wj0anwWSwJI1LMrh7O9O0S10aPSBpeHLfBYRcjEClUrHi5CxcS1BSPrX/QjKSszizN5iqDSoUcvbuR6fXllhXTEFBQeHPRnGEFP40BlVsTZ9yTbBRa1ELFick6HYMA5etQ5JlbLUaDGZLBONseDRatRqjWFBc1d/LjejUDMq4OBGZkgaCQMcaAQRHxZFtMBKfkY1WraJ1tYoIgkDbbnd7+Oh0GiZ91p8d607R5eVG2DvaIIoSQSdCiAhJYOdvZzDkmpj33i8s2zL+kevxr+mLVq8FASrVuvuGnpmWzfHtQQTU8bM6Ay261+PkrotE3Iil+/C2vN3hYwQBOr3anFFz+nMzKNziBOk0DJnck+cHWbbEiiLqZhyGXCM6Gy2x4Yk4uTvkf2ITkO/55OZTwZO6ratxatcl1GoVaq2acQsG0fC+0vXg4zfZ9sNB2vRuxM2g2xhyjdjY6YgJSyiRI6TTWWQrZJkHzl1BQeEfiBIRUlB4Mi6lRfC/Sxvws/dgZu2XrU4QwI4L15Hy373vjercjE8m23i3F5BGreLd51vRvX41HG30ZOYZ6PLZ92TlGsk2GNgycQgvLvyJ+IxsAE6GRlLFx7PQXJp3rE7zjneVxb+auYn9W4IwiyKyJCOohAKNEe9wYNsFosISeeHVpjjnVz49P7AlPn6eSJJE3XuEQif1nE90aDwg8M2xGZTydUen1/LBckvF17bvDyLLMoZcE5dPhACWhoxJsamoVAK1mld5aPfntz4bwOdjV+Lj50HbFxuht9UxeHIPokLieeWdrtZxKpWKmWveQpZlbpy/jY29Dr8qBSNdJqOZyX0XYMwzcWTrOQa+1511i/6gVrPKVK1f4f5bP5TpP43hl4U7aNm9Pr4B3iW69g6SJPHj7N+JvBHLyHmvWpKxBazl9goKCgp/NoojpPDU+Th4I2HZCcTmprI37hJdy9QD4FZCCr+eCi7ymptxdxsflnNzJsDbg71XQvh020Ea+/vyWusGpGXnIQP7rt4CoHu9aoTGp6BWq2haqdxD55SckMHH49YQciUao8GMTq/BLEnIkkxESDxZGTnMmfAzSXHpdOvfhBWf7cBsErl0OoxPV94tYa/TylJ9tXP1EdZ+vp0WL9QjNjwRQ64JGzsdybFplPK9qxAvyzKBjf0pH1iGpOhUXp/RF4BZa99m5+oj+Nf0JaCO30PnHlDHj6UHPypwrPfIjkWO3bXmKPt/O0WfUR2pUq9GofOCgLXZoyAIdHq1OS+Nfe6h97+X6+fCOLX7Es261mXWkKWkp2RxKziS5t3qoVar2LHyINdOhdJ3XBfKBngjSRLhl6PwLOOGo5tDIXsbl+xm7bwtAFw8eo28LAOCIDBn87sENq5U7HkpKCg8JWSlakxB4Ymp4OBFdG4Ksgy+dnedgoSMLFQP6Kvu7mBHSlYOoiQTn5HFqI5NmPLrbiRZ5tStKAa3rGcdK8uQnWeka51qdKgRgL1Oh7Pdw/W01q84xLWLEZZGh1o1ao0ao8ESkZJk+HrJXs5djkROy2PzT8eQseQRZWfmFbIlSRJfTvgJSZTY/O1+hk3rw5YV+6nbuhrVGlYsMHbmoCWc3HsZJ1cHJi4ayuZv9zF35ApGzH6JfuO7FPOJFo+EqGQWvbsak8FM8PGb/B6xqJAumEar4dONE9j501Fa9qiPSwmqtzLTsnmvx3wMeUZ+W7Ibs9GM2SQSG55ETkYukTdiWDZpDYYcI8e3n6dD/2akxKVzbOs5tDoNXx2dgSHXiE8FL2vEJy4s4a79lGxkyfIXeM+aI4ojpKCg8ExQHCGFp870Wn3ZFxdMaVs3arnejdQ0quiLn4crV2MTAdDkJwsDvN25GXsvh7L/yi0MZpGTIZHUKOvFlegEAst4Ud7DjQBvD27GJ1HaxYkms5YgCDC6fTN61gvkUR1p/AK80Oosv+4mg5ncbIP1XKlapdl+4gZmd1twt8W5nDsRWbkIWhX2VQs3DxQEAc8ybqQlZqBSq6hUx4+0DAN//HKK2q0DaZGvNSZJEsd3XwaVivS0HGYM/RpBkjDlGvjqvbW07lm8Ds3FRafXWhpPCpYeR8IDvM6q9StStX7FIs/dz9Ft51n+0XqqN67EkKk9kUQJZDAZTbTt3ZhDm87Q6V49r/xPkhnJWWxYvMtqx5hnYlLXuaQmpOPt58mSYzPQaDUMnNKLI5vPkpaYYb1Yo1XTslejx34OCgoKT4gSEVJQeDJ0Kg3Pla5T6LhKJXAjIcmqticiI6sAGdaeuMiUF9pyIiQSAXi5SW0Cy3gRn5HFrfgUui34AZMo4elkR1xmJqIsgwwL9xxj6b4TjG7fhNfbFHzzTM/IJTMrj7KlXencpyEepZxJT8vh88nrLWEgQGWvIzwrB7MoWUXKEpHA24HcPBMh0SncjyAILNz9Aaf3BBPYyJ/tPx4lOz0XgE9H/UDDq3PR2+pQqVTobPWYjJbIkyxb/rGx0+Ff8+lXT7l4OjFn4wTO7A2mTe9GBarkHpcvx/9EZmo26UlZdOzflLFfDGTPL8fpNaIDjTvX4p2vhlrHBjYOYNT8Aayes4mEyORCtuIjLNufMWEJli3Ech44uTkwbc3bTOr2KYZcIwDPD21N3TZPt9+TgoKCwoNQHCGFZ4YoSRYHRgDkux86NGqB6mW8qF3Oh1PTRwMWpyk+PYvN569yOToeU341WVJWDmrhbqRDLQgYRZGN564UcITCI5N5c8KPiKLEq30bM6R/cxq0rMKgUd+R7eOAJtNAncb+ZCFzNTTeep1Op6Zj20BOnwsnNDyR0cPbFrkWZ3dHq4ZXzaaV+O1ri7CpJMlkpuVYE7CHf9STr6f9hlqjJrBhRYZP6UFidAr121Yv0u6vi3ey9vPt1G8TyPvLXy9xv53Ahv4ENvQv0TUPwzfAm1vBkcjIlPJ1p07Lqg/VLus8oCXXzoSy47uDhc751/Yj9MJt6rQOxCs/j+rI5jN8MnSZtTM3QExovFWTTEFB4dmj5AgpKPxJqFUq9Bq1pWT+nl2bN9o2ZmTbxsiyzLnb0bjZ21Hew5XXVqwnIjnNUgouCIiyjCxD00rlaBrgR8PyZRix8nfScnIZ2KxgBGrD1nMYjWZESWb/kesM6d+c9Ixcbkcmg16DSa/BZKvBxVaHPlKNJMPgfs1o1rAi/hW8GNC3+IrojTvWpO/oDuz+5SSd+zfBw8fFeq770Na8MKQVwj3OW6VaD07s/n7WRosUyO5L3AqOJKD2wxOp/2z+98tbHPz9DDcv3Cbo0DW8/TwKrOUOhlwjh38/Q9lKpTAbzKjUArIEYHnNBEFg6LQ+1GldrUCp/dk9wQWcIIDzB65ybMs5WvRo8CevTkFBQUFxhBSeMZvGDmT5gdNci03kdnIag1vUY3R7S4Th8z8Os/p4EAaziCTL2Gg1iLKMBnizTSO+OXgakyRxPT6Jr4f2BqB5JT+2XrjG1qDr9G1YC41axb7D19i0Pch6zztOjb2dDq1GjSm/d1HwtWjUajVqtQpZlPhp3XGaNSxe7sz9vDa5B69N7lHkuaIchwdRqVY5Im7EotGq8fbzeKy5PE1sHWw4s/cyJ3ZeZK/mJLaONrQpQn1+ztClnD9wBWQY9dmr7P/1JKIsMnByL87uDaZWi6rUb1+j0LPoPqI9R7ecJSMlyxoiVGlUqJ5C52kFBQWF4qA4QgrPlHLurszq0wkAg8nMrss3uRQVR82y3py6FVWgt1CeyYyApZt0aVcn7G10ZBuM9Kpn2VYymkW2XLgGwJWYeG4np1LR043TI1NRqQAAIABJREFU58OtNlQqgY75+SYajZpVS4ey6ucTlPJy5OcNZ8gzmBDymwLq9Rpu3krAv0Lx1dWfNvM2v8PlkyFUCCz72AKnj0NMWCJHtpyjXutqVKpdMGKVmpCOaBKRJcmaC3U/UTfiMOQY0dvpOL//CnJ+a4Kze4KZv2vyA+9bobovC/ZOZUTjKZjyq/iGzehL0651n97iFBQUSoayNaag8GyY+PN2Dt8IQ5Jkyrg5Ya/XWbfA7pCfX0xESjr7Jr1ORm4eXk6WfjSp2bmoVQKiJKNVq5k+43ciI1MIrOKDVqvCZJIYPrCgbldpb1feH/c8siyTlpHLmfO3adU0gC07L1LGx4UWTQKe5SMohN5WR70nTBS+euYW0aHxtHihHjZ2+keOlySJ8c99QnZ6Lms+28bK8x/j7H63548h926jywdVoo37aigLx66kfGBZur3ejuPbzqPWyLTo+ejtLZ8KnnQa0JJDG0/Te3Qneo3qVIxVKigoKDwdFEdI4S/jaszdJOiI5HQAvBztScrKsXafVgkC5T1c6duoJjZaDTbau2/QFyJj0ahUiJJIdpaB6Og8ZBkuX4ulSqVSLP1swAOTjQVBYPybd5sSjhjS+s9a5jPju1kb2LHqMDmZuWi0Gg5vPsuM1WMeeZ0syeRk5iGKEipJIi/HUMARKl3Ri8ibcSBDQmQy2Rm52DvZFrBRo2llJv8wkojrsQTUKc93Fz4lNzOPssXoOC0IAm99MYi3vhhU8kUrKCg8df5rydLKRrzCX8arTetyf3whITMbSZYRACdbPZ/07czW8YMp7VJYA6uxvy+2Kg3IMnaJklVgFSAjM++pKJz/nZDlB/91So5NY8PSPWSmZiOaJQy5RqJC4oplV61R8/7y4fhVK02nV5oxrtMnvFrjPW5fiwFgwsLBDHivG5Ik8euiXYxpN7uQjdvXohnbdhafj/yWWQMW4+7t8lAnSJIkrpwMITk2tVhzVFBQUPiz+He9Uyj8I4hNy+T0rSgGNqvL620aUdXHE3cHW8p7uFrHyMCJqaPoVqfaA+0429rw9UvdKXNDwDmj4K9yn+71HnDVP4/k2DQG1p7EC6VHcWTruQLn8rINRIfGY+9si52jDXo7HTobLeWq+DD+y8HFvkfQoWvE3U5ix6ojpCVlkhKfwabl+wHIycjl0vGbmE0ikigRdzspX1vtLjGh8QiCQF6OkfArUY+834Ix3zO5xzyG1fuAmPtsKSgo/IXIz/Drb4KyNabwTAlLTKH3otXIskSzAD+WDOrJuE7NAcgzmuj02XckZeXQrXbVYtmrGViWn799nZTUbMZMWoshz4Rer6Hn84UbOv5TObrtHGlJmZhNIt/P2kiTzrXQaDVkpmbzRvNpZKfn0qJ7PZYdmsblkyHUal4ZZ/fiS2cAnD94FUOOEY1WjSCoUWtU1G1teQ0+eXMFl47dKDD+y/E/MXfzROvPDTrWokHHmtwMCmfM/IGPvN+5fZfJyzFiY6cn5MJtSvuXKtF8FRQUFJ4WiiOk8EwZv3YbBrOlOujAtTBCE5Lx97I017PRaTk0eQSiJKEuQTM9d1cH3F0dWPXVa1y6Gk3DuuXRav89v9o1mla2NheMu53IB32+YOLioUzsOpfUxAyQ4dj2IN5bOoyW3es/1j2GTu3F52+txLucB6Pn9cfB2Y5ylX0AkETJIt2hFpBECbVajZNHQQFVrU7Dhz+OLv79pr/IonGr8K3ig7uPCwOqTkBno2X2xon4/IVVewoKCvytojXPgn/Pu4XC3x5ZlguozGtUAjfikqyO0B1K4gTdSykvJ0p5Fc4l+qdTtlIpPvx+BDMHL8NkMBF8PISv3ltDcmyadUzPN9oX254sy5zcdYmstBza9G6IRqumede6NH9AyfqkZa+xYsYGjmw9h1qjxq+KDxMWFn/brSja92tG+37NAJj5yiKSYlJBgC3L9/HGx/2eyLaCgoJCSVByhBSeGYIgMKCZ5c1WrRKo7etD66qP18Dwv8LlkyG86D+OmYOXUr5aaVQqgT5jOlr1ywD8a/gyZErPYts8+PsZPnn9Wxa/u4YVM3575HiP0q54+bqhUqkQTSJJMWnYOdgAFqfqm8k/MzBwIluWW2RGUuLTmdh5Dm+1mvHQ/J/MlCxMRvPdpG4ZTu28wI1zYcVei4KCwtNFwFI19iy+/i4oESGFZ8oH3dowqUtrVA/oR6NQkJ2rj2DMs/Tx8aviw6I9UwAIvxrNxG5zEc0Sb38+4KE2RLOILFtU3QHiI5IRzSJms0jMrcRHzmHLigNsXr4fs1FEpRYY+P4LACREpzCu4xxSoixRvqXv/USXoa3Z+NVOrp4KQZIkVs7awAc/jAQgOiSOfeuOU7dtdS4duc5Pczbh6GpHTkae9V5RN+OY0ms+v95eXMInpaCgoPB4KBEhhWfOf8kJOrTlHMNbzmTp1PUPLX9/EK17NUSr16LVa2jT+66obPlqZVh34wvqtw3k/d6f88uCHUVeH3opkr4BE+ldYSznD15FkiTUGhWeZdwoX7U0w2f2ASyRnfiIJKsC/L3ERSRjNooIgmU++9adpH+1d5n2ymJSEjIAS7TPs6w7KrWKclVLo9VrsLHVUz6wrNX+hE4fs2buFib3+IzNy/cimkVyswyFmjSq8x02BQWFvwilakxBQeFp8fn41RhyjSTFHqddn4ZUqVMyEdX6bauz+tKnyLJcqBIs7HIUZ/ZexpBrZOWc33lp7HMIgoAsy9wKjsLJ3YF9v54kN8sScdm0fD9JMan8+MkWjHkmVGqBlR9v4sPvRrBw4mr2/HwcB2c7lh2ZVqCh4ktvd+b8wSvER6ZgMpi5FRyJIc9EXo7Bcj+dDq+yriza+yGCINChf3PcSrlgzDPSOL967/bVaLLTc5Aly1+/ag39ObblHIY8I05uDlYHTKUSqNG08mM/bwUFBYWSokSEFBT+RLzLuaO31SII4F7K+bFsOLk5FFkO7+3ngc5Gi429noDa5a2CpqvnbWVCl08Z3ngqZSuVQmdjiSi1fbERhjwTUn7jSUmUOZOv/r5z9VHMJpH0lCyu35ejo9VriLoZT25mHsd3XEBGxsZOR4XqZRFUAoIgULFWOZzynSdBEKjfvgZNu9ZDpVLx48cbebPJVESzhJO7AyM+6Y8pf7sPGeq2CcTFywmVSkCSZOJvJ6GgoPDXIcjyM/n6u6BEhBQU/kTm/TaW47suUaWuHx4+Lk/VtoOzHcuPzyT8SjTVGt5NOj/xxwUMuUa0Og2GPCMrz3+MaBZx93bBZDSze80xbgTdBizaZvc2R5QlGb9qpQvcR6vToLPRIgM6vYahH/bk0KZzxIQlIEsystlM8KGrXD5xk+r3abUlx6Xx8/xtFtuyjNloplaLquht9QQduoqgEnjh9fa8/eUQZr26mITIJEbOe/WpPicFBQWFhyE8Tt7CX0WDBg3kM2fO/NXTUFD4WxAdGk96chbVGla0RoMATu66yMfDv8HNy5nPtr6Lu7cLSbGpTOwyj7SkTPqM7sivC3diNokIKoHWvRqQm5nHyV2XaNOnIZOWDSt0r6iQOE7svEjlOn5M7bfYmsAtSxKYLN87uNixPuIr0pMzmdF/IemJmZjNYoEIj1qnRqvRsOL8HESzhFavwdXr8SJlCgr/BQRBOCvL8qPVi58S9h6+crUe45/Jvc5+N/GZru1BKBEhBYV/IFdOhfJBn89BEOg1oj1DpvSynmvcqRabIgpWXR3ZfI6UhAzMRjOn9wTz4phOrP9qF5IokZdjZPrq0Yii9EB9trKVvHmxkjeJMalw74enexww2/yS+l0/HubG2TDMJhG1xpL4rFILyDKIRhGNRk1SdCpVGjz91glXT4YAUK1xpaduW0FB4d+J4ggpKPwDuX4uDEmUMRlNnD94jSFTHj6+RpMA1GoVKhstzbrU4cUxnTAazKQlpjPsI0vlWHFEaj1Lu/LesmEc3HgGjzKuOLnaoVYJZGfk0HlASwD8qpVBrVGj0Wpo0qUON8+HE3c7CZDR2+vo+EpzKtevAEDkjVjCgiNp1Lk2Nvb6J3omO1cd4qvxKwEY/cVgOg9q9UT2FBQU/hsojpCCwj+QNr0b8cdPR0hNSGfoh70eOb5S7XKsODWTzNRsylcrA8DrM/o81r2bd6tL8251+W7mBlbP24ajmz1LD37Erwu2s+P7A7Tv34xPtrxHRkoWDTvVZMs3+1gxdR1ms0j9dtUZna9FFhuWwJhW0xEQCKhbnnk73n+s+dzhyvEb1uqzy8dvKI6QgsJj8ndqdvgsUBwhBYViEB2WSFZGLpVr+RbIx/mrcPVy4usj04s93pBrZN+vJ7BztMW3sk+xoj+PYueaY5hNll5AZ/cFs2HxTiRRYvt3B3h5YjeqNfIH4PmhrYm7nUh6UibD//ey9frY8ESLYn22gfCrj1asfxT1OtTk7J5L6Gy0vDSh6xPbU1BQ+G+gOEIKfymRcan88sc56lQpQ4emxVOcf9ZcOhnKhwOXIQjw8uiO9H+7U4HzZpPI0mm/cftGHKNm9qFiYJm/aKYPZvm09ez86QhCfon6C6+1eWKbzw9qwfpFu7B3tKFem0A8y7iRnpyJvZMtTm53+xDp9FpGzOlf6PraLavS5Pk6XDkZwhtznkxfbPu3e1n6zo8gw/ivX6dsgM8T2VNQ+E+jRIQUFP5cjCYzH365lWth8YiSRGpGDlsPBOPr7UqVCqWKvEaWZRauPsjx87d4vW9z2jep8szme/VsGKJZRDRLnDt0rZAjdGTHBfb+dgZDrpHPxv3Ekl2TntnciktWeo4lGRoV2Rk5Jb4+L8fAmvnbUKkE+k/oit5Wx5DJPen9ZgfsHG3RaNUsOTqDq6dCqVK/Alrdo/+0qDVq3v/uzcdZTiEuHb2OIceIIAhcPnaDdv2aPxW7CgoK/34UR0jhmXPy4m3OXI4g12BCJViqiQTAnN/oryiuhyXw+54L5BnNzFy6g+xcA20bVcbR3uZPn2+73g3Y9ctJMlKzGfhOl0Ln3bycQJbR6jW4P+VeQU+LEbNeQhYl7JxsS6RUf4fVc7fy+zd7rT/fqVK7N/Jj72xHg441i7xelmUWjV/F8W3n6f/uC3S/Zw5pSRlM7v4ZyXFpTP5hJLVbVSvx/Pq9253LR6+jUqvo/dZz/2/vvuOjqtI/jn+emUwqJYQOoYP0Ks2CCCqirGWxN9y1YC/r6rquit111Z+6rgXFvoqKFXWtKIpYkCIdpPdeQwIpM3N+f8yAAVJhSkK+79drXs7ce869zwlJfHLuKeWuLyK/0xghkShr2rAWzjlSkny0bVGPerWr061dJh1bF/84IyM9FcxI9HkpKAjw2Kvj+fDrmYy693z8/iBJZeiByMsv4Pspi2mRWZtWTeuWOd46DdJ54bvip2V16duaO56/hNVLN3LCWb2LLRdPterV4LYXhh9w/WAwiCOUsB7I0mPL563m6zd/JG9XPiNvHc0plw/cM9bq2zE/s+K3NfgLArx41zs8OX5Eua/frEMmry34d/kDE5EqT4mQxFyzRhm88uBFLF+zhb5dm5PoK/3bsF5GdV6873w+nTCHd7/8lbx8PwuXb2DIVSPZsWMXZw7qzg3DBuy3oeuu3AKSkxIwM2595CNmzl+Fc/DyQxfSPLN2xNrU89j29Dy2/D0ZlcVFt56KWWg7jfNu2r9XbLdtG7PYtmkHzdo12mtQee0G6ST4vJgnibqZGXud8yX78BcEAPBUgIHoIlWeeoREoq9ZowyaNcooV52WmXW4+txjmL9kPdPmrsQfcGRl7cIF4N3PfsXn9XLtRf33lH/0hXF88NUMWjery6gHzmfpyk3k5vlJSfKxat22EhMh5xxTZ68gNSWJDq0bHHA7K4qCfD9fj/mZajVTOOoPPco98y0QDJK9fSfOOQL+AL9NW8qYJz+n1/GdGXzh0QAsn7+aG469D+eCdDqyLen1anDezaeQ2aYB1TOqcf/7f2X2j79x0p/673XtgtwCvD4PgYIggWDxj0dFRKJBiZBUKh6PMfSEbsxZtJYCfwAXCP3p4hzMXbRur7Jjx83EOVi5dhuLlm/k71cM4v9e/Jp2LevTt1vzEu/z6geTeO2DXwgGg9x21SAGHdW+xOQhP8/PE7e8ycrF67nuwbM5rGvTg25rJL1w17t8/t/vwYy8XQUcd3bfctUf/cgnjHv7JwBSqyUzbszP7Niaw+Rxs2nXsyXN2zVi7s+LCLog+bsKmPbNbBywYOpSRk15kIW/LuPvpzwMwM4duVx859A91z72rL58/t/v2bJuG5fec1bE2iwiB8BpjJBIhbNmw3b++/EvtGtRn9MGdmFA7zbs3JXPus1Z9D+8NQ+O/ILsnDyuG9afn35dyne/LKRXl2ZUS0tiR3YuNasl0zyzNqnJibz71GVluues39aQmxfaQ+ve/3zG2K9m8tRd5+z36G23if+bzo9fzCRvVwGP3/Imz1awmWMbVm0mP68Ab4KXTWu3lrt+clrSnranVEsOzQoLfyl8vtA2Gn1P7sbbj/2Pjas2gxnBQHDPFhtzJy0iGAxSkOfnly9ncPGdQxn/7s+MfXYcg4f1Y+RP90WmoSIi5aRESCq8Wx8by+KVG/ncl0CTBrXo0aEJfzi2057zLz90EX5/gKlzVnLbo2PJLwjw8Tezcc6R4PXg8RijP5rCpWcdUeZHQlecdzRLV25m3aYsnIPZC9eyYcsOGtSpUWT5eo1rgYOkZB+Nmpd9IHasXHH/OezMzqV6ehp/uOTYctc/9y8nh/YSc47Thh/HgDP78OmrE+jevz2NW4WWPKhVryavzHwY5xzjRv/AgmlLOeP6kwA4ZmgvPnp+HFvWbefiO4aSm5PHo5ePIhAIsmDaEjod1ZbMQ+ARpMghoYr1CJW6+7yZJQMTgCRCidO7zrm79ilzJXANEACygeHOublmdgFwS6GiXYAezrnpZvYt0BDYFT43yDm3oaRYtPv8oWvj1mxWrdtG58MakbDPqscX3voqS1ZtItHn5a6rTmZAn8P2nNuVW8AN97/D3EXr8Bj4w4/KPB7DY7ZnSr4Z3HP9EI4/quyLNjrnuObuMcxeuIZWTevywoPn4/UUvyLzzJ8Wsnb5Zvqf1oPklMTyNL/KWfHbGob3+n0mXrP2jXlu0v1xjEikYor57vO1m7hOJ8dm9/lfXq88u8/nAQOdc9lm5gMmmtlnzrmfC5UZ7ZwbCWBmpwKPAYOdc28Ab4SPdwY+dM5NL1TvAuecMpsqbt2mLC742ysEHfTp0oyH/nLaXucfuuk0Ro6ZyI/TljDiqf9xyerN/HnoEQA888YEZi9YC8DuYbZHHd6SzVtzWLRi455rOAcPjvySwzs3pVaN1DLFZWY8ddfZbNiyg7oZ1UpMggC6HNGGLke0IT/Pz/IF62jcoi4J4cdGsrfsbTkkJHrx54dmi61bvrGUGiISC0bVGyNU6oZDLiQ7/NEXfrl9ymQV+pi27/mw84C3DjBOOYQtWbkJ5yA3r4Dp81fvdz6zfjr9urfC4fAHgowdP2vPuU8KvYdQz8/1w45l45Zs/P4ghYf05OYV8OGXM8oVm8djNKhTY08StGX9dsa+9B2LZq0ssry/IMC1Jz3C9UMe5eYz/k1pPa5VVfverTn1iuOpkVGNjAY1uemZS+IdkohUUWXaedHMvGY2HdgAfOWcm1REmWvMbDHwMHB9EZc5B3hzn2Mvm9l0M7vTKsJOlhIXPTo24bDm9fB6jF25+Tzz5oT9yvTs1JSUpES8Xg9nDOq253i11L1XlvaY8dXE+Vw3rD91M6rRo1PTPcmQGbRsWqfIGF59fxLHDXuS2x4dy5KVm/ht6Xr8/gCfjJ/N1z/+tieh+evQJ3nxwY+5+cwn2bh2237X2bxuG2tXbCI/z8+CmSvZmZ13oF+WmJkzaREfPv81WVuySy98EHZsyea3qUsI+AOYGcMfOJcxy/7D6AVP0H9on6jeW0TKwbnYvCqIMg2Wds4FgG5mlg58YGadnHOz9ynzNPC0mZ0P3AFcvPucmfUBdu5T5wLn3Gozqw68B1wEvLbvvc1sODAcoGnTijUlWSIjOdHHiKtO4uy/vkR+QYD/fjyZS4YeQXKSb0+Z2ulpfPTUcHblFey1rcZDt5zGNXe/TX54Qb5A0PHCOz/SMrM2Y0deAcDy1Vv4cuI8enRswuGd9v8e2rI9h+femgjAD1OW8OO0pXg8RufDGjJrwVrMYGduPqcM7MzWTVkU5PtJSvaRvW0ndffZUqNu41p0O7INU76dT/9TupNW/fdYg8EgcyYvpXb9GhVmQPXSOau4+ZRHcEHHmH9/zug5j0TlPts37+CyHreRn1dA12Pac++YG6NyHxGR8irXrDHn3DYzGw8MBmYXU+wt4Nl9jp3LPr1BzrnV4f/uMLPRQG+KSIScc88Dz0NosHR54pXKY8rs5QTCA5vTqycXuWVGQoKX6gl7j7np2KYh41+/gTkL13Ddve+QFx5zsmr97701zRpncPk5RW/CmZfv56Kbf/+28weDWDD0bHfp6i0UFATweIz1m3YAcNvTf+L1xz6j7wmdaN5u/y1BPB4P9712Jf6CwH7jg0be9T5fvfMLzjkeffd6WnduUoavTHTNnbwYFwz9WG1Zvz1q91k+bzUF+X7yduYzY8K8qN1HRKS8Sk2EzKwuUBBOglKAE4B/7VOmjXNuYfjjEGBhoXMe4GygX6FjCUC6c25TeAD2H4BxB9sYqZy2bM/hsdfG7/ncpW0mZkaBP8BrH00iLz/An07vQ2ry/jOxVq3bxq0Pf8iy1ZtJ8HpITk7AnHH9n/rzwZczqF+nOkf2aFnsvbOyc9mRk7vXMZ/PS2pKIrdcdjzvff4rqSmJnDOkBwB9ju9In+M7ltqmogZJz/xpEbk780lM9rFw1qoKkQj1/2NPnrtjDAV5fpq3bxS1+7Tr1YrWXZsxf/JiLrj11KjdR0QOXlUbLF2WHqGGwKtm5iU0pmiMc+4TM7sXmOKc+wi41syOBwqArRR6LAYcA6x0zi0pdCwJ+CKcBHkJJUGjDr45UhlNm7dq99p8eD3GlWeHtmx489OpvDY21IOyc1ceN//5+P3qPv7yNyxdtRmAAn+QYaf34dKzj+TOxz9hwuSFmBn9e7ehScN0Ljo9tCHq1u072bA5m/QaKTRtlMFZg7vz/pfT9/QmNWuUwauPDOP1sb+wfM1WhgzoGJFd7i+9/VQeufF16mdmcPTJXQ/6epFQrWYab8x6mBUL1nJY9+YRvfbMifN59pY3aNuzJdc9cTGPfn5bRK8vIhIJpSZCzrmZQPcijo8o9P6GEup/C/Td51gOcHh5ApVDV4/2maSmJFIQCPLn0/vSIrwH2O5HZc5BILD3nyj+QJCfpi8lNdlHQoIHvz+IL8HL0b1asXDZBr6dtIBA+JHPuB/n4/V42Lp9F+MnLSBrRy7mMRK8Hp6880yuG3Ysl5x1JJfe9jpr1m+nQ+uG5OzK57k3JxIIOv774S+cfnxX6mZUO6h29hrQgTEzHjyoa0RD9VppdOzTOuLXfWT4KDau2sLaZRs5YkgP+gyuGMmfiJTAUeUWVNTK0hJ3GTXT+PA/w9m5K5+a1VP2HD9/SE927sonL7+A4eFeot0eeO5zvpu8CH8gQLNGGXg9xr03DqFpo9pcOeKtPUkQhBIpfyDIB18VmjofcHjMmLtoHZ3bNsZjxur12wkEgnz63RwuHtqb9Bqp5OzKJ9HnpUa1pKh/HaJt2rdzGTvqGwae1Yf+p/eK+v0aNK9L1qYduKCjbmb5NtgVEYkVJUJSIfgSvHslQQBJiQlcc/4xex2bNm8lr380mQXL1rMrr4AEjGWrtuBwPPfmDzzw11Np1iiDeYvWUeAP4PXYXknRbgleo0nDdE44uj0AiYlealRLZueufHwJXmpUT+HVR4YxZdZyunfIJCnRt981KpOCfD93XfAUBXl+po2fS+cjDiOjfs0S62Rv38nDV71I9rad3PzUn2nUsl657nn3Wzcw4YNfaN4+k5ad4j8eSkTKxoKllzmUKBGSSsM5x80Pf8CuvAJ8CV5qp6dRPTmJdRuycM6RXjO0YvQtlx1Hj45NqFMrjfWbdvDwqK/wej3k5hXsWbri1OO6cvNlx+25ttfj4ZV/XcTP05dyeKempCYnkpqcyKBwolTZeTxGgi+Bgjx/6LFgGVa8/uSlb5k2fi5+f4Dn7hzDPW9cW657ptVI4aSL+x9oyCIiMaFESCqV5GQfuXkFeDzGC/eeT/3a1fl8wlx25ORx2vFdgNA0+xP7/Z7AnHxsRwLBIBOnLOGxl74mwevh7JP3G/ZG3YxqnDKwc8zaEkveBC+PfnwL37z7M0cM7kaNMox3qt+0Dt4EL94EL41bla83qLD83AI+e+U7Nq3ZQnJaEoMu7EfdxhlsXreNT0Z9Q8vOTegXg0d1IlJGGiMkUjGZGSNHnMOnE+bSq1PTPTvBn9S/9OnszkH3Do33LLJYFbXq3IRW5Ziyf+zQXqRWSyZ7+06OHXrgicpzfx/NF69PxJ/vx8wYP+ZnXpj6T+4570kWTV+OLzGBjAbpdOzb5oDvISJyoJQISYU3fe4qRn80mWN6t+YPAztz5TlHl16pkKzsXQy75TU2b9vJBaf05Mrz+5VeKcrmTlnKPZe9QFr1ZP755jXUr4CDic2MPid2OejrbN2QRcAfWprAOUf2tp0A7NqRSzAQBAu9F5GKoaqtI1SmvcZE4sU5x80Pvs8PU5fwfy98zaq1W/crs2j5Rpat3lzsNWbOX8OOnDwCgSAfjpsZzXDL7I0nPidrSw7rVm5h3Lu/xDucqLrq4fPpPagLrbs1o8sx7Rgx+joAbv/vNRwxpDvn3DSEw4/vdEDX/vmzX3nzkY/YtiGr9MIiIkVQj5BUeImJCezKK8DM8IUH+ebszMPn8/L5hHk8/so3ANx7wxD69dx/PZzObRuRlpJyUbJkAAAgAElEQVRIQUGAIQMO7H+4kdbjmHbMmbwE56DD4S3iHU5U1c2szT1F7C3WvH1j7nqzqP2Zy2b+5MU8eNHT+Av8/PTJNJ787u6DiFJEgPA6QlWrS0iJkFRoZsYz957Dp9/OoXfXZtSvU4PPvpvDQyO/JCkxgY6HNSQv348BU2evLDIRqlk9hfeevpwd2blkpKfFvhFFOGP4ALr0bU1KWiKZrerHO5xKacfWHMyMgD/Ijq058Q5HRCopJUJS4TXPrM3VF/6+ntB7n0/H7w+C81M9NZlqKUmkJCfwx0HFr1zsS/BWmCRotzZdSh64vHnddu65dBS5OXnc/twlNGu7/yavFYm/IMDi2SvJbF2ftH3WhIqGnid0Zuh1g/lt6mIuvfecqN9PpKqoamOElAhJpXPa8V1YtGwDZh4mTF6E12OccWIvmjWqeAOOAXZs20liso+k5LIvyvj1+5N55o532ZmdCw5ee/RT7hx1aRSjPHi3DX2chTNXkFY9hRd+voeUage/P1tJzIyLR5wR1XuIyKFPg6Wl0jnluM58+NwVnHFSNwL+ILl5fuYsWBvvsIr06ZhfOO/Yhzi//0OsXr6pzPX+fctb7NwRSoISkxJo06UJzjlcjJ/dO+fIzy0otVwwGGTOpEXk7cwnJ2sXa5eVva0iUsG4GL0qCCVCUiml10jlnJN70KpZHRrXr8nl5x4V75CK9Mnbv+AvCJCfX8Dk7xeUuV7DZrVJSkkkMSmBmx67gJ4D2nNWp9s4o/2tzJu2LCqxOudYv3Iz+XmhxKcg389fhjzC6S1v5D9/e7PEuh6PhzOuHYTX66FT39Y0a98oKjGKiESaHo1JpVW3dnVeeWRYvMMo0R/O6c0zD3xMYpKP3v3alrneo+/fyORv5tC2ezMat6jHf24bQ07WLgA+euk72vdoHvFY/3X1y/z46Qwy6tfg2fG3s3rJRpbNX4tz8NnrE7n2X+diZsXWv3TEUC4dMTTicYmIRJMSIZEoOvns3vQ7sTNJyQkkJpV9jFD19FQGFlrNuc8JHRn3zi+A44gILHJYlB/+Nx1/QYDtm7NZNm8NLTpkkl6nOls2bKfb0W1LTIJE5NBgaLC0iERY9ZoHP4Oq98COjPruHwQDjgZNa+93fmd2Lt+8N5nGLevRvRw9T4WdeP6RfPrfidRvUpuWHTNJSknk+Ql3snHNVho2r1Oma2zbmEX1Wml4E0rf1FVEpCJQIiRSSdRrXPysuAeveoVZPy3EPMYDb1xNx14ty339ax86l0vuOJ3k1EQ8ntDwwcRkH41blm3D1X/f9Dpfvfkj9TIzeHr8HVGfNSYiUeBclVtQUYOlRQ4BG9dsJT/PDxib120/4OukVkvekwSV17i3fibgD7Jh1VYWzVxxwDGIiMSSEiGRCignaxc3D/03w/rczexJi0stf/PjF9KuR3MGnH44Rw6Ozhii0iQmhzqYA4HAno1VRaTyMRebV0WhR2MiceYvCHDf5S8yd+pSLr3tVAaffwTfjp3KwpkryM/z8+xd79GjX1vWLNvEZXecRsNm+4/XadOlCY+P/Uscov9dWs2UPWsfxXq9IxGRA6UeIZEoc87x5QdTGfPiBHbl5O13fu6UJcz8aSHZ23Yy6r4PAWjerhGYkZyaSI30VD5+9Xt++mImj974eqzDLzNfYujvqgSfl22bdsQ5GhE5YFVsQUX1CIlE2dcfT+fp+z8mEAiyfNEGbvnnmXudb9yiHh5PKOk5rGto/7GOvVryxEd/YdO67RTk+Zk3bTker4e0GtHfw+tAnXrpAF64+z2SU5PocWyHeIcjIlImSoREomznjlyccwQDQXZs33/sTO0GNRn5zT9Y8dtaOh/RZs/xFu0b06J9Y5xzXP/Q2axdsZlT/3TMfvUritOGD2TAmb1JTk0isRz7qolIxVKRxu/EghIhkSgbfGZPVi7dyJZN2Vz59yFFlqnbMJ26DdOLPGdmey2uWJHVyKgW7xBERMpFiZBIlCUm+bjmjlPjHYaISOkcEKxaXUIaLC1SCeRk7eLOYSO5fsijrFi4rkx1Fs1exfvPj2fD6i1Rjk5EpPJSIiRSCXw2+iemT1zAwpkree7u9/c6FwwGefHBj/j7OU+xaNZKALZuzOLmoU/w8kMf85fTHtd0dhEpuwoya8zMmpjZeDOba2ZzzOyGiLWxECVCIpVAw2a18SZ4SErxkdmq/l7npnw7j09e/Z4ZPy7kn1e/AkDOjlycC61RlLU1R4mQiFRGfuCvzrkOQF/gGjOL+JRUjRESiaF5M1bg8Xho2zmzXPWOOqkryalJZG3J5phTuu91rkatNFzQkeDzUrN2aLByZst6XHTTSXz/v+mcc90JB7xthohUPRVl1phzbi2wNvx+h5nNAxoDcyN5HyVCIjHy6ZhfeO5fnwJw472nM2BIt3LVP7x/uyKPt+venNufv4Rl89cy6Jw+e46fedVxnHnVcQcesIhIBWFmzYHuwKRIX1t/JorEyJxpy8nLLSA/r4A50yK7KWmvAR0466rjqKnp6yJSedQxsymFXsOLKmRm1YD3gBudc1mRDkI9QiIxcvZl/Znz63K8Xg9Dhx0V73BERIoWuzGFm5xzPUsqYGY+QknQG86590sqe6CUCInESLPW9Xjli5vjHYaISKVgZga8CMxzzj0Wrfvo0ZiIiIjsYS42rzI4CrgIGGhm08OvkyPdXvUIiVQQwaDjmy9mkZtbwIl/6IbP5413SCIiceOcmwhYtO+jREikgvhs7DRGPvEFDlizcgvDrz8h3iGJSFVTxsUODyVKhEQqiC2bswkEggSDjk0bIz4xQkREiqBESKSCGHpeX1Ys28SunXkMvy5+vUHOOV5/8it+/GoO519zHP1O6hK3WEQktgywKrYSvRIhkThbs2oL9/79HTxe4+5/nUO9BjXjFkvurnxWLNrAuy99T35uAQ/f8jZHD+5MaPKGiMihR4mQSJy98dL3LF28HjNjzH9/4Npbip4UEfAHWbJoPY2aZJCWlhTxOGZPWcbtl7wQ2pfMjMSkBNLrVFcSJFLVBOMdQGwpERKJs9ZtG/D9N3NxQOu2DYstd+df32TWjBWkpCby8phrSKuWHNE4vh47lfw8PwA9j2lL34HtOeL4jhG9h4hIRaNESCTOTj+7N02a18Hr9dC9Z4tiy02fuhS/P4gBK5Zton2n8m3cWpoBf+jGN2N/xTk4fdhRHN7vsIheX0QqB40REpGYMjN69mlVarmzLjySt177gdbtGpbYc3SguvRpxegf7sA5R7UaKRG/vohIRaRESKSS+POVA/nTFQOiOmYnrXpkH7eJSCVTBdcR0hYbIpXIvknQrOnLufe2d/h23Jw4RSQiUrmpR0gkCpat3sy8Jes5ukdLqqdFp5clEAjyjxveIC/Pz6QfFtChcyb16sdv6r2IHApcLHefrxDUIyQSYRu27ODPt7/Bwy9+xdX3jonafcwMb4L39/fe0I9zfr6fW65+jVP6P8h7b/4ctfuLiBwK1CMkEmEbt2QDjtw8P6vWb4vafTwe4/+evZgvPplO36MPo3ad6gDMnbWS3+atJi/Pz2ujvuWM8/pGLQYROfSUcWf4Q4YSIZFSLFq+kdse/4jUlEQeveWP1M2oVmL5Dq0acFK/jkyauYwrzzk6qrG1OqwBV980eK9jzZrXJSHBS3IKdOrWNKr3FxGp7JQIiZRi5JiJrFq/DY/H+ODrGQw/66j9yjjncC7US2Nm/O3S4+MQaUit2tV4acw1rF6xmbYdG8ctDhGRykBjhERK0blNI5KTfPgSvLRtXm+/88tWb2bw5c8w8E9PMmX2ijhEuL/0Wml07NqUhPAYIhGRMnMuNq8KQj1CIqUYdlpvOrRuQGpyIh1b77+Q4WffzyUrJxeANz6ZTM9OehwlIlJZqEdIpBRmRq9OzYpMggD6dGlOUmICiT4vxx3RNsbRiYhEkAMLxuZVUahHSOQg9ejQhHefuJT8ggCN6mkdHxGRykSJkEgE1KlV8kyykgSDjrEfTmXr1hzOPqcP1SK8q7yISLlUoPE7saBESOQg+QNBVq7ZSuMGNUn0lf9H6ssvZjHquW8IBIKsXbOV2+88PQpRiohIUZQIiRwE5xxX3/kWi5ZvpH6d6rz26MX4fOWbqZWfX4BzoZ6h3NyCUu/3w8QFABx19GFR3YBVRKqoqtUhpERIpDjOOZ4ZNZ5vvp3LmX/sxXln9dmvzK7cAuYuWotzsHZjFhu27KBx/fQ95wOBIC+8/SPLV2/m6guPIbNhrf2ucdLJ3Vi3djtbt2Zz+fCBJcb03ru/8PKLE3DAZZcdy9Azex10O0VEqjIlQiLFWLc+iw8/nkZBQYBRL3/H0FN7kJTk26tMakoig45uzxffz6NHhyY0rLv3YOlvJy1kzKdTycvzs3FLNqP+ecF+9/H5vAy/suQEaLcVyzeTn+8PvV+5+QBbJiJSPNMYIREBqFkzheRkH16vh5o1UvAVM/5nxPUn84+rTyxy8cLUlEQAPF4PaamJBx3TRcOOZsXyzWBwwYX7r3AtIiLlo0RIpBipKYm8PPISZs9ZTY/uzfB4ih+PU9wKzn27NedvVwxi5ZotnHVyj4OOqW69Gjzxn4sOqO7OnDzee3UiNdJTOeXcPng8WkZMRIqgHiER2a1O7eoce0y7A65vZpzYr30EIzpwzzz4Md9+Pguvx0NSso/BQ3vGOyQRkbhTIiRSRezalU8wGMTMyN1V8uw0EamiHFCBVn2OhVITITNLBiYASeHy7zrn7tqnzJXANUAAyAaGO+fmmllzYB7wW7joz865K8N1DgdeAVKAT4EbnKti/XFSqXw1cT4vvvMjx/RqzVUX9Kt0U9evvf1UkpMTqVErlZPP0mwzEREoW49QHjDQOZdtZj5gopl95pz7uVCZ0c65kQBmdirwGDA4fG6xc65bEdd9FrgcmEQoERoMfHaA7RCJugee/pwCf4B3P/uVQf3a07pZ3WLL7sjJ5dufF9KmeT3ataofwyiLV6t2NW558Mx4hyEiFZjhNGtsX+FemuzwR1/45fYpk1XoY9q+5/dlZg2BGruTKTN7DTgdJUJSgdWvU52NW7IxMzJqppZY9qYH3mPx8k0AvPLIRTRtlBGLEEVEpJzKNEbIzLzAVKA18LRzblIRZa4BbgISgcKLorQws1+BLOAO59z3QGNgVaEyq8LHRCqskfefx8Qpi+ncthEZ6Wklll27IYu8fD/JST42bs5WIiQiUkGVaf6scy4QfryVCfQ2s05FlHnaOdcKuBW4I3x4LdDUOdedUJI02sxqlCdAMxtuZlPMbMrGjRvLU1UkomrVTOWU4zrTPLN2qWXvvPYkWjapzeD+HejesUkMohMRiRDnYvOqIMo1a8w5t83MxhMazzO7mGJvERr/g3Muj9AYI5xzU81sMXAYsJpQUrVbZvhYUfd8HngeoGfPnhXnKydSgj7dmtOn25/iHYaIiJSi1B4hM6trZunh9ynACcD8fcq0KfRxCLCwUF1v+H1LoA2wxDm3Fsgys74WmnozDBgbgfaIiIjIwVCP0H4aAq+GExoPMMY594mZ3QtMcc59BFxrZscDBcBW4OJw3WOAe82sgNDKBFc657aEz13N79PnP0MDpUVERCTGyjJrbCbQvYjjIwq9v6GYuu8B7xVzbgqw31gjkcouZ1c++fl+apUys0xEpMKpggsqarMhkQhasmITpw0fyR+vfJ6x42bGOxwRESmFEiGRCPrp16XkFwQo8Af45JtZ8Q5HRKTczLmYvCoKJUIiEdSvVytSknwkeD2cddLB7zYfSc45crJz4x2GiEiFok1XRSKoaaMMPnnhKvyBICnJvniHs0fAH+DmP7/A/Fmr6HdCR/7xyLnxDklEKqoK1FsTC+oREokwn89bYhI0c/5qXvtgEus2ZhVbJtLWrNzC4vlrcUHHhC9mk5/vj9m9RUQqMvUIicTQuo1Z3Hjfu/j9AT78cgbvPzs8JvdtkFmLBpkZrFmxmS49m5OYqB99ESlKxVrjJxb021AkhnbuygcgEHRkxXC8js+XwDNjrmHThizqNaxZYtktG7J4+Ja3cc7xt0fOpXb9cu2KIyJSqejRmEgMtWxah8vPPYpu7TP55y2nxfTeCT4vDRrXwuMp+cd+9LPfMGvyEmZPXsroZ76OUXQiUiE4tLK0iETXeaf05LxTesY7jGI1alobX/jRWaNmpW8wKyJSmSkREpG9/PFPR1O3YToARw3qGOdoRCTmqtjK0kqERGQvZka/wZ3jHYaISExojJCIiIhUWeoREhERkT0q0vYXsaAeIREREamy1CMkIiIiv1OPkIiIiEjVoERIJILGj5vDAyPeZ+7sVQd8jZXLNnH1BSO5efjLbNuaE8HoRERK4YCgi82rglAiJBIha1dv5dEHPubbr+fy97+Mxh1g9/JLT41j8W/rmDtjJR+9PSnCUYqISGFKhEQOwtLFG/jqs5nk5OTh8dqe417vgf9otWhdj+RkHwk+L01b1I1EmCIiZRSj7TUq0DgkDZYWOUBrV2/luuEvA/DR+1P4z6hLGPHAmUz6cSFDTuuBmZVyhaJdOPxYWrVtSEpqIj36tIpkyCIisg8lQiIHaMOGLAzIzS1g9aqtbFi3neef+ors7Fym/LKEmjVTuPufZ1G7TvVyXdfj8XDUgPbFnl+9YjNp1ZJIz6h2kC0QESlCBeqtiQU9GhM5QJ27NmXACR1pnJnBNTcO4p03f2LVyi1s2ZzD2tVbWTB/LR++Ozmi93zntR+48txnGXbqv1k0f21Ery0iUhWpR0jkAHk8xk1//wNzZq3kbze8QcAfxOMxzAyz0DihVq3rR/Se3301h/x8Pwk+DzOnLqN1u4ZlruucY2dOHqlpSQf82E5EqoAq1iOkREjkIP34/QLy8/wAdOrahEuuGMDOnDxSUhPp0q1ZRO913iX9ePAf71KjZgpHH1f847N9OecYcfnLTP1hId36tuKBly5VMiQighIhkYM24PiOfPz+VPz+AOdffDSduzaN2r2OGtCej3+4PdzrVPZEZvvWHH79cREu6Jj5yxK2btxBRr0aUYtTRCqp3esIVSFKhEQOUuvDGvDeZ3/FBR2JSdH/kfJ4yj+0r0Z6Km06Z7JozmpatmtIeh0NtBYRASVCIhHh83njHUKJPB4Pj46+kk1rt1GnYfoBJVMiUhU4cMF4BxFT+m0ocoh7+7nxXDboUT57exL1MzMOarFHEZFDjX4jihzCNq/P4vX/jGP18k2MvP9jcnfml1h+47rtPPfgx4z7cGqMIhQRiS89GhMpg9/mrOazD6Zw1MAO9DqyTbzDKbPUakkkJfvwej2kpCXhSyz5Ed5917zGorlrSExMoG6DdLr21crWIlWOps+LSGGBQJC/XfEKubvy+fp/M3nloxupXbd8q0XHS0paEk99cD0zfl7M4ccchjeh5ESoID8Q2izWwF8QiFGUIiLxo0RIpAz23km+cv211KBJBg2aZJSp7B3/uZDX//MVrTs2psfRlafnS0QiRNPnRWRfXq+Hfz4zjE/emUy/4zpQu+6hs/6Oc44XH/6UiV/M4ryrBnLiWb259f/Oi3dYIiIxo0RIpAw6dm1KxygulBgvKxdv4OPXfyQ/z8+TIz7ghDN6amq9SFWnMUIiUlWk166GN8FLkseoVae6kiARqXKUCIlUAHOnL2f8/2Zw7Mld6dg9svuTlaRGrTSeGnsD86Ytp+cxbWN2XxGpwNQjJCKx4C8IYBaaqXXb5S+Tl1vAlx9O463vbiMlNSlmcTRqWptGTWvH7H4iIhWJEiGRGPEXBPhpwm/UrVeD3F353HnjG3i9Hu7794UEg6El7YPBIMEqNmNDRCoSpx4hEYmOJ//5Cd99MQsHtGnfiPw8PwATv57DXU9exOfvTWbw0J6kVUuOb6AiIlWIEiGRGFm6cB25uQUkJiXQpEVtfpuzGjM4ckB7uvZsQc+jtG6PiMSZA4JVa9NVJUIiMXLN34bwyF3vU79hOsNvHMywKwbi8XpIr5UW79BERKosJUIiEbZ7FWoz2+t4u86ZvPj+9Xs+p6bFbkC0iEiZVbExQlo0RCSCJv+wkFOPup/zB/8f69ZsjXc4IiJSCiVCIhH05ksTyM/zs31rDt99OTve4YiIlJ9zsXlVEEqERCLoqIHtSUxKIMHnpevhLeIdjoiIlEJjhEQi6IwLjqTXkW1Iq5Z0SG3OKiJyqFIiJBJhTVvUjXcIIiIHyEEVW9RVj8ZERESkylKPkIiIiIQ4cK5qLaioHiERERGpstQjJCIiIr/TGCERERGRqkE9QiIiIvK7CrTYYSyoR0hERESqLPUIiYiISIhzENSsMREREZEqQT1CIiIi8juNERIRERGpGtQjJCIiIns4jRESERERqRrUIyQiIiJhTmOERERERKqKUhMhM0s2s1/MbIaZzTGze4ooc6WZzTKz6WY20cw6hI+fYGZTw+emmtnAQnW+NbPfwnWmm1m9yDZNREREpGRleTSWBwx0zmWbmQ+YaGafOed+LlRmtHNuJICZnQo8BgwGNgGnOOfWmFkn4AugcaF6FzjnpkSkJSIiInJwHFVu09VSEyHnnAOywx994Zfbp0xWoY9pu887534tdHwOkGJmSc65vIMJWkRERCQSyjRY2sy8wFSgNfC0c25SEWWuAW4CEoGB+54HzgCm7ZMEvWxmAeA94P5w0iUiIiLx4jR9fj/OuYBzrhuQCfQOP+bat8zTzrlWwK3AHYXPmVlH4F/AFYUOX+Cc6wz0C78uKureZjbczKaY2ZSNGzeWJVwRERGRMinXrDHn3DZgPKHxP8V5Czh99wczywQ+AIY55xYXutbq8H93AKOB3sXc83nnXE/nXM+6deuWJ1wREREpBwe4oIvJq6Ioy6yxumaWHn6fApwAzN+nTJtCH4cAC8PH04H/AX93zv1QqHyCmdUJv/cBfwBmH1xTRERERMqnLGOEGgKvhscJeYAxzrlPzOxeYIpz7iPgWjM7HigAtgIXh+teS2hc0QgzGxE+NgjIAb4IJ0FeYBwwKlKNEhERkQPgXJUbI1SWWWMzge5FHB9R6P0NxdS9H7i/mEsfXsYYRURERKJCW2yIiIjIHhVp/E4saIsNERERqbLUIyQiIiK/q2JjhNQjJCIiIlWWVabFnM1sI7A8/LEOob3MDnVVoZ1q46GjKrRTbTx0VIZ2NnPOxWwRPTP7nNDXJRY2OedKWpcwJipVIlSYmU1xzvWMdxzRVhXaqTYeOqpCO9XGQ0dVaaeUTI/GREREpMpSIiQiIiJVVmVOhJ6PdwAxUhXaqTYeOqpCO9XGQ0dVaaeUoNKOERIRERE5WJW5R0hERETkoFS4RMjM3jaz6eHXMjObXuhcFzP7yczmmNksM0su5hrXmdn8cLmHCx2/zcwWmdlvZnZiLNpTTHwH1UYzu9vMVhe6xsnh4z4zezVcb56Z3RbLdu0TY1TaWNb6sRLNdobPNzWzbDO7ORbtKUoUv19PMLOp4XpTzWxgLNtVRJzR/J49JH73FCr7VzNzZlYn/LmmmX1sZjPC9f8ci/YUE1tU2hg+dmz4unPM7Ltot0VixDlXYV/A/wEjwu8TgJlA1/Dn2oC3iDoDCO1mnxT+XC/83w7ADCAJaAEsLqp+JWnj3cDNRRw/H3gr/D4VWAY0P8TaWKb6lb2dhc6/C7xTUpnK2kZCmzk3Cr/vBKyOd/ui1M5D5ndP+FwT4AtCa7rVCR/7B/Cv8Pu6wBYg8RBrYzowF2ga/lwv3u3TKzKvCrvFhpkZcDaw+6/EQcBM59wMAOfc5mKqXgU85JzLC5fbED5+GqEkIQ9YamaLgN7AT1FqQqkOoo3FcUCamSUAKUA+kBWhcA9IFNp4sPWjIgrtxMxOB5YCOZGK82BEuo3OuV8LfZwDpJhZ0u6f3XiJwr/lofa753Hgb8DYQsccUD183WqEEiF/pOMujyi08XzgfefcinD9DUVVlMqnwj0aK6QfsN45tzD8+TDAmdkXZjbNzP5WTL3DgH5mNsnMvjOzXuHjjYGVhcqtCh+LpwNtI8C1ZjbTzF4ys1rhY+8S+p/mWmAF8KhzbkvUoi+bSLexPPVjKaLtNLNqwK3APdENu1wi/W9Z2BnAtHgnQWGRbuch87vHzE4j1HM3Y59TTwHtgTXALOAG5+K+YVWk23gYUMvMvrXQo9xh0QtdYikuPUJmNg5oUMSp251zuzPw84A3C51LAI4GegE7ga/NbKpz7ut9rpEAZAB9w2XHmFnLSMZfFlFu47PAfYT+CruPUPfvJYT+ygwAjYBawPdmNs45tyQyrdpbnNpY1voRE6d23g087pzLDv1hG11xauPue3cE/kXoL/aoimc7YyVabTSzVEKPwIr6dzoRmE6o96UV8JWZfe+ci0qPdJzamAAcDhxHqMf9JzP72Tm34GDbI/EVl0TIOXd8SefDj3aGEvqm220VMME5tylc5lOgB7DvL6NVhLovHfCLmQUJ7ZuymtBz390yw8eiIpptdM6tL3SdUcAn4Y/nA5875wqADWb2A9ATiEoiFKc2lvX7IGLi1M4+wJkWGuyfDgTNLNc599RBNqdIcWojZpYJfAAMc84tPshmlCpO7TxUfve0IjTGaUY4Oc8EpplZb+DPhIYkOGCRmS0F2gG/RKRR+4hTG1cBm51zOUCOmU0AugJKhCq5ivpo7HhgvnNuVaFjXwCdzSw1/E3en9DAtX19SGjANGZ2GJBIaFO9j4BzzSzJzFoAbYjSD2kZHXAbzaxhoY9/BGaH368g/DzczNII9YrNj0LsZRWNNpb1+yCWIt5O51w/51xz51xz4AngwWglQWUU8TaaWTrwP+DvzrkfohZ5+UTje/aQ+N3jnJvlnKtX6PtyFdDDObeO0O+e4wDMrD7Qlij9AVZG0WjjWOBoM0sI9xz1AebFojESXRU1ETqXvbs0cc5tBR4DJhPqgp3mnAmMfO0AAADaSURBVPsfgJm9YGa7N857CWhpZrOBt4CLXcgcYAyhb/zPgWucc4GYtKZoB9PGhy009XMmoaTvL+HjTwPVzGxO+BovO+dmRr8pxYp4G0uqH0fR+LesaKLRxmuB1sAI+326c70YtKUk0fiePZR+9xTnPuBIM5tFqIfl1t09L3ES8TY65+YR+vebSSiRfcE5N7ukOlI5aGVpERERqbIqao+QiIiISNQpERIREZEqS4mQiIiIVFlKhERERKTKUiIkIiIiVZYSIREREamylAiJiIhIlaVESERERKqs/wcfIp/jDKAOGAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "\n",
+ "plt.scatter(sites.lon, sites.lat, s=5, c=sites.vs30)\n",
+ "\n",
+ "plt.colorbar(label='Vs30')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Next, we need to get values for the Compound Topographic Index (CTI). The process is the same, using a raster of CTI values. (Though it is possible to calculate the CTI from a DEM using algorithms implemented in many GIS packages, in practice the range of the resulting CTI values is incompatible with the CTI values that Zhu et al. used in their calibration. Therefore it is strongly advised to obtain CTI data from a dataset that has a global range of 0-20; we recommend [Marthews et al., 2015](https://www.hydrol-earth-syst-sci.net/19/91/2015/))."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sites['cti'] = sample_raster_at_points('./tutorial_data/ga2_cti_cali.tif', sites.lon, sites.lat)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAI/CAYAAABj+03oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3hVRfrA8e+cW9N7J5CE3kLvgoBSRQERbIi9F6z7s6y9oK66dhcRxF5QFFAE6dUgvbcAgSSEkN5vO2d+f9yQEBOaVGE+z5Nn7z117sG9efPOzDtCSomiKIqiKIpSk3a2G6AoiqIoinIuUkGSoiiKoihKHVSQpCiKoiiKUgcVJCmKoiiKotRBBUmKoiiKoih1UEGSoiiKoihKHcxnuwEnIjw8XCYkJJztZiiKoijKGbF69epcKWXEmbrfgD5+Mi9fPyP3Wr3BOVtKOfCM3Oxv+kcFSQkJCaxatepsN0NRFEVRzgghxN4zeb+8fJ0/Z9c/I/cyxewMPyM3Ogmqu01RFEVRFKUO/6hMkqIoiqIop48EDIyz3YxzhsokKYqiKIqi1EFlkhRFURRFqSTRpcokHaIySYqiKIqiKHVQmSRFURRFUYBDY5Lk2W7GOUNlkhRFURRFUeqgMkmKoiiKolRRs9uqqUySoiiKoihKHVQmSVEURVEUACQSXaoxSYeoTJKiKIqiKEodVCZJURRFUZQqanZbNZVJUhRFURRFqYMKkhRFURRFUeqgutsURVEURQG8xSR11d1WRWWSFEVRFEVR6qAySYqiKIqiVFEDt6upTJKiKIqiKEodVCZJURRFURSgckySKiZZRWWSFEVRFEVR6qAySYqiKIqiVFHL21ZTmSRFURRFUZQ6qEySoiiKoihA5QK3anZbFZVJUhRFURRFqYPKJCmKoiiK4iVBV4mkKiqTpCiKoiiKUgeVSVIURVEUBfDWSVKz26qpTJKiKMoZVO5wsW1vNh6PfraboijKMRwzSBJC2IUQfwoh1gshNgshnq/jmJuEEDlCiHWVP7cdtu9GIcTOyp8bD9veQQixUQiRKoR4VwghTt3HUhRFOfdUON1c9dRkbh/3Hfe88cPZbo6i1EGgn6Gff4Lj6W5zAn2llKVCCAuwVAjxm5Qy5S/HfSelvO/wDUKIUOBZoCPeLN5qIcR0KWUB8BFwO7ACmAkMBH47uY+jKIpybjIMyb8+mE5OQSkAa3dkYhgSTftn/LJQlAvRMTNJ0qu08q2l8ud4x74PAOZIKfMrA6M5wEAhRAwQKKVMkVJK4HNg2Ik3X1EU5Z/hs9/+JGXT3qr31/ZrpwIkRTnHHdeYJCGESQixDjiIN+hZUcdhI4QQG4QQPwgh4iu3xQHphx2TUbktrvL1X7criqKcd6SUfPHbqqr3MWEB3D3iorPYIkWpmwQMeWZ+/gmOK0iSUupSyrZAPaCzEKLVXw6ZASRIKZPxZos+O1UNFELcIYRYJYRYlZOTc6ouqyiKcsbMStlGabkTAMMEu0yldHzmfSYtWkVOSRkHi0uPcQVFUc6GE5rdJqUsBBbgHT90+PY8KaWz8u0nQIfK15lA/GGH1qvclln5+q/b67rnx1LKjlLKjhERESfSXEVRlLNud2Yez074rXqMQmj1UNCPF6xgwGsTGfD6JOZvTj0r7VOUv1IDt6sdz+y2CCFEcOVrH6AfsO0vx8Qc9vYKYGvl69lAfyFEiBAiBOgPzJZSZgHFQoiulbPaxgDTTvrTKIqinGMWr0utMYhzZPfkqtfh/n44PTouj87sjTvPfOMURTmq45ndFgN8JoQw4Q2qvpdS/iKEeAFYJaWcDjwghLgC8AD5wE0AUsp8IcSLwMrKa70gpcyvfH0PMBnwwTurTc1sUxTlvDO4Wws+npaC26PTMjGKx4f2ZnC7pvyydis/rNyEJgRWs4lrurU5201VFCT8Y7I8Z4LwTi77Z+jYsaNctWrVsQ9UFEU5h0gpcbg8+NgsABRXOOj+/EdVGabXrx7EZe2anb0GKucsIcRqKWXHM3W/lslW+e2vkWfkXsn1M8/oZ/s7VMVtRVGU02DN5nRG3DuBB1/6AYezOkCS0oW1eDRrHvgft3fy/tHXODrsbDZVUWowpDgjP/8Eau02RVGU0+DNifPIyikmv6icT3/8A103GNirBY1i92IlFTTJHV3WEhj+IE1iqielGKUfguN38LsXzaffWfwEiqKoIElRFOU0aJoURVZOMbqu89X0lUgJ0+ZuYPak6xHYAAO7X3du6pyLcaANmOIg6EUo/R/ggKKHkPaNHFqxyTAkQoBawUk5ndSYpJpUd5uiKMpp8ORd/Xn2/kGEBflxaOinw+VBihBExBxE2DeI4A+g9G2gAvQMcK0HBGAFEQCeLQDM+WMbvW56m2EPTCC3QNVUUpQzRQVJiqIoR5CWlc+E6X+wcdf+EzpvzeZ0bn3iK35dsIkDeSVV26PDA7nuoU9ZsvogwtISXEtACwVsIATC1hMR9g1Ye4MsReZdi3TM5tOfU/DoBgUl5SxevQsAh8vNb0u3sGXXgVP4iZULnUSgo52Rn38C1d2mKEoNbrdOVk4RsVHBmE3/jC+y08EwJLe+8i0l5Q4+m7mS6a/fhiEl+UXlNI4PP2q31/PvzSQnv5Sde6tXCbBbzeQXleFwenjlo9lclHwACu4FJJgbIkImIEzRAEgh8K4trmE419K4fjLpBwoxaRotGkbz07z1zFi4id0ZuUhg/DPX0Cwx6rQ+D0W5EKkgSVGUKh6Pzs2Pfs7+A4U0SYrio1euvWDHwBhSUuF0I6V3Cn9qeg6Pvj8dKSUj+7blgVG9jnhuTEQgBcXleDxG1bZu7RNZvHIXNquJ6IhAKHoccFferACZfzPS3AQR/B+E/71I9yYQNmanlNGp/nj2ZbTmzmtvY8rstcxN2Y7L7UECdpuZjOxCGsWHs3NfDvVjQvHzsZ7eh6Oc1/4pM8/OhAv3z0RFuQA5yl3kHSw+4v6DeSVkZhXicuts3pFFhcN9Blt3bjGbNP5z3xV0bBbP2FEX8+Xs1ThdHhwuD4vW7jrquW88cSW3j+qOzWpG0wShQb4s/jMVaRi43Dp70nOZvjS08mgBhhP0XeBcCI65CEsztMgFYL+MAcnfMajjVt66bRoH80s4kFeM0+3BbNYIDfKlR9skenVoyH3jpnD3i99x9WOTKHe4TvvzUZQLgcokKcoF4kBmAfeOeB+nw8319/Tl2jt61zomOiKINi3iWLVhH326NcH3AstIlFW4eOI/08jKKeKZ+wbRIzmRHsmJfDL9D1ZtS8eQ3hlmdwztVnVOhdNNucNFcYmDLalZ9OzYkB1pOWiaxqevjmbTzv28On4OxmHLng/stJn6UW4QYSBCwTi0JIkLaRSBeyfC0hjKv+BQIs9mkVzUNon8wjKKSx0k1Qvjidv6Y7dZMAzJ+u2Z3qwXkJldSOMGZ6YgoHJ+UbPbalJBkqJcIDb8uRuPW8fj1vl96uo6gyRNE7z93CicLg826/n59SCl5KvpK9mdnsdto7oTGxlUtW/O0q1s3J6J063z1qT5fPraDQBoQiAAi1njyouTGdDVWx17X3YBY174CpfDjbkCzJrG5B9TyMkvRdcN5izdxs1XdcVqMeFwevDztZIUk8fYEcuxWz0gg0AevmabL5Q8i0Qgg94EUwx4igGJPewxXvpkPsvW7QbgoTF9sFcWqNQ0wVX92vLjnPW0aRpHYr1wDEOiaeqXnaKcjPPzW1BRlFo69GiMj68Vj1tn+A3dj3rs+RogASxdvYtJP6TgdLnZm5nPxHHXV+1LqBcGQmC3mWl62EDo0QM7ohsSp9vDLUO6VG1P2bQXt1vH4zEQOng8BpnZRVX7c/JL+O+nCzAMSdOkSJ68awANY4uR+VMBHYRGjdVvKav8XwnFL0HVUpdAyZtkZD+K0+XBbjWTlVMMzb27tqdlM2PRJkwmjR5tk7hh7KdkZBVw+7UXMeaqrqfu4SnKBeb8/SZUFKWGsMhAvlrwf7icHnz8bFXbpZR8N3MNm3bs59aR3Umsd34vkWE2mQCJEAKzueawzLbN6/Hh81dzMK+EHh0aVm23WszcflgX2yGdmsd7X5igdfM4srKKyCkoBSkROsRHh7Bx536khLBgfxonRAKRyOB3kK4UsF8BRfeDnkGO50qyctbTOnoXCA2BH971wg9x8sRt/Xh14lwaxIRyademVXtWbEjD7dbRDclPs9eSub8ACUz4ZinXDO2I1aK+6pXjJdClGq58iPp/jqJcQExmEz5mU41ta7dk8PG3S3E4PexMy+G7d245S607M7q2TeDBG/uwOyOP66/oVGPfvox8bGYTSQ3CmbdyBz2SE/H3tR3hSrBwTap3nJKmERMfzIsPXMbweyYgKgwEsH17FharCSEE3dolVJ0n7H0Q9j4AyPB5gIcH3vqebZmRtIrtxJg+Q+ifHIzMGwlUeE/SYmiWYGPyS1eDLEVo1V/ffTrFM2dZBc3i9jLqoi3c/NJQQCClQV5BOjGRiafm4SnKGSSEmAQMAQ5KKVsdtv1+4F5AB36VUv7rdLVBBUmKcoGzWkxI6R13Y7WYjn3CP5wQgisuTa61fdmfqTz7nxmAxOUjkL5mggPs+PvY6NQ8noeu6V2rHILNasakCYQU2KwWIkID+Pw/Y7jj4S9wuTyYETwz9jKiI4Mqs0h1twcsRIcEsDs7j505Eewv0nhvTg4jO31NlPYy6PlgZCAPXgzCBrIc6XcnWsBYpJFPnBjK5IdKARMCFyN6b+TX5c3o1GkL5XIT8Pkpf47K+UkCxrkz8X0y8D6H/QcshOgDDAXaSCmdQojTOkNBBUmKcoFr1SSWJ+8ewNZdBxg1uP3Zbs5Zs3rDPlwuDwBS03CY3RzIcwMlZOYUcUnHJrRpHFfjnFGXtMMwvPWURg/sCEBSfDivPz2Cyd8to1vHhvTs3Pi47j/u+kFMX7kZIQRvTF+My+Ph19UBzH76a4y8MWDsBgRIHfBAxfcQMBbpXAAUVc5H0kH4cP/IFQwYthA3ErNp+Cl6QopyZkkpFwshEv6y+W7gVSmls/KYg6ezDSpIUhSFfj2a0SAulIUpO+ndtTHR4YFnu0ln3P4DBQCYTIJOXRuydX8OUkoKSiqQUhIW5FfjeN0w+GHBOkrKndwwqCM+lTPNANon16d9cv0Tur/T7WHS/JUcKCzFJARSQrnTW6dK+N+CLFgNwl450LsUzJXZMC0O73pvErAgQiYipT+2wufx0QKJD33t7z0Q5YJ1jpcAaAL0FEK8DDiAR6WUK0/XzVSQpCgK+UXl3PX0N+i6wVfTVzJ9/J0XVKVtj0dn+Urv1HqTycQ1/dpT7HLRuF4EK7bspUViFPUigwHIOFjI2h2ZFJdV8NFPy/F4dH5csJ6LmidwYE8+LZvFcu/NfU54+v3NH3zPgULv4rWGlPRsnsgd/ToDIGy9IWodoCFzh4BeCq5lSNcqhLUL0udGcC0G/0cQ1o5YgIZR35yqx6Mop0u4EGLVYe8/llJ+fIxzzEAo0BXoBHwvhEiSUsqjn/b3qCBJUc4x27bt5523ZtEgIZxHHrsMyxkYJ1RW7sQwJG6PQVFpBVLCBRQjYTab6Nw+kbUb9xEZHsCj/5uOR5dEBPvxwys3VwWMpeVORj/3JbphYDaZkIaBbkiKyhzMm7MZYcDufbl0aZdI5/YnNlh6f351JXQJ5JWU0yyueriFEJbKfYd+F3izR0IIRNCTwJMn8QQUxUvKMzq7LVdK2fEEz8kAplYGRX8KIQwgHMg5+ml/zzkzOktRFK//vPorO3YcYMni7SxetO2M3DM+JoTbr+5B06QoXnxwyHlbhLC0zMmfa/ZQUuqote/Ru/uREB+GzWbG5fBQ4XSTfrAQXa9ef62wtAK3ruNweShzOPHzsaFpApMGmLwlBaQhCQn2PeG2PXllX8ICfNEqA7I9B/PZuO9AreNEyP/A50oIeBxh9c7Ok1JHGvmcpj+mFeVc8jPQB0AI0QSwArmn62Yqk6Qo55jY2GCysgqQUhIVdebGBl1/RadaU+JPhfGfL2Lm3E1cMbANvbs35cPJC2mSFMnto3ud0WBM1w1uffAzCovL8fO18e3Ht9eoH/TFlBR27ckBAQkJYRw0HNwwqBNms4kKp5uNu7JoWj+C0QM68vuKbQT62dmalo0QgrZN69E6NopVK3dz2aVtaJxUXYjS49HZujOLejEhBPjbMZm0Orsyh3VpybAuLXn40xks2ZaGr9VCk5jwWscJcwIiaFzVeymdyNxhoKeB/XJE8Oun9sEpFxzjHBmTJIT4BuiNt1suA3gWmARMEkJsAlzAjaerqw1UkKQoZ9XcOZt48z8ziYkN5p33biAgwIennhnGvLmbiYsLoVXreA5m5OMX6INfoM/Zbu4Jyy8s47ufV+HRDb78YQXzl24jPbOAjVsyadk0jou6NKrzvHdX/ME3m9ZzdcvWPNi1xylpS3mFi4O5xeiGxO3RKS52EB7mX7U/IT4Mq9XbtTn8kjaMGOKd6Sel5OaXvmZ/bjE+Ngs/v3Yrd1/Zg09/WcHu/XkA9GydyKcTl+By63w4eQE2m4nLLk1G0wRPjfuZtRvTMaSBx2MQFuLHx2/eQFiIf+1GAm/cOIRd2XnEhgTiZz+OtfM8O0DfD+jgmA6oIEk5P0gprz3CrtFnqg0qSFKUs2jypMW4XB6yDxSS8kcq/fq3xm63cNmQtgBMef93vvjPr5gtJsa+eZ23KOHANlj+IcuG+PvZCAiw43C48fW1EhzoQ9aBIiSSwAB71XFSSrbm5hDl548mBO+vTMFjGHy46k/GtGlHqM+Jd1/9VYC/nZFXdGTG7+vp37tFjQAJ4KrLOxAXE4IQ0LVDUtV2j26wK9MbDDldbrLzS0iICeWmyzrTsF44mhAsWbQdt8fbLefxGLzz8Tx03aB396as3ZSOw+lGCJASiksc/LFqN0P61a7VBN512BrXkUE6nDSKkXmjQN8L/k+CKRr0dLAPPJlHpCiVC9yqkTiH/DO+aRXlPNW5a0NmzVyPEIJmzWNr7CvKK+X7D+bgdnmQUvLGfZ9htppZ8ftGHnv/prPT4BNktZiZ/M5NbNiaSZuW9QD45fcNNIgPI7lFvarjnl4wl6nbtmDWNH4edT2BNhtFDgeaEOiGcaTLn7B7bu7NPTf3rnOfEILunRrW2m4xm7BZzDjdHoQQ7Nh3EIvZRFxEEL3aNmTarHXMX7INkN7xTJX/Xtt3ZfPBpIW4PTpms0ZosB+FReWYTBptW8UfV3vdHp03fv6Zvg2+oFlcNIHRryK0YKRjIeh7AAmlr0DkaoQsA+3owZWiKCdGBUmKchbd/0B/Bg5MJjw8gNC/ZDbe+79vKCsq974RIDQNR7mLtG37z0JL/76QYD8u7tak6v3oOhZcnZ+2G4fHg6/ZwtbcHHo3SOTnbVvRDYPxq1fx7169z2CLa4uPCmbfAe84secmzkYTglfuvoxebRt6ly0R3gyQyzCwBdnpkZyAxWyiTOpgArMuyS8s464bL2ZQ31YE+NuPfVNg1rrtNPT/inaxW0FuQ5Z+iAh8EixNqF4ZVyKMPIT5+AIvRTk6tXbb4dSTUJSzSAhBk6YxtQIkAKEJhElDWjVKGofiCLETmxTBfa9ecxZaeno90LkbZk0jLjCQng0SiA8MwmoyYdFMhPmefFfbyfrosZGMvboXHZrF4/boON0elm3YA0Dfns145K5++AbacQuJWzdo3TqeOX/uAE2AAF3zdsMtXZF6xABJSsnvS7bS78b3GPPY5xSXVhAZ5E9+uS8eQ8PABFooAJqlGdivAsxgGwimenVeU1GUk6MySYpyjnrgtWtZb3azp9ybTdIbhnLvw1fSvOn59wvxmlbJXNPKO0bHoxt0CIvlvk5dCfX1YWSLVsc4+/Tbp6czK+BH/Hv645/ui6abGdG7DeANdAf2bcWm3QeYuWgLIKuWKqk8AItJYEIybGDbOq8vpeT+F6awZnO6937781mQspOhlyaTsf8R3vttHlf1iSQp9vqqc7TgV4BXTufHVi5A59jabWedCpIU5Rxl8bOSVlFRVdUxMS6MVknRZ7lVR+dwe9iek0uTiDB8LJZjn1CHR6bMZGlqGgA/3TMak3bsL2zdMEjLLiAuLAj7aRjUPnHPj+S5CinRynj88REMiL6o1jEP33IJ/S9qTkRYAGaT4ONvl2EYkpjIIP775AgC/e34+9nqvH5+UTnrtmYctkXSvFE0ZRUuPpy4BLfbxLw/ipk5AXIKi7n3zR+ocLh584GhtEg8t/+bUJR/MhUuKso5ymYx07FFfSxmEw3jwpj05DU16vqca3TDYOikLxnz1RSGTfwKz3EMuF6cmsagjz7j3zPmVA3QXrtvP+UuN1LCjuzjqxF35wdTufaNr7ly3Oc4KhepPZWaBiRg17zT8RP86s7kaZoguVkcMRGBRIQGMOnV0Ugk6VkFjBo7EZf7yO0KCfQlMrS6yzW5WT22786muLQCj8fAoxtUVLi45ZVvuPs/U8g8WEhuURkTpv8BeDNRG3ftJzWj5vP6Im02gxc9xuPr/4du6Cf7GBTlgnPufuMqygVOCMH7j4wgO7+Esgon1z3zBTarmTfHDiUyJOBsNw+AwgoHewsKaRkdSXGFg/SCIjyGQXphEYXlFYT7+x31/MenzSKvvIKsohIGt2xC96QG/GtgL176dQH1Q4MI9Tv2eCSPbrByp7ebKre4jPTcQhrHntpZXnc2vJquYW0IswbTwC/22CcAFQ4Xuu4dXG0YkivvnUCPDkm88OCQGtmxecu38+mPKcRGBZNXWI5uGKzZnM7G7fvp0SGJh27py/czV7M7N5+tad4Fz02awG4x0am5dxHdr2av5qOfvJmrF+8YxKWdmnq37/0dXRpsKtrDztIMmgU2OJWPRTlP6fLcKCZ5LlCZJEU5h2maICY8kE+mp7AnK58d+3L4ds7a035fKSVLN+9h2ea0Iy51kV9WTr+PJjHmqync9+MMQnx9GNKiKSYhuKxFE8KOI8CpHxqM3WxGSklMkLe6+JDkZrw5cjA7s/O49bMfmbx89VHbaTZpjOjmHbfUqkE0iVGhf+MTH51JaLQPaXHcARJAw/oRNG4QUfXe5dZZ9Gcq23dnV22TUvL8+zPZnZ7L5p1Z9O3WhNZNYjGbNJwuD/uzixh2aTKD+7fGsHh/cQkB1/XvwEePjeS6/h0AWLR2Fy63jkc3ePu7RVXXbxWYiF2zYjdZqOdTvQ6coijHR2WSFOUfoEViFMs2pAGSZg1O/y+7bxet491pSwFokxjD7gP5XNenPTf1q16LcmduHm7doMLt4Y+0dPbkF/D8oEt4/YpjFzTclp3D2wuW0S0hnpHtWtEiOpLEsJCq/Wv37cel6xhSsix1Lzd171DrGnPX7eTxz2YSFujHFw9fwxOj+mIxndrFgPNdReQ5C2nkX7/OpUSOZuuuA0gkLRpFe19Lb1AUExlUdYwQgvAQf/ILyxBCcP8NF+Pna+OVj2aTcaCQ/7uzHwADuzZj6qIN5BSUcm3/Dtw1rHuNJV36dmjMup2ZgDezdsi4NnexsySDeN9I/C3/vIrtypknEaqY5GFUkKQo/wA3DOpE0wZR2Cxm2jaJ+1vXyMop4sFXf8ThdPP6o8NomhB1xGN3ZObgdHmQwModGRhS8t70pVx9cRt8rN4B2e3iYmgRHcn6/VnUDw5i6MQvCbLbmXnHGALtR68DdP+UGewrKCIlLYOPrr6C5tE1A7/h7Vsyff1WSp0u7uldu64SwPhZKbh1g/yScuavT+WaXnXPHDsRn36/nJ9nr+fyS5MZPKwxD619DYmkc2hrGvjF0ja4GY0Djq/Latz/ZrM7PQ+b1USDuDAKisp5+OY+hATWzLBNePk6Fv+ZSnKzOEKDvd2Tz4+9rMYx4cH+TB13S9X71dvS2bAri8HdmhMVGsCoS9uye38em3Zn8ci1vauOs2hmWgQl/L2HoSiKCpIU5Z9ACEGXlic3nmTq3PVkHCjEkJJJP6bw2iNDj3ishre+jwCsFhMCQaCvDZu5+ivDajbz9Q2jAGj9+rs4PTqlThfbD+bSqf7RyxT42ayYhEBKiZ+19vpkccGBTLppBE9Mnc2EJSt59coBBPrUDLwuadOYvTmFCAHtG9YOHGet3s74WSn0SW7I/UN6HDMTVFxSweQpKei6wZdTVxDbHSQSp+Fiae4aluWuZUr6bD7p9AKBlrrXXTtc/ZgQMrOLAHj8jn4kN6s7uA0L9mN4/zZ17vtmxioWrNjBNUM60LNjI1IzcvljUxoTp6egGwYzlmxi6qu3YNI0nrqpX41zcxyFvLTlMwwpebrljUTaQ+q8h6L8laGKSVZRQZKiXCBaN47FYjEhgPYtj16dOaugBCnBrGlc17sdTetF0Klp/RpdPIcb07Edn6SsokFoMK1jjj4l3eH20KthAmG+voxq14rkuLqPf23WYlbvzcSkaXy1Yj3Xdm6DEBBUGSzdNagr/ds1JsjXToi/L9NWbMbp8jC8WyvMJo1/fzkLt26QubCYQR2aHXMwt6+PlaAAOxUON3abhW6RyczKW0RmRTa6NDAwMKSBU3fBcVQ3ePaBwcxbvoO46KAjBkhHs3d/PuO/XYbL7eGpt37BEmpBlxIkuHXduw5cuaPGOdv2ZvPlrFV0a53I7vAtbCveC3hnuT3S7PwrQqoop5sKkhTlPDFr6RZe+2QO8TEhfPj01d7lMg7Tq2MjJjx/LU6Xh1aNjz4A+ZEre/H4pJmUVjjxGJI+bRphMR95vM9jfXsy9uLuWDTtmBmbN+Yt4bs1GxECejVKOOJx8SGB2CpLHpQ4HFz8n48RAsaPHk6XJG+QlxQdBsA3i9bx9vQlSCAzv5iHhvYkKjiAnOIyNCEI9a8ejzPx22XMXbqN0Vd24bK+1YUqzWYTn711I2u3ZNC2RT1CfPwIsQaS7cgFKajvF024NYTNxbu42BZyzM9ps1oY3LvlUY85Gj8fK1W3EOD06GhC4NENfGwWWiRGccfQ7jXOuf/NqRSWVjB/VSq3PtgMq2ZBAgl+qpaScnzUArc1qSBJUc4T479fhsPlIf1AIcvW7mZAj+bousHLb/3K+k0Z3HXzxW+csEYAACAASURBVPTr3aLGOVt3H2DGks3YrGZWbd5HUr0wrrqkLa0bx5KcFMuMlM18u3Atof4+3HjYoO26WE0m1u7MYOx70/CxWpjw2EjqR9Xu4il1utClgQlBqdN1xOs93K8nTaIj8LdZmbVpBy5dx1Js8Nwbv3D70G5cOaAt6eW5vLzpB7J26XgsbmSFRl5xGQCfP3wNCzfuom1iLGGB3rE+GVkFfPXTn7jcOq9/OJsBF7fAbPL+Qsh3lvBH2Q7atU0k1Nd7fGrpPhyGC7tmxaqZWVO4hfVF27GbrHQNq+4iyyjPYXdpJp3CmuNjqrtg5IkKD/Hng+eu5otf/mTRpt1YzRoXtUli9/48Hrr6Yrq2Sqh1jtvjrcXk1nXk7kD+3X0MhpR0Dfv7wZqiXMhUkKQo54kuyQ2YvWwrAmhRWZl745ZMlv25C4fDzX8/mlsjSPLoBnePm1K9fAawY18O81bs4LMXRwMg3RLh1Nm0cz+r6qcTHxlM1FFqNH3620rKHC7KHS5m/LGFe4f1qHXMv/r1wpAGdouFm7t6Z63NXrKF1yfMJTTIl3eeHklsZBBmk8awtt72BthszN2yE58sgyJZzrufL6R7hyTe3jeD9YVpEAfWODDpZlo39ZYSCAvwZUT31jXuHRjgg9lsQghBYIAdU2X3oSENbkp5j2JXOULT+Knnvwi2+nNr4gg+3TOVJgEJlOsOPIaO22Pwvx8W0f6WllgtZg46Crh71RsAJPnH8k77sSfyz3ZULRpFM+7BK8gvLqfQyGNr+WbuCb6UeN+6u++6tExg/uqdABzILeG2sG6nrC3KhUEiVJ2kw6ggSVHOE/+6pR+X925NZFgAESHegcWx0UEIwG63kNTgL2NypKyqcn04t27w1czV3H9dT2b+vhHDgIVrdrF8y16EEHz7zGjqRQTX2YZebZJYtT0DKSW+ZjMe3ajK1BwS6uvD68MG1dj27ucLqXC4yXQUccdTX/PLhLtr7O+SFM/yx+9h+F3jKa9woWkCX7uFOJ8wTEJDx/s5dLOH93b/wqikbnV2hwX62/nkP6NZvzmD7h0bVh3jkQa5zmIkgA5jV0/ks25j6RvVhb5RXQA44Mjl1h/ewJWvkb5asqHHfjq2qk+WIw8Ah+Fib9mBOp/LyQr0t/J/q1/DYTj4Lv1HxrV+njjf2l2m9151UVXV7TGDOwEwceoffPHLn3RtnYDVamb5uj3ceEVnbri882lpq6KcT1SQpCjnCU0TtGwUU2NbZEQgn7xzI7vTcujUPqHGPrPZRJC/DzkFpQAkxoayZ38+AIUl5QT62vGzWymtcCIFOFwefGwWUjPzjhgkXXVxG0J8fXjuw5l8PnUF6Rn5PHPXoDqPPVxMRBAFRRUAFBRX1HmMr83CxHHXsyBlJ53bNCDQ34cHml5GmM2fybsX4DDcWISJSHtwjQBJSsmXaYvYVJjOHY360TA2mvqxNQtOWjUzNyddwqTd8wDYUZKFx9AxdMmW1AMkxYcR7R9Oi4wurN6cjtmkkVjPOx6qVVAS3cNbsaFoN7cnDTnmZz2SCr2M/RVp1PNJwmaqWdPIIz04Daf38yCZmfU7bYNbE+cbS6xP9b95/agQfhx3c9V7w5B8MnU5UsKydXsAidtj8OG3Sxg9pNMJ135SLgxqgdtqKkhSlPPM9tQDPPvqdAID7Lz6zAjqxYbgY7dwz2NfU1Lq4MUnhtK8ifcXa35RedV5HZrHY7WYKatwcdfIizBpGhOevoa5K7ZjmODr+WtpXC+CLpVLYRyJo8KNCUGF083mXXVnVopKKnjriwXYLGbGju7NDcM789SbMzAMSWjQkSt114sO4YZhnXl/+0weW7SOaxv05MakvoxO7M2+0hy2FGfQI6JZjXNW5+9i0q55OAw3e8oO8P1Fj9V57VsbXsK24gxScncwIr4rZs3EHc98w659OdisZr5/91bGPTaULTuzMJk03p68gIb1w7lxeBeeaHHDUZ/JsXgMN29tf4QKvYwgSyiPNP0vmqj+ReU0XMTaY8h07Adgce5SFucuxYSJy2IHMPvAPJoENOLhJvdj1qq/1jVN0DQhir3787FYTJRVVI4BE7BmawYdWhx9lqOiXOhUkKQo55nxkxeRlV3EwdwSZs7dyOiRXZk5ZyNp+3K9mYUvlvLmiyMBaN0ohvU7MjGZNFo2jCEkyJd6kcE0jvd2zZU7XGzfe5AurRqw6J17a93Loxu8PWURu7LyePTq3jSMDadP58b8ungz6QcKeHhMnxrH64bB1t3ZTJm9lrkp29E0CA/247YR3Rk5qB3bdmVz/5jeR/18WRX5TElfjsvw8P6OmQyP74rdZCExIIrEgKjDjitge3EmfmY7Em/tJ7updk0mAI+hs7konSdbXkWo1R9RWcNpS2oWhiGRUpKZXUjTxCiSm8Vxy+Nfsn1PNstW7yIpPpxenRqdwL9QbaWeIko9RejSQ67zAC7Dgd1UHSx+sHM8WY7aAaeOzm9Zv+OWHnaUpLKrdDdNA5vUOGb8M9ewKTWLRvHh3P3Sd+zOyMNiNnEgt/ik2qycn6QEXdVJqqKCJEU5z7RoFsvmbVlIJI0SvZWsmzSKxlI5YDky3J9bHpiMQ9PZU1CE3WZhcI/mzFy2hbXbMjCbNGwWM3abmWf/N5OiUicrNu9l1a5M7DYzrRvG0CAylE7N4pm/Zic/Ld2Ew+Xh6Ymz+Prp0fjarXz471F1tu35j35j8epU3G4dJGjChJ+vDU0TjL2xZkC1M+0gNqu5VtdYkMUPm2ZBQxBk9cWq1S5NkO8sZfSy/2IgifcN49nWo9henMmV8XUPZH56w9ek5O3EhODF5OsA6BLemBuHd+Gzn1ZgtZgpKCrDMCSaJrBZzVVdVTbrkb9GHboLi2bGJI7+SyfIEka74J6sL1xGl7B+NQIkAJfhwqD2+LEoWyRhtlB2le5BExpR9tpL1tis5qqM0b/vGMhdL36Ly60zeVoKg3u2UF1uinIU4kiLV56LOnbsKFetWnW2m6Eo5zQpJavW7SUwwE7TRtX1cVL3HCQ9I58X3/gF3ZAYGriCvAGGxWzCpAmcLg82q5no8ECy80qqZr4ZJtBsJnRpIITAYjLx5j1XYNIED30wDV036NgsnvfHXkmF0439sCDicIPu/rBqzJGmCQb3bMHjt/avNbh76ux1vPeFd6HWcY9eQde2iTX2H3QUsb4gjU5hjQi2+tW6z9aiDG5b8QGGdyg2Sy59GXMdwdQhAxa8QLG7HJtmRpcSi2ZiSGxHWuQ04vUJc3A4vVPrOyc34O1/X0VeYRnf/bqasBA/5i3bhstj8NJDQ6gXXV3yYGrGYsanTiPE6s9HHR8lxHrkWYHHctCRw/fpU8msyCKjIoMkvwRuTrgBP7MfgZYA3t35ERuKNhHvE8dzrf6NVau72uX+g0Vc+dAnVe/fe3wknVofvftUObuEEKullEevv3EKJbQKkP+eevJL/ByP25suPaOf7e9QOTVFOc8IIejULqFGgATQKDGSzdv2oxvewEEYoFUGMm6PjsvtoVf7hlx1aVsO5pdS4XRXFTMUhyptS+9gYKfbw5vfL6Rj03hevm0w9wzvwbjbB/P85N/p+cD73PTqt7g9eq223XlVj+oCiVISFxlcK0AC+GPdHpwuD06Xh9fGzyGvsKzG/kh7EP1i2tQZIAEk+kdWBUhmoZFZkV/rGF0abCrcR4GrlLsbDcCmmZESPFKnQnexsWgvYcF+GEb1H5IrN+zF6XITFuzHPdf3IievlC27stm55yATvlte4/pTMxZhYFDqcbAqf1ud7TxekfYI7mt8J+OSn+Pfzf+PGxOu5/uMqTy24Sme2/wKG4o2AXDQmUNGefVCt2n783C5vQFeXmEZQf41B4Rn5RadVLsU5XynutsU5QIyfdb6qtctmkTz7OND+d+PS1mxaS+3Du3KyH7tAKgfHcL73y8h0NdGTkEpUsDwPm2ocLmZusT7Czn9YCFZ+cX0btsQ8AZP05dvBmBnRi5pB/JpXC+ixv0H92rJO18vosLhBuHNJP1VcamDMcM68+f6NNweg5yCUr78+U/G3tSn1rFHYjdZuSiiOX/kbifJP5o4n9Baxzy9/mv+yNuOWZj4uvvD/H5gHWsL9lTt7xLWhE6NG/Dig0P47+QFZOcW06tTI2zW6ixNUnw4VosJEDT8S4mFflEd+W7ffCyaCT+Tnev+eJ4gix+vJN953FmlzPI97C7bQuugLgRbw5lzYD7fpv8AUuKS3ixfRkUmiX4JpJenE2QJIs4nBikld7/4HdvTsomJCGJwzxZ88uNybFYLJk1UBcqhwUceJK8oigqSFOWC0qJZDGs3pAOQuicHq0nj4dF98Pe1YdKqMzpDe7dmaO/WSCnZuiebkEBfYsIDkVKyPT2H1MxcosMCiQyuXuhV0wQ9WiWwcls6EcF+xEfWrrbt9hje8UiASRPYrTW7hd74ZC4/z91AXFQwY67swlfTVgJQP/bEF2d9ve0YClylBFv9aswUO2RV/i4cuhsfkyC1NAsfkxWBd1kGszDRM9IbwPXs1IiLOjakpMxJgF/NatqDe7ckPNQPt1une/ukGvtuTBzEoJiuBJh9eXrTJ+Q4C8l3FTP7wJ9cU/+SY7a/xF3Ah6lPY6CzKGc6/24xnp2lqbgMFwKBr8mHct3bdeln8uWNNuMIsgRi1syUO1xsSs1CSklWThHT5m/A7THQhIeWjWLZtucAvnYrrf5SMkJRJGrg9uFUkKQoF4D8gjI2b9vP5QPaVAVJAnj764XMW7WT+tEhTH7h+lpBixCiqnr3ofcT/3U1+w4WEB8RXGs9t7fvG0ZmbhFRIf5YLbW/Xvx8rDx950B+mLOWoX2TCQqo2f3zy4JNGIYkN7+U9s3jaRgfgdmk0aNDdQBS4q5g7OqJZFUU8EzrUXQLb1rnZxZCEGo7csbm9kb9eH/HTBr5R9MuJIkWQfF8s2cxpbqTy2M70jQorsa1Av3tdV6nc3LCEe8RafcGdy0DE9levA+JpLF/vSMef7gKvRyJRJceyjzFSCkZGjuE1NI9SKeZobED+Cz9SwA6hrYjzFadLfO1W+nfrSmzl2+jTdM4endsxFtfLMRus/LCvYPx6AZhQX742I9jpV5FuYCpgduKcp5zONyMunU8LpcHt0fH4zHQNMGIy9vz1dL1GIbEbjXz4RMjadnw+DMLP89ax4y5Gxk5pD0DT2Ih18O99OEsfl+6lfAQf75440b8fGpP2Z+e8SdvbZuB03CT6BfJ1z0ePiX3Pl5SSjZty8TP10ZSg4hjn1B5zrrCVALMvjQKqLmkyJrtGeQWltK3Q2PMfwk6F2T/xMaiFVwSOYKWwd4K2t/8vpp3pyzB127lnScGExJiJc6n7gWLyx0upPQGp2UVLmxWc51jwJRz15keuN2gVYD8vx/PzO3ubbbwnB+4rTJJinKeKywup7zCVdXNZbOZQULHDoms2L+f1LQcIkL8aVivekzN6h0ZfLdwHQM6NuWS9o1rXTO/sIx3Ji3A7dF59YPZ9OrSGN86ApoT9dTdA7jzmh4EB/rWylId0jTQG2TYTVbahSbVeczp9OUPKXwxJQUp4eUnh9G5XeIxzxFC0C6k9nNcsXkvj7w3DQFMmb+OxNgw2jWpR/3oEFomRtMnajh9oobXOOeHBRvw6AZOl4edO4uJCQvkzXk/M7h7cy7tVJ1VyzhYyJgXvqLC6eb/briEguJylm9M467h3enQTBWRVJTjoYIkRTnPRUUEMnRQG+Yu2sqVQ9rTtFE0LgzumzANQ0osvhqvPzQUu83b9eLRDe57fypOt87ijbtJTooh4rCxRwB2mwWLWUMisVpM3PvUNxSVOnjpsSto0bh2NuqXzOVsLkrj2gaXUN8vqtb+Q4QQRITW7CKTUuI03FWFIJsGxvFFt7HkOItoG3LsAOVUW7sxHYfTg6YJtu48cFxB0pHsyy7wfj63zvrU/azbuZ+fF2/EajHz8p2XcXG7hrXOGdEnmfemLMFqMdGhaT2ufeYLXB6dFZv30q5JPcKCvDP+lm3wzhD06Aaf/7aSnIJSHC4Pj70/nfnvewuDutwefliwHrvVwtBerWqMS1MuTBKBoRa4raKCJEU5zwkhuP/2S7j/9urBwu/8tASjsqtdNyQFZRWHHU/lL0sdIbwDsv/K18fKx6+PZsXaPSxK2cmGrd5p5y+98xtfv39LjWM3F+3hw9RpOA03m4rT+KLrk7Wul+8s4ZXNP6IJwZMtr6qa2u/Q3dy+4gN2lWYzsn43Hmp2BQDxfuHE+4XXus7p4nJ7mPjVMkpKK7h6WEf27MslwN/O4EtandR1B3drwbINe9izP4/cwjJcHh0pvSUZtu/NrjNIuq5/BwZ3b4GPzYJJCMwmDZdHR1S+PqRrqwQ+mroMwzAoKXPidHswCVGjDMAHPy7lh/nrEULgcnu4pl/7k/o8inK+UUGSolyAujVvwNfz1uDRDTo3i6d9o+pxMiZNY8LDI5m+fDO92zYiLLDuWkQJ9cJIqBfGbws2V23z/8vsrxV5WxifOgOP1BF4lwapy8epc0jJ3Q5CMHn3fB5sdjkAW4rSySjPQyL5KX0FDza9/LgqRLs9OmaTdsqqSU/7bR0//rIa3ZBUONz8NPmeU3JdPx8rbz84HCklPyxYz4pNaWzbl0Owv50reycf8bzgwwKdjx+/mlkrtnJx20bYrGaKSisI8vehQXQIv/33Tu587Xu2pmUjgI4t6vP0Lf2rzl22YQ+uynpWhSV1LyysXHh0VUKxigqSFOUC1LlZfaa/eAsuj058RHCt/c3rR9G8/pG7xQ732F39eXzcT/jYLbz8rytq7Ht+02c4DTcmNHpFtOG2hpfVeY1Ie1DVwqyR9iAAMsvz+L+1n+Mw3AgEbqlz7fK3mNjlPvzMNYMxKSWFZQ6CfO18OW817/60lIhgf75+4jpCAk6+FpDFYgIhEEJ6X59iQghG9m3LyL4nVunY49FpWC+csQ0uZl92AYMeGu/tUru+L1f2TsbHZsEwvMuZSMDl8RBV2Z0ppWTfgQLAmy1s1ziOLTuyiAjz5/tpqwgJ9uXqoZ0wqYHeygVMBUmKcoGKCgkgp6iU2976HsOQvHLLYKJDj6/I4a69OTz0/BQA3npmJDM+vYcdu7P57IcULurUiK7tveN0giz+5LuKMQmNuxsNJcJeOyADuDGpD1H2IDSh0S86GbfhYXnudlyGt2CirKye7V2OZA/dI5pVnSulZOyH0/hjSxoNY8PYmZGLBPKKy/hj614Gd27+dx9RlSH921Dh9FBSUsH1I7oc1znbsnIwpEGL2OMLNk/Uqq37GPv2T5g1jfGPj2Ldjkycbu8YpG/mrMFuM3NRclKNyuf6YdXDhRB0a53A6m3pBAf48u5Hc8nJLUUIcLm9mbhAfx+G9D9yRks5/0jAUHWSqqggSVEuYJNm/cn61P1I4JnJs9iekUNCdAgfPTACX/uRZ6t9/8tq8gvLva9nrOLxewdy39PfUV7hYub8TXz34W1EhAXwbvv7WXhwHa2Dk44YIAGYhMZlcR3Jqijg8kXjKPVUcG/jQZg1Ey69+pe8WZhoFlizzlC5082yzXuQElL353GoIqRhSNo2jONUMJs0rh3W6biPn7VxO09O/R2Ap4b0YUSHkxu7VJfv563D5dZxofPrsi2MuqQt43/+AyndZBwsZNxncwkP9qd+ZDB7svLRhCC5UQyDHx5PTFgg/x07nP+OHc6+7AJ8LGauuf1jdEMiqF6GRtdrL6qrKBcSFS4qygWsQVQoFosJq8XE9owcSiqcpGbmsmTTnqOe16VtAjarGZvVTKe2CQA11jg7NCg8wh7MyPq9aRZYcxHVCo+TFXlbyHeV1Ni+6OBmyjwOPNLgy7TFxNpDMIvKRXiFiU+63EOoreZMO1+bhc5N62M2aSRGhWAze//2u39YD2LDAk/8oZwCK9O8WR2H28OK3eknfP7rX86j513v8vLkOVXbDhaUsC+7oOr9wK7NsFpM2CxmerdvRHxUCLPevpP3Hx2B2aThcHnIOFjImh0ZdGnRgGduGUDKpr3kFJaxYVcWlz82gez8EhJiQokKD6TPRU0RAi7q0ojLLm3NtcM7cVm/1qfkeSj/JAL9DP38E6hMkqJcwK6+uA0xIQHoUrJwXSrz1qYCkqb1jl4ksW+PZiQ1iEBKSWK8d5bZW89cxY8z19C7WxOiwo8enNy35h0OOPKxCDNfdnsKf7N3IHKn0EaYNRPSgEJXGXmuEqyamYsjWtI/ui31/Wq2a+X2dD6dvZJAXxvRIQE0iAohPacIkybYnp4DeIO3jz5ZwOatmdxze19atTj57FJJqYNN2zJp3iSG4MDaY55u6NaORdv3oBsGt/U8/gwUQGFpBVMXbkA3JL8s28ydw7uTnl3A/W9OBSQPX9ObK/u0oW/HJiQ3isWkaYRUtsFmMdO+ST0uv6gls1dsp6TcgcPlodzpYnD3FqzZnkFqRi7gzcAtWLOT6/p3ID0zn+Urd2Mxm/DztfHYvQNO+hkpyvlABUmKcgETQnBxG+8084uTkxjaoxWxYYHEhB47A5NQL6zG++TmcSQ3rxmAHKjIJ9uRT5OAeHwqB1vr0mBvWTYSidQk87PXUN83irYhjWgYEM3PvR5nb1kO962agG4YuA0P1yX0Ijm4AQcdRaTkbqd9aEPifEIZ++HPOFyeqvvtzy/GrGmAQK/MZq1em8aM39bjcLgZ+69veOf1a08qUCosLufauz6hrMyJyaTx7f9uIyoyqOazCQ9h7qO3/q3rB/jaiA4LJL+4nCB/O8F+dqZu2YfL40FKmLd6J1f2aQNA+F/qV4H33/Rfoy/hliFduPP1KeQUlLIrM48RT0xi7KiLmbFsc1XWr1Nzb4bvwcquUoAlK3b+rXYr5wc1Jqkm9SQURQG8U/87NK53xABpUcoOHnnhBxal7Diu603Zt5DRKS/x8LoPuWH5OHZlHsQwJCahcWvSYPzNPtT3jeR/O6fz5IYJzM9eA0CgxZfWwQ3oE+kdxyOBr9MWo0uDm1Le5a1t07kp5V3KPE58/rLWnM1s5rq+7WgQFcyf2/bx6eyVhIT44akcvKx7dN54Z9bffEJejzw7hbIyp/d6usHPs9ad1PX+yqRpfPXcDfx37DC+eWEMZrOJgd2aE+hrQwgorXAecbr+1rRsXvx0NrNTtmGzmGnXJA5fu4WyCheZOUVs23eQuPAgzCaNXm2TaBzvzQbmFZRVXWNAn1OzxIyinA9UkKQoyjGVljl57q1fWbEujefe+pXSyiDhaGZn/YkEpAcyv/Hhpie/YuxrPwBwbYNLmNbzZWJ8wnFKN27Dw67S/TXOHxTbHptmxqaZ6RnRArfhodhVgdPw4PR4KNedvHDjALTDaiFpAob1aEVGbhFFZQ4+mLaMBvXDiI0KBkOChHpxISf1LA7mVI+jEgKSW9ResHZfZj7XPzCJMQ9O5p2J85k+Zz0nsk6mn4+VDs3i8ffxZt/qR4XQrZV3xuDWtGxemzK/6tg3ly2l0/iPePqXOdz04tdMX7KZZyb8xvOTZvPrsi0UFFdg0gRCE0zYsYbwbqGMe+wK4jtFsCXnIEIIHr3n/9k76+gqrq4PP2euxp0kJMFCcJdgRUqxohVKgbq7v23funvfKrS0pdRLDadAcYdACBoSCCGEuHtybeZ8f9yQkCZY7aPtPGtlNXfmnJlzh9V7f9ln798eRWiIL5eM6cF9J5mO6vw70XOS6tG323R0dM6IwSAwGBScLhWDQWA01v99daQih2XZOxkY0pE+gfX9ySa3GMYbyd8hK4yIaiNOl8bOA8dxudS6Rq43trmYjOp8rAYTl0UOaXDPfsHtmDvoQVyaRpRXMD8uT0Db5gnhDrRUDzZoR7lsVHc6tWzGgWN5KALCg3wJ8vXCw2zCoCgE+3qBlGQcL0IARqPCtdMH/a5n8cQDY/ngs/WEh/pxzeT+dOnYeOtuzg9bSc8sBiDteCEWixEPq5mRg3+7HUFosA8nas2Wph/mCcdIUouLmLlzBwBzD+7HxxMM1e7EeSkliiJQhGBM/w4sKE+hVNjZkpnBpox0HKrKJwm72HLTrYwf2Y3xI/VSfx2dX6OLJB0dnToKKqrw97RiMjQ0TPSwmpnx4pVs2JbC0AExdX3eNKlx164PqXLZWJS1ne8HPUqwxZ2fMyY8lmHNeiA0wT37f2L/4WzGDu7coNN9lGczZsc+fMr1hHsE1v2+eM1+OO6BSPZAAp99v5UQL08+ffBKEo/nkpxRwOje7fCymvnxqWs5cCyX3u0iMZmMjBjeiTXrDtIuJozo1qdPSv81UkpUTda1/Ojfuw39e9c31k3KyufbbXsY0qE1Izq3RQhBx+gwNu9IxeFw1QoWsNmc53RfgL2HslA1jZ4dIrl2XF8+OhCPE4kIEEgpOVxUVDdWM0NZGzDaYIy1JS/cOpb56/chJUwd2ZNDiyvYk5uDlBKXqiKBGpeLIZ/NZsm0q2np78/x7GKSjuZhVBSGxrZt8G+l8+9ASqHnJJ2EOFMIWAhhBTYCFtyi6icp5TOnGHs58BPQV0oZL4S4Cjj5E7Ab0EtKuUcIsR4IB05sro+SUuafbi19+vSR8fHxZ35XOjo658xzi1YzLyGREG8vFt5zDT5WyynHljgq2VKQRGe/Fty84z3smhOzYuTbgQ8TZm28neVu4urC+qsconNh0ep9vDF7NZomEarEVKNhtZgYEBvNM49NPOP8mhoHVqvpnFqV1DicXPXhdxzOKeT2i/px98iBjcYMfGIG6jEbBgcoKlwyujsP3TqCect38/n329CkZMTgDtx7w4XnJDqWbUrk9TmrAbh72hAmj+rJmqOpzNq5k8mdO3Nll66U22wMnTObMoejwdw9d9xJWkkp7YODsBrdz9zucrH5eDoxQUF8sGMHPxw8ALhtpZ4eeiHNys28/MEKTlgjkLx4vAAAIABJREFU9eoUxYxnp5z1enX+HIQQu6SUff6q+0V09pd3/nDBX3KvJ7v8/Je+t9/C2USS7MBwKWWlEMIEbBZCLJdSbj95kBDCB7gPiDtxTEr5DfBN7fmuwEIp5clZjldJKXXVo6Pz/8jRgmLmxu1lwe6DuFSNshobiVl59I9ucco5t+2cQZG9AkUInukyjRU5CVwY2rVJgQTuiqvfKpDsDidL1h7A39eDJR/dxtufrWP//kwqnVXYbE5S0077t1UdHh6nNsc8FXuP53C8sBQJfLEpoUmRRJYD40l51At/2cvKjUmEhfhSWlGDyWggMizgnKMyB1NzsTtdICExNZfJwIwdcRwuLOT59fkMiIqihZ8/A1q0ZMWR+oq0bs1CufS7ueRWVhDh48vyq6/FoChYjEYuauOuZOzdvDnzkxJxSYkQgvjk4+xacARO+pt576Gsc1qvjs4/kTOKJOkONVXWvjTV/jQVfnoBeI2GkaOTmQZ89xvWqKOj8ydy45yfyK+owiAEBiEI9PKka2RYgzGHcgvwtpiJCPBDSkmerRRValgUE5GewdzbfgIVzhpk7ZfuH8mbs9ewaksyihA8fudonr9/PHa7k2dfXsTxjGIevHvUmS/yG0nLL6bG6bYY6NGyeZNjRvVuz9qNyWiq+71LKamucWCzO7FaTEgpiW51blt8ANPH9SEhKQNV1bh+Uj9yKipIzM/HpWl4GI3kVFTQws+fF4ZfREJONvlVVYR5eVFUXUVWpfsj+2hJMfetWEZyYQHPDB3O4JYtAbi8U2dsLhcLk5M4WJDP8pxUPMPBuzZ3XgjoGP3ntFPROf9R9e22Os4qJ0kIYQB2AW2BmVLKuF+d7wVESSl/FkKcSiRdCUz61bHPhBAqMA94UZ5L+YeOjs4fgrN2f8VoMDD7+svo0SIcg1L/IfnZ5njeX7MNKWH29ZfRu1UEj3WawhdpqxkS0gWb6uCWHe8DcHWrYdzQZuQfsq7P5m1n7pJ4rBYjDqeKELB8QyIXDWiPxWLilecm/yH3OR0rD7gjNALo0SK8yTFP3jGG2M4tMZkMlJXX8P7n69A0SfvoUMZf1JUAP0/atTl3wdE8xI9vX7u+7vU9y5biqm1W2yYgkL4R7qq6kpoa8qvcJfy5VVUNrtEvMor1aWlUu5w8uvoXtt50KwCKEFzTvQfJhQXszctFCpAWgaeHiZcfmkiNzUHPJqr2dHT+bZyVXJRSqlLKHkAkECuEqGtEJIRQgLeAh041XwjRD6iWUh446fBVUsquwODan2tOMfdWIUS8ECK+oKDgbJaro6NzDnx83aWM6dKOpycOJ7WgiNFvzeG1ZRvqStbXJx/F5nThUlXij7m3YMaE92LuwEe4I2YsB8rS0aSGXXOypTDprO97ur+JXC6V2T9sobLaTkl5de142HUgg7i9xxqNL6+o4bmXF/H0iwspLas+h3d/eqYP7IFBEVhMRkZ3jWlyjNFoYOzwLowc3JHLx/ZEURSkhK3xR9mTmMETry/mged+5N1P11J2Cn+j0yGl5MEVy1l55AgGIfAwGrm6e/c664OdWZlNzovw8eGZYReiIfEwGmnt794KdWkaNyycT6eZ7xHk6YlBCKQAV6jCu69Owc/byvPvL2fCrR+xNeFoo+tWVdvPyc5A5++FBDTEX/Lzd+CcYmpSylJgHTDmpMM+QBdgvRDiGNAfWCyEODkZayow91fXyqr9bwXwLRB7int+LKXsI6XsExJy7iFrHR2dxhSUVrI7JQuXqtE5IpS3po5jUo9OvLB4LdmlFXy3Yy9HC4qRUuLrYQXA02xifPcOACSWHeeu+A/5MOVnLmzWjRCrH1aDmZvanHnrq6S8mssfmM0F173Dsk2JTY6RQKuIIExGBVWt/0J2utQGjXfLymvYviOVTz7byMatKWzelsKnX27+HU+mIXvSczAoClJKdqdnn3kC4OttxWBwb7t9u3AnOfll7Nybzrzlu3n9w5UNxian5fHp/G2kZhSe8nopRUUsTzmMU9NQpeTF4SOY0rm+Ye6QVq2xnFSN6G0yExMYxNeXX0G7oGB+uOJKXhw+go8nuAP5+/Ny2ZGVhc3l4qP4nfhaahP0zQoGg8L8lXuosTtxulTmr2xolPnkW0sYfcNMbntqLi69+a3Ov4AzbrcJIUIAp5SyVAjhAYzEnXsEgJSyDAg+afx64D8nErJrI01TcEeLTowxAv5SysLaZPDxwOo/5B3p6Oiclpyicq587is0TWNQ19a8dtt4wJ2H0jzAl8KKKhRFIcjbi18OHGZtUioAlXYHwd7uHmHP7P+aXFspSWWZBFv8+H7go2edi7Rl91EKS6tQVY05C7YzdnC9w7PLpXLXsz+w/3A2Pt4WnK6GX8Sx3VrSrYPbl6iiwsa06z+qa6dxgrgdqb/puaQdK+CNt5YTHOzDNTdfwO1fLKKw0r1Og0Ehv7zqjNcQQjDrlems2ZxMt46RPPH6IiqqbLhcGkiJprn9ixwOFw6Xym3Pf4fd4eKTeVt5+b4JDI9t1+B61TYHj76yEGeYitEkaB0UyCUdOzZ41hG+vuy89XY+37ObUpuN2/r0JcTLq+58l2ahdGlWv93XOiAAi9GAENC1WSjPDLuQL/fuYUBYBI8/t5CikkqEcG+/jhtWL8bsDhdra93WD6flk51XSovm9RYNOv8UhJ6TdBJnk5MUDnxRm5ekAD9IKZcKIZ4H4qWUi88wfwiQIaU8OW5rAX6pFUgG3ALpk3Nfvo6OzrmSklWIJiU1Dhfxh+q3aoQQfH/7NDYePkbPFuGkF5Xw6E8r6qo0JG4hBRBg9iHfVoZDOnn/8BIKbWXc0W7cWd2/W7vmKIrAYjYyrG/DLawjxwtJSXdXq1VU1rt6Gw2CGyYP4PrL+tcdy8wuwWZv7D2UX1jRwLDybHnn/VUkJedgNudTFKCRV16BlODvaaVfdBTXDu51VtcJb+bH1Zf1Q0rJq49dwqGj+WTllOBwqPTsGsmoq96j2u5Eegi0k3atZv+0rYFIcjhdvPLJSnJyywjMg4poidNfJS4zk3bBwRwsyOerPXu4pENHLm7Xjjv6xvL65k08vPIXnhgylJigIByqis3lqo8WAf5WD1ZfewNf7d3DvrxcCqqqePmikRxKy6OkrLpOmP74/o00C6pvUWM2GejbtQV7krKICPMn/Ff96nR0/omcTXXbPqBnE8efPsX4Yb96vR73FtzJx6qA3uewTh0dnT+I2A4taB8VwsGsfAJb+/De6q3cNbw/BkXB39ODiT3crtD7MnIxCMEJGdIyyL/OZPKNHjcycdML7ugIks2FB89aJLUID2T+2zdTUl5N64iGTXIjQv0wCwW7S0MqAhSBj5eFCcO78uWCHWxNSOO9p67Aw2oipm0oLVoGkZZW2Ci74ZKpM5j17jVERpx9pCOiuT+HDucA0LtVc7blZYOAOy7qz9WDGn0EnpG3PlnN0jUH8PIw89U71xPg78VFU9/BXtuQV1Olu48KYDQoXNCrdYP5361IYM0Od+RGSECFY6WlTJ/3IwZAKAouTWND+jH6RESwIyuTz/fsxqlp5C6r4NNJlzJh7tdUOhw8OWQo13avfw+qpvFh/A4cqsqWjOPsvf0uoqOCMRkN2B0uFCHYsiuNS0d1r5sjhODqS2IZ1KeIicO7kplbSmJKDkP6RuPr7XHOz0fn/MTd4PbvkS/0V6A7buvo/Muwmo18+siVTPvoO/Zl5HC0uJiY0CAu7tq+wbiRnduyLvkoybkFTO7dhSv6dkUIQamjipkpS7EqJqpVd7Tn2tZn3+8rs7CU7zftpWd0BG0i3Tv15RU1bNl2hCXL92ArqKn9YJI4vRSocjF3cTxSQFJqLrc8+CUvPjqJ/YeyySooQ1gVpF1DSLBaTdhsTmw2J5u3HWHq5CZTHZvkgXtH4xniyYo9hzmeV8a8e6+ipLyGksxycnJLKa+wkZ9fzoD+bevct0/Hms2HcDpV7AYXB4/kMqhPNFaLEbvD1UjU3Xz5QK6b2HCtinC3FNGQKBIspaBZJE4fgQqI2pwgVdUQCHZlZ+OsrX4rqbGxMf0YNqcTl6bx5d49DUSSUVHqEr9Ntb8bDQb6dW/J+rgUjEYDVmtDX6utCUd54q0lCAHJqXmsj0tBSsncJfF889b1Z/2cdXT+TugiSUfnX4qn2eSuxKr9/deYjUbevHJso+MzU5ayMnc3CoKBQR24MXoUHXzd5eJ5tlK+PbaeGJ/mjI9oWqDc/sF8MgvL+H7zPr5+cCotQgK49o45VJRW1yVpC9x/0Souic3uAKsAo0BTJRnHinhrxkp8Aj3rojIGo8AkDEwY042FS/dgNCrE9mnd5P1PhclkYNmewxSUVrJ2Vwp+BhOLftgFgKIIjEYDiiIYNrg9/33Q/VwW/7ybdZsOMf2KfvTt3fB+V4zvxWc/bCPQ34uWzQNJScvn+YcmMOf7rfToHMlXK3e5rQ0As9FAbnUlV6/4nsyqcv43eCxXjumF3eFk36Fsdu09jme+xFoIBf0kiqIQnAgV/hq+lQZyskqJ9PXFqChoUtK7eXMuaNESs9GIKiXTunQjJ6+M0vJqqmscPPnKQmKsJrpP7sDU2B51EcJHbxtFy4hAgvy9GX1Bwz5zGbmlaFLidKikZRQCErvDRU5B2Tk9Z53zH/Xcarr+0egiSUfnX8qbU8by1bbdtAryZ0i7UwuKkrJqklNz6d4xEk8PMx4GMwoCIQR9gmLqBJJLU7l22/+oUu0YUAjzCGjQ8PYEdqe7b5gA7C6VG979nmO+diyawKOkPklHAAa7dIsIBwhNgCrRJBzPKOaRK2LZm5iB2WTklScuJap5AJ6eFqZe0Q+rxYSX16nbqpyKFqH+VFTb0KTk5yV7645rmkTTNBwOjZTUPACyskuY8fE6HA4XiQezWLHwQRSlPkZ0w5SBTJ/Ul4LiSm78jztRXgiB3eFi/6FsHrhtBD+sSiAs2BfZwsCgH2ah1WaAvZWwiYtbtqPrwCgG9G3Dzbu/cT8TDZZefjWRof7c98yPHMsqRggIC/blqjbNyK+qIn5tKsnfp/F9rgfbb76VKoeTDesOcdVLszEoAl8fD6qqHVRVOzAfctJpXLO6NXt7Wrh5StMNgMcP68yOvccoLKnk8TtGs3TdAbbvOcatV/6+hsE6OuczukjS0fmXkJldgofVRFCgNwABXh7cO6KJNhtAXmE5DodKcKAX19z3GXaHi+BAb759/0bujBlHkNkXD6OZyyLr5x+uyKrbflPRUGXTJeLv3TqJT1bG0TcmimZ+3iRl5iONArufwKOkflx4qC89urVE1VTGjOhKZEQg9z38rTsiUlbNYy/Mp39sNK8+eVmDaq8T7++38NZ9l7B2VwptI4P53xsr6gSRh9VEx/Zh5OSVc/+dbrNMq9WEwL0t5uFh5uTiPpdL5fl3fiYxJZdhA2LQNInN7mpwr8++3cLiz+4EYNSCT+sEEoC/xcq4xZ+TXOK2BggNNqIUapiNRpoH+OJjsfD+M1P4dvFOlm88yNtz1vDsfeO4vXsfJnywC1XVWLRmPzdOHsCOhDRmzFmLy6XhomGj3YQDx8/62Xh5WvjfY5fVvX7ghuFnPVfn74NE6DlJJ6GLJB2dfwHzF+1i1pz1CCF457VpdGxf7x69MS6FD77cQM8uUTx82yh2J2bwyEvzkcD1V/SnusaBw6mSmVOC06ViNZm5rk3jHKRIz2C8jB7UqHZCLf7EBrZrNAagY1Qz3rppAgA2hwsfDytVNjtmkxFF0dBqS74cTo1HH7wYgFVrE1m97iDtYkIpKKrA6XJLiu27jrJj9zH69Tq3rbVT4Wk1M35QZ7ZsTyE9owiDQRAe5k9oM1/2H8jEy8tCQIC7vD4o0Jv/vXIlCXvSGT60QwOhtnNfOtsS0qixOVm+LpGwZr5k5pRw4YB2rN6cjJTu7b0TXBrdmTcTNtcJy6KaGtIrS+vOF8WqtBEBvNJ7FH4+7iRpLw8zq7Ykk1tQTml5NZt2pjK0XwzNAr0pLXebVj75ykIiwwPqninAxDE9+HFxPAhBbM8/5rnp6PxT0UWSjs7fFCklR48V4O/necboybqNyTgcKgZFkLA3vYFIemXGCiqq7BQWVzF6SCd27jmGw+FCAvuTsrhoWHtWem7DFC7ZXJzI8NDuTd7D1+TJ9wMf4VhVPp38ok7rmySlZP+xXPy9PZj/2DUkpGbRNyaKuO2pfPTpBlRV49Ybh7B63UF27Unnl1UH0KQkJNibe+8YwVsfrXLnLCkCL89zb1x7JnbuSsNRm++UlV1CVlYJEnCV1bB63UGuv8q9xdSlUwRdOkU0mh8ZFoDTqQJQWWlnxgtTadPCnaQ+sHc02xPTKG6r8VzcGh7uNZg7uvVnUHhLbl4zn8Kaauyaqy4vC8ClSSr2VHDPzz8yuE80rz48CSEEraOCKCypREqIDPPHaFD48o1r+Wp+HD8u3MmB5GwKiytp0yKI1PRCpISfV+/ji/dvIK+ggu6d9dYjOo3R9JykOnSRpKPzN2X2l5v4cWE8Qgg++N/VRLc+tSP9VVf256kXF+LlZeHCwR0anIsMD6hLxG0W7MPFF3Zm6Zr92B0urro0loqQctYlbsWmOnjv0JJTiiQAP7MX3c1njk7M+HkrX63bhaZJ/nPpUKYO6QHAxSO7cvHIrmia5MrrPqSwyC0ATiCEYOLYHvTt3YqFy/fSpWNzunRoLFJOsD8pi607UxkxpAPRrZqdctyvmTS+Fxs2H6aqyo4mJVK6hZ3JaKBX95YNxmbllvLAcz/icLp4/fHLaNcmlKjmATQP9eN4dgmKQZCw/ziB/p48+cZiKqvsBI0NYmlWMmQLPAxGHukzlG4h4fw88TrGLv6C3Gp3g1qrwUgbv0Cy80sx5GtouKvMSitq8Pfx4Om7x7I14SgtwgNoX9sfzsvTQt9uLfn2R3eLzfyCCh5+9nIef2lhXXl/RHgAEeEBZ/08dHT+regiSUfnb8rm7SnY7S7MZgMHDmaeViT1j43ml4UPIgR1EZ7c/DL+++pCnE6VG6YMZECv1jQP9QdgSW2ujBCC5IIs7N96Q5mBoEm+p7zHubA9OR17baTljQUb8PPy4OLe9RYELpfaSCApiiA40JuCwgrCQ/254/qhp71HeUUNDz79A3aHiwXLdrP0m3vOqnQfoHXLYBbMvRuHw8X8xQkIIYjt3QovLyvNQnwajJ2/fDc5+WVICV/O286LD7vbf9xw5UBeeHcZUsKho3mUV9jYn5yNqmrkHLQj/ARCUFdZBrA9N4Mqp9tBXACalIQVWqjZIHBoEpNRoU2LEGw2JxP+8wXlFTaevmdsnUA6QY/OURiNCi6XhtGo0CzYlyfuH8uO3WlcPl63qNM5NVKCquck1aHH1HR0/qbceNUFmE0GgoN8GDywcf7P3v0Z3P/oXObWRhQURTTYApu7KJ6j6YUczyrm6PFC2rSsF1lC1I9NP1iGudIKLkH5pt//4elSNcbHdsSouD9+NE1yJKdh7zKz2cg10wbWijrw9XH3j0tOyWXOV2fXm83pUtFqVZbTpbLvSBZTn/qCR2YuxuZwJy8XlVUx/ZmvGPvgR+w7ko3TpfLiZyu55ZXvSMkowGw2MnVyLFde3pfWrUIaCSRwCxKzyYjFbKR31xZ1x0cO7khYiC+qqrFu62HsThdGg4LVYmJCQDumtuvG2FYduLVLvVVCv7AorAYjCu6tNoemslZkUGV0IgREhQfy3L1j2RSfSkWlHZeq8dXCHY3W9OPiXe5WKIC3t5WWkUEkpeTyy/qDfDZ3S4McJR0dnVOjR5J0dP6mDL2gPUMvaH/K80++sICKChtJh3Lo3bMl7dqGNTjfLjoUs9kdxegQHdrUJQDo2DYMgcBqMdKvNtHXrjpRpYan8dzL7O/+aAF7jmbjaTUR4uuNt4eZ6bXbbSdz4zUXMGlcD/LyyzmYnM3szzcigeZhZ9cOIyjAm8fuvZhf1iUyeUJv3vhmHalZRWQVlLFmZwrjBnVi6ZZE0rKLcKkaM+dtZtKQLvwSl4zN4eK5Ob/w9TNXn/E+g2Pb8vFrV+F0qnQ46Rmv2ZxMRZUdg8HdIHdY/xhie7SisspOcFtfLlv2NQoCTWq8O9SdyN7M05utU+7gpyP7eXLbKveFBBT30QjdZCQts5Dn3l/O43eMwmhQEAJGNCGQ07OK6n4vK6/G6XQxd4FbTG1PSON4VjGtooIazdPR0WmILpJ0dP6h+Hhbqa6ygwRPz8ZiZtzwLjQP9UNVtQYRkF/TIiKQ72beRH5RBR3bhpFcnsndu2ahaiovdruGQSGdzmld8UeycLpUQPDMtBF0b928yXFZ2SUk7D3OjvijHEjKYuTwznTpHMnIC898v+pqB0KBEUM6MmKI2xSxVVwimfnuirHI2r5jHVuFYVAUjAYDPWIi2LIvrS7iExrgjholJmUhhKBTh/p1Op0qr729nKPHCnjw7lGNkreLSqp48f3lOJ3uZPmXH51Ex5j6ZPmpy+ZiV93bjRuz0hrMFQLiczPxNBipVt3J4yYfExazgsOpYjYZiG4RwryZN1NZ7SAyzL/R+795+gWs23yorvnvhGtm0jIykLzCCrw8zIQ2ERHT0TmBbgFQjy6SdHT+obzz2lRWrkmkc6cIIps3TtKtrnHQLNCbDXEplFXUMHxg+1NWpAUHehNcW0G3Lm8fNtX95bswc/s5i6SbR8byyco4urQMpVOLxhGs7TtS+WnRLvYdyEBq1AoqWLJ8L2vWJ9G2TQjRrU+dhB2XkMbjLy9AEYK3np9C145uAfPszWP4bmUCSOjU2h3xie3Ugs+fmkZZlQ0BfPt2AlK6HbBfuPVilizfy4yP1gDw4N2jGDq4PSaTgc3bUti8NQWb3clrby/ntZevwMfTgo+Xe1vQaKxv+2H+1TYcwMFit/8SKpRV2imoqSLEw20tsPzYIX45nkKNWu+r1DYgkJiO3iQkZtC6NgLk7+uJv69nk88gKNCbn7+5hxff/pk1m5KprnHQsV1zHrm7K61bhOBh/eMrAnV0/miEEHOA8UC+lLLLr849BLwJhEgpC5ua/0egiyQdnX8ofr4elJZUsWrVAdq0CsHPt74JaUpaPnc8Phd7bW6O0aiwKe4Id1w7hNDg0ydnD2nWhXkZW1Clxvjmfc95Xbdf3J/bL67vee10qjz93HySDuVw603DePuDVXXl8ydQFIGmSaprHKxel3RakbR01b66+as3JtG1YwRFpVVc/+RXFJRUIYANcYcZ2ieGwb2jaRvpzsU6llOMxF3B1jzED0+rmcSDWdjtLoSARb/s5fkvVhLg68mTN45CIrFYjEgDTH34M4wGhTkvXEWr5kH4+Xjw9jNXsHnnEUYO7ojRWJ+cnVdYTpsCfw5WFiFUd+7XnE3xPDrKnYge7uWLdIKlyABBgnA/Hx7vMYxHvp2HqkmWrj3AzVMGEejXtEA6gcGgcOGg9myKSwEEwwa2o2tHveRf5/S4zSTPm3Tlz4EZwJcnHxRCRAGjgLN3Q/2N6CJJR+cfgNOpsnL1AXx8rAwe1A4hBPMWxLP45z1omkTVNB57eHzd+O0JaTicrrrqMadTY82WZFLS8vnm/RtPe6/Ofi1YPOQpXFLD13T6L+qzYfeedPbsy8Bmc/LR7PUYDYp7m8qgENrMh7Gju1FWVsOCJQkoisLAftGnvd64EV3ZujMVRQhGDHHbHayPT6GorBpwJ0QfPJpHcloeny+KY8WsOzmYmovBIJj50OUkpuUxpr973rQp/dh/MBMhBJmVFaiapLLGQUm1jTdfmkJmVglfrIrHUeEWZbsOZtCquTvS061jBN06RiClJDe/DD9fD6QG0+/6lJw2EsVS+0UkYeXBI4T6+BDgaWVit460d4VwqLoQi8PAbd1i6RochsFsQHOoeHtb8PGykJZbzJKdSYzpGUO7yKZF4+D+Mdz/4BhsLif9e7f5vf9UOjp/KVLKjUKIVk2ceht4BFj0Z69BF0k6Ov8AZn60hhW/7AcBDz9wMRdd2AmL1YQQAkUBq6VhA9vB/dry1fztVNfUt6iQEiqr7Wd1P0+j9Q9be4va7SOr1USH9uHcfMMQ1m5M5oIBMXTuWJ8HNHVyLEajoUFErCn6927DrP9dzWtzVjNnSRwt41PYtjeNX28kahJq7E6+WLSdb5fvAgkP33ARF/Vui7eHezuqZVQQ33x6KwAf/7SFr5bsxGhQ6NkxkrBgX7p2jkR6KLz0yUq8PS0M7tlQwFVXO/j0uy0sXLYbD6uJl/57CS6niuISaGY40cvEpCi8tXoziiI4mJPP4dpqPynB38PKL3sOUx0kcFVBy7b+aFJy+atfomqSOat3sO6l2wjwbixYlyYk8/yiNQggt6qKu8c03YZGR+dk1Eb/t5w/CCEmAVlSyr2nM6z9o9BFko7OP4C8/HIcThdGo4HCwgoALpnQi/KKGtLTi5h+Zf8G41tFBtGudSh7DmYCYFAEJpMBIeDIsQLatjq159LpKHNU422yYhANw/U7Dh5n6740JgzuTHREcINzYWF+zPnoRtIziujVoyVms5GYto1zlc6lJ9ucBdtJTM1BEYId+9NRNYmn1cT911zI6m2H2HEgHQCDQZCYmovd7gIBny+K48WPV+JhMTLvnZsJ8KkXHrdOHsSkC7vi42XF86ScnrGDOzNyQAcMitKgwe2XP25jzrdbQLr9jgwGhaLSKoYNasfaHSkUtgVZq10DvDw4XlKGUSisOJhS57Qd6e/L6E4xbEs+jlAERh8TLUL9sTtdqLVl/FJCSnYhse0aJ9+n5RfjVFU0TXI0r7jR+ezicvLLK+neMvy0Duk6On8SwUKI+JNefyyl/PhUg4UQnsDjuLfa/hLOm41HHR2d3849d4yge7cWDBoQw4Rx7nJ6p1Nl4aIE4nYe5Z4Hv0FV6xvO1tgcdQIJIDTEF4dDpbC4ik+/2/Kb1vDes3tdAAAgAElEQVTS/sUMX/0al254jxqXo+54XnEFD767gG9W7uKWV75HysYePeHh/vSPjcZs/mP+bosM88diMmI0GFCEwGwy0CzQh4nDunLoWF7duNYRQdx/9YX4eFsRCDJyS5FSUm1z8u3P8Y2uGxrk20AgncBkNDQQSADzlyagaRLF4DaN9PPxoHe3ljz30ESefmYS0lQ//tVLxjAougVmg4H88sq641ll5aw9dJSurcLo0jKMFiH+XDOsF76eVvq2dSekhwf40LNN067jVw/uSe82EXSOCuX+cRc0OHcou4BJr3/BLbN+4qp357I+MfUsnqzOPx2Ju7rtr/gBCqWUfU76OaVAqiUaaA3sFUIcAyKBBCFE2Gln/Q70SJKOzj+A5uH+vP36tAbHCosqqK5x4HJpOBwuHE4XHgb3F7zVYqJtqxCOHCsAYGCfaJas2ocQgq4dmi7Jbwq76mRD/iFaewWzKHM3qtQosJWTVJ5Nr8BWgNs88oQsOlGp9mdz+5QLiI4KcXsxBXiTeCSH4f3cnlK+3lbKKm0ADOzRhubN/KiosvFr7WYx/r6Px1HDOjNvaQKenmZmvDyVpJQ8MrKL8fONoE/LCIK9PCisqmFi1w6E+/kQHRzIpiPpDa5hd6kkZGTz/JerKKtyr/nad75ny2t3MfveKdgcLiwmwymjQIHennx6xxWNjhdVVLMvPQcJ2B0qB47n8ciXy/j87il0imoYxUvOyic1t5jhXaPxMJsaXUtH569CSrkfqEvAqxVKffTqNh0dndPidKrE70ojKiqQyIhAsrJKuP2eL1FVDS8vC1dN7d+g7FsIwWf/u5b9ydn4+bgdmUcP6YjN4aJHp7OvgPpPwnfEF6UhJQwKacum/MMEmL1o71vvCRQR4sfj141k3a4Upo/q/Zds6xgUhTGDOta97tim/g/NR24YwYNvzAcg0NcTs8lAVFgABcWVmE0Gqmocbifrn3cy5eJe+Hr9tvyrO28YxuQJvbHZnbw3ew17EzNBwjsvXslja1ZTXG3DoAh6RoXT++UZGBQFkyJwaRKLyYjN6bYAWJl4uE4ggVt0OlwurGYj1nOIvOWXVeLnaeW1RetZEJdIiK8XUUF+HM0tcgtEAZU2R4M5R3ILufa97wFYvDORj26//Dc9C52/E+dPdZsQYi4wDPe2XCbwjJTy079yDbpI0tH5B/DsiwtJ2JMOEj7+4Hp2xB/F4XBXr4WH+jFtSv9Gc4QQdOtYv01zstnh2ZJSnkeN6sTDYGJCRE8e7zIRf7MnJsXQYNy4gZ0YN/Dc/JT+LLw8zDhrW3a8+80GenaI5OOnp/KfNxeSX1JORbU7pGR3uDiUlkffLi1Pd7nTcux4IY+/sgCHwx1Bs1qMZOWUklJQK0wkzNwQh1PTkEiGxrQmtlUUszbuqBNJVkPDj2l/Tyu+nucm3N5cvJFvNu8GCS7N/d7Lqm28NG003lYLM5ZvoUerCPq2bSiQM4vKEAJqHK4mc5p0dP5MpJTTznC+1Z+9Bl0k6ej8Azh0OBebzYnVaiL9eBH9+rbhsy83I6Vk0oSeqKrGzI/WciQ1j7tuv4j2MX/MFv5TXSfx0oEldPANZ3BoO0zKuX+kxCcd57FZPxPk68nM/0wmyM/rD1nbyTicLj5fFEe1zVFXuQYgpeSVT1cyYVg3DqTmNJq3PyX7d4mkLTuO1Akks8lAbM/WDB3Yjh6p+9idkYMAYltFsirpCEaDwt3DBtAxvBk5ZeV8s3MvZoMBP9VMxknXvHPcQG5+/0d2p2bTPjKE2fdcgSIEdqcLv1NEvRbHH8R1Uk4auLfiOkWG4mU1M/OWS5ucN6hDK4Z1jiYxI4/HLrvwNz8Hnb8X2nlc3fZXo4skHZ2/KbsOHKekrJph/dtx710jeHfGKtpGhxLbpzVms5F5c+/Cbnfh6+vB5q2HWf7LPmw2Jy+/toQvZt/yh6xhULMYlg1/8Jzm7E3JIi4xnTEDOtIiNICZ87ZQWlFDVY2DX+KSmT7qj+9S//2KBL5euhNNk1wYG4OH1USNzW1/UF5px2xsuL2gCIEmJTkFZb/rvhNGd2fp6v04nSpSStq0CiE1LZ+H+w3gY+se1qccZVniYXpFNeeDaZPwr40QPTp6KNNjexDo5cne1Gzun70YD7ORT+6ezNG8EuJTMt1+T8fz+G7jbj5dtROb08XjVwzn8oFdG61j6qBuzFoVh5RgMRq4c/QArh3aG4MiWBB3gPzySq4a3BNva8P2NSaDgdeuGfu7noGOzt8ZXSTp6PwN2RKfytNvLQEB+5KyePDmixjyq2a3FosJS60/UoC/F1JKTCYDQUGNS+lT0wt4+s0leHtZePW/lxDg/8dEc3KLK5i9aBttmgcxbVQvCkuruPONn3C4VD5ftpOf37yFvp2iOJJZgJTQufWfVqRSh6fVzOqP72bG3I0kHc3lnquG0qF1KCu2JJGYmsv0sb35YlEcSFi2OYm7pw/Fz/v03kynom3rZlx6cQ/m/7wbKeFAUhZzF+xAAHnhGgS4xVlCRjbeloY5Yy0C3T3ZBnVqRdyb9yCE+7jdpSKEQEqJEIKiimrsThcuVePHzfsaiaT1iamUVdv48q4ryS2toKSqhgHtWmA0KPyckMzLC9bh0jSO5BbxxjXj6q57MtV2B+sOHKV9RDBtwxpaOOj8s5ASVL13Wx26SNLR+ZuRk1/G1wvjcDhVNClJyzx9YYdLU+nQMZwXnrmM9PRCxoxqHGmY9dVG0rOKMSiCWx75Ggk8ed9YenaO+l1rfeLDpRxIzcEkFHy9LPRoF1mXE+N0qfxv7npeuPViBnVtjb+PJy3DGveYOx02u5MXPlpBXlEFj98yijaRTX+BXzmmFzV2J9U2B7dcNhCDQSGmZQg7DqSzOymTztHhzHxiSt26Fq/bT1WNAx8vC14ejZsDn8DlUjEaDVRW2fnyh214epq5+vJ+dW1I1m85hIeHhcH9YzAYFCxmI7v2pSMl+FQZsde+3R6RYRgNp06WPdleoFurcGbfO5nVu1MY26cDPp5WFm5PROJiyuDuDealF5Twn6+WYXe6+GHrfhTFbaJpEAqvXDWGKrsDKUHTJMWVNVz84qfklVXy4tTRjO3doe46d3y8gKSsfJAw7+FriApu3FRXR+efiC6SdHT+Zjzy6gLSMgoRCCJC/bn/huGNxhyrLGRvcSZ+Zg8e2vkjilD4/ILrmdy76V5r7aND2Z2YiUN1kdkiH5Fn5L1P1/LqS5ewKDOe9p7NqdrvpFmID316tz7rtQohUGokmqry1kdrmTfzZkb0iWHVzhQURWAxGxFC0D2maZ+fM/HzpkQ2JaTicKq8Pmc1s56e2uQ4s8nIrZMHUVZew7ylCWTklLBkRxLgdtK+qF97wkPcPetMRgPfvHod+1Oy6dY+opF4sTmcPDNjGXH7jmF3uLhidE8cZXZWbjiIogi8PMxcMbEPOxLSeOndZagujd7dW/LGM5PJzi1lf3IWqqrx5H/GsTo9jbbNghjXtUOjNZ+O3tGR9I6uT7Je+9Jt2J2uRgndqlafh+TSNKh96UJjc/IxnrxsOMfyi8krq6RLZCgf/LIdl6rx0artDURSWn4xNocLD7OJrOKyOpFUUlOD3eUizMfnnNavc35zvlS3nQ/oIklH52+Gy6WBBJNJYVjPNgT4NNwKKrRVcsX6j9GQGBDYNHeV1Pz0BDr7N+2BdNPUQYS38uWFQwtwhjrABe0yQ7lr52ekVxXiscIDa6oFRQief+ZSYvucXR+w/15zEdc//BUaEiklxzIKee6WsXRqnUBFtZ1rxjQUbctX7GPR0t1MHN+TsWO6NXnNtGMFPPvCQjw9LUy6ojeKcIutiGZnjm489doi9h/MxKVJ8BQgBAZFwcvD1GCbyc/Hgwt6Nd0jbuWWZLbtSavzfJq3ag/j+nZwu/DVRmUAyittCNwl+2UVNQA0D/Pn65k31V2rc9uz96Q6HRaTEYup/uO8oKSS71bvpn2LEJ6+/CKW7znEziMZuMu7JV5WE9Mv6IHJaOCRScMAOJpXxKyVcVhMRi7qGgO4E9s/XLkdXw8LRsXAgHYtqKixM3PFNnaWZbMpMx2DELwyahSXd+n8h7wXHZ3zCV0k6ej8DVBVDUNtROPVRy/hk7mb2b7xMEvm7WLjqiTmfndn3Rd8gb0CVWrYNRcCMCDQkHgZT71tJISgX6/WKOXuaIOHyczDt4xk/MY9aEhEqcDpUDGbjeTllZ/VmhNTcrj7uR844SRpd7h4+t1lfPPWdVw1uk+j8ZWVNt567xdcLo233/uFCwbG4NtEn7ZPP9vI8YxiFEWQfbSIVx+YREFxBaNP8kU6FRWVNlRNIgCrQ2CwKtw7dSiX3zgLq9nEjFen0TIy6LTXSE7La2CK2b9bK+65aTieHma8vSxcNq4XAMMGtefQkVyOZRRxz02No31/Bi6XyiNP/cSWzEykye003iYimIgQP3544CrKamx0b9m8kTs4QJvQIJY9cSMHM/N4/qfV/BS3nwfGD2bO2p3YXSoWo4HLB3Thto8X4HCpuIwSQkCVkgUHD+oiSecfiS6SdHTOcz78YDU//bSTjh2b8/Y7V9MyIpBbrhjIjl+ScKgaxcWVaJrEYHB/8XXwDSPcw5f0qmIMKEjhjgh8eXQ7N8YMwt/cuBEqQLDFh5l9b2BbYQoXN++O0WjgzV5XMStlDW1uCiXlx3zCQv0ZNeLsvgzj9h7D4XQ1cLIurajhwOEcBvZqHIkym41YzEbA5f7d0vTHU/t2YexKSEciiW7TjP7dWp1yDfsTM0k5ksdFF3bCz9eDpx8azwefrSesmS8xrUPp27MVb81ahd3uwm53sWLNAW67bugpr6dpkkVr9tW99rCauO+aYfh4W7n/1hENxhoNCnfd+NeWzR9JzedgUjbSx/1v7lQ1ko7lkZJRQExkCDdO6Fc31uZwMmvBVmrsTu66/AJ8vawE+XgSd+Q4eaWVSODp71fWjXe4VLalZCCEuxedOOnf9aY+f3xFos7/D5K6liE66CJJR+e8Z8GCXQCkpRWQmppHhw7N2bTxUO32EAwcFIMQwt0nTBEIITAbTEjAIASythLKKBTMipG3E1fxddoOhoe15/XelzeoZOoZ2Iqete1EALr4RzGj7/XuF0PObd3DB7Tji/nb64wbwS0curRreovJbDbywfvXsj0ulf6x0XWVeb/m6ukDad8uHA9PM107N3YHtztcHM8oAgn/eeIHNE2yYvUBPn7/Olq3COaNZybXjS2vqOFoekHd68Ur9zFlUp9TVvcpiqBVRCDHsorRpMRud7Jh5xGumRh7Vs/kzyYyMhCr1YRflQNDqJXgUF+OZhViMCiEBDSsavx2ZQI/rtmDJiUuVeOpG9w9Q2Ojo/h20x6ctb5KQgDSvaXXoXkw1w3rw8GMPKYM6U65amdQyxYEejYtvHV0/u7oIklH5zzlRI5Mn76t2Z2Qjre3laioQHYnHCMlJRch3IJIIJgw/n8oiuCBV8cSFunHs93H89SexbT2DuKmtoP4MX0XI8M7IYBPj2xBAsuyDjAuoivDwtufaSm/iVYRQUSFB3A0owiA5qG+zHj6Sny9rThdKqqqYf2VEGoRFUSLqPrtLk2T5OeXExLiU7fdKIQgtm/DSNSylfuY8+Vmmof5cTyzhJoaBwEBbqHjdKoUFlc2GL9rXzoff7UJqUkKiurPOV0qCfszuGjwqROpP35uOjO+3cDPGw5gUJTfZTb5R+PtZeHrT28hI7OY3IpKnvpkORKYMLgL4wc1dDw3GQ1uWwHAbKx3SB/SqQ1z7riCO2cvxKmqxLaNIsDLg+jQQIZ3aVuXr6Tzz0U3k6xHF0k6OucZVRU2HrzuEzKOFXDnf8cx5YpYOnWKYOLEXqxalcgnH69D0yTR0c0IC/dHdanYbE5srVTuT/kR0zEDD3UayeLhdwHwxO6F/JKVyPKsROYOuQWzYsRem8ydXJ77p4kkAA+rGUWAyWTkgeuHExbiy9GMQm59ci4Op4vn7xvHsH7tGsx5/4PVLF66hwsGtqW0tJrEg9lERQXy0czr6krrf83bM1a5xdBJgqegsJzxY7qTmJTNyOGdcDjc23gAz76xhLLymkaVaxazke5NRKdOxsvDzKM3jeTaibFYLSYCfP/6KMraDUl8/s0WLhgQwy3XD2kQDfT2stCxfTgLv1yNvba1SXmlrZH30bQRbif2qho7HduFk1tSQViAu0qtR+vmrHzqJrJLKmgbGtRkDpOOzr8BXSTp6Jxn7I5LJTe7BIeXmbc/XIvBqGA0KqSm5uNhNWG3OxFC0KFDc+67fzQbNiSxc+dRqqJUNEXDpmrMObKF1w+sYExEFxKKj9f1VztUnssLPSbyWMJCvIxmxkY29kw6GxwOF4uW7MbT08zFo7ud8kv0xQfG88X8OFpFBdXlIW2IS6HG5vbn+WHZ7gYiqabGwYJFu5AStmw7gtPpTpDOyCwmL7+ciOYNfZSklBxMzsHHy0pZRTWqWp8oM2xwB66dPpBrb5nNZ19vYWtcKu++7m4FFejvRXWNAwH0696arNxS7rhuCLG92tTmRZ2Z8BC/s35efyRSSl5+82dcLo15ebsYcWEn2rQKaTTuiuHdWbsrBU3TmD7KnUxuczgpKqumebAvRqOB68fFcutH8/hi7l6EgEWPXEeYv1soeVsttAs/dbK/zj8TCXpO0knoIklH5zyjXecIXCYD0ujeC1FVDVXVyMos5plnL+Xw4VwURXDhhR355ustREYF8dnnt5HnLOfh5HnUuBzk1ZShAcuzDvBUt3G8eXAVrb2DuDC0PV4mC6MiOmMQAkWc3g9ld/ExHt79Lb4mD2bF3kiIxZdt21OZvzCevfszMBgUNE0yYVyPJueHBvvyyK0jGxwb2KsNXyyIw6Vq9P5V1MZqNdG6VQjZOaX4+liJiQll27ZUOrQPJyy0oSjJzCrmjvu/pqI2SuLpYaZf39a4XBp33zacZiG+7DuQgapJbDYnh1Jy6+a+88IUVm1MomNMOF1rm/xm5pQw7bZPqLE5efXJy84YUfr/QghBs2BfioorEYrA36/pSFbbyBBWvXtH3evSyhqufPILKqvtjB3YicevG8HGPUfZk5ZNjdOFp9nEsfySOpGko6OjiyQdnfOOZuH+PPfWNJ544ke3J1ItD/1nLBERgcz+9GYqK21MueJ97Hb3dkpsvza89NIUVkbdjyo1Lln7ATk1ZXgbLWRWl/LdkJsJ9/CjyF7Fpes+pNxZw/v9ptE3uNVp1zIrZTUljirKnTUszdpNZFowb737C06niqa5c6bKK2zn9P4iwtx+Rpom+WZJPFdfEovFbMLlUikurmLmu1eTciSf6DYheHpaqKqy4+lpbrRdtHZDMpVV7ntLKXE6XTz16IQG4zp1jKBX9xbsO5DJzdfVZ54H+HsxZWJDG4Llaw5QVFKJlPD1T9vp3nky5yObt6WgSUm7mFAevHs0gQGnbiFzLKeYJZsPkHQsD5PRQGW1HYdLZfXOQ3SPac5rX60Bo4bFy0Cf6Eh6t/ltpp46/yx0M8l6dJGkc14Ql5bB4bxCJnbviJ9H053M/0306duGjz+5iVkfriE1NZ8bbxpK+/bhdeePpxfWCSSAHXFH+ebrLVxz7QUYhMIPQ29la8FRHo7/idkpm/g8dStOTaWFVyA5NWVoSD48tOGUIkmTGk/v+4n9pRkYhIJRKHTxjyIpJweXS0NKSVCQF/36RnPZpF7n9N40TTthnYSqSTQN1q1P4qVXl6BJicVixOnUePC+0Ywd0w0vLwvV1XZ+nB+Pr48Hkyb0RFEEvXu25OvvtuFwqnh7W3j4/ovrBFJmdgkvvrYEq9XMs49NxN//zHlDvbq24IdF8QAM6tu0keT5wGtvL6eiwkZpaTXFJZXMmrOefQcyuenaC5h8Sb3wW74tiRfmrMSp1ns6CdzValMu6klmfilOl4Z0aHQLD+Wd6ydg+lXOV0WNnXvmLCKruJxXpo+hT/T5GV3T0fmz0EWSzv87B7LzuO3rhWhIViSm8M1NU/6/l3Re0LJlMK+8emWT5776agtC0MCD6IufNrO3Uw4v9bwED6OZaB93HzMJODX3F2VWWQlGswEFGBJ66iqlVTkHWJm9DxWJguDrQXfRxqcZHSY1Jyk5h6pqO489Mp7m4efew8vX24MX7h/PsvWJXDKyGx5WE2+/vxK11qnaZnOLvy++3lLnuv3+B2tYszYRxaBgNhsYd3F3OneMICoykNS0Aior7bz46hJC35xO27ahvP7hSpJScjEqgp8WxnPz9Wf2L4huF8qst65GkYLWLc6vJq4uVWPVjkNomkaNWUMzuPvWZeeWsXd/Bjabk08+39hAJG3ak9pAIAGYTQYemj6cS4d2paSimq9XxKNqsD81h1tf/Z7P/o+9846Oovr78DOzLb2TTgIJSSih9y4QiiBVQFFRFEVUrGDXn12xomJDRUUFpQtI7733FJKQhPTe25Yp7x8bAjEBgi+o6D7n5Jzs5N47d3Y3O5/91pfu4HhsBsWllfTrFsb6E/FEp+VikiTeXbWDpU/d9Vdfuo2/GtVWJ+libCLJxt9OQUUlgiBgtkjklldcecJ/HFlViA3LpqSFEZftdog5VrEkKQrbcxJYnxnDmKAONHPy4rm2w9icFUdmaQm5KeXo9xvQOMFTDwxkXIuODa5vUSTe/H0l9vv0mCNkmvbxJMTZGwAXF3tmvzXhqvd84Ggy8xfuIbJVAD27hJCVUYSHgx3NAzxJTM5Fa9CillObeCxqRfz83GorjVdVm6zuPVGl2mipXdfJ6YLV0SLJbNkRy7wNBzicnY3srcW+EnKNVUQnZRMZ6selWBcbz9OrNqIVRRbdffXXdz1Jzyrmq+V72Hk6CZOkgE4FLw0uJQIbTsRT6qziqNHS+g8tTu4c2pndp5KpNklo7TW0bepLZHNfRvaxFgN1cbTDbLkgomJTctl7NImX5/wOAgyPSSeyfSCoKo6lIGgtlFUYcXGyWXpt/HewiaTriKqqfPL4Ao5sPs2UV24l6vZef/eW/pH0bdGMWzu14XRmDs8Pu+m6nSehLA9HrZ4Ahxu7g/nuvHhy/cuQFAX1dhh0ug27TyVQ2M8EqHWub2KzLoQbfXli3nIMkgFVBbkUog/mMO4SXjJFUdEv1iJIAtp0Dc+NH3lV+1NVlc++205ufjlPPDAIL08nXn1/DVXVZuKTclm14YS1v5kKCUm5pGYUYqq2cD4KwtXVgQqjibiEbFauOc74MZ15fMYQ9DoNri4OjLooSPzVF0bx0Web2bs/EY1G4EhaFnG5Bdb1RahyhtWH41h/IoH5z99ORLB3g3tefOw0FllGkmW2JiTRxs/nqq75ehEbn8WjL/yKRZaR9YCTpra6o+Cs4VRqDpIWqtxE4qpLOHomHY0osnzHSQZ3iyAwwovo9FxkDfTp2YJ7+l+ojK0RRWbdOYBPFu9CUhTuG9GN9OwSZEXFIsms2xnL79uj8XLUU1kpk1NZwpeLdvHstCF/2/Nh4/qjYquTdDE2kXQd2ff7MTYs2AXARw9/ZxNJl0Ajirw0/Pq2b/ggejM/JR1EFAS+6XUXXbz+OQUArxYvgzX7SC9qCfXw5vkXRvGkbGF9RjQBjm714ox2HEqsrZcjCgJarcjwfnVbi8REZ1BVZaZL1+boNVqcHOyoLDOhEzX4OrhRVFiBh2fdis2XYs68Lfy2/gQAyefyWPTVA3i4OWAyS8iyUhuMLooCsqxY0/xFAUWvopUFOnYMYte+BGRFpaKimpTUAma+sJji4ko0GpHu3UPp2rk5YA3AfuOlMZSWVfPeT1vZciwRVVURa2KTFFVFqXmcXVh2SZF0R+f2HEnPRCdqGNzyn1MscffBs7V94nRmMNjpqDRa0GhEbh3ZmYWbjqERRSRFobC8io8X7yQlqwiTRWLb0UTuGtuNxOwCa2++Fk3rrT9xUEcmDrpgUayoMnHgZAq5BeVkZBdbBVNJNTqdBlUFg77hKug2bPxbsYmk60h2Sl7t76LGpsz/LvbnJfNd4j5UrO6cI4WpN5xIqpJMHC5MoaWLH5FugcztNpmk8lwG+7ZhWephmtg5Mza4YffZ0D6tWL39NBZJRqcVaRHUhDYXuZ727IrnnTdXIQgCEyf14O4pffn8iyls2RRNizBfHn14AZUVJibe3p37HrjpintNyyiq/T07r4yS0irmvjOJzTvj2LY7jnPphYSH+tA8yIvJE3pw18PzMRotCIiMGdOJybf1QMVaiHLiuK58+tVWiooqAZAkhW8X7K4VSedxdbEnOMAD/Wlr4PEj4/uy52Qyp5OycLTT07VVEH3a1Z1T5zlqFcbBkIfQiiJ2un/Ox2Lr8ItchCqseu9+Fqw7TBN3J24b1JEurYLYeyqFJVuPoygqmfmlyMqFjMiJPdtxS5dWONrp8XC6cvC6k4OBj18cj6qqzJq9kv3HU+jZqTmFJZWkZRUT5Od+xTVs3PjYYpIu8M/5NPgXMmBiT5bN3UhpQTnTZ9+BqdpMYXYJfs2b1EtntnH9+Dh2W202lVbQMDKw3d+6nz/D1P3fca6yAI0gsGbAk3T1bE5Xz+a8fGI5m7KjEQSBdzpMYIBvq3pzW4X4suHrhxnx0JdUVJlJSM1n74lkonpYK20nJeXWpvQnxGcD4B/gQUWFkc8/3URVlQlJktmw/lSjRNJT06OY8vgPSJK1vtPbn66nX/cwJozsjIuTHR9/vYWEpDw6twvG28uFeyf15qsFu/D3c+XeO3vj7GTHqy+Mrl2vY7sgtmyPrbVAJSXnsf9kMhsPJzCwSxj9Olgz0aaO6kGgjxt6rZZBXcK4Paph0XgpnAz6qxr/VxAU4FH7uwr8tv00g7tF0KqZDyt3nOLjJTsJC2zC85MHM/vnLZRXmbDTaxnULZze7Zrj6eqI56WXvySCIPDes2OwWGSS0wuY8doSjKQvUd8AACAASURBVCaJT3/cwbihDdfEsmHj34hNJF1HPH3d+CVhDoqsUF1h4r6Oz1FWVEGf0V149ptpf/f2/jOkVV6wbDzcsh/F5ioKTBW0dQ+odcv8EzAZLezccBqfAHfW2kWzOvM4twS056W2o0ksz0FSFew0OrKrS3DXO7I89TAbs6MxKxJ6UUuuseySa8cm5VBVbQ14NlskwoIuVGgeOaoThw4kUVlpommQJ8uXHiI01JsN605ZLTwCaDQio8ZcOdU/LjGbd+duxN/Hldz8ciRZ5siJcxw/lUZ5lYmysmqrIFNVUmssTpPGdmP8LZ3RasUGvzwMjYokKNCDR2YuRFGs7rNn5q7BqMhsPhzPytn34e3ujEYUGd7T2p8sq6CU6e8tparazIePjaZ92I1Z/+fi7EGzs8i81fv4Zu0BvnthEp8s2UWV0cLJs1nodNaingadFg9XB9YmJrI6Pp5vdh2muLKaaVHdmdSn8eLm9+3RzJ63iSYeTnzw/DhEQcDeoKOpv82S9G/HVnG7LjaRdJ0RBAGNVkNydDqVZdVYTBL71hz7u7f1n6HYVMUtgW35OfkQAIvPHeGTuO0IwGD/VnzS/Z9TbuCDl5ZzaHcCsoNK9iwZGZXf0o/xcPggnm59M18lbqeXVxgtXfyQFJm3Y9YgqyoC0MMrlNFNL2050YgiOq2IySIT4O1GsP8FC4WHpxOfz7uXH+bvZMmvBwG4ZVQH1JqaRYFNPfnwkzvrZJJdivc/30Ryaj6iKDCkfyvSs0qIS8gCFYqLK5k0titxCdkYTRamTe5bO0+na7gn23maNfNCvajewcVaSmggyHTN7hhyC8tRVJVv1xxk7lPjrrj3fyI6rYaBfSLYticetAIWWcFeqyEzvwQXRwOVRjMAR+IyEAWBwCbO+IV4kBxXDkBijrW58OzfdnB77/aNtmD/uPIgiqJSWlZN3NkcfvrgHs4k59KtfbPrcp02bPxTsYmkv4jwTs3wCfIk7Uw2t9x/fYOUbVjJM5YzcssXmGQJDQIyKjnV1puHCuzNS/p7N1jDzo2n2b89juSEHExGC3pBi6vqQLXWgofeARedPTcHtOe39OPsK0jkQEEyPb1CaWJwocRchUYUebPDrdhrLu0uahvuz/MPDCH6bDaThtetNL1542l+WbgPBwc9inI+qFrk48/uJiE+m779WzZKIAFoanq4KYrKgWMp1nR9QaBL+2AmT+iBs5MdH7/ZcO2ny2HQ6/D1caWkpAqDnY5XZo5mzb5YBnYOo4l7/YDyDuEB1sKIAvSKbHbV5/sn8cITw9l6NgWlJl2/e5tg+rYPISEtj2/XHKwdp6gqqbklJBcUw/mnRBDQCAJBXm5X5eIf2DOCX38/giiKtG8ZgJ+3K37ef0+vOhs2/k5sIukvws7BwFf738BstGCw/+fFPvwbiS/NRVLk2o739hodjho9BWZrEPD08CsXGLzeZGcU8eHLKzCbJOzsdIS29COwmRfTBwznUGkK7npHNILIpqxokivyMCkSc+I20KvfDBb1mc6e/EQ6eQTjorO/4rmG9mnN0D6t6xyTJYUP3l2LLCvodBp69ArDydHAXff0wcnJjrBw36u6nlFD2zNn3hZUVIxGCZNJwqDXMqhfK+ztdOw5eBY/HxeaNfWiotKEq8uV9w3WTLhvPpvCqeh0Wkf44+bmQMeW9bO1ztO9TTCLXp9MtdFyyYy2GwWr+8P6u06r4cV7BlNlsuDj6UKQrzv5xeV0bRXErhPJ1sw+CbTlIDlbRZGsqng41w3aPp6SyeGkDG7uGEFTT6tLb+ehRA6ePMetQzsyfVIfhvdvjZuLPS5OjXuNbPx7sLnbLmATSX8hgiDUEUiL56xl3Xc7GHR7L+5+cez/e31VVakyW3D8BwagXsyBrTH8/OkmvL0cGXNff9r1jrgu5+niGUyocxPiSnOY0fImujVpRqS7P5KiYKfRNuqbdUlBOTq9FsdG3syvFlG80CNJq9fw2a8PIQgCiWU5vHJqJQDjmnZhuL812Nxeo6OLpzVLy8PgxKjAqwtOrnd+jYCTsx1lpVVYLDLBzZow5b6+fzqxYMTgdkiyQnFJJb4+rrw3dyMms8THX2/hp6X7ySsoR5ZVJFlGVWHYwDY8+WAU9nZXfs86ORro1b1Fo/cS5PPviJ8x6LTMeWIsy3ecZESv1rg52zPu+e/IL65EIwosfmMKTdwcGT7za8oqjciKiotWh2SvocxoAuBociZJOYWE+nqSU1LOtHkrMEsyv+w5yfZXp5GWVcSrn67DZJbYeegsa795CB8vF2a9s4LTCVn07NicN58aiUa09fSy8d/CJpL+Jn6fv53vX10OwKL31xB1Ry/8mze+gF1xbinznluEk5sDD7w9CVGvYfKXi4nOyKNHaFPu6deZPuHB/7gsOlVVefvxhZgLSjgrSRzecJL3V8+kZeeQa34ue62OJQMeqHdcJ14+/uU821ccYs7jPyFqRN5d+SQRHZtd4x2Cj78bL35wu9XdFp/Nrb3fYtqsYVR3EVBVFZMisSnrNNtyYjErEk0dPHmi5Z8v5mc0WVBUFYcaUSIIAgGB7pSWVAGweNE+OnUOpn2HP1ciQRQFxg63CrfVm06i1MQRVVaZqawy1xu/YVsMm3fG8cwjQ7l5UCSKohIdm4mnpxMe7g6NEk//Bbq1DqJb6yAAzmYUkJFXUtuSZuxz8wkP8uamTi0wWyQOxKRSVFaFtkC+4HaD2nLmVSYLKtYA+AqjCbWmltR5FNnqcn3ug1UcjUkHYPeRJGITs2kbcWMGwNtoPCq2tiQXYxNJfxPbluy/8ECF4ryyqxJJXz2zkF0rDyFqRDx83TCEeHM2KRdVDwejU4g+lMwDk/ozdWC3a7Lf57ds4rf4WMa1as1bA//8TVoQBNw8HMnLL6p5DPmZxbTsfIWJfwObf9mPxSyBAIc2nb4uIgmge78INBqRHetPY6w2M//jTXy75QkWnttHRmURpZZqLKo1HiXXWEpWdQnNnZrUWyfmbDZvfLUBSZKRZIVJwztz280XntjoxCxmvLUURVF5d+Zoera3WqSCgjyJi8msvele3PbjShw6lsLug4ncMqQ9EaEX3r/fLtzDT0v31xmrEQXs7fXotBqKS6tqj8uywtz52xjUryWfzdvGxs3RmM0SgiBwz129uOeO3o3ez7+dBesO8fVv+9GIIhpRwGSRkRWVuHO5xJ3LRaMRrQ2EVdAIIk8M6cHqE7GM6NyKUB9rMYAQHw+eHNGXX/eexE6nZW98Kn1aNuO5B4ew/3gyk26xxqwdO5NeW1sMwN/nxq5Ub8PGn8FmO/2buHXG0NpPHwcnO5q1vLpvaGlSJRIqZlXm999P8fOb62iyKQ99qQX/LQW47ilkw3tbr8le86sqWX4mBpMsszQ2hsKqqitPugwfLn6EwXf1QaPVYDZKrPhiM7IkX3niX8yoqTeh1WmwdzTQZ+TVdbq/WoJDvRFFATt7PW06BuOqd2BZv0f5odc0NMKFf1N/kzuHNqWQllFYb40Pvt9KamYhmbkl5BaW88WXWxkyeDYzZy5CkmQ27zuDySxhkWRWbTtVO++xJ4cR2SEIQStiEVT+9+ZvvPHOau57cD679yZccs8FhRW88M5vrNpwksdf/NXaCqSG1RtOoKpWEezqYsfIIW2ZemcfVi14hOXfTcegr/v9rLrazNZdZzh+Ig2TWaqJw1FZserSmaBpGUXExmfVyXr7t1JQWsnGw/H8tPEI5hoR3DrkQqHJ80JGlq0CqWmAO3cO68zUod1Y9ewUpkV1R1VVlu84yavfbkAnQVZxGWey8nn8+9VIssLQvq149bERRIT48MvO45S7qZgdrX30PvvfBDzdHP+ei7fxl6Mg/CU/NwI2S9LfRO+RnVma8ilnjqYQ1iEYR9crV8O9mMKRARQa89EoIrozlaiyip29ngdat2XNzh0ggynz6pvFqqrKke1xqKpKSGQgP3+6CYtZxq+5A4WiiSaOjrjaXX2DS1VV+f2nvWSnFjBh+iAK0wpRZNUaf3MyjbSEHJq3/meZ8nsMa8/ShI/QaEV0+mv7r5JUls/0/b9iVmQ+6zGRtr7+fPPbY2SmFdK6fVDtuJaufvyv3WgOFyYz2DuSt2as41vTLhYs3MeKhY9gZ3ehTYSfqxOp+RZQQGmiR1MhIwNn4rI4m5hL+zB/Vm61iqORN7UFoNpo5tTpDE4nZCNrBUBAscjs3B2PLCu89e4aNqye2eA1KKrKefOTclGVZ4DhUW1ZsuoILs72/PDpFNz+8P5+9tFhzPtxF6qiUlxaiagR8fZy5sGp/Xn7g7WYTBZEUSTqJmug+Q8bDvPT5qNEdQ7nuUkDOBGdzjOvL0cQYPKEHkye0PP/9Xr8k7FIMre+toBqswVJtt5aRAEyS8qQ9VYLnbuDAwUllQgqqCJkFJexdO9pHhzdq9blfiAmlTm/7MRkkVi3PxbJXUQADFptvXphe+LOIQOCs0inHiFsS0jB188NX3fnv/z6bdj4O7GJpL8RZ3cnuka1/VNzH+3di/szs2g2Px9VBgTo2r8lPTqH8ru6ExWVoBBvTEYLBrvG9VvKzyrmlXvmkZaQg6jXIGl0qIqKIMLNI9oz8KkRtGnijVYUMZssCIJQKx7KS6vYuOwwQSHedBtQv+rzvo2nmT97DRazzNmYTCSTBKIIioLOoGPtDzuRzDKtujYn6vZeaDRW60lVhZHvXl+JIMC9L4/F4S/uQG7ncO1jYoyyhfE75lMlWWN0Poreyvd9J+Pp7YKnt0u98cMD2jM8oD3lFUZMJguSpKAiYTJLdURSqKcbB2u0SqiLK85+diQm5GAwaMkvKOPDd37HCejaPYTeHUMwmSxMeWA+pTWuL71ei9lszQRUFGu2WxOvS98Uvb2ceXnmLaxYc4yC3DLmfrWFR6dHIYoC0+/pz8TRXXByNKBvoM1HVL9WRPVrhdFkYdOOWHy9Xejc3hoHtW75ExiNFkpKq7AIKkVlVXz2214UVWXVvmjuHNSRmPhsJMnqajp8IvVfLZKScwoprzbVPlb1oIgCo3q34buNh9FqREyKjKoTrO4xQUCSFSqqTSiqiuZ8HztFqbW6qSq4WXSMH9aBtORCoh77gruGduG+kd0BeHBoD6JTc9CKIgcSUtkdm8KB+DSWPHvXX379Nv5iVFt228XYRNINhlGyUGI00rdpM0K/KUCtuSlqNCKz3p/I2l8OoNGISIpMcnw2syZ9wcfLHq0VHZfji5eWkhKXBYAsiSDUuDFUcHK2p1tAIADH9ibw6oML0GhF3vv5QfybefHGIz8RdzwVUSMyclJ3UhOyKS2qxFhlpnWnZrTr1QKLWUKRVU4fTEIQBbQuDvj5OJMen83a762NgLcs3k9RbhmTnhoOwML31rDx5z0gCIgGkQdeHY+2kYHXfzUVFhOZFWWEuXldtpJ3vrECsyzVPm7vEdio9Z2d7HhyxhB+W3OcUSM61Euf79YtlGXLDoOqMnhQJK1a+VOQX86HH67jzTdWoaoqsqyyf08iZ+KycHA0UFJSVSuMXnpuJPPm7yAnpxSNRqR/33AefnDQZffUv2c4n8zdTFFxJeuLounTM5zOHa1ix6MR7hk7g45RQ9vXP26nY9XmWL7fcBitVsTbzZHSKhN6rQZPV0eGDmjNhm3RlJZXM/WOPo16/m5U9FotGlFAPu/OFARUFQZ3DmdM70gcDDqW7z7NZ6v24uvhzLg+bdl5KokpQ7rWyUbr1bY508f2YuGmo5RXmQh0c8FX78jiU0cwWWS++m0vd9/cBa1WQ7vmfux85yEOJqTx+NerUFQVo0W6xA5t2Pj3YhNJNxB5lRUM+/VHys0mJodE1onFePh/o9AbdAwY1ZF1vx4kIzkfVVE5G5PFvQNn88WaJ3G6Qhq7i4cTWp0GWVLwaOJMhVHGYpHpP6IdTXzd+OyVFdzxSBRzX16BxSxhMcO8t9YQdyINVVVRFRUsMsu/3QkXuV/Sz+ayd9OpGrN/zTdZRUUGcjOL6uxBkRXys4prH+sMOgRRQFEVlmQfYMX2RH7uNQMf+39WEGmxsZpBq76hSjIzMDCUL/pfuqRDoIMbtzSNZH1GLFH+ETze+qZGn2fE0HaMGNpw77m2bZvy888PcS4ln//9z5o52ay5V21fNqtQVpFlhTlzNvDFl1Po0D6Iw0eSGX1LJ27q15LomAxWrj6KJCkcP5FeGzuUkVnEwSMpdO8aQuAfWlP4eLtQUWlCVVS8POsXdvyzrD8Uj1mSEUSByUM642hnYMXu0zz40TLevG8Yg/q2ZO2W0+zYF0+71gH/uEzOa0VzXw+enjiANftjiEnNrT3exNWR7KJyvttwmD6Rzdj7yQz0Wg2CIHDfsPoJG4IgMPnmrowf2IGBMz4nIT2fOYt3Ym/QIYoiPh7O9b5MdQtryvSbexKdmsP0m3tc92u18fdja0tSF5tIukGIK8hn3dkEqi0WLIrCmtREgpwMmI0SdvZ6Bo/rCkBhThlDx3fl5IGzHNllDbotL60m9ui5Bt1g58lNL6R9rzD8gr3w8nMjpHUAS7/cQrueYTi5O/Hhc0uwmCVS4nPIybggYtKTc2tThlEUqx3/D/EpABUl1RjsdChKjZgCVIuE2WiqMy6yRxiTnxlZ+/iOmSMw2Ov5JXUvlVEKBtnM/oJExjTteslrWZiym88SNiIg8GzrkYxu2o2KciMZGUW0CPNBq732lqi4kjyMsgWjLLEjM/myYwVB4N0uY3i3y5hrvo+8vFJefnkZJpP1W39aamFtQHXrNv4kxOcgCAJBwZ5oNCLvvjkBVVVrBUZhUUXty1dZZSIpOZ/wMB8efOxHzBaZ737aw8pFj6DXa1FVlW9+2IUgCowb1Yn+fSIIDvoz7VQbZsqwLrz58xZc7A1EdQ5n8faTxJzLQVFUHn3pV0rzrUVB12w6xcgh7QgJrp/x92+hua8H/dqG1IokQQB7vY5pc5ZSVmVi9f4Ylr9yN/6eF6pimy0Scal5hPp74uRgqD1+MjETqeZ/VpYVfnj5DtJyiugQFlhPaAqCwJRBdSu027DxX8Imkm4ADmSmM+X3FQjU9IITBKZ06sy4lS04vi+Rzn0j0Om1lBZVMnPSF8iSgqOzHSMn92T9r4ewdzTQskPQJdcvKSzn4cHvoigKvkGefLnlee7q/DKFuaXs33CKu56+xTpQpTZQ9zw9B0eycYnVxYN86Qw1URSY8fYE5r6wFLPRgkYjIFeazxuWagnv1Az3i+Jy9HY6Jj01HDnFiS8SNqMTtXT1DK23fpVk4rXTyygwlRNXmolc44f8IG4tg9zbMeWurzAaLbRs7c8Hc+68/BP+J+jk5U+IiycxRTlMa939mq/fWJYuOVQrkLRakXbtgzhy2CraQkN8eOD+AeTkltK374UCnhUV1sazAQHu7NpzIZvNzdUBvV7LiVPpGE0WZFm11m4yS+j1Wo6dSGPF6mMYjRZyckrYsj0WWVZ4780JhIU2vpzFpRjTO5IRPVqhFa2Nb5v7eqDTalBVldL8CxmWggAe7v/ezKuTSVk8/sVvKIpCoJcLTg52PHVrP77dcJCKamtcm6Kq7ItJZVyftog1rWEemL2ElKxCHOz0rJx9H/YGa/xafkkleq0GsyQT6O1G05qfy1FWZeSDlTsRBIFHRvRiT0wKTZu40TXs0lXPbdy42CxJF7CJpBuAmII8FEXFrMh09PHjp1HjcdJbA4r9LvrmXl1pQlFUJItMZVk1Dz4/ktumDWTb6mPcO+hdOvRswQuf3lXPpF6QXYIsy5iqLaSfzeWRoe9SWmzNjFNV6NQnDFGrISu1gHH39WPq4Pdr5w6d0JXs1EJij50DrYBUU2Onaag3RfllVJYZ0em1THo0ijlP/4Ii16giSa4nuABWf7ud8Y8Mxq1J3QDmu5r3Y7h/Jxy0euxqepSpqsprp5exPTeGtq5NOVGSilmRsBN1SDV1hZoYnMlIL6LaaMFktHD6ZHrtmlVVJg4dSCIs3JeAQA/+P9hpdfx+yxQUVb1sPFKFxcSB/HO0dffHx/7aZwr16hXG/v1nAXj11bG0iQzkyy+2oqgq997XDycnO9pEXoiBSs8o4sEZPyDLCpNu68HQwZFs3ByNl6cTLi52PPLEj+i0Wrp3bk5eQQVjRnbEuSZ43tXVHlVR0WpFZFmlqOY9s3jZIV56dmT9zf1Jnvl6LbHncnjm9gE8N2kgs3/ZRpW3Fm2Jheaubrzz8ljcXK4uO/RGIrfE2m/QLClkFJSh01ayZn8sm48l1LzfrG7qj5bvJLOwlMfH9kVWFGJTcgBrH72sglKCfT04dTaLjuEB3NSpBWm5xbw4ZXCj9vDluv2sPXIGgCOJGRSUWa14Xz48jk6h/6ysVBs2riU2kXQDMC6iNasTzpBXWcGLvfvXCqQ/4tvUg3tnDmPHmhNMfPAmNFoNnj4u/PjxJiSLzNE9CZyNziSifd1vf6FtAhkwtguHt8Xi6ulEckwmoigQ2jaQCQ9FEdI6kJDWF26sT707gSXztjN0fDc+enYpOemFSBbFmummA4MGykuqqCo3AiCIcHxPwgWBBLh6OlFiNNU5BtY2HWkJ2fVEEljbcFxMZnURW3JOY1YkDhcloRe0GEQdgQ6enK2w3iD8HNxpEeZDmzYBnDqZxu139KqdP+uJhaSlFiII8P3P0/G6TCZXQ5SZjSw4c4xAJxfGNG+DIAiXFUiqqjJh+3xyqsvQiSJbhz2Gs+7aZutFDY6kZSt/NBoRPz83Tp1M49ChJNzdHYmOTmf16uO4ONsTFdWGLl1DOHkqzSrAzTLbtsfx4/wHmHZffybe9SV5+dabsyxbqK628O3nU+qcq0WIN++8disJZ3Nxcbbjky+2gABdOjW7ZtezPyaVfdHnqDZbmPnlGpr7edRWiPYPb8Ivr09pcF5FpYnc/DKaB3nVWlZuVAZ0aMH+2FTWHYzDIitYJJmY1BzkGpeZooIgqBjNEgkZ+QBoRJG7b+7CL5uP0b1NMM39PHlx3lr2nkpBEGDRa5M5Fp/B1iOJ+Lg7434ZkWmRZPbGnUOSFbQakSqTGaNFwk6n5futh9lyMpFHhvfC0VYd/V+BreJ2XWwi6QbA3c6eVRMa5yIaO6UvY6f0rXMsLDKQlPhstFoNfkEeVJRWUZRXRtMWPgiCgCAIPP7eJAB++mAdmcn5gMr46YPoP6p+EcXBY7sweKw1TuGXL7YiWawf1hazhCDAu78+zMzxc2sNRaoKt0zuw+mDF2J17FzseeblqZzem0DLziEc2nKaAxtOEtGpGa261nenNYSXwRlnrT1VsglfO1cejbiZYnMlzZ2a8Mjh75AUmQlBPdBqNbz30R315qelFmI0WrCz05GXU9pokaSqKjlV5bx0cCO7MlPQiiL2Wh3Dgi7fg05BJaWiEBUVnaohs7KElm5X10C2MQReZBX75psdFBVVUl5u5PXXfqt1xe3YEcfrb9xKj26hfPfjHiRJ5o7brIG5zs726HQaLBa5phikA1Pv6dvguTp1CKZTTQuT1i39URSVkOaXjw1as+M0Xy7ZQ+fWQbz68M0N9gOzSDInkrJwcTCgoiJgdSll5JfWVJtWmTSo4b51JaVV3PXIfEwmiT7dWvDK09fOqvV3oNNoeGXyEA7GpZJTY63TiCI3d23JmoOxqCq4ONjh5eLIE+MuNG1+dEI/Hp1w4fGx+AyqTRbsDTpW745h0aajWCSZ2JQcPp81/pLnPxCfRm6J9bx6jYY5D4zi3WXbkWSF/XGp7CcVSVZ4YcLA6/QM2LDx92ETSf8BZv/4ADFHztEswhdTtZmHomZjMUsMntidGW9PrDP2zqeG0aJtIHaOBjr2uXLj2efm3MEPH21AVVTyc0qZOO0mItoHM+ON8Sz8dCOhrQJ44KVRBDT3piivlHmvrwIB7nxsKP3HdCGguTezRr6PqkLbnmG8tfTxRl+XnUbPr30eJ748i7auQdhrL3yT3TjwRSRVxkl7aUvN9Eei+GH+Trp2D6VlIwtZqqrK/duWsyMrBREVSVXQIFJuNl1xrkYQeaxVfz6N24Giqrx1aiM/9bunUedtDGazxLyvtlFUXMn06QOJjc3E2dkOg0EHqNjZ6WpFEkBeXhn7DiVRXl6Ni7M9PXtYm8dqNCJzP7qLLdti6Nm9BW0j65coUFWVbxfsJjomk2n39adNK3+aBXs1ap8fLtiG0Syx+1gSsUk5tA3zr/3bpyt28+v2Ezja6akyWdCIIp89OpaPl+/mbGYBAF/PnECwj/slLReJKXlYLDIms8T+o8nk5pfx0VebcXNx4MnpUdgZGlc3DCDxbC679ydyU98IQppZxd/OPfEcOJTM2FEdCW9x7UXupRjTuy1frz0AQJtmvjw6ujdZRWVUGs28M3U4Qd6Xb+g7Y3xfPli0jfCm3gT7Wscqqkq16fJtaIKauEFNoHiHEH86NPfnl6fv5OuNB/hm4yHUK7iYbdx4qDZLUi02kfQfoLiggjUL9+Pt70rLyABkScZstLBvw6l6IkkURXpelGKuqCoWWcagrftWMUkSJUYjXfu3pGv/lnX+tic9ldJ2jnyz60XsLprX/5ZOfPfuWiwmic9eXk7/UZ3IyyxCEARM1WayUvKv+tpc9Q5086zfGd5OowMufTOsrDSxYP4OKjOKSBSAi7pUSRaZDYsPotVpGDy+a50YrqVJp9mamVTzSKBjE386eQUwJqRNo/bb2yeErxP2Ui1bOF6YfuUJV8G6tSdYt+4kkiSTdDaXnNxSJElBqxV5552J+Pi4Mv+7nZyOyaB1uD9RUZHMu/NzJEnBaLIQdyaLdpGBfD1/J6qqMm3qTTg6Gho819ETqSxfdRSj0cJr76xiyY8PNXqfoUFNSE4vQBDAz+uCW9Volliw6Qiqav0dsAYbCzD/6YnsibYGC7cIuCDGVFUlMaMAF0c7fD2slsC2rQII9HPn/R7J0QAAIABJREFU7Lk87ri1Gx9/vYWDR1PQaEVCmnnRv1cEdgZtvTims+fyORmXQf/uYXh5OFFRaeKhJ39CkhR+XLSPX76fhqKovPX+Wsxmid37E/j9MqJeUVR+WnaAzOxi7r+zL95ezsiyYnXL/gkX4NSbu+Fsb6DCaOKuQZ2xN+j4+skJjZ4/sk8bBnYOY/v+eIKbuDN5WBdSsouYMb5hK+F5gr3dWfz0nSTlFNGndbPa41MGdkGWVUySzLSh16ZHpA0b/zRsIuk/wMcvLuPkgSR0eg2+gcPw9HUj61w+t824fNBmTkU5o35ZSInRyJsDo5jYJhKA4upqhv38IyXGau5o245XbrpgZt+TnsoD61eiAnsyUpk7xJoZV2KsJqX4Qk0kWbaWC+g+pC19R3fm7Mk0Hn530rW/+EuQkV5ERUo+anElGfllrPt5H7fcbS1K+POnm1j53S4QBKoqjIyb2r92XnxxPuerPRk0WhYMug1nfcNCoiHauPnT2bMphwpSeSii4ZtTZYWJ7ZuiCW7uRduawowAxw4kMf/TzXTo0pz7nxxSL13bwdGAIICoEZAkGbOqgl7EDBw7kUZqZiF7DySh02lIzCjAYNAyZmQnFi0+gJurA5FtAvlx4T7WbjgJWCtwPzK9bjHJymoz015cSEpGEVoRdFqxTssRVVXJzi/Dy92xwUrbAJ89P4HD0am0CG6Cl/uFODODTkOInydZhWWIApgtMo46HU56a1PcAR1aIP+hvMS3aw/yw/rDqMA3sybQprkvdgYd8z++h4T0fKZ/uAwprxpRAItF5tfVR/hq0R40osDc12+jVZi1/1lhcSXTn1+Eoij8sGQ/HSOb0qdzKJJ04XwHj6bQ9SqaHP+29hjfL9gNKqSlFzL97v48+/IyNFqRT9+/gxYh3o1eC6wutkkDG3YxXowkK+w9moSnmyOR4f51/vbMuyuJPWuN1/v27TsJDapv/VNVldiUHBztDTTzs7pum/l40MzHg90nklm2/QSj+kQyqGs4Dw3/91Y6t2EDbCLpP4GTiz0ajYiAgKePK9/ueglZVq5YhXtbSgrlJhOSovDN0SO1IulETjaVFjMWRWHlmTi6+gewM/UcUzp0IrO8DBUwShJpZSUApJQUc8vSn5AUmVEPd8I93sTIu60NbgGe+vTauZwaS2gLb1wcDZQWV6IRRSou6kpfUlCBJCkIApQU1u1/N61NN47lZ2GULXzeb/RVCSQArSgyv8/lWzu89sxiYk9nIAAffj2F8FbWG907zy+jrKSKjJQCetzUkradguvMi4qKRJIUSoor6dkrjGmPLsBSE9ybmVvCoaPnUFUVs1kiN68MWVGZOqUfd9zWA4NBhygKJJ/LrxUG1cb6bpjjMemkZ1tfV0kDvXqGcPdFLUH+98ladh0+i4erAz9/OAVH+/ouMXs7Hf261Lf+CYLAB9NGsmzbCYJ83Pls8S5KKyp54bPfWfrevTzzyWp2HUticI8I3nx4BAC7TiRjNEvotCInzmbRpvkF99dve6IprTSCA2gR0BpVCoorUQFZFDh44lytSCotr7Y+NxYZc2kV2/bGs/vQWXp2D+XAwST0emuGn5+vGy8+PaLW3XYp8vLLWbvxNNRorLzccpb9dhSTWQIzrFp7nE69QugQFnDZoOk/wyc/bGftjhhUVeW9Z8bQtd2F90lGTom1nY1BR25BWYMiacG6Q8xfcxBVhTlPjKFrK2v5kGqThWe/WINFkjkcl07nVk1xc7p8gVobNyY3SvPZvwKbSPoP8OTbE1izcB+e3i70GWbtFdeYNiU9ApuiFTWowNhWFwpRdvb3x8PeHpMkMSIsnFmbN2KUJLalpLD7vvvZk5FKWlkJL/ceQHR+LqfzcpBVBZMsc8Szku2fT71el1oHY5WJHz9YB8Dds4Zjd1FBPa1Ww5ernuTL/y3D0dmeMRdZi6bMupmKsmp0eg0Tp9cNRvVxcGbl8MnXdd+5OaWYTRJ29joK8soJr3nqvbxdqK4yo6oqdva6OkUgwVqLavjwCy0+XnlhNC+/uRJUKCquBKzp4hqtyEP3D0Rb8x6wv0jIFBVXodas5e9fv3ZOy1Afa2PbGvacTGHPyRT6dQ3j9SdvYdehRCySQmm5keS0fNpGBKAoKkdPpeLl4UTzBm7K51EUlelvLaai2oQgCNZYF1HAoNeSV1zBvpMpAGw9lMDTdw/E1cme6aN78uy8tXg4OzCka3id9XpFNmPJ9hOoCEiOAlqtBjtJwCLJ2Bt0DOx9IeYuJMiLO8d2ZeeBRFIziqyNZAV44ekRmE0SDg567GtioPr3iaD/ZeL1KipN3PfQd1QbrTWMNBqRscM7EODvzqEjySAIbIw+y6rYBBzsdKx5/wF017DAacK5PIwmC3qdhpSMwjoi6eUZN/Px99to3cKP7h2a1R5PTM9n1txV2Ol1ODsYMJolREFg36mUWpEkigJajYhFktHU/G7Dxr8d4eLWFg0OEAQ7YBdgwCqqlqmq+solxt4KLAO6qqp6RBCEZkAcEF8z5ICqqtNrxnYGfgDsgXXA4+oVNtOlSxf1yJEjjbowG9eGMpOJcpOJAJe6KfmyolBpsZBfWcnIX37GKEl42ttzeJo1NqXcbGLQou8oN5to28SXjPJScirKcdIb8HNyZt6w0TRzu3yg6f+X+W+vZtX8HQCMnnoTbbo0Z8F7a+k8oBVTXxj1j21jEXMqnc8/WE9YS38ee2Y4Gq31ZlRaXMn29afZuPoYKYl59OwfwSsf1XdRHj2eyuyP1uHmak9aehEms4RWq+G5p27m3TnrUVWVpx8fxtCoyHpzN22NYfZH6xAEUGSVsaM68dhDUXXGDL3vM8or6gaqC4LAzKkDOZdRxPKNJwhp6sm3b9+BQa9jzrzNrN8Wg6qofPzmbbSJqOsCAqgymimvNDJ21nfIsoJep+HR2/uRnV/GbUM64uXuxF0v/khWQRnBfh4seO3ORsX1zF2+m0VbjyMg8OTYvgzuHo6TgwFRFC85Pzo+i407Y2nT2p+TKdl0jAhgSLeWDY41mizMWbyT8iojT00agJerI2kZhdz/yILanni3je/Gug0naRHqw8xHh2BRFCa9/jNyTUr92g+n4XENrUlxSTm8NncdTTyceGfW6DrVti/FM5+tZvuxs4iCwJDu4ew8nky1yYJeq+HTmePoHGEtGxKfmsfmw/Hc1LEFkaF+12zPNi6NIAhHVVX9y8qeO4X7qh2+uPsvOdfewe//pdf2Z2iMJckEDFRVtUIQBB2wRxCE9aqqHrh4kCAIzsDjwME/zE9SVbVDA+t+CTxQM34dMAxYf7UXYOP64mIw4GKo/yGrEcXav70bNYQd51JIqyyh03ef83Lvm2jh7km52US1JHEkJ5OzDz5Jm28/pcxsoqzIxKhlP3Ny6ozrKlSsN0GhZr8C7z32E9WVJrLTCuk7ogMRHYIvv0AjSDqTxeZVx+k5oBXtu4X8qTXKSqtxcNTXtktp064pX/w4rd44V3dHevSP4JuPN6EqKvu2n6G8tApn17o32E+/3EJ+QTkFheW1ZRgG9m/JZ/O2YrFYi2yuWnu8QZE0ZFAbgpp68NjTvyDLEitWH+PhaQPrWA2c7A2UV5jQakRUrE1zNaKAJCk8dd9AHrqjL3YGbe1rGx2XhdFoQa/XcjY5r55IOpdVxL2vLsIiSQzpHkFCWh5De7Zk4uC67qwf37iLtJxigv08Gh34/OitfRnarSVO9nr8vVyvPAGIjPAnMsKfMc/MJ6uglDV7Ywj28SAiuH4M0eKtJ1izJwZFUUCFtx+6BX9fN9q2CSA+MYd77ujFoiUHKa8wERefTWp6Ib17hHHPzV1ZufMUo/u2vaJAKqsy8sS3q8krrWT23TcTGXz5jLpWob78+vF9jbrW83QID2B/9DlUYEDncIrKqjkUm4YkKxyNS68VSRHB3g0+DzZs/Fu5okiqse6cD8w4nzLUkMXnDeBd4OkrrSkIgh/gcl5oCYLwIzAGm0i6oTBJEu/t3UNhVRUDQ5vz3I5NVEkWXtuzncNTHqK9tx8Hs9KZ1qELaeWlGKUL6eeVZtNF+WSXR1YULIpSJ1PuYhZ/upGln2+m+5C2zPr07tqb8x2PD611K942YzD7Np4mN70QUHFv8v+vdi3LCrOmfEt1pYl1Sw+xYMPTHNp9huQzOYy/tw9NfK/chPeHr7azeMFe3DwcmbfwQVzcLn/DbOLjgp29joqaGkZrlhxCEEVatQ2kQ41IaxnuS25+GcaamCKDXsuuPfEYL0r/jxrY+pLnaBbkhZurPaVl1YS38KnnVnnt8RE88uoSBAEiwwMI9HHDxdmesUOsrj57u7pZhTOmDuCNj9bi08SFgX3rW2QORp/DIslYJIWzGQUservhGDW9TkuLplffny38EnOuFJcnK0rtB90fA8bX7Y9l7d5YYpJzsEiy9TlSrVXcf11+mOjYTAAMeh2RrQM4fOwcAtC8pr/cQ+N689C43o3a/5pDsZw6Zz3P+yt2suDJ2+qNSc0rxmSRCA+49PNjkeQ6br2C4gpOncnE1dme0X0jadXMB4NOS+vmvrg62hGdnI2jnZ7hvS79XrHx78RWAuACjYpJEgRBAxwFWgCfq6p68A9/7wQ0VVV1rSAIfxRJzQVBOA6UAS+pqrobCAAyLhqTUXPMxg3E4pjTLDp9EouiUGSsAgEctDraefui02j4dcxttXEzlRYzrgY7ys3WeJO5USMaVVslvbyEUWt+otxi4sM+wxkdWvcDW5YVFsxeg6qq7Pn9OBNnDCE4wuoGMNjrufvpEbVj31v2GHvXnaBlp2Z4B3hQVWHk5clfkRSdQfveYbzw5b0YLo7PyS/j+/fX4+ntwl2PD6G8tIqNSw4R2ibAWvZAVZElq2VGVeHUkWS+ePt3LGaJ2BOpzF38yBWvb+3Ko8iyQmlJFfdO+Jy2HYJ48e3x6HQNx6hotBo6dg9l95YYAFYsPEBlhQmdVuTzXx+iaTMvnn7yZvr3jWDHnng2b43B09OJgsLy2jXaRwYy9pb6RULPY2enY8HXU8nILKZ5A7WPrO47kWqjhTPJuXz2ysQGVrlAx7ZBrPj+0iUC+nQI4duV+5FkBZ1GpKCkAi83p0uOv1pUVSWzoBRPF0fsDTokSebxV5dyMjaDW4d35Mn7B9UbP/vHrVSbLTjY6bBYZB79aDkezg5MuaU7HcMDeOuHzZgtF3oV6gWRg+vjmbgtmU4dg7CYZQRRIDu3lKaB7uzZn4iriz1vvvc7Mx8bQmjzS1tjFEUlMT0fH09n3JzsCfXzRCMIaPU6WjWtP29v3Dme/HYNADPH9OO2vu3rrTdr9goOnDjHwJ7hvPnkSCqrzdz51A9UVJlABW8vZ354bzLVNS7Czi2bsvOLR//0c27Dxr+FRokkVVVloIMgCG7ASkEQIlVVjQYQBEEEPgKmNDA1GwhSVbWwJgbpN0EQGldQpgZBEKYB0wCCgi7dpNXGX4+DTl/bcNfLwZGNt03hbHEhvQIvvE7nrTqOOj2bJt3Lidxsevg3bdCF1xCb0s5SYanJsIs5XE8kaTQiwS39yEkrRKfX4tVAsPF53DydGDG5T+3j3b8fJ+7YOVRF5dDWWNYt3MfY+2+q/fvcl5ZzaEccWp0W70B31v96gJS4bLQ6De//+jBhkYG88eU9rPxpHwOGt8PR2R5BsN5kL04dv5iEuCwO7E6gz4BWhIT5MHRkB1YsOoAsKZSXVnPsUDLHDibRvU94g/MBuvcJY9+2OGRZobLCaG3totNQWWFtA6PViPTq3oJe3Vswc8YQNBqR12ev4ejxc4wd3ZnqKjOzP1zH9Ptvwt3N2hg2O6eE2DPZbN0Zx9BBbejfJ+KSTWrbtQwgMtyP0/FZ3NyvNeWVRpwd7aioMjF/6T4c7Q3cM657o4ORA7zdmDqmB3MW7iQ2JZf7XlvE6jn13Y1Xw5ylu1iy7QT92ofgZK9n3YEzODkYWPLq3RQUlHOmJg1+xfrjPDF1YB2376nELFbtjq5jPbJUmiirNPHm95v44aVJdSygBp0GIduELKlUSDJtWvlTXm5Er9Ny+/hujJ30GaoKJaXVlJRW896c9cy7REanJCs8+clKjsVnoNdqePm+oazceYoxHVrRNTKIAe3rZwUeTkzHbJFQgR2nkzgYn0ZhRRWv3zGEYG938orKORqdBsCOg4mUVxopLq3CaJJq3bGFpZWMfPpbzBaZSYM78vht/eud5zxLt55gxc5T3BbVkTH92jbyFbFx42BrS3IxV5XdpqpqiSAI27HGD0XXHHYGIoEdNR80vsBqQRBGqap6BGtME6qqHhUEIQkIBzKBi8v4BtYca+icXwNfgzVw+2r2a+P6Mq5Va0ySRGF1Ffd17IyTXk9Tl0vHfXg7ODKkef0P+cvR178ZH4oaBARuDa0fQwPw0ZqZRB9IIqx9EI7OjU9JDo7ws2ZRYc2icnKpO1dXE1cjADq9lvKSKmTZ2qPufMkAF1cHoo+kcOLAWd748h4mz4giKS6bux6q36KhqtLErAcXYDRZWL7oAEs3zuL+GVHcOqkH7736GzGn0lFVCLyoaXFDePm4otVpQIBmod44udjTqXsIEW3qG2MNNdWlX39pDACLlx9iybJDSDU9wP733CjmfrWVlWuOoSjWf6/DR1NoFxlYK6D+yL5jyTQL8ORcRhHrdsaw50gSS+dO5ZMF29m4Kw5RFHC01zNpZOPjMUtqBB5AXlHFZUZeGZNFYuHmo6gq7DqVjFYjYpZkKqpMfLZwJw+M64mri9WdGBnhXyuQFEXl5Q9Ws/NQIrKTAIJQzx+sEQWauDnx7OQoEtPz6NY6mCZuTjz62E+YsVqWTkdnMvu1W8kvrECSZNq1CSTmTBYWi4xer8HHu+H/EUlWGDnrawpq3luqovLiV2uRaso4LN17CndPR756eBxhAU1QVZVjSZl0CQ1k/ZF4qs0Wgr3dWbb3FJKsMHv5dp4bfROero4E+rqTmVtCi+AmODkYcHIwcMuASNbuiMYiyXj5OpNeXAbA8h2nLimSisuq+OjXHdb1f9pKVJfwRgWG27Bxo3JFkSQIQhPAUiOQ7IHBWGOPAFBVtRTwumj8DmBWTXZbE6BIVVVZEIQQIAxIVlW1SBCEMkEQemAN3L4bmHstL8zG9UcUBO5s1/7KA/8fhLt7sX/iQ1RJFvwcG44jsne0o+ugqzJQAtCyYzM+WPE46xfuo3XnZkRNqFs1+LE3x+MX5IWp2sy5+GymzLyZTcsO06pjMB16hQGwYcURKmoa+b788I9IFpnRd/bE/w9CJ/ZUOot/3GsNnFbBYpZrG5S6ezrx2ge3c2jfWYJDvAi4gkjq2D2EWa+PJT0ln6hb/o+9tw6P6lr/t++9RzJxJyQkEEGDS3C3YsVKgVJapEihQr3UW6qHlrpQKKVAgeJS3N1dEyDubpOMbXn/mDAhTaA9v3PO963MfV29mtmz9tpr1mxmnnnk87TEzcOA528MvKzsYjZvvUDT6BC6dGzgOG4w6EAQ0IgCBoOOklIT6zef5c66UlEQ0Gpq9gLdSs7l7S+32fV+KrDZZEruMHJ+i6qqnDibgF6vpW2L6snyufmlnDuegKFcxWIQ6Nv57uX15WYrb363nfi0PGoHe/PIgHZ0bhZeZUx6bjFebi6Um214uxsY3CmaJTtOI1ll9uy9RlZaEVPGdmHdtvMM6lVpeGdkF3H8bAIooC9VwSBg8HFBoxUpKTPj7+3Ou1MHMevzDSRk5BMe7MesMT3QiCJPTuvNF9/tRZYVTpyO5413N3LhciqCAJ+8PxqtVkNOXilFhWX071vzvXojJcdhIAEOjSuwJ4GqCuSVlPH4d+vZ+950vt5ylOUHz6Oo8N2MEbStH8qu8zfYcPwKGlEkM72IiS8tw81Vz9KPH6HUaCE02NdhFL44tS8vTrVXLn72ywFW7DoHQJDf3UOdri465IqbRVYUCstNTiPpb4gzJ6mSP+JJCgaWVOQlicBqVVW3CIIwBzijqurme5zbHZgjCIINu6za46qq3pZdnkmlBMB2nEnbTu6Ct4sBb5e792D7T2jSJpwmd+la7+HlygOPdeeRru9jtdhwdXdhzdl3HCKYAB26N2b72tPIsoK53K6Ls37JEfoPb0u9KHv+iKqqvPL0ckzlVgQBGkYH07ZDFPt3XaHvwBboXbToXbR07VVzmXlNdO/XlPi4TKaNsrcVeXHOCHoOqAx9vPj6GtLTC9HpNHzywWj2H4pFq9UwYVxnJEmh1Ghm9MgYJElGoxEd4cH+vaMZMrAV+QVGzpxPolP7KLthVcGdeTiGCgHKgT2i8fNxZ9aEXni4ueDu6sKogZWVacvXnWTp6hOoqLwwoz/dOjTgx1+OotNqmDimEys3nOJGfDaoKv1aNGTOjEF3fd3bj17n5JUkrDaZtLxiLsRn8NUzI3h1wTYMeh3fPjeSp77YQHGZBb1Ww4fTBtO6QR2iawfywVfbscgyRcXlfDx/FzZJ4cNvd9CpXSReHgYC/T3x8XajuMSEi17L4D7NmDauGwOe+x5ZUSktt5BXXMbN1DxkRSE+PZ+CknICvN0ZOrg1yakFbN52AQFITs3HapUQRYFLV9J4eExHmjQK5tKVNMY8Oh93dxc++2gstYMqvUphQT64GXSU1yDiCaBWfFrfjgKevpWGySqh04hcScmmbf1Q+rVqgF6robjczBdf78FSsYbEtALaNas5XUGSFY5eSkQQ7Mnxc58Yetf9N7joEPy0WMts6Nx05JeWExbw+wUKTpz8Vfkj1W2XgGrSsqqqvnmX8T3v+HsdsO4u485gD9M5cfKnRZJkbst3STYZRVG508fSpnN9Fm15jhtX0nj32RUACKKIVltz1ZSqQnFhOetXnkRVVS6fT+bld0bc9fpGoxlZVvC+o8x/7dKj/Lr6NMGhvljMNlQVtq07W8VIMpttdtFHAeb/sJ+rsZkV11d5YlrVUOCHbz/Anv3XGHRfc1o2r0tqWgETH/8RRVGoG+ZHZHgtLFaJ55/qT3T92jz1SA/OXU3l0ZEdaBhemUjs4ebCrAm9KCwpR5IUSsrNaDUabiXmYrHYEESB+ORcYm9lsWnHRQQBdDoNAYGeaHUaRKBpg8rwl80ms3PvFTzcDfTo2hBBEAgNsjdblbWginZvxrKdZ8kvKUcQYP2hyw6xS0EQcKsIN/bq2JAb8dncTMxh6kNdePqtVZS5qUh6Aats94q56LX8/MUkElLyaBBRCxe9/eOxdcM6nLyajNkq8a/le/DxNJBfXE6jsEAmzFlOkdHMhzMGM2ViN1xctOh0GhpEBTHnw83ovfU0aFUpebBgxSHS/KxorVZ27L7MxPGVOXKebgZ+/XgqiRn5XLyZwVdrDzuei6rrT2xBPlpRw5fT7gfgmaFdeXGxXUhzSEwTx2vu2TwKgOzEQpZsOElILW+aNbi7plFuoZGMrCIEi4JNlQj8naT5tx/qz+dbD9OhQV1a1HNqJf3dUMGZk3QHTsVtJ07ugV+gF89/PIZ9G88xbEJXdPrq/2QCa3sTWNubOd88ys4NZ+k3rDV17qgKy8ooome/aHZtuYQsKxhLzXZZA0khNTnvrteOjc3guWeXoygqL788hF69oyktMfHjV3uQJYXcrGJcDDokSWHI6Kr5Px+8NZIlK44SWS+QDb+ecxxPSSv47WWIaRtBTNsIwG6Y7D143REKTE4pID29CEVVWbj4ELOfH0TPjg3RasUaE7M37bnEpz/utTctdhMQdCIP926N61VXAr3dGT20HSvXn0JARUDgenI2h5PTEPw1PDesK6Puq/w99t0P+9m64xIIYLVJZGUVc+joDYZ1asrqU1eRFQVFUekYXZczcfZ8rtYN6jCoYxOW7TxLTOMwGtW1G3GiKDDjke6Oucc82olv9tq9W//afJCPH7FXQbq56mn2Gx2nj2bezzuLdrDjRCzFRosjTSkjr5gysxWbpPDjlpP0aF0fpaGBeUdO0lYM4Z0vHmTamk08tmkjr/Tpwbi2LUkMsmJ0ExFUMPlXN6S93A20bFAHL383PPwMrNl2ntr+nrw3bTB6vQaNUCmC2SYqlL3vTa/55gGmje3K5FGd7C2J7lFJaimzYsi0oSgqQXW9fjd8NrB1Iwa2vntI1ImTvxNOI8nJP4r87GKO7LxCs3YRREVXV36uiR6DW9FjcE16qFVp370R7btX/fIoKTYxY/wCZEnG4KqjXmQgQx5oy8cfbgWtyM3EXGbNWEJJUTnPvzKEZi3CHOceO3YTS4W20cZNZ1m27ChGowmDqx7JJqN30bJ40yxEjYC7R9VwZIP6QYx7oAMvPrscm6QgaAFFhXIJWVIcKt53Umo0M/HpxfYWJhVdfD3c9dgkBVEFPz97Ivf011eSV2hEEATWfvUYfnckeG/ee8l+PQFki4CMwo87T4MOcsuLyDOWM2V8V3Q6DVqthkNJKfY2F0BSZiFWm+zw4GTnlGC1SWg0IrFxmWz49RyqCvFJubhFuWO0WvF01TOwYxMahgXi6+mGIArM/Hwdkqwwrt/de6t5eRnQiAI2WcVkrTm8dRutRqRj83C2n4gF+7ag14h4eRgoM9vbf/RpZ69G/PrISayyzIX0LH69GotNklCAXXG3GNe2JX7+7ghlheg1GuqE1aw4fyI5lalrNiIATwzswPRO7WscdzfibmWxbONJTqSl0zCqNp9OH4qhBuP+NjdvZuOi1WC2SGisztqYfzwq/E4jjn8UTiPJyT+K58Z8S2FuKaJG4Mc9L+NXy+v3T/oPKCqwVzhZLRI2m8ynCyaREJ+NRiOiKDKKrHLtsl0y7ItPtrPwDqXtHj2asH7dGSRJJjDQk2tX01EUlRatQhnUtzmtOkTg6V01YTs5KQ9QqRceyOWLKUiSgiIr6BGQZZWrl1M5fTqB4GAfgmp7V8k3ir2VRanRjKyoaF21PDe1D107NeBVXBzzAAAgAElEQVT4qXisVonB97UAICe/FJsko9dpWLLhJMnpBUwd04WmDYLxrDDWBEFAdBHR6TWY70jyPncjjcZ1a/H4BHv1VPiZG7y2cBuuGTZ2b7xI7OkUXpg1gF/WnqJZ0zqYzFY8PVypHxlY+cGtqjSNqs2J68mUWWzc99ICVODdSQM4fzOd7EJ7ddySnWf4YErN+U0j2jcjKbeQg1cTsEkK11KzWXfyCqF+Xkzo2a6aovfgTtFczcpmx6UbdKkfjrfWhRVXLyEECcTUC+PRgTEAxNStw7m0TFy0GrpG1mPz1VhkRWFqJ7unb+7QAXx64AhhPj4Mjq7ZG3M+PRObLCOrKkcSk/+wkaSqKnPmbWHv4QpjToALShqHryTQr83dJSU6dapP2Hp/0tILmDqp+13HOXHyT8RpJDn5R1GYV4rNKqE36CgpKncYSXu3XGD1okP0HNiCh6b1/K9dLyw8gP6DW7JzywV8/T1IT82nfoPaDHugHetWnXQ0cnVx0RERWVUtOSqqFus3zEKWFa5cSePY0ZsIgkBMhyj6Da3u2Tqw/xpzP9wCwAsvDaZX36Zs3niOkpJygoN9SM8oQlVVVq04TmxsJqqHFq8Ad/x9PXj28b5ENwxGFO0eJlVRMJosaDQiA/vZc50kSeb4+US6xUQRm5BN84bBbN57GYtV4szlFOa9MpLTl5IBe3irX4dGuOi12CSZrSeu4+vpRt+2Vb+s+7ZrSKPgACY/vhirVSIxKY+X31xLSYmJ46duMeGhzhw5cYu5n+9EFO175e/nga+HKzqNBkVVkWS7Mvaagxd5qHdrNh2zC212jK5eSVdmtvLEoo2k5hfTq2kkWcVGUvOLuZySSZnZil6nJcjHk0Ft7En0iqKyLzYeg07Li8N78tKIXgBsvnAdrguYbBLJJUWO+ReMHs6VzGwi/P0YvuhnrLKMTqNh+ZkLuOv1tKoTzMdDB97znhnerAnrL1+l2Gzm6W6dqj1/9mIyb87dhI+3G1+8N5aAimq09KwiDp24WTmwwiNwMz2PY9eSmXxfDGGB1ZOsPdxdWPDtxHuuyck/C+UP9UL4Z+A0kpz8o5j92ThWfL2HTv2aEt7Q3gNLlmQ+fXM9sqSwYsEBegxsTkjYvcvw/yiKrJKanIfNJpOTWcyCL3bz7qcPMf3JvnTu1pD4m9nUredPSYmZLt2rexb0FWGSmJhIvv5mAuXlVprWoIcEcOZUItaK8Ny2rReIqh/E8tV21W+TycrxozcJjwhk+pRFSFoBWZYozykhK6eEOZ9s4edvH6NDmwgOHr9hT/hecohFK4/yxbtjqBPiy8PP/0RBkb1E3c/bjYeHtmfvsRv216mqfP/LYSJCA8jIKaLMoLLtZCwaUWBk9+ac/v6Zu+bFhIb40qVTfQ4fu0H/Ps04UOEJkSSFJSuOOSrqbus45eUbubY3gfsHRWOy2Nh34RayrDCyW3P6tGlARG0/JEXB1UXHteRsmtSt5bj2ros3uJqajdkmsf9Kwu2oIqVme2WipCgci0umb4v66LVaFh48xYKDp1CBN+7vzYi29vL9/k0b8PWe46QVFpNWWMz+6/H0ahKFTqOhdWiIY08AbLLMnpsJHIpP4r3B/egeGY6f+93bzwR7ebJz2kSySkqp5Vk9iXrhz4cpNVowmW3sPXydMcNiKCopx+Ciw9PDgNFoRtSIDB/ehroRAbz/y14sVonLiZmsfeP/pnGpEyd/F5xGkpN/FJ37NaNzv6pFlaJGxNvHHWOpCY1GrKY59J+wa+tFrl5KA9XuXakbHsDpE/EkJ+URGuaLRiPSKLoO7u6/rzVTUFDG+fNJeHu7ElaDETdyVAwnT9zCWGrm2pV0Zk77kW++n0R4RCCurnp6V+jzDBvehnW/nqsQ0rRrJvpW9Ix7empvSoxmrsVlYDLbsFgkjpy6RZMmIZRXSBwAGMstRNUNYMbD3fj250NotRqaN6rDzIe7sXznOeZvOQ4KyIqKXqetYiDJisLBCwn4eBho0zAUQRB4+9VhAPzw0yFHE15vL1cKK4wyUQQvL1eKikwAFBaVsfXIVdCJjO/blvF92+Dlbg/1RYb4c+5mGhM++gVBgCmDOjB5oD1k1SDYnlDvqtfRuVFdQv29mb/rJFJFXb2qqGy/EIeHQc/sEb24mZ2H2SYhCgIJuZVJ70XlJjIKiytej8qOKzdoE16Ha9k5tAwJxk2vY+GYEbyxfQ8X0u2VhVZF4a0de/FxdeXAE49V2RNJUXhn1z6u5+TyZr9efHn4OMeSUqjn68OmyePR36Fb1b5NOAnJuagqRDcMYd/hWN7/YhuiKPDBqyMQRYHohsG4GvScvXln96fqnIxN4cuNh4lpGMasEd3+pw2nnTj5K+I0kpz8pVFVlSXvrufo5jOMf2U4PR7o8IfOs1okLp2MJyyqFkF1fPly5QxOHLhOi5gIPL3v3WT230GrFdFoBBRFoEHjYDr2aMQrz6205wopKjqdhiMH4/jX5+PuOU9mZhFvvrEWi0Vi+7aLzHpmAFarRO/e0Y4mrZFRtVizYRYPj/6a7OwSDAYdKSn5hEfY1ZnLyiy4u7vw5Kz7mPp4b35ee5K0zEIi6gYwfKA9fOfpYeBqXIajOa5GI9CjU0NqB3nj4W7AKpUR4OPOk4/2QFXhoSHtaN+iHlm5JbRsEoqLXke76DDkzccA8PUwMHN41UauX647zNoDlwD4YOogerSKcjxXZrI6KuuKKoQV9ToN774xnGbRoUyeuZjcvFI8vA0UKzawKqw/fImpg6u+7xfjM5Bk2W7AnIpjwn3t0IgizerWZuUzD5FZWErnRvZw3NXUHI7FJdG8bm0uJmciyQoZhSUcjE1gao/2pBQUY9Bp6RMdxbFbybSPCEOv1aDVaLDKdoNuZJumDPj+JwpNJnSihp2PT+RWXj5mm1RlXSabhEUyYpNl9Hc0bP7l/CXWX76GVZZ5fvN2kgrtIbzU4mJSCouoH1BpFE8a24VO7aLw8jBQJ9iX599e4zAsL1xJZer4bsiKwonYZIJ9vXjxwZ5cS85mYv92bDx2hY/XHKBxWC2+eXIksxdtpajMTGJWAT1aRNG6vrOF5j8dFaeY5J04jSQnf2mSr6ez7qvtWE025k79nu4j2/+hX8PvPL6Yq2eTEASB77c/T60QX4aM+WMG1t2wJ2dLVSrN+gxsQWmxify8UsZM6MrliykIgoAs2yvArFaJ7Kzi35/bKjmMh+JiEx9+sBlBgNTUfCZPrtpC4unnBvDpx9sIq+tPTEwkAO++vYHDh+Jo3DiEz796hO+WHGTbniuAysMPdMCrop2LqqjId/SdE0WRdz75lYh6gfz8yaMoqsq8H/fxzpfbWLL+JN+8PQZFxa7CbZN488lBFNssjvONZmu1yqqbqXmYrRJajUhiZkEVI+nCxRTH37cTtUVRxFhmxd3dhZWLp5OdU4yo1zD41UUoqkq52cbF+AzaNaqsDBzUoQmrD1wiu7CU5OwC+rwwH7Ms07xJCF89Noz6te0eJaskMa5rK94c1Qc3Fx3vrdtHYZmJE2lpHF2VSi1Pd9Y9OZ6MohJGf7sCQRDo3TiSOSP68fbwPiTkFNCzSSSCIFBoMqOoYJFlXt2yi2PJqVVed3RQIIUmM491aFvFQErIL+CjfYewyjKiIBDs5Uk9Px8OJyTTMDCAcL+qVXCCINDkDt2jkYNac+FyKlqtSK8u9pDtu8v3sOtsHKoKP704lpFd7Hllj879hXKLjeupORy+kuAw4mySgp/nf+/HgRMnfxdqVrxz4uQvgoevO6igN+jwv6Plwr1IT8rl/NGbWEw2ZFkhNT73P15HSmIuowd8woP9P2H9Lyc4dyqBdStO8MSjC/H0cWXq0/3w8nalXYdIohrWplaQF02a1sHL25WRo2OqzKWqKgu+3cvMx37k3JlEMjOLMJaaqXeH9pLNJmO1yuzYfqnaWjp0rE+LlnW5fCmVmdMXU1pq4tCBWFRFJf5WNhkZhZy9lILZYkMFR7NXsPd6e//V4Xh7uqLVikiSTFpmESfOJrD74HW8PFzZeywOWVFJSstn8NTvmPrqcsrNViRJYfXWM1WMott5RHfy7OgeRIX406p+CCN+0yA1O7cEVbWHALVaEa1GRKsTad40lNJSMwt/OsTRE7cI9PGgY3RdXF10aLUaIoL9qswT5OvJE8M7Y9BrsckKxWUWLGaJc7Gp7L8S7xg3Y+FGnl68maH/WkK51cYH4wYwa0hXJEXBZLWRnF/EyK+WEZuRgwCYrDbOp2Qw9MulzNm8j0M3kpj20wYm/rCGIHe7FIJGEBwJ8Lfp2zCKxQ89wMEnp/BoTFVpglt5BWgqxrvrdTQMCOBEUipuOh1fDBvE8nMX+WDvQfLLy6mJLu3rs3XFU/z685PUj7DrQl2IT8dklUCAG2mV93fbBqEYdFpkWWHumgNYJbsHysvdQL2gmiUJnPzTsDe4/b/476+A05Pk5C/N9y+vsOfVAG//MusPnXNwy0XH3waDjhYdIv/jdZw4fAOL2e7tWfD5bnR6LVaLXQ370/d+pVvvaAwGHRvWnOZmbCaKopCXW4qiqHz/9V76DWiBq5segCuXUvl1/VnMZhtz3lyPVVUQBIH27SNJScl3hFYACgurN4NVVZUD+66hqpCTU0JmRhFt20Vw8UIKISE+uLu7MHJAK75beoiQ2t706FS14qxj20hWLZjG7kPXOHY6nnOX7d6d4CBvUjILEAUBRVWRFRVQkSuXQ25hGfe1b8zW49e5kpjFc6Orl5Q3CA1g9Ts1JxC/+sJgFi4+RLs24Tw5vTdZOSV4e7ni5qrnrfc3cfTETURRZOOWc9QNC2DulME0Dq+Fv1fVZrwJmflYrBIN6gRyIy0Xi02yhxEEiAyqNKgup2Riskq46nUk5xYS4OlOuL8vgR7upFbkHGUUldKibjBN6wQRn1PA5G7tmLv9EFZJ5kZ2HjqNiE1W8BcMzBnTF1EQaBlcm37zF1NoMvNou1a83r/XXe+dbpH1qOXhTlapkdf69OCLwyewyDKiKPLjqXOsu3wVqyyTWFDAwgdrVmc3uOiqPH7hwZ68tXQndWv50rtVZVPpl8f04lRcKiXlZvKKywDQazV0aFxzyxInTv7pOI0kJ39pzu+/is1sw+DuQn5mIZHNf//DvnWXBqz6fj+qqjLhuQFVVLQL842IooC3r/s9ZqhOwwphSkEAjUbEUpHTo9Np0Oo0fP/ZLgYMa43ZZEVVVUerk5rw9XVHVVV0eg0GNz0WoxmLxUZqagGbf32OoffPw2ZTKuav/k9YEAT69G3G/n3XqF3bm/DwQN55bxTxCdnINpnxY7/FapUQvHUUFJU5KuhUVeXU+SQ0okDblvUYNqAVg/o0Z8/h6/j7utO+dQSnLyffc+05+aWIgsC3zz3wb+0fQLnJSl6+kSem96Z9hQJ48B29zSwVIUdZUkjJKiLRWILsKdJqZlUtpJxCI498YDeeQwO8Gd+3DYt3nEZWVQSNQHpBMYk5BXRuVI9nB3fjy+1HaVUvhHKLjbzSMg7fTCLXaDcgBGBQy0aE+XqzdOpowO4dOxiXyOEbSUQF+pGUX4hGEJjUtR09oiIc6zj57AxUVaXcZqOw3ISvW80FAbvibpFVas9T2hF3k8fat+GDfYfwMRhoEOCPWlHKf2fD29+ja9MI9v7r8WrHrydnI91h1broNLz0YE+GdXZ2iHJSyZ9FTFIQhB+BIUCOqqrNKo59DNwPWIF4YJKqqkV3n+U/w2kkOfnLoaoqh9YcpzivlHEv3c+Pb68jPDqU5l3/WIPYJq3rsXjfbCwmK8F1KxNij+69ykcvr0YQBN795lFatq/qYbp+KYW5r6ylTl1/Xps3Ftc72jesWnIURVHQ6kRC6/qTlVGEwaBDQaW02MTWDWfZuuEs738xjoH3t8JqlejUuQFHD9+g38DmDi8SQGhdfz6YN5ZP5m4jN78UT29XLGYbU6f2RK/X8trrw3l3zkZEUaBx4xDHnnz80RaOHIpj5Kj2vPza/cx4si8engbKyixMnbiQkhITYXX9sVrtXhXJJCHrLJSWmnHx92D1pjMsWnEUUJk1tQ+D+7VAp9MwsHflF+iNxByHGvdt9FoRL09XzBaJ8cNiEARYuf0sF+PSeGxkZxrUrar/dDfem7uFM+cSEQSBj955gNYtq+oceXsa7F4sVMw+IpJBYN+leAq+2sjCF0c7xuUWG1EBs1UiMauAWxn5judkm8ILS7eh1QgE+3gxoHUjJFnhcmomzy9JQ6vV8Ooou9dHpxHp0SiSj0YNqLIOURT4fsIITsanMHPZJmRFpZanO/e3blLtNd3IzWfMkl+wKTLvDuzLyBZN77kHqgoTYtowtnUL9BoNSYWFiBUh5Ad+59w/QquoEHw8XDFbbXRpGsHUgR1oHuHsv+bkT8tPwNfA0juO7QZeUVVVEgThX8ArwMv/qwU4jSQnfzkOrDrGvCnfoSoKfcZ3Z0v+D//2HH6BntWO7d92CatVRtVp2LP1QhUjSVFUXp6+BGuZhcy0Avb+eqFKordOr0UURURRw9gJXTm09xpHD8RWmV9y1fDinPU0qB/E15+MQ6fT0qmbPdT1w5LDHDl+g4kPd6Fnt8ZYbTL5RWVYbTIWs41Nm59zzNOtWyMWLJhMYlIuHTvaQynp6YUc2Hcdq1Vi+bIjjHukM94VZf034jIpL7dgs8lkpBdgMOgo1qvIrhrcXfUO+YFbSTlYrPYQ4ccL9pBvNPHoiKrJ7PVC/NBpNVhtMgIwpHdTWjUJo1fHhhjLLJy5lMyBUzf5fs0RzBaJG0m5rP98yh96T3JyS7BaZVxctOTlVw8jZuWUICsqokZAI4O+QEGQ4caJFCRJRlvRSy66XhDDujTj4Plb5OWU2j/lRBBUMIg6rIKKySqRlFvA/F0nUFTVkcDsKkBdXx8+GjWAjKISHoxpXm0dt/Fxd0UFtKKIn0fNSc8HbiVgkSVkRWXV+cs1GklDohuRVWoko6SEp7p2BMClIrF7e+xNzJKEoqqsunCZ+6P/2A+B20iyAqrq2BtPNwOb35mEyWLDw/X3ZSec/DP5s1S3qap6SBCE8N8c23XHwxPAqP/lGpxGkpO/HIVZRSiygmSVyE+v3rC1JkzlFuY8s4KMlHyeeWc4rTvUrzbm/jEdOHgmAUUUOHAmkd7nkygvt9KxY33KyiyYZbthgAqevwnHvfDGUFYtO0atIC969GtKanIeRw/EogKiTkSVVBRX+z+31LQCVqw5xfJVx/HxduOVFwaxZsNpLBaJ9+dupUfXRoRHBKLRiBgMOpo3D6u21vCIQMIjKj00/v4euLnpETUCvrU8yCoo5VJ8Bmv3XWBQx2h8/TwwZxbh1yqI1NJSpDx7o1arTeZ6fBbNG4UwcUxnrt/IIiWzECsKC345yvhh7au06OjaLorIED9uJObiohXp3CqKHh0bYLPJTHxuCWaLDY1ORNWAKAiOPmx/hNnPDeKzr3dRL8yfnt2qGwOzZvTlg3lbKbPZSFLLEMptdqeWpFJiNDt6yAmCwMtje3H9WBLGQhkVsLkLgIDOKtO7b2OOXktiaOvGnMvM5Eam3dMkAB0a1MVcYmXhT4eoXzcQfcfqyuYmq43XVu4kITufp3p1QhFUhrWJxipJvL9pP0duJBFdJ4j3RvWnT8Movj92GoskMb5dzf3/NKLI9E4x1Y7fSsujLKMcvSKi6qB/w+r37PJTF1hy/Bz9oxvwfN+uDgX3H5Yf4fjpeBJScgGBT+eMpk1FKFojik4DycnfhcnAqv/lBZxGkpO/HAOn9uHGuXgKs4t58uvH7jou6WY2OzecpV3XBuRll3D5bBKSTebVaT/xzZoniaxQ3L5Ny/aRiC5aFElBkmVemb0ajUYkMNCLnJxiPEJ9KM4upVmLMLr3s3sEjhyKY82qE/Tt34wRYzugd9EiigLjp/TAWG5h547LhIUHkJZZiM1sRRVAIwqsXn8KSVIoLjFxPTYTQRDQ67Xo9RpGjvuG+/o246cl00lLK6hRYTstu4irNzPp1CoCLw8Drq56Fi2dxtYDV/hm23HGvrkEWVFRFJW4lFy2zZ/G7lNxfLnmMBabhEYLggSKojDr3TXodBpCanmTU16O3lOPKCv4eLlhsUq4GqomBbu66BFVuzFyO7/FbLVRWmZBlhW0ksiLT/QnKbOAUf1qNgxMZpu9q/0dVWD1I2vxzafj7/p+RkYE0n9Uaz5auQ8EUN0E9OUqUeGBVZrsgj38mJSab6981GkQRQFLhWBkz8hwjuyNY3PWJcYMaMOzQ7pRv3YA3m526YaRz/5ARk4xeYVlHD4bT+8OVRPbVx29yO5L9vYfn/96mB2vPcbnW45w5FYSecZyVCC72Mj8fSd5eUgPTjwzHaus4OGirzJPfnEZNlmhtl91r2ax0cTk91ciyQpBBh3z3xxTRSsJIK2wmPe27UcFfjh6hp4NI2hXL5SdB67y89qTd+SOqXy/5CDff/LIXffWiZPb2HPg/s88SQGCIJy54/ECVVUX/JETBUF4DZCA5f+TlVXgNJKc/OVwdTcwe+nT9xyjqiovTv6B0mITm1YcByrL0VUVtq87zYyXB1NabMLLx80hHTBlai+WLT1CSIgPycl5mM02UlPtngaLRSIyOoQvvpsI2HuZvffOBiRJIfZ6Jt98uRuNVsNnX44nOSkPnUHHD0un8ci4b5FsCiIg6EVMZptjLRpRoHOH+nTuWJ9TZxJZsPgAigJrN57hwRHtaNGiuhepsKScCbOXoqgqtfw8WfXpZAC8vd0olm2ONh6iIKDViOh1GlxddAT5eyIIoNNq8PLSUVJgqqhQA9kikZxegKyo+Pm4UWq0UFRSzhufb+GT2SOQZAWNKJCZU0xyej4I0KtzI3p1suvyeLobmP5wV9Zvv8DQ/i0Y0vPuicDLfj3F/NVH8PdxZ+kHj7Bu90WW/nqK9s3q8dGzQ6sYTrfJLynj7SW7OBNXqT2kDzTw/rj76BwTVW28IAg8MaknS9ecoFPbSIYMbMnmA5dpEx3G/tM3sNlkFFXl6s0MZozuSmxiNpcK0+ncKoLIOv7kGI2YRIWggOoGTFJeoeNvRYV31uzhaFwyioDjE1UQBPzc7Ynaeq2WOx1ql1IyeWvtbhIT8tGbVF6b2J9h3arul9FkRVYUbJJMsVHm6Q/WMu/p4TQJD3KM+W0i9+0Q3dpfz1VLrm8YFYQTJ39C8lRVbffvniQIwkTsCd191HtVkvwXcBpJTv622KxVe37dybbVpzm4/TLGUhONm4fxyU9TEEWRBx9sz4MPtqe83MKbb64jM6MIo9GM0WgXSMzLLXHMIYoirq56ysstKIq9Yk2WFT7+1xZSkvKRZYWNG86i0YhINgVVFFBUQFEAAUEAV1c9z85eiayA0WjG4GJv4eFi0OHhYcBssfHFsgPkF5URFRZATPN6eLkbkBUVi1UiPacYmyRz/EIiQf6eDOzUhCXbTtlzd0QY0aM5o3q1wuCio3urKN56bAA5haVoZYH5Kw4jyyqyYs9buW0w1Q7wotyUh9kikZlTzM+bTvHdisOE1/Gnd/sGlJaaURSVs5dS+G7ZQSaP6YyrQc+44e0ZN7w9566k8OnCPQzs2bSK6OFtVu04h6yoFJWaOX0lmUXrj6OoKqevJHMxLp0bmXk0CA2kbcNQVFUlr6SM7zYd4+iVpCrzPHpfDN06Nrjr+//g0HY8OLTy87dJVG2GPPE9ZqsNBAj0cefxMd04dz2VZ+euR1WhTi0venZqyL6cFERBYOGh03weNbTKvI2CAxGEygqgxJyKkK9qz3sK8HSja6NwJnWv+bP/mZ+3kF1iBHcV0QY/7zhdzUiqE+jN48M7s2zHGYpKTeQWlfHD5hPMe3oY++MS2HjxGmPaNmf2fT1Yefoiw1tG07yO3TPq5uVSZX1hIb7MmtrnrvvkxMlv+TNrGAmCMAB4CeihqmrN4mH/RZxGkpO/JYIg8P78CaxbcoRrF1Mwl9swmyp7j8myQklFX7AbV9LJyy6hVrC9Q3pJiYn9+68xaVJ3mjYNpaTExMdzt5KWVsCMmZVfNqIo8PX8iRw6aE/QXrTgAKoKiXeIU1rMNh4c24FfN5/DqCp2jYAKVBVHb7LbmC0Sb782jBZNQ3HRa1m26RRbD17FJskcPhvPym1nWTjnIZrVDyY+LY+ZY7vx8aI97D4eh6qqfPnaKEJr+ZCcVYhWo6Fry0gi6/g79qRvTMOKa6vUDfZFlhUaR9XmqXdWk5RegFYj0q9LY24m55KQkscLU/ry3AfrUFXIyivB1U1vTwKWZPIKjazdeg5VhUce6MCxMwnUC/XjxffWY7FKbNt3le1Ln0Sn01R5jY0jgzhyLgGrTSIls4joqNrEp+bhotfy+cYj3EjLRRAEFr80mq83HuVUbCruhqqhKle9jge6Nyczu5gbCdkE+HkQ4OdBUKDXXe+JcrMVo6kiJKgRWfbho5QYzXyy5Cg2m4SiQmJ6AakbT6ENEDEhcyk5k6IyEz7uleX7Izs0Y/H+M2QWlQKQUWj/vwhotRpyjeVsuxjHzL6dCPGtup6lR85SbDI7HgsK+HnVnPT9yMAY6gX78ep3WxEEiGkSRmG5iVmrt2CVZfbHJXBq9kwmdGrjOGfP9VscErJx9RHRFSmgQlm5lVKjGV+ff0/WwomT/78RBGEl0BN7WC4NeAt7NZsLsLsiAnBCVdXqehf/JZxGkpO/LU1b16Np63qYy63Ex2Xy1lPLMJaYq43z9nPDv1bll9krs1eRkJCLIMC3300iPDyAd9+rLKAwGs0sXLgfnU7LlCk9eejhzhQWGFn8gz1UdhtRFNBqRbr3aMzQEW15ZOoPSNK9tW5at6hLz66NHI/d3fRVEqcFARatPc6VW5kI2EUEYxOzMVtsuOi1JKbm89HM+/lu/RGahAfRqVl4jddRVJUOLcMdYcYJIyAOX9gAACAASURBVDvy3rc78PZ0pWeHBowZ3NYxtntMfXYfjUWn1XBf92j6dWnMT2uOs23f1YoRKtNeXk5+oREQUCo2QVEUlDs84WXlFsrMVkKDfBwqAglpeXz7+miuxWcREerPuPeXO1SgF247yfGryahASZkZvVaDoqqEB/ny2RPDUCSFSbN+cugn6bQibzw3hJ5dKvfvTrw9XJkxuivr91xkRJ8W+Hi68fDspeQXlVUZJyDQLLQ2Z9MzKTZZGPzhYpY+NYaoILux6aLTMnf8IJ78cRNmqw1LxXo1oj28ebufG7/5MZ6cV8jnO446xuuLQZThcnwmyVmF1KtdXfG6e6soFr/+EBarRLOoYEpMZoedrRGF316C2KxcLIqE7KfiaxERTApFJeUs/uUYzz3er8Z9ceLkt/xZdJJUVX2ohsOL/i/X4DSSnPztMbjpadq6HvOWTOPr9zcTfz0DjUZDmdGERqvhwUndHE1iwa5SbbVKGAw6CgqMhIcHVJnvhx8OsGP7JQRBwMPDwMSJ3fD182D02E5s2nAGD09XnpzVDy9PV3z9PQgNtSs8v/XKUHbvu4qvrwfbdl7CZpNxNejs7UFU6NIxijmvV1VUHtanBYIgcCM5h4TUfDo0r8eVW5lYbRJajYbcAiPPT+zNnG93EBLkTd/OjXF31TPv6eF33Y+tx67x7qIdGNAyvFszpo3tyn3dmtC1bSQz317FyCcWMnV0FyY+YC9Hf+Xx/owd3BZfL1eHN+LpSb3w8jAgyQonzyeRnmXXcnPRa5n5aA8uXk9nxIBWjuq2pIx8Jr+xHJukMH5IDOF1/LFJMo+N7IRep6VV41AAZgzrxJuL7RW++8/HO4yAimwyxvZqxdMju6HViFyLy0BRVEdPO5ukMGfeFgwGLWazRPvWEbi5VfVAjR8Sw/ghlZVkFotd9PO2CKiiqEx9oBP39WjKwPcXYZVkrJLMuM9XsOuNqY7k7lYRIRx5dwZxGblM+W4tRRYzdWv5MmdUPzaeu0av6EhCfKp6kdxc9AiCgCgIqLKKpsKxaa82q7rOO2kQVlnF6OVq4IfxI9lx9QZDWzbB5Tdiog+2bc5PPx/FUKCiKiparQiqXajzP0VVVQ5fS8RksdGvVcMqxrsTJ39XnEaSk78dxqIyfnhlOToXHY99MA5DhehjvahafPzjFCYP+ZTM1AJEjcjIR7tw/9iOVc5/7fVhzJ+/j+bNQ2nVql61+fV6e96QvSKtMpQ0ZXovpky/e/uJRg1q88kXOzGWWWjVIgy9XouXp4H9B2NBEGjZvG4VYw3sX6Aj+rasciw9u4gPF+7Cx9ON4X1b4GbQs+7LKUiSzJnYVOrW9iUkwJu7sXDTcVSLisVqY/X289gkhRen9OXarSzSsopQVfh582mHkVRaZuHlDzaQnVfC9Ie78vCIDri46Jg+vjux8Vls2HHBMfew+1owanAbHhzStso1T11ORpKUirDhLVbOnVjj2kL8q677zh+09jwrez83gMYNgunRuQHHTsdTWpEzJooCr3+4CY1GJDTYl0WfT7jrPgDMe3GkI2ncy8NAg7qB1K8QvxzXtTVLDp51XLu43Owwkm7TKCSQIe2bsPLEJdKKijl6MxlBEFiw7xQv/7KDMD9vFk55AB83A4Ge7vw07UG2nLnG5t2X0egEWtQP5qkHu+PvXXMozGSx8fI3v5KcVcCbk++jbeMwYsJDiQkPrXF8LU933EwCKCoqdsV3i1ni4LE47uvVlJhW4ffcj3vx66lrvL9mHwC3svJ5YlDn/+e5nPy5+bPoJP0ZcBpJTv52LHp1BTt/3IcgCnj4uDHh7TFVnpdsMqpqzx/p2KMxR3ZfJTermEEPxuDm7kKrVvWYP3/SXeefPLkH7u4u6PVaRo1qX+W5rMwi0tMKadm6rkPAr7zcwrtvbeBWci6lZfak59S0AlYvnYHFKhEZHoher+X+QTWXy/+WOkE+PD2+J/NXHWHV9nNMHN4BQRCY/e0WTl2391lb8c4jhNbyqfH8JuFBZKZVqPirYK0QUqwfHohep0VRVDq1rmyvce5yCkUl5SiKyi+bz/LwHQKT4aH++Pu6k5NnpHPbSJ6e1LvKtXLyS5FkhW5t6rNo/Qlkk4WHBrVlz4k4zBYbA7pGO4wegJZRIfRoGcnp2FRG92zJir3nsUoyggBRIf5MGlDpBRJFgace683jj/bg0vU0Pv1uDz7ermTmFGMy20hMzUNV1Xs2PW7ZqA7zGo3AbLFhttrw8XTj2IUEcgqMPDWgM1G1/flx32kGtm5E3YCa99MiyfZWMwhcTMnkdGKaI2QYn1PA7is3Gd42mmd/3sKF5ExeHNydCXPaUlhqIjo8qNr69p6+wScr9tMkIogeraI4fyMNs1XiX8v2svr9iXd9LWDPO3t15gA++mw7iqRiMtluP0NR8d1zXFVV5bNNh9l/OZ5p93Xg/vbR1cYk5xZhkxQURSEp217hV2g0cSIumdaRdajtW70S0ImTvzpOI8nJ3w69QYcgVnh6ftP4E+Cdrx7hlx8O0rxtOEUFZXz65npkWeHk8Zu4B3vTuXMD+ve/u9KywaBjwoRu1Y5npBcybbJd/btd+0jeftfev2z3zitcvJCCSZZRXeyGk1TRe81Fr2XMA+2rzQV2iYHcQiNB/l6O0EZiWj7urnpe+WwzGTnFnL+eRrMGwcQ0q8flhExMFhuuLjoSMwruaiS9Ofk+EtLySU3Jo0VUHZ56pCd7j8Xx1bKDtG0axoSR7YmqW8sxvlmjEIeHq7iknBPnEunYxm5EGVx0/PzFZPILjdWSpk9fSeaFeRtRVZXZj/Vj67fTkWSFnUeu8/HiHahAcmYBT4ytbIKrEUU+mznM8Viv07Jk5xlEAeZMGoC3e6UnZ/3W83z5w14URUUQ4PkZ/fjqh31YK6oaUVU2bL/AyEGta9yH26RkFTLp9Z+xWCWG9mzOtsNXUYGLcelMH9uVpJwCImr5svLoRUrLzTzQsTn+nm4Vl1BJyS5EsimE+XvTt1l9zialI2A34hRVpZaXO2cT0zkRn4rJauOjXw9w/O2ZNXr7CkrKeWX+FlQVjl5KpEVUCCrg6qKl0R3vSU2oqsru67eYt/2wo1IRQBSgd7fG9LpLrhZAfFY+vxy+iMUm8faK3QyJaVLNeBvfsw1XkrMot9iYdX8XFEVl7NzlFJWbUBSVGQM78WjvtlWM3n+XeGMSWzN3E+FWj8EhfRGF//e5nDj5b+A0kpz87Zj03kO4e7uhN+h54NnB1Z6PaFibV+bavUs7N9jDKZIkc+FWNsrNLE6eiCc6ug6BgZ48/9wKbt3KZvr03owYWVnSXVpuZt2Ry4QF+tCntb0MPTHRXtVmNtu4djUNgMyCEi4X5mFzFTBYNFgEEDUiUZH37mdmtUk8MnspmTkltGtWl09fHsmKrWdYsOooCPYkZLDn1EgVOTnPju3BJ8v306heLdo3rbnR7+HLCZy5kcrM0V05fSMVHw9X3Fz1zF24m9IyC8eNZob3b+kwylRVZeHqY5hkCVUAWYUl6044jCSwh3Rq16r+hX/sQiIWq91L9dnS/byzYCd1annTuXk4kqwgKyqZucX33IfH7+9Ev7YN8HZ3JeA3IamNO85X0b5atuYkslxpHMiySuzNTODeRtKJi4nYJBlJVjh8Lh5FVbHaZDJzi3li0UZuZeVXNCW2j996NpZNs+1hvJySMs4mpCMqkJVXjFxopU9wPWQXgRMXEzFrFF5YsY1FUx9AwF6VFx0aRG6JkU2nr9EsrDYdG1a+V4kZ+Q7VbEVR6dIigk7Nw8nILaZby8o2OZIik1iWS6irH65aez7TitMXmbvrEJTa8KpYq6u7nlmTezO4b3Nii7MptZpp6hPMT7dO4qbVMz4qxtFWRSMKGHRaArzcEQQBo81MXEkG0d6huGr1+Hq48v0TlY2LLTaJnGKjIzn/u+3HcNVreahHa+Iz83n9550Eersxblgz0ix5DAhuhYeuarjyTlRV5f1rn2JSzBzPP83FoivMDHv8rtV/Tv43qAjOcNsdOI0kJ387DG4uPPrW6N8fCPQe0pKb1zLITi/kclo+pUZ79ZtWK3LhQgpJSbnYbDI//XQYt2APEtLyGN2/NW8u3cmZuFQ0GhEPgx6dVsPVwnxC6vmRlJBLSKtgJFlhyrw15BSVoqnrwssDuhIU4EV6ZhED7+GpSksv4JnZv5BuM4EAxy8kIskKB0/ftKtlayo7zIqiQEJqHp1aRjCgYxMGdKzeZPU2CZn5vLRwKxabxLI95wDQ6zV4uRmIDAsgLjEbFahzh8GTnl3MzsPXsEkKsl5AMQhcys3h4s10VBWaRtZGp9XUeL37ezZjy6ErmC0SRrMVUEnPKSY2NZfAAE8y8kqITcnFbLFhqMHjd5uokIAajw8f0JovFu5xGC9dYqLYdzSOUqOJAD9PDAYdjzzY6a7z3qZzq0gWrj2Goqg8NKgth87cwmyVePmxfjyxZJPDCBBkQIWkjALScotYsv8c5xPSCfbyJLuolABc+O6XIygVelmqav+Ald00lFtsbHr2UW5l59MhKoyHvlhJQnYBOo3Iymceon5t+2tsHhVM88hgzqVloOgFNpy7ykvDelbxIp3OT2D2+ZWU2swEGDxZ1+0ZXLV6UguK7canr0CZVaCOwZNFrz9ErQAvjmYnMOP4KgQE6nsGEFeSg4A9iXxMRGv2FFzkyQltcTd60qNZFBbZxpjDn1MqmQkyeLOq26xqXh0XnZbnh3fnqy1HK3rfCZgqQrcfrdvPtdRs9KUKZ86fRRQFdmVeZEGH6fd8L9Q7stAuF8Ry37z5tKwfzILZY52J4k7+f8FpJDn5R6PTaXnytfsBSErMZdu2C7SLiaR2bR9OX0+l0FvExUVHcFQgb83fZg+DXEhA9dBgkxU0GpHErAK+2HAESZYR9AJSAxdO5Wez++wNSsrNyIqKVifQtFUYelkgvF4AHu53753184rj5GWX4iKAzUPENcAVrUZk0ohOzP50E17uBjq3jmT9sSvIAgT6/7FcEItNqqbErKoqNllm3isjOXEhkfr1Agmu5c3S3WfYcOwKo7q0wN1Vj0aUsLioWBQZmyQz4+O1aDUijevVYsHsypyvFTvP8s36IzSPDOar5x9g85fTGPbsQopLzHYhIVTMZit5FWX3eUVlxCbl0KpR9dYrt0krKEYUhWrVYiMHt6ZPt0YcPnkTdzcXusTUp2XzMGrX8mLH/qvsOhzLjgNXmTqu6z33JTTIh63fPo7VJvPMv9YRn5qHIICnmwufTxrKtzuOUVxu5lxcOgAuOg0bT17l11PXMFlt+Hm44lMsUmYxISuKI6nfng8FMZF1SLyZw0vvradReBDtXw2l0Ggfq9eKFJdXylLodVpen3ofoz5Zhk2S+fnQeZ4Z3BV9hZq2rCrMOrMEi2I3RoosZaSU59HIK4SpXWO4kZOHpCjMfW4Atb0r74vLhRnYFAVZVcg0lWBTFEQBymwWXr+wigM51wB4omF/fD2akWkqpNBWhk2RSSnLwyzbcNNWv2fH92rD4JgmfLrxEB6uesZ1t3vtwgN9uZSYiepqRhQEJNVCuvkqDx59gWcaPkyXwOrePUEQeLXJs3wc9zWlNiOFF+yG46X4TM7fTKNto+rq807+N/xJFAD+FDiNJCdOKgiPCGTmE3YtGVlR+GjpXiQtCD5avEO9ULNzAEjNKWbxk+OYt/YgEbX9iKjth1WSUFUQRdBXeFb8vNz4ZPr9LNh6gu7NI7lxKYOvv90DwLtvjySmXUSN61AUxdFIV2tSiK7o3daxZTgHlswCYNmus3BGRJEVtp2OpX8ne0PYkjIz+aXlhAf5VsspaVI3iFkjuvH91uOUlFuoF+RLbT9P5q09yOpDF/n5pYfwdDOQX1LGV5uOICkqn6w/iIu7hlohHkzp1oovVh1EVlRskt1YunQrkxNXksgtKqNPuwZ8sfr/Y++8w6Mo9/b/mdnd9F5I75RAQkLvvaqISFNUBCwHEY69HLsejx57w95QUBQUBZHepYQSIJQkpPfeN8lm68z8/piwEBMUy3l/r+/Z+7q8zM4+88wzs0ueO99y3/uRFYUT2WUcTi+ie1gABpO1nSCpKCivZ2DvCI6fK8XVRUePyEunHreczubx77cDsPymaxjdM7rD+yfSS/li/TEGJ0ezJyWHwycLVX0mWcEmyXzx/VFumjkEt19osQeVnDjptOSV1tkjW+U1epJ7hfHmLari9rqUM7zwzV4iAnwYkxDLqr0ncdZp8XV3o7GqyW7dMm5wD2aM70t6XiWjB3anR2Qgk//2DharRF5JLaeyynlj4dUs33qIhIgg3t5yCJNN4pX5VxER4EOwjyfe7q7UNxsQRYGbl6+lsLaBiclxjBgVjFbQYEYlST29gonzUC1H/D3cWLFgdpf3Nysqmc2lGTRZjQwOiGRrWSYg4KzRkaEvs4/7vvQYZ5pKuCV2HFNCkthdmc7syKFdEqTz8PVw5V/zpwKwquAnVuTvY3CPOB6PmYC/pxsbTPs51ZSGICiYZDMvZ33GhoB+KCidolM9PGP5aNDrlFY3MufTzwEFjSgQ5CgKd+D/ExwkyQEHuoAoCHi6u9BiMKERRSYP68WBUwUoisLkoT2JDfHn3btmAfDuxkPQLo/YNzqYiQN6EhHozdB4tdbk/P8fe+o7e43O/kM5DBwQ3WUKYfrV/dm3X1XQThoSzZO3XsHra3/icEYRPcIDmTUmEX8vN7QaEUEQaGw1klVSg4erEzf8ezU2Sea6scncN3tMp7nnjE1CpxUprG5k2/FsirMaUYBavYHUnDIm9OuOm4tTBxFIs1WiVm/A1c2JCYN6sPNYjv09WZa56/Xv0WoEfth/tkOkSiOKhAR4MW10H37Yl24/LghwJrcCUI1uz5vknkejwcjZsioGRoexKzPPLr74U1YBggDv7D7MuF6xLBk/lBfe2YbRZKW+MRMvT5d2gqNFp9WgUxR8vNxwcdahKAqb92dQWFaPs7OW5F5h+Hi6smrjMQYnRnHthCQAHlgwnve/OcjAPhEk/sxSZc6IJOaMSLK//vjvs3lr40FaTRbCI3wpLq7nb3NGcPPVaiH+kL7R9rGDEiI5fKYIjUake0QAAb4erFg6l7c2H+RUcSWyrPDWlkO8umAaLjotd0wawr++24MkKWSWq+R80/Es9rmmIjtLBDp7MidyKLd3v7TkxMXo5urJxkmLSakp5LPcIyqhF6DebGBB7BheP7cJgDpTC5XGJs42lrBz0hM8kzS301xpDYXUmpqZEJyIVuyYan0/dyeSInOg5hzZLuU8GjOT2WJ/sltP2KMTMgpfFP3IurJdhLsF8Wry/UiKzPOZH6O3tvJg/ELigiLY9vod7EzNoW9cMGGBl5a0cOBPxv+swe3/ejhIkgMOdAFBEFjx9A3sPpbD4IRI4qODCOvmQ1NLG0N/pmIdFeSLc7v1xuBekcyfOKCLGeHG64dy5kwJRpOVbdvPUFPTzEvPz6WpqQ2bJBHQnjbrmxDOZx/dhr7ZSO/4EL7dd4Y1e9KQZIWCygZ2nchh8fThPLlgMs+u3EFmURW3vbSW+64fiyzLmK02dp3MYcrAnpwtrGTKwF5oNCLZpTUcyihk7b7TWGwSF/8eFAVIjFa9v1yddCTFhnK2sBJFURAFAbPRynMrdzJ7ZF80oogkq9Ye54vGbZLC6bwKrhgWz67UHJK7h9K/Z5iaQrl1CglxIaxYf4TGFlVKwNROFq02CYPRYi9EN1qsTH9rJSarjUBPd/49ewp7zuVhlWTOlFWxIS2TNouVnKo6xvaKITzEl9IK1Ttt6YIxfPjlQWIi/HngjknkF9XSI6YbtQ0tpOdX8urnuzFZbAioxeauzjr0rSYOpRUQGezLa6v2UFbdxCO3TebKUZ1b4H+OJoOJ9JJqzFYboX5e7P/83kuOfe7uqzlXUE1YN298LypEjgnyQyuKoIGYbn7248u3pHSeRFQwC1YERaHW3MIneXtZGDuaKqOenVVnGerfnQSfrvWTAD7MPsT7WQeRZNn+GcZ4+DMnuh/DAnpQaWzkoZNfIijgouk68na0Lo8HTnyBpMisLjzEx8MX4yRe2EZ6e4WR01yBRZGoMum558TnDPaLZU7YJL4r3w0o6AQt26pSUFCoNtaz+PizSIqM0WZCQubTgvX8O+luymqbeHPtT1htEu6uTnz8yPXEhQU4apMc+B+FgyQ58JdE5skivn5nF4PGxTNjwS/XnPxehAZ6c/O0C7o8vWO6dlKfNqQ3Pu6uGM1We6fbwfRCDpwtZPbovvQMV9NJiQnhvPPWzdyxbCUWi41jqQWknSrmkSfWoSgKtywcxQ3XqQKOYWG+hIX5UtvUqhqyXgRJVjieXUpFvR6zVY2ySJJMcmwIfl7uVNY3M2tUEn9741tkWWHtvtO0GE0YLTZEQbBr+KAAAmg1Ip/edx3dfDzs11i+9Fo2Hs4gPNCH51bvok5vQEJhy7FzDOodzuncCrUwWSPaCQ9AQXkdN00dSHZBNeMXv8O4Qd158a7pTB+dyL7jeaScLrSPFYBR/WMJvShKUNtioNVswWKTKG3Q0yc0iABPdyqaWsivacDVSWe3/fBydWH5s9dxKDWf+O7BRIf7M2mUWrhe36jWPF1358fYJJkBA6JUI9/227ZYJSztz04B0vMqKa9uwmyx8eG3hy6LJKXmlGBuL1R2d9Fhs0ls2p+Bs07L1JG9O2zmGlEksXtns98r+/XinW0p1DYbSMkuYunUYarBsU4DRnXMuD4xGBQzp3wyEHQXInXOGrXYfdHhD2i2mvhU3MemcQ/h69y1MGVKTSFGSf0uaRQBGYVPcw8zNqQ7LVYrwwJ68NKAm0hrKGRG2CC2lp9Cb2mjztKM0WZhSc/JFLXWYFMkJEXmXHMZH+fuYlmvK+zXeG/I7azI28PnhT/Zj53Vl7K051QGB/Tli6IfGeKXSKmxmn01qUiyhN7aeuE5CRpcNWpq7/t9Z7C2f1cNRgs3PfMFrs463rx3Jv17XpoMOvAnwFGUZIeDJDnwl8Qziz+jpamNs8cKSBwUQ1yfSxf+/qchCAKjEtX6orLaJr7YdYINh9KxSjLbUrPY99qd9vqg8DBfYmMCycmpYvy4eI6lFmBpJxmffLofrUakf79onn/pRzQ6DRk2PYoIVw6NJ6+8jsr6ZjSiyG3ThnDn69+p1wdumzaEHuGBbHz2FmRFIbO4mk+3HcVik6jVtyLJin1DP48gH3eS4kIZFh9FeGBHTSVPV2dig/35ZNtRNYUmAIpAgJc7x8+V4u3hyvL7ZxEX6s99b63nSIYqYplfVk9BRQNyu0fdgZP5NBtM7EnNJTWjGFA78sK6eTMwPoL753dMF0X4eXNNv95sT8/l5uH9cNZp6RcRQlObCVlReH3eVWRU1DAgKpSwdvPYK8YldJgjr6iWJY+uxmKRkBW1X+pYRgldZRDc3Zy4alQCzQYTgiDg4qRlRHLXtWI/R15Vg/35j+odw0frUli7/SQC6qY+Z8qvi4PWNhuoazZgk2TSS6vJqagju7KWl266ine3p3CuvJa0ogpunpHI6doz9vNi3AN5uM/VCAgYbGZkZGREjJIFX7omSfJFxoJS+y6Y6BvC5O3voigyo4KjWBo/hr/3uoIfy07wcsZGrIpkjyYeq8+nyHDBvFkE2qSOdicuGh2L4saxpSKNGnMzGgRcNU5EugdwX9qLVJsbyG4p4uWk+4hxC+Xjgu86nC8pEmmNWRytP8vEQT3ZevicXfNJUaDNZOWu175n37vL7GKtDjjwn4SDJDnwl4SruzOtzUYUVG+2/y1Y8tZ3VDY029vSzVYbeeV17E7LZXTfWBKig3lv+c20tJhwctJSXtHIdxtOYLWqG/rBlDwOpeRRVFSHIArgLWL1UjeD1U/Ot19HURR6RwZRUFmPv5cbC9uVqAVBQCMIJEYHc+P4/qScK2bpNSPYfCST/WcKmT68D1uPZWG0WPn7jFGk5Zfz3Fe7eGHtHr565Eb2nc7HYLIwND6Sez/YiMUmodOIBHm609JiorZBJVxGs5V6vUFtTRcEu3iiogCKgoerMxazje7hAXi6uWAwWqC95Ty5ZxjvPzrXThzP5lVwPLOUyUN7ER7kw7MzJ/PszAtmrC/OvZKjBaWE+3kT5e/DkNhf7nI6fa4MWVbsdVWKSJcECUCWFL7dkYZGIzJuUHfmXz2Y+EtEDDt91lcM41xpNe4uzswdlcQHXx/AYlWjdXVNF6IjJrOVljYzgb4eneZw0mroFRpIemk14xJimf/2GmySjItOi8lqw9ZObNLS6gjt7kOFqQkBKDTU8lb2dlaPXMbLA25kVcF+poYkE+rW2ST3PLoKDlQbm1EUBUkwcqwhndNHs/lX8nXUm1uRFBlZkVE/XYHiiwgSQKibP3f06Gya66Z1ZsPYh2gwt1JjbibKPQBPnSty+wqsso1n0t+ju2ek/djFMFU58dSG/YT6+PHFU/MxWqxsP5rFN7tV+xubJLHtaBa7UnO4bmI/RvS9PFLrwOXDUZN0AcLPW4L/N2PQoEHK8ePH/38vw4H/BagsqWfnd6kkDo5lwKie/7+XY8eEhz6gqdVof63RCDhptZjMVpydtGx/4W+06E0s+ftK2tosPHT/FfRNDOeeB76itdXMc8/M4lBKLlt3nEWSZNoCtSjuGt6/fzZJcaH2eXefyOGpT7cR4O3BRw/PvWT3T2NLGy+s2YNWFHn0hgl4urnYO9PcXJwYcvdye0qjZ1gAhdWNWG0SGlElNLKioEVAZxPs9TwajYivpytfP7sAbw9Xymv1vPTFbmRZ5lhmCaIoMGd8EnMn9Cesm097Ss7K8q/302Iwce9N4+xeZXVNrcx6cAVWm4S3hwtb317yizYil4O6hlaWPPoVdQ2tyLKMpIDkIsCvTDuqfyyvPjjzlwf9Am5/+msyOlYABwAAIABJREFU8ytRUOjm64m3pwv/uHUy9778HSazjUUzhnLbrAu6TfUtbUx/6XNskky/6BBuHNmPuz7baH//vIwAgJerM2vuu5FypY4HTn6JWbLR0zOYr0b9/bLX92zaNr4sSO10PNjVixapDq1WQkRgfswobo0bz4uZG9FbDAQ4q9+teksrR2vzkJBxFrU8nTSHySFJnea7FIoNFbyXt5bs5mIkJDy0bqCArMhEugeT1VKEVtBS83UkFqN633Fh/qz5lyrc+enGI+w+nsOMMX1Z/s1+lcBrNex9d1kno9//SxAE4YSiKIN+feSfA5e4MCXixTv/R66Vd92T/6P39nvwf/eb5cD/aYRE+rPgvit+feBvhKIofLn5OCezy1g8czi9Y4N/0/lv3jmDT7Ye5Xh2KZIioxU1WK02FGhvnZdJOZKHyWRFkmTWfX+cqZP78u1Xy+xz9EuOJDkpAh8fN3r3DkMUhQ5WD7Ks8MQn27DYJMrr9KScLWTmmK43q/c2prD3VB6CINDN15N7Z41WO7/aUxXuLjqaWlWS5ObihNKe2lC1nURG9Y4hu6yGxhqDfc6oYB9WPTUfp/aNKSzQm+X3z+KNNT9xPKsUSVbIKq4lKuRCIbKLk46HF07stD6j2WpXlzYYLSiK2v32RxDg58Ed80fz3PKtyO2ZQmcJFFcNkqTKA1z8p6FGFAj08+ShWzqvT1EU3tx4kAOZhSy7ajgTk3tc8rqVtXp79Kq6oYWahhZe+Xx3ewefzKb96R1IUkF1PTZJxmixcrqokoVjB6IVRWyyjKerMyKgN6rGvc1GM98fSefuq0Zyd8+pZDdXclv3cb/puRhsZvvPIoI9ilNjbEFGh7egQauV+aLwAHurM3l94AK+LznG2uIUZBSG+MWxYvgS3s3ZTptkoY/3b6sLinIPZUncXB449RqSAgabkSF+iTyRsBjA7rM3e/MKSoyqt6C9fg647Zph3HbNMPStRt7+9gAAOo2I5o9+YRzohL9Q7OQ/DgdJcuC/GpIk8/HbOynMr2HJvVNplqx8suEwJouN3JJaNr21+DfNlxQbwvJl11Jep2ff6XyG94mitKaJr/emcc2IBPy83Bg8MJoVn6sk5cqpncmNRiPSMyGURS+sQd9q5IXFVzF+wIXNuaqh2b55KEBJTdMl1+Pj6dpOsAR8PTpbQmhElXyJAlw5uBc9wwL46WwB+lYjt10xlA+3HMEmyWg1oEPEapPRG8x2gnQe6/ed4esdapu3KMDS2SMv63lFBPkyaUhPjmaUcMes4b+pc6m+0cCajanERARw5fiEDhGoleuOIEkyoiAQGeZH375hbE05h0VW8PF0xWS2YbHamDUxiSF9oxnRP7YDEf3m4Gm+2HuSoT0j+C4lHVlRePCzTRx++S5cnLr+tfno7VN48LX19tcajUBeaa29A/D6qR27HvtFh9IrNJDTRRW4OusI8fPixtH9OFlQzvUjknnm2132sU5aDQNi1W7B66N/XUW8KyT7hbG+RK1rujN+JO9lHUQBZGQ8XEwoAljaN8daUzMLD72LSbbayVRqQz7Pnv2OotZaZGReP7eZ1wbe/JvWEOMRzvyoaXxRvBmbYqPCWGN/TxAE8lpLuXvpAL5dm0eb2crjiy6k8zIKKjmSUdxOymdy6EwRU4fGO2qTHPiPwkGSHPivQn5OFa/+6wcCg7x59NlZpB7JY8uGk5hMVl58+nvufHI6cnuhqrurE3mFNWzdm86owd3p37drP7S86npajGb6RYXYN+qwAG9uapcCiA3xZ2xynH18VGQA675eitFoxd+/c50KwJ6TeehbjVglmRVbUjuQpG6+nni6OdPSpkYGxF/4S3rxtGG46XT8lJJDVU49prEXLEBkWaGp3YZFUaBvdAjXjenHo/PUiIrFamPVrhOYrTa0GpG5wxI5m1/FXXM6m/vuTcuzR2cUIMT/8nRtzhVWszs1F4vFxqpNqcwYd/npmydf2Uh6TgVOOg3+vu4M7X+hNiU+Loii0npkRcHJScOym8ZyLLOE8ho9FquN1S8uIMjf077BljfoEUWREB9P1YR23V4kWaG8vtkeHZJlWPDSVzw6dzwCAk46LX3iLkQaRw2IJTrMj/JaPQgweUI8u3dnY0Omd2wQ864c2GH9Oq2GxMggzhRXUt/SxrzXV9MnrhvnKmp4dt0uunm709DSRoivF28sutpuXfJ7kd5Uaf+5rE3P6KA4jtQUImFDFDpG8EyyFUUGa4kbSpsGdDK6EBP5VIMCOkFDsGvXBsq/hulh48g3lFHaVsXS7hfU2tMas3g+8yNAYPrssSyMmcOZsipmffAl/qILGallqsq9KHD1yASeuGXK730UDvwC1LJCR3TuPBwkyYH/Krzz6lbyc6spLa5n55bTRMUEogBanQYZuO/xNTiLItOn9mX+9MEsuvszjCYr32w8wb8fvZbRQzumWw7nFvP3lRsRgNvHD2HJxKGXtQ43N2fc3C6tYpxypgCrVUJQoKGplbqmVgLaW/S1GpHVT97Ek59sxcvdhZunXjqlr9NoKMmopji9itLMGsKCfZg/R5UZEATwdndBbzCi02owWqxc/ewKGluN3D55CLdMHszqR27kYHohIxKiiep26aLg264eSmpmCTZJZmB8BMHtmk96o4m9OQX0DQsmLsCv03nn1cXPpyN/Cy62WbFYJdraLLz87jaOpRXh7+uOTiditcpIkoKHmzOe7VYwVpvE/pP53NBOWnaczeGRtdsAeHP+dEb2jMLH3RWDyYJGFLA2yQgmGVkDxfW13PX8twiigCiKPHnHFUwa1guAtLpy0vrWQL2C1UthpZDGhLGxuFSIPLBoQpf30CesG1qNgFlno82scCKrHEWjgK9EZEgIH1w5k4gAH3SaPx4tSRbDWC+fRhRF5sUMJMrZl7ve/R6rVYJReopNNYS5+iIrCpWmJqQyN2zFbpwv5pKqXXAdWQ8yuOaHkJapZ+BHbxEe4M3bd8ygqdVE78huVDe24OXmgpdb12a2OlHLQ/GLOh0vNJRhU2QkRSKrRZWKeOKHHeTU1ONqFHFSLqSC88rq/vDzcMCBy4GDJDnwl4Ch2cgjs9+gvKCGe16fz9gZv6/WLzI6gLycKlAgNNyX5IHRPPavWZSV1LP7VD623BZkUSHYy4Nu/p52LR2At1fs7USSzpZWY5UkJFnhWH4pCeFBPL9hDwnhQbw474rL2twycitZse4wg/tGMu/qQbS2mTmWUdLeUwQ1Da1Me+BjXlo2nXEDugNqpGrFI/N+de7cgmr0zcb2TV3o4BknCAKrHprHzpM5DO4Vwcvf/0RpnR6A5ZsOcc3QPkQE+nDD+M4+Wz9Hco8wNr+xGHdnHc66C2a181d+Q0mjHgGBbcsWcjC/GKPVyvUD+uKk1ZIQF8L9N4/nVFY5N189uNO8sqxQ3qQn2Nuz07N89oHpfPzVQWKjAhg1OI63P9nDnoPZALQZLfRPisTJRcedN6vK41NH9qGgrB6NKDIoIRJ9mwlBgJ3pF1S9957LZ0x8DGsevomDmUXEdfNj2T/XYpNBbO+gt8kKyAqioJCRV2knSTtKc7CIMrS7rCiAEi3y9qLOqtXnMX1QHza2pnGoIRckATHNHTnJAM4KR4VzeHpf+acQJEVRePejQ7hbXHHWaQkc5cGWg+coym/AJskMdY9keO/+GPUSPRLceDNvE4pV114j1U5eJQFrlTNyrQtVjWZq2moRgcqGZq5/aTWyIuPu4qw2Lgjwyi3TfrGG6+eY2G0oh2pP0WRt4ZaYGQBE+vlQ0qBHcVeI9+5GQWk9vl5uPDy/a9LpwJ8AhUu3g/4XwkGSHPhL4OiOs5TmVWNus/D5cxt+N0m66+GrSB4YjX+AJ8kDowEYPlrd5LzCvMl+Zxs6rYaRg+PQakTu/dtE3vhoFxpRJDaqc7rj2kF92JR2Dr3RxN1TR3Dfl5uoaTZQ19rGwewixveJo7xBT151PcO6R3bZhfOPlzfQoG/jZEYpSfHhhAV7d2rEkhWFlVuOodNqSIgJxsfT9VfvNb+olqX/+AoECA3y5roZg5k2qW+HMWEB3iyaopKT8AAvThWqdiFOWg2uzr8urbAnPY+P96Ti5ebM0bxSPF2c+f7++QR6qVGvkgY9JpsNV52WVcfSWH3sNAoK5U3NPDJlLAAzxvZlxlh1XecqaxAFgV7BKtP426rvOV5UTrivN+uXzbf74gGEBfvwzP1XA2A0WTidecGDTBAEbpw5hMH9ou3HbrhyIGMHdcfd1Ykz5dVc9++vEYCHpo1h37kCRFHguiFquq+btwezhidislhxc3XCYpVwddbi5e6C2apqB7m5ODF36gUCeVVkPCuzj2OS2rsARQ23xncmfjZZYktZOu46ZyYE9+J0a4nd/Ffu1wrtj11C4UB1HrOifp2kXg5cnNQuS0ERcNJqCPH3QqsR0WpEWkWJLw+dRpYVrrbEM0UzhnVlGXQUDhCw5bSbDCugOIGgKjtgk2UsNgmTtc3+/sOfb+Hwy8s61a9dCt5OnrzW/8EOx16ZfSVb0rOJ9PNhcLRDQNKB/3k4SJIDfwn0SI5EQNVE6jem9++eR6vVMGFq3y7fmzougeEDY1XLChd1p7r2in70jA2itKKBccM7Sw108/Jg4wML7a+7B/nTYjKjKAqR/j5UNrVw7RtfoABJEcGsWDyn0xxurk40NquyAa4uOrw9XHls0SS+2n6SHhEB7DuZj6IolNfqefT9Tbg4adn48u322qJLoaKqCUEQMJmtmC0S10xN/sXxT82bTEyQH1WNrSyYMBC3X5lflhUe+HIL1ou810xWG8fyyxiXEMvx4nIenTKGTw6fYEz3aFw0WlV7R1aoN7R1mu+HtEye3rgbqyQR6efNuzddQ0q+KlJZ3qSnrFFPbGDnlB3Al+uOUlRShwCEhfjwyN1XktRH3VSz86vJLahm3IhednXvjScz7cXv2ZV1HPun2l0oCAKVtc08tnwjgiDwwj3T+fKFBaSdK2Ngnwi+3ZFGfmkdQ5OiWLH+CM99uJ3XH5qJi7OOvv4hnJxzL5Ki4KrVqfIJothprW9m7uarwlQUReHp5Gks7D6cd7P2qUTp57z0T+oyEgSBjx65nk0HMxiSEEWwvxfB/l64uajWLHuLCrFUVah6V4LA1tMX/PnOp0M7rEkARQPPzZ/KoB4RPPDpj6SXVHe4pk2SWbnnBH+benkp6K7g6qRj9oDE332+Aw78UThIkgN/CfgEeOId4ElNWQM9+3VdQP1noKXVRF2DgaQ+YXadmgNHc0nPKic81Jc+PUJYt+kEWXnVLLp+BBGhHet0li+4hr2ZBcQF+REX5M+RvBIUVE+y80alP8dbT87lxz1nSOoVRky4PwDXjkni2va2fn2rEb3BxJzHPleF/ySZ+ua2XzX9HDYwluGDYsnJr+b+O9UuocKSOr798QSDkqPwD/Miq7SGqQN64eOhpmFun3L5G1qjoQ0XndZeF6QoCq5OWobGRTBvxRrKGptx0mrYffeteDg702q2UKZvps1i5eHJnc13DxeUYLapquBF9U3ct3YL05J6seVMNn1CuhHp17lQOLegGqPJik6rQRAEtDoNo4b2sBOk0vIG/v7oVxjd4IOdR/j62YV4ujgze3AiuzNUaYRrBvTu0Bm3YsNhsgqrEQSBlT8c4+FbJzF1ZG/2peaydvtJTGYbR84UYZNkDKZKvt56gkUzhqqK3doLxPJSBfUlhgZM7fYgr2bsZM8V9zMuqCcLD35Om2Tp0J7/1KmNTA3rg7vu0vVrl4voED/+PvdC0b2iKPh5uRMV7Mdjm3faj4+Nj6HB0Ma+c2pd0JS+PSht0JNbVY9Navf8U0BUoEbfyj0f/YDFZmNKvx6k5pXh5epCSW0joiiw7tAZwvy9uWpQfIe1FBsqeTL9HRRF4dnEpcR4XH6UyCpJ1LYYCPH2RBAEyhr1pFdUM6p7NB6XEf104NfhkAC4AAdJcuAvgeN7MtDXtaDICmve3MaVN3fusPqjyM6vZtljXyEgcPXkvtxz+0ROnClh3aaTmMxWnn55I4uuH8HbK/ahKAo5+dV88c6tHeZwddJxVb9e9tcDY8IY3j2StOIKHprWmRgAhAR6sfj6UazemMrTb21meP8Ynvr7VYiiQGl1Ixv2n2VArwjmjE9i44EMxvSLY39aHp9vSWXioB48dNOELgUYdToN/3z4mg7HHnj6W+oaWtm+N4PWYBGTqPDCur28css0Jve/fFFOqyQx+43VWCQJnVbkk8WziQ70w81JhygK5NbWoyhqmrCquZXugc54ODsxLaEX6RXVdCVie+uoQezNKqDZpHbt5VXXYZMkrkzsxfMzJ3do0QdISc3n6Zc3Ighw89zhLLhuOJIkc+OsIfYxNfUtmF2hsZtCo2DgH2u28t6iaxnWPZJDT6l2MS4/Swd1jwi0p0XjIi+kWNtMFmRZQSOKeLo702a0YLbY+HzDUUxmK3def3nfyXv7TGRXZRYArVYzpYZGEnxDOTLtH2Trq3g87Qdymi8Q6sLWOhJ9f7vtzu7UHDYcOMvsccn2Wrb88jo2H8pkZFIM768/yOncSjSigCZYy/lm/1e37OeOCcM4lFOMVZI5XVJJdIAvMwf1IdDTgzWHT9HYYsRN1vDNoTNUNrQAoNNq2ffvJbQazby2YT/rD6dT1dTKk6u3MzohBk/XC0Tvx4p9NFqaAVhfvof7ey3otP4TxeW8ufsQAyJDVXudVgM7z+WpVjMKjOkRzT+nT2LGe1+gKBAd4Mv3S276zc/JAQd+CQ6S5MBfAvEDYxBEEScXHcOv/OW00e9Fdl4VkiRjs8kcP6X6jHl7uqAoClqtiK+3G+u3nbJv8KUVDZRVNVFraiO2mx/eXXTz6DQa3l54TafjF0OSZVoNZt5ffQBZUfjpWB4FpXV0jwpk6SvrqG5sYe2uNERBRFEUjmQUsTNVLVD+bu8ZrpvYn+iQrtNQP8fF5MRu2wF8vOMYk/v3pLC6gcXvfIdNknnvzmvpHdG1RUdds4FGQ5sqOqkRCff36XD/940fyScpxxnfI4ZXdh3gQH4RV/bpya6sfMw2G+8eOMLVifG8OGOqPeLSMyiAW0cO5K3dKWrtKFBQ10h5UwvDzkQwd1DHNGlmToXdziUju4IXn5jVaZ39EyNJTAxjf105igD1rRfSfEW1jZwsKmdy3x5087ogxXDd1P5EBPsiCDAsKRqAI2eKeOnTXciKwvDkaP5x22Q+33CEH/adxWy1cfRs8WWTpFjPQK4ITWBHRSa9vIOJclc/O62o4cOcA+S31NpTXAk+ofT0vjybFJtNIjWrlIhuPni5u/Dkx1ux2iSOZZQQ1s2bRVcN5s21+2lpM/PFtgvOBTZFwWS74OvXZrHRKyQAjSiiEUVqmg1U6Vs5WVzBmqXzmDGgN0azldLaJu795McL87SnXT1cnXlo1jjWH05vPy5zIreMcUlxtNlMpNSfItg5ACdRjbr19+kYZTqPu9b+SIPByMkStU5O+hmx3pNdwOLRqkSD0Wojt6YOSZbt2l8O/AE4Ikl2OEiSA38JhEQH8nnqv2isaSayV2c39T8Dnh4uSO3Cfy7O6j+NHrFBvPj4THIKarhyfAKfrU0hJ1+tvZBkhWmvfIakBVcnLXsfX4yHy29LixiMFhY9vIqq2mY8PVwwW6xYbTLPvrOVZ+6+CqPFag99WyUbNkmxu9mDSnT8vd0u+3qvPjOHtRuOMzA5ij3FxWxPy0Yrikzup3Yhfb3/FDV61Xfs893HeWnRtE5zvLbpACv3n8DD1QmdqGH2kET8PdQ1pBVV8OIP+0gMD+LIg0soqm9k5sdfIckKm9KzcdFq7O3+O87lcvOQfvQNvaA19PbewyiARhAI9/WmqrkVQYBg7862K9OnJLP/SC5tbRZuueGCeKXVKqHRiIjtHX3L75/DS5v2UVTXxCPTxyLLCi9u2sdXh0+hEUVWHjzJjn/cZj9fEARG9OvoB3YiowSLzdauCC4Q6OvBbbNGcPJcGXVNrdx53ajL/gyOVBdT0GBgbvhwnhwwCUEQkBUZURBx0ehQ2k15B/hFsGr0LYjC5W36j324mSPpxSiKwiePXs95XU5ZUSitbuL5z3ei03b9K18jCHYS8vzcKfQJC2LNshsoa9DzxLod6NtMWGwSc95ejUYUESygWOQOczw0a6z9ZzdnXYd99p5PNrLv+Tt4pfATsluKAHg4fhFpDVm8lbOat3O/5unEJST7XIjC+rq5ojea7cReFAQEFKT2iXsFBZAUFszg8HAO5BWhaZB56uNtPH/HVZf1vBxw4HLgIEkO/GXg5eeBl1/X4ot/Bmw2CWcnLSazTTWXbceg5GgGJUcDcPdtE0g5nk91bQuyCDaNWsXaZrGRUVbN0O6/rV7qXH4VDXo1ImM2W5k0Kp4tezPIK67lln98yQuPzOC7fWcYnhiFTZb5YX86M8cmsWprKnVNrYxKjsXzEno0XSEuuhuP3atuIlNJ4OHZ42hpMxEdpEYzhvaMYMORDGRZoaimkd2nczu1ca89chpZUbDZZF5bOI3hPaPs7z369TbKGvQU1DQwunc0Q3tE4uvqgt5kokdgAON7xvBJygn1L35BJNTbq8PciWFB5FbXo9NoWHnbHPZmFRDi48XoHtGd7iUo0ItVb3dMd27ZdZZX3t2Oj7cbH7+2gAB/D7QakcdnXGgZ33eugHXH0lEUNcpR29zK8YIyYrv54efRNeGcPr4v2w6dw2SxsuCaIdQ0tGCy2Pj65UWX/ewBKg3NLNi9Bqsik91YS4J/EK9mbsUiS3w0/CZu7zGSLeXpoCic01eR3lRBku+v1+vUNrZyKqcco9mKq7OOwsoGNBoNXCRh4enmwgtLr+aZT7bR2NyGrCh08/VgycyReAe4s/5EOjMHJjKy/fPsERxAj+AAVt5xHTPfXNWePgVZkkEAbTtZcXHSMn/cAIbHR3dY04j4KFKy1IisoJG57+C7tHlXY5GtuIhOWGWJLVUHUVCQFJnPCn7gtf4PomknhSsWzOaH05nE+vtxML8IXzdXenQL4B/fb8Mqy+TU1GGTJTz0Ah4V6mL2HM8BB0n6gxAcYpIXwUGSHHCgHeNHxZOdX01JeQN/v3V8l2O0Wg1fvnMbr7y3g6yCKtI1rdhkVQU4Ifzy0iIXIz42CC8PF6xWialjejM0OYZNe9Q0hSzLGFrMvHb3DPv4eZNUFe+ZY/tS39xGUBfO8r8F/p5u+HteIAYTk3uw6j5vbnrta7LKanlk5Va2/zMMP0830kuryK9uYHJid7acysHDxYk+P7vnYB9PaptbkWSZJzbtwt/bnZULZtNsshAfHIiTRsPCYQM4XFBCn5Bu+Lt3JCUrb5nLqdJKegT54+fuxrwhvy21+tX6Y0iyQovBTMrx/C47+jxdnREENTLhrNUQ7ufNks83oNOIbH3wFnzcO8srRAb78uM7dwBwKruMuQ+sQFHg3vljmTWp32WtrbC5gambP8aqyICCFQs/VZ2j2aqqnr99bi9nmypQFAURAZsiE+Ti9cuTAueKqln84lokScbFSUtiXAi9o4PsxsWgWsVcN7Efg3tH8sPLt3PwdAHB/p74e7nzzKfbaGozog10osVk6uIKSodCXgFArTsnwMuN3c/d0eW6nrlhMvNeWU1jmwFBJ1PrXIooKWgFDSMC+jHEPwF3jQutktrZWWAoY/6RR/HTeaMTtTzW53YWj1bryyb1UWuqDGYLni7OmGw2unl6oNNoCLz434AjTeTAnwwHSXLAgXZoNeIlydHFcHHW8eR9ahqqpL6J/ecKKapr5IGvtnDvFSPpHdoNWVZYefAEVU2t3DFhyCUjFB5uznyz/Db0LUYC2n/ZTxzRi31HcnBzdaJf764LdnVaDcF+nVNQfwbigv3RaTTYJFntPlqzi/HJcTz93S4kWaZ7sD9b/rEIPw+3TrpPby+6hs1pWaw7nc7Z2hoaLEa2ZeaxZPSFYmp3JycmxXfvdF2bJLP5rJr+SwgNaveM+/VUU01dC+WVjfTtE86UsX1Y9c1htBqR/okRXY4fGB3GK/OuIre6jrlD+jLxxU9UOQAnHUV1jfTrgiRdjOMZJVisauptz7EcZk3qR7lBT2ZjDSODo3DTdt1htbUkC+tFqVJEiTNNZWjbIyehrt6caSxvr8dS0CqwuzKLG2OHdDmfzSbx0Q+H+WrHCaw2GVlR6B4RyHsPqjITN00ZyI8HVcIdGxbADVNUgq3ViIxKiuFoZjErNh21mxLbquFUaRUrD5ykm5cHz8+dgoeLMz5urogXpeM0ooBNVBC1AqsfuKHLteVW1HHz618jywoxowxY/OsQ20NPNkXCKttwEp14Z+Dj7KhK4YfyvRgkIwabkVabWjf2bekOlvWYh8Um8cQPO8itqeeZ6RP5cdkC0iuqGRildqAunTWS3ak5NLeZ6N8zjMUvruW26cMYmhDV5docuAw4yKYdDpLkgAN/AJH+PsR08+PN7QcxWmyU1DWx9eFb2Hwqi3d2HMYqSZQ1NPHuomsvOYdOqyHA14Nmk4md+fksuHk4d908Fi8Pl05aSOl5lby3Zj9JPcO4Y+5IsopruOv179CIIu89NIe4sN/n71Vep+e7/WdIjgtlbHIcn949h7UHTrP5eBZ7z+bzU0YBNq0CAuRW1XOuvIYJiZ2JjqerM/NGJFNnbSMvpQFFgYSQbtQ1tPLlt0cID/Nl9rQBXXbjffDTUT49eBybJCEr4OXizLqlNxHmc+loSmW1nkX3fIaiwJD+0Tz3yLVMGtsbT3cXPH9m6FvbYmDhh99Q39rG6zdezR0TVLmDuyaP4N1dh+kTHMiuXecw9DMycmBcV5cDYOqI3ny38zRtJgvzpw9mZd4hXjvzE5JVRw/vQDZcsajL80aHxPDK6Z/sr0URzLINrSCiAL19QkjXV1LUWq/W4QjQZjN3OdfHkOR3AAAgAElEQVTGA+n8e+XODlYuOq2G268ZZn+9dPZIdEFOpOSXcPuE4R3Ssk99vJU95wpQjBJajYisSCgatX7pbGkVWo2Gb4+dZeagRK598wtkRUEAdBoRoc6GT48mnOJMFNtKCSahw9rabCZOFpQjKwpmm4QtJxTd6Hqki3beM02qDpO/szdlxirapHYPwYvGhLuptWq7svLYlpGLRZK4/fPvmRwVy62TBtvb/b09XNn+1hIyC6u48+V1mK027nnje1ycdCyaNphF036/TpMDDjhIkgMO/EF4ujihKOpf2F7tbc7nO8dQoM1spaG5DT+vXy6wvunbbylsbARgxy23dCkW+fjyH6mubyGzoJpBCZFsOJiOvt2k9pvdp3h0waTfdQ9L3/yesromnLRaVj16AwmRwSy9yp1tJ7KxdTE+Nb+sS5J0HsvGDGNwVDheLs70Du7GPU+s4XRGGVqNSFFJPYuuH0HAz8x9K/UtWG2SPWLRbDIz491V3D95NDdeIu1WWFIHCphMVo6eKeJkTQUDgkK7HLv1dDYVjc1YJZnlOw7Za29uHTuIW8cO4urFH/B9Uxmb96bzxasLCA/u2qsuItiXLe8tAWBVwSHeydmF4CQhKVaymmq7PEeWFdbvzyS02IdavxZc/bVMjoqiVTJxoDoXURCpM7fy48RlNJgNvHR2Ox46Z+bHDetyvi+2HUeSZAQbiFoBH283Nrx8Gy5OF74zZ8uref+noxitNnK+riPlH0vs7+0qK6LZ2wZeMDu6Oz0iutEiWCisbeSnLFUfKcTHk/zqOtrMFpW6yOBVCZK7Bff+zQg6hVdyPmdd4Cv2edcUb2N18Va0Fld0riHIiogSV45W0AFWJEVGkSEgsy93Hf6O++eNwyiZERDQICK1UymNIDI+UFXV93d3swt/GtosbD6excn8crY9c7v9uhpRJLDd21AU1MYAg8nC+9+nsPCqIV2ScgcuAcVhcHsxHCTJAQf+IJIiQ3j1xqvIrqhlzlC1Tf3q/vFU6Vs4ll1KZloZ15z8hLfun8nAXl2ngABK9HqMNhuuWi1VLS0Eu3vwrw+3kXK6kIggHxr0BloMJkRRwGZTO7gCvNztCshbT2dj/QYemz3hstJUF8PU3kUnCOrPAMG+nrxx+zX8lF7AoJ5hPLNuFy1GCx5uTswb8cu1QoIgMDQ6AllWsEkykk1V2rbIElt2n+VQah7fr7jTLtgpyQr3ThpJfauBiqYWCusasckyrRYrz2/dyw2Dk7rc6JITw9EE6JCrrFT0tDJ381f8e8Rkru+VTJPZyN6yAgYEhhLl5Uu/yBB7W/voXjGd5rJdVMNjs8md3v/5/QE0WgxqDZEArloNDyV1TVJPFJWzMe0cRosVf6sHBxcvQSOKlBsaefjE97hodCzqPgIAP2d3XhrUWc7gYlwxNJ6PvzkECmhlgUfnT+pAkJqNJj46eAyzTUIEvFw7RtV0XlposyIA9S5WRLOe/h6BlJXXck10DwryaynJrGP87Fh8nVyosrbi3KhgNcqI2vbvlgTeLioxURSFTws28EP5PmQULE5t+EzJx1PrRoutDaMMUe7ByIpEz8b+rE8twGSx8eTHW3nrkRv4rHA9vk7exLqHsb0qhStCRuLlpM49IDIUL4uWNsmGaKHd8qXz9zu/qJYIN0/8/N05V1WLTZKJCvZ1ECQH/hAcJMkBB/4EjO8Tx/g+F1I0GlHkjglDyT5bic0iYxVlPj18HA8/F3oFBtrHlen1HCopYXBYGHG+vmTW1jImOpp+ISFkFVSz91gOJosNfYux4wVF+PS7FEb0j8VJhlYPMMsW1h9NJ8TXk79N/m0phjeWzeDjzUfoFxdKdmktLW1mRiREM7KP+t/mE1nYLDJOggabWebJr7bz3h0zf1HyoLisnjsfXo3ZYiMyTNUdUhSVgDQ2GbjnibUEBXiSeqoIfYuJx+65kg9unglAbk0d8z5Zg6JAqI/XJTe6o3VlFAwxYzzfF64oPJ6yk8LmJtbnZ9BgMiIIcHDuHSRFhrDxvgU0thlJCOtcZP/6Y7NZvTGVEQNiiA73R1EU/nX2B7ZWnGFmxCDu7z2Vt7J2UGSo48HeVxLlEcCt3cdQbWrGKks8ljgdP2f3LtcZ5O2Boii46LRE+PnYN/kwd19Wj7mty3N+CbPGJbFuaxqNzW1oRdEuWXEey/eksC+7EEGA5PBQXp/bsePriWkTeOKHHXi6uHC4sASbJLOxWcG97AI5LC1tJCk+jM9un8OSp9ZgMlkxCzbkFi2tPwQx75beXNdHreErbatic+VBu1I4gIiAh9YNs6yS7tnhk5gYNISjGcWspwCtRsTX0xV/Z28ejF9kP298UMcaLJ1Gw5p7b2T3mTwEATJLath7Np/ke95gwfiBPHCtKtL6+OubsFhtVNU2s3jeKL7blUb/yFAURXEQpd8KR02SHQ6S5IAD/0HMmzyAo5nFNEbI7NOXsP/rr/nx5puJ8fXFZLVyxapVmG02dKKIAFhlmaKmJkRBIDjAC80lIkKyrFBQXsfTS6/iyJkiUqsrMSg2JFnhw+1HuWXC4N8UTeoTFcQbS2fw0IebOHhW3VzfWDqDob1VSYMavdqxZpVkkCCrvJadp3OZOfTSvlq795/D0GZGUSC/qA5QU5LdAr2QZYVT6aVotWK71YrCl+uOMnlsHwB6dAvgx6ULOFtRzcjYrmUVqgwtpFSUYJY6JgQlReHj9GPYLmrJ+nfqPt4cezVhft6E+XVt59KnezDP3z/d/rrW3MKPZaewKhJrio/Q3aMb35akYpKsNJoNfDlqCV46V17oP/cXn21ti4HTJZU8eOVoJEVhfJ/YXxx/OVj2/De0tqlRxRuuGsiQxChaDGra1dPdBQ8XZzSigCRDYX0D7+w9zJ3jhtnru3Jr6rBKMk1tRmjXfhLad0ZRFFQxS0VhT0oWCnDTNYNpazPT0mZmy74MJiX05c5+k+3kw8fJC40g4iw64aZxJsm7B246V+ZFTsEsq2m2yPYao6EJUTx5yxQq6pqZPT7psu43Ntif2GB/qptaSc0ts6ezV/900k6SfL1dqW80IEkyK75NwWC0sKk+nfFDe9K/j8Mc14HfBwdJcuC/GpW1eg6eyGdIUjRRoZenWv1bMKRPJD+9dxcjPvqQeqMRN52OMr2eGF9fipqaMFrVv7LNkoSTKOKq1RLnp67Dz9uN1S8uZG9qDicyS0lJK7xQ6wQ06I3c/cI6vnppISW1TVz70kokWUGjuby/ms1WG3vS8ggP9KZvjCrQWVGnx2y14aTVkFlczdDeat3T+j1niPTzodlsptmoFhP3Cg2kyWDk0S+3YrRYef6mKzoQkCEDYvh6vWrk2qt7MOlZ5fTqHsw7L9zAYy9soKHJoLaTCwIaESaO6ai8HOrjRehFRdsGs4VXdh7AYLbQ5mFlU3mW/T1RENAIAmHuXjRbzDSYjYjA+bhIo6mzoe6vwdfJDX9nD/RWIwHOHgS6eKrpLUHE2+nyBDybDEamvfo5BrPFvs7Xth7gzflXMzb+95OlmoZWrDYZF2ctI/vFcuxsMQ+9vgGA1x+axdKxw9CIAu/tO0pjm4l1aRlsz8xl3wN/w93ZiR9On8MiSbjqtEyMjyPE24vB/sGcSi9j1MA4zmZXkFtcw6Z9GYCahtWIIuOG9mDXqrvZW53KnEMP4al1Y3hAMhXGGu7teSMlbVV8U7KTww1n6O0Vi7fOg13Vx/DWeRDhGoQgCGw6lMHzn+/E3dWJKUN7XbbO17ubU/h4x9EOQQ5JVrh1+Tc8NW8y7z5zPfMfWIlNkmgzWdBpRSxWG+k5FQ6S9JvhiLydh4MkOfBfC5sks+ixLzGZrWjXHmLje3fg7vrnG2RqNSIvTJnCc/v2MTA0lBGRamQkwN3drnSsE0WWDhtGRXMzj4+9oFwcHODFDVcO4oYrBzFl8Ts0Gzp2OxVVNGC22Ijq5svy22ew63Qus4f37TKKpCgKLUZzu06QwJMrtnEwvRAU+OD+Ofx0Op9zJTXotGr7/4c/phAb4sdzX+7kfBPVshkj6BMXTLCPJzFBfizffIgjOaXIisxbPx7k5YUXFLoT48P49pM7MFtsBAV6YTJbcXbSIggCTz9wNZt3nSU8xJfE+FBaWk2EhXRdKH0enx46zrqTZ7HJitoi7yVi81FpUIJfN9x1Trw/fgZlBj0PHdhGVVsLKArhnj48NWwigCqiKCv4+3SdFuvwuQkaZkYM4HBdPvfHTyXJL5J/Js+k1NDAddFdt+X/HGWNetraCRKoBf0Wm8T64xl/iCT96+/TeP+bgwxNjCKhewjPvL8VS7tw5I6ULAYlRHLriEF8lnKStvYaM7NNQm804e7sxMLh/Xlp2348XZwZ3T0ao9XG4MRo+saFggDHz5ZQWtlov955Hz6jyYpZsvB69mpkZEwWCxsr1I690025PBS/AFEQMcsWakwNfJD3HburU5ENGu5JsjIxdBBf7TipmgMbLfx4MANnnZbtR84hyQovLZtOTKj/Rde9kCr75tCZLrNAJ/LLWfjmGrY9dZta+C/JiAI4O+lobTOzYt1hBiZG0qd7cBdnO+DAL8NBkhz4P4F9B7M4k17GrOkDCA/zI7e4hrue+xZFgeWPz6FXTOcaFKtVwmC0IEkyigJGk+V3kaTzkZdfqnuYGBfHxLiObeUBbm6smjOHXXl5+Li68sGxYyiAh5MTj48b12mOaycksWbbSQQBokP9KSpvYNakZHsX3OjeMYzu3bkgWZJlJEnmzo82cCK/jP/H3nvHV1Gm7//vZ+a09F5ISEhCgITee2+CgqiIiGBDwbp2XXvBsuraK1aKFaSJIALSa+glhBJCSO+9nTbz/P6YcEIEXN3dz+e3+/nmgrwIZ2aemTlzzjzX3Pd1X3e/9jHMveMazhSUYXe6sVlM5BRX8tX6/cb6muG543JL9p3MxcdmoabBmOhX7Ejltsv7kV9ezdPfrqXB4cKkCIQwERt2IckJPK9lyvnVej7eViaM6cp7n29k3eY07rt9BN/tPUxhdS0zB/YiwOvC6IK3penaCARqXRNJOlVRio7k6V3r+WjkJBICgjhZUYKCEV2qdNjZdzSLR15djpSSR24fzcSRXS7Yx/nYV5bJ/DPbadBcPHV4KT+NeJDLooxtpJS4dA2zojbbpqiqlvWp6fSOb01SVBjJUeFYzSr2RgIjhKGxubbv7+/7YsjIKWVjykkG9WjLgG7xDOjWdK2vHNaZTXtOIYTg8qFGytLHamHx7Gm8++sOjuQXMblHJ09k7qb+PZnSsws7MrJ4ZOkapJR89NMOOO3Ax8tCXb0DRRWYTQpuTadTu1ZU19iZPK47mtQuenwSSZ+QToyM6ENGTQ53JE7mm6w1lO/yo+GUHy+u3kmvVzoxvn8S6TmGsHr+6hR0vaka9OPlO3j9niuRUvLYgp9Zf/AUl/dO4pUbxzOqayJLdx0FoEubCNIbP79gVJBaLWYemzWa1z9djxCCuoaL2ye04A+gRZPkQQtJasF/PVL2neHF11ahaTrbd5+mf+8E9h7Npqq6ARTBojUHePbu8Rds52Uz8/isMXz/834mDu9CaJAvqVmF7DqZxdju7WkT/vuRDYCPl+3gy1UpBPjYeO2eifRKunT12sXQPyaG/jExfJiSglvXces6udXVF1337uuHMnF4F/x9bOw+chaTSWFk3/YAZBSWMfvjpWi65OM7ria5dTgAZ4srmPHOd9Q7Xeiajg7sSc+hoq6BZ24cw5yv1hMXEczmw6dxazpCgI/NDEJgNZuYPLQLo3u34443lyCB8X2TySwq5/q3vqXB6cJqVpkxrCftokK5rHv73z3XkrIatuw8RbdOrWmXEMGiH/eyfrPRAqWorpZd5lLcms6ZknLev37iBdvfPKAHDrebT7bvweF24/YzCJLa6DOk6ZIapzExJgaGYDOZcGoam3LPsCUvkyurEzzRltc+XU/HxFa0jb24r5Qmdeamb6JBMyrAvNQmgmbXXNy881NOVRcys+1Q/pI0BjCI07SPvqOitgFFEax9bCa55VUet2p/LytrH52Jqir4WP8cGXe7NWa/8B31DU6+Wb2Pnz64Az+fJiLZq1Ms6z65BwSeKrddZ7K58+sVWM0mvp55He0jmp+rzWyitLYeKY0oU6Vdw0/Tqa61G55IZpWn7rqMHh1jueaez3C63Dz11k+s/fIeHk++hR9y1pPsH8/20kPoUufhDjdhUczc226qZx93JU7h18yvQAeHXWfcg58QGxGI1WzC4TJ6EZ6PDrHGw0xpdR0bj5xGAr8cOMlj1wzn2etHM7ZHO6SE/h1iEUKwZMcR1h06xa2j+qAogjGDknj90/UeI9KhfRPp3z2uJYrUgn8aLSSpBf/V0DSdOa/9hLuxMW11dQM/rzuKW9NQTaB7q2Rkl1BcVkN4yIUO1ROGdWbCMEN8XFHbwMz3FuN0a8zbsI/tf7sbRfn93Px36w8AUFVn587Xf2D2pP7MmjTwT5/HdZ07M//AAaodDlr7+9Pjww+xqipvjByHs9LJgK7xeNnMxEQGMW/5bhasTAGgrLKO6y7ryXfbDlFSXQfAgk37efVGgxSuP5xOrcOJrku8rWZcbo1OMREEensR3Nabpc/fTE29nREPzQUM3cm8x64n4byUB8D6v8+motZObHggd8xdRkNjCkfTJT3ioxjayUgd1dod3PXJcgoranj1xvH0atukBbnrsW+oqKpHVQTffTILPx8biqIghMRsVUEzIgpVdjvr0tLpGxdD4Hl6FbOqcn2frny+Yy+ql0DzBrNqws9sIdzbl+PlJZgUBV1KHuwxmKSgMF7bt5WsGkMIfyaoxlNhh5S8NW8Dc+6fcNHUW3p1Iccq8wDjofq93tM9y45W5pJdV44Evjm7y0OSAMpr63FpRhXg22u2kxgZitIYYQzy8cL/T/TZOx9uXTdcvhvfc6f7wmiOyaR69lXdYOeub3/EoWk4NI0Vh9J47LKhlNTUkZpfRJ3DyZMr1hHs40WfuGhKa+rwztPJUcuJCvcnt6ASTZcktglHNv4B4/smgUFh3RkUZrRjuSPx2ksed5RXGDeP7ce8VXs839HMgnKC/LzQpcTf20pZdZNeLKfISPEF+XrTOiSAwooaokMCPBYG/Ts0d9G+dlBXurSK4MFXlmJSFT56YSr33zKC71ftZ/ywjtw25c9/F1vQgvPx58xUWtCC/zC4NZ36hibNR3KHVk0ToW483Z/OLuGdrzb9w7Fq7Q4cbsPMrs7uZMBjHzDlta+orr9YPysDw3o0T6F99uNuHK6L2S8aMCrEjAnu51On+HD3bioaGjhUUIDd7cat63x9+DDVDgel9fXcO285c+b+wv2vLqG8qh4pJfklVTjdGi63Rn6xEXXq1z4Wq9mE1WxiYFLTRDIoqQ1Wk4rFpPLwlUNZ/dRM5v9lajPy5+tlJTnWSAvFhgcSG3FhBM3P20ZseCAAMSEBmFQFRQiu6tuJIR2b0j6frkvh8NkCiqpqefKbXzyvSympqKrH5dKQEmpqHQwZ0I5ZM4Yw68YhvPrAVdzYvweXdWzHkdwCHvhhNVd8OB+9UQxVa3cw4cOFDH7jU5xuDb0BLIUqS6+YzvprbiOtvBgdyY6CbDKry1GE4Ir4JN4dNgEv1WQ4SbuLGX2TQYh1CQeP5XLv84svep2ivIOwqWa8VAtdAlsT6R3oWdbBPxJvkwWrYmJoeFPXeiEEf592OclRYQhgxYE03l+3k5nDenNFtw58cNOki+zpj8FmMfPK/VfSu1Ms113Wg582p1JWWedZvvPQGUbMfI9xd35EdkE5+7LzPO8dwND28RRV13LFBwt4+IefefLHdTg1jZKaOnafySGrvJLkgTH8+PFsfL1tRmsUXbJjfwYhgT48/5fLGdY3kTeeuAazSb3IEV4ad149iO9fvKnZa5/89ToSooKpbXB4iB3A2pQTnC0ox6QqLHp0BvPvv47vHrnhdx9W3l2wicrqBkor6vjb3HVcO64HSz64vYUg/SuQ/0s//wVoiSS14L8KGZklfL5wGx2TWjHjuv5YLSZunjaQ+d/uQEo4nJrD7FuGMe+b7TiERBPGE3bYH2gEG+bviyLwiJTtLjfZJZVsST3DxL4dL7rNnFnj6RgXwbuLt6IogrBAXyyXmEROlpZy3fff49Q07uvfnw9TUnDpOrtzc3lx1CiklHibzcQFBZFeWoouJdZ6gd3hIjWjgIn3fkKP5NY8c8dlFJRWo6oKN13ZF5dbY9GOw2i6zpSBXbmyT9OxdoyJYN2zs7C73EQEXvw9EELw5V+nklNUSUx44D+0Dqh3OBsN/QTjenRopsUqr2mKCpzfMkMIwfOPTGTBol0MHdiOQ0ezef+LTaiqYGCftpzNLuPuW4dzrKSENceMlhVldQ3Y3W68LWZSzuaSX1WNlBKL2URUgD+zh/Shc2gEc4+kePZjVgTW83RCPcKjGBIdz6bcDBQhGNApnv0BZyivMo7zt/5TWfnlPPnGSsxmlU8fmEmVuY6uQc1TqP5mL1YNf5BCexVtfJpH3MZ0bsfoTon0ee5DQAMkE3okExsSyL+KIT3bEhbkyx1zvsft1li38zg3TuhL3y5tmLcixSNa/nX3SSaN6Yav1UKNw8EVnZNwuNyMfucLw8LhPGhSYhKCBpeblMwcnrliJBNHdeF0Vgkmk0K/7gYBHtG/PSP6G+nUTbtPkX62mKvHdics2PB/Wl2wjdPVuXQIaIOCwsiIPpiVpuklPiqEV+64nKWbjzB1dA/aRAZzKrsECVjMKkhwujUUITwkzGYxkRzTpCU8W1zB5qMZDEqOo12UkTqsdzipbGh6iDlng9CCFvy70EKSWvAfjdrKOo5uO05S30SCIgJ55uXl5OVXcuBwFsntW9G7Rxwjh3Rg/vxtoAp0oH+feNq0CqKorAa3WaCoggnDL+3ncw6KgAcvH8yWE0ap/YEz+dhdbnLLqqhpcHDHR0vJKq5gzg1jGdWtHWBM/tPG9mJM3w4cySigd1LMJQXcP504Qa3TiHqtPmUQAbeuU2W3ExcUxJqbb+ZsRQVVdjuPrV2LEILAeF9Ul5PKmgY0Xefg8RxsFjMfPNnkzXPwTB5HswpxazpLdx3liWuaN+kN8LFxMWcgXUrq3U68VDO1bgeVlnpilH88mWcWV+DSdKxmE9mllfRt10Qibh3Vh1+PnMbp1nj+ujHNthvSvx1D+hvv26yHF+Jya7g0WHsgHQVQVMG0af09FX9eZhPeFjMFRVUs/mo3LrOGRVUJcVroVh9Aa6sfh07l8sXevZzromB3a0xY+RVbp8ymvsbB3X9fgtOtceuEniS3juCyNu0IvMfMs++sRqgQOsHC3FMbuaPdCIQQfPHDTjJzy1AUwZq1adx/ywiO5RaxLjWdcV3akxxtaL28TBbifcO4GIQQfDLzahZs28/oTokegrT/cBYvvb2aVhEBvP7stfj6XNqIE2D5lqOs33OCG8f3YUDnOABq6x0IIdB0SWZeGa/N+xWLSaGuMZqqqoK+XeII8fVmw4O3UVZXT3SgP/d8t9JDkCyqSoCXjZLaOuP99PGi3uXinuH92Z2ZzZihSQzt3Rar1XxBIcPRk3nM+WANLrfG7kNn+fLVGRyqPMmXZ1bi0JysL96NCRM7S47TyhZNG98wxrXqQVFlLZpV8NpfriSgMeV48+V9+WbdPrq1j8bkZ6K6vIFZl/cjOuzCT6tL05jx1nfUO5y899N2Ev2CeHHWeD5au4vTzipUxdBYPTRz1O++py34A5BAS1sSD1pIUgv+Y7F9eQqv3fIhUpfYfG18dfp9fLysKIrRysLby4KUkscf+A5zg5EmExaFZx5ZTHlpDapJ5ZP5s2gV9Y8nfiklt8/5nqyCcgJ8vbjp2r6kZhXh1DRW7T1OTGggGYVGNc3bK7d5SNI5hAb6MrJXu0uMbmB4fDzzDhxAl5KZvXpxuqyM9LIynhhqmOFF+/vzzskNrD95BrdU0XRJqzaBfHnfNdwx53vSzhTSrX00/r9p3JoQEYLVpAKS7vFNfcvq3HaqnPVEeV/o//Rx2nbeTN0MQKSXH7UuB05do1doDDPb92NX8VluaNuLOL9gHJqb5/avIaeukhd6jefpa0fyzPfraB0cwOU9m7yN9hzM5OCRbBbffwNREYF8snwnz360mnH9k3h0+shm5PG6K/vwyrs/4/AWuBuL3s6WV9I6KIBPpl/NzjNnmdyjMzW1dh5/eRmZWaUEqwKbr4XaumrW+9exOf0smi5xBGqQBCjgRqfe7SK/tpr3vtxMTnElAMc25fLUCyMB6N89nnXz72XCprc4Ul9E+pl8uge3oX9oW5ITItm+7wxISYeECEqr65j64bdICfO27mPPC/diM19426xvcLJy7WHcLg2LxcTwQR1478Yrm63z/hcbKauoo6bOwaYdJ5g49tKtXfJKqnjjm4043RqH0vPZNvcvqIpCr44xTL+iN/uOZZN6ugC7w4X9vCKu3h3b0DnR8LzysphpbTEIx7U9O7P9dBaKEMy/5VrsLhePLvuFqAA/nh4/HLum8dCS1dQ5XQQ26n9aBfjz8bQr8bc1fd7q7S6EMMxMz09zAzS4TdhMbsqdKmsL0oF0rMKE1AQvzd2FW9cJ9fNm9RO3IoTgnmsHc8+1g7nt4yXsOHUWi0nlSEERKw4fZ0Snts0+Wy63ToPTZUQnJZzJL+Pv32ykWnXjkDq2GAuPTB1N9+TWjetrPPfOKtKzSujSIZpNu0/Ru0sbXn30you2NGlBCy6FFpLUgv9I1FTU8vL099Aaq5GkhMqiKv72/DX8uPoQ7RIj6JgURXV1PSWNuhwB4NQpzDcmRqsiyEgvpFVUIOmZxeQXV9GpXSS/bEkjrnUog/s06YmcLo2TWcUAaNV1xIYEYjarIODy3kkkxzRGECxmeiREU9fw5+0CekdHs23WLJxuNyibLtEAACAASURBVJF+F4rIj1UWsLHgJA4vF9LmRa/AGJ4bORJFEXzy7PVUVNcTHODdjGw0OFxs2HuKF6eMJTDQm46Nx5nfUMFNO9/DqbuZ1mYwd7W/rNm+Pjmxy/N7qb3W4069u/gsB8pycWpufs5JY/vE+/kpO5VVOcewa26e2PsTP4y6lWWPGRqTg0ezOZKWS9eOrXnylRW4XG7WbUlj4Ye3sfCXvei6ZMXWVG6+vC8RwcY519Y7WLBpP3qkheToMFLPFCAE9OkRB8DgxDYMTjR0Vfc99T1Z2WXGZ0CT2KsdYDPO/1xkxFqhELZLUN9ap761pE9oFO2DQlHP07Eo4sKJ0c/khSqM6jNfkxHVuX5CLxLbhGE2q9jNOiNf/cxTnabpEremwUVI0usfrGXrrlO4NR1VVVi8ch9LvriT+gYnc95cRVFJNTHRQeQXVSF1Sdu4cM+2lbUNrNyWSnyrEIZ0T6C0qo47X1/kEWdLKfkpJY0tx85wy6je3HBFb/YVFqDWWvFpgGqHA1mvowrBjAm9Lzg2gJFJbdn+6Gx0Kal1OokK8GfbI7NJOZvDjQuWIJG4NA1d4vFVKq2tZ+WRE8zo290zTt+ubbjp6n4cP13I7OsHA9A9sAO3JVzFy0dX49YFLr0p3emQbl5OW4K7nYWGo37klRuu8KbzDE/P2WfouuTTX/fg1nU2pZ6hS2wkMaHGA4631cxL0y9j7prdFOZXYjGrJESFMHl0d17+YQPx4cF4uxVufGQBI/u3Jz4mlN2Hs7A7XOQVVQGw62AGp7NKLmoH0oLmkP8leqH/DbSQpBb8R+JvM5oIEsCYG4cSGR+OEILbbhrieV3/nUaksW1C6dU3gROnC7nnme8RQmC1mqirc6CqCm8/N4WuSdGAIQA/p0fSNEnHNpGsff52qurttA4xnsaXP3EzB0/l8uaXGxn763GeuX0s4wZdXKsEkJZfzOz5y1AVhS9mTiYxPIRgL69Lrt/aOxCTouBjNpPQPpDFI6/3LFMU4anCanC4OJNfhpCGr8zBU3kg4MNHrsWsGhPU4YpM3LqGU3ezLCeFa2MHEGZrcq8eEZXIzzlpaFI20096qWb0xlomp6ZR63KwMT8dt66jSkH+6Up2+mdgNquEBvvy2JyluNwaNqsZZ6Nnjd3hwmY10SrEn/LqerxtFgL9ms5766EMsgrLsTvdlFTVcuWQzvh5W7lhbK8L3pPyyjp0KRuduY1UVvuoUEpwUt3gaGrMiyCoyMLEiHhevmICihA8f/t4Zv1tETnFlZzMLub1bzbw2PSmdMz7fWawLGcfSf5RdA40IhBCCPp0NQjazM+WNNNVdW4dccledUUl1Z7qLU3TKaswGt+u23yMfYfP4nRqWC0qLz0+ifBQf+JimrRMj32wkqMZBaiqwgcPTWZX6lkKy2o9y4UieGXJRhwujT2ncnhw0hAOZOQZJMrHhrSo2K2S8EBfenW6eAsXAKvZxKS5X5NXWc2ghFjm3nAVh3MLcOkami4bBdTSk+506RoxQf7NxhBCcMs1/S947YqowewqyeHXwiMX7FdDR0TaCS4NZna/wRdo3l6ZNo63V29j5b40z/stkUhdkpZZSJvIYHy8LIzvlcT4XkkcOJlLaWUtI3u1w2RSWfjA9TicbkbOeBcJZGSX8tRdl6FpOhaz6rF90HXw/h8wi23B/238Q5IkhLABWwFr4/pLpJTPXWLdycASoI+Ucp8QYgzwKmABnMCjUsqNjetuBloB55STY6WUxf/a6bTg/wI0TWffuqab7eNf/YWR1w+ioqKOt15djSIEDz1+BQGB3kgMAnGukqdtYgSh4X5MmNST/oOM9NfZ3DKju73DhVvTDA8Vk0p1TZPIUyIxmYwbqsmkIITA18uCn1fTpBgV7M+6klrqHU6khOc//YWOCZHEtjLSWbnlVQR42/BrnEjnbdtHeZ3x8f529yGevfL39RJBVm9Wjb6L45WF9A2Lu+g6DpebqU8voKi8xqAyxl9sFhNF5TWe9fqFtMfbZMXudFHrbuDuvZ/xw5CHPcvf7HcVdyQNZFvhGd49tgVNc6MKwVv9r6LUXse2wgzuSB7E349sZFPBadQK8DpjQpxy8cSaZdisZkKCDSH4b1Mv984cgaoofP3cDPadyGHVjmPMfPk7nr5lLMlxESS1MZ7kbRYTAzrH8cRNowGoqm7grY/Xk5NfQUVVPddN7MV1k3rz7qcbcLs1FEXQs2sbnrhvPKHBvry/eCsLf9kHgElRQEJCVCgmVSG7qIIfNhxqFu37YeNhEgb7Mzm2N0IIQm1+zG43Ak02EW1d6jx5cAlbC09RZzcBVkyqwgtXj2Ziz+SLXpPD2QWcqapo9pqm6cx5axXHjufjdBqTdMbZUswmFZvVxKFjOXRJikZVFSprGjy+PlV1dorLm/tkXTeqO9+mHPFc/xW7j3miTDUNDsIDfCnV67jrcqOaq6yunk+27SE2OIDpfbp7Io9nyyoprKrBpWlsTs9E03Umde3I8kNplNc3UNMogNYawwhSwgurN7LizqhmKbdzkFJyqrqAV9OW4W/2ZnRkVzYVpqKhYxUmHLKpylMIGDYmlOndejQbo9bu4M7PlnG6sKwZIR3YIZY5X6zlZFYxfj42lr5yK16NZqQ9O1zYYqS23tGM7C9YnmLcF34TEokMbU76WnAJtESSPPgjkSQHMFJKWSuEMAPbhRBrpJS7z19JCOEH3A+knPdyKTBRSpkvhOgMrAWiz1s+XUq57187hRb8X4Pbef7NVdC+VzyapvPWq6tI2XUaJEyddJqkjlGMn9AdVVXQdWPSyDxTzNz5tzcbb/iA9qzffoLsvHJunNyPTTtP0j4+goG9mtpC+HpZeePBq1i1NZWJQztfMpU2qFs8H/+wHTAmkbe+2cw7j1zDBxt28fnWvVhUlSX3TCc2JJDB7eLYkJaBBAa0vfQT/vmI8PInwuvSN/Ki8hrKqus8N3+LSSUyxJ+uia0Y2TPRs16w1ZfXe9zIPXs+wyHdVLnqmo2jCEFSYAQuXePdY0YEaXBEAqOjjZL269v2BGBp5mEAVCHwO21CYBgtNthd5BVUcNfNw9h9IJMDR7LPG12wLSWdAb3bUlPvYPexLBxONy/PX8/Xz88gITqEH16+haKKWroktPJs9eG8TazbnOYhvO98tgEppSf0bzabuPm6AYQ2krPdx7I822pSx+2Gr9bu45rhXbn3jaUUllU305/o/m5eSl3JwfIsDlVkU+Wqx0u1UOKoYVBoO97vO4NdJaf5pcBwdSbegVpi4bbBvRncIY7HF63BZjbzyOVDCPBuiow99v0aSrDjI0BIUBTjs7Fx2wnO74HlcLp597MN5BdWgYARgzrwxH3jefnOK3hn0Rbax4RRWFZNvcON2aQAgvumDOH6MT3p07kNH67eyYm8Yo7lFOFrs1Brd6JLSXSIP7+8cJuHDD26bA0pmTlYTCqhvj6M62hUpQlhEFO7282VXZNQFYUIf1/W3HsLLk1j4BufUGN3YDWpOBpJWGltPWvT0pnSs7lDeKm9mtkpc8m3VzRecdhXblQQxniFkVdfxm9xqqbQ8/vR7ELsThcl1XVkFpdf4PtUUl1HRnoRABI7eSWVJLa+uFAeICTQh6vHdGXN1jRG9GvPL9vSkJJmfQyjwgP+tH1BC1rwD0mSlFIC52K/5safi/HMF4HXgEfP2/bgecuPAV5CCKuUssUvvgWXhMVmJioxkvKCCmzeVkKjQ3j3jTXsSznDuYd+TdPJOF2ELnXMZhWXS0NVFbr3bPIIcrrc7Nx3htjoIN58erLn9StHX7zzeL/ObejXuc1Fl51Du9gwurWP4vCpfAACGkXUqw6f8JQw783MJTYkkEk9O9IxOhxVUUgI+/c0z20dFkjf5Fi2H8kEIDEmjKmjurNi61HW7z3F+AFN0Y5OATHc3HY4KaXpzE4cc9HxugRH8dXwGWTXVjCudbKRVhPGE7iqKDzadSRW1YRVMTGodxsyzpSQdjKf/UeyGTk4CZdb56/3juOR53+gsLgKoQjenLseRQhGDO7A2MuMqkKbxURsRJOAPjLEn8iQ5mTQZjWjCIGORFUVTKqC4zzC3Kd7HB07NAnTyxtNCBVFoCoCl1vH4XTzxrebKKmsNaKMquC5W8fyetrPVEcYkbYtRcep11zoSGrdxq1oR2k6J6sLee7wcs/4AvC2WpjUsxOvrdrMmiPphj7o4HGW3DeDxAgjZRYZ4EtxaA0OVWdsQgKFeZVkZpeiNbpJm81GLzyL2UREmD/5hVXY7S4OHc3Brel42yy8/9Bkft17khe+XIvTpRHoa+P1e6+kR3sjajKoYxxnS8rJWGmQj9Hd2vFjyjEkRu+y6//+DV8/NA2A1OxCNF3i0nQ0XVJtt7MvK4+X1myist6OzWRiRt8enj5yNrOJoupaj7+XU9MY3LYNe7PyEAI6tbpQwzNz90cUO6o8/5cYRFUD6jUH7t9MEQIYG2l879YfSefJb39BCJg2sDsCgZfFhL+XjaKqWoRbUpBRQUJUMJn55fRoF92sn9ul8OisMTw6awy6LikoreZQWi6KUFBMEkVRuH7ChencFlwCLdVtHvwhTZIQQgX2A4nAh1LKlN8s7wnESClXCyEevdgYwGTgwG8I0jwhhAYsBV5qJGQt+D+M8sJKqkqqiet86VJ5IQQfprzCsR0n6dCnLTZvK8eO5uJ2G20zzBYTSCMasuS7FOx2F916tuGuv4whLr7pafPZN35i39FspJR89tp0EmIv/ST6Z/Dmg1fxypfrURTBQzOMcvvbhvRmzo8b8LdZGdrB8JZZl5rOW+u2M6BtLM9MHPkP3bv/CBRF8PYDV3Puq1JvdzH6vo/QOlZzpPAIhadGc2t745iEEMxsO4qZbS+e5nNobm7YtJAj5fnclTyIJ/eu4sfsVGyqGYfm5vYO/flrt1E82X0MOfkV3PbAfBxON4/cdRn3zRrFjLu/wOnSWPTjXt6ecx13P/4t7kb9h1OXnMoo4okO43n3waspKK1mTN8OFz2Oc7jrlmEEB/rgdLkJD/WnbVwo9z+9CE3T6dcznpefuKrZ+jeO7827i7cSHujLlJHd+PTHXYCgqLzGE41KbB1qGHw6VIQ0Q6SbCbE9WJ67H4fe3PTzTE0xdZpxe1KFwhMdJ3LN5b1QFIGfzeZRs7o1nflb9/H8NWMwqQrv33Qln63azc+LDrAt/5QngjF8UHtuuKYfTpcbHy8r5VV1VFXVk3aqAIfTTf8+CUx/7iuyCsuJCPZjVO92Hv1MZa2d1DOFHpL01MI1rNp3gqToMK4f2p3xvZI4mJlHVmP1XmZROacLSqmzu6BSRzGBimRkhwRGvP05dU4Xmt74hCGgqsHO8Lc/o6y2nr+OHcqMfj3oFx/DttNnmdA5ideuHse+rDwi/H1pExzI2rRTfLJtD+M7d+C2gb0odV68dQ5AvG84Va76Zu+vSagEWw3hfmp2oWEIKiVZpZX89PgtFFTWUFJdy8PzV2Gqh3rNSb6rmrsnD+am8X3+0HfH4XRRUd3Axp0nOXw817hWbo2pE3px5cguxLX+x0SrBS34Lf4QSZJSakB3IUQgsFwI0VlKmQoghFCAt4BbLrW9EKITRpRp7HkvT5dS5jWm6ZYCNwILL7LtbGA2QGzsH0tZtOA/E2eOZnP/4KeRumTyA1dw64vXX3JdH39v+o7vQX5GIbWV9Qzo0or8nDLcmsTpcGO1mpjz2nU8+fD36Lrk8IEsjh7ObkaSTmeVNIqIzWTnVfzbSJKfj42//aV5b7EpfbowqUdHzKrC/qw8XvppI1tOZuJ0a5RU1zGpRzLdY6MuMeKfxzmCaTIpmP1B79AAKnyWuZ4b2g7Gqpp/d/u0ikIWpO/hRGUxEvj0xE5PhZtdM6qbPju5i85BkVwR24n3P9+I3WFMeh8v2Ezn5BtwazpSSqpr7Cz60ciaa7pEUQT+fjbun2WQs14dYuA3/Ki23sGjH66kuLyWObPGoWqCz77ZRpfkaGbNGIIQAofDxWtPT8ZmM9GpQzS/xQ1jezF5RDcsJhUpITTIF4fTjQAy8koBCPb3Ji2zCBCYdvvy3INjmNClCzckDGBr0QneOv4LOnBFVDd6hcRjEioWRWdqm35cG98bXZcUV9fy8PghVNY3sD71NLqUrDx4nF+PZfDoFUOZ3Kcz8d5GVMyTGjSZCAv147NvtjF9cj/i24Sy8dsTfL98ryc6tmLdYZxBhtVDfmk1izcc8pybWVWaqgEbHPy8/yQAGYXl9G0fg81iYvFjN3LHR0s5llVIiJ8PbcKDsTtdWFUVxSXomRjN5zv2ecwWFSG4vFN7hraLp7K+gRq7A01K5u0+wE39e/LZ9Ktx67qh7wL6xrVuvKY6Dy9dg1vXySgtZ0xSIn9Nvop3Tq6mQWvSogkMMtQxIIb7OlxBTn0pq/MOsLfM6MEW1+grNW1Qd7afOEuD08Xd4wYQHuBLeIAvf/36Z4SiIFQdVYLd6ebTFTs5nVvCMzMv4/0ftlFRXc+D1w8j9DfGqOVV9dz48Hxq6520iQry5DqEIhjaJ7GFIP1JiJZwhQd/qrpNSlkphNgEjANSG1/2AzoDmxtv3JHASiHElY3i7dbAcuAmKWXGeWPlNf5bI4T4FujLRUiSlPJT4FOA3r17t1y6/2Dous47d37G/vVHuOXFqYyZYfj/2OsdPDT8eU4fzPSsu3XJ7t8lSQA7V+7jlenvousSt8uNtJiha3tQjIamsXGhqCYBTkNv8dnHG3G5NKZMM6pvHrljDC+++zN2u5MtKacY0jfR80R6qSjWvwKLSUXTdW6ft8yjsTCrCiCJ8L+w5P+fgabrzFu9h/ziKu68ZiDhQX58dP913J02FyEkgVafCzrT/xb1bidTNy7ArrmQgFVRceoX7+y+pySbK2I74WwsCz+H+NhQ2iWEcyK90IjumVR8faw4HG6kLnE63ZSV1150TICfd6Vx5HQ+TpfGm99tpiazmqKSao6m5dGtY2u6dmzNbQ8tpLikhvAwPxa8dyvn9D31DU4OHMmmXUI4EWH+5BVX8revNpBVWM7Tt4ylb8dYwoL8cLk1Xpq/rmmnis6LuctJjA2lxtXAytxD6ICCoLVPMKFWX1p7B3GyuoCcunI0XWf6x99zPK+EHnFRzJt1LSv2p/Hiil9xuHVq7A7mrNjAmM6JjBqSzJoNqRQUVxEXE0KXpGh++Gk/TpfGkWO5rF30AKcziz0ESVEEwf5eyBAbuY3RIFVRMKnGLe7eKUMZ08fQEvnYLCS1DiejsIzIQF9eWryBlJPZ3DCsB/Puu46c0koig/ywmk14W8389MytZBVXkNQ6nPc270QBdKBtaDBvTr4cIQT5VYZeSwABNhv1ThfeFrOHIJ0PRQiCvL2oarCjCAV/m5UJQb25LKo7o359AQ0dFUG3oDjMipkJ0b2I9g6hrV8kg8OS2Vp8nEivADoGxNDgdGExqyx95EbAEH+/vGwj6w+nExHoixBAgEKX8FaknSrA6dLYdjiT5ZuPsHzLEdxuo4fd3//SvMVLWnoBdqcbl1sjt8jQfJlNKleO6ERMq3/cqLoFLbgU/kh1WxjgaiRIXsAYjKgQAFLKKiD0vPU3A480EqRAYDXwuJRyx3nrmIBAKWVpoxh8AvDrv+mcWvD/E07uzWDTop046h28d/fnjLx+EOsWbCHreC65jRqecygrqOBvN77HfR/cjk+A90XH+/XrrTjtTZOzcLiQJ7NQOicwfkI3nn/8BxrqjeVSgq5Jas+rWOvfIx63W8Ph0ti2J4OlPx/k0++24+1l5qOXptH6f+DmKRDNembFBgfQLjKMJfuOcueIfp4S/X8W6/ecZMHqPThdGoXl1Xz06BQ6x0bxQ9hDHK48S9+Qdhf1BDofbl3HLY1GpQJ4u/9VvHhwHcUNtZ7y/3No7WPoiMYM68ih1Bx0Cb27G7qtF/86iTlvrkJVFW6fMZhH77mMh55bzKHUHIALKovOR3xUCEIIbFYz7WPCOFnsoKTMMAn18bFSXdNAXkElmqaTV1BJdU0DQY0WCPc99T05eeUoimDYuE6s2HbUUxn12tcbWPa3mQzqaqQ8v1m7n6MZ+YZGp3c9NuCn3IN8d3a350wtqol431DyGirJqC1BBzYXn+DNQ+s4kV+CW9fZn5lHdYODcV3bs2LfMfadzUNVBDaTCavJhNXLxGdvGd5Rui5ZvyXN8/7abEZUb+ywjhxKzcXPx8pVl3dn7LBOBPjbeGfxVsqq6hjXL4nnv1yLlJIubSM9RF4IwcKHpnK2qAKXpnHLO4vRdMlXmw7QKSaCUd0SsZzn3RTo40WGWk6/1z82qsraJ+Bvs/LEuOGeMaMC/BmSGMe6tHQySstYuPsAdw7td9FrJYRg8e3TWH88na6tI7l54RJOl5TxwIiBXB7dk/WFh5FSklaVi47kzj2fsnLY4wghMCkqIyMNXdrZkgqmvfMtDpebRycNY9qg7mSVVrI8JRWHW6O8tp6bhvciyMeLqf27Mvu1xZzOKWHGuF542ywIIVBVgY/XhTYM3ZKjCfT3wuF0o+s6UoLLpbFs3RH2HM1m0bu3XfKz2ILf4L+or9r/Bv5IJKkVsKBRl6QAi6WUq4QQc4B9UsqVv7PtvRg6pmeFEM82vjYWqAPWNhIkFYMgffbPnkQL/jMQHhuKUAQ2HysRbcL4/MlvWTV3vUc/IxSBbJzM7HUOti1NoVVCBLe8MPWCsRa+8APbl+/x/F+aTZDQGrOXhbseuIzomGBWrzz0m60kwcHNw/BxMSFkZBmpl80ppxodil28+N7PfPzy7zfO/CPYeDyDDzfsYmRyW+4ZNQBFETw1cQQvrtyAIhT8bDbWHzuNqgg2lZ6kR1Ikf+0yBov6z1mUmRpJlmjsSXcOEV6BjPXqfqnNmsHfYmNCTEdWZB1FAsvOHmXRqFtYnZ3GT9mpHK8s8twjl509wqykAYwf1YXK6np+/OUwFRX1lFXUEhHmz4ev3gBAdm4567cc55apA1kfmUariABGDUnmdG4JmfnlDOmegM3SlALskxzL3EenUFpVx5DuCVRMqGf1+iN0SIykfUIEUkq6JkdzMDUHRRHUNzhRVYUFi3dx+kwxupTYrCZ+STnRrHQ8KsQfKSUb96fjcLp5874r2bAvnTqfBj4v30hr7yDWFaSiN56hr2rh772mMSAsEZeuEecTSnpjFdaSwhTCQ6MoLKmjf9tY/L2sCCFYcOd1nC2pYOvJTIZ2iMf6G3PJTxZuYfnPh0BKRg1N4tbrBwHw5sfrqat34HJrDO7bjtAQ47P66HTDCfz9H7ZSbzfsJeat3sNb9zVpsMyqSruoUOodLnxtFo/I+omFa+jRNpp591/X7Bi+3nMIu9tYJ9Lfl+euGIVb19mSnkmrAD/ah4cS4uNlRJOE8NhW/Bbrj5/mUG4+9U4Xyw+l0alVBHkV1UgJX+zcz+7H7mRCdC90qXP//nk4dTflToNsq42Rv+y6UvaUpVNy2hCKuzSdpbuPMm1Qd0L9vLGaTaiKQoifNw9PGOIhct++cCOarqMqihFN1jQqaxu4fnRPz/HNX53Cqh1pTBjYiaT4CAZ0j2flhqOe5RLILay86Lm1oAV/BH+kuu0I0OMirz97kdWRUg4/7/eXgJcuMXRLqcH/IaQfy+P7TzYx5flppB7MYN+JYrI+34iwGykdU3gAorTKM/kKRaCaVALDL9ZVDL5/azUiOAhZ3ug/ExUG/r64BGSkF9GtZ5tm3cMB3G6dz+duZNK1Ta7Dbz87hV0HztAuPpwDR7M5cjzPON7MYvYdyaJv97h/6bwf+f5n7G43maUVjO6USIfIMKb27crQpDjm7NnInkM5gMSt65yoKiTjbAHxfiHMaNv3n9rfqN7tKK+uI7+kipsvbxpjxZYj/P3bTSRGh/LxY1Pwtv2+ad6AiDjW5B5Hl5IgqxdR3gHMShrAVW268PqRDazKTgMk46ON1hCKIsgrrKK4tIbi0hq+WrybB+4w/I0cTjd3PPoVDqcbi9nEigV3Y7OaSc8tYcacr9GlRA+G0KG+fDXyBsK9DHLQuW1T+X9osC83T23q2i6E8Jgz6prOph2nSD9TxLbd6SiKwGoxMaRfOwJj/Fm4Zp+HiFfV2flozTbmL9+LQHDd2B48MmUEO09mYV/mT5mvmZJuTX5SY6O6MCAskap6Ow0OF98NuYunDy1lfUEqCMmUKxK5Nro/xcXVfPnDLob2TSQqPIBNW08QFuxHm9ALW94cO5mP3eHCZFLokBhJTLRR2ag0migKjM//b9E7OZZFvxrEf3DXBIoranC6NFqHN+3D22rmrdsmcvv7P+DSDKp3LKuptH7jkdN8t+UQCbHnWtXAqCTDGuL5Vb+yOvUUUkoW3jKFR0YPJSrAH2+LuVmJf12Dk4Vr9lCju/j2ZCpOze1p+nw0vwCr2YxVmhjZIQFFKHQLigPg5vjh/Fp4hJsThqM2RjMb3E5u3f0BLl3DbLdiNQej65JpgwxCbzILrp4STG5BHY8NvOqCNPg5CwdFEVwzvHkbl8KyauYu34Wm63y0bDvmOqNZrsWi4m5o8r6S0kjr/U+k2P9vQrRUt52HFsftFvxb8MxdCyjVNLYcNqrJpI8Nd3I86tEMpI8Ne3w0Qgef+gbufutmnA4XVi8rY24aetHxAuNaUVHZgBYUABVV4HCCNEp5wyL8OX22hFn3jWbu22s9pdY2LzNtE5uXK3t7WRg1KIm6Ogeph3LwV8zUSzdCCIIukeb7Mwj186a42vAgCjzPTftoRRGb8jNpCHARbLIRH+bPKe8846ndfKEx359BQDtv/Np5NXOx/nj5TpwujcyCcvakZTP8PM+ki+HqNl2REk6kF9G2NITqWjv+vjbCvHx5KnkMBz7Pwik0lq44yFrvNF5/7CpatwpqTOtIoqOaUpVvH95Erd2B0AWadDJt/XyuoKASOgAAIABJREFU6dCdJTuOoEkdoQlktSSzppxlmUe5s+OAP3SeIwZ14MTZQmSYk5iO/pzMKERKw/Tz7luGM2mcMdF2aduKp+auRghBXKtgfjl9DKkbE+PerExgBB/8spM6hxOH20Ww8KOaOsyKyv1JY1l3+BSPfvUzAGH+PsRG+jOxbw8CrF5Mjx/IjpQzvPzxWlxujW9X7aNv1zbsOHAGk6pgs5oYPTCp2XHffctwnn/jJ4IDfRgysB0lVbWEBfjy9pzrWLHmIH17xBMTdWGqd0DnOL6bcyMOl5uqWjvXPD4PieTxG0cxcXBTg+Zu8a2YOboP32w5iMut0ysxmokvzmP6sB68sXwLLk3nYGY+ix6Zhp+XheKSGmrq7RzOK6TB5cJmMpFeXErX6EhmDrywjcnbizbz8440NBto4QJdgqVBYHaANdTCirtvosZuJyHUIDzztu0jr7yau0b357bE5pWU9ZoDp+bGJTU0q86ap29BRfU4ly/L3cj26hQ0b513ztRyU9wVdA78/c8uQG5xJfNX7/FU7KmKgqIav9vtzfVzivif0SC24P8NtJCkFvxb4LKo6LoAIVAAqetgNmHqkYjDZKRZfJPjiGrlz9EyO4OHtKdf37YIAfu3nsDLx0rHXoaOxO3SaJ0UTdXeM1iC/HnoizuozC7mcGoeHQYnseSXw5SV16HrksBwXy4bmszAQe1oaHDRvVfcRY9v0bI9bN5+Ek2ThIX5YjGrrFp9iPvuGo2q/vMNL7+ZPZW1x9Lp2SaaiICmVF9r3wCklHhZTHSMieDT0VfzTcYeLC6VnF9LWRt/jMtGdPrT+5t/Yh9/P7QFkOR0rWJ2J0NH0q9TGzbtT0cRgg6x4b8/CMak0V2N4oOFm1kvJRt3nOTTl4zUWV5RFdIOmsPwvamoquejb7cw6qaO9PNJZJhfW0YNMIiBW9f54mwKXv0UvE+p2Nvp5DcUkXpwLZpZwTfEjKlGUJfkxqQodA/54xV+3YdH4fYqRkPnqfx5RAwIZERoJ+o0O9/6rKPyTBk3J4xiWI9E3ntoMoXl1Yzu3Z53jq7nW6+9CKdg6ijDDmFocjzpBUba9bXk69H8XHTwjyTA4s3rP2726KeKqmopq6lnQEJ/Zo3ux3sLN7N83WFPab7brVFb50DTdJBQWdVAaUUtXjaLx4DUK9BGq76tCPb1YsJL89AlTOybzNqDp7CaTOSY7LRqE4QJhSfnrsbLaub1eyYSEuBDTIRBnj5Yss2TUlu352QzkiSE4O4rBnL3FQPJK6viqpcX4HRrvL5sM1azyegfJwRRgX7c/foSsosq8LZZePKusTy7+ldiggK5rNFgEgy/KX8fm6ddSF5xldEXr14wJKoNTqGTtjsXl1sjUCiE+/kQ7mfow9YcOclHv+7G5dbIKa/ks9smU1RVi0lVCPH1JsTqx93tx/FT3j6mxg4kwNb8wcSmWhAoSHSOV2fybOrHzOl8F50DE/lu3X4+XLaDzgmteP+hazxGkJ+v3M281SmeawJww9ie+KkWggK8+e6nvRSUVqPrEl2XPH7HWFrQgn8WLSSpBf8ydF1n8IiOrNp4zIgiKYKhw5O5+ebBlJfV8sSTPyClJDAqiFO5FZwsOMK69alMubYPfk4Xiz80nJUfeXs6g8d3Y/2SPZw4lIWU0LZTNMMmGhqEScAd9y2kpLSpaqqy1s62g2e46y8XN0s8h8AAbwQCKXVKio10S1nZMQb0bUv/vm0vuZ2Uki8Wbudoag6zbh1G547NS9HD/H2ZMeCCbDQdQ8JZdPk00itLuTyuAz4mC7M7DGb2w19x6kwRZrNKeKgfPbr8cVsLp6bx8bFdNGguBHC2ptyz7PnbxjF1VHciQ/wJCfD5Q+OVVtQZpfZON9n5FUyc/TFJbSN58cEJ9O/WhpTDWTQ4jKfyPfYcth44i0QiQhX6uOLIrq2gY1AkfmYrNW0dNLT9TR89RVLbrempftXY2/C1WLl63XxqXQ7Gtu7A1LbdiPVtHlVx6m7Sa/LZUZKGRtOYRc5K3H1q2FF8BBzwZeZ6xkX1IsIW2KxVRa67AiI1EPBW5lqKRTV3jBnG0I7xBHp7ERXc3MQyzN+XoiojGqgIMKkKbcKMY0o/a1SkKQJahQdy1w2DCQny5Z7nFyGl5OuVe3jvq81YTCqfvTKd+NYhPDZ/NafySg1jzMY01aq9J9ClxOHS2HQ0g5N5JXQNCyc9pwRFEXz/60HumTzYc0zj+yez8Oe9SCAtswiXW7uoW3TKyWw0XcesKgT4ePHRXVez8fBphnaOx9ti5mS20elJ13Vi/QLY/OCsZtu/NG8dP20/hi4lUWEBzH9qGjlFRopbFTCpcxIRwX7M3mG4mzc4m3tLgfEd0aSkrLaBnw+d4Kkl6xDApzOvoXdCa6bFDWZAWAJ17oYL0l6ToochgKU5G6lwVQMqhfYyOpPI3BU7cTjdpGUWcjg9j97JseQWV/LVL3ubESQBjOrTno7xkexJyybXXoclyMK8J6aSEB3628NtwR9Bi3Dbg3/+EboF/0+isryWPVtOUHdeFdmPX+1ky9J9mCsaDA2ShPLyOuLjwujVK54Vy+/nhmkDyMur8GhHNE1ny9YTnDqcg73BicPu4t3HF5F5Ih+rzXBeVlSFwFA/dP18fcGF396GhubhdSkli5bs4bW31lBUXE1efgXfLk5BP69HlyKMSqrQ0N8vzT+SmsuS5fs4nJrLcy+v+N110yvLmJOygc25ZwDoFhrJlHZd8DE36YOcLqNEXkCzG/3vwa3r2N0uDpfmUetq8mK9r2vTpKoogk4JrX6XIGUXVXAmr6ldRIf4CMYPS6ZDQgS6lJRV1nMgNYf9qTm88sgkfl34F4+wXbdI3FLHpevk11cxes1HTN/8FffsXEKf0Fh+m8xQhaBbSCva+AahCME1cV1oFxjGZ8d3c6Qsn4zqMuam7WTS2nlNJocY1+7uvR9x//5P+ClvT7MxTSiYzrM30KSOn+nC1KWpUYysSUm1u4FP0zdT4aynY+sIrGYTW9POUGtveh8DfZrGGNapLe/eeiVjuxmRlvtuGk5c62C6JbfmvpuGsWB5Cl//uAezqqDpkuKy2saydI1dBzORUuJrtaIqohkZ8PWycH7GR1UE7WJCsVlMWEwq3v8fe28ZH8XZt39/Z9bi7o4EEkjQ4FCcYoXS0hZKS/Wquzv1UjcqVCgtRQqUUqy4S3ASNCFO3G03KyPPiwkbtgktva/r87/lyfEGMr6zs3Me50+Ow2Rwajsdyyjk501HneNUvdlKRW1rOYWqejPvrNyBrKgoqspPj99E18hg7p84iG7Roej1Om6b2A+jQceQHh2JCW2d4ttw4IwzilZR3cjO41kkxoXibjKg1+voFBlEXkmNs/7PbLHxybKdzv3HJ3dxps7yKqpZmpqOXZKxSTILdh9m8ocLeWbVah479iEvn/yKZQWbXM6vE3RMixrFnKR76OgZSb+AJK4K0SZFveKjcDcZ0ImiU3F7zncbsTSn00RB0CJWvp4Y9TrKqhv4cMl2bA6JxiYbWw5ntvq87WjHP0V7JKkdVwxrk537pnyKzerAP8iL7/94EkEQqCitQ3LICLKCTgDJHQoKKpkw8QOum5ZCr14xHDqc04rglJXV8/IHMzl9OIeGWguNdU0s+ugPXvr6DiyNVjYvP0Tq1tM8MP59Pl3zOCY3I688dw233P2d8xiCAAldwmhosOLtrQ12+1Kz+P6nPdgdMmczihk6OJ6q6kZUFdzdDHh7u3P16G70T+lI545/nZry9nZrNr8V8fubGqabNiylymph8bk0RkZ1ZGN+JlfHduHrUVOdA+Ybz05lwdJ9xHcMpX/vuL+951l1lUzdsBBLs8CjAOgQGBbegTCPK9de2n0imxe+Wg/Ac7NHY6mzMm/Rbjzcjfzw7q28/+0W0s4WoaISG9FioTJ1dDJb92cyOboztTFW6uxWpsQkcbiigCbZwYGyXHZMepi3T2xm/YUzSM1E1KDT8Wa/iST6hdLosOFj1L6bBL9QjIIOmyqjAvV2G5KqIKoCVfZ6PHRuZDQUogIKKtMiBrG2+BB6UeSZxOl46k1sLm1xO3LXuXZl5TdWcbAiB0VVMAo6REHATW/ES2/CYnMw7f2fsDkkgn08Wfvc7QiCwOCucRzJLkIFpg9MZnDXFmua+LgQlnx0BwBT7v2ayhoz5/O06M+lxsoIAh9u2st3qUf56v5pbEvPIi7En9yyGn7afpR6Swspu35wEreP7kd0kC9dYkI4fKaABesO8v3agzw24yo+WbYbh9QSsXF3N3Dvl6uoMTfx4V2TGdBFiz4a9DoneTEZ9IQ0Cyw+Mv93dp3OYXBCLF/eP42Hpg9r85mYt2IPDqmFoOp0Ap2jgmgwW4kJC2DCoEQ6RwU1m+/qkBXNbGT5thPMujqFYH8vRFHArbm7TxQExiZ15lRhKQadjv3nC3DIChdqagkdKGLwsXGyLouZaARXVVX0oo7MhnzSajN5qfvdhLq1iD5++PAUTuWUEhPmT4CPB6VV9dQ2WJzrBS27T2WdmZlzFrk0chh0Ovp3axcf/i+jPZLkRDtJascVo7aqEUujDYddoqywBpvVgZu7kZvuGUFxfhWFhdXkNPtp1ddrkaaly1JZuqzFCzkkxIeqqgZ0Oh0mu4Of3l+Pb6AXlkYroihia5J4/NpPmHrHVeRllKAqKmWF1WSdKqR7SkeiIgO46fp+LF91uLlrBQ4dzeWLb7bz3JMTAXDYJWeUJv9CFTdF9EMQBEQRJoxLIjunAncPE8ndW7uJ/xkd44KZ+9r1ZJwvZdxorS5EUVS+/WEXp88Vc//dI0nsqnVp2WXtnIqqsqngPCqw7UIWJeYGIry0FE90ZABznrqmzXO1heVZaU6CBNq7SxRFXug7ymW78poGXv7mDwRB4M17JrRSJE49leescdmXnkva0QIkWaHRbCP1eA5zn57KobR84qICiArTuqm27s/gj92aUai7zsAL/a8GNDuTn7IOk15dzAPdhhJg8uCDAdfyQq9xlFrqaXBYCfPwIdZLI1sXCRLADR17UGFt5JOTu5FVFQGVsevnkxTiyRlzBkEmH6ZEDmBd8WEGBHbl8cSp3NJxJN56Nzz0bjgUiXivcM43ljApPMUlWlNnt/DgwUU0SNqzF+Lmw4MJo+kXFIdRp6esphazzY5dkrlQVYddkjEZ9Nx6VR96xUXgbtTTOezy6ZnwYF+qay1at56i0jcpmhNni/B0N2ILFJBsNhqabBzPKeaBiVqn3pHzhSzc2uLhLQA3DOlJTLB2j6/q1Yn1+85gtUsIApzILEZWZGea7uoBXQmP8mfBlsNIisJXGw44SZKPhxuf3zOV/Rn5TOybgEGnI6ekil2ntUjm/nP5lNQ0tEov/rojjfX7znAqp8S5bFRKPE/PGsWbP2zm0JkCBAEOny0gJSGaB64fwmMzruKLlXtxSDKyovL0F2uYPbU/RXX1vHH9WBYfOEGf2AhuHdKbmYN6IgoC13z0I6W1jQgCRPsGYDeYmR03idzGIp5J+xSHIvFE11v4JHMxkirze+EuFg184xI1eR29urSkt++Zu5yy6hY7FFVVcUgto/mlulwfPtLie9eOdvw7aCdJ7bhihEb6M25aX3ZtTOfaWwbj1lyo6uvvyatfakJ60677lLq6psseo7xce8l5uOuQs0s5nl3uXCejcGzPOQA+eHIJQ8b34ODW03j7edBksbNn/QkGX53M/XePZNWaYzguSVddqndkNLU81nq9jjXr05r9tETW/pGGw6Fw7nwpKb1j6dI5rM3rdDhkBFEL5/fuGUvvni3RhXUb01j+22FkWeW1d9awbOG9APx49XS+OXmY0dEdWXDmKHl1NYR5ehPs0XYK7JfVh9m5P5PZNw5iUErHNrfxM7m3WuZQZEx/0ln6bk0qJzKLQIAF6w7y5M0jEYWWlM/0kb3YfvQ8kqxw6/gU9u4+D2gDi5+vJ0aDnqEprrVZZZX1SLKCJCkcPJHHotWHmDG5Lya9nl9G3d7qugJMHgSY/jraJggCt8b3ZXl2GoXmWkRBpNBcR0l+DaGBMnUOM2PDevN0YoshcahbSwu8QdSzYMBjWBUH7rqWNGaxpZbpu75wGtYCJPqGMymqxcw4KtCXKSnd2JyWyaxhvXl95VZOFpTy/LSRDOry18bGAB88P40vft7Nhp2nEUWBLnEh3DCxNy9+sBbJrCIECIgGgX7x0c59usWEEObvTUGlptXTPTaMzn8ya71jcn/SsooxGXRMHdadLYcynOusdolBCbEs2KKlHgsqamlssuHlbmLtoTO8unQL7kYD0wZqBN4mabYsF4Us/T3dWfTHERosVmZP7EdNvYWPlu1sleqdOiyJIF9PymsacTSrxZ/NKyMjv5y9adkUVtQjCgIxof5kF1VxOr+Mx5asQyeKRAX6svaJ25zH2nEmhy2nzvPQ2MGYrTZO5Jewb3c+s4eOJcGnAwtyVmORNSK7oWSv0xy3wWFmR/lh+vgn4mdsHSWtt1hRmn3xvNxMmK12FFlptR3AE5+t4eU7xrkYPrfjH6A9kuREO0lqxxVDEAQemjOVh+ZMvew2gYFef0mSLqKh0YbobsJgt7S5XlVUnvhgJvVVZvIyS3jzngUoBh0RKw9SbpMwGfWIooCqwpiR3ZAkiTlvreaR+8fw5ntaWkkUBcaPTWLthjRAq4O6mB5RZBVPj7YF9FIPZfPyG6sxGnXM++gWOsQGUVJWx6Il++kQF8TCn/c5ZQe8PFuO0TckkvmjtZnv1E7dyKypJN4vsE2bkILCar5dvBe7XeLluavZsuLxNtuUb47vzeLM4xRbWmbQRlGH45I6niqrBYvRgcGgyfdZ7Q6G3vsZfl7u/PDyzYQFeNMxMpCNH9/n3Cc6zI+8Iq3w+3J6mtPG9uT0+RLOZJVSWF7LvFW7+ObsPt6/axpJ/uF4GVrfv9M1pbx2fCNxXv7k19eTU1/FewMmMzKypa3bx+jGjmvu51R1CTO2/YwBHcEeRlShkUCjN128W6IHqy7sZ3VRKoqiMLvDKMaF90EQBBeCBJBecwG5OdWnE0SGBnfmnT7TnevrLFa+3pxKqK8nO1+7lwMZ+SzceZQmu4OXl21m6yuuBc1twdvTjefuHcfMyX2564UlrNqcxtJ1RwGNkHjUqMy9eyKdwltIkKrC7WNSiAjwYWDXmDa/44TYUDZ+rBHtNXtOYtDrnFG/tPPFjC6vw8fDnepGCxabnQPn8hmUEMtby7cjyQoWm51dp3KYPaovCVEh3DEmhW1p2Tw0eTDr9p1m/ur9yIpCZZ2ZB64b4jIA6kSBh6YPY3Byh+Zr0YrJL0JRVXJLapx/C4KmRSTpVByCFj2tbDA71xfX1PPcL39gk2Q2pGXQNy6SkxdKscsyH2/cy8xBPekfmMza4j2oqsr4sMEMDExmV8UxCswlzDu/HC+9OwsHvNZKOf6Dh6bw7ZpUhvXsyMbUc2Q2X6deJyLLisu47pBk1u493U6S2vFvo50kteOKUV3RgLmhiei/qOOZfn0/3nt/Q6vlOp2Av78nNTUWrX0aUAK9UATolRxNeIQfm3456LLPy7d9w1uL7qV0WxV2QcAS4Ut9SS0IAgaDjhnT++Pr7c4X325HVbUXuCgIeHoYsVkdGPQ60tI1iwxBADeTAUuTHb1OZPq0FBetn0uxYvURHJKMQ5LZsfssHW4dxpy3VnM+qwy9TnTWcYiiwJOPXN3mMUw6PclBbUepADbvOo29uVPIy8vtsjoueQ01gEqouxeTY7uxpTCTiTEJdPTRUll2WWbCuu8wY8czycBbA8bz4/pDSLJCnbmJ7UfOc/O4Pq2OGx3h7yRJf+w6w8mMYiaO6E7H6JZ0k6eHiXeemsqH32/jx8JDNCXIgI3bd/2Mh97EY0nDublTitPv62xtGY8f/I3chipO1ZRgd6goKty391dOXP8E7voWxW1REOgRGMGqcbeTXV/J6Ih47KoDT72bU4gwq6GEeefXYW92k3/7zAqGBnfDo41i7cHBnQlx8+GCuZrnkiZyU5yrWOc7v+1gU1omOkHAx8Od/p2jUFUVN4Pe2cl2pXAzGbBaHa1sV7rEBjOsj2tE8LHv1pCeW4IKLHpiBl0jXU2WK+vMbD6YQXKnMH7ccJhdx7NdFLxrG5t4bcFm+vWJ5VB2IYIg0C0mlG3pWc66JUVVGZIY13J9RgPBvp4E+3pSWdGgdZyqWqNA5oUKl+s26HX4XFK4XlRR5/z/xYjUpcgvrSG5UwQ3jelFekU5+87n8+jVQ1r2EQQuvS1H84rwcTehk0X8PNww6fV09+nII/EzEAWR4SGapvDgoJ7cc/hNHKqEwy4hqTLGP5GklMQYUhJj2HIow9m1ByDJCoIA3u4mbhzVi2Vbj2OXJGaMbd112o4rgMr/GDFJQRAWoNmWlauqmtS8LAD4BYgD8oAbVVWtaWNfX+B54FogBO2TlQO/A3NVVb0iKfZ2ktSOK0LWmSKeuuUbVFXl+juGUV3ZgK+/J7c8OBqDseUxGj++RyuS5Ovjxn33jaJ3nziWLN7Prt2Z1NVZQBBwuJsYMLo7190+jBkPjuGO4W8538znjuWye+0JBl/dgy8++kNbKAigqkgOmT49Y/jw883Ol7IoCnh7u/PZ+zezeftpeiVHc+ZcMQsX70MURR6+fzQ/Lt5PZIQft868vKDh2FHdST9ViCgK9EyKIb+gClmSNT8oyTW8//D61ZQesvHxVZMYGxt/xfdz+RotAqHXizx858jLbvfcgfUUWzTJgh8zjtA/JJozNeVU2SwEuXlS77BSY29CUhTs/jLd4sOaC3o1IpKSEN3mcW+Y0IfU47mIgsCB47k4JJk120+yacGDrQjbvTOHMn/tAa0XVgUZaJBsvJu+jRp7E492H87S7GO8nbYZuyxjEETNVLX5e1FUleOVRQwOi2t1HQl+IST4aaTbDYPLOpNO79I1ZxINGMS2X1k+RnfWjnoURVX+1rsOoHNYEAsfvJHssirGJP+9eOGlWLb+qAvRSOwUSlxUIC/ef3Vzi7yKh0mLdF2orMPqkHA3Giiprm9Fku57dznFlVoq6yLpkWSZmWP7sGzrMVRVi/RNTenG/ZMGE+rvTaC3B/UWG3qdDr1OZWzvLs7oVXpeCQu2HsZql3ji+3VsevUuqurM1JmtPHT9MD5dvsupZO7n5cbApDiuHtgihtklJpj0LM1nccaY3pTXNHKhrIaahiaqGyzYHDKVdWZG9IlnBPE8cglBAgj38+bjWybx0oot1DdZSekYxTs3Xs2J/BIGdIpGFAV+KdjELwVbAJBVmVGh/QlxC+C66FHsKDvMtKhRGEXXZ+Eivl+Tyk8bD7darqpaRKm6wcLS12/F38fDxQanHf9rsRCYB/x0ybLngG2qqs4VBOG55r+fbWPf5cB2YISqqqUAgiCEAbc1r7siAa12ktSOK8LJw7nIsoLkkFm7JBWL2YZeLxIY4sOUWa6Ew9PTiNlsByAiwg9BAE9PN158cSXZl9QgoaoIksSSDzdw3e3DCIsJwmDQ42iOsMiyyo7fjyLqRUxWCclsR3E3IOp1IMIzL6+kf984Z53T9Gv7ctusIZhMBm6fpb28e/WIYcSwBDw9Tfj6uDNhbDJ/h/FjkkjpHUtTk4OHn1qMpcmBr4+bSwu3qmoF3LZDDTSMg/eO7vlHJKl3UjTHT17AYNARGuLD/c8sxt/Xgxcfn+iSBuzoE0hGndYaLqsKqWX5CILAvJP7eLXfOILcPLk7oT/Ls9OZFd+b5RuPcy6/HFEUuWZoEl1igts8/8ETeSiKio+PO1W1WrqkqcnujMhdCi8PEz5ubtTZrVxkLULz9VQ0aa3pu0uzsMra9zYgOJZ/dR3Ewowj7C3Nw8dgopu/qxL6lSDaI5h3et7O9rJ0fA3uTIroh0HUU9JUzam6fAYEdsXH4FoDdSlBqrGZyTNXkuQXxfPTRuLv6Y6vh4kbBiVzIreYp3/eQIivJ8O7deRcUTmP/LCGxiYbn9wxhf6dXcnlofQ8qmstxEb4s2pTi2egv48H37x1MzpRdNYICcDn917LoIRY3px1NXNXbqdbTChDu3Vo9Rmr6iw4JBk3o57oUH+KK+sI8fPmgeuHEBcewOpd6fSMj2Rk33inRQdAYnQIvzwzi6KqegYmtHRxebubkBUVUQBfdxNGg56Hb2hRtb/2qmS2Hs5EVeHNeycxoLtrLdZD04cR5OuJyajHzaBn5Q4tVf3g9UPZdTybgrIanrq5hdTnVlSz+1wewxM6ENcckRuR2IldL3WgssFCsLcnoigwrJueM/W5xBtjyG0sxqbYERHJN7cUj8+Om8zsuMmXfR72puXw3dpUJ8n7M2oamvht10m2Hs5k+7wHL3ucdvw9hP8hNUmqqu4WBCHuT4unAiOa//8jsJO2SVKcqqrv/ul4pcC7giDceaXX0E6S2nFFGDouiV8X7qW+xkyHLqGcPVEAAugNrettZt08mB8WajUHhZYGFKvMe++vd6aXnFDBTVGJiQ+jzmrlYNEFTGGeOApaQv7H92Zy+nAOj75zA6lbTjNoYk+O5ZazYVM6DoeM2WLnh6/vxMfHHW+vtu0+IsJb+2v9HYICvTl8NBebTcJul6iptaBvbrkeNTyBbbvOoaoq5iAFd72eYRFtF/5eTHX82Uj3rRemkZlVSmS4P69/uI7TGcUY9DrWbk5nxrX9nNt9MnQqpVt+5kRxMaJZQPUDo6An2qvlMz3bZyTP9tEGrq9y9mrnUnGxLfkzft+ajqyoNJit6EQBWVFxdzO4XKeqap5zBp2OeYOm8/zhtXTxDeG1PhN488RmZFXh8aQRANyfOJSjlYW46fS80XcisV4BDAntSG5DFWHuPi5aURex4WQGr67bRueQQL679To82pj59w/sQv/ALjRZ7RQU1VAd0cDtqR8jqyrBJh96yWqVAAAgAElEQVSWDnmmzc9XYzNzzY7PsNhtGM1ufNhrBs9eq11rdnEld85bgQOFqgYzC7YfZtHuY5rKNDBv435+ekgzXc4vreHut5ZS22jFzSGApCArWi2PJp8wC50o8tuBk7y6dKvz/KtTTzEoIZaU+ChWPj/7st/DO/dP4uvf9jEwKY4+3aJ45IPfKK9r5PXvN/H2/ZO5bkRL4bnV7kAQBIx6Hb/vOcXqXemczi0jMS6Ub5+/CZNBT61ZK4gWRZHusa3TvT3jI3n17vG8NH8DT33+O188NZ0tu85w+nwpj90+kh4JkU5PwLd/3KLVRqmQeaGCr565AavdQWlVgzZBkCRmzFuKTZL4cusBdr90rzNVKAjg4aHTZBJUhUePfUC1vQ43nYk3kx+gqKkck87I1KjLR1EvhdXu4MX561sRJAHQI6A2yUjuGolssNiwOaRWxsPt+D+DUFVVL7LrUuByM7B8QRCeAX5UVbUMQBCEUOB24MKVnqz9KWrHFSE43I+fdzyHqqpYGm0s/3YnPv6eXH19a++nGTMGkpwczTs7d3GwvhRUHR1KfBjYLY4VK7VQuaeniQFDOxIY4s65YBv9vvsKEQF5iicdv65HlFynMpXhOhYn17G7Po0PJo5jx+5zWKx2dptKmGytYkzEX6dMVFVlXtoBjpUX83Tfq+gW+PfWHUndIwkL9SWvoJKZNw7Ay8OEp4eJiVf3oFdKHO98vQmPepFbvPvwyIDWHnT5xdXc++pSmmwO3nvyWgb0iHOu0+tEunXVLDqiwv1IP6v9FMNCWtq1zVY793zxKwXFtXg5tOiSqgdREsinBtqoSb3rmoG4mzThwpljW9ciXcTVVyXy+9Z0vD3dMJl0lJQ3MHvagJZz2+xc8+mPlNY3cufQFJ4aP4wdkx52rp83uKUoWpJkErxDODT1CQCqas1U1ZkJ9PWkk09LjZNDlnn6142cKSnj5UmjmLN2Kw02O2kXStiZkcPE5K4u15idV8GTc1ZoKt+ApclOVJIP0lAFm+KgyFp92fRabmMlNsmBJChI7haeW7iBPe8+AMCS7ceR7AoYtGigdEkRvAD07xTFmfwy4qOCWLzxiEY8BLAJCvrmTcOCffnq9ZsI8vdCVVXeWr7D5fxTBlyZ5czApDgGJsUBMPbNb5EUBUGG1LP5zm0O5l5gzi+bqcmqx6DXcd+1g5i/+gDW5klHTlEVWw5l8PPGI1glCUFRcSgK2aVVLufKK6yivtHK2r2nta5FWWHxH0c4fCgPq83Bq59tYNWXLQXssyf048T5Iq34fFJ/zE12bnxpITUNFrzdTdx57QBskqSRy8BGnk9bwo1xg+jlH8tt+78g31zJ1KgUHk+cRKm1EgUVhyJTVWnl874tE//U9DyWbjjClJHJjB7g+gxchO0SWY+L0OtE4qODMefXU2ZpRDJqucm+CZHtBOnfxf+7SFKQIAhHLvn7G1VVv7nSnVVVVQXhsnGvm9BScbsEQbj4wi8D1gA3Xuk52p+kdvwjCIKAp7cbdzwx/i+36949kvM7GlB1AiZRx433DmFSUgL9+3ckK6sMzwQfntm3BWu9BPWX7GgQKBvqjeqmI/6CSL/OsQyd0puXzh/EJssU1tdzXqplxktX8c6eXdhQ+PDAPsZ0/GuStL+kgC/SDtIkOciqrWbPjff87Wd1dzPyw9d3NovpuQ7EWUWV2AUFVYLC7GqXOp4fVx9ka2oGUaG+1JutqCosXnfYhSRdiofvHkVCl3D8fDxcpAD2nsklq7gSh0NBaM5zCc3BuN8PnuGVGWNbXZfRoOf2Sa5FyxchSTKr1h9HkhUeumU4s68dgK+3Gwa9DllW0F9ie7H6+GlK67VU2sJ9R3lqfNuChBl5Zdz3xi/IssL7T1yLJCs8/+kaAN59fCqDerakmPacz2NXZi5NDgcv/76FBpuWkpVVlb27M1j1w0HunjWUgX21e/Dzr6lU15pdznf+aBXXTOtDam0Gt3UYddn6o2T/SBK9IzhRU4Au18MptAgwICGG9QfPIksq904cyDUDu7F8XzoOVaFXdBgrtqTx84ajhPt6UVKqPZyCAL6ebtTqNYmBaeN7EuTfckxPNwO1Zm0Qf/a64S6F1FeKWsGObATRAd6RnqQXlqKi8uyqjdQWNmBQNLKQerrApTja7pD448AZsouq0IkiISFeKEaBlJBwZj2xELPFhtlqx26X0ekEBg/ojEGvQycKjOjTmUMHczE22+RcCn9vD964ZyKdIoPQ60ROZZdQb7bikBSqG5r4YNFO7psxiDWFJ6iMqGBvZR17K88xt9fNlFhrUVBZW3SM55OmcVPM1SzP3Yo1y4Mnf1jL/FdmktAhlPpGK4+9+ysAh07lk9w5gpDA1u3/vl7uPH3zSH7dmc70Ub3olxhNRkE5A7vH8fBzS6iobMStVkHUCbwyexxnz5cQFx2Iu1vrCGY7/kehUlXV1jPtv0aZIAjhqqqWCIIQjlaM3QrNxdzP0nYq7orRTpLaccUozKtk37bTpAzpQqeE8L/d/rkRw3h92066hwQzuqtGYvr27UDfvh3412+/YTPLoMP1KRQE6vto0ZS07gInhUrmn95Ez9Awys16QKBXaBg1TU3Ym329At3/WpsHwMtgRFVVREHA2/jPXpx/JiIAU0Yks2nvWax2B7OntERgLpTWsOC3A9gdMjmFlRgNelRVZfTAtmfIoGk5TRiV1Gp5QlQItuZiXlEQmD44mZ2ncqgzN9G7Y2Sb1/VXWLb6MAuX7QegvqGJ+24b7lz3y5F0Pty4B50oclP/nvSMbknVmC4hT2VV9ciySkSILwAb952lqdkmYsWWE3h7mJwz/u0HM11IUnSALyoq7gY9nYMD8XN3I7eqBqMN9u/PRjZLvPr+WjYuexSAvIKWSIgogqJobu+9qhJ4ZkSLjtKlcMgyn6/dR3ldI+9PnUFlfSOnAssY26ulXmxcSlc6hAUgyQpdooPJLKzA0ASSHU5llDq3yy+pRddMRiYP6U55TSMHT+cjCNDgsDu3EwSBhY/dxNwV2zmcVcjn6/czKDGODqEtyuVXgifHDeP19dsQEOibFMPshSsACPPxQvDWoVpkjM1WI/HRQSzeqFmXBPh40C0ujPQsLQPx9PQRdI0K5sZHvkdWXCfZDgn2H8zijkl9uXXaANxMBsIDfMguqGTc0JYC7jqzlWue+habXSK5czjfPT+DLjHBxIYFuHSWdY8MJt3PQGWLjSAXzFUEGL2osNYzKkx7rmfFTmDNvBLKS2oxGQWyCio4X1DOpr3nnPtp4rBtBwUkWcHa5GBUz86MH5CAu5uBqBAt5fzeK9N5/q1fycwuR1ThvmcWY7U58Pfz5Ocv7sLQRklAO/5XYw1a8fXc5n9/b2sjQZu53oAWF1sJjEKrZzoHfK2qatvFbX9CO0lqxxVBlmQem/U1Foudpd/s5Octz+Dlc/maF4BpSd2YltSt1fIGm41dWfkIqgASGIwCIR6eVDRZsMuyM9IrNxtnApwqK+O3GbPwMRl5cMM6zlSUoxNFJEXhXGUFdlkmo6qSTv4BeBha17b0DA7n85HXcKqyjFkJPf/t+xEd7s+aL+5ttdzbw4ROFBFF7fd3x7SBjB2U4CQVoOk17dmfqc1+TXpGDU/E8xK9pYrKBs5nldGrZww6QURSNQPT6wYn8fR1w9l1KoevN6byxHdreXv2BNyMV/YzNlvsWseZqmK2tAzyNofEW+t2Xrw6Fu47ylvTxnLfiAEcyrnAMxO0VOKBtFye/Vh7H71873jGDkpgeEpnVm1NQ1VUJg5NJMjfix2HMkGAqSOTKaqt597Fq6lutPD8+OEsu3sG2RXVjE7ohKqqHC0oZv7OgxwWitBJOiLrWgivsXlwMxp0JHYJ51yWRmA6xbWkSu0OCYNe54zkrTl4hmV70nBIMg0WG1/cP43uMa61Obml1dz94QpNjFBV6RsfhcmgR1EU7Jd0L4p6AYMiYNDruGlMb05mFWuCnUBKomthd4fQAGotVmRFxSHL7D+b949J0ox+PRid0AlFVflo616szVpJvu5u3DU9hQhvb5Ijw/DxdKNfYgz9EmM4dKaAa69KJibUn6ROEXh7mOjTNYq6hqYWyxQ0kqlJYDiw2iR+WHWQjjHBjB7clV6JUfRKdFWnXr71uNPcOO18cfP3oGfRnFk8M28tu45n0a1DGD82bOVcfbFzP50gkuwfw6wOQ6myNxJi8kFRVB5+ZwUXSmsx6EW6xobQMSqQ+99Yjs0hoWuugxszsCuhQS3p5tXb0/nwx+3ERQQwdlAC3686gKKqlFc3MGVkMrmFVfyy8RhXD0lkUL/OZOdVIssKtfWaTltldSOV1Y2Eh7b89trxvwuCICxFK9IOEgShEJiDRo6WC4JwF5DP5VNnX6C1/hvRyJEJjWBNAroCj17JNbSTpHZcEeTmmZwiK8iSgM3q+FuSdDkYddrgpzbTIUlRqbI28UC/ARh1OtZnZnC6otwlLS6j0i04hDd27eBcZSUqmvGru17P8Lg4blixlKzqKgLdPdhy6x2Y9K0f7XGx8Yz7Bx1ol4OqquwpzMfP5EaPENcB2M/Hg7ceu4an31+NrCh8s2IfMyf2ddnm24W7WbXmKHa7jF4vsnXnWT59byagRXjuuG8BsqwQEe7HnNvH8uWG/fSPj2beuv3UN1mpM1vJr6ilsLKOP46eY9qg1lGotjBtYm827ThNk9XByKEtkS2dKKJrNoS9+PkMej2PjBnssv++4znOKNHOw+cZOyiBXl2jWPP5PUiy4jTXXfzu7ZzJLiE2IoBXNmwjq1yLCD372yb2P3MfCWEtHXdDOsXwr0WrNHkBk8hDD48BNMXzi4OdJClcKKrm4btG0adHDFHhWhfVZ2v2smDrYTqFB/LzkzNxNxowW+1OIcZGmx1JVlqZzW47dh6z1eaUKEjPaR7kBegQFkBeaTUqYDDqePOOiaAonM4pZWTfeLrEhpBbXEXnNtzlbx7em9eXbsXdaGB4UtsK6n+HYG9Ptp7N4ve0s85lJ4vKmD9rGn4eLY0JO49lcS6/jFnj+hLcnPYb3rtFMd3X252bJvXllw3H8HQ30CMhkqOnClzOdfR0AaMHu0Y4SyrrKaqsIzbM/6LaBpHBLSRDEATef3iK8+/x29926liJCOgFkY6eGokNddP2q6huIC2jyNkR+v6T19LQ7GUnAH7eHqz/skXo9CK+/XU/DkmmsKyW7AuVTjuYzfvPsmn/Waw27bxZFyoID/IhKMib+vomunQKJf1MIYNTOrnU+LXjyvE/qLtt5mVWjb6C3YepqposCIIBrcA7XFVVezPxOnal19BOktpxRTCaDDz77g38tmg/Y6f0JvAfvHyK6uq5UFdHv6hIdKKISa/n6ZFDeG/PXhRBQUGLGkV4+3B9YncWpZ9ARXOSV1SNSnUPDuZIcRG/nE53KisDdPIPYM7w0fSePw8VqLCYKWlsIM7vnwkE/hN8cGgvC04eQ0Xl63FTGRHj2trdIz4CN5Mem92BosBDb63g4ZuHk9xFK9ROPZyD3a6RDUlSyDxfiqqqCIJAWXk9DknGZpPIza/kSOYFfD3cND2jjALk5iLji7Pv6KAr79xbveE4VTWa0e+877Zz3+3DSekZh14ncs/w/szfdQhFVYkL8md8UpdW+08dmcymfWeRZIWbxmtF4cfOXuDEuSLGD01k8brD/L7zJGVVDYiCQLC/F0MmtAzCoiC0UvfOLKtEbCZosqrSr7n1vqyynspqrSZKUVWqay2cPFPIlKtbooBLdh9HBYqq6jmZV0r/LtFY7S0+d9X1FgY8+TneHiZuHdGH8upG/jh4luQO4Rj1emwOzS9NUhRnjU95bSPv3TOZeb/vI9zPm2fnrWm+dvjkl13O6MrXq/ax9v1/udRxTR3QnbG94jHodRh0//UUzxc7U13+VlSV239cwZK7ZuBhNLD9SCYvzt+ArCjsTcvl51dvafM4j9w2gjtvGISbUc+tT/2IzS6j14koimbYPHpQVyqqGwgO8KbJ5uD7tan8tOEwKhAa4MXLd4yjpLKeGW00AJyrK+L9s2vp6hNBkaWaAotWmC2rCpN3votOFPmq/910840i0N+T+Jhgsi5UkNgxDB8vN3y93XnnsSkcOpXPtaNcZTlUVeV0VgnJ8RGkpuWiqiodIvyZMiKJmnoLu49mO7vcxOZ3RElpHUabptSfmV3Gzt+e+i/f/3b8n4EEoKqqQxCEw6qq2pv/lgRBuKJUG7STpHb8Awwbm8Swsa5Ri/paC28/vQxLo41n595AZKw2wz6Qf4GXNm0h0teHY0XFCILI2M4d0et0/H76LKM6dWRGUjIrzp3Erip46A1M6aLVRLw8bCQv7diCXhQpM2uFu54GY7Prt+som1VTTWljAzcn9WTJqTSGxsQR4/vPW/7/CY6Xl9AkOdCLImeryluRJE8PE4vmzubGJxagqAonM4t58NVlRLl7ERnmx4XCapftHZJMUXENUZEBdOoQwoihXdl/JJuE/tFsOp6B1SFTUWd2qddwMxqYd++19OkUyZViV2qmkwxk51fy0tzfmTQmmU79IqhsNDOxR1csNgfPTxqBKApUNVpYevAEnUODGJ/UhfjYEDZ/o+nPCILAqaxiHnxzOSrwy8ajWKwOp+8XQGFZLaIoohMFFEXlxQnDWXcygy93pXJVfAfenDKWEG8vTAY9VruDQE8PZ1dSeIgvPRIjOZpegChqZetbdp8FAV54dCKCIDAiuRPb07PwdDNilyReW7qF6CA/THodKmB1OJAUhdrGJr7ccABJVhAdcDyriHmPTCMswIeCshoe/fJ353U/MHUwo/vEM7pPPBMen+/8LIqKkyABVNZZ2J2Ww6i+rpHJiyKS/w7GJHbmbGmFy7Ks8mqWHznJtcmJvPLdRidJMFvtbR3CCS8PE7mFVYwc1JVl644QEeLHRy9Mo7quiQdf/QVJUnjw1qs4eaGULYcynNHbsupGBnaPc0ap/oxXT64kp7EMN9HAy8nX41AkFuXuQRAEshpKQYZPzq7HXW/irk4j+e71mzmXU8aGPadZueUE08f2YnCvDgzu1Vo76rtfD7B4w2EURWX6uN6s3HycH9YcYlCPDuQVVzkVtnt0icTSZCevuBpRD6JdQtTrCPD7+xrFdvwN/ocobv+bKBUEwUtV1UZVVZ2dRs2Ckn/9w7kE7SSpHf8Wfl9ygJNH85BlhbnPreCxOdfSKSGc5/7YRFF9A/m1dehFEUlxkFpQSHVTE7KqsiUrG4MoIqkgGCHC29s5+w7y9OClq0ayJTuLDVmZ2jIPT/pFRPHkoKFsy82m3moju7aaIA8PYnx9eWPUGF4fOfqy9h7/STw/8Coe2LyWADd3bkhoIY0ZeWWs2pLG0D6dGNa3Ex2jAsnM1wY7wSxTXFNLRUUD/n4eNJpt2GwOTEY9JpOBgABtMBJFgaceH8/1b//E9gsF2oAAdA4LoMHq4MyFMgC6R4f+I4IEEB0RQHFpnVbALgpYrQ6OnMznx+Iz2BwSUQG+bHqiRWPt0SVrSSsswaDTEeDhTv+O0S73d+73W52Dal2jFQ83I6BFxLw9TNw2dQArszKaxQ0FVh47TUZZJZKisOFUBrcM6EW38BDiQwI5WVRGg83O3qx8hnaORacT+fiNm3A4ZDKyS3nwuSWoKmzbc457br2K4EBv3r51PLllNQR6e3D1nO+cNTwmg473bptETmkVX29MxS7JWmu9AEajDpNBT3xUMN7uJurNTXiYDJhVlS6RQWw9mknPjhF0iw2lW4cwdp/Ivuz9fHn+BtR7JjA6pXXU7d/BgyMGEh8SSEldA2vTz3GutAKDTiTEx5PKOrOzPVsA5t7ftvjir5uOs3DVQZK7RLD/WA6iKDJ2SCLP36eJDO9IPY8kyTgkhdVb0sk317kUeQf7eeHvc3myEermS6FFS6MGu/nQyz+OiZF92Fl2mpfSfkFRFU7XXcChKqTV5HF9zACOL63iXFY5BoMOu0Pixqv7YNC3jrgdOpWP1Sah0wms2X7SmeLNvlBBZXO3o0Gv41xuGQ6HTGSoLw/NvIogb09OZxQz6pIC9Hb8/xeqqk64zKp6NKuTK0I7SWrHv4Wo2CD0eh2qopKTUcITs7/h40X3uLRmG3U6PAwGnh91FZ/vS6Wovh6bJDtNWkVRJCFYq1M5XFzIbat/RQASg4Jxa64tmhTfBUVV+e7YEepsNvSiwNLrbqRrUBBuzZ5g/y8IEkBycBh7ZrkaoqqqykNvrqDRYmPj3jMs++BOvnxlBkvWH2HrgXMYm1QqiutQgUcfGAMqREf5U1pWT9cuYXi4t0QgKurMFFfXO6MFOlHk1lF9iQ7255kf1mHU65l72+V+/5fHy09MYt2WdPx9PPjtjxNUVDUw7bq+nN61W3NiV1Q2ncrk16OnmDmgJ402G7KiYtSB2d564uV/iVhleJAPnz4/ncOn8hnSqyNhzQW44VkBPLR0LXZJ4nRJOSa9DoPOgChoaaWKBjMWu6NZdFPlva83sTU0nBcem4DRoMdg0JEYH050RADllQ34+3rg7+tBTWMTN3+whNKaBp6+7ioXmxC7Q+bMhTLumzCQ2BA/iqsb+HnnMfp0imRy30S6xYTi7a4Vyr/x81bqmgUYz14oR1XhpQV/sOq12xnTv4sLSTIZdEQG+5JTrEUC7ZJMQWkry6j/CMZ1i+ebPYfIqtCIyL+G9WNCd42MXT+yBzuPZXHXNQPpGhtCUUUd3h4mpweboqh8/MMOFEVl79FsBASsNgenMlsKrIf07cSClQdQVQeNit1JRHy93Pnk0WnExwT9Zffk271msqHoGDGeQfTyj3MuHxHanQ6eIeQ2lmNXJU3fSrazOHcvpoZAVFXFZpf4fMlu1u0+zdJ3b2917PtuHMoLn67BYnXQ2KTVLvl4mnju7nHM+WI9sqIQGx7A+YKWaNvwFC2i171Ze6wd7bgIQRCGACdUVTULgnAL0Af49Er3bydJ7fi3MHJST7z9PPjgxZXUVpvRG3Sknsvj3v4pvLRlGwA2SeKX22aRGBLMmM6dyKio5Jsjh9mUd15L/6hwulxrK86v1TwHmySJJkli7YxbEASBjv4BWCUHFRYzsqpi1OkI8vR0EqT/LhSUVHOhtJZ+STEu6TBVVfF0N/Kv6YO5+/pBSLLCvgPnCfD3okdSSydRXGxr25Bwf2+GduvAjpPZiIKAXicSE+xPbIg/y5+99Yqua/PO03z67Xa6dgrlnZeuw2TU4+lh4qap/SgsqWH+ot1YbRJdwoJ4YdIIjuQVcWO/Hty5YCV2WeZgTiFL7rmJr3ak0jk0kPjQIGfd1EW8+fBk5n6/Bbss89r9EzWxTTcjb3yzEb0o8sQdo5i34wCy0tKxGOnrw40pydglmXk7D2CXFfSiSJ+YCErOVVFzvo79BWZ27stk3AitM1KnE/nu49mczymjU1wIer2OfWfzqGm0oKgq32w8xKszx/Lr/pOk5ZZgMuoZ17sLz//4B7tOZWN1yJgMevadzeO1m8e5CA36XmLuetH/6+Iy258U4n+ecwu1jVYe+GAlkiwT4uflooj9d5BkhfS8Yo7nFDM5JZFQ/9Z6QJdi9/k8rM3dXwaxpYPv8RkjeHzGCAAWrD3I92tT0etEfnxlFnHhAYiiQHSYP+VVDYiiQFxUIGWV9Tx2u6ZuXVhaw90vLKHJ5mDOwxNYvjuNkmZNrOgQX5I6tW3MfJHgmIx6PPUmboht2/8wp7EMhypjEHWk+HfiaE0OdkXCb7SK//5QzuVq0dDcwqpWzxRAr4RI1nx+LzOe/oGSSk2nKtDPk2c+Wk1K9xgemDGMx5u1lURRYOqIv7caasc/QPM7+f8QvgJ6CoLQE3gS+A7NC274X+7VjHaS1I5/GylD4nl27o189sbv5Pd34+3sI3hcaCEvsqqSVVVFYkgw7gYDvSLCOVlVpv0OBa1A+7GBWifV5C5d2ZKTTV5tDW+NGkungEDncdz0Bp4fOpzvjx/l2oREIr3/eztX8oqquOPFnxEEgf49YvnshRtYsek4V6V0crb8n8ku5ZG3V2h+ay/eQNcOf+1hpigq57PLePXGMbw6cyzb07NIjA4hNsS1ED2ntApPk/GyA+28BTtpaLRyOqOYY+n5DEpp6XxavzmdymqtgPvnlQeZ+9J1TO3djc2nzju92fSiSOeQQN6YNo4pn/3Ewr3HuD4liZevGeU8jo+XGzaHxP4Tudw1ZzFJncI5eraQ8qoGBAHeWb6dzKoqpOY0jigIXKit46Nt++gcFOhM70iKQpW5iUEBERwy5qKqEBHm2rbtZjKQfEmbescgf8Rmic2GJhtv/LKNVS/Mxu6QeOzbNTw8fzUNTTaszRESm0NCURQarXYXkjT37onMeGsxpdUNBPt6UtvYxJn8MtYdPMvEwYnMXbQVWVYxGfSEBHgTFxHIT6/cTGWtmf7dYlvZzVz8Dr9Yv59zheU8NnUY8RFBfLlhP/M3HkRoNh5edeAU61/5a/uo+6/qz/1L1qDXiQzo0LZR8caDZ7FLMoIgcPTcBeLCA1i1Iw3BR8f4Xt25dXI/woJ8qLNY8WoWVtyemonZokUJl/9xnA+en8aTn/2OucnODaN64ZDkVmkwVVV58rPf2ZuWw8DkOD59bFqbkdv0mgImRfZhW+lJ+gV25s2eN7Esfx+nagv5V+fR2BNV7np5CYqq0iEy0OUYB0/mkV9czferDmBusjN9bG9WbD6OQS+SX1yDoqocSMsl50Kl85lQVfWyIq3taEczpGZl7qnAPFVVv2+WD7gitJOkdvxH0HtgJ35Y/wRJH32OVZIQBQGTTodNltEJAgOiXHVYUiIiKM1sQFZVREll/4HzDA2NxtPLjfmTpzq3kySZC/lVREYHYDTqubN3X+7s3ffPp/9vQV6RprTdZHNwNruUbp3CmPOAaxps5ebjmJu0VNWvW9AuaQQAACAASURBVNJ44Z6/Np5+58P17N6XiV4n8sPXd3Hd4Naz5EXbj/L5+v0IwDcPXU/PDlqKQVVV1h0+S155DZ3jQzh1StP0iY1uIZrHsgtZeeIMCAImg46BfTvQYLbyyM9rSCstA0Xlmp4J3DakLyaDntScApocDuyyzPr0cy4kydxkZ/+JXADyi2vIL25JPbkZ9HQNDWZfdRFCc1ebThCxyxppOVNarnXoNc9Yq8xmXnliFtv3ZRAV7kdSQiQNFiubD2YQHx1Mj84taZS1m9P4eP5WvPU6hDA9jYqEXhXJL6/hYGYB+RW1KKqKrnkAdjPqCfDy4PrBSQR6u9bZ+Hi6s+Htu5EVhVFPfu30b3tj0WYcNgd6UYcsS/h5uzfXXIGEyovLNqMXRT6/byqhvt4uEandp3NYvOsYTXaJkpoGVr0wm5+2H2v+jrRJw8UU38Xvra6+CW8vN3SXpLhK6xsRBQGrQ+LT7fv5fvZ1LteeejQHT1nzE/TyMDKsV0dq6i28u2w7Fg+Vk+lVDB/ShW93HmZl6kligvz45fFZ9O8Rx8JfU9EpKlcPTcTbw405d41n5is/MXfRNjYdzODTx6e5nKu2oYn9J3NRgcOn88kprKRTtGsUdF9FBs8dX4IgwA0xg3i4q1Yre0uHSyx7vGHxu7dRUlFP/+QWv8PthzJ5/as/kGQFRVFRVJXj5y6wY8HD6HQid89ZQl5RNU02BxfKahGAmyelMPmqJDpEBdKO/zD+b0WSGgRBeB64FRgmCIIIXHEKop0kteM/inv6p/D5/lSCdW4klZtw7xvItP49CPF27ZL5YOwEmhwSO3OzCd/YxCF7GnevPM+Pyx/E2CyOqCgqj/xrIfl5FYRH+DH/x3vQ6f+ZyvQ/hcVi44OPN9LQaOWpxycQ+hdSB4N6daBH10iy8it44rZRbW4zrG8ntqVmNP//77VzDh/Nw2aTEN0MnM8uJSS4daRoe3qWU4TvSFahkyTtP5vPm79swyHL9O4YyVvPX0t0hD9hlwhZvvvrTsplK25RBmaOTmHq+F7c8OQCMnR1GKtVTFbIsZbQ9XqtS7FPbCQBnh5YHfXMGtDL5To83Y14uhudJPAi9DqR5+4ex7hBCVw/uie5ldWoqoqHycgTKzZQWtfQLPEgIoqazxgqmEwGF+Xxxz9Zzbn8MhAEFr50M52jtGtatzkdSdL2CZTdMAsSkk0m3NebnnERGPUnNJkIFWRZRa8T+ePVlomj3SGRejqfuPAAYkK1CJ1OFLln0gA++nWPU5m9qt7CxUDHpTGThduOUFmvFRDf8sFSZEXlocmDuWOMZkzs7W5CVbVj+nhotU/Dkzqw42QOogDxEcE8PHkIoE0CHn9lOSfPFhEbFci3H92KsTnS5WYwQHPkyd2gp6yinkB/T/R6HRaLnRffWY3DIeNp0LHi09vx9nKjyeZAdhO0Cxbgl/1p7DyTg6KqlNU1cq6onD4dI1n1xb9oskmEB2vPd16JVmfVZHNwNq+UP8PXy52uMSGcz69AbFS449mfefjW4dwwoUUeIKuhFFnViuTP1RU5l9c5GrHKNkLdNDLTITKQDpEtxEZWFDamnsOmyCiy6rzXRje981589fJN7D6SxStfbAC0Mbxv9+h2gtSOy0IQhC+AJWgebjcDd6qqWioIQgzw/pUep50kteM/ikeGDmJqZGceumU+52wSnqlFDJg+sdV2OlHk0/GTWHTkGMuXbUFSZWprLNTVWghuJibmRivZ50tRFJXCgirWrTtGZGQAKf3+a0J9V4Lffj/Gnn2ZyLLCF19v4/VXpl12W5NRzyfPtW2PcREj+3eha1woggDhwX+v/Hv7rCHM+2YbUZH+JHeP4svFezhzvpjIMD+mju7BnM/WU9zQgMFfh5+nGwd3Z7No4X7uumEQ4XEBIGgF2GcLyxG99C4ECbSuuPxyLdIysEcHJFmhsKyWi/EVASgtq6eorJboMH8+/WkntlP13Dq8Ow+PGUxhWS3f/rqPztHB3DK5H9+/fjPvfr+VyBBfjpwuoLahiRf+NY5xgzX33XBfb8J9W4jejifu5mRRKV/tOsigjjGU1/9/7J11fFX1/8ef59xYd/fYGBsxmtHdJakgoIAdX7uxG1tsRfmqgCghIindzcjBAhasu3fznPP744w75gaign71d58+8LHtfk7e7d73fcfrVcOe9PM8NKR3k3uRX1qFySLh5KCjuKKGbYlpLN5whFg/bzRaEauzSJHBgE5RcHLQcr6wnIEdo/n6wSlU1Nbx5oodZBSVMXNQY2uoxz9eTWJKDoqisPjFmwgP8GL38XQ+WbYbB0UgJNiLyEBvpg7uhJ+7C4eTs5k5qsEPr0dsOFtPnMNqlTBb1X6rZbtP2IKkLi1Dee3mkZwrKGVyfSbw9ZtHkVFYRpC3WyOZgJfeWcPxpBwAcvPLycouJSZKLcmOateKGpOJwqoacvbmM235lwT4ufHfebMQRDV4ArVcfSEDZTFb6R0Wxvb8bDQagUHtonHU61h/NBlvVydig9Xsj6e7MxcLZSS0CadTq1DOZBbw8I0DmjwXoijw1dM38vWP+1n000HMFolVm080CpLGhXZlV1EyFeZa7o9TM6pnq7N59PgHyIrM7VHjGRvS1ANw0YbD7EnKQNaqGTGTVcJktZJedFFmUq9jaM84Nu9PYeeRc3SPj6BXh2v3OvD/nf8VMck/SSrwNhAELAVqABRFOY/ak3RF2IMkO1cdvU6ddgPQaATMZitP3fstKUm5zL5nMJNmqP1HDlott/VIwHpDJWt/TmTgkLb4XpQ5cXVzpN+g1mzffBpZVvjozQ1oXfU8OWcs/Qe0vibn7uPjikYjohFF/Hwv31h7pQT7X7ktwvixnRg/thMAP6w9wpLVh5BkhcTTOWzdl4LFKqNYZOJ8vHlsxmAeenUFZovEV8v2sXXhA4zt1poVe09RazTzwPyf2f3GPY32//SUwQxoH02ApxuxIeobpiDQKL3u4eZIkJ8HxeU1/LLnNBarzKotJ7nn+r489OYKsgsq2K5Po0WID306R/PJMzew8/BZNu1PQRDgWEquLUhqjviQQD6Z1lBSfeQS6166YyTvLdlOfHQwXVqF8sC7P6IAp/KLaN0lhONn80BRA7t20UF0b6uWb1qHqYrPP86JwCrLTYQdk7MKMZgsOOq1vLloK73jW3AyPc824VVdYWBffgbT0xey9NVZXNe3XaPpufE92hEb4sf0d5bYdKeGdmrFlkOpfLFqH/07RXP3xN4M7tBguiyKAtFBTbMeF6xWADzcnQgP9eFAYgarNx5n9JD2TOnaHkVRGPDB2ygKFJfVkJldSmzLQN57+Qa27kpmUN8423Tkq++v48TRTDRBIhZHhWNZ+bwydRj3j+qNt6vTJUUudVpNkxLbr9FqREb1b8vSdYlYJAlNfCXl5iq89OqHGk+9C1/2aGzVk1iRglW2IiGzrehws0FSWVUdsqw2cA9IaMXRlBxyiiuZNqyxiKUgCLz58Phmm73t2Pk1iqLMA+YJghABTAUWCILgBCwBvlMUJe1K9mMPkuxcddw9nVUBQFHtwTh1NIuzyQVYzBILv9huC5IucNcDQ7nrgaFN9pN6Jp+Tx7KBevNLwGq0kPMrMcaryfCh7dDrNNTUmhk5/O+dmtFqNY3c3o1m1afMQa+lT9doQgO9MNVbM5gtEidScpg5qCs/HzyDxSrZGnUvRiOK9Gvb8Ak8JbMQV2cHqmvrbSIEmDAonkfeXolOq8HT1ZmqOiP+Xq6cPJtPTqE6fWi1yui0GqySzJ0vfs/pc/lQb2ORmlnEyi3H8fNypU/n6CbncKV0iQ1j0QvqNJ+iKESF+JBXUoVOK3I6oyG4iAz25pNHJzfadsuhVLYeSWPKkE6N+pkAHps2iLe+24rJLHEwKYvjabnMHt2dHbpzCPVlNoDSylrScop5atEGsosrmD2kKw9cp77Jx4X64+roQFWdEZ1WQ5i7O09+ugaAnOIKhnWPxdlR38TW49c8eMdg3vzoF8KCvZn73EQkq8yc11ZisUjsO5zOqm/uxdXFgRED2/LLttM46LXc/shCunWM4M3nJtMurrFWltFkwaJRsNQ/9d/vOc7j4/oT4NG8KOTvJdjfg/53e7Ar/xglXjJLszdzZ/TES67v49uR5dlbMUhGJoc17yRx69gelFTUIsky903ui4erIxarZCu1/Rp7gPQX8O/IJAGgKEoW8AbwhiAInYAFwHOo9uq/iT1IsnPVqa0xYrFIKDJUVxrwD3JHqxVxdNLRvkvkJbfbufUMRw6mM/76brSI9mf+J1soLakG1L9ZAWgZG8jY65raJFwtBEFg0MCmprzXknOZxXz+7Q5ahPty2/S+NtfycUPas3H3aU6mqO7uYwa045bre1FRVUfLCD8MJkuj17LNe1Pwb+FFoKcr0UE+PDLhtydc73r5BwxGC6IAXu5OlFYa+GrlgXrBSREXR53q1yfLvD5/I4IgoCgKQX4eeLg58eAby0nOqJ9UVCA80AtXZwfeX7QdAVUm4M8EShcQBIH/PjON42m5RAZ5M+vl76iuMyIrUFRew8rtJxjRszXpuSW4ujjy3JfrMVskdh1PZ8O7dyKIAk4Oaq/m4G6tGNytFbe8uoSkdDXYignz46s5U1m4/jCF5dUcT8ujfcsQCipryC6pQAEWbD7M1H6dsEoSbk4OfPvwVDYcSaFXXATPfbbOdq6KrHDibB5zF25FURRuGZPA3RP7NHtdvbq15KdvGjJORpPFVkZTbVzUr596YBR3zxrAdTd/DMDx0znk5lcQHtrYRHfOA6P4+OttbC7NwYJMXIj/H7JIMZospGQU0jLcDxfnBvPlxKRsNrxfjKQE4T6sgqDoph52FxPs5Mv3PV9BQUEjND0Po8mCs4OOV+8a3ejnFwdIJrOVTbvPEOjnTteLmr3t2LkSBEHQAiNRs0mDge3AC1e6vT1IsnPV8Q/0tHW66nQaKssNLFh5H3nZZbRq3bzY2/nMEt54eRVmk5V9u1NZuuYh2saHciYpF7NJbVKeeXt/ps1s/s3mr+L0mTwen7MUrUbkvbdupEWLpjpHv4eyilpue/gbJEnhQGIG/r7uTBqjBoFajUhmfdbMQa+lRbgvnu5O+NWrczs76hnSK5bNe1MQHESWnT6D8biaWcotq+LVm5oXnJRlhf9uPkRWcTkGo2q1IStwoWVWEAQ0oogoQE2dagSbV6zq1YiCQFigJ6/cN4bH3llFUVk1AqqWUbe24bz/xCTufPF7m55OcXlNk+PnFFXwytcbcXdx5LlbhuPq5NBkTXM4Oejo0S4SgB9emcmqXaf4ctV+ag1m3l+6g89+2kutwUSAtxtyfblXlmWGPfQZiqLw7v3jbSU5gNfvHsN/1xwgKsSHPh1aMOHJBeQWV+Ko1/LFkzfQqVUoRZU1tmyeRoCnvlnHsYw89FotSx6bxl0jewDQKz6Sn3cnIcsKc+8Zw5KNiTbdrCWbjl4ySPo1jg463n9lCpt2nGZw39Y4OzdkAz3cnYhvHULquUK8vVxwctJRW2dqFMQE+Lnz0mPjeNJkIau4nJbNlPh+C1lWuHXOYvKLKtGIIk/eOZTBveJQFIXv1xxGsqofWcLyWjE2uC+KonCgLAmNINLVq3WTTM/FwrIXs/VIGs98tha9XsuCOTcSVd/MXVBSxb0vLKW6xsjcx8bx06bj7Dqsinq+9cR4e6D0V/AvyCQJgjAUuBEYBRwEvgfuUBSl9vfsxx4k2bkmdOsVw7FDGTi76ImI8sPVzQkPT5dLrr/4b/JCP9OsOwbQoXMEOp2GoBAvfP3+fkfv5T8eora+NPXz2mM88J+mZcLfQ15Bhe1NWFHgbEYR3y7dh85Jx+KfD1FTfyyT2cr7/93GsnWJLHlvNt+sPMB3qw/Tu0sUW769j2+2JfL5hn22/TrrdeguMQn43Y6jfLhmDwrg4KFBWyUhiiIv3TOaNTtP0bZlEOt3nyY1s4gAH3fy60tcoJbrPnt2Kj6eLjg6aBEFAY1GIDzIm4LSKlIzi3jytqHM/WoTgb7ujOzbNCv37pLtJKbkoNWI/Lj9BDeP7Pa775uHqxMjesSxYPUBnBx0WKwydUa1THa+sAKdVg3yPFwcKaq3sli182SjICnA240nbx5i+76yxqDe6/rJQQAfN2cevK4PC7clEurjTuK5XJT6NQdTs2kRoGZyHps+iDG92+Lv5Yqvpysms5XDyWqpuM1vaGP9mraxwU2Uo8/XB8vzXplCVk4p5zKLmXrnfERRYN4rU2nTKqjRemcHHa1D/X/XcS9gNFvIyimz9WG9/PEGAnzdOXe+hIMnsgDVYPnOcQMQBIHl2VtZlLUegDujJzAyqNcl930xP2w6ikWSkYwWtiWm2YKkX3aeobCkCllW+GrZXowmqy3ozq8P1u3YuQKeQp1ue0RRlD8sjW8PkuxcE55/eypZ6UUEBnvh7PLbmYKISF8eeWoMh/afY9LU7oCa0eh8DSfZ/gjR0QHs2pOGKAok/Ma5mc1WzBYJ18tcf+uYIHp3i+ZAYgYx0QFs3nUGq1XGqshIuqZBTm5hJQXFVfWWErDr0DlmT6pmUPtovt5yGItVYljnVtw9suclyyybjqfZglJZJzC8dxsmDG5PalYxw3rF4enmxHvfbkNWFApKqoiN8CeroAxFhncfm4BPfbA774nJrNxynNLKWjbuPYPFKjNv8XY+fvoGPn9uaqNjmixWjp/Nw9fNmWA/d/Q6LQLgfwkD1QtU1Bg4ePo8HVoGE+DduJHe38uNr5+dxtHUHF7/ZrPt5y1DfcnIK0VWVIsXQQCdRsPo3m0veRxJlqmplzLQiCLOjg5YrBI3vvUdGUVl9IqLIKFVOKeyCpEUVVZgQLuG518QBNq0aFCqHpoQS2SQNzlFFfS5wimstPRClqw8REKnSLp0iKCq2kB0pD/b9iTz2vtqEPLUAyMZ1CeOT7/eiaW+0Xz3gbQmQdKfwdlRz6QRHVm2/qjt2uqMZrLzy5DqdaQG9Yyla7twALLq8jDLFgQgqzb/io8ztm9bTqbnoxEFerdvMLptFxtkE7Ps1TmKbu0jmPvZRkICPRlm92W75gjKv2O6TVGU5nVZfif2IMnONUGjEYmKad7e4FIMGtaOQcPa/fbCv4mjx7JYuHgPoigwcng8PbtfutcmL7+CO+7/BqPBwgP3DmXsyA7NrtNoRF6do04VbduTwuvz1iFJMhqNgKgVsVhltFpR1QVCLbt5ebjg5+1KRZURJ0cd/j5uuDjp2frqnVglCXdnx2aPdYFB8dGcysiDWhnBJLNp3xlq6kwcOJmJKAh0bx9hyyK4uThwNrsYSVZw1GtxuqgZPMjPnXum9mXvsXS27E9B4yAS04zNiiwrTH9+IVn1PmcDOkfz+PRBuDk7MKBzyybrL6AoCje/uJiKGgNajcgPL8+kqLyaVuH+6LQa8oorueXVJZjMVuKjg8gqKGdY91huHduD21//gZwiNUvn6erEj3Nn43aZ+6IRRbrGhXHyXD4+Hs6E+nuQXVJBVlEZVklmZ1IG94/pzaTe8ZRW1fH4pAGXtRU5kpzN4eRsRvdq06yJK6h6Td+tOIjFKjFjcncefXE55RV17NinmjqLgsCMyd3JK6y0WaQcOJLBoD5xTBjVkaMnz6PVigzoHXvJ8/ijPDR7ENcNjufzJXtoExNIt/gIWob7kZJRhMUicde0him1GREjOV9XiEYQuT5syGX22pgxvdvSs10kDjotrvUlw13HzvHEJ2twdNfwwi0jiAxWM3UL5s64uhdox84VYg+S7Fx1CnLL+XnZIdp2CKP3wGszqn+tqKkxsn1nMjEtA3Fzc+T7pQeIiw1i1Ij2pKQWIEkyVqtMRmbxZfez/1A6ZpMVqySzcnXiJYOkC2zdnUx2bhmjhrQnv7CCqRO6sWV/Kmu3J2EyW/Fyd2JQz1imjO7Cix+to6LSgILCnLuH41I//u3soONKhGRvHtSFipIalvx8BABZUCgur8FskXDUa9FptaqMgwLjB3fAx8OZr37cT7f4cFpFNi3h9OoYxbwnJ1NRXWdr0pZlBVmWVeFDk9kWIAFsTzzH87eO+M1eJItVorCsWlXPFkVGPfIFoiAQF+HPvIcmMuPFRVTXqeXI/NIqNn/YIHfw/cs3M+7xryiprCU8wPOK+p4+enQSy7ce479rDvLwB6t4454xBHi5kV1SCcDzSzbx3aPTmt1257FznMspYVy/eIxmCw+8txKz1cqqnadY9+4dzW7z/cpDLFq+H0UBg8GMRlQzhxfKzSZJYvveFCJCfXBy1OGg13L9darafO+ElqxZ/B9EUcRBf21exqPD/XjzifG27709XfjwuRuarAtw9GFep0sJOVweH4+GEvyx1Fwe/mAVoIpsbjqUwu49ZwF45p4RDO519YNBO5dAsU8QXsAeJNm56sy5bxF52aWsWablvQW3Eh179UoB15rHnlpKRkYxCODr60ZeXjkbN58iLNSbYUPbsWlLErl55ei0Gior6/DwcG52PwldIvnqGw2yonDdJQIkq1Vi6+5kCour+HbZfiSrTMf4MN59UX0jcnZ2YPXWk2i1IlHhvjxyqzpCnV9Uidkq4eigpe5XatdXgiAIFBZW2753cXLAbLHi5+VKlzZh3DmpNz07tMAqSYzu1w6tRmTKiMtbwXSIbRhFzy2q4JZnv6PWYOLl/4xmYEIrBneNYcthVZZEp9WgFX9bOV2r0TCiRyw7j6XbSmGyonA6s5BDZ85jsUq2tdOHNxaMrKo1UlHfY5SUUUBljRFPN6fLHu9AUhZvf7cdgJq0XPaeyOTJSQN5ZMEazFbJNmmmKApzl29jR1I6d43oSbSfF3M+W4vVKrPz2DmenT28fh3UGS/9/EiSXO8lqmCVZN598XpWrD1KTAt/Fq84QFllLYoC2/emotdpeeSeYbRs0RCkOjUj8fBPZu7ChpKpAhhrLLYM2r5jGfYgyc7fgj1IsnPVMZutajOyoApJ/pMoKFBLG46OOlXGQAEBAVlW8PZyoUf3aJYuP8ixE9nMX7CTRx8a0Wh7SZLZtCUJgKXf3o3FKuF5iUDqgy+3sn7rKSRJRhAErJJMRaWBTUdT6RQdwrnzJeqkkAId4hq87565ZwRvfbmZyFAfBvZo9buub9Evh1myMZFAN1dEQUBWFKrrTFTXmdCLInu2p7BzyxluvqEnMyb3QKv5/TYw2w6mUWMwIUkyz36yjnsqqpl7z1g+XrGLb9cdJtDbjazCcp76ZA0WSWJc33aEB3gxNCFW9cIzW3DUaVn0y2G2HjnbSMgRYGDnlnSJC8PZUa/2DQ3twvThjYM4L3dnwgI8ySupIszfE3eXy5cgAZZuOWb72iopRIf6EB3iy31jerHvdBZ3j1Jd71PzSvhpfxJGi5UXvttIjIOqgyTJMlW1RqJCfHjghn7sOHaO2WMSmj0WwLSJCRiMFswWK7fP6IuLswOP3K0OAlw3Qg2s75uzpH61Yssw/S9hkSXSKouIdPPBWfvngrZgPw/O5ZYC0KdDC+4Y14tDJ7OwyBItwu32I38p/3u/an8b9iDJzp/CYrby+n2LSD1xnjufG0ffkR148d0bWTx/B+27RNI6vnn38j/Kzj2pJKXkMXFM58v6qv1RnnpiNJ9+sY2O8WFMGN+FJUsPEBTkyYmUXESdiLubIxpRREHB3a3pG+/3Sw+w8Lu9AJSX1zJoYBtWrDxM544RTeQCsvPKMZmsaDUi7VoH46DXcbCykKcXbsDJQceEuDiskowiK2TnN5SrWkb6MWZgOzW4qv/ZudwSFv9yhK5xYYzq1bzOk8Fk4aNlu5BkhbKqOsb0b8uxMzlk1wtEyiYJyaoGawu+28PuA2l8/tZNjUxXr4SEdhHMX7EXSZIxyxIfLN3J+H7xrN1zGllRKKms5ZMVu8kpVnuG5q/aj16noarOxPnKSr7dlkgLfy86BQepDvdA++ggcsurqFWsaNx1eLg6svqt26iuM9lKNhXVBg6dOU/HmBD8vFz59tnpnC+sIDLIC1EUqK4zcveby8kpruC5W4YzqEtMo/Me3asNB5OyUIDnbx1By1D1+Vr/yynyiip54OhyfnzvNnzdXRBFAa0oIlkksvPLCQ/zwdfblUl94zmelMPkQR24fnBHLkcNRsq6luHn6IaDY/Mvxc89Mob/fr+XsCAv+vX8fQHxX8H07d+QXFmEt4MzG4bfzdHSHNKrSxkXHo+r7sqkHS7gFeSKlAwIAv7hHjg46lBE1X/v02W7mTqqi60kacfOX4U9SLLzpzi2N42je1Ix1pn55PmV9B3ZgehWgTz31pSrfqwzqfm88vYaLFaJA4fT+fqTW676MRK6RpHQtWEa6YlHRjFh1ieUV9ah02pY+PEtONZnMMaN6dRk+6KSaiwWCUEQKCqq4u77vqGmxoQsKwQGeHD/vUNsU3EP3D6Y1+etw8vThWcfHs3J8wX88smPAFgkmRED2nAmLR+TWeL2KQ1j1UtWH+bLpXuxWmWWrD3Cpy9O5f53f6SovIaNB1OIDvUlNrxp75Bep8Hb3YWKGgNWSUbQCzw0YwDPzFuDLMLMiQksW9EgO5CeWUJZRS1+Pm6czSnhkQ9WodeKvP/QRJuK9I/bjrPrRDqzRnenQ72ydatIf354ezZTn/kWSZFxcXLgw+W7kBUFvU51re8VH8mRlBwsVglZVstNRWXVLN13HEVRyC2rYmLPdrTOD+BUUTHptZUYsGCwWNl24hxHz+XRNSYUHw8tO4+d4/3vd1BcoWoy6bUaPFydyC2p5PHpg2gVrgY7O4+mk1VQhtFs5aPlu5oESUMTYukSF4Zcb7i6bMsxxvePJzO3FElWcNBrKSqrJibCn6WPz+DrDYfYtDUJQSdQnFVOUXIJyfuz0Go0TJuUwKwplx+Ffz3pJ/YUJ6MVNAQ4ejLAvw23HficAmMFUyJ6G8zqXwAAIABJREFUcV/sCPx83Hj83uGX3c/fhVmWOFamGtmWGmv59MwuPk/eiygIbMlLYUHf6b9rfxIKsouILCucKyjF2VGPIArotBo8XB1t5U47dv5K7EGSnT9FSKQfiqLg6Kwn6iKhyPKiSh4d/BJleWU8tfh+EkY0DSh+L2azFUFQS19Gk+VP7+9KUBSFmlqTTZzQZLYybuylr2XWjN4UF1cjCDBjWi/WrD9um0zLzSvntTfX8NOy+wGIDPPh87dvsm2bXVqJRhSQZAUPF0fiIgL4/JWmjcKV1QYsVrUUmFdYyczHv6WiyoCoA/RqebA5NKLIM7OG8sD7KwFYv+cMO9efQasoeHs6M2tiDyaP6MSjzy8j+WwBHduF4VsvXLlg9X7ySioRBPhh81EevnEA53JLePeHHZjMVo6n5bH1o3ttxwr0cef7V2eSmJKNySzx7pJtGM1W/Dxd+fb5afi4uyDLYDCZSUzNxVGvZcaIruTV1bA+MQWTxcqHa/YQHeyDRZYpqzHg5drQUxTq22D18fKCjbb+I1Abvs31wdeCNQeYNFAtXcXVN5076nUktA5v9h55uzvz3vfbWbb5GIpVJj2nhIdvHsRXK/fRu1MULesDrjA/T56ZMYTB8dFs3ZPC5i1J9c3qClarzPFT2ar3OFBZZWDuh+uxWCSevG8kvj7qPdUJmvrnSkAriEzb+wElJrVXbGHGTmZG9cddd/k+qr8TvahhenRXvjt3mAS/CL5I3ouMgqwoHCzO4mRZHvHezYvH/pqCimrWHElGqv87O5aZz+GMHOa/cCOJp7MZ0K2l3Y7kL+TfIAFwtbAHSXb+FMGRvny0+mHOny2ka/+Gxsqdy/ZRkFGIxWTl62d/uCpBUvu2ocye0ZtTp3OZPb2pa/y1QBAEXp0znkXL9tO3RwwRoZfvjfDycuG1lybZvp/z+Bi+XrSH3NwytFoNwUGel9x2ROdY1hw8Q355Fa/eNOKS626e0J0jp7JJzShCFAVb5kcnCTw9c6gtc9IcT36i+ouhKJgNFvRWEYtFIr+wCqtV4qFnfiArtwxPD2deeWqc7Y2pY0wIO46dQ1GgXZQq7WCxSMj1ujk1BhOPffQzr981Gm39yHugtxujerYhMSXHJphZUlHDTS8uRpJkag1mRFHg2dnDGNZd1b95ecZwvN2dWbQtEZNVotZgxqHeouKR8f1w1GlpFeJH4EXj92EBnhjNFqySjJuzAwO7tGTjgRQcdFr6d2qQaYgO8WXZq7MoLK+hdbg/+09lEurvSUW1gaSMAoYlxOLl7kx2YYWaDZTh5y0n+fG9W5k0tGOjRnFQfzd6dYwiyNudzZuTbD93cdZz+4yGEfnFKw6w/0gGiqLw/vzNGAwWggI8eHTWdQQ7e+Eg6lmXd9QWIAFoBRFnzf9+Y/bznUbyXMcRKECXVW9Sa1Ub1c2yxE07vuXYhCevaD+1v2pwN1klTp8vpH/rKGIu8/tsx861xh4k2fnThEb5ERrV+IWsdfcYdTzZ2YGuwy8//n6lCILA1IkJcGk/zWtCQqcWJHRq8dsLm2HggNYMHNCatLOFpJ0tpF/fS0/ouDk58O6tYxBFsVHWpMk6F0e+fG06b325mTXbTqLIqn5Sl3ZhjOx5eckFQQQUBX2FjEYGBxct7q6OXH9dF1auO0pqehGgZu0Ki6tpEa72lQT7eaDIqgFuYVk1r32ziVU7T6HUd3gqijodlpiaS0KbxlmazrGh3DisE4s3HMEiyZRUNHYFeOaLdSSm5PDkzUPU57hvRzYcSaGyzsiTkwcR4OmKIEBUoBqgbjtxllnzlhIT5MO8O8bx4cOT2HH0LK3C/Wx9RPdM7ENJZS1RwY2D2kAfdwJ93Hnyk9XsPZmJJMu28/9p50mWvHQzSRkFIAooooIiKXz90wF0GpFlm48RHuTNgpem22QXCkurOJKSQ0LnFhw+molGI3Lv7IG0uUgx29/PDa1WBAVSzhZQVFyNXq8lrmUg9w0byXvJazlanqHauyDi5+jOe11mohV/v+faX8UFyxVBENR/wA8DZ3PLrsUUGdWyp0G68mxvdKAP/xnRk0827MdgUbdbtPEIG9aeZOHrNxHg8/er7f+/wp5JsmEPkuxcE1p1jWb+ibepKKoittufNzj9pxPTMoCYlpe3p9hyPI0nv1mPIMBHd04goVXjpvfPluxmy94Ubp6QwNhB8ew+fA5JUl/NHPRa5j427jfP44snp/D0x6spKlNtLmpqTTz94Cg+/3YnmdmltnUXjGwvcCApE6skoQBHUnI4kJTVZOpMlmXC/Jt3vJ89ujuHz2STnFmEtT4wAdXiT1Fg2e6TrE1KJSbYl4/vnsDGl26/5DW8sWI7ZdV1nDCZ+WzNPkSLwqSBHQj1b8jSebg64XFRoGmxSvznnRUcT8tl9pjunDyXj8FkselBWawSxeU1fLR8F9V1RhDqPcckhZ+2nrC9Z+QVVXI8JZdOcaHsOHKWd7/dajOlnTquK34+bowc3FgQdeKozri7OlJeUcfx0zmUldeBAB4e6vmFOfugE7WgwOzoAcyOHnjJa/+7kBWZr87uJKOmmP7+bXni0Gr0oobF/W8mxkMtYyootqAToG/A7/u7HxIfw3trd3Mh7SjWKVRbjCxYuZ+tB1MJ9vNg/gs3NjK/tWPnWmMfFbBz1ZHrXygDI/2JS/j/0UtQW2ti5+4UCgor//A+1h9JwWyVMFkkvt92lBvu/4rH3liJyWwhO7+c79ccJrewgje+2IRVkomJbMjeVdUYUa7g019suD9LX7/FJkAoCgKFJVVk1XuDgapj5OXhzPmcMlWvp7yW9ZtPoamTQVGYOCCeId1aNdtI+8mK3WTkqcHW2r2nuf31H9h4IBlnRz3/fWYas0Y39mnz93bDUa8FJ5Eqg4nT2UXsTsq47DXEhfrhoNUgyQpLNx5l8cYj3P+u2vCuXOImJGcVciajEElW+GbdQVuTuU4rMmlAeyKDvIiPDuKHzUexWGX0Og13T+iFVhQbfai2WCViIvx4+K0fmfvlRqpqjJgtkqqHNaojk8Z0bjINKIoCZ9IK+GLhLk6dyeXmG3rw9AOj6JOgqo23cPFDI4h46J0ZE3J5Paq/iy0Fp/nq3E7W553klZOrqLOaqTAbWJ6pyiZUm41M3PIVpWbVP6+jVwjv9fh9KV8XBz0iApo6BaciBa1ZjZdW7zhFda2JlMwiPvl+11W/Nju/QmmwJrnW//4J2IMkO1eVJW/8xEin6dzV5QkMtca/5Ry27kzm+lmf8uo7a2xeU9ea+x9ezKtzVzPt5s94be5qW6P37+GGPh1w0Glw0utIP11ITkEFR06dZ/uBs3i4OaHVanDQa/HzcuXIqSwSk7IRBQFnRx33zuh3SfuLi9lzIp0B936EPtiZbp0iuePmvvTu1hKdTkQQwNlJx1svTOapB0bw6rx1fPXdbu55YjGmUhNag4KuVuZYWh4v3jYCR4fG6t4mi8TGg6nc/NJiVmw/zotfbuBYWi7PzV9Pbb0Y5IQB7YkM8sbDxZE37h3D9OFd8PVwISbYBye9DlCICbl0D4rBbOF4huoP5u7kgAb1jdRksfLClxvoftt7PPXpmibBUpCvB1ZZlUwI9fdke6Kq5CzLCh1jQigorWbfqUxMZitajYBoUpi/dC+xLQLo2jYMnUZEqxXx83LF19OFjNxSjGYrOq2GQF83bpvUk2C/5rNoABu2JmGxSlRVGwkN9mJA71jbh4dP0zZRazVRaqphY/7x33wO/w70YkNQ7evoioOoRS9o8NA5UW6q47GDK7HIkm3NZ32m4KZrXpuq1mjmqcXrGfXaAr7YfMD2XHm5OvHWTaPQS4LtDVQQUIPoei7ng2jHzrXAnre0c1VZ+tbPKLJC3rlCkvak0HXY1elH+j28/eEv1NaZ2Lk3jdHDcugY3/wk09XkfHapbYptx+5URo44T6eOEb+xVWMSWoWx5417QYAXP1jH3jIDiqIQFuSFu6sjX78xg2NncunVOYr5P+zGXG9w2iLUh+nXdWuyP4tVIjW7mMhAb1sPzec/7cNgUpucu4yOZtqwzgB8+sZ0TiXnMaBXK7w8Xdh94CwCAlarTJ3BbBOeRAGrVRW/vBCAigIE+LhTUKpaiAiCwMfLd9syMDqtBp1W/Tzm7+XGsldnAVBZY2DEQ59jlWQ0ZQKv3TuG2DB/QnyaDzbyy6qY+f5Syuon2Sw1Bh6d0IfjZ/OYMrgT9769HEWBLYdTee1bPbeN7WkzxT10+jyiqstJRl4ZGlHAQafBQafDo17vSpIVnPRaxvVpx+otJ7FIEqfPFdAuOhBRI6LTavj02SkIgsCc24bx/qLtxMcE8exdI22imwcTM1i96QSjh8TTo0uDlIS5vs9GVhT2J6az2e0o+YYKnm43ga7eUaRW56Mo0MYjlP9F+vnH8nibkWTVljIzqg+VZhO37FrMFyl7+fbcQcpNdba1HTyDGbTuQ0ySlde6jmV97hmqzUbe6DaOcFcv3lu7izWJyQB8unE/3aJD6dRCVWwf0j6Gli/O4qn3V2E0W/nP1H60ivTnxU/XERboTY/4SMqr6vByb16g1c5V4h+S5fkrsAdJdq4q3Ud1Zs9PB9E7aonuGPm3nENkuA9nM4qwGq28+vpqbrm5LyNHtL+mx7zvniF88PHm+k/FCv5/UOjyQjbo+ftGsevQWUICPImNUnuZQgO9CA30AmD0gLas2nwSgJTMIvKLqwjya3zMO99YSlp2MW4ujqx4bTZODjr6dYwiPa8UAegY09BcHBMVQExUQ89Ur27RTBjVibT0Qm6f0Zc1m0+w62g6oS19mTU6AUEQeOf+cXy97iCDOsdw/eCO7DmRzmvfbKZlqB+HzmTZ9vXETYOb9JF8sHQny7cdRxBUXSO9Tkvvti1sk2zNsfrQGYor1AkwjShwy5BujOzZhsz8cg6dOU9EkDc5hRVYrBI/70wiJauYb59TtXpC/T3UtEQ9oiBgscp4uGqICvZh5qhu7DmRwV0TetOhZTD7j2aQV1zF0B6x/LL3jK2UaaiXnujXtSX9ujY2560zmHnqtZVYLBI796XSplUQwwe1Y/yIjshSw7vO/tPnKIwuAC3MPbWKL3vcSU+/WDx1zkS4/m9OcgmCwMTwhkDcUaMnv64KGQWrIuGg0WGULGgFEQSBuvqm7RePrscsS0iKzBsnNvFxrxsa97Ip4OzQeIovMtibJW/Otn3/4+ZjnEkvIi2rmK0HU9FqRBbPnUmgr72Z2861xx4k2bmqPP71PWSdHod/mA8ul7DjuFpYLBJvzFtPemYxD987jHat1U+jb79yA6vWHuXrr3dRUlLDO/N+YcTw+N/VG5VfWMnPG4/TvnUIPbv+dgPqdWM6MXhgG3btSSWmZQAhwV5/+LpADZYG9bz0JFyblsG4OjtQU2dCI4rodY1LbZIsc/KcWpZSFCN5JZVEh/hy23U96dexJe6ujgR6N4zRK4pCWXUdXq7OKCgYzVbuntXf9njrVkE89qtz6N42gu5tI2zbZ+aX0611OLeO7c7kOf+tvw6RuIiG4EuSZT5atotFv6jmulqNwK3X9WB497jLBkgAnaKC0em0CMDdo3oya3BXHv1gFbtPpKPVaHhgSl8UReDDZTsxma2YLQ2WOPHRwXzy6GRWbD/O5kOptixcUXkNq3ae4rbrenLbdT1t65e8OZvC0ioeemMFoMZXHeNCibqMBIQgYFOoUhRISsknLaOIuOhAEjq3YN/hdAQBKg0G9ZO6FVwtjgiCQAev35d1/Ltx1uq5K643C88dYnRoW6ZFd2FLXiqDglux+OxhjpblABDg5E6+oQotIuGu3gA8PKYvkiyTUVTOzP5diA32o85qRidq0DUz0ffduiNIssyFyrnooCMls9AeJF1L7JkkG/Ygyc5VRRRFWrS7ulYkl2LX/jR27U3DaLLwxvvrWfj5bQA4O+kZOSSeRQv3IjqK+Pu5NRsgldXW8djqDZisEm9dN4Ig94ag4eHnl5JfUMlynYbP355BVMRvf8J3cXFgxLD433UNp1LzmPfNduKiA3hw1sAmtgunzxawbkcSA7vH0KVdQ9lQFAU+f+VGNu46Q/eOkfh4ujTaTiOKTBvWme83H6VLXCiRQd62xy7WUSqprEUAnvpqPUfTcokL96Osqo7C8mr0Oi0aUeSj+yfQIfryooB7T2by2co9mCxWzuaU8NiMwSxYfYABnaOJDlEDC0VReHndD2zYogZvei8z3v4apg/vjKP+tzWBusWEsfzJm6g1mmgdpgZeGo1oi04cdDrG9mmL2WLlTGYhd4xvrHjdvmUw7VsGM2fmUPrc+UGje/lrLJLESws3kVFagUZRDzHviUlN1l2Mk6Oel54dzZwXfsY25KWAVivyzEOjmb9oF44OOk6n5nF6q4DiKvPkg+N/87r/V3mw3UAebNcwiRfnqepnPddpBO56R+qsZp5oP4S9RRnUWEyMDlOn/lwdHXjxhmG27VZlneDJQz8jCALDQuJ4rctYPl66m8SUHP4zuS9tWgWRX1qFBrXkGxboSde2/6yg0s4/F3uQZOcfS6Cfu2p1odcS8iuRRk9PZ774dBZnkvPp3i2q2e3n7z/M3szzKAq8u30Pb13XIOBoNFrUsoCAzYn8WvDCh+vIK6zk3PlienSIpHeXhqyV1Spx34tLMZgsrN12ipWf3I7nRb0Y586XkJiUTXCABx1bN+5lOZdZxNjubXho6oBLHnvb0bM89eU69ViShKzAmfNF6LUaZAWM9de9cNOR3wySLvTkCAhoNCKTB3Zg8sDG/WjHK86QWHUcGV/c2pXh3b0cQYD5Wd9xX8ys37xXAOF+jZ/nOTOHEOTrjq+nC6N7t0EQBGaM6HrZfWhEEa0oYK1vrv/ip3046LVMHdLZtua5xRs5lJ2L5KY2MomCwNn8EloG+TbaV2l1HTPf+56C8hqentGHjcpS/KabqT7gQbx7a8YM6UjLFuqI/MN3qea1JrOV40nZtAj3xc/HjX8beo2WEe5teWbRL9y7exWOOi1Oeh0Db2yFu3PTZu53T21DQgFF4ZfcZPwkV37ZnYrBZOGRD35CFEUER5G37x9Pgj04+kv4p0ye/RXYgyQ7/1jKTEZqfEUE4PopTd3WQ4K9bGUvg8XCjrMZtPL3JcpHzaqEe3mg12hQ6r++mNefnsjXS/fSJT6C1jFB1+wa/L3dKCmrQVHAx8u10WMKXCR2qHBhYG7NtlMs/OkgOQXlKAokpxfSu3MU3vXZpC27zjD3gw0APHL3MEYMamvbR1lFLV4eqkHrxsOq5ACAo06L0WLFw9kBi6SgEWVAQavR0L/Db5cbE9qE88i0gZzNKeGmSwQpTlpHnCKr8RtixinEYGsROlmR/HtuWSM8XJ14cEpDWbDGakAv6mzTWABm2YpBMuGhU++PViPy0WOTmfvtFjLzyzBbJXYfz2DqkM6UVtYy57O1nCwsQpLVJnRFABn4bscxnps6pNHxt504S1FlLYJLHUvqvkTQyogh4DPJxP3tbyfMuWlw6aDX/mFx0n8Kc5dvI6uonOzicvX32Efi3PoCXhs8hjb1GScAiyyRb6iyfa8RBILcPVAUxWbRI9VPzd37zgpG92rNC7eN/Ksvx87/Y+xBkp1/LCt3nMRa36iw83g6sZEBfL32IG7ODkwf3tWW3QC4/YefOJlfAMDq224i3MuTqZ3a4+3sjEWSGNm6scN6XEwgc59u0HkpqKrml+Q0akxmTuUVckuPLnSL+POTSG88Po4NO08THe6Hj6cLyzccpUNcCDGR/ui0Gt55aiI/bjzG8D6t8fZwxmKVeOPzjTaPK1FQS04OF41JJ544b8t+JZ7IYsSgtiiKwiPPL+PoqWxiowP4eO40rh/Qge3H01Hq/wMorzGi12p4887RtAr1wyrJRAT8dn+VIAiM79e01GiWLeQbighxCiTWLYpbo6YwnyWN1kwOHXXZfe8tOktqdQHjQjvh5eByyXWrc/czL+VHHDUOfN7tAUKcfSk1VXHrgXeosRqY2WIYN7VQg5wusWG8/+AE7nxjKbUGM7eO7Q7Awg2HOZaWi4SCt68zkYFenDpfiCAI9IhtOiXZMSoYURBwCTCj0Qg0VNkUMmuzmw2S/j/gWN9fJisgO8qYYg2clg3cvGMhh6571Fb+NlotBDq6U2qsQRHgqQ5DmRbVlR5PRPL2d9tsfXUXWLv3DM/MGmazvrFj51pjD5Ls/KPYefQs732/g2qDiXF927HvlAZRFBjSrRXvLtnOhn1nAFi35zR3TezNwHqn97TiEgwWK846HdkVlYR7eSIIAsPj1MeTC4tZcTyJAS1b0DuqcUpfURRu+O/3lNTW2ko0ezLPc/zx//xpoUw3F0euH6mWeSbe8wWllXVoRIGlH9yKr5crXdqFN+pF0oginu7OVNcakWWFhA7h3Dm1Ly7ODfox11/XlQOJGciKwpTx6kRSbZ2ZxBPnkRWF1PRCikur6RwTys5595CeV8b01xY3ul4BgZB6E9mNh1OZu2QrMaG+zLt3fCPdmsthka08cuxlyswVRDiH8Gr84wwL7EelpZpl2WtRUOjp04WhgX0vuY+kilwePPQdVkVhc/4ZFvW5tBL3Tzl7sCoyJsnMgdJkJjr3IbH8LEbJglWR+S5tByfW1PLAlP6E+nsS4ufBmrcb7y8yyBt9/RvwjN4duXVsD9LyShAFgeighqbtzMIyLJJMTLAva56bTWZFAd+ULKDYVGYLOPONRVd0n/6NlF1kOGxDAONFViU5tRWM2/wFBqsFGRmdoCW7pgJBEIiLCGBE9zjKquqoqK6j1qhu5+Hq2ESs046da4n9t83OP4bM/DKe/HQNOcWVVNYYWbPnNBvfv4uN799FfHQwVqvaV2ORZNLzy3j683VU1QtavjRyCEHubgyMaUH3iMaN5YqiMP3bZXxz8Ch3LV1FYXVNk2OX1hlsARKAXvP7PskqisKexHQSk7Iv+XhpZR0Wi4SiqArahSVV3PToN1x3x2d8vWI/BqMFURRYMHcGoYGeyIpCYlIOub9S+Y4M82H5V3fx44K7ia5X5XZx1tOlYwQajUir6ABbL4xOoyE2zI92LRpKIB1ahtC3fUM56J1l26moMXAqo4B9pzOv+JpLzeWUmMoxyxbSajLZULADi2zl+rDR9PPtjhYNh8qOsSpv0yX3UW6uUwfBFIliY9Ul1wEEO6n9QpIi09FTLRF29mqJo0aHiEjtaT07jp7j+fkbLrmPcX3b8frdY3jx9pHMHt2dwvJqdp5Kp6ymQQdoZ1I6N7y5mBnvLGH5nhMUVFXw+t5FFFVV0dWrPVEuEbR2i2FE4P+evchfRacWDRk00SgilKvedTpBY/tgcagkC4ssY1VkZMAkWzlbXQzA95sT+XD5LnKLK6k1WnDQaZg0oD0/zb31/4WC/9+O8hf9+wdgzyTZ+cdgNFsavUC2jgzA9aIMysPTBqLXaVmzJwlJVhBFwTYtNjwuxpY1+jUK2NSCAVsJ7wKCIPD+hFF8uucAcf5+eDg5MLFD28u+WB8tzKeoroY+IeHUWa2sXX+Cb386CApMGtGRWoOZ8UM70CrS33aMlx4YzYLl++ifEENUmC+fLdlN+vkSFODLZXtJTMrmg+eux8/bFQ83J9uLzJU0lguCwNvPT6aisg4Pd+cmE11zbxvN20u34+fhwkOT+zWasotvEcS+pCwURWmUTfkt/B18iPeI5WhFEgKwMHMFeYZCbo2aglEyYkUCBX44v5qhAX1x0TY19XUSdVhkCQEwSVZkRVY91ZohsSwNUNWhy8zVRBGEj4M7y/o8y9ZjqbySvBmNRsbV+dKTdIIg0KdDQ6P/bR8tJ7e0ElEQ+PK+6+kYFcy+5CzMFisK8OP+kyQtLUQQXdE6OaK77jSLenx4xffo34aiKKoCurXhd7J/l0g2uJwCoE4yU2U24q53pG9ANE4arS27JABPtleb24vKqrHUi7MKgvq/cf3iG/2927HzV2APkuz8Y4iLCOD+6/uxPfEsfTq04PpBHRs97unqxDOzhzFxQHs2H0plYJeWJBUVceeyn3DW6/luxg1EeHs22a8oCHw1dQJfH0xkROtWhHg21V8ZGteSoXEtm/z813x27ABfnjhChcmIVhSRZbXfp7XBC6PJiigKLFl9GFmBzXtT+GXBvbZgq39CDP0TGgK51tEBaLQiVquMLCtk5TX4qz37n5G8/eVmTqcVsHTdETq3DcPP27XJ+VyMIAh4eTbf0xPo7cbbd41t9rHXbx/F/uQsvijZwvVHPuL+uCFMj+rZZJ1VltAIIsuyDjH31Dqi3PyYEz+I4xVnkJGxKFZKTeo1TI8Yz4HyY7Zta6y1uGidUBSFrQVqyXRgQBz/ObgYuT4arDDXYZYlHC9RbuniHcPB0mQEQSSztpC2nhE4aRzQiVqGdWqNPFMgp6iCGwarvzdGk4UV20/g6erEqF6tmw16K2uNavMwCrd9uJxRXWNZdeA0Oo2Is4NONRhWQJFELHU6Bvn3vtTt/9dTXmNg+jtLKCivst1LJ72W7u3D2HBODZIcNFqctWqQ6uvoyvrh9zBywycYZAt9A6Jp6a5mPmeN6U52UQUGk4X46GA6tgqhdeTlDaLt2LkW2IMkO/8opgzpxJQhnS67pk2LQNrUl49u+f5Has0WDGYLK0+e5sH+vZrdpltE6GUbsc+WlHIsO59lx06REBFKQkwoj+/4hRYeXswfMR4XnZ608lLeOrgbqV5R+IJXmAIUeZqICfdFI4pk5JQgW2Ukq4zBaMHZqfnMRv+EGD55YQrzf9hLYWkVD98yyPZYoK87ep2WimoDVbVGlq1P5J7p/S57X/4oOo0GhwBIzSrAIFn4MHlLkyBpRdZhXjrxM3pRi4NGi1WRyagu4ouzP6ERRGRFRi/oyDMUcfuhJ3g49jbujJ7OqtyN9PVNIMBRLZUtTN8H9kjMAAAgAElEQVTHR8lbsChW2nmEICsNWb1AJw8+Tt7C3bEDmJeykmJTJWNDetLLtw0OGh3Px9/EloJE3klewfxz6zhQmsxbndSeI0EQGNmzdaNzfnPxVn7Zn4woCmQVlOHkqOO7jYm4OOr55LHJBPt68O6tY7j1w+WAqp206sBpQO0Nm3/f9aTlFvPs4l9QFJg5uAu3RPXn/yu7T2dQWl2LJCu4OOqQZQv+nm6IbgKOohajbCXQyR2NIFBjMeGi1ePt4MyWUfeRU1tBKw9/2748XZ145/5/robUP5p/kPnsX4E9SLLzr2ZwTDSHz+eiAD0i/pjI5eaUczy0cp2thJBcVMKPeUnk11ZTYTKwISONfqGRTFy5GElREACNIBLk6kaV2Uit2cIt7bvQt3cYrs4OpGYUsf1gGpnZpQyd9SHD+rTm+fuaTnhV1Rh4c/4m8oqqeO7eESS0j2z0eFxUAPuPZYACMZH+Tba/mkS7+aMVNDhpoLN3U62aj1O2oqD2lYgICICElUJjCeGufoQ5BxPo6Mva/K1YFYnFWT/xSvxjDAno02g/mTXFGGW1/HKyIocbIhOoNBs4UppJnqGCb9L3srHgMLJQg0Wxcqz8HOEu/izo/ggaQcRR44CAgFE2k1NXfNlrqqg2YJVkREVg4YbDyLKCrChUVhuY8+labhnbnX4do4nw8yKruBxREIgK9Ca7uAJvN2fC/TyJDfGja0wYWo2Ir/ulJ+/+P9ApKhgR1WZmUq947hrRAye9jjrJzJqcU2TWlPF8p5Hcv385m3JT6OgTyuIBN+OqcyDO054lsvO/iT1IsvOvZnqXDnSPCMVJpyPE44/ZGOxJz2zUY6EoCm18/Ck3GZEVhVZePqRXlGGS1L4mjSCwe/rtBLq4YZEkDFYrq9Yf497lPyArCp3ahCLJCtn1Oke/7DrD03cPbzLWvOPgWbLzKzCZrXy6ZDf9Ehr3VN00PoFWLfxx0Ovo1ObaGqP6OLiycsB/WJJ5gBaufo16g/LrKtDQUKoyyBZ0okSERzmioKARRB6Nu4PTlWmsL9iOHhFXrQtHyk7S2atdozJXB+9wVmUfw6JIaAUNrdwDmRzRlVl7vqLIpPq2VZqNuNW3psgoZNUWUW0x4KF3oZdvG/r6tyOtOpeHYhskHJrj8ZsGc987K8gtqsBS34d2IfOXlFHAnE/XsuiFGSx44Ho+W7+PEB8PZgzoTE5pJUFe7rYpv0Cvf58g5O+h1mDmzZXb2Z+ShckqAQJtQv1xcVQzpK6iA4sHzATAYLVwy67/Y++8w6uo0j/+Obem905IQgo19I6AVFFAQRClY1cs6FpX3Z9Y1rY2xLUsuiqyAlJFVJrSe+8QQhJI773cMjPn98eNCRGQxIJtPs/D83Bnzpw5MzD3vvOW7/sZEjhakk1mVSnRte1KNCkx6EnZvw90T1IdupGk86cnPiiQk/kF/HfnXgbEx2JCEOHvg7mRFWpR/vV5TH7ubrwz7lo6R0awKSONSG8fWgUEk1FeWpf8rUkIcHMpY5uNRkwGA5+cPkh6ZyfeqbDnSDpSStxrf0Q6tom8oO5L2/gwhAA3q5keHc733ggh6NXpfFFCVdVYtf4oiqIycmiHX0xTZnH6Xj5L3QkCqhQbE1r0AuDm7f8lr9aA+R53sxMhpKtXmbOCD1LmMzxiEC93eILFGV+xr+QoR8uSmB4/mSuCXDIF1YqD5w5/iVOqGBDMaDOUMVEueYRZ3ScwdesHZFaX4GH04m+tBrAsYwunq3IAyT173+bjXo9gMZh4qt3ERl2Ph9VMZn5pg0R9o9GA0WDAXtv3TVFVgnw8+cdNLn2lD9fuZu76vVzRJoYXplx9XhuZvxq7jp/lrveX/eA3VbJo22Gu6dYagLLKGqQEP2933IwmegbHsK8ogxivQCI8XMKR9+1YzLrsJK5tnsjrPa//LS5FR+eC6EaSzp+ecpuN8XM/x6GqvLZhK9YqQVxwIIvun9ioH7kOzcJwM5mQSDo1C6d7lMtrMzi6Xonay2LFajLhUFW8zBaM57wRJxUXkuFbjaJBaSL4bjUCkmuubMtNw7sSEeL7w1MCEBcVzPw3b6GguJLEJqh+L165j/9+thUJFBRVcsdklw6RU1NYlrEHozAwOrIbpgs0E/0xcqpLcWgKBiHIramXHShz1GviGAuNmLMtaLEmvHw1atRqKpQq1uZtYX/JMdqeGEpSaC4OLwdGYSTPVlh3rFQlRgw4cXmRSnbYGPni+yiqxutPjmHhFXeTUlFAnF8I7kYzC9I3uI4D8m0l5NYUE+V5fthxyf6jrDx8glv7dOPKlvVGpbvVjLeHlRq7E1XTkNLVx21wrzjKqxxc2SGeFs0COVBykhC3AA5mpLOgfAlaczfWHXAwsX9nOrT49dTYf++s35fM43O+Qlpqm9vVYhCCG/q4hEX3nkjngVnLAXjlnmvp2zGWT/pPJru6jDB3H0wGA7nV5WzMcVUmfp15jKc7X42v5fxKR53LiO5JqkM3knT+0OSVVXIqp4Ducc1xM5uQUmJX1DrFX4Bqp4KiaSiaBhIciuR0XhGFFdWE+v54RRhA1+bNmDN+NGeKS7gusc0Fx/i7ufP5tTexOfMM17RoyYpVB8nILmHyDT0JcPfAaDBgFYJQb08eua0X1TYno4d2wGL+8UcwLMinyd3OS8uqUVWtrg0JwLHSTN4+tYZDxWcRQlCp2Lk5tmmJ3jPaDCGnpJyCXdW42z1QW2sYDQZmdZ/Ae0kbiDYHsnHpWRxOFWuqJ/c/OI2/f7wAv1HpCBNUVNtYsuogRl8rMTcEkhAezrAwV6Kzpknum7kYa6UHHgkaztOwKO9A3Xf1+/O3cCIlF1WTvPzIKLp1bE5mdb2BFe8dQTOPhn3VVE3jwc+/Yl1SCgD7szJ5Zkp3mnsG0yOwFWaTkc+emcKek+m0jg5hyfpD5CnFbI/cgjDClMRE3jo1n20FB1GlilNTcQsBS4AdZ6EHzQL/2l3odx9PRzolmAEkaDCyexsGJsZSWFLFso2HeGPBJhxOl4d11Y4T9O0Yy6yDW1meeozb23ZnWpuuBLl50dwrgOzqUlp4BeJtPr+/m47Ob4VuJOn8YSmqrGbUa3NRNUmriCA+vmscU979nGMZedzQsz0zb3CFSMK8vXhiyJUsP3wM7JKTFfn0im9OSBMSbXvFNKdXTMPE78oqO8+/8RWlZdU8+eBwOkaG0zEknM07TvH+3E04nSppZwuZ9c+b+OL6iezNzcbbZKXS6eD6Vh2wmFyPX7XTSXpZKQkBgb9I+GbS2J7kFZTjcKrcObkfBbZy7tz1IXbNiQRMGChzVF9ynh8S4uaDz14fThwrYkHSPiKD/Bl5ZSK9guPoFRxHUVkVG+QHACiKxtHkHOw5Vko3BBHWTtDF2INMkYxaZqFrzlVc07It36w7Sf/u8bi7WUg+k4+mAYVG5DnCnVaLCZPJiM3uCoF9se4QvTu34ObYq5iX8h3VhW5EKR0x/kA/6f7PV7I+KbXus2/LYv5z+iuEELzc8TY6B8QT7O/F8N5tAXhs8mCeOvQxzkIFNFifd4DDZUnYNIcrFV2AlCCE5J6r+hL4F0/UvnFQJzbsT6aorLru3hTnVfDMzjVITaJqWl37HJPRwPVXtierspz3j+7Coak8t+c7bkrogJvJzIohd5BWUUSsT5Cel/QbI9Cr287lkkaSEMIN2AxYa8cvkVLOvMjYscASoLuUcm/ttieA2wAVmCGlXFO7/WrgLcAIfCilfPnnX47OX4mMwlJUTVLjcHIyq4Dk3EJO5xYhgSW7jvD02MF1ScGTunZkUldXV3qbU2ngaWosUkr2HDqLw6FwRfc4Vq49xJ6DZ1EUldkfrOf1Z8cBUFpeg6q6RPXU2nyXVgHB5FZUMv2bL5HArsxM3hw2nEqHgyH/+4gyu50eEZHMHTX2Z98Xby83Zj5Sr3l0prKgrjubAcGQsPbcGjeAs1WFfJa2jc7+0VzTrNPFJzwHg0GgSbA7Vd5ftJWYiADW7jhJvy5xdE+M5v/uuppvthzjxmFdSIgK4uv1RylIFnSN7sD0if3wUfxQVcn1V3VkwoMfo6gac5ftYuWcu2kbH8bRUzlYLSZsdieaBD9vN957fgLllTYOn8xCk5IRAxMBGB7Uh9fmHcepafzPcJDp/Xrhd06X+b1nsxreF08LNbIGqzCzOmcPCOjs31D7alxUf/YWn8JkkGwp3IFAYBYmfM1elDsrUYXG7XHXc11kw6q8vyKxzQJZ8+bdvPq/9SxafxCTQdCrfQxH03KxKypWswmL2fX8zXtmMtGh/lQ67biZTBhVA94WKxaj6zm0Gk16hZvO75LG/FLYgUFSykohhBnYKoRYJaXcee4gIYQ38ACw65xtbYHxQDsgAvhWCPF9J9F3gKFAJrBHCPGllPL4z74inb8M7aPCuKJVNHtOZ3D/1VfQIiSAQC8P8ssriQ0JYF9aFt1iG1Z95ZVVkl5USufoCExGA5U2O/9Yso7yGhvPjR1KZMCF84MAVm04xhsffAvANQMTaRcfhtEoMBlNNG/magLrcCp8MG8zmpQYTQaeeMDVsXzuoQO8u28XTlVFkZL0cldOT0pJMeV2OzZFYWvG2V/jNhHjFczdCUNYn3eM2+IG0C/ElVA7efs7ZFUX83XWAWK8gmnj2+ySc/3jzmFcM/09ACqr7dz30mJsdoUV64+wbNbtXNWnNVf1cc2fW1hOZY0Dp6Ky8rsjtIwJwcfLnVaxISiqhqppOBWVskobqqqRmVsKuKqcfLzdKa+0cef4vkRHBGCzO3ly+jBimgWQEBOCqml4u1kJ8PSgwm7Hz90NL2tDvakbOrfjox376z6f2eNJzyEelGuVrM87yMb8w7zV9R5a+9R7CDv5x/G/3o9xx57ncUpXmCjI4sddcWPxNnsQYPGlmcevK7fwR+PRyYP424QBgCs1Kb+kkhNn8rh/XD8qqu3ENQuiWbDrufIyW/nm2lvYlZdB/4gWutfo94ruSarjkkaSlFIC3zezMtf+udAtfB54BXj0nG2jgIVSSjuQJoQ4DfSo3XdaSpkKIIRYWDtWN5J0Go3RYGDW1IYq0Ssfm8aDc79id0oGd3+4nPduu57ucS5DKau4jNGz5qFornydcD8fvN0snMguQErJK19t4u2p19XNpWmStZuPY3cojBiUSFpGIQ6niqZJVqw9xLdbT/L4fVejaRpX9Ign5Uw+/r6eVFU7UFUNgQFPDyulthr+uXVjnbhk++BQnrlyENO/+ZKkogKifHxJKi7itk5df7V7NTW2H1NjGzaS1aRW9yBrsnHfiv4+Hgzr05pvd50iNNCHnEKXsSeRKGp9a5eS8mru/r+FlFW4kroVVePjZTspKKrEYBC88NC1hAb5UFZew4xpAzCZjLSJC+Pg8UwQ8MELEwkN8sFUq6494/nFpJwtRAiX2vgzs7/BaDDwxpOjqTapdIoMZ2daBjtS07mhSyItgvyZ1rsrc3fuR629NCkFf4+dzHNp/6XYUYGbMFJkd/WDs6kOnJqCt9mDAnsJhnMkDUod5byeNI9ege15tM20Jt/7vwKmc1TQH5006EdGQqSXL5FeF38Z0dH5PdGomIMQwgjsA+KBd6SUu36wvwvQXEr5tRDiXCOpGXCuxymzdhtAxg+292zi2nV0zsNiMlFQUVkXUsssLqszkk7luhJ9HYrrxzyjqLTOSDAbDYT7NdS7Wb76IO9+ugmAnPwybrq2G0eTsjmWlIOmSRRFxdfXg/atI5hy738pLauhbatwbp7Qhy9XH+K6qzvi6+OOXVHwMJuxKwpWk4nFN4xnXeppNp09Q43ixNtiYcu0O4j0+fFEYCklewszUDSVQyVZdAlsTo/g86UBGstbXacxN3UznQNiaOfXeJ2lZ+4ZzgOTB+Lr7cahpCwWrdnPkF6tCT0nkfn1D7+joLheFqBNXCjZ+WU4FRWrxcSTr3+Jw6liMRvZvOc0OQVlzLx/OMdP55CaXsjytYcYP7IrQf6uxPrTZwux2Z24Wc0s+mZfXb+6jdtO8fBtg0kvLuXehV/iUBRWHjnB5ofvJNTHC193d4qrXYaal8VM6/AQnvKYyNunvqCldyS9gtqwNmcfr51cgqqpPN72RgaHdaF3UAcOlSXTI6AdG/P3YtMcnK7M/Mn3WkfnD4OuuN2ARhlJUkoV6CSE8AOWCyESpZRHAYQQBuAN4OZfY4FCiDuBOwGioqJ+jVPo/MmYOXYIMxd/S1SQH9d0alW3vXdCNG0iQjickQOAqkmklJiNBkZ3bccjwxtWexWVVKKqGpqUFBRVEhTgxXsvTmT+F3uY89kWWkQF0aF1BJk5JZSW1WB3KBw4ksGbz93E1HH1bTusJhMrb5rM5vQz9I+KwWoyEe3nj6q58pUqHA7uXfUlK26a/KPXNfv4Jj46tROb6kQAFqOJlUPvqhPjawoVThv59nIeaTuyydVEQggCfF06UF3aNKdLm/OVzM1mI0aDwdXwFEg+W0i39lEUl1ZRUWkjoza0piga2/ensuNAGmUVNfTrFs+Hi7fjcKrsO5ZOs1A/fDzdmDG1P+98toXqagdJqfmYTQYMBgP9u7tyiuyKUneu/IoqknILaBUWzBVx0Xx15CQSmDHQ1ZKmnW8073d/AICvM3fxRtIS1Fpz+cusnVwV3q3OY2RT7RTYS8iszuee+HFNvc06Ojp/cJqUvSqlLBVCbACuBo7WbvYGEoGNtUmyYcCXQojrgCzg3G/QyNpt/Mj2H55zDjAHoFu3brp9q3NJEpuHsfSh8w0ON7OJT+++ESklRzJycaoaX+w/TlSAL7dd2R2DoWF+xITR3cnMKcFmV5g+pd6Amji6OxNHuwQQv/72CK+/uxajyRVuGDuiC1m5pSxYtot2rZsxYohLLybK14/J7euTo9uHhPJE3/68uHUzTk1F0TSqnU7MBsNFRS53FZylprZjuutBEJQ7bE2+P05NZfzW2ZQ5a/A1u/PFlQ9jbqJm0qV4+LbBhAR4k55Two4DqdjsTgqLK/no5cl8snQHc5fvRlU1WrUIISkt3yXd4FBw1Io4SinJyi0j+UwBBiHoVxGHm8VMVbUDh6IyZVQPrr+qI4F+nqw6mkReRRVxQQGcyHO1Ilm47wgzRwxiYvcOZJSU0T8hhqm9uzRY43vJK1mUvqnOmyiAUc1cxu3Cs6tZmL6GVj4xvND+viZrSuno/KHRf2nraEx1WzDgrDWQ3HElW7/y/X4pZRkQdM74jcAjUsq9QogaYL4Q4g1cidsJwG5c30cJQogWuIyj8UDjZHJ1dH4mQgg6RLlEALu2uHiysrenG889ct1F9wN8snA7iqphMhn5v4dGMPTKtkyc/iFZ2SWs23yC6MgAEltf+BzTOnRG1SQnCvOJCwig45x/42WxsPKmyUT6nJ+z8XDiIGbsXIJDVZDA9dHtaR8Q0fgLr6XSaaPAXoEqNRyaQqXThr/1p5WzK4pKVn4ZzUL9GuSleHlYmT6pH5XVdv7+6gpyC8r52y0DXdc9phfx0SG4WU20bxXBe/O3YrM7uWdSf7w9rdw8thcpZwvRNI3Ne1KQSLbsS3HleQmByWhgQM8Egvy9+PbEaZ5YsRZNk7QND8Zaqy5+ZUIMTlVl8seLUaXkYGYOHSPDuSKuPjz5ZdYOJK4vowCLD//sMI02vtGoUmPe2W8AOFqWwpGy03T2r/dI6ujo/HVojCcpHJhbm5dkABZJKb8SQjwH7JVSfnmxA6WUx4QQi3AlZCvAvbWhO4QQ9wFrcEkAfCSlPPYzr0VH54JU2OxMe38RZwpLeGbMEK7r0rZJx6/bcoLjyTmMG9GFiFBXi5IVaw+x60AarVuGUVpejcEgaNsynOzcUsrKqxv1IiaE4LbOrmTta+bPrfMmfZeWyrSOnc8b3zWoOS93u477diymRnWyJS/1vDGNwd/qybionqzM3M+1kV1+soGkahq3Pv0ZZ7KLiY0M4qPnJp3njfPysPLvmTc22CaEoG+3erXyB28e2GD/1NGu9MSKKhteHlaqahxs2ZuCpkraJoTxr8dG4+fjCvcVV9eABKeqYjaa+HL6VIwGQaS/LztS0lHPSUg/mpVXZyRVKjUMCOnIt7n78bV48lz7aeTaSojxCkP+IInd1/zX1kPS+Quie5LqaEx122HgvG9sKeXTFxk/4AefXwBeuMC4b4BvGrtQHZ2fyuaTaaQXl2JXVGav2d4kI+l4cg4vv7MGh1Nhz8Gz/G/2LSSn5TP7ow3YHQp+Pu6898okggK88PP14MY7/kNllR2DQTDlhp4X9SL9kBvbteelrZuwGIz0jbp4MranyYJEYhQCT5PlouMuxaNtR/Jo25E/+XiAkrJqUjOLUFSN5LP5FJVVsnlfCkaDgWsHJJKdV0Z6Tgk9OkRjbmL/uBqbk6mPfkphSRVWs5FRQ9pTUl7DPRP74evtjs2h4GYxMbpjGw5kZJNVUs7z1w0lOrC+z15xdTUG4eqlJwT0iXPlNL699RuW5W/BJ9DM7K734m60cNf2t8AoaO0XyVtd72FK9AhWZG1kQEg3Yr1+3ebBOjo6v190xW2dPz2JkWEIBO5mE31bxQBgdyqUVNQQ6u/VoAv9D3EqKqJWTTgzr5SBk99i2vUuFQshwGIxEd+iXjfHZleQEixmI73O8ZZcils6dmFkfCs8zGY8LRc3froENefV7qM5XprLpLhujZ7/1yDQz5Me7aPZfjCNKzrHsuzbQ8z/eh8ISM8u5os1hxAIuneI5uVHRzV63opqOzPfX0Veoas6zgH06xZP18QonIrK1BcWcCI9j+v7tmfckE6s35GMompsiU0lIySANpHBBHp7UmV3uN6INTDY4OZ3F3F/lx4sXHocKQOpGl7OmYQ8TuwopmJRILhpHG1TwqBZs0mIDubTZ/7ZZONOR0fnz4VuJOn86YkO8uObR28hr6yCds1CKauyMe7ZTymrsnFdn7Y8NWnIRY/t2CaS6VP68+3WJE6ezcfuUFi29hDPPXItB45lMGpoxwbjX/7HGD5dvIMenWJoGVuvIHzoRCabTp9muXaCUA8v3u9/A37Whk08gz0bF9YZFtmGYZEX7iH3a7JlfwqvffIdLaNDeGHGSCxmE288Oga7Q8FqMfHyf9ehqCpCiDphyArhZP2JFP63Zi+ThzXOqLv3zaUkpRegWcFsh+AALzrUeuROZxWSmlOElLBsyxGWHT6Gorr0nt76emutwrlg4cMTKatxefREtcTgBIdTZc7SbaAIEBKZb6FLQDz/3bAUpACngZr9boCTI6ey+XZbEtdc2bTQrI7OnwFdAqCen98oSkfnd4BTUZm1eDNPzPmajQdOM/qpj7l/1jJstXo6wd6eLo+SEBw/m0eVzaUEvXp3EgDz1u3j7jeXsD/5fC2cscO7cOuEPmhSw2ox0i0xiopqOz07t6B5hH+DsW1bhvPyU2MYM6K+kio5LZ+Hnl3Ce2k7OVtVwt6CTEZ88yHbctN+xTvyy/Ovj78lr6iCvcfS2XGofu1Wi+td6+4br6B/t3gG9kjgsduHEBsTjDQJJPDu0q2NPk96XimKpmHwNHHNkHbMf/NmCsuqmLd2HzaHkwAfDywmI5gFzloDyWgQ2J0qiiZRNI2nF65lYo+OjGzfBl93a10/KqfJ1VolPMSXT6bcA5VGamyuikF3o7nBOk6m5f7cW6ajo/MHRzeSdP4UrNx+nEUbDvHt3mSemPM1GfmlbD92lvdXbD9vbPsWYQT5eGAQgnFXduBkej7vrdjO7pMZPPTu+XUIVTUOHv/XCjTpUhY2Ggy89P4aHn1lOdv2uTrMV1TZyC0ov+DaCosrXVVZRSAU0JDk1FRw9+Ylv+xN+Jl88OUO+t49m4fe+qJOw+lcWkaH4G41I6UkKvx8bSY/bw9eeuA6nr9vJEF+Xrz2+PV4e1hxt5ppGxPW6HXMvHkozUP8uLZPW566fRgWs4lbXl7Iv5dt5b5Zy3n/4RtY9OxU2rcOx91ixstq4aXJ19CtVjRU4NLAmr/5AE9dPYDvnrqDCb074FEJXtLE9UM7sPTtO2geEsDiVQcoq3SJTbaLD2/YJkPqLTN0/qLIy/TnD4AebtP5U1BWZcNeq7Fzru1/Nq/kvLFe7laWP3cLNQ4nnm4W0vNdytsGIfByt543/nhyDja7y9tQVaOx42AaTsVlRGzbn0ZEiC93Pv4Ziqpx16S+jL+uO06nyqETmcREBtKjUwzXDGzL8eQcPAK8+Lr8JAA1ipPx6+ZxojSfZ7pexfWx7X/Zm9IEpJR8uGInmpTsOZHO6YxCWkU37FH24oxr2XEojeiIAFo0C7zknH5e7ix+4WZSsorw83Lj0bdXkNA8mNuv631eFdy5DOySwMAuCQDsOHaWZz9ZQ2FpVZ3HyKmoxIQF8J/pYzmQmkVGURlPL1iLEDCofRwmg4FNx1J5b81OTmTm88Yt1/LEjYOZNqAb+UUVdGhVn0zfNj4Ms8mIENClfRSnMwopr7ThbjVzy1i9CYCOzl8d3UjS+VNwJre47u+dEyLYdyoLo0Fw24j6H7rkrELS80ro174FFrMJTzdXgnRUiB+z7x/NodPZDO91fq5PXmE5JqMBRdUI9PMk0N+T4rJqhIDIMF/2HU5HUVzNWldvPM7467rz2IvLOJqUjRCC+W/fysN3DgXgdFkh61YlI5FEefpztDiXatXJywfXc31se+yqgkBguYig5K+FEIJ2sWGczizEajHVNSQ9F6vFxIDuCQ22SSlZs/0kNruTkf3bYfpBonOgryeBvp5MePpTTmcWsvP4WVpFh3Jl58Yltf9rwXoKSqswGQ2YTQZCA3xws7jCYlaziV6totnzzTYcqqunngCuaBPD5uNpqKpKebW9bq6IEF8iQhpe16DerQgJ9MbhVOncNpIxV3UkJb2QtvFhWC0Nw286On8J/kBensuBbiTp/Cno1SaKdXtOAYrAZnoAACAASURBVDCqbyJvzbi+TngQXAbStJcWIISgZ5so3rinoUhk91bN6d7q/PYaAP17JLBkzUGy88p47M4hhAX58Pw7qwkJ9GLUkI5UVNTwyeIdVFTZmTDKpcR9/FQONTYnbm5mzmYVExTg6kEW7xvEsmE3k1SaTxu/UG5YNxcPk5nuwc3ZmpvG7RsXYTIYWDBkMu0Dwn+t23VB3n9sHMfScomNCMTL43yP2oVYseEws+ZtRALpOSXMmHTlBcd5WM0YBEhN4unWeOMjsUUYBaWV1NgVFFXjTE4x/1qwgTfurf/3m9C3E7uTM6i2O5gxoi+RQb4k5xSSU1zBI6P7/8jstedoWS/I6ePlTue2F/5/oKOj89dDN5J0fjdU2RwAdR6epnBNrzZ4ultIziykV7uYutLtXSfSmbd2L6om0aTE4VQ4lJLdpLl9vNz45JUpDbZ9+urUur97ulv48qN7UFQVi9n1SE2f2p/35m0msVVEXWXW97T1D6Wtv6vybe2Iu0ivLKFbcHPu27oMh6bi0FSWpx657EaSxWyic8umaQIVllShfN/frqTigmOklLUyC4JAX086NeEcM28eRofYCF5duAFVc73eBng3rAoM8vFk3gPjG2x7bPSARp/D7nBy/HQucVHB+Hg1rY+djs6fkd9TdZsQ4m/A7bj8W0eAW6SUTe/H9BPRjSSdy0pZSRUPTZ1Dfk4pDz8/lgHXdABgz8kMHnh7OQBv3X893Vs37W2+oLSSJz9YhZSS1buTWPzsVNLzS5g+a+l5Yytr7KTmFBEbfn5ezc6Dabz96SY6t43kwZsHYTI1rrbBYBBYDPWP0+hhnRg9rNOPHOEiwtOHCE8f1zExiWzMTsEgBFdHtW7UeX9Ltu5PYdXW4wT5exETEcD9Ext6kTRNYjAIqmwOjqTkuAyp0io+XrmTtJxibruuF3HNgi4yO6TnlTBj9hdomiTEz4vc4goMBoGfl/sFx1fbnbiZTT+a73Qh7vrHAtIyizGbjSx753Z8LjK/jo7O5UUI0QyYAbSVUtbUdvAYD3xyudagV7fpXFZ2bjxJYV45TofKvHe/A6CkooaH3lmB3alid6p8teN4k+ctLKtCUVVsDoXU7CK63vEmt/5r0QXHGgyGCwpIpmYU8ujLy0nLLGLZ2kP0n/gm7362udFrePPD77h6ytu8N29Tk9cPcHVUa7aOvo9to++jR0jUT5rjcvLPOWvIyi+jrKKGiSO6ERLgXbfv6Q9W0fP2N3n031/iYTXTp0MMBiGIDvNn7qo9rNtziodnr/jR+eet3UdmfilZhWUkxoZjMAhUTTJv7T6KyqsajJ2zdhd9nniH4S98RHm16yWztKqGD9btYu3BUxc9h6KqnDpTgFNRqa5x8O95jf/31tH50/L7qm4zAe5CCBPgATQtFPAz0Y0knctKm47NEQKsbmZ6DWhNeZWN1btP4lTVujEjeruSp0sra7jj1UWMmzmX5MyCH503JiwAVa1/6iRQXFZd99loEHi5WQj196JZkA/7T2WSW9wwPPTIS8vqQjrfs/DrfY26rsLiSlasPURllZ2FK/ZSUfXTvMFBbp74Wz1+0rGXm+jwANwsJqSUhAX51G0vr7KxZpergm/roVTyS6t4Y8Zo1s2ezlM3DwUhEIJLqll3jIvAajHhZjHRvXUkfl7uuFvNeLlbz6tC/GzLATQpKa2sYW+KS+vqkblf897qnfxj/hp2nkq/4DkKiqs4116uPCfRW0dH57dFSpkFvAakAzlAmZRy7eVcgx5u07msRMWG8NHXD1FSWEmNFa55/AMUVXOFq0xGru+XSI/WLi/KF1uPciglB1XTmLVkC+88OOai85qMBtwsJqprS/UFDWVuVE1SaXNQWZv39OL89XgYjPx9zJUM7NMKDw8rxaXVDeY0m4x079A4j46Ptxt+3u5U1Tjw9XHH4yfkVV2MvQfP8NRLX+Dt5ca/X5pAWMj5lWe/BW88NobN+04THxVMVFi9qKaXu5X4ZkGk55UQ4u9NkI8HQgh8PN1IjA3n6Vuv4nByNpkFZQx94D3uHduX0f3Plz8Y2actMeEBSE3SPi6cgZ0T2JuUQVSoP0s3HaZzQjPaRLtyu4Z3ac2ibYexmE10jHHlcpVX21A0DbPJQEVNvfFzLDmH3YfOMLhPK0KDfAj0c1UrWswmZkwd8OveNB2dPwCXMScpSAix95zPc6SUc+rWIYQ/MApoAZQCi4UQk6WU/7tcCxQ/7Hj9e6Zbt25y7969lx6o84fg/S+38+FXu5BAp/gInpw8mNjwwLpQ2GufrmfBloOA4OpuLXnhrhE/Ot/J9HxW7zpJiL8XTlVj/YFkTqTno6jnCyMKVeKVo2A1mYhs5s9H797Cy3PW8vX6owghePi2wSS2DCcmMhCj4eIO1+zCMvafyqJ3YjRmYeBYcg6JrSLw9vzlEoDvf3IBh45lYjQKbpvYl8k39PpZ8505W0hWTgk9usZiNv86UgNORSU1u4iY8ACs5vPfxQ4lZ3H/G8uosTtxs5jZ8v79jZ77uic+Ir+0EqNBsPT5mwkL8EZKSU5JBf5e7iRlFTD7623EhweSXVxOfFgg94+4AqPBQHFZNWPv/QCHU8Hb041V/72HqhoHp9LyaRMXhnsTKu90dC4HQoh9UsrL1qjRPay5jJ/80GU519HXH/rRaxNCjAOullLeVvt5KtBLSnnPZVkguidJ5zdkaLeWzP/2AA6nwrRh3WgRFsiZzCJCg3zwcLdwcN9ZLGUaGECUKZecr3VUCK2j6gUQ+3eMZcqL85FSQo2GaoIQNzcS20Wy9/BZkAoOh0LamQJsNgeP3zGUm4Z3JdDPs1FVTvtPZTL9jaUIIfDzcuOzf0xCWgwYjb9sFPuKHvGcTHa1yOjY7ud1pE89U8D0B+chhKBH1xY894/Rv8QSz8NsMtIqKuSi+5sF+2IQAnermYTmwU2au6i8ytV42GxkV1I61/VqixCCiABXyO+hj1dSWFHN0Yxc3r9rDF1im5GVX8qHS3cQEuCNJjWkhBqbE1WTeHlY6dJOL/vX0anj9+M7SQd6CSE8gBpgMHBZPSW6kaTzmxEXEcR3b9yNJiVWs4mnX/uSrXtT8XS38NnsW/D1dseY4RrrZj3/Df9gUhbVNge9O8Sw4/AZ/v72Snw93fjg/8YTFuRDi7AAVr18O8u+PsD8/+1A1TT69Yviqekj2bv/DI/+Y5Erf1DCq2+t4f8ev5YWkZdWkgZXWfsDs7+o81IVlVUzbuanOBSViCAfZt03Cm8PN1ZsPcrcNXsZ1CWev08cdMGE8UsxfnR3enSOwdPDSmiwz6UP+BHSM4oQQmCzOTl1Ou9nzfVzCPLzYuHzU0nOKKR7m6YZKC/fNYJZS7ZwtqSEF5Z/R3J+IY+Mqq+s8/N0p6SyBqdT5fFPv+GBkX1ZvHwvp87mY7WYiIsJITu3lDtvuqJOR0tHR+f3h5RylxBiCbAfUIADwJwfP+qXRTeSdH4znE6VotIqQoNcVVHb9qXicCgYDYKU9EJuG9+HJ19egdVqYuoPQkzr95zi2f+sBgFThndn55Ez2B0KxWo163YlMWWES9TR28ONSWN6YsFAWXkNk8f3BsBsNiAQyNpXppzarvVNQZxTaj5uYEe+2HIUu1MhJauIsf83F5PJQI3NiQRWbjvGhMGdiQk7v+dZY4iNdnlbCosqOJ1WQKfE5rj9hNBQ7x5xdEiMJO1MIX+7d+hPWssvRVigD2GBTTf6+nWIJau8gtdWbMLmVNmdnNFg/3/uHsOH3+5m6c6j5JVV8szn6+joEYhAoKqS5KwCnE6Vxd8eYMxVl5Zp0NH5S/E7U9yWUs4EZv5W59eNJJ3fhOoaB5NnfExRSSU9OrXg1X+MYfy13fh06U4iw/1pHRvKtIfm4nAq2B1ODh7PIMDfE7tTIdDXk+R0V9m2qklOnsnjyq7xnEp3VcB1ad0wJGUyGpgwrmEfrtdmr8VgFGiKxGo1ceOY7k1avxCCvokxrD+QQv8OLXh0/AAqa+xsOpiC0WCgrLa6zc/bHZtDwWQ0EOjj+TPuGJSWVTNt+keoqkZ0VCD/eXPqpQ/6AVarmX89P+5nraMplFbW4G41XzAvSdU0auzOC/bLuxTDOrVk6Y4j5JVW8ODIfnXbk3MKqbY7uH1ID1bsPo7B7ArDvXTndXz21V7MZgOL1hxwVTs2UlVcR0fnr4tuJOn8JqScLaCguAIpYcf+VHLzy7hjYl9uuakPJqOBopIqsvPK6sa//t/veG3hJjQpefzmwdwwuBO7j56lssbBPeP64mY1s2rbCSxmYwO9nouRm1uGUtuk1m5XmLdwJwP6NV7AsaC0ku/2JaNoku/2n+ZAcjbP3Xo1AMs3H+Gf877FoagEmo08PnEQHeMi8P6ZP8q5+a412+xOTqfmX3K8qmrY7U48fiFjQEqJpslG51x9vuEgry/ehLvFzGdPTSQy2K9uX0W1jQn//Iy8kgqmDevOfaOvaPQ6SsureeXdtcRJT+Y8NgZ/X5dkwpYTaTz88VcA3HNNbxY+PIkjZ3O4sl0sPh5u/G3qQADaxoWTmlHImCG6F0lHR+fH0QPyOpcdxamQtTsFajWJjEZBflElANl5pUx/cgHPvPEV52bvqAaBU1VxKiorNx0l0M+T/86cyOcv38yaHSeZ8MRcUjILSTqbz7yv91xyDY/97WqCAjwxGoXLsAq+tGF1Lr6eblgt9e8YMz9aXff3Aec0by0sqyaxRRgh/l5Nmv9CJMSG0rtHHN5ebky/dcCPji0treamae8zctxs5i/a+bPPXVxcyfib3uGaq19l1apDjTpm8abDKKqGXVHYcfxsg30HU7IpqaxB1SRLNjVuvu/5ZNEOtu9NYcvhVN6fv6Vu++EzOTgUFZtTYfepDGJC/Lm2e1t8PBom4Q/q0ZLbx/YhwPePoUelo3M5EZfxzx8B3UjSuezMeWIB7zw8D/ORDFBUmkf4k9jK1WR01gfrOXIyiyNJWXVhcYvFyA1DO9U9VEN6tOTbXUms3n6C7IIyPlu1D5ujtvpNyjpxwOSUPDKzii+4hqGD2rHks3t5+dkbuOfOQfzf49c26RosZhOBvvXhs4LSSmYt2sSWQ6lMe3Fh3Rp6J8YQFuDNppwUbvr2U/57cleDeaSULDx9gFcOrqfI1lBF+ocYjQae+ft1fPX5DG4Y9eMVwQcOp1NZZUfTJEtX7G/StV2InTtTqKioQVU1Fi7Y0ahjbhzY0aVfZTbRp11Mg32JLcLxsJoxGw1c07NNk9YSFOBFVYiBilADS06fJLfUJQo6tld7IgJ8MAjBruQMtp4406R5dXR0dH6IHm7Tuexkp+bjqHFgsjmR3u6U+HuxYXsSqiYJD/XBajGhSYnZZMCpaDgcKkvWHQCLQABfbDpKVr4r0XriNV1xs5gwGg3YHa4k6eUbjuCpGVm6dC9SwkvPjCUuNhiLxYSHe0ORx+5dW9C0bKR6WjUPIbugDEWTOFWNeev2s3DDIZASKcFsNPDiHcNRFJXpW5diVxWOluRyZXgc8b6unmXrsk7xzwPf4tBUjpfk8W7fsTy3fy0VTjvPdh1GsPtP80C1b9cMi8WEqmoMG9zuJ15hPR06NMdoNGCxmBg4sG2jjrnxyo5c3a0VbhZTXePf7/u5+Xu589WLt1FWaWuyl238dd3415btADg1jRkfrODzRyYR5u/NDb3b8/Y323CqKnPW7qRvm5gmza2jo8PvKnH7t0Y3knQuO3e/Momy4kpSc0upaR5I25ZhvPTOaiQwcVR3HrpjMJ4eFhZ9tZ8jJ7OQEowIMAjMJmOt8aQigYKSSj57YSoHkzJ59dP1VNS2lThwOB27XUEIwfIv97Frbxomk4G3X59EfOzF9XuawjO3DCOxRShvLq4P+aiqhpeHFbXGTqf4Zgx44F3crWZ8elgpMblyoLzM9TlCdtXlAZNSw64pfJy0mxVnj6FJDYvByKw+TdMxUlQNVVEJCvRm0dy7Ka+wNTmUeCEiIwOYv+AeystraNas8RV6PrWimlJKnvjwG9buPcXgzvH8666RWM2mnxSGNJmMXNEmhm21nqKk7ALeWbWD+4b3oVt8JGajEZMRBnWIb/LcOjo6OueiG0k6vyqF2cV4+Xnidk7ycGRCGG9vnImUEqei8v68zew+cMZl9BRVctt4VxLvgN6tOJqUzSvvriGqWQBDB7XF7lTp2iaSf364FrtDoVmwL9mFZQzr0wY/bw+enbMabw8r40f34LWzq/H0sFBQXFlbCaexc3fKL2YkuVlMjO7XnreXbavTS2oTHcJr91yHm8XE/W8tR1FdFVyTfbpiiTfSMySKMI96o2VEVFvSyos5U1nMwx0GsDH7NEYhMGAgoIk93HLzyrhrxqdUVtl59MGr6ds7ga07kmkRHUjnjtE/+3q9vd3x9nb/SceWVtbw3f5kADYdTqWovJog359e7Tf7tuu4/Z0lHEzLRgIH0rIA6BAdzsonb6HSZicurHGaVzo6Og25jG1JfvfoRpLOr8bHzy5hyVur8PBy4/1d/yQw3L/BfiEEFrOJKWN6cjarBIfDyaCOLVCcKstWH+A/n22lTVwo/VtHsvVYBtmZpUyozcWZ0rs9sxZu4sPknQgBH82cyIm0XMqraigpr2bVnpOsXDSDk6dymLdwB6eNBqxWE317J/yi1+jlbuXN+0bxxdajjO6bSJ/EmLp9HXuGckTNxFTgxtWdW5MQGVS373hJHo/s/JJyp41iWzWjYhKJ8PBhQnwXzAYjVYqDifFdmrSW7btSqKpx4ETj86W7Wb3uCMdOZGMQgrf+NYHWrcJ/qctuMr6e7sSGB5KeX0pksC/+P9HY+h6z0cgbt4xk+n+WU1JVwwMj+9btC/XzIpSfnyivo6OjoxtJOr8a6z7biuJQcNidHNl2igE39DxvjK3ajrvFxHMPjuCOgS/y4qL9tOzYnJ0OG5pBcPBoBie/PISxysHcLanMf3oFvQe3Ze/mJGrsTkSMN84AK2t3nCQ6IgCjwYAQkmB/L2psDh58fCE2mxOr1cTCT+7C52f8OOfmlfH0s8vRNMlzM68nItxV0t4nMaaBcQRwoCid/1VvR3aEjkHNGhhIAM/tX0tSWUHd52VpR3io/ZUEu3txY1zD0nSHU2HjliRCQ3zomNgcKSVLVuwlI6uEKTf1JrhWjLN9YjOqPUETRpIqSjGUl2JQVTwsZopKKi94TQ6HwsGDZ2nRIoTgJobljqfm8ulXu+nVvgWjB57foPZcDAbBvCcmcCavhJhQ/x/th9dYAr09WfTI5J89j46Ozg/QPUl16EaSzq/G6OlD+fiZJXj6uNPpyvoKptSjmeRlFuHu7c7MWz4AKbn7mTFUllbjdCgc2ZmCISEQzcsKEozVDoSqgV1BNRjYuzkJW40TIcBU5UTxt+DlYWFkv3ZYTEYqaxxc278ddruCWhsGcyUM1/8wq6rG2x9v4PTZAh64dRAJLS4dglu4aBcpqflIKZn32XYef2T4RcdmVpciENg0Jxk1JZwuz6fAXknPoBgMwkAInhhVgSYkFpOBYHdv/KwXNuD+9dZqNm8/BcDLM8dSWWXnw0+34nAqnEkvYvYrEwCwelgwWY04nCqalEgBgRHeDOgUR6/ucRec+7HHFpJ8Khej0cAnc+8iIKDxIbC/vb6c0ooath8+Q2J8GPGX6MFmMZtoGdm0Pm06Ojo6vyW6kaTzq3Hj30Yw8vZBWD2sdQKEJ/ak8si1r6KpEquvJw6HCsDR3SmYzEactaX87qeLUDwtxEQFUWAyEdwqmLzsckBwxVXtOHUki+oaB0W5ZXiVKfSf2QIhBMP61BtjFrOJpx+/lpWrDnHt8I54eVpRVY19R9I5k1HIV98dwWZXeG7W18x765ZLXk98XGhdlVZCfL1RVeao4buckyT6RdDSNxSAYRFt2ZSbREpFIZNie3DjpjkIBGOiO/NUh+Hkzc/H1yJwU83cNaEfo/t2wmwwXvC86ZnF2O0KVouJrJxSfH3cqX/Vq3/liwzxo3u7aLYdTMVoEJhMRh6/92r6dGrRYL6DJzNZ/t0hhvZuzamkHOx2BTc3M9nZJU0ykiwmo0uWQboa2uro6PxJ0D1JdehGks4vzom9qcx6cB6R8aE89t6tDRSaN32xB011PYH2ajuYXP8Fz57KpabKXjfOaDJy96MjGDymO54+7lRV2Lh9+OtUVdiorrQz56u/cd/YtynKKUOokkPbTxMbH3reWvpd0ZJ+V7Ss+/z6nG9Zu/kEqqohpUQIccHmues3HCc9o5jrR3XBt1Z0cOTwjkSE+6FpGl27xNSNvWXrJ5ypLAIhWDn4Xpp5+GExmnitu6v9x8K0PUgJNs3J/qJ0AHy83PFOq8RkNNA9MrpBxdsPefjeq3jlrVWEh/oxdEBbrFYTt03pR3pWMdPG96kbZzAIXn/0eqSUnEjNw91qPq9hr1NReeCVpdgdChv2JDN9Wl8+X7CTDh2jaNMm4qJruBCv/m0Un361h8E9EogO/2k96TRN8tGCbZzNKOKBOwfh7eWOENQZozo6Ojq/Jfo3kc4vzuyHPiM9KYe89CK2fLmfITe5mtNmJOey6tOt9QOdChgMYDCQdjKnbnNETBAxrcPZseYIc579go59ErjhvqGUl1QjJexcfxKAwaO6kJ6yGqPRSOfeFw4nfU9hcSX/99qXJKXm43AoWMxGVE1DSkjLKKSiwsbzL64gv6CC0dd15v0PNqIoGoeOZPDmqxPq5unS2VUltvTMfv5zajNDI9qSUVWCTVNwN5rJrymnmUd9+w0pJZ0DmtPSJ5TcmjIeTbwKgFeeuYGv1x4mIS6UVglhP7r2VglhfPTvhp6uG6+/sLrTyk1HWbv9BBOHd6Nt3PnzCqgTugS4enhHJtQ2/W0Mx1Jy2HYojQFd4/n77JWUVtRwKj2fAd0SMBoMrNh4hCOns5k6ogdR4f5omiT1bAEhQd4XzAdbvHIvny5yiVMeOJlBOQoGIXj7yXG0T2ia0aajo/MLIPXqtnPRjSSdX5yoVmHknC0AKYloUZ+DUphTisHwAzF6TQODAf8gb0qLKtBUjcKcUiY9OIw3HlmApkkO7zzNmLsH1R0ipaS6ysbAER25Ykg73D2tePv+eEL2/C/2cOxUDlKTmEwGTEYDDqcr1KdJyXsfb2Tf0QxUu8qyL/YBrrylqnO8W3VLlhrPHFqJKiXzU3fzSLuhzE/bTa/gWDoFNG8w9v5dC9mUewpfiwcvdR7NyvcP8a+kVdx352Cm3NR446Qx5BaW8+rH3+Jwqhw8mcWGj2Zg+kGfNZPJyL+fvJGVG48wqGdL/H0aLzNQXmXjnpcWY3cozF+9D6dTRVE1svPLqKy2czanhDf+twGbQ2Hz/hSG921LWW4FW7YnYzYb+WjWNOx2hYhwvzpPUXZufX++EpsdtTZq9/XmY7qRpKOj85ujG0k6vzgP//tmtq7cT3h0MG26x9Zt79i3JRGxIaQezQTAaDKgmk0IYOpjw9mx+gg71x3FYVc4uD2ZhA7NOX0kk/j2kS7vUkIYZ5LzCGnmx7hezyOEYPK9gxkyussljaQWzQOxmF2/wA6nSrXNWbcvKiKAVZuPIx0qAggM8CI7p8ylDO13fo6OQBDm7kuRvQqjELTxC6fQVsWSM/vpFdyCoREuRWpNaqzPTQKg2FHFvbsW4JfvhiiBWe+tY1D/xjfUbQwWswkhXKrkbhYTBnHh7kiJ8eEkxjdODmDrliTee+872rdvzq13DUDVJBJwOhWu6tWG73YnMbJ/Ir5e7kBJ3XFllTYWrN6PUCQWp4bDqfLAPz6nuLSa8BBfPn5rGiaTkVsnXsGmHacoKa1GIAGByWRgcM+WF1uSjo7Or43uSapDN5J0fnEsVjODLlDubzAYOHMiu+6zZrGAdD2PX83dyvTnxnJw2ymEEIyY0pf4xEiKcstIT87lriGvoBhNBAR7U5hbVpvXJPl09rfMf289k+4dzE13DGhwvrKKGsorbDSP8GfkkPYEB3pTVlHNi2/XN6M1mwxk5JSg2hQMtV8MJaXVmM1GbDYnqWn5512HEIJFV97B5rxkOgdGsTB1DxWKDYCH9yxh98gncDOaMQgDFoMRh+byWElA8dHwdrOS8AsJWp5LgK8H/35yHDsOpTG0d+vzvXY/gddfX0V5eQ2lpdUMG9aeJ28dyjdbjzN+WBf6do5l5l1X143tkBDBI1MH8eHyHeQWufqpyXO+bXPzywHIzi2lsLiSsBBffL3defHJ0dzz4mIUpytpf/TADnRP/Pnilzo6Ojo/F91I0rlsqKqGVluSDyBVDYTAaDaS0KE5bbrEsPT4y4DLoCrMLeW7ZXtIPpyOIowgBCVFlRjOCSEZjAKnQ2Xd8v0NjKQzmUXc8dj/UFWNKWN7csuNfejVpQWTZnyEqrl+uLu2j6K6xsGJ07kIo0AIicVsYuiQduzZm0ZqWgH33FUf5jsXf6sno6Jcekbdg2L4JMWVVyNxVbu5ubuSwR9NvIqXjqzGJAx0CYji8buGUZhdQbcuLS4474Klu5m3cAfdu8Tw9GPXNkh6bwztEyJ+0TBVVFQgp0/nARAa5kvniBiG971477Zr+ydy7HQOyzceASkxV9cbSQmxISSn5tOlQxShwT4AbNpximdfW4nDoIFZgBBk5JbU9XjT0dG5/Og5SfXoRpLOZcNoNGC2mnDalfqNAsbfdxUTHrgKKSXH9qThF+hFs9hgnpjwLtlnCjEaDRjMRpf2j4ROfePo0juBxO4xzLxrLuWl1Yye0qfBuZYt24PDrqBKyfptSdxyYx/KKmo4m1lcN0bTNPx9PbBajGgSbpnciyu6xhEXG8KkJiQzDwxvxe0JV7As/SA3RHUm1N2nbt+k2J5MbNEDcU7oq1XUxRO153yyCU2T7NyTQkpaPi3jfzyp+9fm5VduYsP64ySdymX//jOEh/s1uJbvsTmcvL6USwAAIABJREFUrN+TTFSYPw5FxSAEUsD3Jp4Q8P/s3Xd0VNXawOHfnpZeCEkgdAhNeq8CEkAREGxYLyIWUNBrueq9Xst3Vey994KKBaxIFxAUpUsPHQIkoaQQ0qed/f0xIQRISJ9J4H3WmsXMOfuc/e4skrzZZ5dJ4wbQrVNTLEWWC1j99z5cLgNtO3nPNVsPsHTtLuJ6ySM3IYRvSZIkvOq9Px5nxusL2Lv1IEn7Urlq8lBuuN/zyOaTZ39h1md/4LA70YbG5m/FcBtYLCauuzOOGR//gctpkLDjCFPf98z26ta/JUtmb+S32Ru4dGxPzBYzv8/bxIKP/sBoGgoWE+Ou8jz6CwqwYbWYcbo8j78270jCbDJjNpnQboPPf1hFv54V2xT1/vbDuL/9sGLPFZdUlKR1y3rsP5CGxWImpl546RdUs4AAG6tX72XFil38utBEYKAfcXFn9iQ9+vZc1mzdjwYevCmOhSu343JrJtx0IetW76NLh8b07Nr8jK/FlSO7sWzlLtKMIss/mBRm6UUSQtQAkiQJr2rQPJp7XxsHgCPfyfI569mxPoE2XZuxacVu7HkOT0GtceTaUWYTLpdBvZg6BAb5k5tjZ9gVnj3NnA4XS37ZCMDu+GSS9qfRuEUUf/+1C5NLE7TnOGaziYsHen6pWyxmvnxjAtNmrqReVAhf/7yWfLtn5W6twc9mYde+I7Rs5rtVod947no2xScR2yyKkBB/r9WbnHSMZb9vp3v35rRufWrvVXp6Ni6XgWFocrLzi71+/6F08h0u/P0srNqyH8Pw9Pqt2LqfD567ocR6Y5tF8d5L/+CGf39WONtwynUDGdi9YsmqEKIKyOO2QpIkCZ95dtLHrP0tHsPtpl7jSAJDAzCZTSfHLRkG2u0GPxuHElL4fMm/yc7Mo26053HW8fQczCaF29BYrGaevutzDu45SpsuTbBaPT1G4/859JQ6G9YP5793D0drzfHMPNZs3M/A3i35ZdFmGtYPZ0Cvqt0At7z8/Kz07NqsUveIj08iMTGdgQPb4u9/5kKZpzMMzZQp08jJyeeLz//k628mFy6gCWAv8nhUldDD88itF/PcZ4uIbViXq4d05o+/92DWmrgyfD0bRocxamAHFq/awfWXdue6S7uXoZVCCFH9JEkSPrNny0FcBduQHErwbPYa0TCCjLQcDENDwYrYjVpEc+kN/fDzt+JX5Jf+9g0HMKNxO13kHnORlJWP1rB9/QFadWjIq9/dXeLAZ6UU9088mUDdedOgamypd3z44W/MnbOBnBwHFouJ35dtZ+rTY0u9TmtNbq4dt1tjMhnk5zkJCzt5vmHDOhw4kIZhhqSMLLJz7QQHnrpCeJc2DXl68kgSktJo27we3790C7l5TprE1Cm1fqUUD90ylIduGVpqWSFE9ZOB2ydVfituISpo9K0XcfpwnfSkdAy7A+VyERwWwANv3cQHSx4muuGZv2w7943FViRpcheMNQLIOp5X7plhNZ3WJf/kSk3N4ruZa8jMzMftNrDbXRw8mF5i+aLMZhOPPjaGJq2jGXZ5F25+4itGTnmPvYmpADz071GMnzCAvAgLX8xfy/j/fnHGPfYlpnHrY9OZ+v4CHn51FpHhwWdNkAxDs/5gMkcys8sUoxBC+MK59VtE1AopSels+nMnl98+mGvvuYQWHRoRHhlMw9iCvde0RhuamdtfIu7KXiXeJyQskP+9fzNWPwtW26kbrI65qX91NsGrUtOyGDv+XYZe/jK//7njlHN5+Q4Sk9IJDvYjKMiGn58Fm81C06aRPPDgiDLXsXJPIvsc2fzw1xaOZeaSlpHDjAXrAcjOs7N6fzJOt4Hb0CQfPc6BQ6cmYAcPH8OkFPl2J3sPppZa36M/L+SWad9z6ZufsT8to8xxCiGqmfbiqxaQx23Cqw7uOsxdQ55Guw26XtSOJ6ZPYfx/xgBgz3MwoffjHDuayeCrit+b7HTtuzfns98e5lhKFg9c9w72fAc2fysjb6jaLT986fe/dnHseC4ul8EH036nX++WWCxmMrPyGH/nJ2Rn5zPowjZ89PFtbN6cSJcuTU4ZU1QWqzcfIN/uwmo2ocwKs9lErw5NAHj87Tms35Z4SvlnP/yVdx+/tvBz3y7N6dO5Gdv3HeHBCaU/Nvtr7wHynC4CrBbiDx2haV3fz+QTQojTSZIkvOrZ2z/EkefZEmT1ws0c2HmIJq09W2T4Bdj4atNzuN1GuR6VRUSFEBEVwvvz/0X8ugS6Xdgaq+3c+a/duUOjwoUVkw9ncP8j3/Lw/SO568HpHDuWgwaWr9jFow+MYtCgim11MuW6ATz1/nwaRIXx4IQhhAT507xhXQDchkaZFEqDNjRms6JO6KnbwFgtZp65d3SZ67tvaH/+98sSWkTVITo0mEEvf4ifxcLH466gcYQkTEL4VC3p5fGGc+c3iajxtNYkxCcVfjZbTCTEJxUmSYXHKziWKLpBHaIblD5QuLZp3CiCJ/87hken/oTT6WbT1kRee2chqWknx/NcPabsM8K01qxYsZvs7Hzi4tphsZi5qGcrLupZ/Ey0J6eM4K2vfmfp6p1gVjRvFMkjRbYjqYgxndsxprNnaYa7vp7FkcxsFDB99Ub+M7z2D6IXQpwbZEyS8BqlFKNv92zzYbaYaNujBb2GdfRxVDXb5vhERl3zBo9N/YkWzSIxmRTXXtkLp/Pk9i4tW0Rz200Dy3zP337bxtSnfuK1V+fz/vtLSi0fHRFC/chQlDLhdGuOpmcTFGADPAnXG18u5fK7P+D7XzcAkJaRwx1PfMOER77k4OFjJd43Izcfh8vNvtSCMg7N2qV72LbncJnbIoSoWgrP7DZvvGoD6UkSXnXH09cw8amrMZkkPy+LOQs2Yy9YJqFZ40g+eG08AHsTUrj7oa9wuw0euOuSs97D7TbQWhduB3L4cAZut4HLZZCcVPqg6e9+3cDMhetxGm7MJsXEqz1bwBxJy+TWx74iLSMHgFemLWFMXCe+mbeOzbuS0Ybm/Rl/MvWfowBISDvGLxu30S+2KWsSEnlr6UrCAvzIyvcsIKotsC/5GPc9/T3zP5lSga+WEEJULUmShNedTwnSb39s56Mv/qB3txbcPSmuXFuUAAwZ1JbFy+IL3l9QeLxFsyhmfX03/3tuFvc98g3jrunLjdf0OeP63buPcO+9X+JyuXn66bF07doMs8lEdHQoNj8rk+709OxprTmUmklEWCD+tlMXoEw+ehyny41SiqF92zBveTwffb+CiLDAwgRJAfXrhmA2KZo3rIvN4tmQOLZxZOH9b/joWzLy8vjoz3WE+ttwGQY5dqdnCxJ3wU0UWM6j/x9C1Ei1pJfHGyRJEqIaPffqXPLtLlJTNzIsrh0XnDb+qjQ9uzXnu88no7Um/LQZa3sSUli1bi92u4uPvviDG8b2RimF1po9e44SFhbAr79uIS/X01Pz4w9rSUnJ4rPP/sDhcGEEmnn3hz959p7RPPfxr8z5fSshQf58/cJ4wkNO1nXT6F6s3rKfwymZuJxudu1Pwe5wkWd3FJapFxnKJ1P/gVKKSwe0o254EHaHiwu7xQKw62gamfl2DA2g6dwohkXb92B3uQgP8CfP6QKtMGvodEHDin2xhRCiikmSJEQ1iqkfTvLhDFCKyIjgCt0j7LSZZIX3rheGn82CSSmaNYks7KX6/PPlfPvNSgCmTBmKzWZBa82QoR3IyszDMAw0oHLdrFqzB5fLzS9Lt2BoTUZWHlt3H6J/19jCemwWMweS0nG5DX5fuweTSRHgZ6Vlkyi27k7G0NCqaRRhIZ44lVL07tSs8Po3lvzFO8tWoYA6Af7cM6QfS3bsBTx/sPaNbcLqPYlkH83FnKU5nJJZoa+TEKJqqLMsXHu+kSRJiGr0xvPXs3zlbtq1iSEqMqRK7x0S7M8X79/G3oQU2rdtUHh8xV+7sNtdWK1m7A4XX38zBZfLTWRkCE6nm/nzN7FjxyHPPXIVB5KPcaJ/XWtNbKPIU+qxWs342SzgcGGzmrnjhgEsWrOTpMMZGBrcZvh7bxIbdyXRudWpvUCp6dl8+Psaz70Bp8tN35hGBFitrNx7EJNS3NCrM0+NHMrDL83isCuT+26Jq9KvkxBCVJQ621YHNU2PHj302rVrfR2GEDVCYmI6xzNyade+4SljnVau3M1TT/5EREQQr70+jrp1g0lJz2LSo9+QfjyXccO7MeOLv3C5DLAoBg9uR4bVzfL1e7m4X1uenDLyjLr2J6ez/O89tG1Rn3te/wG70w1agwvPn1pKERLox5K3ppCRlce/3vyZY1m5mDNc7AjIxhHsiS8iGYIzFV+9exsOs4HNYiYyOMhLXzEhah+l1DqtdQ9v1RcU2VhfMOY+r9S17pN/ebVtFSE9SULUQlu3JPLgg1+jlOKqq3pyy60n1xbq06clc+Y+cEr5JSt3kZaRg9PlZvnWBK65vi/fzliFW2vy85289PBVuA0DcwmDpps2iKBpgwiOpGedHNOpFBQZ4x3o71kWYNbyLcTvO4zLbWAzFGHJblSAQjlBuzT4WTialkW7co7PKosN6Z6VwbtENKryewshzj+SJAlRC23fnoxhaJxOF+v+TjglSSpOl7YNMZkUfjYLg3q24sbRPXE4XRw7lsOk2wYDlJggFVUvIoSnJo7g11U7iI4IITTIH6tZkZPv5LIL2wMQ27AuZrMJq8XMoE4t2LPxEIeOHgetsflbGR7Xngta1Qdgf2IaexJS6NujBQEFSVZFfZ+wnic3zgfg8c7DuapZ10rdTwghJEkSohYaHNeeuXM3kp6ew22lJEgAbVrUY8Ybt5KZnU9sE8+YozsnVmzsT1z3VsR1b8WbM3/no1krCA8O4Osnb+LzeWv4cdkmRvRrx7sPXs3x7Hz6dWzOj3PX8+5nS3G5NT26NOO+ScMAzxYrt9//OaBo07Iebz5zfYXiOWF9WiJ2t2fLm7/TEiVJEqKCastCj94gSZIQZZCYlE52tp02reuXe62j6hAREcTHn9xe5vJ2h5MFf2wjONBGs0YRZeo1Ks2sP7bichvk5DtYsWUfXy1ch9vQ/Lh0ExNG9qJjrGcw+WWXdOLQkQyOHc9j8oSTCd2JWX/5+U72HUitdDz967Vg+dE92EwWbmvdr9L3E0IISZKETyXvPcqP7y2iQ99WDLqip6/DKdbGzQd56NGZKAU3XtuHcdef+gvYabj536pF7DyeyhO9htEuItpHkZbszc+X8cuSLZhMCsPQXHlJl0rf84pBHfl8/lqCA2z0at+U6DohZGTnERxgIyz45LIFNquFu249s9eqS8cm9O8Zy5btydx16+BKxfLt3nU8s3khoJna9TKah9St1P2EOK9JT1IhSZKE1zlcLu79dg5bk48Q/tshHKuSWDh9OQ1aRNOqc9Nir9Fa88GrC1i9fBfjJw9m4NAOXot367ZkXG4Dt9tgzd8JZyRJ8/bv4Id9W8lzObn/z9nMv+wWr8VWVlm5dgzDAExk5drLfX2+3clHv6zEpBS3XNYbf5uVyVddyA2XdCfY34bFYuarJ8axaU8y7ZvXx1qwBcrZWMwm/u+ByyrQmjOtSztIvtuJAv5OO8hlTWRPQCFE5UmSJLzuz937Wbn3IHlOJ8faB9FgpQYUhsso8Zrd2w8x5/u12POdvPDYj+Rk2RkwtB3BIcUvtFiVhsW1Y+7CTWRm5nHLuAvPOB8dEIzWGj+TmZjAql0Lqarcc9NFGIYmONDGtSO6lfv6D35ewTeL1hd+nnyV5+sQXqTHKDjQj34dmxd7vdaal9/9leWrd3PT2L5cOfLkeKH0nFxunv49R7NzeO3KkfRp1rjc8U1s0591aQcwK8X4Vr3Lfb0Q4iQZk3SSJEnC65pF1kGjCbBa6RATQ/urw+nYrxVtuhf/CxagTt1gz4xzmwWX08U7L85lzg9ref2z23G73Nj8rCVee4Ld7mTFHztp2jyK5rFlfyQWFRnClx+VPP6nT/0mvHfRFSRkHuPqlt7r4SqPiPAgnrp3VIWvN7TG0wev0BXoi993IJUFv23F7nDxxkeLuWJEl8KxXb9s3c6e1HSchsGLS/7g+1tuKPf9W4ZGsXj4P8t9nRBCnI0kScLrmkdG8MOdN7I35RgDWjXFZin9v2FkdCivT5vIotkbmPXtKux2F3t3Hua6i18kKzOPMdf0YtK/hp+xeW5engN/fytKKf7375ls2XQQrTVvf3obTZtFllBb+V3UsAWcw1uOTbq8H6aCpObWUWdupHtCemYux7JyadGg7ikD3CMjgrFYzJhMiujIkFPO2cwWnIanF9GE7wfFC3Hek56kQpIkCZ9oHhlB88iIcl3TLDaaW+4eys74ZDat24fbZZCZkQvAz9+uwmI1c/u9lxSWf+Olecz+cR0tWtbjjQ8nsG9fCvn5TvwDrCQnpp81SdJa89eh/QTb/OgcWfWLHnqb0+nm11+3EBzsx4ABbco9Q89tGGTm5nsW2XYbbN17iGlz19C/U3PGDPSM/9mblMbNU7/CMDTdYhtQzxbATWP70rhhBKEhAbz4xNVsjE9k9NBOp9zb4XZhMSlchsbQJT9yFUIIb5MkSdQqJpOJy8b2ZPuWRJxOF9rwJDRaw46tSaeUnfvzerSGpIPp7N19hPv/M5I3X55P67Yx9OwTW0INHm9vWsHbm1diGAbP97+UMS3anTWxcDhcvPjSXA4cSOP++4bTpk3NSqzef28xc+duBBR2u4thw8r3WPCjWSuZ82c8AEH+Nub8FU9mTj5/bU6gQ2wMsQ0j2bg7CcPQ2J0uVsUfwP+Ym+27DvPF27eyfd8Rpjw7EwVkOx1MGntybNeo9m2ZuWErKVnZPBA3oApbLYQoNy1jkoqSJEnUeIcPpDHznUW07NiYS2/sx4VD2pGb6+DooQz6DW7Lq0/8THZ2PhPvu4Q1S+L5a/5GugztQEDdQLKO5xESFkDTZlEEBNr44ru7ylTnuqNJ5Lk8CxPe98dsvtq5kW+GX1/4yOl0y5ZtZ/nyndjtnmTpow9vrbL2V4UjRzJxOFyYzSZSU7LKfX2AnxWTydP2QH8rNou58MHYiZlsA7vE8tncNRxJy8KWb4ACs9nz+HPTTk8C5XS5+XPDPiaNvZCFf21nxoK/ueyijsyeOK5K2imEEFVJkiRR4z1564ck7DiEzc9Kw+ZRdOrXiktGn5wd9db0O3A53WxcsZOpt3+Ew+5i9l+7cftZsdjM6AAr38xYxc3jLyzzY6YHug1kV0YqiTmZaGB9ShKHcrJoGBxabPl69cIA8POz0KBBnUq3uapNnjKU3DwHoSH+jB5T/tltt4zqTZC/Da3humFdGd7nAn5ctole7ZrQpJ6nvXXDgvj5+VvRWjN/yVa27z7MdZd71r4a0qcNMxduIC0jmzvG9icv38kT787FbWji9xymS9tGNI2peV83Ic5L0pNUSGl99q+GUsof+B3ww5NUfae1/r/TytwBTAHcQDYwUWsdr5S6EXiwSNFOQDet9Qal1FIgBsgrOHex1vro2WLp0aOHXrt2bVnbJmqRtMPHSU5IoV2P5phPW2PnziHPsn/nIax+Vh58fRwXjjy5EGJ+rp3/Xv82O9bvR5kU7oJlBNyN6kJYgGenezx7sT76yGgGD25X5pi01lw3/2v+TkmibZ1ofho57qwrVW/YsJ/k5Azi4trh71/6bLvzWUJSGtc99Fnh5xaN6vLV8zf7LB4haiql1DqtdQ9v1RdUt7HuMOI+r9S1+st/ebVtFVGWniQ7EKe1zlZKWYHlSql5WuuVRcp8pbV+D0ApNRp4BRiutZ4OTC843hH4SWu9och1N2qtJes5zx1NSueOuGfRWtNtUFse+/C2U84/9vFtTHt+DqsXb+H5u6ZxYNdhbrh3OACfPDOLbesSPAUNDQp6D+3AUWB3ckbhPbSGF16cR9euzQgPDyxTXEopvh5+PYdysqgfGFzqVh5dujSlS5emOBwuEhJSadSoDpYyLKp4PsrMycdqMeN0uQFIPnrcxxEJIQAUMiapqFI3cNIe2QUfrQUvfVqZzCIfg04/X+B64JsKxinOYQnbD6G1Jj/XwZZVe84436BZFL2HeXaYdzndzP96ReG5Bd+sOKWsQnH745dzNNuOy2VQ9Oma3e7kl1/WUx4mpWgYHFqYIB3NzebT+LVsSTtcbHmXy83ESZ9yx52f8c97vqS0ntrzVcdWDRg7rAthwf7UDQ/i0YnDfR2SEEKcoUy7XCqlzEqpDcBR4Fet9apiykxRSu0BXgCKW9XtWuDr0459qpTaoJR6TNWEXUOFT3Tu14rYjo0wW0zk5dj55NlZZ5TpcmEb/ANtmC0mLht/cgZUUOipvUIms2LpT+u4c9JgIiND6Nq1aWGipBQ0a178tP+3N62g3ZevMGnJj+w8lsKWtCM4DTczdm1i9r5thcnOVXO/5Nm1Sxk7dzqHcjLPuE9qahaHDmXgcLjYufMwubmOin5ZvGbjjiRmzP+b41l5pReuhOPZecTvOYzLbaCU4p//uIgF709hztt3MLRvm2qtWwhRDlp751ULlGngttbaDXRRSoUDPyqlOmitt5xW5m3gbaXUDcCjwPgT55RSvYHc0665UWudpJQKAb4HxgGfn163UmoiMBGgSZMm5WqcqB38Amw88Oo4bhs4Fafdxcx3FnHDvcPxD7AVlomIDuWLNU+Rn2snOOxkYvT4R7fx0Ng3cNpdALhdBl++PI+mbeozY/F/AThwII3FS+Lp0rkJXbueuTfcsWM5vD3rd/LqaRYf3M1viXswKUX3qAasS0lGATlOB9e27kxKXg4Ow42/2UKGPZ+YoFMHckdHh9G1S1NWr9nLRRddQFCQX+E5w9Bs3nKQyLohNGxYMwYp7zqQwuQnv8XQmi9mreaXd+6olnoysnK55oFPcThddG/XhJcfuKJa6hFCiKpUrtltWusMpdRvwHBgSwnFvgHePe3YdZzWi6S1Tir4N0sp9RXQi2KSJK31B8AH4Bm4XZ54Re2xfvkO3AXjU8IigvArZuCzxWo+JUECaNutGT/vfplt6xJ4+Pq3cOR5pu0n70stLNOkSV0m3Fz8+jsOh4vbbv8YoydoE7i0gdKe58W7jqfhcLsxKUVyjmfa/NsXjeHVDcsZ2qglbetEnXE/k0nx3HPX4HK5zxiP9NZbvzJ/wWa01rz+2j9o3bp+2b9A1WTLzuSCLUcgNSOn2urZm5iG0+km3+5iXfyBaqtHCCGqUqmP25RSUQU9SCilAoBhwPbTyrQq8nEksKvIORNwDUXGIymlLEqpyIL3VmAUJSdd4hx3LCWT9x//vvBzu56xKKVwOlxMf3Uenz47i7yc4neuT05I4Y4hz/LAFa+i3Qb+gTb8A23c8fTVzPplPSuLGeNUVGZmHllZ+ThDNJg9z+VsZjMR/oFM7XMJfWOaMKRxS25p55mAMaRxS2ZfdjP3dj37cgLFDdjesPEA+fmeJG7nruLHNHnb0L5t8LOaUQpiG1fdNi2n69AyhtbNorGYTdxyRcnbmgghfE9p77xqg7L0JMUA05RSZjxJ1Qyt9Wyl1JPAWq31LOAupdRQwAkco8ijNmAgcFBrvbfIMT9gQUGCZAYWAR9WvjmiNtq8cnfhe5PZxPiHRgLw44e/8e1bv6INTW52PlOevuaMa997/HsO7PQkHE6Hm2vuGsY/7h/Bk0/9xJ9/7kIpxYABrWnQoA43XO/55ZyRkUtKShZhYYE0bhzBFZd359PE9Rxt5enJahFal3ljJvDe5pXsPZ7O2FYdCfPzr3Q7J00czLPPzaZ+vVAGDWxb6ftVhZAgf35+exIJSem0i63anq2/tx3klWlLaNcyhn/fMpT3H7+uSu8vhBDVrdQkSWu9CehazPHHi7y/5yzXLwX6nHYsB+henkDFuatjn5YEBPvjcrm5/p5LaNras6WH22UUzpM8sf7RCS7D4Pfd+7BFBGCxmnE53VhtZvpc3JG98UksX7QVl9kEChau2oYFE8ezcln22w6ysvJQSmGxmHjxxeu4884hjHNeyJhfPmd/VgZdomLIdtp58e/fcWvNu5tXcmObLtQLDKlUO3v3juWnH0v8VvGZsOAAOrep+t15n3h3HkfSskg6epxB3VvSv2uLKq9DCFHFNLKYZBGy4rbwuTpRoXy++gnycuyE1gkqPH7VpDjycvLJz3Mw/sFRp1zz8KwF/Lp9D0ZdNx0vb4WymHj6/rE0janLA1e8hjqYhqoXRl4DK4cHg2GF10yb8OsDdVdp/DM0JpNi+/ZDdGjfCBOKhKwM3Nrgu91bmNKxL3X9A8l2OrCZzYTZKt+T5Gsrtu3n62UbGNmzLZd0r/7ZZA2iw8jIysPQmui6lUswhRDCFyRJEjWC1WbBajv1v6PN38ot/x1zyrHV+xP58M81xB8+Sp7TiVkp1kc60Bpe/nMFb1w9ikYt67Fz0wFMSekkXt8Iw4/Cv4zs4XBoqImYvxXNdR2GxHlW4PYzWwj38yfH6cBqMlPHP4C5oyfw56H99K7XGH9L7V5B2+lyc8/7P+NwuVm5fT/dWzUiMjTorNdk5ebz6CfzyczN54mbh9MkOrxcdb50/+UsWrWD2EaRtGpy5iB3IUTNpIzSy5wvJEkStYbWmklf/0Su04nVbCIqKIjQABtJGVlorYkIDADgrmeuoVPfltStF8auKAePLF+IWZnIdzkxFGBRDBnfhacuHFZ4b7PJxNzRN7M0cS/9YpoSZLURZLUxpkXZtzGpyZRSWMwmHC63530pq4cDzFi2kRXx+3G7DV6ZuZTXplxerjqDAv0YM7hTRUMWQgifkyRJ1CoBNit5TicmZWLGrdcRExrCz5u2kWm3c223joBnqYC4Kz0bq3YGrm7dAbdhsPjAbh7/azEWZWZChzOHxNULDOHa1p292RyvsZhNfHLfNcxdvY2LOsUSHhxQ6jUN64ZhMZuwmE00ia74uk4mASUOAAAgAElEQVT5LhffbN/E4exsAq0WxrbpSExwCEdzsvk8fgPt6kYxooUsJilEjSFjkgpJkiRqDaUU08dfw08b4+nbogkNwjwLOV7eufTeHg30qt+YlTfcWc1R1lxtG0XTtlF0mctf0rMNgf42snLtXNKz4knMU3/9xswdW3AYbhTw867tLL7uFm5f8BNbUo9gM5uJDgymR/2qHzwuhBCVIUmSqPFWHTrIB5tXc0nTVlzTphP3xfUv1/UZ+Xlc+sM0UnJzmNipJw/1GlhNkZbd5u1J/Oe5nwgKtPHG/66hfnSYr0M6g1KKgZ0qPyMtJS8Hp+FZXkEDxx35AGQ7Hbi1BhTZjpq/fYsQ54uatIZRwTqNHwEd8PwIuUVrveLsV1WdMu3dJoSvaK25eeF3LDq4h0dXLCIh89gZZbYfSWFPanqJ91h7JInj9nxc2uCr7RurM9wy+2TGXxzPyuPw0UzmLt3q63Cq1f/6xxHXpAUdIqPpG9OI9y/2jG16d9hohjWNZXKXXgxq3KxC917+9x4++3kV6cdzqzBiIUQN8jowX2vdFs8Iim3erFx6kkSN52+2kOtyogCbybOSdbbdjs1s5ufN25g6fykaePXKEQxpE3vG9d3rNSTYZsNhuBnbuqN3gy9B7y7N2LQtCYCO1bBGUU3SIDiUjy+98ozjrSMi+XB4xfdw27L7EI+8ORuXy+CPdbv5+MkbKxOmEAIK1kmqGV1JSqkwPAtS3wygtXYAXu12liRJ1GhKKWaMuoHvdm1mQMPmNAgO5adN8Tz6y6/4WS10aRhDvsuFAlYmHCw2SarjH8Dy6yZx3J5PVODZp717y3Wje9KlfWMC/W00aRjh63BqpaycfJRSuA2DzOx8X4cjhKh6zYEU4FOlVGdgHXBPwYLUXiFJkqjxWoXX5eGeFxV+nr5mA07DQDtdhPr7EepnI8Bm5fruJU83t5nNNSZBOqFtKduApGRkc99bP5Nnd/LCHaOIbVh9e6tVBafbTXzaUVqERxBi86v2+vp0asb1l3Ynfs8hplzn+3FmQpwrvDgmKVIptbbI5w8KNrU/wQJ0A+7WWq9SSr0O/Ad4zFsBSpIkap1runVi25HFmJRi0Y49mE2K23p2oUVkzeyRyczMw8/Pgp9f2ReknLMynhe++o2cPAcaePfnv3hp8ujqC7IK3PDLDLakHCXEZuO3G24lyGqr1vqUUkwaW75B/EKIGiVVa93jLOcTgUSt9aqCz9/hSZK8RgZui1pnbNcO/H7vRP7RswsuwyDP6WJD4iFfh1Ws2b+sZ+zVbzD26jdJTCx5cPnppk5bRHZBguRnNdOuWX201mgvjxXQWmN3uUotZ2jN2kNJ5LmcZDrs7D+e4YXohBDVQnvpVVoYWh8GDiqlTqxBMgSIr3wDy06SJFErRQQGML5XN1pHR9K4Thj3XNTP1yEVa9asv3G5DBwOF6tX7ynzdQ2jwvC3WbBZzfzfhEsY0LoJl135OiMvf5X4ggHfVU1rTdLxzMKkyOF2c9X0r2n/2hs8+uuis15rUoqJXXpiVopeMY1oE1GzHw0KIWqNu4HpSqlNQBfgGW9WLo/bRK1VLzSYnyf+w9dhnNXoMd14842F2GwWevc+c1B5ST7597Us37yPDs3r06ReHV55fQE5OXYAfvhpHe0uqPoZcffOmcvCXbuJCgpi3s03kXAsgx2pqWjgm42beGroEJRSJV7/cN9BPNx3UJXHJYQ4f2mtNwBneyRXrSRJEqIajRrVlUGD2uLnZ8VmK/u3W2iQPyP6XFD4uV/fliz4dQsA/fu1qvI4ARbs3IXTMEjPy2VHaioXREURGRhISk4O/Zo0OWuCJIQ4Nyhq1mKSviZJkhDVLCSk9H3SStOnVyyff3I7htsgJib8jPO5uQ4WLN1K4wZ16NGlWYXquKZjR77etIlGoWG0i4rC32pl4S03k5yVRdPwM+sszrGMHEJCArCY5Um+EKL2kyRJiFqiXnRoief+78VZrN98AGVSvPLEWDpe0Kjc939y2BAeGjSAQKsVU0GvkZ/FQvM6Zdvc9vl3FzB3yVbqR4Xw6cvjCQyo3tltQohqoHWNWUyyJpA/94Q4BxxJycThdKNQpKRlV/g+wTZbYYJUXvN+24rbbXAkJYude49UOAYhhKgpJEkSogbKzrHzz/unc+2N77Jp88FSyz9y7wjat4lh6MC2DOxTPWOWSuNn9XRMu92yArYQtZnS3nnVBvK4TQgfc7nc/N/jP7B1ayK3TxzMyJFdWPJbPDt2HsLhcPPmO4vo0a0ZickZ3DlxMA2KGZPUpmV93n3BtzP9goP8Che/FEKIc4H0JAlRzbTWzFm8mek/rCI378y9GbdsSWTDhv1kZeXz3ruLAWjePAqFwt/fSmiIPz/O+ps//9rJsy/M9nb4ZWa1ejYftlhMpGfk+jgaIUSF1ZDFJGsC6UkSopotWBbPqx8uxnAb7DuYxqP3jDjlfKNGEZhMnoSoTZsYADq2b8Tbb4wjNTULh9PN1m3JmEwmgoOqf0+0irrq0m68PW0pAX5WenVp6utwhBCi0iRJEqKa5eTa0YbG7dbFjtWJjAzhk09vJyEhlc6dmxQej20RTWyLaLTW/Oue4SQfzuDKMd29GXq5jB3VjYsHXYC/nxW/cqwJJYSoWWrLeCFvkJ9kQlSzUUM7sT8xnfRjOfzz1rhiy0RFhRIVVfwUf6UUw4a2r84Qq0xYFawJJYQQNYUkSUJUMz+bhfsnDvV1GEIIUToNGNKVdIIM3BaiFsjOtXPvKz8w/n/T2ZecVqZrth4+yier15F8PLOaoxNCiHOTJElC1AI/LdvM6vgDbEs4wivTl55yzjA0b874g8nPz2R7gmcRx9ScHK7/8lteWrqcsV98g5YVdIUQZSWz2wpJkiRELdAwOgyLyYS/zULTmFO3CVmxeR8zF69n7baDPPLOHACy7A4MNE7D4Fhefm35eSSEEDWKjEkSwou2bTqIyWyiTfuG5bpucPdWBPzTSkZWHkN7tTnlXFhwAFqDxWyiTqhn4HTziDrcO6Afc7ft5M5+vSq81YgQ4vwjs9tOkiRJCC+Z+/1a3ntpPgD3Pj6auEs7lev6Ph2aFXu8Q2wMz991GbsTUxk9oEPh8dt69+C23j0qHK8QQpzv5HGbEF6yZf1+7PlOHHYn8RsOVOm9+3Vqzk0jehIuU/CFEKLKSE+SEF5y7YQBbN1wELNZccWNfX0djhBCFE8mehSSJEkIL2kaG8202ff6OgwhhBBlJEmSEEIIIQrJwO2TZEySEDWEYRgsnrOROd+twel0+TocIYQ470lPkhA1xLwf1vH+ywvQWpN0IJ2J91/i65CEEOebWrTQozdIkiREDZGemo3bbWC4DdJSZCsRIYTwNUmShKghrvxHXw7uSyEvz8Ht9/muF0lrzbTP/uCP5Tu5aVx/Bl10gc9iEUJ4lwKUzG4rJEmSED6WeCSDf78xC7PZxAsPjqZ+ZKjPYsnPd5KQkMK3M1bhsLt45plZDBzUFiUrdgshzkOSJAnhYx//vJI9iakoFF/MWcOD44cUW87lNtiVlELjqHCCA/yqPI7Nmw/y0IPfoLWBUgqbzUydOsGSIAlxvjF8HUDNIUmSED7Wtmk0S1bvBKBNs3ollrvn7Z9YvzuJQD8bPz55MyFVnCj9unALDodnVl2v3i3o17cV/S9sXaV1CCFEbSJJkhA+ds3FXWnaIAKL2USPdk1KLLdmx0FcbgMFJBxOp2PzmCqNI25IO379dQtaa668sic9e7ao0vsLIWoHGZN0kiRJQviYUoo+HZuVWm78xT34dP4a2japR9vG0VUeR5cuTZn53d0ABAf7V/n9hRCitpEkSYhaYsqY/kwe3a9axwhJciTEeU7WSTqFrLgtRC1yeoL0965EHnx/NgvX7vBRREIIce6SniQhqsGBhFR2bkumz4WtCQ6pnt4Zt2Ew5Y0fsTtd/LF5L51aNKB+REi11CWEOF9okDFJhaQnSYgqlno0k7smfMTrL8zlgcnTqq0ehcJi9nwLKwVms6eXyeF0MfmZmQy89Q2+nr+u2uoXQohznfQkCVHFUlKyALDnO0lOPFZt9ZhMio/+NZZZK7YysGMLosKCAdi0K5n4vYexO1x88P1fXD+8e7XFIIQ49yjpSCokSZIQpdi74zBT75tOQJAfT759E3Wjz74idtt2DRh6aSfWrdrDhDviqjW2No2jefC0mW7NG9bFYjYR4GelS5tG1Vq/EEKcyyRJEqIU095cSPLBdExmxZwZq7nprqFnlNFao7Wnd0cpxT8fGuGDSD3qhgUx88UJHDh8jPYt6vssDiGEqO1kTJIQpbigcxP8AqxYrRZaXtDgjPP7E1K5asQrXDb0BdavS/B+gMWoExpI59YNsVjMvg5FCFHbaO2dVy0gPUlClOLa2wbRpmNjAoNstOnY+Izzi+ZvJisrH4CZX62ga/dmXo5QCCFEdZCeJCFKoZSia5/YYhMkgB69W2Dzs2CzWRgU187L0QkhRBXSoAzvvGoD6UkSopI6d23K599OxuFwE9Mg3NfhCCGEqCKSJAlRBepGVnwRR8PQ/DB/PenHc7lhdE+Cg/yqMDIhhCinWjJeyBskSRKiktwug8SDacQ0rIPNVv5vqXnLtvLOl7/jdhskHcngiXtHVUOUQgghykuSJCEqQWvNfVM+Z8/uI0TXC+ODabdjtZZvRpnD4UIDhtbY7c5S6/vz9x0opeg3oHW1bnYrhDhPSUdSIUmShCiB1poPX5rH0nmbuGJcP8ZOGHhGmfw8J9vjk9AajhzKIPVoJjEN6xSed7sNpn28jAMJadw+OY6GjSLOuMeouI4cOnqctIwcJv9j0Flj+mHGaj77cBkauHXiRVxxTa9Kt1MIIUTxJEkSogRHkjP45ZuVOB1uPn1tIaOv74ufv/WUMgGBNuIu7sDiBVvo3LUp9WJOHbi9fOl2fpixBrvdSWpqFm99MOGMeqxWM5PHnT05OuHg/jQcDhcABw6kVbBlQghRMiVjkgpJkiRECcLqBOIfYMNsdhMaHoDVVvxjtP88NoYHHh5V7MKNAYE2AMwmE0GBlR+QfePNF7I/IRWl4Mbx/St9PyGEECWTJEmIEgQE+vHeD/9k6/r9dO0Ti8lU8rJiJa1s3bNPLPc9NILEg2lccXXPSscUFR3Kq+/cVKFrc/IcfPPLWkJDArjqki6YTDKeSQhRDOlJKiRJkhBnUTc6lIGXdKzw9UophlzcoQojqriXP17Mor+2YzaZ8PezcFlcxdslhBDnA0mShDhP5NudaEOjlSYv/+yz6IQQ5ykN1JLVsL2h1G1JlFL+SqnVSqmNSqmtSqkniilzh1Jqs1Jqg1JquVKqXcHxZkqpvILjG5RS7xW5pnvBNbuVUm8omcssarils9dz28Uv8vELc9C1sDv6gVuHMOzCC7jy4s5cPqyTr8MRQogaryw9SXYgTmudrZSyAsuVUvO01iuLlPlKa/0egFJqNPAKMLzg3B6tdZdi7vsucDuwCphbUH5eBdshRLV7+aEZuJxuZn3xF3Gju9G8bUyJZbOz8li+OJ7YNjG0uqCBF6MsWUR4EI/fdamvwxBC1GAKLbPbiig1SdKeP5mzCz5aC176tDKZRT4GnX7+dEqpGCD0RKKllPocuBxJkkQNFt0gnNQjmZiUIjwy+KxlH7nrS/btOgxK8c5Xd9CoaaSXohRCCFFVyjQmSSllBtYBLYG3tdariikzBbgfsAFxRU41V0qtBzKBR7XWfwANgcQiZRILjglRY7387RRWLYnngq5NqVPKXm2Hk49ht7vwD7CSeiRTkiQhhKiFSh2TBKC1dhc8MmsE9FJKnTFdR2v9ttY6Fvg38GjB4UNAE611VzwJ1FdKqdDyBKiUmqiUWquUWpuSklKeS4WoUuF1g7lkbC+atKxXatkHn7iSprHRDBnRmU49mlV/cEIIUVW09s6rFijX7DatdYZS6jc844e2lFDsGzzjjdBa2/GMaUJrvU4ptQdoDSThSbhOaFRwrLg6PwA+AOjRo0ft+KqK816Pfi3p0a+lr8MQQghRCWWZ3RallAoveB8ADAO2n1amVZGPI4FdRa41F7xvAbQC9mqtDwGZSqk+BbPabgJ+roL2CCGEEKIypCepUFl6kmKAaQXJjgmYobWerZR6ElirtZ4F3KWUGgo4gWPA+IJrBwJPKqWceFZeuENrnV5wbjLwGRCAZ8C2DNoWQgghRI1Rltltm4CuxRx/vMj7e0q49nvg+xLOrQVqxlLEQlSh3Bw7jnwn4XXPPgNOCCFqHFlM8hRlGrgthCibhF2HuXHQs4yLe555M1f7OhwhhBCVIEmSEFVo7e87cTpcuJxuFny/ztfhCCFEuSmtvfKqDSRJEqIK9RnSDv8AGxaLiTH/6OvrcE6htSYnx+7rMIQQotaQDW6FqEKNmkXy9R//xe0y8A+0+TqcQm63wT3/ms627YcYOKAN//fIGF+HJISoqWpYL0/BxLG1QJLWepQ365aeJCGqmNVmOWuCtHVdAt++/xtHko55Laak5GPs2nMEQ2uW/r4dh8PltbqFEKKS7gG2+aJiSZKE8KKjyRn895aP+fz1hTx443teqzemfjgx9cOxWsz06NYMm006kYUQxfHSGkll7K1SSjXCs/7iR9Xa7BLIT0ohvCg3Ox8Aw63JOp7ntXqtVjMfvTuB1NRsoqPPvjNQano2U1+Zg9aax+4fRaQsZSCE8J3XgIeAs2+YWU2kJ0kIL2rWuj433XsxHXo25/G3x3m1bovFTP36YZhM6qzlPv92BRu2HGTj1kQ++/YvL0UnhKgRNN7sSYo8sTdrwWti0VCUUqOAo1prn00Vlp4kIbzsqgkDuGrCAF+HUaJGDcKxWc2e9zF1fByNEOIclqq17nGW8/2B0UqpEYA/EKqU+lJr/Q/vhCdJkhDiNGNH9yA60vNIbmDf1j6ORgjhdTVkxW2t9cPAwwBKqYuAB7yZIIEkSUKI0yiluKh/G1+HIYQQPidJkhBCCCFqNK31UmCpt+uVJEkIIYQQhWrLliHeILPbhBBCCCGKIT1JQgghhDhJepIKSU+SEEIIIUQxJEkSogr9tjieqU/8RPzWpArf48DBNCZO/ox7H/iKjIzcKoxOCCFKoQFDe+dVC0iSJEQVSU4+xovPzWbpknj+/cDX6Ap2WX/48TJ27T7Clq1J/DjLZwvNCiHEeU+SJCEqYe+eoyycv5mcHDtm08lvJ7O54t9aLZpH4e9vxWIx0bRx3aoIUwghyqhmbXDrazJwW4gKSk4+xt2TpwGaWT+t4633bub/nrqSVSt2M/Kyrih19j3SSjJ+3IW0jK1HYKCN7t2aVWnMQgghyk6SJCEqKOVoJgrIz3eRlJjOkSPHef+dxWRn57Nm9V7CwgJ54umrqVs3uFz3NZkUAy4seTuQxIPpBAX5USciqJItEEKIYtSSXh5vkMdtQlRQx05NGDykHQ0b1WHKPRcz89tVJB5MJz0th0PJGezccYgfv19TpXXOmL6CSeM+YNzVb7F7x+EqvbcQQohTSU+SEBVkMin+9dBItm5J5MH7v8LtMjCZFEoplPKMS4ptWa9K61y2OB6Hw4XFYmLj+v20bFO/zNdqrcnNdRAYaKvwo0AhxHlAepIKSZIkRCX9uXwnDrsLgA6dGnPr7YPIzXUQEGCjU+cmVVrX9eP78/RjPxIaFsCAi9qW+TqtNf959DvWrt1H165NefHZayRREkKIUkiSJEQlDY5rxy8/rcPlMrhxXH86dqraxKioCwe1Zc7S/6AU5Upyjh/PY93f+zC0ZsPGA6Sn55R7rJQQ4jxwYp0kAUiSJESltWpdnx9+uR9taGx+1f8tZTKVvwcoNDSANq1j2LXrCLEtoqhTRwZ9CyFEaSRJEqIKWK1mX4dwViaT4o1XbiQlJYuoqJAKJVpCiPOBBm34OogaQ2a3CXGOm/71CsZN+IDZczdQv35YpRa6FEKI84n8tBTiHJaalsW0L/4kMekYb76zmLw8x1nLH03N4s2PlzB/yRYvRSiEEDWXPG4Togx2bE1i3o9r6R/Xjp79Wvk6nDILCvTD5mfBZFYEBNiw2c7+Lf/IMz+ya+9RrDYz0ZGhdKvGQehCiBpKlgAoJEmSEKVwuw0emvQZ+XkOFs/ZxGez7qVuVIivwyqTgAAbH75zM39v2E+vni1KfdTmdLnRWqNQuFxuL0UphBA1kyRJQpSBPuUvq9r1V1ZMTDgjY8LLVPap/1zOp1//SevYevTs2qx6AxNC1DyyBMApJEkSohRms4ln37mJ2TPXMGBIO+pGhfo6pCqjtebdz5axbMVOxo3tw6hhnXj8X6N8HZYQQtQIkiQJUQbtOzehfRWvnl0T7E9M58e567E7XLz0zkJGDOkoywMIcb6TMUmFJEkS4jxWJywQs9mEv5+FOuFBkiAJIUQRkiQJUQNs2ZrI4iXxxMW1o2P7Rl6rNyw0gI9fvYkt25Pp3b251+oVQtRg0pNUSJIkIXzE5XKjlMLhcPHAf77Fbncxb+FmfpxxNwEBNq/F0TCmDg1j6nitPiGEqC0kSRLCS1wuN3+u2E1UZAj5+U4efuw7zGbFc1PHYhTMJjEMXfheCCG8T0tPUhGSJAnhJa++sZAlS7ehtaZ1q/o4HC4Alv2xg6lPXMnceZsYMbwTQUF+Po5UCCEESJIkhNfs2XuU/HwnNpuFpo3rsmPHIVCKAf1b06VzE3r1aOHrEIUQ5zsNGLLB7QmSJAnhJf+cMoznXpxD/Xqh3DlpMBPGX4jJZCI8PNDXoQkhhCiGJElCVLETq3Mrdep0+nYXNODzT24v/BwYKI/VhBA1kIxJKnT2jZyEEOWy5s9djB7wDDeMeIXDyRm+DkcIIUQlSJIkRBX6+tM/cNhdHD+Wy7Jft/g6HCGEKD+tvfOqBSRJEqIK9R98ATY/Cxarmc7dm/k6HCGEEJUgY5KEqEJX3diXnv1bERTkR92oEF+HI4QQohIkSRKiijVpFunrEIQQooI0yIK2heRxmxBCCCFEMaQnSQghhBAeGrSWxSRPkJ4kIYQQQohiSE+SEEIIIU6SMUmFpCdJCCGEEKIY0pMkhBBCiJNqyUKP3iA9SUIIIYQQxZCeJCGEEEJ4aA2GzG47QXqShBBCCCGKIT1JQgghhDhJxiQVkp4kIYQQQohiSE+SEEIIIQppGZNUSHqShBBCCCGKIT1JQgghhCigZUxSEdKTJIQQQghRjFKTJKWUv1JqtVJqo1Jqq1LqiWLK3KGU2qyU2qCUWq6UaldwfJhSal3BuXVKqbgi1yxVSu0ouGaDUiq6apsmhBBCCFFxZXncZgfitNbZSikrsFwpNU9rvbJIma+01u8BKKVGA68Aw4FU4DKtdbJSqgOwAGhY5LobtdZrq6QlQgghhKgcjWxwW0SpSZLWWgPZBR+tBS99WpnMIh+DTpzXWq8vcnwrEKCU8tNa2ysTtBBCCCFEdSvTwG2llBlYB7QE3tZaryqmzBTgfsAGxJ1+HrgK+Pu0BOlTpZQb+B6YWpCQCSGEEMJXtCwBcEKZBm5rrd1a6y5AI6BXwaOz08u8rbWOBf4NPFr0nFKqPfA8MKnI4Ru11h2BAQWvccXVrZSaqJRaq5Ram5KSUpZwhRBCCCEqrVyz27TWGcBveMYbleQb4PITH5RSjYAfgZu01nuK3Cup4N8s4CugVwl1fqC17qG17hEVFVWecIUQQghRDhrQhvbKqzYoy+y2KKVUeMH7AGAYsP20Mq2KfBwJ7Co4Hg7MAf6jtf6zSHmLUiqy4L0VGAVsqVxThBBCCCGqTlnGJMUA0wrGJZmAGVrr2UqpJ4G1WutZwF1KqaGAEzgGjC+49i4845geV0o9XnDsYiAHWFCQIJmBRcCHVdUoIYQQQlSA1jImqYiyzG7bBHQt5vjjRd7fU8K1U4GpJdy6exljFEIIIYTwOtmWRAghhBCFast4IW+QbUmEEEIIIYohPUlCCCGEOEnGJBWSniQhhBBCiGKo2rTItVIqBdhf8DESz95w57rzoZ3SxnPH+dBOaeO5oza0s6nW2muLBCql5uP5unhDqtb6bOsu+lytSpKKUkqt1Vr38HUc1e18aKe08dxxPrRT2njuOF/aKSpOHrcJIYQQQhRDkiQhhBBCiGLU5iTpA18H4CXnQzuljeeO86Gd0sZzx/nSTlFBtXZMkhBCCCFEdarNPUlCCCGEENWmxiVJSqlvlVIbCl4JSqkNRc51UkqtUEptVUptVkr5l3CPu5VS2wvKvVDk+MNKqd1KqR1KqUu80Z4S4qtUG5VS/1NKJRW5x4iC41al1LSC67YppR72ZrtOi7Fa2ljW672lOttZcL6JUipbKfWAN9pTnGr8/zpMKbWu4Lp1Sqk4b7armDir8//sOfGzp0jZfymltFIqsuBzmFLqF6XUxoLrJ3ijPSXEVi1tLDh2UcF9tyqlllV3W0QNoLWusS/gZeDxgvcWYBPQueBzXcBczDWDgUWAX8Hn6IJ/2wEbAT+gObCnuOtrSRv/BzxQzPEbgG8K3gcCCUCzc6yNZbq+trezyPnvgJlnK1Nb24hn4+wGBe87AEm+bl81tfOc+dlTcK4xsADPmnWRBcf+Czxf8D4KSAds51gbw4F4oEnB52hft09e1f+qsduSKKUUcA1w4q/Li4FNWuuNAFrrtBIuvRN4TmttLyh3tOD4GDwJhB3Yp5TaDfQCVlRTE0pViTaW5P/bu5fQOqo4juPfHwRL2wiNi/rKorYaFRGhWivS4KIFlz4XtYuKbi2Im1YQRAkIilgXFReWulSKqBUrLbagLUWtGG2S0uKrEOOjxQeIEVHbn4szF2/DJN7kzrlzvfw/q8zMPZPzYx75z5m5GQNLJfUBi4E/gV8r6u6CZMjYbvssMuRE0p3AKWC6qn62o+qMtj9tmjwOLJa0qHHs1iXDtuy1c892YCuwp2megQuL9faTihQzwFMAAAOFSURBVKS/q+73fGTIuAl43fZk0f5MWcPQW7rudluTYeC07S+K6SHAkvZLGpW0dZZ2Q8CwpI8kvS9pTTH/cuCbps9NFfPqtNCMAFskjUnaJWmgmPca6Q/q98Ak8Kztn7P1vjVVZ5xP+06qNKekfmAb8GTebs9L1duy2T3AaN0FUqHqnD1z7pF0B2nE79iMRTuAa4HvgHHgYbv2F4BVnXEIGJD0ntLt4c35uh66RS0jSZIOAJeULHrMdqNyvw94pWlZH7AOWAP8DhyU9IntgzPW0QdcBNxSfHa3pJVV9r8VmTO+CIyQrt5GSEPKD5KuTs8ClwEDwGFJB2x/XU2q89WUsdX2lakp5xPAdtu/pQvivGrK2Pjd1wFPk670s6ozZ6fkyihpCem2Wtl2uh34jDRqswp4V9Jh21lGsmvK2AfcCKwnjdR/IOlD25+3myd0r1qKJNsb5lpe3C66m7RDNkwBh2z/WHzmHWA1MPNENUUaEjVwVNI50ntoviXdZ24YLOZlkTOj7dNN63kJeLuY3ATss/0XcEbSEeAmIEuRVFPGVveDytSUcy1wr9IXD5YB5yT9YXtHm3FK1ZQRSYPAG8Bm21+1GeM/1ZSzV849q0jPVB0rCvdBYFTSzcADpMccDHwp6RRwDXC0klAz1JRxCvjJ9jQwLekQcAMQRVIP69bbbRuAk7anmubtB66XtKQ4AG4jPUQ305ukh7eRNARcQHqB4VvARkmLJF0BXEWmA7hFC84o6dKmybuAieLnSYr775KWkkbTTmboe6tyZGx1P+ikynPaHra9wvYK4HngqVwFUosqzyhpGbAXeNT2kWw9n58c+2xPnHtsj9te3rRfTgGrbf9AOvesB5B0MXA1mS7OWpQj4x5gnaS+YsRpLXCiE2FCfbq1SNrI+cOk2P4FeA74mDSsO2p7L4CknZIaLyncBayUNAG8Ctzv5Diwm3RQ7AMesn22I2nKtZPxGaWvr46RCsJHivkvAP2SjhfreNn2WP4os6o841zta5RjW3abHBm3AFcCj+vfr2wv70CWueTYZ3vp3DObEeBWSeOkkZltjRGbmlSe0fYJ0vYbIxW5O21PzNUm/P/Ff9wOIYQQQijRrSNJIYQQQgi1iiIphBBCCKFEFEkhhBBCCCWiSAohhBBCKBFFUgghhBBCiSiSQgghhBBKRJEUQgghhFAiiqQQQgghhBL/AHYaMhQchFFiAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
Tutorial: Calculating liquefaction probabilities from a single earthquake
+
The OQ-MBTK has several models for calculating the probabilities of liquefaction and the displacements from liquefaction-induced lateral spreading given the magnitude of an earthquake, the Peak Ground Acceleration (PGA) at each site, and the susceptibility of each site to liquefaction (which is based on local geotechnical characteristics and a soil wetness variable or proxy).
+
These functions are quite easy to use and the calculations are very rapid.
+
Functionality for calculating these probabilities and displacements given a large number of earthquakes is being implemented in the OQ-Engine, but is not yet available. However, the functions below are easily incorporated into a script that can iterate over the results of an event-based PSHA, though this will not be demonstrated here.
The HAZUS model calculates the probabilities of liquefaction given the magnitude and PGA of an earthquake, the liquefaction category of the site, and the depth to groundwater at that site.
Liquefaction probabilities using the model from Zhu et al. (2015)
+
The liquefaction probability model by Zhu et al (2015) is based on a multivariate logistic regression. The dependent variables are the magnitude and PGA from an earthquake, and the Vs30 and Compound topographic Index (CTI) at each site.
It is clear from these plots that the two liquefaction models produce highly discrepant results. This is a warning that they should be implemented with caution, and calibrated on a local to regional level if at all possible. Both models may be calibrated by adjusting the coefficents for each variable relating soil strength and wetness to liquefaction.
+
Unfortunately, the tools for these calibrations are not implemented in the MBTK, although the functions used internally in the MBTK may accept modified coefficients.
Displacements due to lateral spreading associated with liquefaction can be calculated given the earthquake’s PGA, magnitude, and the liquefaction susceptibility of each site. The model currently implemented is from HAZUS.
+
+
+
+
\ No newline at end of file
diff --git a/contents/sep_docs/tutorials/liquefaction_analysis.ipynb b/contents/sep_docs/tutorials/liquefaction_analysis.ipynb
new file mode 100644
index 000000000..35ede3c80
--- /dev/null
+++ b/contents/sep_docs/tutorials/liquefaction_analysis.ipynb
@@ -0,0 +1,526 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Tutorial: Calculating liquefaction probabilities from a single earthquake"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The OQ-MBTK has several models for calculating the probabilities of liquefaction and the displacements from liquefaction-induced lateral spreading given the magnitude of an earthquake, the Peak Ground Acceleration (PGA) at each site, and the susceptibility of each site to liquefaction (which is based on local geotechnical characteristics and a soil wetness variable or proxy).\n",
+ "\n",
+ "These functions are quite easy to use and the calculations are very rapid.\n",
+ "\n",
+ "Functionality for calculating these probabilities and displacements given a large number of earthquakes is being implemented in the OQ-Engine, but is not yet available. However, the functions below are easily incorporated into a script that can iterate over the results of an event-based PSHA, though this will not be demonstrated here."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "from openquake.sep.liquefaction import (\n",
+ " zhu_liquefaction_probability_general,\n",
+ " hazus_liquefaction_probability\n",
+ ")\n",
+ "\n",
+ "from openquake.sep.liquefaction.lateral_spreading import (\n",
+ " hazus_lateral_spreading_displacement\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,10))\n",
+ "\n",
+ "plt.axis('equal')\n",
+ "plt.scatter(hazus_liq_prob, zhu_liq_prob, c=event_pga[\"pga\"])\n",
+ "\n",
+ "plt.plot([0,1],[0,1], 'k--', lw=0.5)\n",
+ "\n",
+ "plt.title('Example liquefaction probabilities for Cali, Colombia')\n",
+ "plt.xlabel('Hazus liquefaction probability')\n",
+ "plt.ylabel('Zhu liquefaction probability')\n",
+ "\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "It is clear from these plots that the two liquefaction models produce highly discrepant results. This is a warning that they should be implemented with caution, and calibrated on a local to regional level if at all possible. Both models may be calibrated by adjusting the coefficents for each variable relating soil strength and wetness to liquefaction. \n",
+ "\n",
+ "Unfortunately, the tools for these calibrations are not implemented in the MBTK, although the functions used internally in the MBTK may accept modified coefficients."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Lateral spreading displacements"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Displacements due to lateral spreading associated with liquefaction can be calculated given the earthquake's PGA, magnitude, and the liquefaction susceptibility of each site. The model currently implemented is from HAZUS."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "hazus_displacements = hazus_lateral_spreading_displacement(event_mag, event_pga[\"pga\"], sites[\"susc_cat\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAI/CAYAAACF0oasAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3QVRRvA4d/sbek9gZAQAoQSeu9VqihFigoWEAVRUbH33j4VC3axK0oRlCICIkV6lx5KgEAKhPR+2+58fyQGYxKKVGGec+45uffO7s5uDuE9M++8I6SUKIqiKIqiKJXTLnYHFEVRFEVRLnUqYFIURVEURTkFFTApiqIoiqKcggqYFEVRFEVRTkEFTIqiKIqiKKegAiZFURRFUZRTMF/sDpyJkJAQGR0dfbG7oSiKoigXxObNm9OllKEX6np9unvLjEz9glxr83bHIill3wtysXPgPxUwRUdHs2nTpovdDUVRFEW5IIQQhy/k9TIydTYsirog1zKF7w+5IBc6R9SUnKIoiqIoyin8p0aYFEVRFEU5fyRgYFzsblyS1AiToiiKoijKKagRJkVRFEVRSkh0qUaYKqJGmBRFURRFUU5BjTApiqIoigL8lcMkL3Y3LklqhElRFEVRFOUU1AiToiiKoiil1Cq5iqkRJkVRFEVRlFNQI0yKoiiKogAgkehS5TBVRI0wKYqiKIqinIIaYVIURVEUpZRaJVcxNcKkKIqiKIpyCipgUhRFURRFOQU1JacoiqIoClBcuFJXU3IVUiNMiqIoiqIop6BGmBRFURRFKaWSviumRpgURVEURVFOQY0wKYqiKIoClOQwqcKVFVIjTIqiKIqiKKegRpgURVEURSmltt6tmBphUhRFURRFOQU1wqQoiqIoClCy+a5aJVchNcKkKIqiKMolRwjhIYTYIITYJoTYJYR4oYI2o4QQaUKIrSWvO85Xf9QIk6IoiqIoxSTol84AkwO4SkqZL4SwAKuEEAuklOv+0W66lHL8+e6MCpgURVEURbnkSCklkF/y1lLyumjhnJqSUxRFURQFKI5GjAv0Oh1CCJMQYitwHFgspVxfQbMhQojtQoiZQojqZ3rPp0sFTIqiKBdQgdPJrqOpuHT9YndFUS62ECHEpr+9xv6zgZRSl1I2AyKBNkKIRv9oMg+IllI2ARYD35yvzp4yYDrbpCshxEghxP6S18i/fd5SCLFDCBEvhHhPCCHO3W0piqJcegqdLvp+8g3Dv5vBqO9nXezuKEoFBPoFegHpUspWf3tNrqxXUspsYBnQ9x+fZ0gpHSVvPwdanq8nczojTH8lXTUFmgF9hRDtKmg3XUrZrOT1OYAQIgh4DmgLtAGeE0IElrT/GBgD1Cl59a3gnIqiKJcFw5BM+G4emSn5OPPdbExMxlBbUChKpYQQoUKIgJKfPYFewJ5/tAn/29sBQNz56s8pAyZZ7N8mXfWheM4xU0qZRfFwWd+SG/STUq4rSer6Fhh05t1XFEX5b/hh6ioOf7CFKiuzMeUbjGrdDE0NrCvKyYQDy4QQ24GNFMcTvwghXhRCDChpc1/J7Nc24D5g1PnqzGmtkhNCmIDNQAzw4UmSrroA+4AHpJSJQASQ+Lc2SSWfRZT8/M/PFUVRLjtSSn76bAVCB3OhTh2nBw927nixu6Uo5UjAuEQGPqWU24HmFXz+7N9+fgJ44kL057SSvi9m0pUQYuxfCWFpaWnn6rSKoigXzILNe0gNEegm0HSJ49cDXNfgcX6cvIzM9Dwy0nIvdhcVRTmFM1ol9y+SrpKBvy/xiyz5LLnk539+XtE1J/+VEBYaGnom3VUURbnoDiWl8/C8haQ19yCxfyCap1aa1DD9oyWM7P8uIwdMYs3y85Z6oShn5AImff+nnM4qubNJuloE9BZCBJYke/cGFkkpjwK5Qoh2JavjbgXmnPXdKIqiXGL+2HoAtwUQAsOmcc0NbUu/C6gWgNPpxuV0s/L33Revk4qinNLp5DCFA9+U5DFpwIy/kq6ATVLKuRQnXQ0A3EAmJUlXUspMIcRLFCdrAbwopcws+flu4GvAE1hQ8lIURbms9GvfgEnr1lHgZdAsuAr3jLuWHj2asPSXbSycvRkhBFabmWuHtb7YXVUUJPwnR38uBCH/Q8taW7VqJTdt2nSxu6EoinJGpJQUudx4WS0A5OcVMbTjKyAlEnji9WF069fs4nZSuSQJITZLKVtdqOs1bGKV0+aHXZBrNYlKvqD3drbUXnKKoijnwbrERB5dvIjogAA+6T+wNFhyOt08Nn4KhqcFXDqaSycqpupF7q2inGBINcJUERUwKYqinAfPLVtKUm4u6YWFfD53NbZEJz37NaGgwEHikXQQAqxmRt/fi1p1TwRMUz9awurFuxhxTw869Gx4Ee9AUZS/UwGToijKedAoLIzkvFzIdTP/+5VIXfLr7C18/dN4rFYLUkLzVjWpWi2Qge1eomq1AO57uj/TPl2O0+7ifw9MZc72l/hr1yjDkAhB6XtFOR9UDlPlVMCkKIpyHvyvV2/6xNThw/eWUmjkIQCHw42fnxdfzxzP0eQsatWpwp2D38dhd3EsJYu9O5MRgMVqwhrpy57E48RGVWHBlr08NXUhIb7efD/hRkL9fC727SnKFeeM6jApiqJcSRIT0pkyeTlxOxJP3fhv1ickMvSLqcxdvYPUYznkR9pw+GiEVvNlzHXvsWPTIerUD2fThoP4VvXD6mFBCEGLDnV4a9pdNLqpBckxntz+5gyW/Lmfyb+vx60bZOUXsmznAQAcdhdLZ29m77Yj5+PWlSuURKCjXZDXf40aYVIUpQyX003q4XTCa4ZiMpsudncuGsMweOC2z8nPszPj65V8+8sD6N4GWc58avuEn3Rq7JHZC0nNy2ev+zgBGAgEVn8PclNycRS5ePv52TzmbeW5p2YipaRG/Sq8+vqNhFTxA8C1woojQUcTgm3xKTT0DyQxLRtN02gUVZVpm7az5Nu1pC1JAAlvTr+HOo0jK+2PoihnTwVMiqKUcrvc3NPxGVIOplGnWQ3e/v3pKzZnRhoSu92JlBJDwoHcYzy1/UuklAyK7MBddfpXemxEgB+ZBYW4hY4104XFIencPZb1iTux2sxUCffnzdd+we3WAcjJLeKRx6ZRs2YoTzw5gDHXtGP34ePYLCYOz9/D/q1JhFrghQ9H8t2mrfy6ax+uABchISaC0w2OHkknukE4cWlp1AoKwsdqvVCPSbkMqVVyFfvvjYkpivKvFRXYSU/JrPT79OQsUg4cx+VwEbfxAEX59gvYu0uLyWziuYnDadqqJmMn9GbmjPXo8y04Cl2sST95Ve7JNw7ivi7tCcwwo/la8GgQyPxjCTh9TLhyCjj85yGyEtJBUpzb5HRz5HAG69cdYPWqfdSNDGX+q7fTr2EM6515ZNf2QZeCrIRMjubk4XC7MVlM+NUIoHX3WNr1bMQtM2cyYsYMen/1FQVO54V5SIpyBVEjTIpyhTiWcJy7WjyCo9DJzc8OZcSTQ8q1CYsKpmGHumxdvpvOg1rj5et5EXp68RQWOnjuqZmkHs3msacG0rpjHVp3rMOUr1eybUEiGFYsbhj1WK/SY+yFToqKnOTk24nbe5SO7WPYnZaGSWhMefomth05ypNLFuOWGqYUN/4OJ27NhDdg8bER4GPjUGIm2Mw4XW5yiuwcOpJOzagQflyyrXhLFYsJw8dK66tiOf67g9ygQmpFhPLS4z3xtFgwpGRTcjKS4lVOR3JyiFV7byr/glolVzkVMCnKFWLrsl24SvYtW/TV8goDJk3TeP2Xx3DanVg9Ls9pHSkln6/ZxP60DO7t2p7qgf6l3y1dvItdO5JwOt18MGkRH39+OwCaECDAopm4JqoDPaq2ACD5cDr3Dv8Yu0vHWcUbk0nj22lriKvuwC0Mftmxh7t7tMNiMeN2u5FNAvE87KTIJbHb3ZizizicmosGCIeONdKPiZ8sRmiC5+7vRzUvL/IKHGCCsQ/24aPXfmHDin0IAbd+1BlPi6W0f7c0acaUHdtoVa0adYKDMaQs7reiKOeECpgU5QrRqk9TPH08cTvdXDeh30nbXq7BEsDSfQf5cMU67C43B9MzmXnHiNLvakSHIAR4eFio87dikkOHt8OtG7icbkbc2qn0881r43E5ddzSQHcbON0Gcd75ONwCa7Yk3ZzPR28vJThfJ7RdGC/e1huv0Qb3Df0Ap9ONMIniApaAQFIgdTBpSCn56J2F5CdmYQmwIhC8P381jTMtOB0ubB4WUpOzoFVNAPYcOc5vP+8ixDDRp1ktek//ikPZWTzctiP3tGh/gZ6solzeVMCkKFeIkGpBTEv6FKfdiafPiak2KSU/f/I7ezYd4qZHr6VGvWoXsZfnn1krTt3UhMBiKrsKsHHTKN5+/xbS0/Jo175O6edWq5lbR3cpd65mbWuDAM0laVIvnAR7AanBRZgKdTyOFtDIvwo7MlOREqLzvIgNC4UwePKdEWzfcJBu/Zvx8uM/ciw5iw79G7Fm3xH0fB1Ngo8B+U4da1Hx6JZpbwH3fzCS91+aS2R0CF37Ni7tx9pdCbjcOroh+WHzVhJ8MpEI3t60ijHNWmPV1J965XQJdKnSmyui/hUpyhXEZDaVCZYAtq/exzevzsFR5OTAziN8sf7li9S7C6NLTDRP9ulGfFoGt3cou+9n0sE0bJpGdHQoK5bspk3HGLx9PCo916qV+3B728BTEhkWyJP3Dqb7u59T7dcUzAU6CUf2YKkbghCC9s2jS49r2z2Wtt1jAfh6zv3oboPB06cS7yfwy7PwWL/utAsM5/4bPqaw5JiqAT5UjQjk7SljKShyYrVZSs/XKTaa735aiyvdjvNwInJI8e/Y6ung8NFU6kREnJuHpyhXMBUwKcoVzuphASSaJrBYLads/18nhOD6Fo3Lfb5u6W5eu/97AHSbBc3Lhr+XFR8MmnWsw9inB5YrsWCzmdFMGlJIbDYzVfx8mDPuZh6a9gYuqWPLd/L0uL6ERQVRJ7riHeCFEJgtJqr5+hKfkYEzSJAr3MxKjefZ70bxwxuLyckp4nhCOrde9TrO2CDyTZJbB7RhzLCOZGfk88htnyItBn55Ar3QTWRCDoUtBF47Db5Zt4SXP7z1nD9H5fIkAUMtoK+QCpgU5QoX26oWD0wayb4/DzPozqsudncumq1r43E63SVL/QVOTcOVlE66lBw7kkGnq5vSsCRn6C+DhrTGMCT2IidDh7cDoE5YCC99PobvJy2izVUN6Nil/mld/+1+/fhp1y6EDq+uWoHT7WaOnx8rvhnL47d9TvK+VBDgTivAHerBnGU7GDOsI2vX7+NQY28kktwig+o7QCxw4/2rBGHGt++VtdJRUc4XFTApikK3wW2IrBXKyh/X0nlIW8Kirrwl6ceOZIAEk0mjVc8GxB9IQ1gEuRl5SCRBYX5l2uu6wbwf1lCYUcDQMV3x9DyRKN+0Qx2adqjzz0uclCvPycLHfictIx+/+h4cb24trac0eFRndm05jNXDQmGwF55H82lWqzoAwTWDEQKkpiF8zbz80fV4+diY/Mav+Ph6cP9zA8/yyShXGlVWoGIqYFIUhazjOUzo9Ay6W2fGxDlMS5p8RVX4drt01i+NA8BkEgy6qR05UqduRDB/Lt9D3SZRhEcFA3A0KYsdfx4mPyOPb99ehNutM3/WRhoPaUKcrYCmUeE80q8rmnZmz+/R4R+REZ+KAPz2CRoMrsc97doC0KZrPX7e9DxCE9w19AMSs5zsWLyHnYMP07p5FCO6t2B1XAL3X9uJRo1rAPC/z0efuwekKIoKmBTlUrN3YzyT7v6MGg0iefCzcRckr6ggpxBpGLidbnIz8pFSXlEBk9liolWXemxbF09IeACPfvQrbsMgJNCb6W+PLn0WBfl27r75U3TdwGzWMKREdxvkZBUyMzEet02wLzWDjnWj6VQ3+oz6kJqYCRKkpxUkeM5Oo9E1J/KezJbiFX1SFueZFCv+PT06qBsMOuvHoChIqVbJVUY9FUW5xEwc/RH7Nx9k5az1rJy57oJcM7JOOCNfvIE6LWvx1NQJaNrl+achv8DBhs2HyMsrv+XL+BevIyqmCjZPC84CJ0UOF0mp2ei6UdomN7sIl0vHYXeRp7uwd69GdrtQZIg3JqfEohXXUAr28Trjvt39wnUEhvqieRevyktMSGfvruRy7Z6fdBO9BzRn7EN9adQiGiieHszJLkRKWa69oijnhhphUpRLTHjtKqQcTAUpCatx4XKJrn94INc/fO7zXb54Zjq/fbOCa+64is5D2/HF87Oo3bg6I58aeEEDM103uOPer8nOKcTb28bUL8ZitZz4Ezj942Uc3HMUAdRuEkFKgJmb+7fGbDZR6HSx7chRYquFMfTm9iz/bSeyWRA7j6UhfMzE9K7ONfWrsPR4IkObNyK22omRIbdLZ++uZCKigvDx9cRk1iocves9rA29h7XhxUdnsHHNfjw8rUTHlF9ZF1EjmAdfHFz63ulwc/etk0k+kkn3Po149Hk11KScHUPlMFVIBUyKchH9/v0K3hnzCeG1q/DOipfwDfThyR8msPSHVUTEVKVRx/ocP5KGt78X3v7eF7u7ZywrNYefJi3A7dKZ9uZcVvy6jeQDx9m1Pp7Y1rVo17dphcd9/+Y85n+zgqtv6cwtjw04J30pLHJyPC0X3ZC43Dq5uUWEBPuWfh8VE4bVVvwncWD/FgwoqegtpWT4x1NJzsrF02ph0cOjGXXXVXyxcAP7F2QB0K59bV7fsgaHrrNv5QpsZjNDWzRC0wQvPDyV7ZsTkA43er6DwFBf3pt1L0GhvuU7CTz9v2EcOZhGWLg/Xt62U95XwoHjpB7NQdcNlizcoQImRTlPVMCkKBfRt89Nx2l3kXoojXW/bKbXLV3x8LLR744eAEx/YzbfPDcds8XMg5+NQwhBh0Gt/zP1krwDvPAJ9MZe4MDLzxP/YF+OHc5ASvAJOBEASik5uDOJ4PAANE3ww1vz0d0G095ZwIA7uuMfXHFwcSZ8fTwYNqg18xZupVf3hmWCJYCBIzsRHhWMEILW3U6UAnDpBgeSM9Ds4La6SM3Jo2ZoEKP7tCamWjCaJli0ez8iS0d4g0savPrrMnTD4Oq6MWzfnIC9yIVW5ARDkp9TxMble+gzrHWF/dQ0UeHI0t/lFtoZ+dY0jiZkMmFEN0LD/DiakkWXqxqc9XNSrmzFm+9enlPyZ0sFTIpyEbW+ugWLvloGmiC2bdll6DnpuUx/Yw4uhxsp4fVb38dsNdPxlzY8/u19F6nHZ8Zqs/DpxlfZuWYfjTvVByFY+N0qoupVpVG7mNJ2HzzyA0tmrMdk1pj02+P4BHiRl1WIZtLK5BCdrbtu78Zdt3er8DshBG0rCDisZhPebjMOw43JKdh75DgWk4nIIH+6NqnNjLXbWfjnPjQX+GtmCk1uDCGJjzvKTU8txI3EbDYRVC2QnNRcNJNG4zY1K+hBeS63zjNTFrLtj4M0iKzCc4/2x8/Xk5W7DpG7JAkfu8GXLyxgzsJHKCp0Ehj83xuFVJT/ChUwKcpFNP690fQZ1Y2QiCCCqgaW+e7dcZPJz8ovfS80DXuBg4QdRy50N89KQJg/nQadGE25YULfcm02LN6Bo8iJh5eVgzuTaHN1C5bMXI9hMjHzk6WMffa6C9nlcqJCAjh8PAspJU/O+A1hgrduvoZuDWrj62FDUDwyRLZOuNtC86618D0GeVbAZsXrUBbZWXmMfrw/vYa2xsfv9IpJLty2l5W/78GcobM5NYFvf1jD+Dt7ULdqCFphcaaJcBlkZxUQHhF4yvMpyqmpVXKVUU9FUS4iIQR1W9YuFyxB8X/AoiQpWtd1DMOgWkxV7vtozIXu5nl308PXYraYCKseTMurGlIlKgSLpwdmq4WAkLOfjjtbk+8byoPXdaFFw+o4pY7DrbNizyEA+jaryzNDehCkWzFn6uhFOu1DqzE38QCGRcMwC+xVvHG7dNYt3lFpsCSlZOHqXXR58ENueHUKOQV2wvx8kJbizXeFJggsmcasUz2UvoOaYzJrdLkqlqrVAi7Ys1CUK5UaYVKUS9T9n4zlwLYEkvcfQ+oSs83MQ5/fRYP29S521865vrd0ou8txUnWulunfstoht/XG/8gH3rf0PYi9w4O701l7lvL8QnywifcjMlq4vp2xQnrQggGtGrA3h0p/Jq5G5DYPSU5VjeeGoDA6jIwW0z0u6lDheeXUvLEyM/YtuEg5gALh9voLPlzP4M7NebBEd1YMGcrHdvU4cahbUqPeejJ/jz0ZP/zf/PKFUXtJVc5FTApyiXK5mklJf5Y6fvohpHUb3tm221caI4iJwlxKdSoXw0PL+upD6jAa/d+x+Y/iqtuf7jgEUymU//x1g2DhNQsIoL98bCe+z9rn7z7G+lpeeTmFvHMoD5cM6hFuTYPjexB7w6xhAX5Ijw03lq3lnyTpLbuzQfv346fryfelYwuZaXns2NLApmNPDEsArNbp2GNKhQWOvh64u+4XDpzD2Zy64gOJOfkcuvMmRQ6XXx63UCaVK16zu9XUZTyVBipKJcoq4eVZlc1xmI1E92oOu+uehmr7dJdHafrBuN7vcZjQ95lfK9X0d36KY/ZtGQXYzs8z7sPfFea3B23+RD2wuI91BL2HD2ta9/54U8Mn/gDg1/7FrvT/e9vohKxjSPw8LQggFp1qlTYRtMETetFEB7qR1VfH+bcPJyqf+RS8OsRbu8/Caer8ucREOyN+aoqZLT2Iau5D/XbRHBwWwq5uUXobgPdbVBU5OL+cV8ybuIPHMnK5nhBAe+vWQsUj1DF7UgkIT61zHk/m7uW9ndOYvzbs3Cfw+R5RbkSqREmRblECSH436KnSUvMoCC3kDubPYzN08aLcx4lJCL4YncPgLysAlIOpRHTpDp52YUcTUhDdxscO5xOblYBgaF+Jz3+rfFfk52eR1pyJl0HtaJ511jueGoAHz/3E+HVg/APOHVytFs32Lg/EYD03AIS07OpUy3knNzfX8Y/dDUdOtcjJMyPmrVPvuT/L84cJ+S5ANCdbkb2epM2XevzxMQbyoyaLdi1jw9XrCOgdTXM6ckYUrJ122GO7zxEuw51GH9/H2b+vIEDGens355CUZoZrbMXNrOJ9lFRAMyasoavP1qKNAwee3kIXXo1AuDzX9aj6wZb9yez53AqjWqFn9PnolyedKkKV1ZEjTApyiVM0zSq1Ajl+5dmciQumQPbDvHze7+e9+tKKdn4xx42/bGn0u02stPzGN3+OR4f+i4vjZ6Mf7AP3a5rjWbS6Dqo1Wkla1erGYrN04qUEBoZBED3gS15/J0RHNoUz5PXvc1PH/520n6aTRpD2hcHCI1qVKVmlaB/cccnZzJptG4fc9rBEkDN2mHUjK0GUiIEOF1u1izdTfzftjuRUvLI7AXsT8tge+IxrqlTlzZ+4VTZa+BwuDmaksU1A5rT8a5W2EPMSA28juvcH9qEKTcMY3SrlgCsXb4Hl9ON26Xz2RvzS8/fLKYanjYzHjYLNSpYWKAoyulTI0yK8h9Qt1VtNiz4Eykhpnmt8369ed+t5ss3FwCS2MYRHNl7jEG3d2XY3T1L2xzZexS304290Mm2VXtJ2n+M8a/fyMPvjzzl+Q/tSuLr1+bSpGt9+tzckdqNo4isfWKqa/f6eFxON9KQbF62i8H39C53jlW/7+J/j/9IYLAP7343lieuvwqLyXRO7v8v6Vn5HM/IJ7Z2lTPejHhH8jGOdfShWq0Yjv4SX7JprqRK5ImATghBmI8P6QUFaELwRLeu+FlsvJk8j5TkLB54pB8AAxrUY3q77eT7ZXFb6xbcMbxrcRmDEp261WfXn4eRhkQvcJZ+/sGDQ4hLSCU6PAhfL4+zfBrKlUAiVOHKSqiASVH+A65/ZCAxzWti87TSqFPsvzrHsYTjPNH3ZeyFDl6a8zgxzSsvnnhwTwp2JFKXbF+1D8OQfP36PPrf1gUPz+Jk7vqtalK7cXX2/plA1YgA7m7/ND4B3ny2+bUyVbwr8tLoyRxNSGP76r08+81d1G5cvcz3vUZ0Ysn0dRTkFXHTIxWvBPvh0+W4XTrZmQWsXhrHgBvPfjXde2vWMnXbdq5v0pihtWIZ9dh3SCnp3KwmsR5etOhcj7pNqp/6RMCzPy9m//EMPDQTzWOrkJeSx12PX0NAUNlnM/32G/l9TzwtoyII8Sn+7qnnytadCvPxYfHY20rfb99wkLitR7hqQHNCq/ozYER7juw5yt6th7nz6RP7AVrMJprEVPu3j0NRlL9RAZOi/AcIIWjZq+J9107XvI8XkRJ/DMOQfPfij7zw86OVtpV+3hgle9eZLRpakQMff6/SvdaguIr3xDkPAdA/+HacdheFeUUc2pVE444nL33g5WNDMwmklHj5lB/5qBIVzGu/PMrEF2YzffpGHmkQgY9v2Xymjj0akHQ4HSEEjVrUKHeO5Qu28f0ny+hwVQNG3dfrlCNE2UVFfLhuPW7D4JP1G4iyeyGlxO5ws3TVHjZtT2Xah4v5dvWz+AWeuqJ2dEggiVk5ANzz+mBa1IiosF2ojzfDW1X8u53x4wZWrNjLsOtb06F9HQ7Fp7JpTTzT3v8d3W3w20+b+WLhQ5hMGve/MrTMsWnHc3nl6VkYhuTpl4cQVtX/lH1WFABDFa6skAqYFOUK0bBDfeZ8sBAENO3e8KRtjx/PRVKcuzNwXA9iIgNo2rEumlbxH9KBd/Vm5rvziahdhbotTr7th6PISaseDfEP9ePqmzpSr0V0he0mv7uInX8eRjNpzJm+gf7Xt0EAviVL828a153OvRvi6++Ff6A3P/+5C7vLzZAWjbCYNCY+NQu3S+fn5DV079eU6EpWt/3F22ol0MODApcLT4uZbq3rMHvBNo6kZGJNyMYwJIYhsRc6Tytgen3Y1SzcsZfqQQGVBksncyQxgy+/XIHT6eb5F5JxNPIk6M+C4mk3iwnhcJOfW1TmmPidicyavIyW3WKJO5jOnpJ8qSlfruBBVbNJUc6KCpgU5TKxZPoaJt37FRG1qzJx4RN4+3uV+b7DwNZMWvMKjiInDdrVPem57hzfk/Tnf8kXtkkAACAASURBVKYg346u67Tv2xSLpfL8oDtevoGRzw7BbDGdciTnq5dn8+u3KxGaoPVJNoutGhFYWkYhv9DBjQPeRQjBKxNvpFnLaACiahUnYU9Zt5W3Fq9ESkjOyuXhPp0JreJPRloumgb+fwtwvnt7AX/M3cL1d/ek9/UnpvEsJhO/jLyVDUlJtImMINjbmwi3mezjTgzNTM1GkYRGBLFzcwLdqwWc8j49LGYGtTh5YHoy3l42hAAEGCZwF7jRpUR36Xh4WYltUI2bx/csc8xTt35KbmYBqxZuZ8gDV2MpqUlVo1bov+6HcmVRm+9WTgVMinKZ+OaFWTgKnSQfOMb6Rdu46vr26LrBG6M+YvvKOO54bQQ9hncsc8y+zQdZ9M0fePh5sXVtPDXqhnPt6K40aF2bBrHVWDx/K3NmbMQ/wJvrb664SvVfLFYzOzcn8Ow932LztDDx6zFE1Ci/vL8grwhDNxBoFObZKz3f7eN7UjOmCt4+NpYvi8Pl0sEwePWZWdxyexf6D2nNkbRsnpuyiNS8HIwcO7qPhfT8AgDemXIna5fF0aB5DQJDfABISUhj5sdLcDrcvPfYdHoMboXJXBwIZmYWsHnDAZo3jSLEuzjA2rf3KPYiFx4+Hlh8PNm0aj9/rjuAh5eVDj1PBEPJh9I4GJdC62718fCyncZv69SCg3145+2b+G7eehYmJWD2NNG+ezRJ+48z9v7etGpbu9wxrpIaVG6njs2t8/TLQzAMSbtOl3bBU0X5L1ABk6JcJlr2aMTS6WtACOqVTIvtWr2Xtb9sxl7g4IP7vioTMOlunYd7voS9wAGA5udD/J6j/PHbDj6c/zAAssCOnp3P3rX72F4zmPCaYYRWq3x5+vQv/qCwwEFRoYPFc7Yw6r7yq9vueG4Ihm7g4WVj8LjiEZKlMzfw/iM/EBDiy2sz76dqjRBMZhO9rm0GgJevJ6v+2IvbbpCdWcAnk36jbce6vDl7GTs3xBO06ADhBmjBvrR9oXipfUCwD1cPbV3m2r4B3pjMJqxC4BvghVZSD8kwJHfd+SU5+XbwMDHt63EE+Hsx7r7eTH5/MfUbRmBPycbt0nG7dL58exGtutTDajVzPDmL8de+A0Ct2Gq8NXP8mf/yKlG/fjiv1B/Eg3mFpObmsfZAIsPv6kqdqhXXmWrRuR6rF2wHIDUpk+H3ln/+inIyEqHqMFVCBUyKcpm4d9JI+ozsQmhEEMHhxUFN1ZrFU1Ye3jaiG0aWaS+lRHefqP4svT2QVYNxATOnrmfMhD78/v4CDN1g7cz1bJ63BaEJPlr+NOHRFU/xtOsWy7YNB5ESbD4e6G4Dk7ns8L5/sA+PfHhbmc8mPzcTe76dY/l2Huz3Bj/seqPM981aRjNrwUPcPOBdCgsdaJqGh6eVyJAAvI4VgLu4VpSRWcAXz/7MoJs6VThl5hvgxXvzH2Ln+gO06dGwtI3brZORVUBWDSvSBHe9/xNTn76Z3lc3offVTQA4mpjBHX3fQtcN0o7nsnvLYZq1q82xpEwQYC90cnj/sXLXPBd8PW30fetLCuwu3vl1Jb/cdTPRNcr/Dm579NrS6ujDxvUA4PtPlzHjq1W07BCDKcSb9RsPMOLG9tx4Q7vz0ldFuVypgElRLhOaplG/VdlpmrDqwXy88TUO7ThCy95NynxntpgJqBVOWnwKmoeV6s2iOXw8HxDk5Dvw8fPE08dGYZ4dqRs4ipx4eNtIiEuuNGC65vo2+AV789rLc/l+2jqOHMvmsScHnLLvVaKCyDmeCxQXxKyIp6eV9768g1XL4mjZthZ+/p48eF0Xqhgmfr7/BxwFDix+XoRGBJUJlqSULDi2gAP5B7gu4joia0USWatsAUqr1czw0Z346I+NIGBvUhouXUfqkr27kqlRK4zw6sG07Fqf7RsOYjKbiCopYtmwVU3a92rEjvUHuP2Ja055r5XJL7ATH59KvbrheHqW3YfPpesUOV2gFY+GzZixjlbd61ErIoTo8BN1nSJqhvL5sidL3xuGwZRPliOlZMO6eFyBHuR5ST6cuoIbrm97xrWllCuD2ny3YipgUpTLzP4th3j5pvfxDfLhpZ8eIiKmKh4+HjzY53/kZRXwzHd3l07ZZR/PRbPZQEKzRpFYknMoLHAwalx3TCaNt395hBVzNiMNyezJS6nVMILmXStP1AYocuoIswm73cWe3SkVtsnNLOCT52ZitVkY+/xgbrj/al657VMMt0FAlcqXv0dUD+KGWzvyxQs/8cKsDQy+uyejxvXkliGdSDqQyr5tibTpUbZ/cXlxzEmZg9NwklyUzP+a/K/Cc992Y0e2ZaaxZtdhru/aFIvJxISxX3IwPhWbzcLXP43nufduYs/2JPC18Pq8FdSpFsLtfdrw6DsjTvpMTsXpdHP7mC/Iy7MTGuLLV1+MKVOY0uF0U98SQHxGJl4pTuaylzkb9oGXxq19W/Pj/C00rh/Bm48Pwmw+kZyvaRoxseEkHkrHYjOTUc1MoYdEE4JN8Um0rnN6NaUURVEBk6Jcdj5/ejrHEtJIS8pg0bd/cOMjA/htyioO70nB0A2+eflnXv3pQQBiW9Zk19r9aGaNek2qExDkQ3h0CLViipfgFxU6iY87Ssuu9Zl14J1y19LdOp+99guH9x9j3NMDqVG3Kp271mfRwu0kJ2Yy/v6yOTS6brB/RxJzvljGyrlbEEIQVMWPmx/qx8CxPdi37TBjnh9y0vtLPZLOnM+W4nK4+fz5n+g3sgs2Tys16oZTo+6JvdKSs3PZdTSV8CoaSBAIrJq1wnPqbp09O5N5/saeBAb7IERxjag9u5IxDImUcDQ5i5h64TRsUYMRr39PXOJxVuw8SO1qIXRvUj4B+0xkZxeSnVWIy62TnJJFUZETb+8TyeOPfTmfQ1k5CENDChOlKSZ2g6nzNuFy6Wzfk8zO/UdpFlt26vWtr24nbnsSNetU4baPZxJ/LAOL2cTRzNyz6rNyeZISdFWHqUIqYFKUy0yDtjHs2RCPNCS1mxQXdKzTLBqz1YQmzIRGBnN395dxF9lJ3HsUm5eNnsPbs2TWBnasicdsMWH1tGIN9uXNu74mPz2PP1fuZfuKOGyeVmI7xxJZM5SmbWqxatEOFs5Yj6PIxZsPT+WDuQ/g6WXlrUk3V9i3iQ9PY+3vO0tXc5lMGt6+nmiaxtgXygZK+5LSsFnM1KhSNsncL8gHm4cVk0nDN9Abi638n7GMgkL6f/wthjCIDgzk6WFjSChIoEeVHhX265UnfmTz2ng0TePJV4aAIWnZuS433taJaV+vwuphIjs9D6NOFTRNw2Y1IzSBBGyWyv+M2oucWKzmMpvtViQ01JceVzVg2R9xXHtNszLBEoDd5S4O3JAITRSv/ZaSatUCCQ/wZff+Y5hMguoV7BdntVlo2rp4RPHF4b0Y8+oPGJlFzH5hIf3nN1DTcopymkRlG2teilq1aiU3bdp0sbuhKJc0KSVblu7EL9CHOn8rInlwRyJJB1N5/e6vMXQdaUiwF6+QM1s0zD5eOJw6Ng8rwe3rkpqRj6PQiSkpE2F3YKI4J0Z4e2IODeDZd0agIXlh7FfoukHTdrV5+asx2Aud2DwtFf5HfGOb58nJLAAp0dxuegxuxf1vDi9d2v+XGX9s452ZKwCYOK4/HRtGl/k+LSWLXevjad4lFv9gn3LX2ZFyjMHzvsPlqaM5BXtHP4xFq7yO1NCr/kdeThFWmxmZ78AioPfQ1tRpVZNJr/+Cw+5GuNy0alCNV74bR3puAVOWbiHM24sNUzbjcug89cb1VIsKLj3n7O/W8NkbvxIQ5M0Hs8YTeBqbEVcmKT2b9+euJjE+nZStqdSPqcqDE3rjb7PhH+TNcy/PZsuaeKJrhPDhp6PLVGT/u2OJmYzq8TqC4pjr1al30qLl+d+bUPn3hBCbpZStLtT1ohv5yqd/anZBrjWm3qoLem9nS427KcplRghByx6NywRLALUaV2f32n0Ybh0QCCFK82RcdheOnHza92lC/9FdScsswF7kAgHSJPh77KMbxQngk1/4iabtavPYOyMY+VBfHp90M28/PYvr2rzAhBGf4Hbp5fp26wN9i89lGEi3m2rRIeWCJYA1OxNwZRfhtfgAH479kszUnDLfh1YLpNt1rSsMlgBiwoJxeekgQPMQHMnLLtdG1w1270omO7uA2+7pic1iQuTbcek6BSaNuD8PExTsgzQAKZG6wZ+r9uKwOwnx82bCoM4U7Ehj385kDuw9yrcfLS1z/tnfrsbQDQry7WxZE19hP09XZEgAr4++hh9eHcn7bwxnwj29+OaV+dzRZyIPDPuQLav2I3VJSko2hw4dB8BtGBzIyMThLh7Ny0zLwy/QC2nSigeozBopaWpaTlFOl5qSU5QryPxPFmNoJjSLhXrNavDE53fwzfMz2bxkJyMeH8jAcb0ACJ+3lc8/XYqvzUx2ShZ4Wrnmpo7Y7S5+nbcNHC5S4pI4nphJ+16NgOLRp99+3gJAwr5UjhxMo1a9qmWu33NwSz57Yir2AgfCpNFjaJtyfczLKeS2Pq3Y/e06TBl2crId/Pj+b9z58rDTvk9Ps4WekTEsTz5IvcBQonwDyrV5+fmf2bj+ACazxhff3skfP25gx4aDCACLmeY9GtKiTS2eenkwH700h4yDObTv0wSbx4k8qOiYKlgsZoSAmnXLbr3SY0AzfvxiBWazCU9/T4YPfZ+AAC9efeMGAoMqDvT+affR42w4nESf2DqE+/sye94WPvlsGUjQk7Mxu3QS9qdSr21N4pOyCA72oUZ0KFJKRkydwa7UVCL9/RltRDNl0mJsHhZM3lbcBggBod6ep+6EoiiACpgU5YpSv01tdm5PASE4uOcoFquFu968GS9/rzJ5Nv36N6Nf/2ZIKdm37QgBIb5UiQxCSsnBHUc4FJdCWFQwIX8rYqlpGq0612Xb+oMEhfkSUSO43PXdLh13Sf6SZhLY/rF8/oOnZ7Jg6hrCo0K4dVhHZr73GwCRMSffB64in3UbQrq9kGAPL7QKpgf/3JKA3e7Cw9PCwQPH8fC2lUwjSkxWE+271QegfZf6tPutHvm5Rfj4lQ0weg1oTnCoLy6XTpvOZbebueXeXvQd2hofP0+eefJH0o7nkpmZz6IF27nxppNXTQdIyy9g+NfT0Q2DL9duZsUDY9i5KwmHw40Q4Bfqi6MgEwn42ax8O/VugoK9MZtNFDid/Hn0KFJKEnNymLdiE26XjqYJYptGsW/vMby8rdRvFHnKfihXFolK+q6MCpgU5QqQlZrN7rX7uGZcb3be803xhwI+fXIaK3/eSGSdqry//NlyAYwQgnrNapR5P3HuwyQfSCW8Zijmf+wv9+JHt3AsKYuQqv5YreX/vHj5ePDg+yOZ98Vy+t7SCb9/jLQs/nE9hi7JSM2hSaf61Kwfgcliom3vxqVt8nMKeeqmjzmWmMEj795Cq+6xFd6zEIJQz8o3yR05uguTP15CrdphNG0WRexbw5n1+XIKilz0ub4NMfXCy5zL9x978/2lRfuYSq8RGl48stWwUSR74lKQUlKnbtVK2/9drt2BlODSDTILi5BScvPwDuzecxRhEdw8oBUfPTsbgA49GhBWxa/0WG+rlf716zE3bg+tIyMYen0En74yDw8vK4+9Pgy3LgkK8cHDs+JVg4qilKeSvhXlMmcvdHBz9F047S5cLh3DyxuT1cqgMd2Y/cEiDN3A5mXljV8epd4ZJADPn7aehTM3MvCWDvQc2OKc9PWth39g+ZwtBFfx56OFj+Dl41GuzcKpa/n42Vk47S6i6lbl0yVPnJNrny4pJTvjkvH2tlGrgmrblR2zdcthfP08iKlTNmDasekQGWl5dOrZsFwA+umqDfwWF8/dndvQo35xYPbNui288ftKvG1WJve/liCLrbSI5j8VOJxggLenlcJ8BzYPc4U5Y8ql60Infddo5Csfm3VhLndP/eX/qaRvNcKkKJe5nLRcCvPsuBzFSdxewVYQ0KJbA3as3svBbYcJrhpAjdiI0mO2rz/AvClr6HpNMzr1bVzunFnpeXzy2i+4XTqTnvmJjj0b4ul99pvOPvjmcEY+3A//IB8sFYxQAcQ0ikQI8PCy0qRd5aM758uUH9fx3Y/rkBJeeWoQbZrXPOUxQgiat4wu9/mWtfG8cP/3AMydsYGo2HBi29ekekQQDWpV5c5ObbizU9k8rx82bcdtGDhcbvYVZhMe5MtLP8/mugax9KtXr7Rd8vFsbn3+e4ocLh69tQdFR3LZuO4AI2/vStMWNVAU5cyogElRLnNhUSFcO64XS39YxaB7r6Zeu3q4nW6eHf4BUkrMHjaen3YfHl7FAY/u1nnm9i9wOtysXxpHbPMogv9RfdvD04qlZDTEajPx0KjPyMsr4qmJwyvMi/n125Xs3niQG+7rQ/U6lU9JCSEIqVo2QVtKicPuKp0+imlcnQ8XPUrGsRwatT27gpH/xp87ErE73GiaIG7fsdMKmCqTfDgDKSVOh5vd2xLZlJ6Bc9deLFYzr9x1DV1alL+/4a0a8+bvq7CaTbSuEUG/b7/DqeusSjhMm8hIQryLpyFXbTuEw+nGrRtMmb8R++Z0HA4Xzz81k58XPASA0+1m2ppteFgtDGnTCJOmcleudBKBoTbfrZAKmBTlMieE4O53buPud05sePvFM9MxpEQIgaEbxbWRThxQmgAuBGgVFF309Lbx7vS72bxqH6sX7WDXuv1ICROf/JHP5z5Qpu3ujQeY/NwsHEVO4jYd5Iu1L5Q7X1ZaHu8+OhVN05jw5o34l+Q2OewuJtwymYT4VAYMb8ddj/YDIKJmGBE1K56GOh+cTjffffg7eTlF3DiwFYeOpOPr40G/no3O6rw9+jdj48q9HDmURlqBE7dNwwBcbp09CakVBkyj2rVkYJMGeFktaEJg1jScul7681/aNY7mk1mrcZkNjvk4KKpnIniPjt/fEtffXbCaaWu3IYTA6dK5uXPzs7ofRbmcqYBJUa5ALXs05qePi0sMNO0YS6O/TW2ZTBpv/DCO32Zuon2vhpUWXIyqHUZU7TAWz1hfsvUIeHtYyrTZ8McevvjfPNxuvTj4qmQE49u3fmXT8j0IAdPeX8ydz10HwN6dSaQkZiIlzP9xI+Meufq0KlO73Dpmk3bOqljPn7GBOd+vQ9cNigqd/PzN3efkvF7eNl788FaklMz7eQsbth1iW04m/r6eDL6qSaXHBXqdCHqm3XgDc+Pi6BUTg6dmJje3CD8/T2pUDeTXSXcy6tMZJC5NwNsN9XrH8Ozoq0uP/SP+EI6S301mYeE5uSflv09XJRorpAImRbkCNevWgK+3vYHL4aJarfJL9mMaRhLT8PSWnN/38lBeGPslHt5Wnnn/ljLfvTrhBxx2FyYvTzp1q8eoJwZUeI7Q8IDSKb6QkpVlR5Myef7BqTjsLoQQuPPt3HnVa7w778FyyeBSSnJzi/D19WTKks1Mmr2KsAAfvn98BEG+Fa9uOxMWiwkECE1Umlt1NoQQDBjckgGDW57RcW6XTv3gYBp260pSYiY3DJiEw+Hingl9uHZQCzxtFjwP2/FJcgJgTiokNKx4NZ2Ukv2OLDQrmDVBizqR7DhyjKpeXsz+chX+wT4MGdXplNu6KMqVQgVMinKFCo0IIuNoNg/3egXDMHj867sJq16+dlJFDsWl8OSIDwF49fu7mbrxBeK3H2HqxF9o37cprXoUT1X5B3mTmZaLyWRhzAtDCa3qX+H5bhjfi9BqAWiaRteBzXE53WxYtR+nw42hCaRZoOW5SDuaxc4NB2hzVcPSY6WUPPnUTDZuPEhU/TD+NLJBQnpuAeviDtOvTcVlB87E1UNaYS9ykp9bxLDRXU7rmL3JaejSoEHkmdeQOh1bNx7imfunYDJpvDn5NnbuTMbpdON2G/z84wY8zRptutTDYdKRAoQE198WyAkh6Fw7mnVHEgn09OJ/M5eRmpNH8NZ8TEmFmM0avv6eXD209Xnpv3JpkoCh6jBVSAVMinIFm/bmXHat3QdSMnH8Vxw8lEn12mG8OuWuk656m/35crLT8gD4+fPlTJg4nEcHTqQwz87iqWv4cuPLhIQHMvH7caxcuJ2GLaMrDZageBqw17C2pCZncXO318nPLeL2h6/GbDbhMAkQAiPMH3NhEXWbRJU5tqjIyYYNB4uLbGZkQKgJ6QLdkDSrHVHJFc+MyWxi6KjOp91+0da9PD21uOjmE4O7M7jt2eU6VWTu9PU4HcVFQH//ZSsDhrfjmy/+wJCSYwfTeO/FOQSH+RLcN4pDjbLQdKjXpgbDr32HKuH+vPTWjXw2dBCHMrPwMlvo++oX6IakyO7EWxbvWm/oxjnvt6L8V6kwUlGuYNXrhmOxWbB4WDh4MIOC3CIS9hxlw9LdJz2uZbf6WD0sWD0stOhSvJT9r/9cpZTFG/sCoVX9GTyqM/UaVy9zfFGhgw0r95GVkV/m8zVLdlOQZ0d3G/z46TLChRNzSd0gs9XMO3MfIuAfOVWenlZaNK+B2axROyAQs5cZwwPuHdaRasF+XAybDiTjcLmxu9xs2J94xse/8f0SOt31Hq98s7j0s/TUHJIPp5e+7351YyxWM1abmQ7dY4mIDGLGnAm8PvFGzLqBw+4i5UgmR6bvo2P16jz2UH92LthHRnoeu7cncku/d0g7mk3t4CDC/X3p07Qumgla3tCMPoNbMmx0Z/oM/s+UyFHOGYF+gV7/NWqESVGuYP3v7EloZDCGbrD2j72sXrgdJNRucPKRmS79WxBdvxpSSmrULa6I/cqPE5j72VI6DWhJaETQSY+fcOvnHEvJxmI18c28CXj7FuckNW9fuzRAyklKIzMrF0uwH+2Gd6J7r0ZERpWdMlx7OJFP12+kWg0vQo/7U7VuMFtcBbgNwfbcNKB4j7vPX55L3JZDjHl6EA1a/fsyAH/Jzyti19ZE6jeKwD+wfDXxmzo3Z8XuQ+iGweirzmxKKzu/iFnLt6Mbknmrd3HnoA4ci0/jyTu/AuDOR6/hmuvb0LlHQxo0icJk1ggo6YPVZqZJy2h6D2rBsgXbKShy4rC7MJLtDGzagAOx8RzanwqAPa+I1Ut2M/iWjhxOzWTpgYMITxPWEBv3j+17lk9IUS4/KmBSlCuYEIL21xZX6W53bQv63NCOKpFBhEUEnuJIiPpHPaWGbWNo2LZsIcnUpAxSEzOp0ySqdIpP1w0OH0xDSolhmFn280aqR4fQtEss0XWq8u3Sx0iKP8ZjV7+GLsCdnc+wwa1o0Komqdn5rI47ROs61YkM9mfsT7OxF7qossGFuQiOHc+BTh5Ii0AvGeX6c9U+fv1hDY5CJw/f8hGvzXuApjHV/vUzy8otZPSASRTm2jFpGl/Pu5+w8LK1o6LDAln0zO3/6vy+XjaqBvuRmVtIgI8HAd4eLFx/AJdTR0rJqsU7ueb64mKWwaHlVzAKIbjnyf7cOLYbj975DRnHsjmyJYE7er3B7U9cy5KZm9BdOsKQNCupYzX+1R8p9HEhTbAk7sC/6rdyeVA5TJVTT0VRFKA4j6hx29qVBkurF+/i6TFfsnrxrtM6309f/MGo9i/y2ND3uL3zixzadwzDMDCZNG67twc+fh5EVfNn8sPf/Z+9846uovra8HNmbkvvoYSEFmpC71IEkaqIiIgKgmLBhh07KioqKopgQUERRCmCdBWQIj30kgQIIaGF9N5umznfHxcDgaBg+9TfPGvdxc2dMzNnDmvlvtln73czbvB7rF+wDQC/AC+atKlLlyFXgc2G9PFh4afr0HSdW9+dw1vfbWDou19TanfibTKjuCCnmZm8piYsZhMjO7aifZJKxsQ9LJi+gaBQPzS3J/HZqQomzF7zGzP/dca8u5DSQjtIj/hbPm/HH7rehaiKwjcv38H7j9zI3PEjMJlUelzXAj9/G4pbpyy/rLJv1nkknsjg7Te/Y/2KvVgtJmJbRuJlNVFaYif9VB4pCWlUrxaASRF0vKYJ9RpW91QYni5BcUqQMCjmjyfJGxj8FzEEk4GBwW9SWmxn4lNz2b35KBOfnEtpsf03z1mzcBfoOhLI1RUeHjmd5x+eA8DQu7qy6OfnqOGj4Chz4HK6SU2onOvTc2hHrP6+WL2tdOrdDKdbo7DMjsPlxuF0U+pw8nbfPphQQBU4/QXWQju31W9C4a5MigvK+HLyaiKjqxHesjZ6gA8y2J/a4YFVzPbyySgsobyaFV0FzILY1lEXjTmRnsfQZ77k9udmMXHxBhbGHeRK+nb6eFlo2zgSXy9PVC6idihtOtQHXefowdN8/NbyirEzP13PkP6TePujH3jozo9ZN3Mb74ydx6Rxi/hpxX7yi+0oPlYURbB4+noiawbw/IyRVO9ZjyMnsxBCMPb+XjTJ8+HeiFieG9jjD62Pwb+ff0oOkxDCJoTYIYTYL4RIEEJc5HorhLAKIeYLIZKFEHFCiDp/wZIAxpacgYHBZaCqCqqq4kJDMSmopnN/a6UkZ7Jq5X46dG5A6/Pygwbd0433nzwNUiLMKm6Xxt4dKbjdWkWe0shxgzmdlI7V28rAB3pXumebbo35bN2zuN06EXXDSCmcS/9u29m6si7qMY1tqxIZMKQdsdXC2Z+Rif9pF9VD/QgK88Nqs6CoCsFhfiDg5Jki8PXCjMJ9fTr8obUYf08/PljwM5H+ftzdux1NW1wsmGYs3s7xM3kAHMnPRYSY8baY6d+q8e++b3hEEGfT6lkfl8yjZQ5OpWQz7+N1AKyatwPVoYEOuiJB01EUgVAUelzXgm0Ld1BaUMb+rUlsKMylzN/MnB93s2LSfVzfqznX97q0UaaBwf8TDuAaKWWJEMIMbBZC/CCl3H7emLuBfClltBDiVmAiMPSvmIwhmAwMDCrIyy7GP9Abk7lyR3ubt4W3v7qPLavj6dw7tqKvm65LnnhgNqWlDlYsFFgUKAAAIABJREFU2cOsBQ8RejavpvfgdnTr3wJFCJ55aDaHDpzi2utaVIgl8FTpTYubcMn5VDvPF+pE0SJqq2ns+c6MrinMeWk+IVaVOXffwpFDZ0hJPEO3Ps3w9rEybfljHDlwiubt62E2m+jZJ5Z1q+Np2KgG9a6wpYqUEl3TUc/Ou3OzunRudk4YHj6ZxYL1++jSrC49WkUjhKBpvWps3JOMw6WhmyUqUOZ0XdF9AXafTEPTJe1qR3Dzfd2Zu3w3bl1HDbQhgePJWaBAWZgVZ7CK70kd6Sdo1bU+Y9+8he+/242Ukhtv60hOUjqH9xwHwGVVUAuclIXCgOc/5+sXhxEZHsjp1GySjqSjWEx06dao0v+Vwf8GUop/TA6T9IRlfymlNZ99XRiqHQi8cvb9QuBDIYSQVxLSvUzEb11TCGEDNgJWPAJroZTy5UuMHYxnwu2klLuEEMOAsecNaQ60llLuE0JsAGoA5WeP9ZZSZv3aXNq2bSt37dr1209lYGBwxUwdt4jVi3YRFObHJysex8fP65JjC3KLiVsTT+PWdXho9CwcDjcWi4mZ8x4gvAq/pV8azFovaJ1yJRwvWsR333zE2hcjcNsVhKpi87bQvm8Lnp/5wG+eX17mxOZlvqJ2KfZyJ08M/ZjjR9K57aGe3PFI74vG9Bg9BZGQj9tXkNnFh6HtWzK+1zUs+n4Ps2dtpqSGyrVXN2HswO6Y1csXIEv2J/Ly92sRwFM9uzK8fUu27Ezmyx92cn3XGAb2aE5JUTm3jfyE5GYgBShuSeTyfBZtfoG0U3nUqR9eseZOu4s9m45Qu2F15szbyrcHjqD5mFCAJ2/tTnCZZPK4RWh2DcWlEdujCe9MH3XZ8zX4axBC7JZS/m3+DhExgfLBBV3+lnu9GLvyN59NCKECu4Fo4CMp5TMXHI8H+kopT5/9+RjQQUqZc9HF/iCXE2G6nJAYQgg/4FEg7pfPpJRfA1+fPd4MWCKl3HfeacOklIYCMjD4f+TU0QxWzNrImsX7cLs0igvKOBqfRstO0Zc85/Eb3iMvswhFVXju01H8tCqertc0rVIsgady6/eKJZfu4GDBKrzUUEaPXIRjx1zitxylKL8Ue5mT1PjTl3UdL2/LFd/70N6TnDmRg5SweOamKgWTKbkIpdiNuQT8j9j5xnyADSsO0ajQQvnpYmyZKo2v8r0isQRw4EwGTpcbefY9wMcbd5JcmMOBlT/TplkUtUIDad6lHkeLUkAR6Cao1yGKR++aQXZmEdVqBDBt3oOoqoLFZqZjL4+BZotGEfy4IZ4Cm4LZDnsST7Ck9Bje7b2p/lM+SEjceOSK18vA4AoJFUKcrwE+k1J+dv4AKaUGtBRCBAKLhRCxUsr4v3WWZ/lNwXSZITGA1/DsHY6t4hjAbcC83zFHAwODv5Bnh0whL7MQxduGYjYRGOJLw2aV+8ilJJzG289G9ahQpJRkp+WjuXUsNjO1agTywCO9KC4qR0r5pzW8/YU16R9xqGgDAoV+NR/nuS8exFHuZMLIjzmVlMGY90f8qfc7n9PHs3G4dDCpNGldp8oxPTs34eeVB9ClRPc1odqhtNxFiWrCZjMjpaRu/SvbBgQY1akNO46fRtN17u/SnuysIo6cyMSFxMtiIiO/hFqhgYy9pzc7J87mjCwjQvUhw+Si9HgOAjh9IpeJY+eReiSDB14YQOurGgBw7Q2tcNhdrNp8hKScHHb8mIR3HYEjxOTpoiwEDZtH/ur8DP67aH/fllzO5UbPpJQFQoj1QF/gfMGUBkQCp4UQJiAAyP3TZ8pl5jBVERKLu+B4ayBSSrlSCHEpwTQUz17j+cwUQmjAIuD1v2LP0cDA4NdxuzQATLrGhNkP0qRN3UoNVxd+tJqv3lqKlPDGwseI7diAxycNY+7kH7mqX3PKXRpjbv4QgFtGdmH4fd3/lHlN3bGd6Xt3MaTdEVzpgtTPg9Ba76bxC92well4dcFjf8p9fo3Nqz0WCkJAk9a1qxzz1Lgbad2mLiabiXQfjWlT1mBLKaJxn2b0v68XQUE+RDeqXuW5v0atwABWPHBODE54cRE+R8sojrQSHRxA67NtX3Lt5ZywlQOC3JQ82F+GkCCFoHmbKHb+nIS93Mn7Lyziq/XPAqAoCgNu7UhSViGJqVkgweQEWc2HV7+7GXdGOc061r/iORsY/JkIIcIA11mx5AX0whOYOZ9lwEhgG3AzsO6v0hKXJSOllJqUsiVQC2gvhKhojCSEUID3gCcvdb4QogNQdkEYbZiUshnQ9ezrjkuce58QYpcQYld2dvblTNfAwOAKeP2bh+h6Q2seemsoJ9MKuHPQFD6dvLqiDD5u1QEc5S7cLo34bUcB6Dm4HTM2jWPU8wNJPHAK7WwrjrhNl7+N82u/01yaxvtxWyh2Ovh+UQ12jo4kZ7sPm6afYPf6i9u2FOeX8sboz3n9nukUXtBu5Y9ww7COKKqC2Wqma+9mVY4xmVV6D2zNNX2ac3vnlgQl5GMqcLBn6X7i41J4/fFveOLFOUxYs4H8svIqr/FrSCl5Z+x8ti/Zg0+mnYgkJ8NaxaIonkjentTTnpi/BHORp0oOCcGNQnhwbH+klFhtZiLqhgGguTXG3f05NzZ7gVAEZrsbpdhB+N5Cvu17E0EWb96asJxb+73Hji1HL5pPid1xRRYJBv8uJKAj/pbXZVADWC+EOADsBNZIKVcIIV4VQtxwdsznQIgQIhl4Anj2r1gXuMIquUuExPyAWGDD2VB8dWCZEOKG8/KTbgXmXnCttLP/FgshvgHaA7OruOdnwGfgSfq+kvkaGBhUTV5mIWeOZ9OkTV0atIji+U/vRtcl1131GromWbFwJ/0GtiKyTih+NUMRQVl4mwU9bvaU5B/ee4LP31pO41a1GTiqG8vmxZGfV8KI+6/5zXsXZBfxWI9XyTqVyxOf3M21t1edYBodHEL27pP4f5vryWgW4NZ0vHxtFWOK8ko4vDuF7avj2fr9PqSUBIT4MmbibX/KOiUcSocgLzQhiE84Te0G1X7zHL8AbwrzPKLt21mb0DVJeno+Z5QsMoqKmTp4QMXY+MxM1qek0LtBAxqFhlZ5vRPHsti06qAnEujSeHTCzfTse068dW5UF5/lKuXSjdvHjHeAQmi4H+PfGUbNyGDenXMfJ5KzuKpnUwCSDp7m4M5UHHYXC6etJ8jfi8K8UsxWEyah8N3S3ZSXuxDA8oW7aN+5QcW9Hv9mBWsSkmkeWZ3Z996CSf1nVFMZ/DeRUh4AWlXx+UvnvbcDQ/6O+fymYPqtkJiUshAIPW/8BuCpX8TS2QjULXiiSL+MMQGBUsqcs4nk1wM//SlPZGBg8Ktknc7jgatfQ9d12vaM5YUZ9wKebadq1QPJyy1BVRUCg33ZuCae7esPgRCUaRAU7mlm++aY2WSl5ZO07wQhYX7MXProZecu7fhxP3kZBWhuja/fWlpJMLk0jWFzv2XvyTRi551BOVkAFjOYPQnjrbs1Iaa9Z6uouKCUO1s/T1leMdJsQjGbkcCOH/bB7xBMx1OymfTmckLD/BhxVzdeun8W+bklaBYVxaKSl/PbkSshBO8teIifV+4npm1dXhs7n+LiclxSR7cINCmRUuJwazjcbobOm4/d5WbKxq183rE/3a6u7LJd6nDywPzlaOiYLSqRtUPp2bdZpbWuGeTPpnGjWbhsN6VR5dw6pSPB5/W3i24aQfR5vQFr1Q3DYjUhBDSIrcUDLw1k2VdbadapPk9NWU5ufgnUsOGb46L3gBYV5zlcblbFeyJOiWeyOJ1fSJ3Q326hY/BvQ/ydOUz/Ki4nwlQDmHU2j0kBFvwSEgN2SSmX/cb53YBTUsqU8z6zAqvOiiUVj1iafuXTNzAwuFJSE9PQdYm9zMnBrUkVnwshmPLlPezcmkzT5pGknczl7XGLkWd7sklJxRd1YKgfOWl5OMudTH91MXnp+Yx6cdBl3b9px2gUVWD1stB5QJtKx45k53AoKxvrmXJK04tQhEA6XaiqYPizA7n1kT4VY8+kZGMvObvF5XShax5bx6yUEtwuNybzldnMTZn0A4cTz2CxqDjyy8nJLEJKiZ+/jRZdGnDTrZdneFmtVjC3jO6BlJJXPrid5MPpHLKWUmrR6RxWi25jplLmdBKUZMfRzwtMAl3A7C82VhJMTrebccvWkH2iEKV5MLYcJ2Wh3uzff4K6UaEcSc9lwU/76NepCT3bN2T44I7MfO9H3nt6Afc+05/a0dVwudw47e6K5sYAfoHeTF81lgXr97IvL5t0nDz6+mCOpGaSP7cUl1sHm8qsxaMJDT9X9WgxqXSKjmJXahpRwYHUDPS/ovU1MPi3czlVcr8ZErvg8+4X/LwB6HjBZ6VA5d+UBgYGfwstuzaiXmwtkhPPENqiLrM+Wcfw+7qjqgr+gd707O9xfD6ckIZiNqHpEiEgonZIhaHlq1/cw+3tXgKpoEvJ9tUHL1sw1WpQgy/jJ1GQXUTtJhGVjkUFBBCcXIrYkoXiliAlvv5e9Lm9E9+8NI9t325l4qrn8fKxEd08ktpNa3lsBXy8IL/Qo+oUwdDIB5iy+TUioi8/2bpmRBBJh84AENumNvFxnia0w+/rzsDhV132dX7hw4krWbVsL94+Vj6b/yCBwb50v/MD3E43FgnZTayYyhTQdcKTNTp2a1Dp/C937GX99iRshYAUmIpdZKWm8szu6ZgcDvI7R+DWJdsPHKdFwwgSth9jyZytaE6NnKxCXp12Jw8Om0ZZqYPRT/Rl4NBzgs9lgmlxe3C6NbYfPcW2Nx6kfmQoNg0cUmLLLSduTQLXDTv33EII7urVlq7ZdRnarBmnswqIT0nn6pb1CfC9tGeXwb8LT/PdP7fS9b+C4fRtYPA/htXLwqTlT/HoXTM4En+ak6fyqRMdztW9YiuN69yjMds3JXHscDr9rmtOvyHtEEJQmFvCjPGLsKqCcrcOQjD00b6Xff/049ms+Hw9MR0bUKepx76g1F3C/oI9LLxvO95bTnh8S8wmT+RICBZO/gF0naQ9KYy5+lXGff0wh3Yc40xKFopZ9bQMCQrEpkrKM3IpL5VsXb6bIY9fd9nzenRsf/y9rWz8fj9njufw0aKHyS8u47S0czqvkLKsMrIyCunUpWGl1jCX4ufVCbicGg7VzeGENDp2bYTNasLhdCMFuPwVhAtAYeSIzozqWzmCpQgB5rNfXCq4fE2o5SbUUjeaS0d36yA8SdyKgF1ZGbg0HSEgV3Owa1syDrsLza2zbH5cJcFkUpWKaOEv702qSrfQILasjkdVlAo3919YfzyFB1YtRwDxGZnErUhGSsmcVbtZ8NrIy15nA4N/K4ZgMjD4H8XLy4KieL74L/xyBLBYTDz3+k0XfT5j/CLWL9qBUATte8QwfOz1NGjm8ezJTsvj24/XUD+mFn1u71zlfZ+/6T0yjuew4vP1vL/6eSIaVGfcnhcoNxWRutUKmu75M1cRSAHlTt2Tw+R0oGs6p1KymPrk1/iH+OCwe9qNKFLH7OtNv5vbsGzK95jMKu16X1lvNLNZ5ecV+8jNKmLzmnhEA18WrN2Pd4aGK0glMFNDEYJuPZvy1IueAp0VS/awYV0itw6/irbt61W63o23deDr6T8TFOJDregwkk5kMeGh6/h8/lZaNI/kk8S9OF2eFqSKr5mc7GKeHT2LrPQCnhp/IyOubYXd7SJhfxr7dp7CGe6FM8RG0O5sVFUhKD6H0iAbviVuMo9lE9IwhLwugaiFLhpf35jWHepjtpjQdUn/wW05XVhIbnk58ngJr42ZQwNvC7Gj2jD42lYVppqPTLiFWvWqERzuT48bW1d6ntTCAnRd4tQ1jmbmIKXE7nRzJqfwitbZ4J+PdnkF9P9zGILJwOB/lOfeGMySuXFERIVUqoS6kIK8Uo4mphHTqjbePlZs3lYURUEoglZdGlaIJc2tcX/viZSVOFAFhEeG0Krrxc1mnXbX2bJ0gcvhYvjMeRxQq1O7uoolvBD3ibPFsKoCLjeoLkxB/ii6htR1dKFw+kQuj43pw8GtR7HYzLwy52Ei6ofj7WtjyMN9sHpb8PH3vuI1iagdQklROVLC3MQE/NM0hARLtoZ+tr1LcpLHdftMWj6fTFmD0+nmUPxplv/0TEWpP8Dwe7sz5I7OZBWUcMdLc9B1iaVEQzlTzrFNx3nlxT58nhhPzUB/QvLgjgGTkU6PJ9bsT9bT5doYrvauQa9+dbhjx1wEIFWY/MOjRIYF8dywjzmVnAXC05j39pBaZJeUsW/FYZJnHWFBppW5Pz5FebmTn3Yc5oa3ZuCoYaLZTw7KSjwvU1IxjUeeM9X08ffijserjhYOaRLDppPHySwr4c1r+vC9NYGt8ak8MKhqYWxg8F/DEEwGBv8jnEnNwuZjJfhsIm9AoA8jH6jaBiA7vQCnw0VItQBGD56Kw+4mNNyP6Use4e6XbiK4mj9ePlYGjOpecU5y/GnKy5wgBBrSs2VUBePnPcLcd1fQomtjAhqFsTsuC12aSUkIJfpEHvJs/kT1iCCad2mE5tboPbI7EfWrMXbQ+2SeyqMwr4Txt39I+97NeOWbhytVjQVXD/zdazR+6nA2r0mgToPqPL/yB3Jcp5BWK17eFmKjwsg4U8iYJ/sBYLV6XLEVReDlZeX8IkGXpvHi5z8Sn5pOrxbR6BLsTjdOReKrS9Al819ewfJtnrac994+jYrVUsBc34+Hhk0j5XgObm8FdytfZKkOwSaqVQ/Ex9vGW988yLezN/P9tiTe/2I9Lz11Pfe1bcMtEzajaTorl+/ljju7sHP7MWa8s5ogTSOviYnscBVLsifda++htMteGz+LlZkDzkUcm94eDvT43Wtt8M9EIowcpktgCCYDg/8Bln6+gS9eW4xQBBMXPUajVnUqjm1ddYDPJyyjeadoxrx5CwfiUnj53pmA5PYxvSgrdeJyukk7mYfLpWHztnDb4/0vukfNumF4+3lhL3UQVjOQ1t2bXDQGILp5FONmPwiA3e3C32qlxOHA260iEBWmiK4yB09+cg8A6xbvYv2yvTRoEUVuRiEupxs0jR0/7mP3+kTaXhPzp6yTl7eVXgNbs23lHuwTt2HTJTUaRxAe4sue1Ey8/b0ICPMFICTUj7cnD2Pv7lS694ypJNp2HDrJ5vhUyh0ulsUdokaoP6cy8unTrB5bju1Fljow+5+rXLu2bzNmTt+A2wSZ7axQR0NszsZtU0jv5I1qglq1g3j1up4EeXsSrL19bfy4P5X0wlLy96SyOS6Zqzs2JDTMj8LCMpAw/vmF1IwIQrp1hFsSmKJx0/0dWXFiO0JVaHPVpSOLBgYGlTEEk4HBvxQpJakHTxIQ5k9IjV/3w9m4bA9OhxtFVdi/OamSYHr/yW8oKSwnL7OQawa1Zc/mJJxOF0hI2JVK9z6xrJu7FbMCcasP0vX6i4pmAY9h4xc/v8DJoxk0aln7V32ZpJQcyD9NoMWb1bfeyY7003SKiGJ3nV3MeGE+mktj1Gu3sP7b7ezbfow1i3cjdUlo9QDuHz+YDx+fhdR1VG8rPv5/foXW7p8O4rS7QFVJP5LOmaQMtGoBFNYJ56f1idw5zLMNFdOsFjEX9N0DiAwLxOXSEJrEnl7MxNduqjC9XN8wgt2bjuA2m/nknR+46+GeDB3RmWZd6nLvimU47GWErC0mX4KpTMdcrOEMBPfaTMZ9NZNO3Rrx8rtDEUJQNyqU3LwSpISIGkGoJoXPZt7L3K+2MH/5TraUZ1L7ZBl16oZxPDkTpURnw+e7mTFrNFlZRTRvZvSLM7gY3chhqhJDMBkY/EuZOW4e372/AqEIpmydQN1mVfc6Axj6SG9eHzUdH38vut5QOZm3Zp0wTiSlIyWE1Qyi101tWb1wJw67iyH3dqckv4TN87diL3My7eVFlxRMAP5BPsS2/+0eZB8cWsdXydsw7yvj6TZ9uem6bgD0Ht6N3sO7oes6I2LGkpte4Ik4BfghFE8113Uju9KmRxNWfrmJpu3r0aRtvUveJ3FnCnGrD9J9UFvqNo245LgLuf7enmxeuovSUicS4Sm1tphQzSqtW1Ze5xP5Bdz57SIcmpvpNw0iplo4UdWCaJopOZFViE+xxr7tyQSG+vLa2PmUFtup26Aam1YlgPBs7Y16pBdN69Vkxe3DeGjA++Q6NVAUrFYTMeFhpDiKMWWUeIw5txylsKCMgEBvxj3en627UqgVEUyj+h5B5uNjpU27unyQsg/NDEdwMGNoP157ZJ5HNAtBRM0gImoappMGBleCIZgMDP6lbF26E0e5E4vNTPyWI78qmNr3jGVJ6vsIISoiP5knsnllyHu4nG6GPdKLdtc2o3pUCABzt3ts1oQQHD14inKbDentTXBU8J8y921ZxzAvycP/+2I+F98Q/KGN7oPbVxx3u7RzYglA01B0jeAgL3LSC6geFcrdL/2671NxfinP3TIFp93F8i9/5ttD76Ca1MuaX52mtZiXMhWnw8Wyz9YhFEHr/i3x8fMiPNSv0tiv9+3ndGEhEvh4exwfDfS0PrlzVHfeeXoB0qSQmFNA0fwdJO7z9N0rL3MiFACB2XLu1/CBuGOeYw430s+G26IQcUpSvisXuwCTxUTd+uHYy13cf+skigvLePrVmyrE0i80b1UbZamKpuuYTCphNQJ4+qWB7Np+jEG3tMfA4FJICZqRw1QlRtzNwOBfyshXbsFsMxMaEUyXQRd/CR7cfJin+73JgvdXAJ4O9edvky2c/D3H409x6sgZUvemUKdxzYpj5wurkyfzMHtbQQgKnX+8naPm1rhZj8HnuIbikEiXzvHE05XGWKxmbnt6AEKAMCn4+9tAlxzde5yvJv5WcwEPLpe7wqXc7dRI3JHM6M4v89qIT3CUOwHIzy7iwWsmMLzlcxzalYLL6eb9R77kyX5vkRJ/CovVzM1j+jD4od7UrRt+kVgCaFcrAqvJhM1k4qqoc1tc3a9vic/VdSmMDmDtzmTKkZjMKjYvM517NqHvoDZ07R3DkBHnqsyatauHxWpGWFTKavpQ4m8iLiOHMrebsggTAd1qMnbSzWzfeJiS4nLcbp35szZfNKfZW/bgEBq6kARJE/XCgknad5L1i3Yy58Of0PWqE/INDAwujRFhMjD4l9J1cEe6Du54yePjb/2A4vxSDu88RqvusTQ4L28JILpVHcw2MyBo2LruJa/TMCYCRRFYbWbaXhUNgMPuQtd1vLytVzzvl0ZMI3FnCsEmC8GNA/Dx92Lg6J4XjRvx/I1cf3cPsk7lcHjvCb6csBSA6rWrblJ7IcHhATwxeThrF+5g4N3d+ejpuZw4dIaM4zlsWrqLa2+9ijXztnMyKQPNrTHzjaX0GdqRDQt34Ch38t7DM/lwQ5UNDSrRq0E0i4bfhlPTaFb9nLP4zyv3oSVmYvUxIa2Srtc2oX3rOpSWOKgWEchj932JUAT6xJU8N37Q2Tn789Wm51m1+iBvf74WhEAqUF43gOI6JhKchTz39Y9MGNATVVUQFnGR4SjAyZPZIECaoCS9BJfTzcKZmwDYuTmJ08dziKoXftF5BgYGl8YQTAYG/1F8A30oLSpHIvGuIjG6z4irqVEnHM2t0bLHpavMIuuE8sWSR8jOKqJRTARHE9IYe9d0NLfOi+/fToerL/Za+jUObkvG5XRj87bw2NS7aNK2arF2JiWLfRsT2fXzEQ7vSuGaIR2IaV+PHoN/e0uprLgcRVHoPqgd3Qe1A2DVnM2kp2YDUKOORyw0aBmFalIwWVRi29dn57oEXJpEtZgJrenZfkyMS0ZRBI3bncvNcrk0Jr2xnJRjWTw6th8xFyRP52UXM+npBZ7nNCm89PVomkTXqDj+5MOzcbjcCAk7d6dUOhchiN99AquPiSKTRnGEwE9asEiB061hMZuoG12N2csfo7TEQc1aF2+TPtyvC+s2JlCkuCmNtNFhyqfEtqlOUWIe3r5Wwv+A9YLBfx/DVqBqDMFkYPAf5e0fn2Pt3C007dCAiAtyXADKSuyERoayZfkeigvL6Xpj20tWtoWE+xMS7mm2umn1QezlHoftFfPjrlgwDX2kN3Mnr6Jhy9o0aBF10fEda+NZOn09BzceQtc1NDx5Rz98tZn1326nbtNa1Iu5uDLtF3atOcj426egKApvLnuKph08pfNjPx7F4mk/IQQ0bF0HgFZdGzP5h6cpzi9FCMHiT9ciAauPlWc+u4fvv1jPtGe/AQmPfDCSLoPaY7aY2LrxCFs2HsFudzHpjRW88e6t+PrZ8D0rTE0mj7EngNViok2zys959EQW9iAFtVxyvK4kp6SUUF8fz/quP8SWjUkURUjym1iRCkSEhdAwSSE+LoVWYZ5xAYE+BAT6VLkGIcF+rPv4CZ5a+gMrDyfhcjqpeVNTnnm0MXWiq2HzvtjZ3cDA4NcxBJOBwX+UgBA/CgvKWbswjrqxkfgH+1YcS0lM48kb38dR7gKXCxXJ1u/3cvfLNxNWRcTifK7qGcPSb7ajazp9bmp7xfMa9ng/hj3er+Jnl9PNa/fMIGnfCe56fiAfPTPX47MkQZa7EDYFRVXQ3BrlJXY2LIr7VcH041cbcTncAKz/No6mHRqQl1nImGteIzezGKEqbF65j84D2tCxdzPqnm0AfOpoBlJKTBYTNWqH4uVrIzEuGUeZEyEEK7/cyPvPfktgqC+PTR2JlNJjXqlL7r1+MiaTwpT5DxJZLwz/IB/e+PJetv+UQPcBrSqaFgOkFxTj2zSInCPZlNayIN2Cr1bt5vHBnkrBsHB/pFsjIMmBO9JCcJ0gnunShVc/nY2m6axesoeR93YnMLhqsfQLqqrQP6YhPyV7mgj3adKAmAaXLgwwMIBfjCuN9OaqMASTgcF/AJfTzdpv4/AL9OGq/i0QQrDks7Ws/PJndE1H13Se+mhUxfid6xJwOtxIKZFSorvc/PzdLo4SvZf4AAAgAElEQVQdOMX0uNd+9V6Nm0cyd8NzaG4Nv4Arbz9yIfu3JHFw21HsZU6+eH0JqlnF5XSjmlXCqofTd0Q3CgpKWT59PYpFpUOfFr96vT7DuxL3wz7PltzNnoazW1fuJT+7GM5GfY7Gp5F8KJ15U1Yx/+BbHNmdimpSmLDgUZL2HqfHTZ5tvFueuI6EbUkIRSE7uwRd0yktslOUXsBbk4dx+lQuiz7dgMvpRggT+3ekEFkvDICYNnWIaVMHKSUZWYUE+HuhCeg7dSaB+0rRg1WkACFh7Z6jBET5EuRl48aWTahdzZ+Uw+lErCpk9NOdaVYjHJMq0HXw9bPh42fjZGo2a1YfoEfPGOpFV69yLa5tGM3bbbvjtLu4un6dP/x/ZWDwv4whmAwM/gN89vIiVs/bhhCCx5zD6D6oLVYvi6faTVGwXtBct1Of5sz/cA3lJQ44W0kmpaS0qPyy7uftc+XJ3pciMtqzXWjzttCwZW1GPnM9G5fuplO/FjRpcy6/6eYHe2G2mCpFyqqiXe/mTF73ElMfn8Xcd1dQq34YO1cfBF1HKCpSSk9fNl1iL3Uwd9JKvvt4NUh4eNIwulzfqiLnK6pRTWYeeAeAr95dybcf/YTJrNKsUzThEcHENo9EdetMHrcYb18bHbpX3p4sK7Ezc942Fn+/Fy+bmfGvDsKl6+gWKKmpYioXoIMMVHj3580oQnAs4Qyph87wS68V/wBvNi7fB3nFoEmq1fRH6jqjb/0I3amzYMZG5q99hsAqeuet++EAn0xYjgAKTxQy4hKtcAwMzsfTEtrgQgzBZGDwHyDrdB4uhwuTWSUnowCAAaO6U5xfysmkDG55rF+l8VENqhPdojYH446BakOVOiYkwmYlNTHtikwez6c4vxRvfy9UtXJIf8+uVHZsS6bvdS2pczYC8wvVIkP4ZO1znDyaScsuDbFYzURX4UAdcgWJyt+8vYwju1JRFMGetTqa042Xr43737uDjYt3sGfDYTCpqJpG0u5jOMo9227zPljF+09+g83LwswdrxEQck6c3fHUdfS97Sp8A73xOk8w9hrYmu79mqOaFBTl3HPP/XANc97/EV1VcNUPRVUVCtJL6Nu0AWucSSglGs4AT3m/X7gX7sxCTIrChi2HcJkVHNVs1KkZTJfeMezZdAQFsKqCiDphOB1udKeOkCA1SdKZbNr7X7zddup4Dm6XhqbrnDyb8H4+GVmF5OSVENOo5q86sxsYGBg+TAYG/wnuf30IzTo1oGOfFvS/owvgqeRa/vV2dm1J5qnBU9G0c9479jKHRyzh8VwKrxOGC4W87GK+mvT975rDh09/w60xTzO6y3jspY6Kz7Ozihj31HwWzY3j8QdmnTOjPI/qUaG07xmDxWr+Xfe+kJr1wrHYzKhmFSEEZqvHr6rvsM4k7z0Buo50OImsH859b96Gf1gAwsuLMyfzkLqkvMTOog9XXXTdsIigSmLpF8wWUyWxBLB81iZ0TccEmMqcBPh50aZFbd4bch2fXt2LmsvTCN2aS/VVmUy8rg9d6kQRUCgoO1RCScMAHNW8OK642Lg3hUat6tCwY31qxEYy6L4e+Pp7Uf/GhjgCVGxdq9Myuuqcrhtv60hsq9o0bBrBXWOurXTs2PEsRjz8BY++soA7J3zDhvhjv3/BDf4zSDxVcn/H69+GEWEyMPgPUKN2KBMXPVbps9yMQspLHbhdGk6HC5fDhXrWN8nqZaFe05qkJJ4BAR2uieHHOVtACJq2u3SrkQtx2l1s/3E/kQ2qs2beNnRNJzejkOSDJ4nt6KlOc7u1ivEul3apS/2p3PnSYOrG1MLL10ZI9QAO70yh21lzT19/G4V5JQigfZ9m1KgdRkmpyyPkhEBqOuhaJQfu38M1g9qy7MuNePla+eiL0SQlppGWmk1AiyhiO9QjoF41OJlLzxtaUzPAj0ZewRw9mAQueXY3TuBwukmIP8WEacs4HSHxTnPz2L1fsnjt03z88nDsz7uxmtRLRocCg3x4+9M7L/q8ILeEhMNnkBLyAiU5WVk88+X3zHz0FppGVq6oPJaYxsmjmXTqHYvNy6iuM/jfxRBMBgb/AVxON3s2HKJWdDUi6oVzJjWbR697B82l4eNvY+hD12I7z2RSCMGHK58iYVcqAUE+REZXo8eNbXCUO2nWMfqy7/v6yI85sPkIUkKbXs3YuTaBgBBf6sWe21KrUTOIx57pz+YNhxl8a4e/ZetHVRWuuaVTxc8NW58TgWPeu4MXb5oEQFDNYMxWExH1wshJL8BsNVGWVYBblyyc+iM3PnAtfpco3f8t7nn+Bgbe1Q2nw8UnE7/n4O7jALw1fRTvfLSaHFUg6ofRuFM0N3Z9A8Wi4oi1oWguAsoExQ4XilOy7Yd4TjYBhEJJlBn/FCcul4bVZsZmvvxf4blZRfgFePHpWytZtWgXQdUCqNk4lFxZAAIQUGJ3VjrnRFIGT978IQj4adEuJsy+73ethcG/CaNK7lIYgsnA4D/AG/dMZ9+mI0gp+XDt8+zecBin3YXUdapFBDHkgWsvOkcIQex50aRGLa+85Dw1IQ17mRObt5WeQzrw8Nu34x/sW6mMHqBXv+b06tf8yh/sL8A7wBvdakPqOtNfWkizjg14Z/FjvHLbh+Sk5VByNgneUe4i+eApWnW9Mp+p8zmRks2rj87B6fRE1qw2M+mnczl+IgcJoOnM+XwjbreOKqFnjUia3B7N/Olb8TrmyUUzh5oxlTrQrApCl4SYLfj62a5oHtPfW8XiuduRqqAwyoqvkJTklzL+jsGYa/ry0cottKgbQbsLtvbST+UiFIG9zMnJ5MzfvQ4GBv8FDMFkYPAfIGnfCexlDmzeFk4lZdC2RxO+enclUsL1I7qgaTqfvbaEYwlpjH7pRhpUkVT9e3h08gimPjmH6OZRtO/d/HdtY+3fksSbD3xJYJgfb857iKAw/z9lbufjdLiY//6PlJfa8fazInUNXBo68MFjs+kzvAuHd6V4Oo8qiudlMXNo94k/JJjiNhzC4XRTGmHDYjNzVd0oulwbQ+yyPcSnZKG4NJp3bMDWnxJRFYV7bulK/UY1yD9WyGL7XiyKgq/JRM0NRTiCTNgKNEaM7c+I2fPZk3qKq7J8mfLOKDB5tu8CfC92dAdYs2IfmltH6p4clfLaPkTYzUTHRODtY+XD0VU3Mm7brTEdejbl6IHTPDj+15sdG/x30I0quSoxBJOBwb+UfRsSKMgqoutN7XnwzaF89Ow86sdG0uaaplisZr7e8zpOuwu/IB+2rjrI6vlx2MudvP3YHKavfe5PmUPba2OZtf+tKzonYWcKezcdocegNkTUDefLiSsozCuhtKScDUt2M+jeHn/K3M5n6Wfr+PbDVUhd0vn6Vnh5WSh3eSwUivNLzwk9IQCJ6uuDrksyjmf9ofv2u7kd3+5NpCjCgsmiEtKzLsnHs7nzoZ4snbaeNRmZLE8+Tote0bzzxED8z/paPTKiO4P7tCIowJvEvScY/+RcAlwW3v7qThJkAVuXpaH7K2zSi1m8KI7PtuzH4XTz9Iie3Ni92UXzuH5IO76ZsRHdJBAhNu4Z0InhvdugqAqrFuwgL6uIG0Z2weeCyJXJrPLsB8P/0BoYGPxXMASTgcG/kO0r9zBh2BQEgvitR3h48p10vq5VpTFWL0uF/1JQqB8SidliIqRawEXXS40/xYQRH+ET4M34+Y8RGP7nRHmyTuUy543F1GkSwaAxfcnLLOK52z7C5dJY8MlaZm9/mZadG5J66AxSShr+jm3BK8XL18bClMl8/tJCkvYe597XhhDdsg7rF+7g8O4UBj/cm3lTVoNLY938bdz78k34Bf2+PKZ6jWrQf3gn5m7Zh5QQf/QMS77YjgDcaQXoUX6gCPYfS8fb95xYEUJQ66yNQrurGrBsy4seTy0hKEqXKApIl8RapJHlduJ0uXFrOovW7b9IMG1ff4iSvFLe+3wUp11lFOWX06FJFKpJZf3SPXzyymI0TedEUgbPThnu8am6IM+s1Olk7bFjNA4Lo2Ho5TU/Nvh3IiVo/8IKtr8DQzAZGPzLyDyVx7efbcCtmtCKyziZePpXx2tujYYtoxj36ShOHs2k180XN6/9/OUFnEpKR1EVxvR8FRQTYz++i+adG/2hub454iMOxR3FZDHjG+RDbNemFfYGLpfGp68u5unJd9D2mqYEhPhSq174FV3fXuZg0r2fknUql8en3UudplWX1w+87xrspU7KS+0Me/p6VFWlXvMo9mw8zIFtR2nUph5vLX3SMy+nmx/nbKWsxI5vgDfev5Iv5HZrmEwqxeUOPlsTh6/Nwqie7TCrnhyuTavjqZbppmdMfUwmlcAiQaLTjZRg87GilrnRfM00r10Nk3rpRNvzLQta1qjB10NuYV1cIjdc1xjvED+WxB1CSjc396zsgp52Ioc3npyH0+Fm2ZKd5HUOJCjByedC4bkXbqC81IFEomk6+bnF3NltArkZRTzx7lB63NC64jqjFi8mIdOTw7RyxAhqBxrNew3+9zAEk4HBv4xX7pnBiaQMhL8fNWsF88CkEReNOX0si8N7UvEP9mXCQ7NQVYWJ8x5i0N1XV3nNhi3rcnDTEZwOFzmZJUhg2gsLGP/Nw6yev516MbUoKnYQViOA1lc1uOy5CkUgJbgcLj56fDazDr1H1+tasnHlfhRVYLF63MhjrsDK4HzWzNnE9pV7cNpdTB3zBZPWvlTlOIvVzB3PDqAot5hlH6/mzMlc1szfDsDsN5fSbWBbqkWGAB5PpU82juPQrhSatq+PaqqcwO6wu5j4xDfs2nmMvOreDL6pPfleblbuPoQiBD5WC8Ovbs2uLUd594WFuN0arTrW5/VP7uRMRgHxCWloms64R/qxa3U8tRrX5Jq+V5YQ3y6qFu2izonDH6fcj9Plxs+nsrjT3Oe8t3S3jpLpwu3SAZ2dO47xyKN9OHUsi5zMQho2i2TOB6twuzXmTv2pkmA6lptLuduNt9nM6cLCCsFUWFyO0+kmLMTviuZv8M/GqJKrGkMwGRj8y3C7NSQSi8VE50EdCAivvMWWn13EmH5vI3UdxWLGaXcBsGr+9ksme9/x4iCq1wvng2fmoaMg8GyPvTDsY9KOZYGXDdXLiqIIxk0ZRpsuDS9rrmMmj+TBTuPQNU/C8YlDaYydPJyGLWtTUljGzaMrt+pYPW8bK2Zt5roRnelz21VVXvP44TNMuGsa3n42BtzZDaEIrF4WalxGdOq126cSvy0JaTsnLFRVxdvPVmkryj/Ylw69qxYxG5bvZdfPR3A53Xg53CxavY/uN8Qg8SRUa2eNOYsLywCPaCkq8LyvWT2QOR/dXXGtppeIiF0pVosJ63kJ91kFJczdsJdGtcIZ8/JANqw5yCqvXHSzin++HV+rhRsHtcVsMTF63EAATiZn8s3UNZ7k9D6xgKddztfT1lM/XudUjDdX1atNkdPB5G1bSVuSyv6Nx3AHW3nqqevo3yP2T3kWA4N/KoZgMjD4F6C5tYpIx8uf3c3sSd+zdfluln36ExsXxjH74MSKL/u8zCJ0TcfpdCPcOormRispx8t86b8ahRC07dUc08uLcdpd2LytPPzuMEZ2eAVd9wgJl9ONxWoi80zBZc358I5knu77JiARFhNOCRPvm8Gn28Zz0z3dLxpfUljG1Gfn43ZpfPhcGlf1bVFl7tCsCYs5dTQDRVVIO57DS/MfJzctjx63df7NORXnlaC7NBQvgWq1oJoU7nttCHe0egGrl5l3lz5JZIOqG9n+QtKOozjPZILVggwOo0OLOjw98Gp8rGb8bDZu79ISgG69YzmakMbJlGxGP93/stbsj+J2a4yZ/B1xyadBAYtZpVbTUGr2CmVe5+spLLfTqlZNlCq8sKKiqzFzw3MkJaQx9dVl/LBkL3c/1Zd5X20mP8SEz0mFoZ9ez8jF3+HUNCxmN5FuiSnbzo8bEw3BZPCfxxBMBgb/cKY9OYtF76+gSccGTNownlr1wxn+aG+2LNyG26WRl1mArktU1fMlWC8mgrCoUNKO56CoAj2/AOnW+W7ySoaM6XPJ5rXB4f5M+OZBdv98iB43tsVkUnlpxj18Nel7ajWozqHEdKpFBNLzhlZVnn8hu3466PGCkhJMiqcBbG4Jh3am0L6K6I3FasZiM1/0/kIatKzDnp8PgYR6sZG07XXp7ayEbUkk7ztOj1s64R/ix7OzHmTG83MJrx1OdNt6tLm6KVOfnYuj3InD7mTN/O2MevHGS15P13W+n7EOdInuclLQx5+H7uuOv7eN526qHC1TTSr3jf17hNIvHDmVzcFj6UgkSIFL00lIzyShKJtGYaE8dFWHirEOu4tZn22g3O5i1P098PP3IjDUj/07UsnJLERKeO+5heS3DMLla8KOYEfiSQQCXUp0iwAB0qxw6/Vt/9bnNPjrkPw725b8HRiCycDgH86SqZ7ebqkHT5Ky/wSN2kWz+ccDYDIhNEmnG9oihOfLXFEUhBAVYkM1qWBSkbrEZFaxWM188fpils3YQMc+zXlm2qhKFVGx7esT275+xc+NWtXm9TkP/K55dxvcgblvL8PtdHt6tykKJrNKk/Oufz4Wm5kPVjzFjrUJtOvZtKLC70Jue6I/DVvWxsvXRkyHi13JnXYnp46kI4HnBryNruus+XozH25+lTpNa/H6krEVY4sLSjl5NBNUj/fSDwt2cNP9PQkMrTonR1EUohrV5ERKBlJIir1h9bFk7g++OJH+/4Pa1YLwsprRHRIvHwshNfw4ZM8FRaG6X2Wh/N28OJYu2onUJZpb44nnBwDQvH1dln7tEeN4usV4tj3NJpqEhnGvbxviszK5M7o5rg5ltO5Qn4BA7/+PxzUw+FsxBJOBwT+UX3Jq2vZpyd518fgG+lCrUU32bTpM8oFTCIsZ1WJGKAqDwu5DURWe/OxeqtUOY8wbQ5j8zHxq1QtnyD3d+P6L9XQZ2A6E4NsPV4OEn5fsovvg9nTsfbFvz59BVKOaRDSowYnE06Bp1KwbxsQVT+MX6IPL6UZz69i8K4uiWtHVqBV9rpeZrutknc4jrGZQxZakEIK2PStv/6yavZFZry2iZsNanEo8SVlxOUFnrRFcDje56fmVxu/bksSXb61AIslOLwShgAS3083+rUe5+ryE5wt5f83zTJ79A18XpGDytdA56q+3QrhcfL2tLH5jFMcz8sjOLeHlaT/gLyUD+sdwU2zTSmNNZhWBJ0pkPs+ZvcPVjXl75t28dN9M3E6NnqHVMbWuRr0awfRoGc014ryk/5i/68kM/k4M48qqMQSTgcE/jNLCUh7t8iKnDp/h4SmjuPmJATTp2JABD/Rm3bdxfP7qYqQO9WJrUS0qFHdhMfYyBwATRnyE2WLinglD+XT1MwBMun8GGxfvYMPCOKZseAWL9VwieGrC6b9MMAF4+VoRisBiNTP6rdsIjwzlxOEzPHH9uzgdLp6dNuoi/6hPXvyW72dvolPf5hRkFpC4M4Va0dX4cO0LmC7RO23q47Nw6YK8kuPIomIActLy6HdXdw7tSOaa27rgdLiwWD2Rtzcf/JKivFJUU+W8LovNTLMOVUfAfsHbz4vnH7qJEYWFeJnNhHj//dGVNVsO88XCbXRrF839t3WpFCX09bYSW68Gb/38Ew6XG4DSLPtF3kqDhrZH03TKSu3UaxdFRl4x1YM9kbWmrWoza/2zZKUVULtBeCVbAwOD/1UMwWRg8A9jz08HyUjNQtd0pjw0A9WkoppVUvYfx7taKM5yJwhBw2a1ePjt29m0eAc7f9yPpmlIXcdR7uTbD37gs1e+4+ob2xG/6RD2UgdWbwsp8Sd57P07eHfMl3j7enH1oN+Xe+K0u1g5ZwtevjZ639L+kl+oL3z1MHPfXkbtJhF06OtJhv4/9s47PIqqi8PvzLb0TgihJNTQewDpHQREBJQmVRFEFMWC2FAQRRFsiKiIICAd6b0jPbQQQgkEQkhCes+2mbnfHxuDCEH4FEHd93l42OzMnbkzu8n+9txzfmffhhOYC6wITbB69q4bBJOlwMraObsRQnBw8ynsBRaEECRcTCblagbB5W+shBNCcPbYJTxLeJOTaUaVJCSjAWGz0+KxRgwY/xjDH5rAwmkbObztNB8Xei35lvDCnGcFCeo1r0JSXBrD3niUhq2rFZs79XvKeN9sAPp3IIRg0lcbURSNpanH6Ni8GhXL3Wwm2bt9HXZGxKBpGv07OyJmVouNzNRcSpbxQ6/X0XdQM56btpwf5kQjSbBs0hBKFoomdw8XyofdPgHeyb8PAc4cpmJwCiYnTh4wwsIrohU2gAVHhZyqqCTEJPHOlIFcOBmHrJNp9Wh9Fn28mjKVSzH75EdkJGby0VPfYM63kJaSi0Bi96ojPPdhX757czFlKwfR5OG6uHm60uKR+sg66Q8jB2nm4+y/9ipGnRetgmfhoivBoU0nWT1nN1En4pF1Mpqm0aX/rS0AAsv4M+aLoTc816h9TZZ8vhnFrlD7d55OJlcjodWCSbqciqePOxWrV+Hg5kiq1A2l5O9EQUJsCi92nUpeRh6SLOHq6UJ4x9oodo0R7/WkRLAvUQdi0FSBpcBKzIm4orFTFj/HzlVHCasbQvWG5QFIjE1haP3xWApsvLdoNDUfujPrhL8bSZIo6e9JWmY+kiTh63Xr/nGVypZg81fX889yMvMZ0fEj8nMstOvZkBc+eJyDu88RGZOI2a7gajIQdy2zSDA5ceLkRpyCyYmTB4zAciWYtHocbz0yxZEwDSDBS989S3CFQL7e8w752QX0q/gCVrMNjAYadazDe4tGMy96GqqqMbL5u6QmZODm4ULylVS+2DWBwLL+ZKbmMKrdh+RlF/DODyNuEiy/JypjFlYtE5uWw+XcdSRsqupY/rIqaEYDBm8Pcgs9hu6UUqEBaIod1aaw7MtNPD66IyZXI4pdITM5m+lrX+Zi1FXKVy+Nm4cL+blm3DxcblpS2r3qKPmFXkdCE9htCuO+GnLDftXCK1CnRRhRB2IY/OajRc/7BHjy2O+sDbYs2k9Gcg5CCBZ/upH3H1DBdGB7NG4Xs6lVKYAXX+2Cn0/xbVsuJWewfeUxYk5exYggP8eC3aawd/0Jqj9UmRkfrMPkrUcLcaN+WBnqVSn9N16JkwcVp3HlrXEKJicPBMdOx3PxSiqdWlTHy6P4VhT/FRp0qMOs41P55uV5xEbGMXRSP8IaXs+tiTuXiF1I4OaKZDIRsf8iiz7fwoCXOqPTyXy5/U2O7YpmypCvWTJtAyu+3Ixd1lO6QklSEzPQVMFP0zdQu+mYW55f0zSmPjuHQ1skag0Jps7AdPxNNTkal4Ridyz9+ft7EP5IQx4d0uKurk1TxW8eawhNsHvNUT4ePQ/NrmCSBHa7xvPTn6TzwBa4e7pSkGtm5YxNePl50G14O2RZpl7LMBZ/sQm71Y6HpysvfjqgSCwlxqbw0cjvcXE3Mf674cVWvf2WOs3DWPnVFgCadLo75+2/k0/fWkFutpns5Byy+2fz9IFfiIhP4KWWTRkcfj1Zff2RM7z/3UY8j2cjaYAQyIqKJEl0H9ycpPgMFLuKPtlO/ZBApo7uXtTS5VdyLVaem7eaxMwcpvTpTMPyf43RphMn/0ScgsnJfedsbDIvT1mJEIIdB8/z9Xt97/eUHghCqpXhgw1v3nLbos82IRn0yJKMABCCn6auJf5sAmM/H4SLm4lylUvh2CSwWxVw1XPtSho6gw6DQSK8ffElTrtXHmH3kv2oQuLIl6UY+/rneJsq8OgzeZyLuEh+jplXvxlOqfJ31/sNwNPXnTdmP8OWRfvpOrglLu4mvnpjGUpuPtgVzDoZSZL56eO1dB7oEGMzX1nAzqUH0OlkDCYDDw9pTbWGFShTuRSXohPIy7Py4ZBZTNv4OpXqhvD5S/M5d/wyep2OVd/sYMhvokvFUbFWWb7Y9gZIEqHVHqxIi6JprD93DilfxSYEQgKr2c6V/BwOX0nAbLczbde+GwTT7uhYrEKjSCoKMHh78Oz4bjz8eDjZmfksXnEIs2xnW2Am/RcuZfmgfpw6dpnMjHyata7KxpPniLqajFVRmLJ2F8tfePK+XL+TvxHh9GEqDqdgcnLfSc9y5GJYbQqpGXn3ezoPPKqqcSU6Ac2uoDMZ0TQNoaooeQUc3BzJ7tURdOjzEGUqBzHyo/78sjqC5MQsriVmIZAQSIyY1JuHn2x+y+PbbQrTnp6FarEBULZGJbxNjl5vnn4eTFo+9q7nfGRbFPOnrKF6k0qEd6hFwsVkvH3dCQkL5uLJOHSKHWyOyj0UFdkgUbK0D6qqodPJmPMsaKqGLEtY8q1Fx/UozN8ROPrV7Vyyn4UfrebUntMIRQU3NzKupnH28AWqNrrZs+lXdq84yNSnv0Wn1/HJlluL1PvF5YxMpu/bx/YLFyi1MhudooGLAb0ssfnIBfSJCm6BOmqHlLph3MDWDdhzOpbM6hqeORr1fAKoWr00HR9ziCoPb1fSKrqQUcEFdBKRyckc2nuOyeOXA3CyWx2qtKrgMMF0k8jXK2SbLXi7OiPATv6bOAXTPUQIwWcjv+XIxuMMndyPDgNv3fj0v06TuqF0a1OTMxevMWZQ63t2nnNpaXgYjZT28rpn5/g7OLw5kqyUbNAE7m4GGrYM48D6Eyhe7oAoaiIL0GVoa8qFBfNGj0/QZB3o9Ch2ldMRl4oVTJqmYS8USwDPftDnruYnhOC7d5aRnJDJqA/64B/kw4fDZ2POsxBzJol18/aima0gBBdOxHHl9BVHLhaAJOHt50FeRi5nDpxnzddbeGx0Z0ZPH4TRpMfL35OuT1931H7jm2HMeO0n9q+JQNZJnD4Rz4Uj59EKm84qVhtbF+9n15L9TN/xNpXqht5yzhvm7MJuU7DbFQ6sP0blerfe7+/mRGIS/RcsRVE1hF1FtmrJlBQAACAASURBVAhAAgRqsBsnryYj2QRuVzTsu2M5WfkSOoPMuuURtO5Yk/LB/kSpySglZWp3rcfgVg2Kjq2TZV59vDWT9+/F7CZ4tkkjEq5koKkadrvKttXH2Tp/H77tA0kKlrmcm83UXb/w/sPt79v9cHLvETh9mIrDKZjuIfvWRLBh9jYQ8MmwmU7BVAw6WWbs0LZ/vOOf4OMde5hz6jiyLDH3sZ40KvPPzcXwC3KUsxtMBkKrlea1Oc9iNdvYvSqCoHIB1G56Y7LyL2siHL5LOg3Zw4DeoKN97xudqaMPX6Qgz0KDNtUxmgy4e7uRn12A3qinZLkAMlKy8Qu8szL6meMWsfa7HQBcjr7K9wcn4Rvohc2moILDQVrTkCUJVdWwF3oFAei8Pajdoir7fj6EBuRm5nH5TAJvPDadzORsZKHSqFMdGrR3eEf5BHjy1pwR5KT356s3l7F3w0kwmpA0h+9QYeoOkk4i5UpasYKp2/B2RO0/j8Ggo1n3B6fNx86TMdgVFaGTMJnB3Nwb/clcLOVM9OvflMWrj6OXJaQsO1mpeXw3fRNxV9KxWRX27ThD17faEpOUhiRJNK50c+PlxzvW5/GO15fx8vMsRBy4QMq1bJKir6LZVMxXc9CV9kUALnrnR4aT/y7Od/89JOlyetFjXTGGe07uPUei4vhhXwQ2D5A0OJKQ8I8TTOY8Cyd3R1OxTghh9cszcekLxEUn0qJHQ9bP3Y1/kA8d+926tL/tEw+xad4e7DYFrVogpeuFElZYSg+wb/1xPh75PUjw+OhOPPnaI3zxy0S2//QLleqX56VuU8nPMdPruQ4MGf/HuUBXzicVPU6OSycrPZepa15m5/JD7F5/givRCVSqH0JItWD6ju3K0+FvYsk1I7m70v3ptvR5rj0IDRd3F3q/2JWvX19MRnI2yBKq3pW5k1cVCaZf8fL3pGzlIIym02AyMGxKXw6uO8aZIxdxczFQt2VVGj1ct9g5t+gRToN2NdHpdcW2ZLkfNPQsgSFbRXGX8Tuez9qfX+ObgxGU9HRnUIN6NClXjoMRF9kycy8FZdw476YiuenA6hChfRrXpmuj6ri7GPHz+GODTXcPFz6YMRAhBBOGz+HIrrN0KFGGKD8Tl9KzqODje68v2ckDgDOH6dY4P8XvIW37NGH5jE1kJ2cx6tPBWM020pOyKFW+xE0l0k7uHcdOz8M9yRVbBR0mSebRqlXv95Tumlc6TOLq+SR0Opkfoj+lTvOq1GlelU9GzWHPqggkWeL1b4fzUJebRUGV+uVZevlLeoycQW6Oyvn4VPYfjaVdM8d9iI2Kd4gpVSPmpMOrKLhiSfItCrPeWkZBrgXFrrJ10YE7Ekyjp/bn2RbvodhUVFli+ui5PNS5Nj1GtsfDy4WvXp5PTMQF6jSvQonSfgx6qyffT/qZoHIBPDn2YTy83Xjrp+vVe3VahLFz+SEUV1ckSeLS1WyO7DjN7hWHaf5IfZp0rgNAvxc7ExxaAoNJT/Oudek+rPVd3WM3z1v7Gd1PQkr54x2jYPU3UVDSjU3zD9DzocpUrlWWDauO8s1nWylfpSTPvdeDDxfupMBqw6WsO50bV6ZR8yr4+nvw/0gcSZKY8O1QFJvCubQM1s5bhtmu8NHm3fQPr/OXX6cTJ/8EnILpHuIf5MPi85+iqRrmPCvD6r1OTkYezR9tyLjvnrnf0/vP0KLuerYfbkvORTcmjqpGgSWHM4m5hIWVRpYfHOFqtdjZte00QaV82PPjLrYu2Eu7fs0ZM2Mol6PiUewqJjcjKVfS8A7wZOP8X9iz+ig2ix2DyUBqYmaxx46zxSKXzUA674FdE1QOvV7d1nVIKyK2R5GXbaZMaAA/z9hE+TqhbFm4D0uBDUmS0Bn0dBvyx0vK507E8dnYBZSqHExqUhb2PDPHtpzk5I5T5GcXkJOei2JT0FRBfGEkqteoDnR/uo2jt9ktvki079uUMpVL8fITM9A0gdAEkwbPxGa2s2d1BHOOvE9AKV90Opm2vcIBSI5PZ9zjX1KQb2HCnGeoEV7hbl+OB4Lgcn7Y/E2gk/COymDhgY0sljcxfeUYvv1iG+YCG1GR8UgeOjRNw2TQ4+fpxt5t0ezaHMW8dYdI8NIY3qkxfVoVH2H7PStOnObtdVsp6eXBt317IEsSbgYDof4+9/BqnTwIOJ2+i8cpmO4xkiSh0+uIjYonP8eM3aqwf+2x+z2t/wxmJQcX/0fpOWI1GZobGzKS2Tf2DJIq0bxZVd6Z1Pt+T7GIqRNXcWhfDMKuokZeQFM1Ns/bzeB3ejJi6kAWvL+Chh1qU7FuCKqiMmPcIlRFRZIl6repRsdi3LYBZElHSPdrZF02UrqkL+VK+xVt8yvpzedb3mDexBUs/3Q9AF2Gt0MIR2+1spWD+Hj1K7gX4yj9W7545Scun0lE1sm06RVOwtlEzh2JAUUjMyWHx194mHMRsVgKbAydcP3eG4y3/1MUWrUUWnoGwtUVYbfDb9qXSLdIUN2y5CApiZkITbDo8828v+DZm/b5J6A36OlcqxIbT1/EUKCg2BT0bkaSrqTjEuhGXoEVya5wZmM0Hi56StYsRYirB4fsKgBXTyaRUdODj5bv4omWde44sv3NvsOoQpCRbyYyMZnVzw7kdFIKzSo+OI2GnTj5u3EKpr+JKvVDKVnOnytnk+j2dJv7PZ3/BHn2dH6MHY4irCB8kCU7SmIyqCURNomIw5fu9xQB2L32GAc3n+LitRysVgWjUYdngCfWPAveJbzw9POgTd+mbF16iKO/xHB81xnqt6mOf5B3UQPZV79+Chc3U7HnqOhRiUHlhxJb4iIdgjrfsG3b0oMs/XwTrkYZTXVUl+lkiWnrXyPmRBzNH6l/R2IJKGpmq6kaETuiseRbkFxdqde0En1f7oanrzsfrX/9ru+R0dVIYCkfslJzcHE18tbSF9m6aD/NutXHv9TNUY+ajSthMO5AAhq0/uctwf6WCSO7cPLhadjc3UDJp37LqjRuV4Nz19L5ak8Eulwb/qeskG/nWlQiZ6R8fCSwu+mxlXDF1SwRWMHnrtIAOlerwtxDR9HJEg3KBlPG15syvvend54TJw8KTsH0N+HiZmLWgUnYLPYHKqn030yaNRZNKKjC4e9jlFzwq2xCClQQiUYGDG52n2cISXFpTH9pITargsnLlUoNKlAmxJ9RY17g5O4zeJfwRNbJ7FkVQdzZRGwWO7MnLOPrtu/yxebXObLjNDUbV8LD+48Tehv7N6Wx/41RKFVR+WzMj6iKhsGgo3FXhzgaML4H7t5uVKpd7q6u5+FBLbj0xlKEEFgLrFjNdowuBlo98RCuHiYOrDtGyZAAQqqXIT/HjJdv8W09fossy8w8OJlT+85SNbwSPiW8qHWb1iX1WoQxc8s4zAVWKtW8uTrsH4VwWD0IkwGptD8vTOmDucBGsIcH9VJ0pKXYqNemOgf3nCW9ljeqp4G0el64ZAmMmXb01yyE+pa44ZBRp+I5eeIKbdpVJzjYkeW0/WQMB87F0ad5Xca2bcZjdarj6+aKj9N36T+Hc0nu1jgF09+IJEk3iKUlX25m47y9tHuiMQNfe+RPH18IgTnP8kAmr/6W/WuOMP+9ZQSWC6Dni12p06p4x+k/Q2m3WviZQki1XOShgIGU9ahNoEsYoxZqmGTDHX3jzkrLxWDQ4X4HguT/QdZd79lkkOCrecMdic3RV5k+Zh7gECFtejcGwMXNSK1mYQD4lPCiQ5+H/vT5PbzdyE7NwWZWCKlemkFv9fy/ixI69W2CalfJTMulZBkfPnvpJ2z5FmaO+YFFk1eSGp+OqqgINzeEXk/73o14bnLv20bHfsXd240mXer/4X6/UrrC3buQP4gYTXren9qXdauO0qFzbbx93Hj64WmkpeQgyzLfrH4J/xKeDOgyjVwLFLhqeEkGTO4SaoIFCYg6dJlL8WmULxtAakoOr72yCLtdZdXPESxbOYbLKZmMn78Jq11h+8mL7Jw8gtKenrz54gLOHrlMePPKvPlJP3Q6Z48xJ/9dnILpPrHuh1388N4KAH6avpF2TzQmOPTO/8BnJmcx6+V5uPu4M2LqQHR6HS+2eJvzERep17YWvcd2o2Gnug9cNZ4Qgsl9P8VmsXPh+CUiNp/gk53vUa3x7ZvA/j8YZBf6l//ypud/1y6rWHYuP8j05+Yi62Q+XvcqYfXL//Ggu6RkGT/e/GYYBzZFcn5PJD18BjNy+mAkoxGhCWwWO3tWH2X/+hPY8goILh/I0+/1+r/PZymwIjSBa2G/PkmSKBUaQFZKNgJY+ukG6rWuTu0W1f6v48uyTLfBjnYmG+fuRM3OASAfyM8qKDRFAhQFWa9n24oj7Fx9lDEf9aXD443QNI3oI7H4B3njG+CFi/sfC6n/AvUblqd+oRXEpQvJJMZnIDRHT74n+0zHa2Blajxflxrxdg6fvEJWZj6STkbWS6AKhEFC6Bx/C8xmG0KApgny860IIRDien8/VTiWZSeMW0zk3hgk4ODOs5w7FU/1us4cpn87AmdrlOJwCqb7xI7lh4oeC1UlMzn7rgTTzJfmsmfZAWSdjH+QD27ebsSejENogmPbIjm1J5rBk/rQ59Uef8l8P/58E1t3nqZT25q88kKn//s4kiThXcKL1Pj0X58gNT7tngimP8uWhfuw2xSQ4NCmk/dEMAE0alcDyW5j26z1WPKtfDduAfNiZrBq1naS4lLJzbU4esG5uJB6JY1rl9MoFxZ803GiLiYxcfZmDNHXkOOy6Plsex4bcd2V+cyRi7z+6DQ0TWPCgtE0bF8TgLKVgzh75KKjPEYILPm2m45dHEd3nWH/ppM8PKAZlWpdX/r68cM1LP50I5KLC8JiAQn0Rj0mFwMGo55s9bpqVRWNbyesoFX3enz7znK2LjuErcCGJMGTr3Sl/8td/4+7+u9k6bxf+PGbXUgeJvSKhr3ARnwbD5TsVE5mpuKVKiPpBCYBkiwzaGw7Nu49TcdWNagQ7HCALxcSwPARbVi95hh6bxOHjl+mSf3yTOjbnl+iLzOojSOKF3k0DqGXodA1PaiMX7HzcuLkv4Azvnqf6DWqY9FjV6NMaNW7a/aZciUVTdVQbAprZ21hzhs/oRR+uIOjH9iKwoqnP0tGZj6btkVhs6ls2HqKrOyCP3W8z/dNptOQNuj0MjazjeXT16Iq6l8y17+S7sPboTfqcHV3ocWj99b9OaRGWWRZxsXdRM3mVfH0dWfWvneZvul1dDoZSXLUggWGlODwttNcvXDtpmN8PH87Vy5eI21/LKlXM/h2wkq6lhvD6098gWJX2bXiMFazDbtVYcO83UXjRn8ygBrhFZA1BVXVeP/p7/hwyExGNBjHvtVHip1z+rVsJg77jg3z9/Fa78/RNK1o24Z5exBCIOtkvAN9eHhYGwa+1ZMlcV+x8MLnmNxMUBj9FEJQkJbNrqUHOLHvPLYCGwiHfcDq2TuLPX/8+STOHr5wQ3Tk30padj6bIs6x8OeDjhYuqkbFh8ojZJCv/9qjKBoaULqCH317NGRwjyYsnvYUw7o3QQjB6g0nmPz5euwl9FyxFHDuahrjP1qFomp0bViNDwc9TLWyJVmx5ihmTwM2P1ckDyNTvh+GX4Dn7abo5F+EhvS3/Pun4Yww3Seada3HspjpnD16icp1Qu46R0aWr2vdzORsNFXDxd1E1xEdWPHpOhCQn5V/1/MSQnBk0wmEplGxXnl+nLAEm1UhwNNEtkXB39cdD4+7TwIVQrBm5iYSLybTd1wPUhPSUQu/uZ4/GsuVM1cpX+vBCvc/1KUuyy99gU6v+8Oy97slLjaFt8cvxa5ovDu5N2FVg/n+zGckxCRRo2lY0X4Va5blhU8GELnvPM271WXK8O+Z98FqFk1bz8Koj3Fxu54TF2wwcW3bebCp6Nxd0HQ6NFXj7LE4LkbFU6NxJTb84BBKnZ50LJtZ8q1EHThP9P6zqDaHO7Q138Le5QdRFZWPhsxkTeYPt7wGTdMcjVkBTb1RtHTs35SVs7bj5evOzN1v4/O7D9uXpvblhynr0Kw2MuKuoQNKlPHnqbd68MnzP2LNtyDrZFr3dPgqLf10Pcs/30iLx8IZPX0QkXvP8naPT0CCfq89Sr9x3f/Eq/FgY1dUek6ch9lqRyklE5AEQi9x0WAhs7Yf3tdk3DGRlZiHkPVoOriSm8vSQ1EMf7xZ0bL8kWOX+Wr2DixWhQ0HopE1GQkwGfTIv1u6PxRxCVWA5KKnYXglDu05T1BpPwKDnJVyTv67OAXTfcTT14Pw37V4uFOefLs3b3T9AE3RHKXgEjTqUp/wTnVZ+dl6hBCUq14Wq9l2x1V5qQmZvN17OpePxiDrZFS7gqYJJBla9WlOt4m9qVyxJHqdjM1iQ5IlDEaHH06+ks++tF2Uci1NLe+bDfJ++fkw341biN3myF1SbNf7hxlMetbO2oLdplD9oSp0HNwaXWGiUUGehTnvr0KSYOibPXD7P8Tan+FOkpHvFqvZxgt9Z5BvMoIkMefbXXw0vT8BwX4EBN+87NG2VyPa9mpEXnYBVrPN0YtNCGwW2w2CKUyROF7ov1MmNACv0iWIiYzH5GogLSGDT576GgkI71Sbxp1qYzXbeKb5e+Sk5yK5uGKULdisCkgSmqphMBkIuM0yTIlgX8bNGMya73eRGpfK168v5tkpfZFlmWHv9OSxke1x93bFaDLcNLb1ow1o/WgDLAVWdizaR8mQEtRr40j+XxEzDUuBjez0XFS7QmZKDnMmLENogi3z99LzuU6cPXQBxa6gKhrHtp/6Vwumywnp5BZYi8JISc28kGWJ55vXYt7qI+hlGa+9Gci5dlR3PTk1PFFUjbwCK5oQ6ArFkKZpaIXROA2Bva6J4eXrkLT3An3qvEHPZ9rQ73lH5Htw/6acPZ+EQRWc3HWOCLvKsYOxfL3kn+ln5eQuEM4queJwCqZ/GFazjdzMPBp0qIPOzw8tJQ0AnV7HuHmjWTdrKzq9DsWmEBudwCs9P+ezdS/fUXXLzDeWEHsqDqGoNy6RCQlPH3fqFJZnH916kre7f4ROLzNt13uUrhLMrITPiM2PQZZ0hF/oyPklCWRnmbEKier1Q6lVvyx2qx1N1YjcHY0kS+gNOkpVCiL+TAJrv94CwNZ5u8lIymLAm47E5oWfrGPzwn2AI6o2/N2e6B/QvnwFuRZS4tMpV7XUDRHA35ORkoOSXQAlDCAEVauVuqPje3i7MXpqP9bO2U3XIS3x8vO4YXt4h9qs/HITAO36NaVqeCXSU3L4fNwSPnzmezRFRdMZOLTrHOeOXcbN04XstFxHY15g3PfPMmfyapLjM9D7eNG8a21GfNDvtnNq1qUuM8bOJzMlh4xrWTTtWo96rRwJ476BXn94TS5uJro8dXPjZRc3I8um72bptHXoDDpKBPuSk5mPwajHt6Q37fo3Y8uCveSk5zHonQfHfPReYNTpcC0Ai4twRPQ0Cb0F2jUKo3vLWriZDGxaeIC5n2wk2MeXVt2bsjsqlsGdwtH95n3YuGEFnhrYnB93HSVTy6VepJ2gsrBu22lsVoX5n2zk8ZHt0Bt01KgazJrFz3PicCwTxvzkKECw2u/jXXDi5P7zYH7yOLkl6deyGNn4TQpyLXQZ2hqhCSRPD4TFyugZwzC6GGk7oDnrvtvK1fPXkDw8uHAqnsE1xjLr4GQ8fG7veePl74HJxwubouAX6EVuRi52q0Kbvs0IrFKaGeMW0X9sFz5//gfsVjt2K3z92gLOx2RQ6ssc9GVUFLPKqgVbyN8rIbm5Iul0xMcks2/lQSRZgkIdJjSBiiA5Pv2GOWiqej0hHDCYDEiyI+KxZtZWdszfxVf7JxFYxv8vv79/hpyMPIY3ehtLgZXwjrV4a27x38SDyvnTplMt9mw+xUNd6zLk6dZ3fJ5OA5rTaUDzW26r2bQKc6M+Ie5MAhMHfw1ASLUy2LLzUBUVvYsJSZJRNfji1YV8sWU8tZtV4eiOaLoNa0XLXo2JPnaZtT/sQREQGXEFY2GELeHCNY5siSS8Ux1KVyx5w3kDy/qTn2NGCIF/0F/XOmPn0gMO3zJJotfznXH39WDj8gheH/A1r306gDaDWrNl8UF+2XyKms2qPHAVoX8VIWX8ebVva9btOc1hcwqSLGE3CUr4uJMWl8HyRQcJb12Vn09NxmDUI0kSQ7s1vuk4kiTRr2djHutcl9613+SKovLt8QRcXY3IOpkSwb5FxqO/Uie8PE+ObMO50wk8OaL133TFTu4nztYoxeMUTP8QLp1JZO+qCKwWO4pNYc/Ph3HRgd2gw+TpQ6fBrQFIT8zi4ac7EHnsChE7z6CZzeTZ4PTBGBp3Lr6X1LW4VGo3qkCpkAACSvlSoVoplk5bR+0WVfEs4cO0MT9it9m5dCaB5MSsonEJV7PQVI2Uj13xHZKHLVaiYH/hL5uqIWRHnkRuthm9QY+makXl0BgNqC5ukG91lJsDNVtWZ/B7TxQdv/9LXTC5GPn5q81kZ+ZgkTQitkbSZWjxbukrvtjI928vQZJlnv90EJ2HtCYvu4CE2BQq1iyL3nCHvgJ3waXTV7FabFjNNiK2Rt12X0mSeOWLwbzyl8/Csaz63qBZWM2OSrcrUVdQc/NBQLXW1blwJgmQKFelFDqdzKTFzyOEKBIbGam5/PryFOSaiT19lcq1yzG65bvYLXZ+nLySxbFfYjQZEELww4RlSKrCo8Pb0rx7A8qF3Vm07E7o83I3PntuDh4+brTo2Zi1C/Zx/uQVVE3j1R6fkpXhyNHb9NN+Hh7QlNCqN1cO/lsIquFPQ9eKRKxMQUOgVyRcjQbG9f+a3GwzW5Yf4dstr1LyN0uoNkUhKjGFyoH+eLpcX1o+deoqqur45qKpgs/WvMTV2FRqNqpwk+iUJInHHwCDVydOHgScgukfQOTBC7wz6BuQQOfmhmyx0+PZjrTu3ZhjO6Jo2KG2o1Q7LZeX2k5Etau4+7jRrc9DbJizA1dvD6qFVyz2+FmpOTzb5C00TRAUWoJvDk2mf8UXSE/MZP+aowx697qAQROgCSRXhzlm00casnnRQWyXdSS/dj2fRhIaIjcPycMdITQkofHid8/yxdj5WPKtGEwGR9K3xYbs44OEowy6eus6+Ja8HqUwuhjo99LDGGTHh7PBaKB+m5o3XYM5z8LUYV+Tfi2LC5FXChPKNb56dQEtejbm6RaTsBTYqFo/hClLX/jTr8nvqdqwAmUqBXExMo7ef8J24c+y8uttRWJJb9BRq2kljm6JBAHlq5Vm2MQnSL6STrNu9YrG5GWbyc3KJzi0BPvWHS/0SpLw9vfA5Goicv8FrGYbql1FCIHNbMNoMnBiVzSrv96KpcDKtStp7FwV4aiyW/w8Ff8Cd+1Og1vRrn8zdHpHU95ylUqiN+rQCR3ZKdkOQy1JQpLubPnvn8rRxESeXrUKoWmEmVwJsLgwakQ7Fs/YSn6uBShsRbPnLA/3bVK0HDxgzlIupGbgYTKy+YWhuBXmG2Zk5CGV8UfJyicorBTBoSUIDi1R7PkB8nItfD1jK5IkMeSplkTsOkdwiD+1G/0zmxo7uT3OCNOtcQqmfwAXo66iaRp2m0rV+iFMnj+yyM2762/yP8x5ZjRNoNhV8rMKGPlRf/q+0o3ti/YzuMYr1G1dnbcWPn9TPlNaYiaqomE124g/n8Soxm+SnZYLOMKz9VpXRTbqSbyUQs+R7Rha+zVH/qkk0anvQyRdTOF05BUkvTv2AgtIEmUrBZGZnEVethmDUUf/8b349NVFaCro3FyQEFCYEyEpCpLRIbbWzN1L7+c63FRV1XtMF9r3a46Lh6koEVsIwbRnZ/PL6qNUbVieU7tOY7cquHi7ORKjgYBgX67GpmApcER/og5dLDqmRTUTlR1JObdQAl1uXGa6W0yuRmbsehtN026bv5SfayHyQAxVapfD/x5UHDXpVJtDmyMBeHPOM9RoVJFZry1EaBqD3+mFh4871X8jnq/GpvBC12moisoTo9rT/okmbFt6EL8AD9z18GLnKRg83WnUPZzkmES6P9OuaGnXy98TTQj0Rh1C1pF+LRuA5TO3Mm7msL/oiiQmP/UtMcfjeHZKX557tyczxv4IioJQFIIrleLdBaPw/l0+17+Ja7m5SIAhxkJ+RDY2nY7tyyP4ZdlhNFVF0skIIZg9eR3X4jN4alw3VE3jVGIy4Pg9ScjKpry/H6diEqlZL4Sm7WuQEJ/B2Fe73NEc5s3ZzfbCyOnp3efIuJaNBLw/exg1G4Temwt34uQBwymY/gG06xXO7jXHSE/O4ek3Hy229UlQaCDDJj7BziUH6PNKN3R6Hf6lfJk3aQWKTeHo9ihijl+iasMbo00Va5ejbZ+mHN5yEm8/Dy6ejEPWSVSqG8oTL3elYu0QKta+XvL/yncjWPrZBjoNasm0kbO5diUN1ejiyDdydcFk0pOXlU9BrgVJkpD1Oo7vPY9qsYPJiCQE3v7uZF5NK2r2KnQ6JFlCNui4EnPtJsEE4PO7KELSpVR2rziC3WrnxJ6z6GUZk6uR0hWCiI2+6rgnIYFUrFGGag3Lc+rABfo836Fo/LRzU0iyJCEBk2p+hI/R965el/zsAlbP3ExguRK06+8o376dWBJC8NKj00lNzEJv0DN339t33NT2Tmn7eGPC6oei0+sICgng1C9nObL5JL6B3pw+dIH1P+zG08+Dtk80oUHr6pw6eBFN1bBZFXatOcZ3O99g6FuPMqD8aJKtjkpGVZIxW1S+3j/phnNVrF2OScvHEnPiMl6B3swcvwQJqN/q/3MJvxVHd57m6PbTWApsTBo8i7JhpRCaQNMEZSoHMfvQxFuOy88xk5KQSUhY0G1fk38CHStVYu/lyxxfexRUgaIqnI9OKirMEBIorkbUXAuXohMB0Mkyw5s1ZO7BYzStWI6KAf68NXM9RrFLzQAAIABJREFU+09eQpJgwfsDiToSx56dZygR6IXPbXr62VSV3XFx2DUNvU7GnGdx5Ja5GFg67xf27j7H4BGtcXO6sv8r+C84fUuS5A5YhBB3ZQDoFEz/ALx83flszdg72rfn853p+fyN3egr1wvlUlQ8eoOO4PKB5GXlk3Etm7JhpRyGiJLEizOGAvDjxBUkxiQhgMdf6kKr3k1uOkeHvg/Roa+jh9lPH/yMYteQjA6zTEmS+GjZ87z88Me/piUhNEG3oS05te+cw6xQknDxdmfce72I3HuWqg0rcGTbaQ7uOUdY3RCqNbgzR22/IG88fNww51koUcaPp9/rTVZqDuWql2V896kodpVHnnFU/Xy4ePRN45MsSdg0K0bZRLot/Y4FkxCCtMRMvhz9PRFbItEZdLi4m2jeI/y24zRNcPViKpqqopccCe8VapS5o3PeDb9Nyv7+rSVkJmeTl5nP5IEzsRV6X+1de5x35o2kUdtqzJ/mgt3uiDCBw+7CYDJgtypIsoRPgCeDX72123bd1tWp27o6AFUbVEBTNcpXv70J65ZF+/nhg9XUaR7GqzOG3LKC025TiD4Yg4e3m+N9JDnuX9LVTHR6HTq9So+R7W55/Kz0XJ5p/QE2s40mHWvx+swhf3TLHmgMOh1TOnVi4CcnSLE7bB/0Nhut+zZh2+rjqCYDXh4mAoK8eWr89Z6UL3dowcsdWhT9fOzsVcxWO64mAxs3RrJq3gEUu8r5M0l89PmAYs9/IPYKMQFW5IoG3E0GPn2mJ7PeX4tdCCKOXoaIOFRVZfQdRqucOPm7kSRJBvoCA4BwwAqYJElKA9YD3wghLvzRcZyC6T/AxxteJ2r/ecrXKIvVYmdEozex2+x0HNCC5z8bfMO+T771GJXqheLq4VLki3M7xv8wkh8mrkAYTaQl5/LEqHaE1Q1l9Mf9WfjJeirWLMPwib0pXbEkGRN7882EFSBLDHihI616NiK4fCAvt5uEQFCzaRgfLn3+jq/Lxc3Et4fe50LkFaqFV7yh79iSWIe79e0iOL1KPsnSs+uoH1qZ8u53loshhODd/jOI2HYKYbGiKio6vY6CnD92P9fpZJ58sSNzX5uLIkvMfH42n+x4947OeyfYrHZmv7eSzNQcnp7Qi7PHLuMZ4IXJzQgCXDxcsGX9Ok9BytUMDm05RW5qNl5erjRuV71onp/unMCORfto3LUeNZtVveV9mDthKacPnOep9/tSrXFlQu4w4XvmG0uxmm0c3BzJ+eOXqdbw+r3/fuIK1szeiatJjyXPgk4vM2nJi3z//moux1wDAVPXv0Zw+UDcPG/tyRV7OgG71Y7VYufIjmhS4tOZ8epCvP09eW5q/7vy1roQeYX964/TskdDQqs5hOAvG05weHs03Ye0uKEdzL3m4Ufrs+DTTUhCUKVaTYa81Jlr6fkUFNh4Y+JjlC57+8rR0X1aMG3+DiqXCySkpCNvUNM0LObbt8IJ8fNByKBWdqNy2WCq1w3hi+WjWThnD1fm/AIIHJ9HTv4tiH9fhGknsA0YD0QJ4WiYKEmSH9AG+EiSpJ+FEAtudxCnYPoPkJmcw9pZ2wgs60+1JpVRFRWb2c6+tUdvEkyyLNP0kQZFP2uahmJXbzIftFnt5GbkE96hNuEdat+w7diuaEDw/aGJGF2uj2v1WEO+n7Acu9nGl2Pn06pXI1Lj05BkCWu+jaTYlLu+Nk8/D+oVRjh+i8nViOk2q115Zivvf3WGdCWYhAAjQ16RiowBFUVlw+rj6A06OnWtc0MEZMvi/RzeEY2QZHQuLlSrH0q1xpVp2+/OKonqNa3EIhcDlnwrp/efu6tr/SM2LdjH5oX7UOwqsacTuJaQiWKxo0fi/eUvEhhSgh/e/5nowxepGl6Rtr0bM7DeGyg2BYvZxtljl6nZuBJz3luOEIJhE3oXKziP7zjNqq82Y8m3MnnAlyy48MUdzzO0WjBxZxORZImSv/mQt5ptLP9yC0IIrIUu9S7uJiRg6qqXOLIjmuDQgBuq4YQQxJ6Kx9PPvchqonp4BUqXDyQ2OoHeo9oxc9wiIraeQmfQEVq9NC0eqY/JzYT375Z9L51JJOpILM0618Yv0Iv8nAJe7PABik3hp6nrmHvsAzQkpr4wH5tV4cDmSJZFTSn2OjVN8P3mw8SnZvHcI00p6euJqmpIEv/XMmGfZ9vh7mGiIMfCY0+3wsXNxNSvBt3x+G4tatAmvDKbT52nZKA/vfs3If5yGk+NutkH67eE+vuy8ukBXEzLoGWl0KLnH3+yKaqiYbcp9B/W8q6vx4mTv5H2QoibjMSEEBnACmCFJEk3O+z+Dqdg+g/w6ajZnNgVjcFkIKh8CQJK+ZIQm0zfV7rddlxaQgajm75DTkYeY2YMpdPgVoDDc2hk0wnkZOTRZWgrRn3Uv2jMsV3RvDfgKwSC47vPMH72MwDkZuaTcCkVCltpqKoGQtC4Sz1a9mxEzPHLjP6deLuXxKVkkqaZsRkFMTkZLImIpF+jOgD8OHsPK5YcQgIK8qz07n99WTLuTBJIIAkwuBmZvPb1u8pDqtKgAjWaVSVydzT93+x5y31ybVbWXDxDZd8AGgVdX7I7vucscz5YQ52mlXnq7R43lYC7ebo48sB0MopdRTVbkRQVFYnje84Qf3E3BzeexGDUE3syDpOrgW5DW7L0y834BHhSo1FFfpq6lk0/7gXAaDIw4oO+N5yjIM/CS49M48q5JCTZgM6g4FPiem6ZEILkK+n4BXnf0uEbYMqyMRzfe5YK1cvgV/J64rvRxUC5sFIkx6cjuRlRCqy4erri5u2KwainaefajvfNb/hpymqWTFsHwNTNbxDWoAIurkZmbH6N2DMJjH9iBvnp2SBJ2K0KK2du5Yc3FyHrZKZufpOwwuhWRmoOY3t9gapp/PTFFmrVKkXjh+s6igckCYQgYstJ6ncs3prj9yzfcoylE9YhNEH8pRRe6tKct56di16v45N5w6lwlxYMOp3Mo0P+WJioisrB7afxC/SiWr3QG7Y9N3c1UfGOPoSLnu9H5aCAm8YLITgflYCbp4myhdVzFQL8qBDgx6HdZ1m75BCdHmtAiw41GfRM67u6BidO7ge/FUuSJPkCZfmN/hFCHLuVoPo9TsH0H8DDx72wNBv8S/ny/YmPUFXtD92/D208QX5OAaqisuyzDUWC6WxELAV5FhS7yo6lB6nVohoRO8/Q46lWpBSaTtrMdpIupwKQEJvC8w9PRVU0GnWphywE3Z9ui07v8EN6+dtn7uHV35oqZUrg5eFCmsWMLEvkmC1F2zIz81EUFVmSyMq6camt16j2nImIxWq28cbs4XedtK3T65iy6a3b7vPMtlUcTU5AQmL5I/2oFRAEwJTn5pKTkU/8hWSadKpFzcaVbhjXtncjVEUlMzWXJp1qM7rNJOx2h0BNupLO0e2nHY7NFjsp8eloqsbg17vzxPMdMbkakWWZy9FXiyoMLQXWm+YWuT+GhIvJoGkInY7G3cLp98r1/KYpw79j/8YT+JTw4pu9795y2czF3cRDnevc9LwkSbw9ZwRrv9tOmarBfD95LVm5NiYP/57Z+yYw8Zk5HNwaRatH6vH6l47IysENx7GabeiNek7vP09Yg+vLe5t/OkB2SjYiPx90MpLJhfSr6QibgizLHN0WWSSYcjML0ITAblXIsuSyZ+VVDqw/TqP2NTi85RRGvUzDDrUJCg3g1S8GFi3JFUfqtWx2/HgQXa4jcT7vWDKrMvdjsyrYrArrFh+iwUOVqNEgFB//v7bCb9akVWxbdgQhBBO+e4p6zasUbYtPz8JiV3A1GkjKzL2lYFo6Zy8/fbsLIQQTvxxI3caOe2QpsPH+2EXY7SonD8dSJ7wCXj531wPTyT+Df2Jj3DtBkqRJwBDgIr9+e3f8f/swayFOwfQfYOysp1kzayv+wX606NkI4I5apdRpVQ2dQYdBCNr/ZsmpeuNKePt7YLPYaflYOJ+8uACbxc7h7VHMO/gex3efIelyKiMm9+FC5BViTsWjaRo2q524mBRm7337nl3rb7GqFtYnLQega6nemHTXP7wNOh0rxwxk8vqdeJpMDHyoftG2YSPakJdrwWDQ0Xdg0xuO6R/kw6cbXrun807IzcGqqrjpDSTl5xYJpoAgH8yFJp8ursYbDCfBsczTqf/11+mN2c8wsd/nICAjIQMASSeh1+sYPvHxIsHq6n79vmReywZNQ9LJlLqFN0+VOuUQhdFBJInDO6M5tP4YTbvV440fn2PfhuMoNpXcjDwun0mgeqOKaJrGiT1n8Q/yIeQ25pKapvFK+0nk5xQ4ihG8PZFlCZOLgbRr2UTsOgPA3g0neG5SLzx93Bn0Vk/eHzgD30AvWvW+0d26QetqrJ6x0fGDqqHXSRj8PLFl5ODibqJlr+v7h1QJ4omRbfllYyTxkZdRcAi41759BqvZiruXKy6F96l5l7o071J8pCk/18LIHl9gNdscy296HY890oDg0n4c2XseSYJfNpxk58oIXN1MzNs9/i9t7hx7OgGL2YbBqOdKzLUbBNMHfTrx4epd1CoXRLOw65WvZ1NSGblqNa56A1X32bBa7MiyxKFDMUWCSdZJ6PQ67HYVWZZvcgV34uSvRpKkssCPQEkcwuZbIcTnv9unNbAauFT41EohxK3LZ+EJoKIQ4vaJe8XNR/xaylT8hF2APYAJh8BaLoSYUMy+vYDlQLgQIkKSpFDgDPBrssZBIcTIwn0bAHMBV2ADMEb8wWQaNmwoIiIi7ujCnPw15GcXkJdVQMmQG7+JqqqGJc9CRmouozt/jM1ix9vfg8UnP3CMyzEzvPHb5OeYqVwvhJSUPNISs3Bz1RNQyod35o4kuELgPZ376oRF7Exx9FZrE9gZX30dZp7fStMSVXg+rPMD20ojIjmBCfu3UyugJO8364C+MN8lOyOPnT9HsPmHnVyKjOOhLvWYsHjMTeOP7z3L9DHz8fZxJe7UZWxmO3qjnle+Gc70UXMQmsaLM4bRvl/Tm8ZuX3KAac/OQdJJqJqg+/C2jJpyYz+53mVGkWdRkJBQzQVgV5FkidGfDyH+chprv99FSFgwn28Zj8nVyFfjFrFt8QGEEHy48qUbkrx/xZxvJTergCFhY1AVFYPJwDPTBpGckMWjT7XGP8ibZztPJflqBmUrBvLF2rF3lAc0591lrPxyM5IEw6cMoFXPcNw9XZB1crHjow9fYPviA9RoUpkzxy5Rs0llWvVoeMt9LRY7M7/bQV6ehedGtMPfz4P4S6k812sGNquCBHSe0I6FsWepFhTI5Pat0Swqox75FFXR0Ot1zP/lzb80ynQ+Mp6pLy3AP8ibt78eekdR0OdWrWFzzAVkSaKXf0WiZ5+kQFPJqe/DVy/2pmFlx9LwhTOJ7Nl8iqZtq1O19t+X8P5fRpKko0KIW78B7wEeVYJE3Zl3nhv3Z9jXYeptr02SpFJAKSHEMUmSPIGjQA8hRPRv9mkNvCKEuH2OiWPfFcCzQoi7T5jlziJMVqCtECKvMCnqF0mSNgohDv5uIp7AGODQ78ZfFELc6uvY18Dwwv03AJ2BjXd7AU7uLe7ebrh73xx21+nkom1jp/XnyI5orp2N54kyI3nm4ycJqV6W/FwzVrON6IMXWJcyi15VXiXfbCc/JpkXOkxm2YXP7qlokZCLAssSMm+fXEqBaiPBnEG7oFrU8PnzJf0Xo66ybdkhmnSsRZ1mVf54wC3IzczH1cOlqGVLw5KlWf/YzX+wvP08aNKuBt+9Oh+hCfavP0ZuZh6evjd+2H79xlLSEjNJi09FsziWhFo/3phZry3EbrUBEutm77ilYGrX5yHKVinFK10/RrXYWfPtDka8/0RRNArAzcNEXmY+slEPOh2qXUWnd+RNjfqwH8Pe6onJzVj02p45EoulwIbRxUBs1NWbBFP8hWTG9PgUu1Wh9cCWXDwcQ5u+zej+9I1R8hnrXyHhUgplKgTecdL0sHcfp1Wvxrh7uRIUcns361+p3qgS1RtVYmj421yLT2Pr4gOUrljylhVxK9ccZeOWU46WP8CE8Y9SqpwfYS0qEBsRz4ARbZgeF0WOxcqphGucz8umbdWKPPFMazYuOUynx8P/UCzl5piZ+OJPpKfkMG7K44TVvP37tkrtsny3ffwdXeuvNChTmj2XLiOA1s2qkVFg5+C5K8gSHImJLxJMlaoFU6nav7cFjZMHCyFEEpBU+DhXkqQzQGkg+rYDi+dD4LgkSVE4tM2v5+l+J4P/UDAVRn3yCn80FP67VSRoEvAR8OofHbNQNXr9KrokSfoR6IFTMP2jsNkVPlv7Cxm5BXRoX5UvFuzEkm9l1ivzWRz3FWH1Qjm1P4ZeoztxLS4dq82RQCt0OgpyLTctKRWHqmqodgWji/GW2xf9uI+lC/bTpHkVXnu7e9ExO5d6DLnwccegHsy/mEiiORME+Jv+/Dd6VdV4tddnmPOsbJi/j7mH3uXw7nNcOptEr6daUqLUHzei/fHjdSz9ais+AZ7M3DoeL7/bN0guUcYPFw8X8jLykAz/Y++8w6uo1r59r9k1nSSUUEKH0HuRjvRelCICgoKIoIAFQQVBRRApYgEFFURBitJ7772F3gNJICEhve02M+v7Y8dASIJ4zvnOe9Tc15ULMrPWmtkzO3s/85TfY2TjTwcRQlCpTmlqNQ0BoGLtUty/m4At0QkGAxZPMwc3nsWRbkciEFLSqm+jPI9RMqQofgV9SIlPo3zNktmMJYB3fx7JOz3nIBRBtbplCArywSfAmy7D3DpO1kcEDId93IvPhi+kcIlAWvTM+TB5+sBVVKeK6tIID09k/qnpuZ6X2WKkzL/QL65c9ZK5bv+jPD5N07I+6fRHks13LT/MzhVHOJfhwCUMGA0K6JCR7mDhgVPs9UiBZn6o5X2obS7GoZvhIKBCYXcl3wtvdOCFNzo8eshc2bUhlCvnInG5NObP2MLsxS/nGBMZlYjDqVL+MS1OXC4N00N9FOPjUrlwPhJrKS/6VK9G9aAiWI1GqgcFESCsnLsdjZfVTJf6/zkh0nz+GvwvygpkRqxqk9MpA9BICHEWiMLtbbqYxzKLcdsp5wE9jzF58kSBcyGEAbcrrDwwV0p57JH9dYBgKeUmIcSjBlMZIcQZIAWYIKU8gNtCvPPQmDuZ2/L5C7HqyAV+PXgOVdNJKvugDLxinTIYTUY+2zA2yyiypTvw9vMgI9UOSMbNe/mJvAT3bt/n9eaTSE+x8faCl2nVJ7tXRNN0Fs13J6ge2HOZ5wY2plQZ95eGWTHTpdiDPngLGr7M7piLVCsQTJBHATJSbUzo/hk3zkZQu2Md3vv+ZSwPGWUJMcksmrKWwCJ+DBjXldTEdLYtPUi56sHUb1MdpERzZSqVIzl3PIxvPl6Hy6Fy6fRtvlz9xz3rNi85hKbqJMelMKTB+1RvVIF3f3glz5wWg9FA3c51ObD6OEhYs2AP6al2jCYDc7eNo0T5IrwxewDNutThwNoT7Fp+hMCgAu62JZmNkKs1KEvXl/POcbR6WvjuyEfcDYvJNefI6dAwmgzYM5xcPxfJ9DWfP/Y11mgSwpLzuRtBAA1aV2HJnK2oLjtGgyAhJjlb9dy/i5SSe7fu4x/kh9XTgurSePe5r7lw7CbdXmzOqx/3yjH+qzd+wp6cjoenGWe6jXc7TiWgeCB93+lGtYblmfP6j7gcLqQi0JqFYDUbOLYhlAF7rlCmfxWcqoYQgrsJyZQqXICd125QLgxmvfEro97vStmKQXmer65Lwq7fo3ARP3wLeFKyXGEUg4LVqFAhF+/OsTO3eO+zdQC8NqgFPTvUzrHehDd+4eSRm7RoU4X3p/YiI93By899y7WGAqePQlABHza8MABbprp7/QrBHJmRU+w1n3z+wxQUQjycZ7NASrng0UFCCG/c5f9jpJQpj+w+DZTKjIJ1AtYCFfI4XoaU8sk1UB7hiQymTPnwWkKIAsAaIUQ1KeUFyFLQnI078/xRooGSUsr4zJyltUKIP1ZDfAghxDBgGEDJkrk/Kebzf4OnxYQiBAZFEOjvzeRT04m8epeaLR/c4t+9PR5eFr7d9S5Xz4RTo1H5J64uO7zxFBmpdjSXxqovtuQwmAwGhdJlCxIdlYTZbKTgY5qw+lu8ebbkg0Tf/b8d4/KxG+iazrG1x9ncsio9h7bM2v/V20s5vuM8RpORwiUD2bx4H7cu3MFoNjJzw1gq1CrFx0teZc33e2jZoy7ema9JSonqyv3h5fq5CI5uP0/TTrUoU6U47fo+xerv9qCm2UjVdU7vuczpvZdo2K5GrvMB6jevxKHfjqKpOukp7v6BwmwkPdXmviZGAw3bVadhu+q8PmsABpOBT4cu4PTey3Qf1gpbuoNZry9m6KRnsiQB7kXEceXYDfYsP0SbAc1o1rNBnp6ZKg3KUbl+WS4dD6P1M/VIS0rHu4AX6ckZ/Dx1DV6+Hjw3ttsTJzIXLVmQ519ry4JpG7l26R5jen7BT4c/eKK5efH9h6tZv2gfDdtVx1OR7Fp2CC8/Dxac/oy4mGSun40AYMOP+xn+0bPZPJ2Xjt9g288H0XSJVNzbnak2UuNT+WLMz8zZMo6s4YqCxcsMF2PR0x3YYlNo6NmMpHIOzEYDLz5dj6e+mI9npAPn+QyuaIl8PnktX/0yPNfzVjWdcZNWcOnIbTx0wZvvd2XLqhO06VaL2g3L0ejpnN6eMxcjcbpUpISDR69zYc0ZkuLTeHNGP4qXKURcbAqhJ28DcGD3ZdJS7SQlpGN3ubD7WUBAfGo6XV+fi8vmolffJrzVPW/5gvS0RdjSl+DpPQRPr+fzHJfPX5X/amuUuD/Kz8pMBVoFLJVSrn50/8MGlJRysxBinhCioJQyLpflDgghpgHryR6SO/0kJ/unSjOklElCiD24840uZG72AaoBezM/dIKA9UKIblLKk7+flJTylBDiJlARuAs8HIgvkbktt2MuABaAO+n7z5xvPv9/6Vq/Ck6XSnyqjYFP18HLaiboMSGBgMK+NGpf/U8do06raiz+aBVCQNv+uZdxfzH/Rc6fjaBCSFG8/kQ/q9JVS7jFKgUoFhPeftmNOJPFhBAKQoDJbCQ1MR1N0zEJSE12e9R8/Dw4v/McZ7ac5uNVb/LC6HbcvBxF/9fa5DheRpqdd579ArvNyZoFe1h+bhovvd+dnsOeZsbwH7h0/CZSSkqUe3wj4ILF/DGajIBG6fKF8CnoR+3mIVSsVSrHWIuH22M24cdXAVg1bwer5u1EU3VUp8r4BUP5dtIqNizch67p6CmpnNp5nupNQihQOHcvz/EtoZQoGUB46C22/7SPIxtO8uP5GXw7/hd2LT+MwaDg6ePBs6M6/tEtyCI1KSOrbU7c/dQnnpcbTruL1fN3I6Xk2PbzKOlpuBwuMlLguwkreGFCT3wDvEhOSKdKvTJZxpKu63wycC6H1p8CRXFLEQiBlNL9u66jGBQCi/vz2tcvcevMLWq2r0lAyUDGdp6NM7OFy6Vjt5k3rTdx91PR7Br1gotzNS4CAZjNRgrnEapVdZ02U78jITUdUcVC0CU7n0xeTYaPGcLusX7DGbxL+zB99kAqFiuElJLzoRHUDinO9kAf7HYXZc0Wtu0+jkvV+GbyaoZP6ol/QR+Klwgg+m4iZcoXxsvbgpe3hQ4da5IQeYX4klAhyoB9XyQS2Jq2P0+DSdfiSU2eDLhISRqP1aMLipL3Q0o++fw7CPcf5w/AZSnl7DzGBAExUkophGgAKEB8Hkv+7n59uOfXf05WQAhRCHBlGkseQFvcMUD3kaRMBgo+NH4v7hjiycy5CVJKTQhRFrebLExKmSCESBFCPIU7HvkC8NWTnHA+/zsoiqB305x6Ov9JSlcpwdJrc7ClOyhUPCDXMR6eZho0Kp/rvsdRqUF5Zu+exJafD1KlcQhtejXItn/UrP4ULV0IR5qNW6FhDB7fne0rjlClfjlqN3c/6W/9aT9pyRlIKZnwzCw0VaP78LYUe6Sq8PLJMFZ+vR2XQwXp7pX2uwijfyFfJi99jRM7z1MypFi2XnC5UbtFZd6a9xKR16Jp068xnj4e+DyihxMTEcemhXuo3KA8jTo9CNFYPS3uJsEGgdXTQmpiOusX7kPqbpkAYTIh0DCYcv9oCDsfwfQXv8Fhd0Gm90V1qqQmuA3I3J5LpZSc2HsFs9VErVzuU1x0Eqd2nUdxONCtFpp3zrtk35bh5NMPVnPrRixFC/nQe1AT6jXNnmwfHRGHt78XtjQ7vv5etBrYmJUzN+ByauxedYJ7kQkMfKsj63/YS5teD/r/Rd+6z7GtZ90GkqZhMBvx9PXEYFRIjYrDPziQcYtf492xK4i4HUdwqUCGNquEwaAwbEJ3vvlwDaqicOx0OJMnrCL0bARCwPRZ/dBbNSOlWwLJsWm06Zr767scE0tCQgZCCqSQpPmCMc3oNiQV0AwK6deSGT11GVu+HsWi+XtZs/I4Ukqmzu5HjdqlOLAplB3GQ1gMCtHh8YzsPBtPHytzN71FWpqd4sGBWQbiqPGdGYVbQ2v+ZxtY4ROJKVklWMm95QyAEB44JSgoqBKSXDYCLPkG09+N/6EcpibAQOC8ECI0c9t7QEkAKeW3QC/gVSGECtiA5/KquJdSPv3vnMyTeJiKAosz85gUYKWUcqMQ4iPgpJRy/WPmNgc+EkK4cCdYDc+UIgcYwQNZgS3kJ3znkwfeBbzwLvD4ZOh/lcoNylO5Qe7GlrefJ8++2prny76O0+bEw8fK6pjvsiVBN2xfky0/7kNzqThsbqHY1V9vo92AppSq5E7Lk1Ly/nNfk5GSgQJUqFuWOs1D2PvbMVr3bYTZasJsNdGkS53cTiNXmveox80LkQxvOQXVpfH2ly9kK31//5nZRN2MwWQxMnXt2+xffxqjycDzb3dBdamkJWXwzKttUF3uXniq052EUYBpAAAgAElEQVS70rp3AzoOakFCTDJn9l6iQfsa2XqvuTJzXJDSbXwZFNo83wT/In4M//R5vHw98PL1oNvwtllzVi7Yy/J5u5ASXv/oGRq1rcqSubswmgz0f7UVv83dzo1zEUhd0rRlDcZ9nncj2J2bz3Hy6E1cTo17kQlcOn2LKXOeZ9qAL7F4Wvh007tMHPgtqck2TGYj784fQtUG5ShfpyyzXluEw+YiOS6VL9/+BdWlMeeNJTRoUx2fAp4UKu5PgULuZHezh5kOLz3NoPd60K/UCDSXRlpiGgkxSdy6GYum6dwOu09SYjoBgd507t+Y23FpbFp7GiEgPDwOp1NFUQTnz0byfP/GUDyI8+ci6ddnLl5eZmbNGUCRoAdevFL+BTAVMuGKdaEbBbF1PfC55cI7WiIAxam7e7plvv3OngnHbndhNBq4ejmaGrVL0bRTTUwWI6mJGcydvAanQ0UxOIm4fo9ajXNP61B1ndW+8dztVRSfNJ3vhuR9/YXiycKEJpQ0RXHbWYxB/skEWB5v4OeTz7+KlPIguT+HPTzma+Drx40RQgwAfvm9h1wu+8vhli84+Lh1nqRK7hwP3FgPb881yUBK2fKh/6/CHXvMbdxJ3KG8fPL5n0V1aUjd/TemOjV0XfJwzVidVlX54fQ0rp0K4+OB8wAQipIZMnsIKcHhRAeS7txnzVe3kVJy4cg1xn47NM/jp6fYUFUNv4AHVX2r5u9m48+HCAoOwGFzIqU7efxhg8me4UDX3TGi7yev4sqp2+7T0CXDPu6d7RiTf3yFPWtO0v65p6j+VHnu3LjHK40+QNd0gisWpXSFIjhsLkZ//SIh9cry8qf9OLvvMv3e6Ua5mg/CgF5+ngyf3p+k+DQ0VSMtKR2jycCty1HYM4UQb1+L5uqlKDavPI4QApPZSMHi/hjNJoSAkDqlszwgLpfKzvVn8PbxoGnbqgghKBbs746iJqYinC50Lyu/zd5IYkwyQhFsXrjb7S0DhCKyKvaadq/L9bMRhF2I5IX3ujO+1xeoNgcSt/I5gNlqZsGJqYRfvku5GiWzqjKrNa3E6V3ncThU5s7cip+/NwlJGZQvW5DRnWeSnJjOe18P4qVhLbFajJhMRsqFBDHlozVYzUYqV3hgUCz6bi9p8WmkJwq2bT3LCw+1OvG1Wtn95lBuxMVz+k4UM3YfJK2cCVtRnadiPLmlOtELmPnmNXdLnaGvtuLjCavwD/CiTQd3qFsIwVNt3B+rURHxrJi3i6DgQCrVzhmu/Z2Y1DSi7iViSlNJDTTiX8I/z7EAnUu8zpq7K6nsV5UyXn/es5vP/zYS/ps5TP8tAnHLCZzCXcB2H7DiLmRrAcQB4/9okXyl73zyeQwBQQUYu/BVdi09SI/XOuSayFyoeACFigfw0crRbPv5IG37N8kWVouJiKNZl1rsXHLAnaidbEMDVB0irsfkeeyrZyMY99zX6JrkrVn9aNG1DqlJGSyavhFN1bkflYjZw4ymanQZlD2/a/KyUSydvp6yNUqy/oe9WdWKkdfv5ThO3RaVqNuiEuAOFe5dfRxNdRuJEVejuHMpEqlLFk5cwdvfvUKzZxpi8vLAmIvMw5ZlR5j3wSoURaClpKEAz4zqiI+XGf8ifvQc3IyVCw9kPTJev3CH0H1XwNOTl97uQLcXHxgQ38/cytbVJwCB06EScz2KQ5tC6dAqhK1LjqBJkOl26ratxtm9F5FAtSYhtB7QnFXzd1OzcQXKVXWnSiqKwpDJz2at3WdkG5ZMW4d0uVjw3jLeXehOwvb08cjhcZy4bDQz3/6F3TsukZrmhNR4FOD+5WgyEtJRXRrL5+6kUbvqeGkav8zeQtV6ZZg2+RkmDV3I5EHfMWxCNzr3b0zy/VSELkGXoOWMGvhZrdQtUZwiupVCTc38dPIMpa1eTHm3G2azEcUgsqpLq9cqycqNb+T5/hn0Vkf6j2qHwag8Vr5DTbBTfGsKmq7jX6MgPtbH5wHWD2hE/YC8ZSnyyed/DSnlF0KIr3HnKjUBauAO310GBkopI55knXyDKZ9/FPHRSRzceJpqT1WgXC5ChLnRsncjWvb+4y+IBu1r0qB99pyu1MQ0RjT7EE3VsHpbKRVSjE5DW/H5OysQuiTsZhxvdp9NSkI6b8zuT9X6D0Qdj+68kBXm27D4IL9M30BacgZWTzOqS8dsNfLDvvdRDApePtkT1svXLEWft7sy/vl5qLpAKAKpamgOJ5qq5dBWAkhLzmB42+kk3k8FgwKajpe3BVe6AyklAUHuZOU3u84k/l4yiiJYePRD/B9qvrt12RFUl4YQoOuA08Xy2ZsQBgOp0fEkxCQzeFRbTGYDJpOBU3su43KqKALu3IjB5XBleXZio5NwOlQMRgNXQ2+zfuZ6pKoSdu42XoUKkB6TgpefJ636NqFs9VL4FfRBKArvdpqGpmr0GNw0z3vlW8ALg0FBdanudjOPwWA0ULdNdfbsueY2PAGTyYBPIW8yEtMwW4w07eiuavzli+24nCpXQsPZs+4ULqeK1CUHt56nc//GBAR4cSc8DpPZSPE8cvJCT91mwtjlIAQDBjfluYFNch2XF9cvR7H8xwOcOxNB+cpFmTy9LxZr3o3Yb1yOxmww4HDpeMRqf+pY+fwNkW6H+N+NzGr/HZk//xL5BlM+/yje6DSdxNhkFEVh4YkpBAb9sbjkv0NibAqqS8Npd+FyqszcOp5bl6MwGA3oThVd1bh80t0C6atxy/l293tZc5t3qsW6hftxuVQKFvTm8sHL6JqkWpMKtOvfjFpNK+LzSG5XxNUopJSUqlScC8dvoqkauiZRPK1oiSlcOnaDk7suUrRsYQqXCMDq8cBLdO1sJGnJGegOJyYfL0ZM6kHjLrU5tiUUp91Fh8Hu5sv3o5JQnSpmi4nlX+/gzo1YBr7dkUq1S+NtNYCUCEXBgMToacaZ6a1CwoWj1ylfPZghb7pFG8uUL8L0N5ai3rvP1gXbOb/rLG98M5Tf5u2kSp3S2DIc+Ph5UrZMIFJ1509Ju4OKFQtxOiKGjASV58uPRkrJ2O9f4cKBK8Rl9s37dfYmxi8emet9aTewGXdu3OPYtnPoEq6fjWDb8qMUKRnIs688nUMjrE2XWly/fo99Oy9Rr2FZvLwtrDx+BVE7iDohxek9vDXg1ri6fPo2JouRuk9XYdfuK0i7iz6vuHNNx07qwaJvdlO0uD8t2+ausHLpwh1UVUPTJKeO33pig0lKyZvrN7Hx0lX8YhwExDu4EBrBsUPXad66Sp7znmoWwqpSR4iKjOel11o/0bHyyeefSL7BlM8/isTYZFwOFbPVRGpiepbBtHvVcVZ+uY0WPevTb8yTKTA/CcEVi9L2+cbsWHkc/yJ+RIXdp1zVEnQd1JQ13+1BSB0pFMxWE2UeESUsU7kYy09PQdc0Lh69wdHNZwBBvZZVaNu7QY5j7V99nJnDvwfgjXkv0bJbHTb+fIiUxHSCCnkR5bAjdclv3+7i6rlIREYGfgFeFCxfjBGf9CWkdikUKUHXkS4XGRlODCYj7Qa6w2SqS+XErgs07lCD62fDqVS/HNuWHcVhd3HmwFU+XjiEUxtPIQFhNtKyfzMsHmZcTpXdvx7Hr6A3TR9JbG/WsQZlKhTmlfrv4bQ5uX3pDh/0n0tKQjrHt5+j36j2HNl6ls8X70UxKkhdElg8AL+CPhjNBnRdomVqEG1YsIser7Zl20/7EECd1jklLDJSbXzQZw7Rt+7TqGs94mJTib6bxOXQL7A53EZgoaIFaNmjLuCWGji6ORSz1czwMe15NVOde+v+S4gz17A7dCIT07PW/2jRMK6fi6REuUK8+sL3OIWCydeT9cuPYfW2ULlWKcZN7vnY90zbjjXYvuUcqSk2XhiSs7z/1JnbTP5kHQUKeDJnej8CM1urhCclse3mTaRRkFTFgv9FBxI450pg24YdvNKkPiUDcj4gePlYmZeHLlQ+/0z0x+dZ/2P5w+a7/0vkN9/N59/l8OYzLJ2xkcadatF/bFcAtxRA6dFoqo7JYuTbfRMp9hg9qT+Dpmq822Mm5w5dA5OJhu1q8OGSEQBcOHKdmxfuEBwSRGpiBo071nys2OOtS3fJSLVRpUG5XHNSPh+5kG0/HwCgZvNKjJw5kJKZSt32dAdHtpyhdOXijOw4Ez09A5me4Z5oNlOyfkW+2/UuU4d9z6FNZxAIdE3DZFCYvu4tipUpxLC677qTq61m/IMLMXXlKF7vNBPNpSE1nfLlAnDZnETfvo9mtqBLUAwKHQc0YeS0vnnm0UgpmfrCXA6tP0mb/s04uO08tjQHQlVRNA2XwwUWM4rFhHQ4kC4N/6L+NO5SG1uag0PrTqCpOm99O5RWfRsTfvkOmqpj9fEgPcVG+erBWcfe9vN+5r29FIfNScESgaSmOjP1k9z7jYqgZfc6vD6jH2aLiWUzN7J81kaQMHLWANr1d4f5HE4X/d/8kXt3EvGKc/DhlN481bJSttf1fJc5xMWmgJQoaXaMZgOjZ/SlfoNyFCiQsz/jw+i6TlxMCoGFfHKET0eM+ZlLV6IwGhWGvdiCPs82ICHDhqprdP9pKSk2OxY7jPSrQuH6xZiwZzcOl0r5QoFsHP7faaqaz3+O/3bzXa8KRWWlL1/6rxzrdKep/9XX9u+S72HK5x9F4061adwpe9GnYlDwC/QmLcmGYlTwyaXZ8L/KjqUHuXjoKtKpogDBFYM4ueM84VejKFGxGAazkZDapXPkIOVGYlwaoYeu4VfIlxJlC+fY32NEW45vP0daYjqXjt3gtWaT+HLfJEpXKYHVy8LTvdxabV0HNWPdNzvceU26RDEaKBDoA8DwKb1JS8rg8skwbEkOHMCRLaFUql2ajEwlcelwkp5io3RIUV4c24kfPlqNSdOo8lQFhnzUh9Xf7mLp51vApaFrOmarKZuxpGk6R/ddwdfPk+p13VVx7//sbsPx47R1uBwaCPD19yIx2h1eMygC34I+JN52G3lJMUnsXHUSxWCg11vd6PlKa3z83eHJUpVLcOHYDd7oMQchoN/o9vR9vT3g1vUCtx5V7ZaVKVqhGL98uT0ryV13udi3+jhe3haGT+3L7Ut3cNpcCEUQeTX6wb2w2Ym9HYN3pDv/af+OC1RuWJrLUbHUCC6Kp9nEJ3P6MXvmZq4eugG6TkaAD59/sR1fHyvLlo3Ifk1Una8/38qN6/d47Y0O/PzNbs4cD6NYcADzfhmO6aGqy/p1yxB2KxYJVKlcjE2XrzJ20zYUIZj/THcUBWoWdZ/DifA7j/UVnDwfzrylB6hbNZgRA5r/f22GnU8+/9cIId7MZXMycEpKGZrLvmzkG0z5/KWRUvLTjE0c3nqO58d0oEW3J9MycjpcnDt4jeCKQRQJDuSLreM5uu0cNRpXyPri/U9gMBowGBR0g0KFmiVp2KYaE3rOQtUl0mLBZDZyeMtZpi5/fN+uexHxfDj0e5wOF9tXHGXk1N64HCotutXJaiBbpmowy67PYWDlN4mNjMfqZSHyWjSlq5RASklGig1PXw9e/bgXL73fjeUzNhAVdp8ydcrSOTNPxtvPi8sX7mJzaGAxYzAoNO1WlyIlAvAu4IXLoRJYshAvT+uHlJJnX21DnWYhxN6Jo1rjECweZmo1q8RPs7eAEPgV9GbQuK7ZXssPc7az+bcTSAnjP+1No4c8MxmpdlS7E6lpJNnsoEtMFhOTVoyiylMVGN5wAnF34vEJ8CbFriNcOpuXHKLfm52yHePSiTA0VUNTdfauPUWvEW0xGBRC6pbli70fcD8ynjqt3eX3Ny7c5dS+y4TULMnlo9fQVJ2YyHiObT9H3zc7ExUWi8XDTIPnG3L4ejgNygZjNhiwl/XEGuVAIGjzbF26fP4jSWk2LC7B5jcGEX4rjhRfneRKXlhjnRgMCna7C6dTxeXSMD/kTdyw6QzbNp/F5dSY9uEaoq/Huu/73USi7yRSsswDj+fgAU1o1KAcPj5WihfzZ9bK1Tg1d7L2schI3mzeBE3TOXPwKkWL+fNeu5ZciI7h5cb12LjzPF/9sJsKZQoza1IvJs7ZRHKqjdt3E2havxw1Kz3cgCGffyKS/ynhyv809TJ/NmT+3gU4BwwXQvwqpfzscZPzDaZ8/tJEXLvH6gV7cNpdzBz9M8271n6ip+QPB87j4tEwhALzD06icIkAugzOu3/Wk/B7YvfDffJa92tMamIa8dFJ9H2rCxcOX0MIgaZpKOAul7+TkPeiv6/tcKFrOkhITkhjxpglIASRYbEMeiu7sfD6nEHMeW0hwZWKUS9Tk+eTAV9zcO0JKtUrx6xdE/h+8ip2/HIIKaHvW52zksel1NEyG8diMGAwCqa+MJcyVYoz/+RUdE0yb8JKZoz8kRVfbmP6qtFIYPrQ73DanIz97mXSM1TAPT89zZnVnuV3bl2PwW5zYTAqRN66n81gOrvzHFJ1AQKZKaZpMCikJ6bj5ePB4gsziI2Ix2A2MLj+B+i6xJ7h4PLJMGo0fqD4/fQz9dm4+AD3o5K4cy2a58qNxmlzUuWp8kxePprSlYtnXdeuAxrx2ie98PC2MnfcMlIS0jh78Cpn9l0ioGgB5u2ZyJ3UNPp+/QtCCFpVKctHPdow+dk2XG2fTKuKZRACkjJsaApkmHVmTVnHmTORSAHGwgbuP+1LfWcAjlvp9OndMJuxFB6VwBcr9mFwaSiKoHARP4oXK8DpA9cpXa4wxYOzV9MJIagUUjTr9wF1anIs4g5GRaFjJfc1+HL8CvZvCkVKyexVo+nT2Z3PNeKnJWTYnFwLi+HwyTDkfRuWDBfSD/x9/3Oe1Xzy+R+lBFBHSpkGIISYBGzCLbJ9CniswfTH7eLzyed/GK/M8JnJYiQwyO+JjKW7t2I5cyQMhy7RJLlqE/1ZIq7do1/18TxXbRxr5u/i9K4LrP52F6PaT8e3iD8vf/IcvgHe1G1TjXI1gylctACVapfC19+THkNaZFtLSsn3k37j9VZTOLPvMvci4klLtlGydEHQ3PlCLoeKy+5i+5KcwrQN2tekRpuaXAy9y6iOM0hNTufA6uNIXXLzXDhRYbGc3X8Fe4YTkFwLDc+aa7GamTh/CL4BXhhNBlxJaUTduMfxbefYvfwwPgFe7F93Gk3TibgaTb9q4xjTbhq2dAeqLlkzb8eDEnYps0Q/H2bYWx0oVa4w1WqXouMzdbPti42MQ6oaCIHRw4LRZMBoNlK1cQipieks+mAlRzaeJjCoALVbVMbqacZoMhJcISjbOoWK+TPonS5YTAquNBupiek4bE7OHbzKkU1nssZN6D6Dyb0/Z2itcdjTHbw990UGv98DTdWwZziJuhnLiI4zuHo3FgHYnC7O3I5iWJ95fPv+Bq4uucDEV39h3NCfCVatCFVSIMyBIhR3bbYuMafpNK9djjkT+7J82UieeSZ7ysatu/HgYcJWxIKhuBd+nYqxJjiOmL6BvPNlHzasOM78mVtISkgnN1qXL8ep0a9yYtRwKhd2e6IunryVeX8h7HJU1thaVYPx9hZ4W9KY+/WOrFY9/sJEyWK5yxzk80/D3Xz3v/Hzf0BhHmq6C7iAIlJK2yPbcyXfw5TPX5oFH/yKVFWEEHzwfd6K2Q+zb92ZTLF9gdXHgxpNKv7RlD/k2I7zOOxOVKfKgjd/xGQx4nRJhLcXc95cStPOtbF6mlk7dxvXToahS0l8Yga6Jvl+8ira9GmIh5e7h9fFo9fZ8MMeHBlOPnlpPqrRBAjqNQ8h8moUTqeK1DVAkBAem+NcpJTsX3caKSX37yZy77Y7/HTuwBWKli2MVwFPug59mh8mryKoVEGadMme01X/6cosOjyJvWtPcXTdcUL3XASgSOlC3Ll+D6Fr6EJBU91hIFXXERYLAkhItNGyR112rTrBtdBwhk7snuP8ylQowvxVuYcgx373Cosm/Uqd1tUYPv15YiLi8Av0wcPbypT+X3FkwykUg8LGnw8RXK0k7303lPLVg7NpQQFEXI3Gnm6nbJXi3Dx7G6fdha5qIKHkQ96ZqyfCsGc4sHpZuHP9Hv5F/ChevggBhX2JDo8Ds4nYu0nUKlKEqiWKcDM2gZcb1uGn9ZtxOVXCwmIxephRXRrlog18OLQzQihUqlmCF3t+RXKyjT5ta/Nq9855vncaVi9FCdXA/TSV195pz7Qbx3BoGopJYem2Exz56hiqS+NOeBwffzUw1zU8TNl1ll75oCez3/6FYmUK0fihhtcT32xC9L33GTu+G/cT3HPMZgN165TO8/zyyedvxFLgmBBiXebvXYFfhBBewKU/mpxvMOXzl+bM/iu47C6sXhbi7yVTtuof52DUbh7Cirk7kFIyaFyXbJVpifdTUQwiWyuSJ6FijWCQIKSOwWjAkeEEITCbjRitJhZMWUuH557Cnu5A6tItgPh7geojlaoFCvmClJgsRqy+nqSmu3Dandy9HcdvN2bRq9I7OO1OhACLX87zFELw9DP12Lf2FEWCAygVUpRJK8dw60IkqqbzYoMPcNpdGC0mkpLtWDKFIqWUnNx5HoPRQO2WVeg0oAlt+zRk78ojBAQVoG6b6pzZewld0wAdiUAYFHeFWaZnLy7a3aJk6rLc9Y8ehy3dQUJiBsNnD8pSHg8q9SB3x2FzoukSTde4GxbDvagkFCRvf5HdiIiLSmRU6ylICUVLF+KZMZ1ZOXcnaDoiPZV7t+9z5/o96rSqxktT+vLj5F+p8lQFHC6NxPupnNh+loQ78WA0IsxmWnarTbFi/ix+pQ/grmA7V+8SJw9fp3RQAe7cisPgZabX842o3ywk6zx+3fkOUkrsNhcpSRn45lEZd3jnJVIu30dxaRxdHcrQl+ryyd59FLBaqeThz5HMe6O5cm2DlSv1n67MslMf59iuaaEYDHaKFEkiOcULsPL68NZ07FDjidfO5+/PX6h4/k8hpfxYCLEVaJy5aXhmmzaAvJsoZpJvMOXzl0NKyYF1p0hOSKPfmI78OG0dpUOKUr1R7s1FH6VyndIsOvQBDpuToqUKZm0/tPUc01/7CSEEHy0eRs1HmpVePn2bGW8soXjpQrw3bzAeXg9aSKz4bD1aUgoGk4ESFYty73Ys1gLeSIORNKfGlqWH2bL0MB/9MIQOiek4HS4ada3H4S1nadPnqSzvEkCJ8kF8vHIMn7++iPioeHxLFMFuNvLiu10xW828M28wnw77AcWoEJLpGZBSMvv1nzi8+Qw9hrXi7a8GMezDXngX8CQjxcYrTSeTmphOcEgxnHYXUkpcdidpQGpSBoFBfqz+ehs/fbwKCYyYOYAOL7TAZDbSdsCDtis3zkciFCWzX5tEahomiwnfgj447Cq9R7ZFCMHqb3Zw8dgN+o/t+kRGLMBno3/m9IGrCCH4cOHLOa6/b0EfhMF9bKlq6HYnRzadYXJiGp+tftAiJP5eEhK3gRVxLZrwr9zCvhLQUJg6aC5Gs4lCwYG0fLYhOoKrF+4wZfgiTCYjr07qDgJMqosGTSrz9uzsn6OKojDlywGcPXqDSa/8iG53UdDPgzbtc+o+3b4Zy5iXFqKqGqPf60K7LrUecwUkSBhctw79atbAbDAQnpBIclUrWrKTZsPqP9F1fBwWc30UJYDRr23m7LlXqFypH1UqFfvjifnk8/fhNHCXTPtHCFEyvzVKPn9b9q05weejf0JKSaveDVkf/uWfXiOgsG+ObXvXnsLpcIGqsuu3Y9m+sHVd591+c3E4VKLD49m1+gRdBj5ovWE0GxFCoCiCvm934+DmUA79nitjNCKsFqTNzsTeX1C+ZklmbRmPyWLkqQ7uViqLZ23myPYL9B/Vjmada+GyO0m8l4TT5sIWm8CqiAfNuJt2qsXcXe9y+0o0DdtmNloNi2X/2pM4HS6Wzd5C3zc64pcpaHgt9DYZaXZcTpWosBgsnmbsyRmgu9urePm4jbWb5yJw2NzG1Fdjl5Gc7KDv6+2yXaPgCkGYzEacDhdCQvsBTanWqAJNu9YhPTmDM3svcWjjaRZPW4cjw8nNc5H8eHrqE92T+1HuVigWDxPxsSk59sdExKFrOopBcYdUFQFScvHYDVSXhtHk1iuqWLs07fs35ciWUOIT3K8TIRBSYrYY0FWBPcPJ3Rv3WPLpOqQucdic4O2N8PGgWPkgxs5/mZjIeDoOyrsQwLeAF1KCwajgF5B7ZeXxg9dxOlV0TWfLmtO5GkwtO9YgLiaZ+9HJ9H+1FQAWo/ujefO160RVNqJLA0uuXaBjnbwVu3ND1XUkEpPivjaK4kfRIkeQMoPyZX3+1Fr5/HP4u1bJCSFeByYBMYA7r8H9LPVELtb8pO98/nIkxqag6zouh4v46KQnmmNLszGu3ccMKDuC07vO5TqmywtNIS0NmZbG/mUHCN17kcMbTqGpGunJNhwZDrevWkp8H5EeeHvByzwzqgNDpjxHi94NKV3FXYUlpURoKrhc4HT3hbtzI4aVn2+ma+BQ+lccQ+jBq6z5fh/h1+7x2ZtLkVJSukpxFIOC1dNCtcY5PWelQorRontdrJ5uL1dgUAE8faxYvSwElQrkfmQ8O5YdZlTrKdy9cQ//wr4IBYqVDERxOSGzDN1pd3HtzG1cTpUB73aneIUghNGAphhY/NlG9EeStp/qUJOSFYIQEkxmA/XbVKNN30YYjAZebTSRL0f/yOzh37v1nRSB2SPvHmaP8ubMflSuW5oWXevQrFPNHPtHzhxIuRolKVqmMKbfG/8Kga5JUpMeJEQLIRgxvR/exQKRJiMYDaCqoKpIs4UWzzbEr5AvPUa0I6ReWaxeFqxeFjx9PajdLISMxFQWTljOpcNXMVlynr/N5WLMsrWM/341/d9px6A32jPlhyE4nSqzZm/h+a6fM/nNZaSm2GjUIgSr1YTRaKBr79w9RAaDQt8hLXhtQjf8Ax+EWK/djyMhPQOTomAxGmlfMef7YMPyo7zYeTY/fAnYZUAAACAASURBVLGN30WIpZTMCt1H19Xf0/z1j2n+3hSOxd5+6PoYUJR8YymffySjgRApZVUpZQ0pZXUp5RPHo/M9TPn85eg4sBnXz4aTdD+FkdOfz3PcrQsRbF24m/odahN3J57z+y/hcqqMbz+Fb0/PoGyNUtnG12xcAQV35Zzq1JjQYxYGo0KhSsHE3UvB19dKckI6VeuXo1lnt6fg0NazrJ6/h1bP1KPHax2wWE0oikL/sV1IS0xnx5L9BFcsRvSdJFIdTmSmh2TVl1tQXRopCWlcOXYDoQjMFhNmi5Hn635Am171+eHUVO7eiKFyg3I5XlvU7ftcOXWL+q2r4VPAE6uXhfmHJrFtyUF+mrSSV+q/h24woms6YecjWXJpBvtWneCHD1bitLsgs1eaLiXvPvs5JpOBIkX9SIxJwrNwAKqqUSDQB6fdlWWU/Y6Hp8XdL04INJfb8HJkOEhLynBrH5k0Rn89hMgb9+g6pGWu98aebsdkNWdpSAGUrVKc2atG53k/y1QLpsOLLZk7+kf3M6GHFcVspEylYjmSvqWURFyPAUlmjpo7BCmAeu1qcGDDaTYvPkCPV1oz9KM+lKpUDJ/MvLVBVd7k3q37xEcncXTjaZo9k70NzdLQUI4vPo1uECzcvIHFe95nzqbDnDoShuN8HCJDJeFuEr98t49X3urAiu1vo7o0PL2yX8f45HRUVadIYE7jJclmp/dPy1F1HS+zmV/696F8wcBsY+7dSWDulA1ICb9+t58GzStRvXYp1l+8yC8/ncTzcjresTrSAN8G7aDhmJfzvLb55PM77mfCv6eHCYjELVT5L5FvMOXzl8PqZeGdb4Y8doyUkrdaTiI1IY21X20BcOsYAVKXbP5uJyO+eJHUhDR8A32y5AiGfNSbpZ+up2iZQoRfiMRuc3Lndjxk2LADZauVYNZ6t1is6tL4dMRiVJfG1dBwvp34GwajgRmrRxNxPQazrxcLTkzlxXoTUFWJNBpRzAJ7ig3N6U4KVwwKT3WoSaOudTm57zKLpm1E13TW/rCPnkNaUK1xzgq+pLhUXmszDalLChbz57uDHwDgG+BNemKaO6woQfE0YDAZMFlMWD0tFC4RgFAERrMRr8IFSElxoEsJqoqaaiMyNR1N1Qnw9kQVCsmJ6UwbsZgPfxyGpmooBoWYiHgibsYgFIXmPerRtLtbFsC7gBcvTu7FhgW76PhiS9r1z7th7MpZG1j0wUoCggow79hUNn6/m5Wfb6b201WZuPS1bEbU7yTGpjB7zE+E7jiblWDu5WHk7fkv07BjzjCXEIKh73dj+Vc7qN+qCh2fe4ptSw9Ro3FFDm0KxeXS0FWdyydvMXjiM1w/G8HFk2HUb12NUpVLkBCTgoagUHBgjrXDo5NIruGHFALNz8SUxds5ePsu5lQNb8AACEXg5+9O8jabjdl0l65cuMPsTzdwwZaErYSFD59pR7cW1bIdI9XhQNN19BQXXkdSmLjzJz6c0ZeKD+UbqepDHb8kWcdYtSoUw32JKVUgDQpInWo+Rcknn3wIA/YKITbxkIyAlHL2k0zON5jy+dvicrhDYL8bSg+zcf4O9q44RGpiOpWfqsDsfR+hKArPvt6RZ1/vSEaqjQ/7fsG9W7GkSwNpGe62IPfvJmatoRgEHl4W0lPt6JmJyJqqMfv1H4m8EYMrJZ11X27GYDGhapo7YVlRwGpGmE0IlxNPXy/Gdf0MTddJS3FgLeCN4mnG6mHG288Te4aDBe+vIDE2hdKVilGrZRV8A33QdR2HzUV0+P3MprgXKVTMn9b9mrBy5gY0VUdRnXQc3IauL7fG6mnhqU61eGveEOKiEjFYLSyavhFd01B1DWk0oNndQpGFSxYkPDwRh83Jvch4fv12F4umbyK4fGGata1KWpINiSD04HUWfrSGAWO7YPWy0HtMJ3qP6cS5Q9eY994KWvduSEjt0jmu/Zqvt6JrOinxqZzZcyErj+jMnotcOnqDsKvRlK1SnOpPlUdKSWJsCounr+fEtrNIhzOzKg96jepA4y55K7v3fKkFPV96oHFVsWZJBtR6F3uGE2E0EljIkxcn9uTc4Wt80H8uUtMpHORLsx71OXP8FgZF4dd5O5m4KLuHr1KhQu57KSWap5Gom/cxpThw+pmxBXtQ3G6kQf2y9H4hd6Px43dWEhebgpcCtkIGFu0/mcNgCi7gx5jmjVm18BBauk58WipLf9jPhzOeY++VMNaeuUSf+tV5eVxnNq04RuvutQmp6g4De1ktWNJ0FASYDJQoWZDRL3TM8zrlk8+j/B9pJP03iMj8MWf+/CnyDaZ8/pYIIZi2dQK/zlrPpSPXsKfZsac/0CXTVI3kuFQArh6/QdydeAqXdJewpyams2/tSQZ/1IfK9cqSkpjG56N+4s71e7wypU/WGoqiMGf9mxzcHAoIFk1dh67p3Dx+zZ1krCg40u30Gvo0m5cfw65K95e9wYBwOJHCQGJssjspORN7SjoTfxpM1QblMFtNrJizmR3LDuNyqBzZHMrquduZvfM9QuqUIfxKFC++352vxi1n/9qTSF0y9ddRFC1TiDvXojEaTDRsX4NSmV4JIQTNe7rzaKSUFC9bGE3TqFgjmHe6zSLiahQmk4GWzzYg7FoM4VejGflJbyYOXoCUkti7iXj4emAyG1CdkHAviXXf7UFKSd9R7Tm29SwlQ4oxsf9cnHYX25cf4dcrM3M0FK5YvzxH15/E6VC5Gx5HpXpluXXxDhYPMz9MW0/Y5SgUIZi5dgw/TttA6MFreHqaQH9Q62z1tNDppaeJiYznxoU7BBbxI7CIH4WK++f5nrCnO0hPsaGpbumHefsnkZqQyty3fsaRmoFudxKRkMKKG/cweHngsDm5fPwGKfFp+D6UW9SrXjV+2XCcqMQUAs6lkxEXS4CAtBB/rBYvYl1Otp+8zsCENIIK+2U7h9W/HCE1xcbvriHdKChstpIbQxvWo6rTh08mrEIIQa16ZUjKsDFm2Uacmsbeq2EcfX8EzwxsnDVn1/kbnIyLxmIW6FbB/TpmHAGCJJeDgqZ8Je98/tlIKT/8d+bnG0z5/G2p1qQS1ZpUwpZu52bobT7o/impuagl+xX2I7D4A5XjCc9/za1Ld1EUwRdbx7t1jH4ekbU/LTmDRdM2YDIbGfxuV/qMbEvi/VR+/HQD2v14AITRgGJQMJoMNOtej67D2vBym09RXZo7SUBRwKAgNIF8yAFWq1kITTs/CDF5+Xo8UC+XEgT8MmsLV07dQgiBxcPMjbMR2DOcmK0mwq9GM3HZaBZ9sJKKdctSr23u+Yy6LqnbslLW2v3e6sSskYvwDfShSdfa9Cz+IBTVqF119q4/jcls5OlnGtCie11+mbmJncuPZo0Z3eJD4qMTEUKge7gNAKnJTPkBN+kpNmxpdopVCkbZdw0JhF+LYfqmcVw7dYtSlYrxWscZuOxuz+Cy2Zs5ve8yUkJamobJYkSaDBQvV5gPl41Cl/Bq2+k4HU40p4bJZGDs14No9ogQ5+/4+Hsx+N3ubFq8n04vNMMv0JvhdceREJPkzonKrEwTQMVapbi4/xKpMS5erPUOn++aSMmK7rCWxWRkev9OTJi4Ck2VqG6FBfxup6NV9saVuYp4pO3t3Yh4Fs3djdOpghDEVbNiTtS4ExrGnefiKVEqZ/ivUbMQvvx+CA6Hi8rVSpBis/8ekcQgHj0CXL17H5ui4vLXEWU8sBUCh+LgyyNH+Kh161yvSz75PMrfTYdJCDFHSjlGCLEB9197NqSU3Z5knXyDKZ+/PR5eVqo1qcTn+z/my5HfcePMbQxGA+nJGRhMBvqO7Y7BYMgaH3c3EZdDxeppJiE2mVIh2fM/fvx0A9uWH0VRBF5+Hgx8qxP+hXzoNbING77ZgZdFYcTMAfgE+hBQxI/i5d1tO979+gV2rz6Jf4AX25YdwQVYfT2wx6cgdZ2GnerwwZLsgo8dB7VACIWb5yMIvxhJnVbVuHr+Di6HC4PJSPy9JF6d2odZry8mqFRBWvSoh6e3lQ9XvZXn9di57BCzhn+PxceTDi+2YND4brTq/RQN29fknWfnMLj+JAaO7Uy/N9xhnDHT+9JzaEv8ArzwL+hOUH5lSh98/b1xqRqnD14j6mYMABYPM0Mm9ODiiVt0Htwcc2ablMhr0Yxq8wmqU6PX6A6UrFQMl0Ol/5udMFtMWblaA9/uyKwxS5ASDm85h/uzTbiNL5dKt+FtGPJhbwxGA1fO3EbXJZpTA13H5dD5bMQirB5m7DYndVtWxtM7u/em18i29BrZNut3h83hFhxVBAaLO0n+hQk9afVcYwZVG4vT7sJpdzG6/af8dGZqVs+9alVLsHb1aG5djmL8wG9JdmgUrRjEmI97snXXRZo0LE+RR6QrPDwtCEUgFIFqBGdBEzJNR1FceHlnTwh/mLIVimT939fDyneDnmHrhWt0rVUZiyn7R3ivRtVZsmAX3uFOEqtYMBbxAilRo3Nvq/JnkFJy7OgN7DYXzVtWRlH+tmGbfP5+/Jz578x/Z5F8gymfvx1pSel8/+5STBYTQ6Y+n1XlVapKMLP2fMSgiq8TfTMGg1Gh1xtd6Tayfbb54755ie8+XE3VhuWomUvbFJPVhKIIhCBbMu9L47vy0viueZ5X+SrF+HzoCdKTbdRsVQ2LnzfeXmb2rTqGEIIaTUNyJDwbDAqdX8zeay46PI4v3lqKX0FvOg1sioeXlUXHP0Z1aZw9fI0SZQtTJJdk5d9ZMnUNuqJgd+ms+34vqlPntenPcS00nKiw+0gp+XXejiyDKS3ZxuRB87l/N4HB47vSe0QbLB5mBk/owfVzEWxaegS8PMFmp9PQp+k+rDU9Xsn+ZXp67yVUl4bLqXJ0cyjzD0zK9dyKlCwIuK8tAqTdCeL/sXeegVFVXdu+9vR0QkJJKCGBAKH33otSBURQEBUEVBABFbGgUhQVRLEgRRCRphSR3ot0kBICJJCEkEp6L5Np5+zvx4QABhR93vLpm+sPTObsvU/ODJx19lrrvp3XRFEUNAK0uhK9paY16dSvKWcPXqUwu6A08Plg/Aq0Wg3VAiuzaP+bD7wOAB/88gYbPt1Bi16N8PDxJKhxDQIb1gBg8ITebP5qD+h0TumCnKLSgOk2gSH+dBvZkZ0/nyc1rYCLp2IorKVj+YHTfPrGRvz8vfl46bN4erlS0dedT5c+x77DV1gTdx2jXkOboCq89krne+QE7qbYYuP9j7aRmJTNm1P70rxJTVoFVqdV4P3FQCt5uuGeI9Eo4B1uxUNqsOeYCY9N4WJAPVrcpUT+Vzmw9wpfLtyLAOJiMxj9Ow/Ecv49/Nu65KSUF0r+PPqfzFMeMJXzr+O7d9azb+VhhEbgXsGV52Y9ec/7DpsDKSVavZZ2A1tyfPMZMhKz6P9ib1xLvOW+3v/WA+d/bvoA3DxcMBh1DBnf/Z73UuMzuBWTRtPO9dGVPP2bCy18NG45Ny/HUZhrRlVUEiMSWRv5BTaLnVr1/TGY9GUCowfhF+DL+PcG8/3szfyyaB8jpj+GEIK5L67k0olIABYfeOseFfO7CW5Zm5SkC84X8k5xfGCDahhMOlRVpXXPhqXHh52MIi+rAFWVbPn2CMMm9ip9r0ZwVSpW9iRTUWg9pDUvzR91z1oZt7JR7Art+jZj3fydqIqZxyf25tjW81iKbfQc1rY0AAJo0CqIdo80IuxkNAOe68TWxQew2xSEEAQ0qsnw1waUHqvRaHjh/cGMeWsgEediWPTWT3j5eJCWlIPFbCM+KsWpg/UHhswNO9Rjzi/1sJitWIttePl48NueUDKTc3juvccJaFSTjV/vo9vg1vgHVr7vHHa7o1QDKSwhmQPJGfgczMFQoJJgzeDEoQgeGdicuRNXEXEhjvEzHmPr02PILiqmUfUqZc7v4LlI5v38Kw1qVeWRoEDCriZitTpYuPgAq5f+cXeoEIJp7wzii7c2o6JCeC5uOTaEi5687MIHjpNSciJjOTEFJ2nrO4oQr95ljklKysJhV1BVlcQEZ+o5L7uI0BNRNGwVSCX/Cn94buWU87+FEOIK90nF3eZhtZjKA6Zy/nUYTHpn6kM4tY1+z4c73mL9x7/QpEsIuWl5LBi7BMWhcHb3RTx93Gn/WGt6P/Pg4MXkYmDUa2W7jpJvpjGh/XsAtOzVmPfXvQLA4U1nuXIqCkuBGRTVmSKxKaXn+sQrj5aZC5yyBVmpuVSq5o2mRDcp/totXD1cmDPyK1LjMrh8/BohberQvHtDrl+Mw2K2YXI1kBCd+sCA6fVvnichOo3EmHQatKnNuFlDObYzlBVzt9O0awOenNiTwBLhTYAGrQJLghpJXnIm5/aH0fqRpqXXYtmRd8hOz6fy7wquQ4+E8/6whQBM+XoM668vQLErHN50lkXTVwGQGJ3C2PeHlo7RajXM/P7F0tcGvZZNX+9HoxFMXzYez7s8/rYvO8iSN9Y61b9dTbyy8BmWzd6GrUQgVArBztUnGPjcHWuX+3ErJo1Xun+IzWLjkRHtOfDDr0gJV09GMmbOkyRGpVC9dmV2LD9MQWY+fcd2x7ukmFtKSVxeAVa9wM+vAm37N+DQgWPYKukxWexO6YdKHlz5LYZLp6KxmG0sm7OVTUPnUq2iV5lzyc0q5K1vd+Iwajhx5SYtqjnTuSaTnuDa9w/YbiOlRLXsY9neqyhWBxpVIr0N2EwaendtSud+D7ZlybbFczlnGw5p5WDKAup79ioTyA0d1pbr11IoLrYx9sXuqKrKKwMXkp9bhFQlo17rw+NjOt8TAP9VIq+nsGnjWeqE+DHs8db3lZgop5y/we0nrds1D7dTdKP4g0Dq95QHTOX86xjz4QjcvFwxmAwMfbWsS3xg4wBmrJ8KwN6Vh50BjN3BlePXUBWVs7tDCWlXl0rVfXhzwHxiriQw7oPhDHrxzs5KYW4Ru787gn/tKnQa7Ow8i4u4BTi7sa6djQYgPSGT6HM3UB0KBlcjdrsdrU5LUKMaf/g72KwOXn50HqmJWTTrWJcPVr/E5i9388OszQgh8PB1B1ViK7LhcDiDr/Ezh7D0vc3UaVyD5p3un3r57cAVwk5GMXrGIMJ+DcfLxwNXdyNfz9hEYV4xBXlm+o3qWBqgSSlZ/fE2LHkFyCILqsXKj/O2lgZM4BSGrFK9Ypm1zu0Pc4pkAkve+YkFk9fgV8ObVr0aOXcqFIW0kp2KBzFq+kA6P9YSD283Kla5N8DYufxQqWSEanfw08I9KA7VmcIToCgqUZfi4U8CpvOHrmK32XHYFc7suYRUJTaLndS4DN5/6mvirt9yzllSdH9442lWhM4DIDO7kLCIWzg8DSQVF+PIddCrSi14VCFqTTiKxcHHb27i46XPIoTA5GqgTuPqZKflcXDzOYKb1qR5pztp3/iYdPRFCg4tqELQvkUQHRrUIiUtjw53CZg6FJW45CyqVaqAS0mdmMO8BnveJ8RnjcKn5B7g6mZk7MdP8njLRtyMSqUov5jajaux5mQorgY9I9o3Q6fV4KKtgECDThhx01VECEFRgYUb11Oo16gaJhcDXhVcmf/5HaFYm9VOVnoequJca83XBzC6GHhsVAfiYzP4dM42Kvq6M3hIS5ITsujev1mpDc/9kFIy7bV1mM02jhyO4PTVWN57ayC+Lve3nSnnvweJ+Dem5OIBhBC9pZR3d4W8KYS4CDw4pXAX5QFTOf86TK5Gnp05/M8PBHqO6kzUxZukxaYTcSaKwpwikBKdXsvlE9eJu3YLu9XBmo+24unjTnzELQa91IsF45Zx6WgEWp0WV08XDCYDN68mUq12FeIikqhVvxqKQ+H1Xh+QlZyDRit48fPRVKrqRfLNdB599sEeZbdupDK938dkm50yBOePXENxKJzafgGbxRlw3X4mElpB3NVEWvduQo8hregxpNUD502ISmHu+BXYLHZ+XnwAWViEwajHvYIbAXX9iLmaBBL87qp/SonL4NCmMzisDtDr0bi6cuNmLuG/xSAdDuq1ql1GNuA2jzzThX1rTmAttmI2O8BmIyUmjRhfD3wruZN6M43o36KxmK1l1MTvJuAB5rADxvdk8bQ1zk48jYa2vRtzfO9VCvOcZsImFwNPTX7kvmPvpnXvxqz+aBuqKhk6pR+ntpzBYrYy9ZuxzHz6G6QqEVoJBj1Sq+VWpoWU+Ey2rPiV8HM38fN2IdVsxcPLxOItJ3BIiS7Lilux3fldUgXFxXaW7H2D+OhUmnUIZsrAz0m8kYZOp+XLHa+VNhaENKtJB30FzqZkI7Ra9u++wqTxPQiufafwO+zcTWbP/JlcvcQjwJuf5o/GxaRHKgkIYWPYY+FsNdenmtaNJV88T6UqFbh4+gazp6xDCKjcrjq/eRShEc5d2OGtGnNwRzRBPq9So7mNIPf22Kx2Xhi6iKICC5WqerLs50mlQfRtDEY9495+jB8+243VroDQYCl2BsjffL6XqOsp6ARc3BeOViv4dVcYC9a8yB9xuztLAufDE2m9ejEdNdVYPXZEeZF5Of8VCCFERynlyZIXHfgLFnHlAVM5/6fRG/RMXjQOgLjwRPasOEirR5tRtVZlwk5GYrMraI06qtfz49NJPyClc5dGoyg4bApanY7E68msnP0zDrsDFAeK1UH4qesc3XyGgpxCFIeCTm+gYZvaaA16AhrWwM3rwZo4P87bRmZKLkJowNUFdw8TWp2WkW8NYs6TX+Lu7UabR5uxb80xpATf6g8u8L4bm8VeWmsDgHQ+1TvsCh+sGs/5X68TGOJPlRoV+XnpYfb+dJq+T3fAzcMFi86GKrTY7QoOu4O3Bi1Aozio06wWn+2fUTrllqUHWfXBL4S0qc2HGyazNnIhz7V8h/yc4tJjLGYbWbecO0vZqbncuBRHow4PLkZOjc9Eo9VQ+Xe7WI+92ItuT7Tl1N5LuLq70K5PU5p0qkeVGj4c3PQbR7Ze4NDmczz7RtldxrvxD6zMj5GfYbfYmTH0c+IikhFC4ObtxvtrJ7Lmk+0U5hVz5WJCSZpXx/5Nv3Hw53NYzDa8fNzxcHXBlmrG6CKwBbvD7VSSEDRpGchVSy5jF++iQbXKrOhUl/xsp6q6Tq+jINdcei4Gg46pHz3B85NWYbM62LztPC+M7oKhpB5OUVTem7QWm9WBXkCeh57EtBzqBlRG7/YS0h7J1C4Opg8ah9De6e6MCr+Fw66gKCrZsdkYKoPQaCiyWJn7wS+cOnwNgNGv9KLhCC/S0nPJzy3CblO4FZ+F1WJ3WuL8jiHPd6bHkBasmL8bN3cTg0o0oarX8OHa1VuoVjsajaBQq7KnWgFH5izio6GP8GjDss0UQgjmfzaCd2ZtJrvYQn5tkBo4W5jMpetJtGjwx7uy5fzX8S9TFbibscBKIYQXTgWRHOD5hx1cHjCVU04JtRrWYMLCMYDzxvT1tPWoEnR6HT7+PsjLSSAEyYk5fLV3Okunr6NmPX9qhFTD5lCRKggV9EbnPyvvyl7M3PAqa+duoV3/FkSGJbB0xkYA3v/hJVp2u7/zvCq5Uz9SVERIu0AAWvVuwvbs7wD4+eu9CJ0W6VA5sukM3Ye1A5yimznpedSo61emBqVOk5qMfW8Iaz/ZTn5qNtXr+lG5VmW+/XAru9ad4ou9b+Lu5UpORj7ff7wNR7GV5bN+xuDuim+tKgx8phPL5/yCqqjYiopBUbl2NpoLh8PJSsmh86BWfDttDarNTuieC1w4HE5gg+oUF1pxmrrpQUoS4rNo0qUBl45H4urlSlDjmg/8TI7+co7PJ68G4L1VL9HqrmJ0cBakb/xqPy26hnB81yXOHwpHVSQKEsUh2fD1foZN7IWL24N3sIASHz89cVeTSne8UuMyaNgumPdXOzW49qw/xTfvbsavli9tezZgy4pfMRh1VPBxJ6XQjsOmYFA19GwRzONtGhAVmkj7rvUICq5K+5mLsTkUolIyuXAziRlLx/DDp7sIblaTlatPYl1+lBmzh+BfzZvKvh54eZiI97Birazh6SUbSIrPpkfTOnQMqOncYbQ6VdmDa1UmqLqzVk1ofTH6rLnv79d7UAuO7r1MQV4xIS1qk3/sOiDwzoKDN5JBBQRsPnOF85kZPN+vNV0fbczxA+H0H9b6vsHSbby83Xj942EAbFh9kh9XHqdZ60BeeaMv3hXd2L75DNusiUipwVJkZ9ra3TzyUTAS0PzuO9qgQTW2bpxCfF4OPX/8DlSJZ7Lmvn575ZTzVynplmtaEjAhpfxLvnLlAVM55dwHjUbg7uVKQa4ZrVZD1yGtOHvwKlJKug5uRc361fho+3QAfpj7i1PBW6Ohftv6dO7fDP/aVWjew2l3cfvPWc8sdtb0CDi16xLNu9Qvk+YA6D+uB8e3OZW7m3ZpyLQVL7LsnZ+4cDicoCYB9H22MxUqe6LTa1E1grzMAm5cTsDNw8TEtu/iKNErGv9xWWPi/s91QWfUkxiTxtGdYYRdvgUIstLyCDsZRcd+zXBxN6FarKCqSK22pFYlHxd3I50GtuDoz2cA4bQH0eqYMXgBWoOOfauPIe3OGzlSohFQuUZFeg1vx971p6CkGFgIiLiUgDAasDhw1h3dRV52IVGXEmjYJoiTuy6V1kH9duAyQsCa+Ttp+0hjRrzWj4VT11BcZOVg+lk8K3pgMdswuhgw6vWoRvCq6I7RRY+UkgObzxEflYJRA43a1cHT15ONX+2jeZd69H3GWec04dORfD/7Z5p2rk/91vdaovQd2YG+I++oan+ybgLfz99FUYGF6tXdiY/P5tkJ3Rk+uhMArVsGlR7btnYNTkbFodVoqOvnS6V67szbMInvlh0hfO9VpCpZuewI7855HKNRz9ApHXl//2GkVIi+no4Adp++xvFfI9H4G/EvNDJgWBtGPv/g1O7d+FTyYPGmSVw8H8vPG8+C6vwc8rLMDB3biaWf78PhqqXAeTA8TwAAIABJREFUaiHh8k0u30zh0MKXmPbB42Xmuno+lsz0fDr1boROf2+B96olR1AUlbPHI7l5IZbJMwfTbVx7Nm/OQBRIJBJVwmenjrM4+iy1PSuyZcAoFKny0rHNZFnNfNFhEA0rVuXc0xM5+FskjXv74V+5bIF8Of9N/LvNdxFC9AcaAqbbD5VSyjkPM7Y8YCqnnPsghOCLfW9zfPsFmnWpT3DTAPxqVSYvq4AW3ULuObZanarObjwBzbqE8Pjk+/t2DZ/8KFdOR2OxONi/4QzpyTl8sO5lcjMLUOwKPn7OtuyG7YJZduZD8rMLqdcqiJ0rjrBt6UFURSXhejIndoby9Bv9mfr1GBZO+YHoK4m83m8eL8waiqKo2Cx2jm05R5cnO3L9YhxdH2uBViOIuZLIuaPX2LHqOHYV5x1T4qxN0mqo36IW4Ox8C2kdxPXzN5FItFqwpOfwxUvL6ftMJ7R2Owqg1etQJKDRoGi0RFxKpPvIThzbeIqGHerRuFM9hBBM+XwU9VsFsu7zPeRlF6Gq0ikYCdhtCuYCCx7ezsJeS7GNl3p8hMVsw6eKF699NpIze8Kw2x1cvxDHgZ/OYCmyEheRRJvejfELrMStGGdAMfa9wXz/8XYC6voxad5TxF5LJqihP1kpuVy/lMDimT9jSc8BVcVgNOBSwZX87CJ+O3CZarWrsGTGRpJjM5i8YCQ9n2j7p9+R/FwzkWEJ2Cx2qlSvyM6z7z3w2M9G9Sc8KY3qFb2o6H4nHVuzpg86gw67K1SvdaerccHpk8iSxIjUSFAFQoK4VYTdVUt6oZ213x9n2DMdSU/N5diBcFq0rV3qJ3c/flpzivWrT2IXktymrti0kkpNKzO4QyPaNg0kJTOfaYt2IFQV0wPq0kJP3WD2pDUoDoUtK4+zYN1LGIx3jg0O8SMmMhUlp4j0vGJen7WBkEENGd+2FauOXkAqEhdVy/qYMFQpSczPo/vq71CkSpFLIQ6NytzQQ6zv+TS3knP5etVR8j0l7i4Gvp86jNr+vvd9yCinnIdBCLEUcAW6AyuAJ4DfHnZ8ecBUzj+S8FORrPtwM236NWfwpH7/LWtUDfBl2F0t/8FN75866jm8HZ4V3bEUWen0mNMM9rcjEZw7HEHfEe0JKmnRb9C6Np/vms7kPvOwWeycPxzBpePXeX/E16iq5Nm3BzG8ZD3/2lXwr12F7LS80h2W2yh2hbCTUaQFVsGuNSBxmv6GtAvGu7In6YlZ9BvXgzef+BJVkez4/iiFKVlYzDY0Oi12e0mFgk4LWi06nZb5W1/Dp+odHZ056yexf/0p/AIr89X0H8kpsiL1eg5tPEPTzvUJPxONVCV6kxGr2QolSukJCdk88c5Qos9EMdh3PB0HteK9HyfT+6n2nNx/lXOHI5zSCiW0e7QxVWreqcHKTsujqMCC3eogOT6TOk1q4l3Fk/TEbBKjUjC5GnHYnLtY7hVcmbflVc7uv0Jw05rUrOtH18GtSueRisKYpm/hsCu06Nu8pINOgN6AXYK9xCZHSrh+IY6UuExsFjur5+14qIAp7GRk6Wfj4mbErihsPxuBQaelf6t7lbC1Gg1NavqVmaPbIw35IP4saZYitrsk8VyJbpRRr0VqQSMFHTsFYk+1EbshAq3Z2REpXXQY3Q2AZOroFRQWWPhx5XFW75hKBe/7d5VdvBCLxWLHXEmLXevMwq06foFOjQIxW220Dwng0wkDuBCVxOBOjdh99hp5BcWYw9Kwmm08O+UREm6m47A7UBTJjfAk1n65l+en39HG+nTxs/z47a9sWHLYeV3SLFyJTWHS4E486leLlYv20b5LCBcCCvglJgLFLMmyO+vbhKpB7w5eFmf6b9v+MIqMzmJyR2weU3ovxOSiZ863Y2jUKvBPP59y/gP+vUVMHaSUTYQQl6WUs4UQnwF7HnZwecBUzj+S9wZ9QkFWIZePRtCoUwh1mv3v/QcqhKBN78aAs6vs52/2s2/zeRwSjmy7yKawuaX1RNWCKhMY4k9UWAJdB7Xk/KGrpTfd7+f8jE4jaNq5HvNHL0Zr0JGYWghC0GNEB+LCk0hPzkWr1zFial/efnopCIFGr2Pk5L4ENarBqojPUFVJdFgCG5b9it1mJzslF0eBpXQd4WoCBD6VPGjQrg7NO9bFr+a9mk1unq7UqF2ZHz/eilScgYaQEp8avlw6fQNPb3fmbppCQP1qzBy9jIvHIkFK4qNSSYxKxWG2AHB650UKcoo4sfcyoSejQaNBo9FQNcCHJu1qM+Gjp+5Z1y/Al55DW3N85yUGje2KwaR3GiBnFSGl5O0V44kOi6dh2zqlauY9h90b3MSGJ/Fq3/nYrXYcFjs4HFw8FA4ChF7v9IyTEmw2XD1d6DWsDfk5BQjhtHZp3ePeOqkHEX89BRwO0Gho3bUei3edZt3RUARQZLHxVJcH6x7dJr2oiDRrEXapcjktjRuJGcTcSOer3v1Ysu04UXEZhCrJjA9uQqL5Sum4GjV9mTitLxohMJttqKrTt89SbIMHBEyKooBNwTVZQV+gorpoadS0Mv0/+h5FVWlfryYv9m7H5KGd2X4qnHnrD+OwKxiTzXjFFHIxLJGEW9lonG41CEXFUmi9Zw2jSc+TY7twaMt5MtPzsfm7YDLqCahcgVfGLCTtVg4xJ2NZ8NNEmtWsxIKNR8gKBiR4RDrQK1qishM4UekG3dvXZde565iN4BFnRqqS4iIbM8at5Odzs8qkA8sp5yG43X1iFkL4A1lA2SeZB1AeMJXzj8TV3cUpAQCY3B6s7fI/zVuDPyM9MdvZjebmis1iJ+7aLU7sCKXNI42p17wWC3e9QUFuEQajgeTYdLZ9exi7zYF0qJzafYlTW88SF5GE0AgwuSBcTKDXs+jX90vXkVJSp3F1EqJT8fb15IlJzp0pIQRaraBe8wAGj+vKhV+v8+z0ARxce4yze8LoPaojR3Zcwmq2Mfrtxwg/GcVXk1fxzWtr+PrIDE7vuUxxoZVm3UKY9cTn2Ipt6FyNVAyoQmGOmczUPFRFxVJsIyc9n9qNayKE08pEaLWgOFBViZuXK1ZVoVbD6rhXcKW40IoQAo1G0LB1EPN+erk0iLwWGselk9F0Hdgc/wBfpswfwZT5I0p/1zcWj+HS8Uj8AnzxD6pMk/vY1dzN1TM3UFUVVZUInQ6p1cCdWoVSw1q12ILqomf7d0fRaqBDv2Y88UqfB+4k/p6nX+3LjcuJuHqY6P9MJxYePIPN7kCjEWTm3/Fus1jsFBZa8PUtW7jsahO0cHhxVmbTK7g2E95ajw0Vj2KBkl2MQVGxBOo5459O5RoVSU/KBq2GxLhMVnx9kMVrXuC9+cPZ9MNJuvVpTFV/7zJr3EYozrYgKUFf4EBaJIWRuUgkVofCrxGxnIlO5JOn+5KVV4SiqihSohiculYJqbngUJElKbiqVX155vWy6WcXNyOrDk4nO7uQ1CIztap44+Fqcuo1SbDZHMyYuo6gVgG43VQwJDkwZBaiunmgumko9oS39+wnyOjO6pkjMUuF45susHPVSQAUh8LhA1c5euQ6g4e2onW72mXOoZz/jH9xDdNOIUQF4FPgIs69tBUPO1jc02b8/zmtWrWS58+f/98+jXL+PyDlZhr7Vh2hcecQWvZu+ucD/ocYHvwq+VklFhQmAzqNBr1Og8VsxWgysPbKJxTkFDHl0U8wF1qZunAUDVvXZtqAeRTlFfP+2pc5ve0c+384iqKoCHd3tC5GPv5pEiF3pSGObzvPggkrqOhXkU+3T8O3WlnhSIDcjHwWTfkenV7HpC9H417BDbvNgcPuwMXNxICqE7Bb7QghCGpUg6SYdOw2B1qD1inomZOPzqhH5+mOtdgOQqLVavDy8WDp8Zl4eLuRmpDFohmbkA4HoUeuIhD0f7YTA8f1wD+oMlqdFqvFxoq52ynMM/PCe0PwruQMHrLT83m+61zsNgee3m6sPzf7D61MHobs1Dxe7TeP7NQ8FEVBVVSEXufUaxKA3oDMLwBAYzSU1HJJ2vRuxOx1k/72upNe+YFzhZkIh6R2joYKbiZeee8x3n5jAxaLnZHPduSZMXdENHMzCxjfaz4Oh0JIy1r0ndyDV7/ZDkhcU2yYCpxBn7mKDrfKLvww81lSErOZ9cZGbFY7QcFVWLL2j3WN7mbh0v3sXnXGmYvTCqRWg62CFmNrH9JzC1A1Ao0QPNe1BS/2asvH6w+TV1hMzRzQ2RQybQ4uno5BtdoxGHRMmz2Err0bPfT6cVGpfD17K9eiUnFoNXh4mrB5GlFVlbouJiKuJqHW8ia9qR6rRkXYVdqmGln1nfMz+XHxIY4fCKfPE61YuuIYdruCXq9l695p99RR/dsQQlyQUj5YYO2/GFPtarLGJxP+R9a6Mfy9/9Hf7W6EEEbA9Fc65f6937Jy/tX4BVVh9Jyn/vzAv4iUko0LtnP5aDjPznqSeq3+2tPr7PWT+PGzXYSdjEJVQacVTq82Caqi4rA5OLv/ChazDcWhsHXZIXoNb8e68Dsm2k071aNJ5/pUqORJ/bZ10Gg099hNqKrK/AkrsdslqYlZnDt4hb7P3d/K5YdZmzi1/TwIgW+1ioz7aAR6g65UbNLNzUCu1anP5OLuvHmBs07K4Gai9bAOxEalkZWYhfOXgGpBPnx9dGap7UzVmj58uOYlvp3xE6H7FBRF4UZYPDXq3tnpNpoMvPzBE2XOz2K2Oi09VElRoeVPvd8ehopVvRjz3hAWTFrF7f0krZQIqaA6JKqUSFUBBBKnHYtvVS8mzS/bVSilZOXcrZw7GM4z0wfQ8Q/sRTISctBpHRRX0nPTYqNCdB6LPt6JNb8YB7B/d9g9AVPCjTQcDgWL2ca1C3EMNOrQaTU4VBV9gAceMWbyCooxpNuQOQq7d4YxdnxXxk3qxY3IFEY+/8cK5r8ny12S3dAVbZFChVQFNCodxlzkxsYgiHNBraRD8dCzbucFjv4Ww1cTB7F70zm27z6DQ6+lRYsAFq4ay2cHj1Ok2Alq/dd0kWrVrcrEWYOZ/Px3YFcoyrfQtkF1Zn8xsvRaCyHot+A7YvPynGrteXdSfiMm9mTExJ7k5xezbOVxAHQ6LRrtv3Y35H+Nf9A+yl9CCOEKvA7UlFKOF0LUFEJ0llLufJjx5QFTOf+nURSF5W+s4eaVBCYsHE1Rnpk1szdhNVu5GRbPj4nL/tJ8Ia1rM+enyaTGZ3J6TxgtuoeQEpvBtuVH6D2iPRUqedKiWwirP9kOQO8RHcrModVpqde2LlOHfEFBThFvLXqWjo/e8YZMT8rGoaig1SKB5ITsB56PVyVPZ7AlBF73SQkJqYKqotFA9yEtqd24Jmf2XyEvz8yIKX1Y+8V+FIeCAHQC7FYbBdlFZTz6dv9wjF+WHnLe9LQaRr83tMxa98O/ViU6921C6LFInnmj31/qgMpOz2PLkkME1Pej1/B29wRaP37utEnRaATVgv1p1DqIQz+ewm614eXthtWgxZpvZsCznWnRsxFteje6JyjdtfYkW1YcpVmH2uxevA/VamPucwn8krAIo4vhvufz6vT+TFi3EwRYfQ2oqXbiotJQ7QpanYYhw9rcc3xIi1oENfDn2sV4jJU8qObhzlO9mhMamcSTHRqx+JWf0CsqeoCarjRuWgMhBIOGt37oa3Q3LT0rsksHqpeW4f3aklZnIVqrg4JkI8mdXKi+J5u8Nr5IICOnkOfeXYc+Mhf0zu/Puchb3Nx4gGv2bGxGydyDv7L0iUF/6RxqB1dl9PhurFp82FnYf9d3VwjB1bQ0Xunfid2/nEdJKuTNj+7Mfz3iFidvxFGpdkU++vwpzp2KoXuvhuj+A++6cv7P8T1wAWhf8voWsAkoD5jKKef33LgUy4LnF1Opug/vrJ/Cub2X2LX8IJYiKx+P+orJi8YiVRWhEbh6unDzahIHN5ymXZ8mNOl4fzXq+MgUivKLCWkVWHrTrhrgy5CXegIQUM+fdn3upA1r1vVj7eVPsBRZy/ij3ebknjAKcopw2BU2LDp4T8BUyd8bNy9XivItzqLvP7CMGDVjCC7uJk5sv8Ct+Ox7bEhUVaWgwIrQOGtU6rWuw4DxvZg4z1k/ZLM62Pztr9gsdnQGI30eb8H132J4fs6wMuuc2hXqfCoVAjSCKg8w/v090ZcTOLEzFKvFzsavD9DnqfZ/PqiEj8at4NqFm+gNeipW9qJl9ztCoMHNapIQlYKqSgwmI2NnPcHFI+GkxmZgVyRLTsyikr83uhIF7dT4TLRaQaXqPliKbSyeuQVVUUlLzEK120GvR7XamdLzA15eMAqBQG/UU6/lnTRpu47BBB2uSFJmHkh4tG8Tjm6/jMOuULeeH48Pvzdg0ht01OkQTHhSDjm5ZiY//jXBTWqQHp3GogNxVPLzIjejgErVvHlvyXMEBFZ66GtzP+JOx1L1UBoAuR4pNOzSkMSCUDT+CqrR+R0yZlgp9nPBqtgxJFixuenQ5VrRmu0UVfMkLy4LgwARqMHf8++JSQ4e0ZaYaynE30xn8oyBpT8/ER/Pi9u2IYTguc7NeKNzZyIvxTOp/wI8qnhxJj+bxNY6tJEahjRpyCcT/tz2ppy/juRfXcNUW0r5pBBiBICU0iz+wpZ2ecBUzv8pFr3yHTGX4ki8fov9PxylVsMaSCnRGXRIVeWNXnPQaDX0H9+LJ98czMTuczHnFPLLor28v3YS7fs3v2e+0GPXmf2cs1vtyVceYcSr99dg+j2u7iZc3R9crP7bvkvO2iJFJSc1h6y0PHxKgiutTss3h95h3sRVeHi7MXRCrwfOo9PriI1MJeZaCnFRafgF+vLkVKcMgxACD293CnIK0el1WM1WRjeeRl5WISOmP8bwqf34atc0zh2JoFW3+lQLrPzAdUa81p9LR6/hsCs07VSv1MakINfM2f2Xqde8FjWCq5YZd9u4FUlpOvBhsVrsTp834TSCNRdYWDjlBy7uv0TFqhXQG7TYbU6TXzcvVzwqe5OWWoBdkZzZe5khLzoD2uNbz/HpC8sBeHfNy7Ts1RhPbzeKCy1otBoUN1ek3gA2G3Hht3hr4KcIjUCr1fL6kufpMsQZCF29kULqzWwcGhWhwC+J1+jYpDoIwctv3d+eJbheVbQ6DYpNwaI6uHImBoe3CbO/nvp1avDBuF74B/j+l3SE1eoYiPjlAlqNoO+Idvj79WdS3Gr0z0oCktxJ6eqgYZ4JtUhPenoBAoFUVPSZhQgJFS5mktnVD6FC3auCjNCrDJh2GL/qFZm5fDQ5xRZCalUhpaAALxcTnqb7f7/1eh1vfVw2PRuRno5DVXGoKqEpKQB88eYG4iJT0CTlYGnqCRIcQhKVkfkfX49y/k9iE0K4UCKcIISoDVj/eMgdygOmcv4RFOUV8UbP2SRFp/Da8pfoNrzj35qnZkh1boTGARL/OlVp2q0hM358laTIZI5vOYPD5kCj1VCphi+VqvtgK7aBlEgJy975sUzAFBkah93uLCwOOxlFnUbV+Oa11dRtEcj0FS+W7mD8EdcvxrF+4R6ada7H4y/0oDDPTOjhcDAYQKMhMzmHZ5q8ybvfvUCHAU6dpyo1fPl8x7Q/nTsmLJ7ctFw0WoHQCNw874gmCiH44sDbHN96nqZdQlgybQ0pN9MB+H7WZnqP7Ih/LV8GjflzNemG7eqw9up8XDxMGE13UlbTB39OSnwmQsC3J97n4uEILGYrfZ/rgsGop17zAF6a8wRXz95g2MSygZ+qqqQlZpfsBt0bNLz97VhWz9tBrfr+tHu0CUtnbOD45jNIVcVcUEyzHo0xebgy5t3BAPQY2pr4yGS0Wg3NOtejINeMEHCyxNQY4MyeS7R5tCmLdr3O+V+vUbNOFd544iunhpPRiLTZS5XJVY3K9XM3SwOmo+ejsTtUNFpAgEMnMBp0zF70zAOvW6++TTm07yrnf4sFKdHmm0l8xA2Hq2CnJp23q7r/lwRLUko+OXGW4j5VMOp1uNeswKbYq4RmFmCXCp3qeDM0tyH2Ijv+TWqyZNlhpEY4fXpKEKrEkGvHkK+SZzZTmOU08E3LyOeZmWtxAK4eBpIqWkDAl4P706tR8EOf49CGDdkTHU2W2cybnZ31WX4BviTHZ4LVTguTL2cL83Gv5sGsXj3+42tSzgOQwL93h2kmsBeoIYRYB3QERj/s4PKAqZx/BGd2XiQxMhlLkZXv3l7/twOmyd+Mo1m3hvj4V6RpN6feTvuBrWAgeFf1IvpiLHqDjvYDW6LVaZnw8ZN88/paNFoNtUKql5mv95PtOLLlHAW5Zp57ayAfjPyKrOQcctLzOX/gCu36NSc1PpP467do3rUBBpO+zBxznv+WnIwCLp+OpmGb2vgF+IBGOK1JbrfD2x1sWLgbvVFH3RaBeD2Et1bs1URe7T4HhDPAGjq1P48+0+meY6oGVGLYFOeumF9gJSLORAPOdJHLQ8g1nN5ziQ1f7MXN3cilQ5dx83Rlydm5parlKfEZWIvtGF0MbPv2MDu+PYxUJWkJmbzw4ZMA9BnRnj4jnKm4mMvxCI0gqJGztf/dUUu4eiaGqjV9+Gb/m6XF6uCsf3pridM301Jk5eqJyFK9PSE0PPHKo7TscaeLa8iLPenQtxmuHiYiL8UzZeDnCGDcjEGc3XsJodHQb0w3AHyqePHok+2wFttwdTdhtzkwuhjw8HPHVmxHlRIXdxOPvXgnyOvZth6b9odisTvQ2hQ8ky0MmVa2Rs2hqOwOu467yUj3kCAiwpNL37NXMOFwc6ZIFSk5Fh3L0OYP34n2R5j0Oiw2O2gEBp2W6m4V0Gk0aNFgOlbIjp/CkIqkm9nGI70bsH/dWRR3A/aq7kjFjuJuwC3FGVhKAdaqrrimF+MwaXGoEouqYMlxYCyCIn94d+EWuix+/aE72HxcXfll5L2F99O/HMXRHaH4B/jSuG25fEA5f5+S1Nt14HGgHc6e2SlSyoferiwPmMr5RxBc4stlcjPSolfjvz2PTq+jx8j7dxf1GtWVNv1aoDfqS4OF/mO6UadJTZJupNHpsZZlxvhUrcCyo3csMQLqV6Mo1ymy5x9UhYykbCZ0eB8pJfVaBjFvxxtl5nBxN5GbVYiUYHI14OntzpSFz/DLkoMENqrBqe3nkVpBWnwGc59bgsnVwKrL80trkR5Eys00hEZgKbJiM1vpN/qPd4qmLnqeGvWqkXErmyde6YPpTwxrVVXlo3ErSpW3VYeK1WIj7FgE7fu34OrpKMbPGsrPSw7SqkdDDEYdikNBVSW5GQVl5ju4/gRfTl6Fw+bAP6gKszZOJfRYJABpidmkJmRRo06V+57LT5/vIv7aLYRG4F/Hj9cWjaFRB2fNWfSleGIux9N5UKtSVfFDm89hLzGwjY1MYcutJYBz1y0tMYu5Y5YiNBre/f5FFu9/kytnbtCkQzA7vjtC3LVkQp5pycJroUw7cYTl/oNx0eupH1iFvUsnoqoSk8EpY6C9T0HyF/tO8OOZMKSUzBzUi6FPtWXNd8dAlZhruGLIApu3RF8gcU1z/OFn8LAIIVg1aTjbzoXTrm4Aft6e+Hk3wFVnINdm5trxy8RJUWKJKDi29RIau4rIsSA8jaS1qYjGJjFctaBRJcKuorgZeP2jJ2jSrjZvLNlJeLyzPkpjB22xivvZbH5e8SsjXn5wyvjPMLkYeHT4n6uul1POnyGllEKI3VLKxsCuvzNHecBUzj+CCpU98arkRXpCBvVa1flvW6cwp4is5BwadaqPEAIpJaf2X+Xa+ViqBftRr3kAW5ceIDo0nqfffIxqte+9gc/8aTJndoVSM8SfmvX9uXT0GlJKLEVWboTF33fNj36axL71p2jQOoiAklb8vqM603eUM7Ar+Pgp8nOKGNfqHaQqURwKuen5VK31x0XArfs0o02fptwIjWPSV6MBiLt2i61LD9KiWwN8/b25ERZH16Ft8fLxwGAyMOKNgX84593kZRc5jW3VEqt7rQaTq5FmXRvwau+PSI3PwGDU833YPNw8XTAXWEiLz8JSZGXcfQrHQ3+NKE2NJd1IZe7oxXQb3JKj2y5Su3F1/GuVLSSPuZJIcZEFnUFb4nqio32/5qXBUtKNVKb1+RjFobBu3naWnpqDm5crj45sz6m9YQgh6PlEm3s67NZ/tovoywkI4Kcv9vDKp0/TfUgrTu6+xNblR7CabZy+fIOsp2pgTkhl9YmLvNDNOYfJcNcO4gMa/hKz87DYHCAlS1YeYseXE2nfvjZvPrscsyqpmATGo3kYcu18/ctGunYOwfVPgteHIbBKRaYOuPOwIKWkss2DOq6+fLf/J8CpzdS6T2NyLQ7OHooAoFv3EKLUIkJ98lHirGiznPYsuiKnKfPscd9hsNnpPSCE89G38LVIcrbEohGCbfvD8GlSjUc63+u/GJ2eyZh1W1ClZOXIx6lf9eEL2h0OhezMQipV8UQIQUpyLtGRKbRqG4TrnzxElPNw/FtlBYCLQojWUspzf2dwecBUzj+C83svkZeRh1Ql6+b+TL/xf/+p9UFEX7zJq13eQwhBn+d78PKXz3PpRBTbVx7FYrbx0UsrGflyL759ewNSSm5ciuPb3+beM4fJ1Ui3Ye1KXzfqEEzzbg2IOHuDcR8Ov++6VapX5NnpA9i0cBcfj/yK1n2aMv27F9FoNCTHprN37UkadwhmwPie7Ft/ivZ9GnP6YDgbFx2g84DmTPhg6H21i/QGHTPWvnLPz2YMXUhWSi6HNpxGOhwoOgNLZv7CO8vH0rmkPuphcNgVXu7/OQ69Ab2Hjo/WT6R67cqY3IxotBrir90q0VdSyUzOxs2zGq4eJroObkVUaKxTRPJ3DJvSjzN7LpUquMdHpeEottOpRz1eXzq2zG7N2X2X+WjcMkAw4rV+jJw+EMWuMmzqncL7zFs5pfpXGYlZzBv/LXM2TqVZx7psuPoJAsrIBAQ2qOYXyUJ8AAAgAElEQVRMnUrn329TXFJkrtVpcPF0wVXRornlYFXyWex5diYNvjfd+SCm9u7IsVORCIeEWDvJt3IIblCNTWfe40ZsOp98sZuU3IxSRfKk2AzqNiqbDv4zju8OY++GM/R/ugMdHnHuykanZ/LL5Qi61glk6eaThEWnoNUI/Ew6pEMBJF/9dIKxg9py/mI8NodCxJVb1PRxp0nzIDwmVuTQolPkZRXiapbsXHeK9Djnuer1WvbvnEZRgYXln+xg55Gr5Ookc7/ZS4cWQbjfFfStOXeJjELn57zyzAXmD+5T5vwvRyTx7boTNG5QjSKTSkFcHud2hCNtCkhJ6w7BTH5nAC+OXo6Ukho1fVj83di/fJ3K+T9FW+BpIUQ8UMRt8Xspm/zxMCflAVM5/whC2tVFaDQYXQx0HNzmzwf8DaLOx6A4nDfXi4ecvl2e3m5IVaLTa6ng48GOpftRVRUhBLduppMcm05uRgE16lbFo0JZDy+dXsfM9a+U+fndKIpKUZ6Z797dgFQlp7adJ+61/gQ1rslbQ78gMzmHbSuOoNHrwaDn4qkYft14GhSVncsyGDi68wNTVb+nNFCRIIVTx8m5k7KPzgNakBiVwtuDFuCwK3yw+VWCmwXcd57s9Hzys4tQFBWdTotfLV887vIwe+79x9n0xR7a9W3Kd+9v4sLBK3Qe3IZT289hsyus/3w33Z9oy+vfjCnVXqrVsDpPTO3H6nk7nXWnFiuJ12+RFp/O4W4N6FtSX3Sb6xdjsVkdSFVy7dxNZq8vq9LdpHM9GravQ9jR60gpyU3PL30v6UYa4b/F0Kl/s3uMhweN70G1oMoIIWhZ4it37mwMC785DJUq0KpZTSZ/NIylRy+wPeUKVrvC6Yj4hw6YAqtUZKhvEMd/vU6den5UL+ko1Oq0/LjqJMkRaWjcDFBkI7hhNQLrlu0uvB8Oh8LFywlU9/fGw8XAp6+uxW5TOFyYimfkeV7o1JpPDhwj32Jl5YkLGDMkWgQORSUr0ANtrgHFVYfe7iCoThWEUYfRqCM3Jo3sqFT0F+NY+Msk+v/UCEeWhVvxmcx6fT0anHXCJbXwuHmYePG9wWyOTkCXZ0djtxF2JZ6O7epiLrJy4nAEQcINk855++lU+/7fsRnzt5ObZ+ZK5C2KK2rwjDKjsSiIks7K08ciGT6ms9NDz2InNiYDRVHRah9ey6ucB/Dv3WF69M8PeTDlAVM5/wj8gqqw9uY3ZKfmEtDgrz9tPwzu3m4odme64XZ9UO1G1Zn5/QvEhCfRa1hb1szeTExUGjgUFLvC2FbvgCIxeZhYG7EANw+Xv7SmuaCYiR3eJy0hE4+K7liLbSgGIwteW8f0RaOxFttKt8ftdjuKQ6I4VISUSEAxW0ptRh6GDzdPZcs3+2nWLYTz+y9zbM8VtDotnQY4u/+2f3uIzOQcADZ/tYe3V75UZo4Vszez5ZsDuFWugM7VnT5PtqVCiShm+Okolry+mrotg9gY+xW3bqQyqfMsFIfKr5vPYDBokRotqiI5seMig17oSd3mtUrnXvvJdqQi0boYqeLvRUZ8BgJxX+uXfs925tSuUMwFxYx6804q0W5zoNU5TX41Gg1zt7zOsrd/JCk6lZfmjURVVZa9v5kd3x9Dq9Hwy7LDrPptTul4IQStf1cnF3Yx3un3ZzKi+njiU9mLCY+2IzQikYy8oocOlgDCzsWSHpPOoH5NeGl6P4QQqFKiEQKjSY/NVYu1igdN6vizcM6IP9TZupvZ83fwW2gcSFj08VMo7jpyK7uQ08iD7Jxc3t15AIPW+V++lBJVI51ZQwHCpMXu44KQ8O6kvgTX8+Pr5WNITc7li9d+JD/PjN3m4MnP1iHd9bikOTAm21G9XdALARLGvz+49FxcTHpUjYJrVjHCpjBnwlo2HHmLuW9uJDI8yXmOXwznwsnrfDt0JctdjHyw/HmatQkqncPLw0RBifq7FAK7lw4Xh0Qqzn+jgcFVqN/An8ZNqnPudAxqQTELpm/gzc9GUE4590NKGS+EaAF0whkWnpRSXnzY8eUBUzn/GDx9PPB8iO6wv4tiVzC4GLCarU7j2xKad6lP8y71AZjw+TOcOxFF+s00p9xASYBVnGcmOjSOZl1C7jv3g4i6EEtOutPQ1mq10/2ZrhzcfI7Y8Fu80vtjZq56gV2rjtOyewMUVbLvx9P0fboDG+ZtJTslh7Z9m+Pu5frnC5UQ1KgG05Y40xa9nuzAS5kFFOaaqV6yQ9Wsawj71hxHSklSWiEnD0fQsUeDe+bYtfIoqiqxF5h5+5vnaNH1zvvzxywmNS6DxMhk2vRpRrPuDfH0cacgp4haDarT5pHGbF58EMXh3Am4rdd0m+DmtYiLuIXeoGX+7rc4s+silWv40PqRsjvmlapVZNmJWff8bP/a43w5eRVePh58fWwmPn7eaHVaJn46qvSYsweusHfdKaQqcagK2el5XDlxnRr1/KlQyfO+163PgGYc3H8Vm8XOiGc6kJmai7XYzuaZzz30tQdIyyrglc9+xmFzELsjnRrtajDz8glsisLKJx5n+DMd2BEZgyol15MzuBabSsPaf26mnpWWz9XQeCwWOyajnriUbNIHVMNstSM1EqFIvFxMLHxyAO+t2YMtKh9juh1TS19eGtoJXxdXdh69yoCujWjbpBYAgUGVCQyqjP/6lxj37BIKqxqxGTSgqCgeYFQkqosekw2GjGpPq3b31ha2aRzAtYgrzpyHojJ1wvfkpOZjtTgwueiRuTb2f/UrUpVIm4PlC/fx1doXS3eIvpg9nL1HwqlRoyInYuKp4OZCQzcv5s/cisOuEBubjsOhoBUSbVYBQsKxQ1d58y99IuWURfxrhSuFEO8Dw4AtJT/6XgixSUr54cOMLw+YyimnhK7DOxB18SaJ15OZ8Pn9b4Q6vY7lp2bz5dTVRF+MJflmGkqJ9UXwXTslD0tw81p4eLvjsDno+WQHWvVuzP6NvyEB1aFQmF3EzNV3jDAHje0GQJ+nO5KTnkelB5juPiwVfD1Kd4cAOg5sycKDM5gy6ltibuXzyVubWLN3GhUquhF1LZn42Aw6PtaSoz//hpuHC8FN702nVKrhS3ZqLopD4YvJq6hYtQKf7JhOUa6ZoCY10Rt0PD6pD6FHr1Gnac0yAcr87W9w7VwMASHVqPD/2Dvv8CjKtu3/7plt6SEhCQRIIBB671V6kS5IESwgiGJDsKCiKKAiggiiAjZEEZBepffeO6GG0EJ6374z9/fHxgASBN/n/b7veXxyHkcO2Nm575mdndk557rO67yKB9D1ubZ/6/MsnuZtiZKXbePA+hMFNgF3wi/QByFAKAKTxUhEiA/v9ZyCwWRgzqnJhZLy0mVCWLj8VQBOH4xn6CMfI6Vk2NjH6PLUw1lc3LiZwYDRc7H6CYSPkRRflY03r5Dj9PrmfbljL7fWJSLxRps0TRJWzP+B8148fYM3B85G03T8w/yoVCua2MolcG/SkQooTgi55GRo57o0KRfFhnefY/+ei4SXCCQwMoC3ft+AS8+iR6c4ikf4AWXvml8zq9hKByBVCnRVPikaUkBwZAAr171Y6H6982JnXt2eQFZyLgi4fj0DR5iRAIw0f6QqjVtUwi/AQl62Helj5tLVdPp2/hxDgzBUXyNTnu/Gk729FXItG3r9nOw2F37+FpxON8XDAjEaVQJji6ObDQi3hj3qwcerCP/VGAjUklI6AIQQnwLHgSLCVIQi/B2oBpUXpjw4YmD2MfHW7KEAJMancHDjCW7GpzBxyLcMfv8xyteIQtd1ls/cTGpiJv1Hdr6LlNwJvyBf5pz8jJyMvAIdzSOda7J71RF8LEaqN61Y6DijyUB46dD/4Sf9a0RVjsTga8ZjdyMlTJu4mqaPVGLa+0vQFYWoKpH8cHACwcUD7/GVGrdkFFsX7mHDvN1cOnGN3Ewru1ccpv8bXQvW8fG30PRPBqAAmkdj+7KDqAaV2DrRaB6t0LL8PyP1RgaJ8clUb1qR1n0bs2DyGlSDSs3mlQtdv3qjCoz+ZjBXz9+i08BmPFlhBG6nGwtw42ISVR8QxTyx9wIul1c7tev343R5qhmJWTmcS0qlcUwUvqZ7vbYAduy+QG6AjqO4AB3MGSpx55IxBAtAEK34c1OX6AreqJBRsOPYZfq0Lbzhr8etMWfBHpbP3Q35+xMbEsjU/OKCQc3rsuzwGQISHFQPLUmffPKhGhQaNavA0f2XmX7iEPuuXQc0dKOdqxWncjglgeLmQD5r3JUAo5mgIB9UKZEeCLziISDZgdMgEAFGvp30ZKH7dvFWGk9OW4Cs7UPkORVrug2BwBFiIC/aTGJNEyaLkVkbR7Nu0QGWrjqONc9JXp4T24kkHBFm5mw4yJgB7XB7NMbN28ilxHTGPNGWb+cP5+K5RKrXikIIwXNPPcL6M5fIzXPQtFgIb/b7igGvdKBO88KvnSI8BP65GqZEwAI48l+b8faTeygUEaYiFOFfQGRMOGUqRvLTRytw2Fwkxqfw4+GP2bbkID9/ugqPy8OthFTG/XqvIPkPGE0GQksEk5dlZd/aYwwY1ZmhH/YmoJjfPV5L545d5cdJa6hWvxxPv/4ol05e473+M1BUlU+XjCC6cuT/6HMkXU/n9/n7qFqvHI3bVeOz759lzaKDbNl4hr07LrB/50X0XAcUDyThciqX4tNoWghh8wvypdvz7cnOtHHjYhK6lFSoHU1GcjYLp6+nVEwY3Ye0LrSqb/7na1ny1QY0DaaOnIdfkC8zNowmosz9iWHS1VReqP8uUkrqtavB2IUjaNO3Cf7BfvgH352qzEjJ4a3Hp5OZmsu7swbTf4S3MuuZD3rzy0fLiKlfjiXJ12hxXqV1pZjCNgdA6571WDN3Nzarkz4vtGXxTzuYvmkv9or+lC8RyqLnBxQ6rn7dsriP7fX22xMS3QdyfTyoqopEElshgoSIZK5kZqHlu4XbHK5C59q4+ADT31mMJsARHYJFEZgMCgNeuu2APaJDM0omSo5ev8zTz7fB/w593WfvL2Xf9nOkVjJhrOGLjpsgPxtbblQkPucWBiWFhZeP0SeqNj2m/4LicOKX5sGiCVy6jsGhIXJdJJxJJKLl3VFCm83F0cs30aXE6dFw1yuGcWkGOVF+KE6N4AQbB0tfB7wGoVdy7Fg9+V5eukTxCHxSPJQLLwbA1uOX2HTkIi5N48UZy2jSNIbnWjQosFoI9vNh4/ThnD99nXf6fYPT4ebFr5fC2kCGtm3AkHb/d4pEivAfiWzgjBBiE15a2B44KIT4EkBK+epfDS4iTEUowr8Iv0AfpPQ+uf+hJ5L5Sm2J14U6KyWH4PDC9TF/4K3On3LjUhICwXdHJxZqTPnJS3NJvZXFxZPXqdU0lg2/7CQnw1ueveqH7bwyufCb9YMw5unZ3LqWjsm0iy+Wj6BitVI8+WIbtm6JA033fhJfMygKSMmJo1dp+kjhzYgBBo7uTo1mlfAP8qV8zShG9/qC0/svoqoqV+MSGfhG1wI38D+QejPTK6wW3tyPNdvG8JYTGDymB92GtC50OwlnbhT4XB3ZfIq4g5eo0rBwn64dq46QfD0Dj1vj58lrqdfSqzfrM7ILfUZ2ocWk2aQdPsmy42dZ+fJTRIcGFzpPZNkw5h+dAMCy73fwy9T1+Hs8aDlOLjQo/NFc1yWrtp0iKt3MzQAn5lALbWLLkubnZEfCFYQQpDhs/DptMJk5Nr5YuB1/HzP92t8biQNYMnsbmpTovhZMDg8+dUux4PthWMy3o1vnz9zk1+934HS4uXJpAYs231b3HNx+Hleek6CjTto1rUL1xsHElAhh6RV/blqvIhBE+gZyOTkNm9OFs6oPpgwPZU7ZwC0LWqZ8OnoRy/ePLZh37m97+Wn+HkwWA4bSBjRFwXMhB3N4IIGpTrQkFxJJwysG3ntqFsPG9sRud6GbVFSzAY8iQVUwKApdGnq/n1B/X1xuL6HK9jhZfeIcRxJusuWNoQXbVRWF4qHe60srZsIWbkY6XcxYt5dn2zYolKAX4T6Q/+jmu8vz//7A9r8zuIgwFaEI/yIq14/hnR+GEX/qOo8+43XTbv14I1JvZnB8Zxynd8XxVLXX+XjZ69RsUXiaCODWlRScNhdmXzNpNzMpHlmMz1/9mcNbTlOydBCZiVnk6iqKKnC7PaiqQrHigQUuc9sX7ka32Xl5+qCHSmXdCafd5bUcEOC0e80jwyOC+GByX/bvukCtmqX4ctSv5Gbn4RsZSvfe97qe3wkhBLVaVEbXdTSPVuDwrdntbPxlF/t/P8avZ6cUmIPqms6gMT3JTM0hNTGTG/FpaB4NW7aVmW8vpOuzrQq96dVsURlLgA8OmxOHy8PrHT7m1a+H0mlgM3Iz8ji06RSVG5QnMiacKnXLoagKZoNK/dZV75nLrd1u/uvJr8T6q88HXvNOXdMRUuCrKbz2aKtC1z8Rd4P1O87icLop6bawdsoLqIrCjexsRq1dh8VoYEh97zEtFujL+GGd/3L7rXrUZe7cPV5yIVReH9r2LrKUl2Nn8axteHIdKGaVgMC7qzctJhUHXk2SejSD5GtulG51ybp1jV5KVVI33CQtLYl2Q2MJCrCQnJmHtbSK/ZSCUGSBlimo2O0HhNkzNrNsySGkWeCy61gyXYQHWLCm2rAB5cqHoTs1atcsxZYF+3HaXXw2Yh4f/vw8s7/dRkioH+UrlmD1hpN071SLoPy+h7UrRBKeCjlGjexyqneflXutA+IT0iheqywhwRb2+dnx6Dplw4sVkaUiFEBKORdACGEEqgM3pZQpDzu+iDAVoQj/C2jcqRaNO9UqeK2qCk+M6kLcvgt4nF4CsuTrjQQUD6BcldtmiEnX0ji2/Sw1mlSkTGwJLp+6Tv221ancIIaLJ66xZ80xnHYXWTfTQddRTEbwsaAYDfz6+e80aF4B4XajOV3k5eisn7ud8Ogwnnir+9/a/w++G8L8GRupWq8slw5fIi81i/odatGgSQUaNKnAtqUH8eQ5MGk6moDJ41fy8bSB+P2FA/X1S0mM6j4Vp91N6fLhCFVF4sbj1shKz2P0418SXqoYR3eeIyfTyqgvnmTCAq9n1dXzibzWYSLSYCaiTOh9b3qnD8bjVAxIo5cseFxuvn5nITcvJLLtt31kp+d624Kc+ozKdcvy7bZ3yc6wEluzzD1zfff0Y/yw+zAtK5WjfHgoUkq+fHcx21cdpWO/Rgx9rwefb97FlbRMRndsSbnQYvQd3obUpCw8Lo2XxvciOLRw0XFYaAAgMZsMlIoIKrjhlw4KYtGA/n/nqwKg88BmrFh7kqwsG6qq4PMnLdnP0zdycFscQkKVmmV4+/O7t/Hiu1354v3l+PubOb77Ih6PTu7hk9xsH0z0mjyMuTq34tKoVjuKH5/rQ9+FC3DaPQijilQEQlXo3qsefQd7ncOvJaSxevkRpEdHlQLdR0FRBP7+Ftw5XrlI32ea075TTY7tOs+WBfvyvc38KV48gDHv3j5fO7Sudte+Ggwq3059mt27zmMPUzl7PZmTv52lzZqP6fpyM0b1agXAhDFLcbk8JCUbGDG8Fct/P0yzsGJIKYtI09/FP0zDJISYBcyQUp4RQgQB+wANCBFCvCGlXPAw8xQRpiIU4f8iHnuxA0e3nkE3Gjmx7zIjO0/m6y3vUiomHKfdxQtNxuJ0uDGaDEiHA4/dReLFRBRFIaJ0CKrh9pO08PUBgwEk6G6NqxeTeOPLpzi86RRn9p7DaXWie3TmT15D31Fd/laUKbZGGT74dggT+k/jwLpjCCEYv+wN6uQ3r02/lYWmaXhcGnqeg8sXkti19SyduhWeMgLYvuII1hw7UsKVuERAoPqYCAsPRJpMnNp/CYNRRUqvt9SirzbRplcDAKIrRTJ7z4dcOJpAnVb3RoMA0hIzOb79LI70bLDnazhNJjx5dpZO/x39dsCI799bxFvfDSOiTOh9NVE1SpdgWv/b4vSMlBw2Lz2Ex62x+ufdhLWPYcHhkzjcHjJsdhYNfQL/QB9GfzHwL49tRmouFw4n8HK/FnhUaN7gX2/tM3rw99iSc1ENCr37N6Juwxhyrd5jEOBnwS/AglAVhK4TJ3P5/rcdPNu7BRGlvLqgq3G30PLs5NqcIL2yKqnmkwqzgmrzmpxuPngBzymFV8o3JM/hROtjZdPqE7RuV5Xh+R5SAMVC/FBVBbPFiK+fiZqNY/D1t/DUgCY4HR40TSc6v7VNnRaVGDn5CZKup9PlyYerMIyOLk50dHHSUnOI23kF6dRRgJXzDxQQpuBivqSn56Hpkvkzt2HLcbDxUhaPtK5Kjbpl/+VjXoT/aLSQUv5hKjcYuCCl7CmEKAGsA4oIUxGK8CAkJaSwf/UR6nWoSZlKpR484G+iTutqrEyezcBa75CdnofF10TStTRKxYSTGJ+Cw+YV9bocbgyA2ddEmUpe4XZwWCAzt7/P7tVHOLHlFIf3J6D/4WKpKGRl2hjz1CxmbRzNzcvJPN9gDB5NRzU93GXtcrjYveoIkeXCqdygfP7xSMVld2OyGLlw9Ap12lRnw4K9rJ2/l8iYcHKtLnJ9vFGlmNgIcjLy+Oyln3DYnLw5Y1BBc1uA+q2qsnTmFnQpqVgzirOHrxBbJ4Ypy0cyfsh3ZKbmem/UCFRVoWXPu9N84aVD76oEtOc5+P6DxdjyHLjtLnavPOzVVOk6iqqgqAolKpUkLz2X7NQcFFUteFDOTr+32e+DEFjMj2JhAeRm2SgWFkDxEG/1nEFRCPKxPNQcOZlWhnaaTK7FBEKg+anMKLmLiSO606zO/YXlD0Jacg4elwezaqRRkwocPH2VN6euBGDqG48x4MW2CLPKN7v2E3A2k+0n93P41+PM2zoaHz8zW5Yfwe3SMPsoNGlXjfDIYkR3iWVfyk06dCvHpV0JnEtOZ+mxc+gKcMT7HbWtU4FVm95k1ck46k78isBgC71N5Ui8nM4bY7pxNSGV+Qv2s2fnBapVK0VQoC+btxwmKMSfqGhvpHDz0kNMe/s3/AJ8aNWj3kP7iM35aQfzv9+Fx6wUuIs7jTDo24WM7dORKTOfpu8HP2INEgQfycViMuDUJWdO3ywiTH8b/7iI3J3VE+2BxQBSyqS/E30sIkxF+K+F5tF4qcFo7HlOjO8ZWHBjNr5/06n7YaAaVF774km+HbuEKg1iqJ2vYyoWHohiUNA9OgazgSfe6Enq9XSGfdyvYGx46RB6DW9Pr+Ht6RMzglyHty0L+caa1y+n4HS4KV2hBB8ueo3dq47w6DOPFBpdklKSl2XDP9gXIQSfPfctBzecAAmT1o5m39qjXDx5DaPFiAfBvC/WEVU9ii/fXICWawUpeeaD3lRsXoWwiCCiyhbnp4krOb7rHLoumfPxCt6efbuXV5X65fjp4DhcDjfhpUJw2F2YLUaEEIz++hk2LtxPZNkwqtYvR262jcgHNBNePGMDG+btQUN4W6cYjQhdgkGhfK1ofAJ8eO+Xl0m5msLU4T+QlpSNMKpERBbjhUleMXxWag66phNSonBB950wGFU6DG7J0d0XeG5UR6pUimJijw5cy8iif/1aDxwPkHQjA7tL8xYvC1BsGi63xpodp/8lwvTO5H7Mmb6Ruk0rULlmGT6ctQ5Xvonqxn3nqF8tit5DHmFa+jnUEzaEBLfTTW62HR8/Mz0Ht+C7iWvwC/Ch/iOVcNhdNC0XRd0SJUHAGfdlruTkt5HxGnmjS4nN6cbh9vDerxvQdJ30DDeLLh1FSDh2/Bpj3umOoio4HG6SU3KYNWEFm1ccRfNVGeXuRdsudVj2ww48Hh2b1cH6lYfxxAazY/1ZpFNnwts9KHtHBPDOdNqqlUdBB6kIXCFGNKMkpb5KijWRPr8tYNezQ8koo6K5dfTa/pQ9rWHNdTJvzi7q1C9Hpar/swrSIvwjkCWE6IrXQqAZMARACGEAHvpHv4gwFeEfgZ1L9nFqVxw9Xn6U0rEluXwigbfajUfqkkmb3ie27r03J5fTjTXHnt8ORWLPc/yPCJPL4cJoNv6lTqJxh5o0/pNbdXBYIBOXv86+348RWDyQRTM2gpT4BvsxbNzj98zRaWBTVny1AWE2El0rlmvxKXR5shmW/OaxDdrXoEH7GveM0zSv8Pr93lM5tfs8tVtV5ePlr3M17ma+yNxEYnwyS79c7xVhm0yAwO3ycHL3eSwWA9Ycb6xmw9ydPPF6V5Kvp/P5q3Nx2JyoBhWDEETGhN+z7eA7PI0sdzS59QvwodMTTZj5+s9s+Xkbw6c8xZrvt5B2M5Perz56V1+6P+DjZ87PHeWLrlUVdG/11I1kK3qSlW/GLuXdr5+hdNUyJMSnoigK4eUiyMuyc2zracb2moKuS16Z8Sydnml53+8L4MTRBBbN24vD4WbS+JX8tOQVHq3mrQyUUuLWNIzq3cQ0JTOXrUcuUrdSGSqWCaN81VKoQSY8bg2Eiu5vwGhQ6dHmoXp93oWES8ns2nSGhi0qUb9FReq3uO0z1L1ldbYdvIhA0LmFVwPkZzKxaNgTzGEzV7cm0PGxuoRHeoliz0Et6NSvEUd3X+CzUfORuuTnLzdhdetYQnyx2d1IXwPGaAseKaleKoLcbBsDG9UoEMQLr4e3V9Okef2jGjcuT7v21bh4MZmXX2nP/CnruFXDl9zyvow+vJtNrSrTumc94m9k4RaCn1cfIr2qH1LTCbyh8f28XXz0Tk+klIz/ZBU7dp6jXZuqvDu6G40ercLmuYdR3DoxtUqSkJCGwGugaXO7sRiNjOvclknfb0aRCnkuxz8vTvL/Cv8wDRPwPPAlUAJ4TUqZlL+8LbD2YScpIkxF+I/HofXHmDhwOppHY++qwzR8tA7HNp8kJz8Ns+zL3xn9070+SD5+FkbOfp6l09bQ6dk2hJYsxvlDlzi88QQt+zaldOyDW1L89OFiFk5eQ0BYAO/PezuIgEoAACAASURBVIWaze9fal8YajWvRK3mlVgwbV1BNVnytfRC1x0yoR+dBrUioJgvR7acQTWotOhZH4Cr52/xbt8v0TWdCQtepkINr6j5RnwKI7tPxW51oVmtSF1yYmcc2em5vPbVs0x76UfKVCrJvu3n0QMCUTUPPqpEGI2YLEY6P/MIj3Svx1tdJ4GUtOnbmOuXk3m161QcVgcmBXo+15pyVUvRovtfV86lJWaye/VRajSNpXyNKJZOX8uWBXvQdZ30xCwunryGx6Nx7XwiY+ffa4fy2PB2OJ1uFs3YhNvlJUooCqqPGYlA0zSsOXYAylQsidnHhMepcWjzaY5uO0udJuVxObwC/C9fm0vlRrGUvY9vlabp/DJnFw6HGwRYLLfJnsPtof8PCzmflMqwFg0Z2darw5FSMuiTBWTm2lEVwcqJQ7ielU1iy2I43RrFVBPrxgxBNSj43jHfw8Dj1hj1zPfYbE6WzN3DrxvfwP+Oyrd6VaPYOOtF777mG2cePnmV0R8vw2g28M1PzxITdXcEz2wxkpWWi9TB5fTg8tiQFhO5OXaEqmBySyb2b0/NOtE83eULXE4Pn+xfyJLtb/P5wC58v/0QdUuXZH96HLpH5/0RXTCZDIwc9WjBNl78oCcrv/sFVHBInS4vzSTWFIDJx4TL6cGQ7ITyFgLP52KyCyqW85LujAwru/dcQErYsi2Ol4a34+1hnWjZpgq6kDSNiUYIwYJTJ1l74QLP12+AIgRdqlXiM30zHl3HVs6HTqWjadgwpii69F8OKeUFoFMhyzcAGx52niLCVIT/aGiaxicDpnuf4IGc9FzW/7i1oImuEIIrJ6+SeiOdsEKMFjsOak3HQV6Pn+y0HEa1HIvb6WbR5JUsz/gJpZDy5Tux/OsNSKOB3GwHb3WbzFPv9mTgm13/ckxh6PhEU1Z8tZ48m52IkoH0inwBk8XIG98Ow2FzUb9tdSx+ZkqVj2DB5NUs/HwtCMhMyabH8+1Y/eN2MpKzAVg6czOjvxkMwO61x7HlOtF1HUuQP24tm4p1yxEY4k9w40C+OzKRvGwb/WqNAUAxm/hi/VtEVSxx1/4tuDCNnPRcIstHMObpWV4ioShoSKo1LE/D/MiWNdfOe32nk3ozg7dnP0f1JrEFc4zsOJGstFwURWHO0U/wC/bzao+EKHAMl5rMdwc/RM1HqhAYcrvqzGA00HVQS5ZMXettGmswYPA14xfoQ0hkMeLP3kSVOrqu89TobpSrWoqfPlrBrYQ0dEUnPTUXoQivfYLFwozJqxkzaQAhhbiwx19O4dz5W+gGBUVKxt9RZXbixi2upWchgbn7jxYQJoDMHBtuTUcYVL5cvpuYqOIoQoCAwBBfAvwfTvv0Z2iajsvl8Qr+NR23+17bA4NB9W4Lr63A+GE/YbC6cIZaWLftDC8904rUPCunkpLRbjiY8ulagoN8qNEohoyUHHSTgesJ6ZSKCOLmrSykLomJCfc2v83Xznk8OhJJ+5qxtK+Z/932KtwjCyAyujhDWzdi9q6D6E4NJVsjXssk0t+M1CU+xX1xH83ClOElpklx3gf/4GBfSpYIJiU1h5IlgguOW5MKd7fieaJGTRooIbzX9wdmGRQmzx/O631b8evmo3RtUoVh3Zr8j453EYpQGP76blCEIvybQ3Nr2PLsBa8rN4pFUcRt40gpiT95lZmjfnrgXNZsGy6Htx2ILcdO98CneL72G+RlWe87pmnXetyZifv187UFUYxC91fT8eSb8O1cfoj5k1eTk5HH+cOXcVqdaG6N1d9txZptIzMlm7F9pzPlxTm8+/gXZKVkI6XkVkIqbqcbt8tDUkIaALVbVMZk8UaF6rW63QC4XssqGM0GjCYDz33QizknJjFlwzt3EUG/QB8q1CiDyWygVLkwSsXcqyXyD/Ylsry3QW/JqFAMRhVFVejQvzEN2lUvWG/B1HXEHYonLTGLz4b/ULBcSklWWi5up6dAS9XisUYMHt+XQeP7Mva3EfR8sQMtHmvA+cOX+WTwLIbVexs9v9TNmmNnWN236V/2ZVw2J5rNibTb+XzV68zaPobLx64gHS5O7DpHYnwKiqLwSI/6vDVrCGaLEd2jkRCXSOcXOyLCQ3EFmtlsyWHkiJ8K/Z5KlgzGbDZi8TNRqUYZwiOCCt6rXCIMX7MRs0GldcXbqV4hBB8P60KlqDAwCFYfOMusFXsZ8kh9utSuxFfP9LjvefEgmC1G3pvSj9oNY+j+VBPWrz5ORnpewfv7jsTTof90uj3zNdduZnD6aALSoyMAU5aTJnVjSMnM5dHZcxm58nfe2LkJT66DrBuZ3mN2OZmaNUoxb9Ob+PuYEFYX2Fwc2B5HSPEARn/cm2ZtqvDRjIEYjX/vOXtE26asfvEpAm9Ib6pHEUz6cQhRMcVxplux5Nwmf1t2xHHtRjqqqvDdzEF8OXUgs79+BkW5f3Jt9keryM6wkpGSyxfvLKZfm9qs+uTZIrL0r0D+P/r7D0NRhKkI/1G4cuoqc95bSJXGsfR/+zFMFhNPvvc4v4xbhJRwaudZhkwcwM8fLMLt8qC5NW/rkZLFHjh3aGQxhCqQmvdKdtpc3Lx0i32rDtP+6cL1Lm/9+AIVG27m+w+WoBhVQiNDMJoLv6wSzlxnZJsJuJ1unnyvFwumrMXj1ji56xyvfvE0SAqiSAlnriN1HcWgYrc6iNsdx4CYl6nRvApv/PACKdfTUQ0q/UZ1xu3ysGbeXnTFQOeBTWnXt3HBNmNrluGXAx/idLgpXrJwobMQgs+XjeDmlVQiyxZ/oB2BLccBmo6KpGW3undpt7LuqEbT73ALFkLwzvfDmD9lDc261uXk/kt8O245iipo1LEm1yesZMi73Yk/kcDOlUdACLIy7bjsLix+Fk7sOEvytTSkLjEYVCJiwuk3qisVapRh8bS1eD0EBAaDivGOXm6V65WjbsvKHNx4EiEE9VpVY5m/lTSbHeGRZLidd322+IwMhq9ehclgYMqsJ7Gn2KharfRd6wT5WNj46rMkZedSNvTu86pNvVha161A85Ffg+bVxnWtU4UyYQ8WmT8IjVtWJrREEKOe/wmPR2fbptP069OAOs0q8vOS/bg9GppVZ+ue8/RsWwNfXzNWXdKqSy1cdjcDnp6Nn66TWkvFHaBgTM9D6CCFwGl3cWLvJV4c15tOj9cn/twtDEaV+vn92Fq0q0aLdl5t1K5tcVy+kES3XvUJDQtASsnydce5eDmJ6pFhqEDbbrUx3lGtWT48lA/e7MrS7cd54pG6RJUJIf7cLaQEk48Jj0XFqemoQRaM+eef2WykYuztSOeN6+ns2X2BBg3LE1Pem7qzW53kZlkLzFutWbZ/+TgXoQj3QxFhKsK/NfKyrJzceZYqjWIpFhHMuN5TuHkpiWNbT1GpQQXqtqtJy75N+fnDRQDoHo2GnepQpmIkKdfSCzq/d3y2zQO2BEJRGDrxSQ6sPYKuS07vjsNpc5F0JRlrtpXRHSZw48ItXv/hRVr08jYyFULw2PD2tOzVkLjD8dRsVvG+4u+tv+3Dlq+x2bn0IAhvpV5elo3I8hHM2j+Bm5eTyc2y8vlLcwAIKxWCLc9B9o1UNE3n5K44zBYjn656s2DeM4fiOX/8Kh6PxrqF+xg+ofdd2w0o5kdh7WR1XcdhdWL2NWPLtWPNzEOUK/7A43TjUjIep9d6IDEhjVrNbouP+7zcgT3rTuJ2uBjxxd2NWZt2qVPQdPfVzpO9OiRFsGPhHoQiEIqg3/C2KAYVXdMx+5mx+FlIvp7Oku+243ZpGM1G/IJ9iapSmvCyYZw+fIXFX21EtzkQfr44XR5e6TSJOfvHYcu183bfGbicbroNa0OFGlE07VKHj2NDeGvuWkx2D2UDg/jlx508ObgFQgim79vHxYwMFCFYdOks77dqxcXTN9i98TQtOtWgQlWv9YSvyUhMWEihx0cIwVcvP8a8zUdoXbtCAVk6diieSR+uoERkMB9/MQC/B6Tn1i09xPb1p+kzqDn1m3nTX3m5DoQQaJrO1cspzBi7DCXEl7Qw71yKKmhQuyzBof7M3fAGWRlWIiKDGTN+OZ78iFNwpkJwBkjd28cwKNiCI9fBgJEdOX4wnlZda9O4TVXMPqaCfm1/4MzJ63w2bgVut8ah/Zf5es5QDp+4yqyfduDOsLItxY5BVTiw4zzRVUtSOro4bTvVICUjD6Mdpg7pQaCfd1/7DnmEpXP3ULVeNMZgXzLsTp56qhklC6lg9Hg0Xn5+Dna7mx9mbSMmwMKbn/Vn3hfrSIxPAU3D7GPixQ8f+8tjWoSHgAT+Ya1RhBCj/up9KeXUh5mniDAV4d8Wu5btZ9LTM7xaB38Lv1z5Bp9AHxRVQUqJT4APUkre7jihYIwU8F73T8lIzEQ1qsw+PoWS5SIeuC0pJSOajeHG+UQCQvwZMKYX5w9exO30sOmXnZQsX4KEMzdw2px8N/qXAsL0B0IigmjW5f4mjgCNOtVmxVcb0HWdx17uwPWLyVyNu8nQ/O7y4VGhzP1sDXvXHEXz6OiaTsmyYUxYPILX24zn/OF4qjWrSEDI3W7SUbERGM1GpIRq9csVLLfm2MnNzKNE9L0ptoVfrGPuJytB1wkN9cXm0nA7Nao2iqHXC+04seMsXYa0oVSFEricbr5+eyFJV9N46dP+vDyxL1NH/UrJqFBaP3Zb6H1kexwn9lxgxvq3KBldnF+m/M6kl3+m9WP1efGjx+8iko8Na83nr81Dy8lD2uxIATfPXKdEVHEmLBrB0W1n6Phkc3KzbHw4+FsSziUiggIwmwQZGXns3Xaeg3suowuB9keQSAg0j47T7iLlZgaz319M4pVUAE7svcTzH3ntGppVKsueT17i6T5fc+7mLRLi06hWozR1G8RQo0QEm+MvA1AjIpz0jDwGTlmAM0BlzrtH2bTwTcx/ctUGsDldLNl9CpnlIsAuadG+Gp+/cLfb+sxpG8lIzyMvz8GOzWfp3LPufc+VpBuZfPPp77hdHs4ev8qK/WNRVYXa9cry+MAmHD98hfN7LuJ0uHGgowGoULd2NNUqeosVLD4mSpTyisu7dKzBoSNXUBTB16/2w51lY/LphYRHFuOFsT1wOd1MHL0Ym9VFYLAP0mwgrEQQ4yf3xz/gNrGz210IIdB1id12d2NgR4DElCxxuzX2bTvLvu1nMRTzB0UwcflONE0nJMiXpZOfRQjB4Fc7MPjVDrz18i8c2n0Ro0kl7lIii66eo23l8nSpfruNkNut4XC40TQdpCThUgozJ6zEkWPL95My8uonfaje0JsidXk03ljyO+dupdLcHM7BpWeoU78cH37yOKpapET5L0Rhz4x/G0WEqQj/lsjNzOPjJ6YViLelhKzkbCaseps1szZSoU45qjSKJScjl9Trd1SV6ZAU720NZFYEl48nULJcBJeOXyHpSgpVGsey6eedRFctTZNu9QuGuZ1uLh27AtJbkVSqQkmMZiMgaDOgObF1yyHwpsxqtqiCLdf+ty0IqjWtyC8XpuF2uile6t7oxKWT19m3/iROl4YQULVRBYZPegJFUfh861iyUnIoFhF0F/Fw2JzsWnOcUZP7EVQ8kNj86rika2m81GIcLqeb3i91ZND7dz95L57hLQyRQpCRbkUqXsftk3sucXb3OVxONzuWHeLX81+wfdlhdiw/jNPhZtqoeUxd8yaztrwDwInd5zm9/yI1msQyfvBs3E4325YeZPbO91n8zWZ0XbJ+wV76vtSOsEhv+sqaY2fp7O2YfMxEVwglbu95FEWh3iPeSFW9NtWo18ab/hnddwZXLybnNwSV2J0Sxcd73L2l+gJhMSNLhuMoZsKclEPFFrFEVyr5h1WV18unEMGEv78ZRfXq3fzyox5D6tajcvEwTKqKbtPp8OF3aL4KCEF2aQsej4aZewnTuF83se3QBYIPZmFQFJbN28e89a9jtzqZ9OZCUhKzKF25JEmJmV4xdextEp9ltbN8/2liSoTSsloM6Zl5jHhnPu78ljpSkyw/dZZtl+IZ2rg+jz/RmLMnrmGJCMTgdFG8eSpXr5QGXWVAjwaFnnvNGseybP5LSF1itbuIqFSSX3e/x4lDV3jr2R+QeEmJlOCwu9DNKhkZeWxZf5IefRoWzFOvYQz9n27G+bhEBj3vFXvXrxXNi4NbMXbrVqRUCIq35n9fkOsneXel17xUcUqcqTlousSg3j6HjSZDAQmbs2IvaRWMbDkfT43IEkSFeKNNPj4m3nq3O7/8uJPkC0mYzAaiKkTQ9YlGfPX+UsqUD0cr60ePr+bSsXpFKoQXZ/fFq9jdbhbZMiiVksOhbXFcuZxChT8VNBThXsj/QH3RX0FKOe5/Y54iwlSEf0t8MuA2WQLo8ExLSpQLRwjBoPG3K5Z0z/2bpEZVKU29DrU4f/gyr7cci1AEZl8z1iwrqlHl0w3vU72Z9ynW49ZQFIGuSTSPRsX6Mcy/OpOcjLyCCNX3Z77g1O5zfD3yZ7YtGc6ob5+jbf/7t3a4dPIaY3p/gaoqTFzxOtGVIwkqpCLrD0SU8YqpffwslImNYOr6293lFUUpMFt0WJ1cPXcToQjmTv6d0wcuI4BPFr6MwejVf5zeexGPR8Pt9LDmx+10e64NoSVuC5cbtq/BzpVH0D2at8dbvreRxdeEZtMg3+jQluvgwIbjeDwaiqpw40oqBzafxqgqhJQI4v3+X+JxezD7mHE5PYDAYXNh9jERXjqErPRcfPwsBN0RFdu/6TQ34lNw2l1kWn3oNKgV/sG+PPbK7XL0P5CZ4jWaFHj3TyhQrnJJcnKc5OU6yIy04LKomDwGHBX9qPlIYyb27oKiKLz51WBGdZpIYtx1Lu3N4us35vHSlNtpwo+m9Of3VceoULFEQdm5EILm0d5KrGFfLsbjPTAIXVKjZPh902gpt7IJOJ4NOmi6TkZ6HlJKtqw6xrG9l3A5PZjMRsZ+2pfw8ECiyt2O+o36cTUnrtzCoCrMHN6LIwevkJyYhcXuAlVBaBrjNmzF6dHYn3Cd8RUac+rENdwujaBQE1F9Myih3SLQEEq96lH3Pb9MJgNDXv2JpOQc6teJ5tOxvTl38joej46m6Yh8hqkYFXThrYgrUfpujZYQggH5/ePuXNbz0docvHqN9VmXsDp0/G7akUaFnCgLIEGRBAdaeK57Ywx/ivC8NbYH33+9hc3rTmC+rhGW5SGzhQFdSk7dSqJcSAj+ZhNt2lWjTbtqnDoUT3pyDs071sBgVJm69FVcTje1Pp2BZhSc27WPT7t2wKPrmFUVke30+jHZXfgWEh0swn8PhBAWvKaV1YCCi1lK+ezDjH8gYcrfwE68XrUGYImU8oP7rNsbWAI0kFIeFkK0Bz4FTHityd+UUm7NX3c7UBL4o8Spw9/pGlyEfy40TePwhhMFr9+ZP4I2/ZuTmZLN1KEzUVSFUd+9QFDxQG/Rjaqg53eaL1+nLMUjQ+j6fAcad/Wmi67F3QAhcFideNwaHreGwWQgN+N2lZGUEtVoQNfc+U+8Cr6BPvgF3TZQjIgOY9uifditTqQumfzcd1SqX4HSFbyEKulqGgHF/PDL98dZMmM92WleEfSq77byyud3a3r+jKBQf2Ztf4/4Mzeo2TS20HVcDhfD6r9D6s0MJCBMJqTJhMXXTGpiZsF69dtWw9ffgtPmwupwM7rPl3y/6/2C99+cOZg+r3bk6LazzPtsDU67C0VVeGvWs2TeyuTw5tP0e70LP45bwoF1J9AVBWE0kpvnYtzQHzBpbkJLBiME6JrEnmsHKREGA8M+eAxVVfhq/Vuc2HuRzb/tY2S3Kbw2ZSCxtaIKPKLMPibqta7KK594U5I5GXl89cav3LiUTHZaLo+90Jaeg1sw8815eDQdxWKmVvOqvP7Fk4REBPH52p3M2XkECZg9ApNTUMUcikFRuJqayYIDJ7CE3o4Crv52E+UaVeTRxxsghCAk1J8nB7fwpnnyoes6Ez9cxv69F8gKUAlAwVnGyJiB7enW4Hb14Z04cfUWqccTMdi98+iKwFrSwvvf/s7Ra9fQPBr4mrh8PQNjfr+1k0evUq1WGVRVITPPjkfXMRoUcmwOrrvy0HyN6CYV1eGm63Ot+coTj0RiEx5+yjyHQ9VRpSQv3YV2ugSG6jfoGNkHgMxMKwvm7SEyshg9etUviEjeSMwkJTUXt0dj36F4NE2nbdfabFp1jOxMK7lOFw4/BVOejjXcTE55A+/u28HyOmUItNxLFKWUnE9PYvTGrQT7WHg8tjw7tsVhL+2LGhlAnuJBKnjd2IHm5UrTr8Pdacg8u5NXPl/GtYspmDSJAIxWnUf1MN5Zu5GzySkEWixseH4Qvvli/hoN7jWhzct1IFwSVEDCt1sOYvB4o4ehx21IVQVNI6xk0D1ji1AI/k0iTEKIMsDPQATevfpWSjn9T+sIYDrQGbABg6SUR+8z5S/AOaAjMB4YCMQ97P48TITJCbSRUuYJIYzAbiHEOinl/j/tdAAwAjhwx+I0oJuUMlEIUR2vQdSdDbsGSikPP+zOFuG/A54/TAnxPr1WrBuDpmlMHTqTA+u87RH6/T6Myg1jeXRIG1TDbcJ05eQ1Zh2ZfNd8LXo3ZtuCPVw/f5Mn3nmMnYv3Ub5OORp1uf3j7Rfoy4SVo9nw03Y6DW5933Rbw061mfPBEsCbzpr9/mImLHiZeZ+tYdFXGzCaDMzY/C6RZcOo37Y6e9ccA6BOq8Jvtn9G8ZLB961mA0i9kUFGcnbB5zUaVSLKhVGlYXmada5dsF5wWCBjF7zK232+xOVwk30HOQRvxCqmWmlvWuuz1Zh9TdRtVZUmj3rn6PysN92yacFekBIFCSYDKgLN5cZhdZJ4OZkh4/twaPMpTmw/C5qO1HQQgn3rTtCwfXWs2VaObo/D6XAz/c1f+WrjO0RXLMG3W98h7VYWleve9tX59v3FbF20Dz2/SvGb0fPRne4Ciwiz2cgTr7QnJL/Ef/+Za6hWQIBulLg8Gj9vPUKv1jV57vtl3MrMwT9IEpg/vzSZ+fLDFZy4mMj6sDSsaTZiDmtkXUijUePyjJs9iKMHLrNj7UkUDcy5Ald0AMOa1KdlTBSTR8zD7Gdi6JjuBATc7n/29q/ryFDcBCsgJHhK+OAKMbLxwHk0i8BY1Y/AK25cLg/fTFnHrcRsEPBI26q8MbYHk57pzOcrdlKpVBhZ5zLwpNqxVjVjr1yCET1b8FSzulS5nMAXe/ZwJi2F45kpRDQMwG9zJrqqYSCaCTUmFxCjTyes5NixBIxGAyGh/jzyx7mnCpQQE1qGxqPNqqCqCsUjAvl+5QjcmkaTL74hS3fh71BwOSUeH0Gy08b6uIv0rXO3g3xaXg4f7JnK4URJalYQfrdcpK3YRwiC0LqluJ5nx+hnwKBKhA4Gt+SyIa1g/PlTN7ztUzxOrt7KwGGQEGDAlOHEkOXEfiKNIwbv74CUDq5nZVMp/P4FCSHFAxgaXpkVp+NoV6sii25cRkowCIFuVlE9OiWiQv+2JUIR/r/DA7wupTyazzGOCCE2SSnP3rHOo0Bs/l8jYGb+v4WhgpSyjxCih5RyrhBiPrDrYXfmgWeP9P5a/fFra8z/K4x/TgAmAQXlO1LKY3e8fwbwEUKYpZTOPw8uQhH+gMliolSFEqTfysTiZ6Z46VCmD/+OwxuOF5T8a26Ny8evoOs6RrMRt9ODalCp3ea2J5DL6eHgltOUjgnnk9/fLVjeeWi7Qrdbr30t6rX/6x5hMTWiqN62Jqd3n0MIQUBx7+1427KDuJ0eFEVwau9FIsuG0a5/UyrUikZVFcpUfLBr+MOgZEw4dVpX4+CG46CoxFQrTffnWrFuzk52LDtA235NC9atXCeafq904OiOOJ56o0uh81WsHc3EZSO5lZBK86510fJTb7ouUVWFZz943OvvZDZSrXkVEs4lErf/Ase2naXlY/XxON2MnP4M7z01i+SEFISi8NXoBSiKoEX3erTr1wQEmH2MlLqjdUp4qWKEl7o73WP2MSIUBTQN1aCgqgpOx21hcd3W1aiS3yQYIDPLhgAUITBoAjc6uWYPH6/dhtySRHG3hrVuMCOWj+T7MSuw2b3p2z37LpLYykDkdhuZuTr4Wzi06zzxcbeYPH6l1xxSAY+Pgo+PiUdbVWP2+OXsXHscHcnKsxf54dsXKV/Ca4QaEeRPSnQuuWYD7cvHcNVu5UJaBpouQYC7nA/KNQ2zQSW8RDCJidk47W5OHLmKR9fx8TUxc3gvdmw5y+SJa7AbJKWDffnwk17ULe+1NHikfFniszK4sNur12vVsgKn8rahlHRzMTqFAV//zM8vPAlScv7sTXSPjiY0NE0nL9fBqeNXmbR4B5lOJ+ZiJnr2qIuUOh7pxqiYScrLw2rQkZogz0/SukxZDiTfBKB6yXuLJvp+t5DkHD9wSNRAieWaC3sxX4QuCbqeg8muoRgEuiJxh/shhKBdc2/6e/fmM0x+bxkAXZ5pgkBgsZgIKWXBduUquknlitNFg4xiHCmWTf0ypahQvPCKxDsxakQXRtEFXZekvjuPC+vPYbAYQCooZgO9nrp/+rwIf8K/SZWclPIWcCv//7lCiDi8QZc7CVMP4Od8rrJfCBEshCiZP/bP+MMkLys/iJME3NvT6T54KLothFCBI0AF4Gsp5YE/vV8XKCOlXCuEeLOwOYDewNE/kaU5QggNWAp8JOU/TWpWhD8jIymT7NQcylaPum/5vRCCrw9P4vTuc1RuWAGLr5kze87jcWsIVRQ8JSqKwpLPV+OwOqnVuhrDpw6ibLUyBfNMHD6H43suIHXJtNWj7tsG4+9i3LwXmfbWQhRVLSjhf/zlDnz11gL8An1pkO9Xs3vlYX78cAl1WlflpSlPPtA1/GGgKAoTlo4qiLrY8xz0LfsKHgRnjl0j9VY2/V/zaoGEEAx4rRMDXrunIwDg7aX3XwHySgAAIABJREFUZudJXDgST7/XuzJt/XG2LNyLxd8Hl8PN4yM6MWRcH4Z91I+b8Sm81PZjXA4Pr0zuzwsf92Vow/dxuzws/WYTn654nVEdP8XtciJUBV3CpVPXGTX9acbPe4nkG+m0fEDrlOfG9SEkPAiX001YqRDKVS/N6K6T0VxuGnSszdhf725vM6hdPaau2EV4kD+Pd6jFjF37UBFkJmRiyHSj6JIqef78suAQecX8ADv4GGj5eG2uZMahaHf83GgaCQlpOPKcuIIN6CFGXh3ZmV5NaqIoAr8gH6TwimFdCvy65gBjBnVENah8+Wx3fly2j42HD7A34TxuHwUl3EzrJrE82b0hDjwUe95AVnoe2Sk5nLmYSF6ASr32len+wzyupGdQ2uBP78AYcgIU0CXZuQ4uHE8sIEyTR//GllXHqde1LN2ebkb3qpV4J3IfN/NycOWZuHE9m4tJaXiS7Wh5TtB0kNCkaUWe7DYNm92FR0pEjDdyatfymHnxTayeTFpHDKVuSE+alCnDjoQEulepzJRHH+XwtZtEBPgTHRLMrvUn+W3WNlp2rkXvoS1JzrZhuSEJOuci6REfMFvQi3mNKSOrlyFn9yWkw43q8mDIc2P0MRKueK/b82du4nJ5kLok+WIqiycPJik9h+yrGXyy92dcYf643R7cFzIZ268x/fs1eahrx+lwkZ1uZfueC1zcfAmhg2b30OupZnTq3YCoQgxZi/CfAyFEWaAOd2exwEugrt/x+kb+ssII07dCiGLAe8AqwB94v5D1CsVDESYppQbUFkIEA8uFENWllKfzP4QCTAUG3W+8EKIa3uhThzsWD5RS3swPsy0FnsKbq/zz2GHAMICoqPsLGovw74/4U1d5tcm7SCnpPbIbz370xH3X9Qv0pVHnuiReTiIvy0qTbvVIjE/C4/Tg0tyYfU2MXz2adx/9GF3TObHtDKd2nr2LMMXH3cRhc2HxNXEjPuV/jTD5B/ny3uy7NYKPPtmcdn0bYzCqnNl/ia9HL+DQuuO47C4ykrJp278pVRtW+F/ZPlBANg1GAwaz0euRKAS/TF5DrxfaFbQauR8un7zKipmbuHLqOlLC4mm/43G6QQicdicgWDx9HRVqRdOyV0Nmj/kNp80FQvDDuOVUqReD5tGRuiQ3w8rSbzYD3rYdioCAEH9e+MirqfHqse7WZFmzbUx4+htSEzN5a9YQhMHA3EmrqdoghkFvdkXkmymOW/gKFv//w957xldRbu3/35ndkp3eCAmEhBZ6DYTeQZReRERUmoINQQ92RY4FRRRRUYoICNJ7L4beew0tBEIK6b3tMjP3/8WEkAgonuc8v8/5nyfXG2XmnnvuPTPZ+5q1rnUtF+q1uF+38mzXCIZ0aILZaEAAAV7u2BUF93g7c8zxSIBruBcnouMx+huxyq68N6k3PXo2Zkh2C46Gx7Bo8hZEkZ2ufZrSOCIMg8GAu02jX/vmPNmuid7nLjWPMe/1JUso7IqOpaiKCweWn+b4jmu8PK4bfXo0prqLhx531wSyXcMiZEIMrvz2TRRDn29HWLNglmw6y5r5+7HbFajiwZpDF8lsakQRgjhHHqv2nEcY9ebCRoNMpZICgcICG3u3nEcCsncm0HFiFSwGE182/ojxy5Zx+lIOfu5uhAX44nBzYDYZkIFGzcJY8+sB8nKLQJKQZYkeLcJpHVED18AE7HcKEGicylxPC7+BLBg8CEXTMJaQk8hQnaypqsZXb65AUVQSYtNo+1hDpvTtxpxfd2GUNSpdLMbmbwaDhMlgoE6TEF55uRtJtzP5fe0pzh27AYogpISw9BvailOHYrAVO3j25a4E+LgT4OPOtO+ikJ0KslMFVxN2m5Ol07eScDyWid88w8xNB8kqKGLSgE4EeJW31sjJyOelnl9RlF9McIOqqGYDsl3BIMu07Vq/giz9TUj/70IX/pIklZXlzBNCzLtvPZLkjs4TJgoh8v6VE5VwlTwhRDa6Lvv+L5W/wN9K6AohciRJ2ovexO5SyWYPoCGwr+RLvDKwSZKkfiXC76rAeuB5IURsmbmSSv6bX5JHjOQBhKnk4s0DaNGiRUUE6j8Ymqbx3cQlnNkbzYgPB+rpGPTS90l9pnPjQjyaKiHsDg6sPvqnhAngyMaTfD7sWzRN6O1Eytx9IaBa3SolrtROJFni53eX4nQoDPmH7n8zfupQpk9cQnF+MYc3nqJNz8alLRYeFt36n8BkNqKqGu89+S1OuwJCYDQbEQgCgv86pfAoUFWNld/vJOV2Bs+/0xf/IG++3PwW7wyaCZKEl687RvOfO3XbCu282eNz7EV2XTBtdcGpaFD6Fq8X4UsCLh6JodOgSBwFNv3yCwGqQli9KtRqFsa107eQzUbMrmbcvFyxFzvQNIG90E5WSs5D17B75TGij8fitDuZ/d4KsnNtpCVmc/nkTRq1qkWDVjV5td1HpCVkUinEj7knvyg9tqjYwelL8YRXr0SgvyeJ6dn89O5akm6kMXHqEJr2b0iAvxdOp8IHW/ehWWQcJgnNLPj+k03UCAugIKeY3evOURDqgWzwxLdtDfwCPKhUJ5AbMSnEZ+ajqhr/GPQdN6ITadCiBl8uf4XWW84w6+P15FbxxOFUmDHndzq1CadL9/rs3Hae1JRcghoG0rBBVTb/chinXeHSuXg27n2Xm1fulLbNMTk1fFxdcXO1cLMwF2uyilEyoRhkJOCl4R3p0lFPYVndLNSqH8ztG2kEVPbivWs7OXQojpHhLZj9zAgSMnOo7O2BxWTEajGxcP0EEuMzqVUniMU/RiELgQZUC/Xnkwk6Gc1zBuAodOXcptoEeVSjeLwDVxdzKVkqC1mW8PCxkp9bhCzLuHm6MKhaAwY2qc1X37+GXKAQ08QT10utcXGYeLxnI6oEehNWK5BWHetwbO8VAoK8qNMoBFuxA5PZwOzVr6I/ToJvfoliz/EYwrKdSJKENSOf2g2rcu3kTdScYo7vvsyaIxdZc+Qiiqphd6rMfKG8x9XVc7exFztxOlRSrqeghPli9nLhiXZ1CK727/nbq8D/CjKEEC3+bECJdnotsFQIse4BQ5KAkDL/rlqyrRyEEJokSW8Dq/7VxT5KlVwA4CwhS65AD/Ro0d1F5AL+ZcbvAyaVkCVvYCvwrhDicJkxRsBbCJFRcjH6AFH/6oeowH8Grp+JY9+6E9iLHPzw5m90GRzJrt8OkhCTQmJsKgCSqwvCbifzThZTh3/HhJ9eKFeJVha/L9n/wL5sslHmiTFdmTJwOsX5NgCEJtBUrVzftxZd6uHMK8CRb+Po9vNsnBvFrx+vxtXdhW+iPqRKzb82tPy7kCTdN+duyiwozJ/qETXZvvwoz0x8vLTs/1/FgY2nWfXDLpx2J+lJ2Xyx+nXqRtRg/pEpRJ+IpVnHen+ZvlCcCopTKbUSeGf+WOZOWUdmSg7CaEQTINn1aFLlku7xXZ5qxYXD1xBC0PRxXQD84YJxfPnqIoxGmeff6cvr04fx/uBvuXDkOqDfk4ehWt0gZFm3MajZKIQrF5KQDbkITWD1dCE/s4A7samoisad2FTyMwvwrqTrxV6bspL4pGxkg0TbwfVYfe4SBChUOZbLrCnr+eX3t2nZXo9o1Th1kfNFd9AAc6YdSUj8vuUc69edRlM1rJKGWsuH0GBfkpNzuHU7Aw04tv8ac7/bSezlJFRF49KJWAryiunUvRG/rzjBybx8ZFnCYjZiNhuxmI389MsYADRNsHvnRSjRMFlc9Whfl8EtuXA6DndPFx4f15ke3Rvh5enC7Dm7yS0qoMvg+kz7YiNSoZOGIQGlpF6SJGYse5mEW+kUeQue2r8EY7LCukOHadO7Eu261sdcRszs6W1Fu5HKkIjJyLJM6051cPNw5aV3epXO6WmqhO3A0yRfjCFNdrA69DTPP/Xg3muSJPHdmtc4vOsS4c2qMe67tdy8k8nLA9pR1Lkf2xIvgR08b2agaYKXPlvFpu9fRJIkjCYD7R/TdYWJcRlMeOpHHHaFse/0pu8zrUlIzmbz3ks4nCq5QjBydEc8fdzo/Vw73npqFnHZhQwe2wU3ixlZkjDIEu6ulvvW2LBlTbz83HDYHOTV8aHQw0ihqrFxy0nO74lm/p737zumAg/Bf1Cft5IKuF+AK3/ixr0JeE2SpBXoYu/ch+iXAKIkSZoErARKfyyEEFmPsp5HiTAFAb+W6JhkYJUQYoskSZ8Ap4QQm/7k2NfQdU+TJUmaXLLtsZKF7iwhSwZ0svTzoyy4Av+5CKjqW+rlE1jNn/mTV7H1590IISG5mPUSdKdOgGyFdg6uOUpQjUqM+vT+SNOvU1ZyaN0fU9Vgsph4ecZIqtSpzNZ593Ns3z+0VahWJ5i4y4mA4PDGk9iK7NiKHUx/cS4zoj78H+uKjm49w5LP19O2T3OefX8gsizz8tSnmDVpKZIQeAT6cmT7BWTDJY5tPUOD5qG8+MUwzJZ/zQ/mLuGSJAlDGfIVUMWXzgMf7U3a3duNzk+2YfcK/R0matlhvtn0D/ZvOM2+bee5eTEBUXJdolYf58lXe9BjeHtyMgvYtuggubk2stJyCajiwzcb3gD0dil7157gmbf6ErTmOJVD/ek0qCW3LiUQf+0OrXs1w+JqLl1D0471mLZpElmpubR6vAm5GfnsWH6U2o1DqNUwBCEEDdrW4cKBK8hGA0UFxRhMBpbP2Eb8gesUV/HCxcXEluhrqEIgmWSKa3lRqZIfQggO7rmCw64w4+W+7D57A2dmMWt+2EtQLR/277+KcKhgkLC6Wvjgrf5ENg5DUVSqVfMj7loKkibYsukcAUHeZCRl07Rdbdw9XZEkia+XvkxCUhZHT9+kTUQNLObyX6Pz5+xh87rTCINMl671eG6M3odw5sxd5LuYsUky7duE4++np5VeH98TgAVfbUO9lYUQsHLOXqbMHVnuvlcPr0yR4sC72IzbknxkBb46uJoGzUL5euEL5dawefHh0pcNfx83XvtkEKqicmL/NSoFexFWuzJe7m4YDDKyJOHudj8JATi84wJXz94mo4qZtZeu0zAziTsZeQgBS3aeYvd3rzAotCkiD97Yth6HUyUrrwhNCAwl5CwuM5sjsfEo5zJxOhQUp8r21Sfo+0xr/LzdsJhNGGQZP283xrzfr5TU/bT9LVRVw1BShOBUVXIKixne6Z6j/vyoE2w8dZkBLRrgO7op4VZXtuy6BA4V73MZyHaNOzkPb4Zdgf94tEOX61yUJOlcybb3gWoAQog5wDZ0S4Eb6LYCo/5kvqEl/321zDbBI6bnHqVK7gK60OqP2yc/YDhCiM5l/v8z4LOHTP3nCtAK/P8KMWdusXzaRga/1I3LR69xesdZ4s7fRJJlhACTqiCKbYgSywBJljAYDfgEPriEfsUXGx643Wl3Env+Fk26NLivg7niUJj/7lL6v3rPAPGLNRM5GXWJGg1DOLfvEpcO69GP2AvxnN0bTUS38uXSfxdTR/yEo9hB4vVk2vaNoEajavQe3YXIx5owd/Iazh6+XuoefuvCbRIuxlE1PIj+L/X4l87Xvk8zcjLySb6dwVOv3ZME7lh+lNmT1xJaJ4hpK1/D9SE/gHfRtFM9Dm08haZpePq6E1DFlydf7UHXIa1Y8MUm9q89UXo+0MXmKYk5ZKTnk5GRz4rvdvLK57p/ksPmZMIT03DYnJgtJpZe+BIXq5lbl+J5td1kNFUgm42ENArji1Wvl9oC1C2jS/IN9ConTpck3URUMhjQNDi44RSxV5I5su0cLjKY3S207lgf9/qezD98CkkRmPIFOQEwf8E+Vs8/CEj0HxrJqxN7cvrgNdSMfPKFRla+QzcyVAWdHmtMZOMw8nKLsBU7mTN7JF99uokDey+DBI+N7kSffs1IT81l6ew9tO1Wn8CqvuzfeYmASp5UDb6/qfOVS0nYbE6MJgO161WhajW9ms5Q5nl9UEq4SZuabFx8CCSJyM51yUjJwWlXCAq9V05vNZqZGzGId6UFKOjO3Nej72Ufoq7eYMnJczRqVQnzbv3rvU0PvQjh+39u4MC2CwgB0xa9wMsjOlE5wBNXFzN9HmtcOkdhsYOlG45jyyhk9497cDoUHFYD9u7BXExKwd1gxGIy0rFJTWRJorlfNfCDEX0jiTp+jRH9WmEoIdxFDidD5izDoaq42ySCLCY0TdBvuB7NMkgSPSr7k5xbyKR3B9x3Xe62MZFliSHtGpfbl5yVx/xf9+AwSXyXlo0EmE1GPAQUFzqRnbrh6d2I7/9GGv6/E9J/UpXcIeBPF1NSLPbqn40pM7b6X496OCpMKSrwb8GHA74mJyOPI1vPoNkdCE1DFNuQXFxA03TBMHprkVdmjsJhd2JxtfDYiE4PnM/D353s5Ps1MLJBJiDEj5vn4xj7zfPMnrAQVdFK5nahZpPQcuNd3V3oOKAFhXlFXDp0FaubGbtdQZIkvAM875v/78I30IvMEsNIT797QtQbFxM4vTcaW5EDVy8rQVV9uHVWJ5BuntaHTfdo5/Rzw9vHileZ8/06fRsOu0LCjVTOHrpG256N/2QG6P5MOwQQc+42QTUrkZ9TiIe3G76VPHnxw/4cWXMUxamy8qtNbJm3mynLXiO4ekBJuxgILuNUvfCfa/SmwiVNYSf1/4bHhrZm289RpfdGtTtJuplG1Orj5Yjen6HDoJZcPxcHkkTV8CBiopNACAyygVee60Sv53XH6Uj3Skz9aD2SwUS1UH+ijl1BaIAQnL50G4AlM3dSXGjH4VDwDvEjP9+G0WTgxVe6svfIFaa9sRIEWBsEUKluAN17NcbT3ZVBQ1tx6EwsP0xYgdOhsObXQzTrUo/jh2MwGA1YXEx0LqmKvIuxr3bj84/X4+vnTtuudUjLL6CShztffTecTetP0yKyBlVD7o8GRnSow+ytb2K3OcnPKmBMx89BCF79fAiPPXXPVqZB/RCGju7A+qX6PWrUuCovdJ9Gv1EdeP/2SZyqxhmDgXVbJuBhNpOeXkBBvo1rFxKxFTuxuJiIi0mlTuMQnh4Yed86fli0l+37ozEUOHDTdGG/SZPwvZKPXNeHFZ+MpKDIRliQL5oQ/HLsFIk5ebz2WGvGDCqf1iu0O7ArCk5VI88ss3X3JEzIpY7pa+ft5cCakyiS4GN/eOHFx4isWvUvn42EjBzWfLsL7yO613FOh0Ac/hYQAhGbibVQRUgyoCG5mCrIUgUAkCTJCrwJVBNCjJUkqTZQRwix5VGOryBMFfi3QNU0QEIIkM1m1OJikMAkCxwlXjruPm4E1wzk8tFrtBvYmsgnmiJJEqd2ncfV3YUGbesAusYmJDyY3LQ8jCYDkxa+Sm5aHhf2R1O3VW3W/7CNrDvZaJrAM8CD7sM70rZfC4oL7OV8mMpi7cytHFx7HFXV8A/xx+Lvw/blx3i5Qcj/qBnnjKiPOLThBA3ahONfRtgdWM0PoQksrmbqNq3GRwvGsWluFAaTgdgrSUirjtLtIZqRP8PG2b+zYMpqAFJvZ/DkBD2a1rxDHQ7vuIAsS9Rs8Nc/OJIkUbtZGLPeWQ4CDm44zbc73gUg+VYamqLiKNbvW05GHgv+uYbHnu1Ax37NiOhcn4799QCxqqis+347mE3IJhPIBmIvJTL74mq0gkJdSF7iAG4wGqjbPOyRP2uTjvUQZguqqvHZi7/g5+tKh77NyHaTmJkbQ9xBM690aEX71uF8OX0YaWm5dOxcjx9W72f7hVSQJfo/qxONlp3rEXctBQG8/+kgVCRq1qmMh6cr3y6O0qNZAnJuZJJkUYjs15rRvVoxc+k+1v9+HheHoptSOlUKC+yl7uC52YVkZuTj6mrGWhLVc3O3UCM8EM8AK0Nf+wmhQIdnm7HlRgwuBiM3EpxUSvXD4pSY8uUmXF3MfPrBAHx93AguiSYt/HJzaUpt/5az5QiTJEk890o3nnulG6mJWbz42HScDoW5n2zE8nxVFDRkWSKwsjfvvLSYpIQsrFYLb77dix+mbCAoxJcOj9+LrGblFuHp7lLasiQpPxtFVVGtBlr3agSZxVw6cxtuFuBbKBPg7UaAt6473Bp9jR8OHcOpqMTn5LBw2GBS8gswyTJ+blYCPNz4R4/2rD0TzXOtm+HtXv5lwcVqRpIk7nT34YZXLofWr2PRwEFEVq3K+mVHWTgrirqNqvL5rOdK7UTm7DzG/KgT+OxMwqgKkCXGNGmEaOiHn7sr289sI7UwC8XHHZCY8F6fR37mKvBfj4XoFkl3DeuSgNVABWGqwP8baJpG+0GR7Fi4D6FqCKHR4cnWPP/xU2QmZ/Nhny8QmoZPoBcxZ25x/dRNfl9ygMFv9MHq4cqKL9cjhOCdX8fTYXBrdi3ax5XjMQghqNmsOl2G6oZzA8Y/wauR75KReE+fl5eez9HNp3h5xsg/XaOXvydIEkITpKfmIReoZKWdILJ7QyK7NXjocUIIFn+2notHrzP64yep36q8NYBfkDf9X74/YlKjQVWmrX+T+OvJtO/bDFc3F4b+ow+vd/+cGxfjMZlN+Af70qR9nUe+zk6Hwspvt5WU90PSjZTSff/49hn6jepApSq++AQ8WmPurNRcZFnv/ZYYm8ozjd8lvGko784dQ0T3RpzefQlbsQNkmehTt7h2IREhBCazkead65F8K52ajavh5uNOUb5Nbz9xVywqSUhGI5LRqCvhJfh+xztY3S283vmfFOUW0bZPc54Y1ZmgGuXF9w67k5vRiRzfdUFvKyLpLS4yknNQHE7WVymGHIkf9x9lYOP6BHl50LjpPcuR/KN3MBWpSLLELzOiyE4rZMRr3WnVpR4ePm4E/sEw0yPUi6JzmciKwBGkE4dqgfqYmPh0bKoKYR6EyRbGvNwd30AvJr0UB0Jj1cKDzJuxE5PJwHeLXiC0RiU+++d6bt5I00XtRQ5QBFvOXMFulbA7VX6/HsuVpHTaKn7E3kpHliXWbjrNiyM6lq6py6AWrF0chXAIrreKx6GqmA33FwycjE5ALanG9PRy5ZsxT/P7tRt0rl0dq8lE7HW92EJTBZWr+bFkzzvljp86Zyfb9kejGATejXxY9urTxDWKR811YHSR6DSyKcFZXrz99GwAbPYHFGHYBS6pKgXmIrZcvso7W3chSbDgqUFEVqvKiLYRdAwMobDAdl9qbMCojkiSxDf5l8nDhhFIyM0lsmpVfp29B7td4Vp0EtHnEmjasjrJiVls+n4vFlnFVsULqy0LYTbQoVdT6tYJ5tj1eM43d8PS0pNfxz9FzeCHu4NX4E/wHyL6/l9ATSHEUEmShgEIIYqkvxF+rCBMFfhbyMnI59qZWzRsXas0tbRx7m72rj2FZDSiKXaE3UFWcg5hDUIIaxDC2vQFrPp6I8unri+tnFKdKgfXHCOsYQi2Qt3LdMbYOVQND8LsakaWJQwGGd9ALzRNKxVnC027b013K+XuQgjB2tlRxF9P4dlJvVEUjdWLjiBcLEiyAeHigiTr5Mm/8p/3lrp05DrrftqFvcjBZ8//xLJrDyvUgPjryWz/7TARnevRomsDwpuFUucPERWHQ0G76wD9gB+fB0FVVBRF5frZ2xQV6tVrkiQx/L3+pWNkWaZO09A/mUUnWIpTJbSe3p2oVpNQug1tw/Uzt0hOyCI7LY/zh65x4dA1PlryKkIIege+pK8X3dJAUzXSErMY3fJDHHYnzTrWo1H7upzYHa0To7vrcTVTs3EIBdmFpN7OoMuQVoTWCWL220u5fvoWmt1BwuVEts6LYtWduaVRPiEEk/rPID4mBavVUrrtbnsWo6sFg60QzSShCfBwuV+rZTQakCUJRdUoLrDx66pj9O/ZlFoNq5KdW8SR0zdpUq8KbiXzh8XaifPUMBaqdKxbjX5Pt6F1ff1aTnimM5Nnb8WnnpXnWtdn6dfb8a/iixmBzamRnpavCyyE4OSRG1SrHoCb1XLv86BfFr9iAylWDQ2QVDDKEjWrB3D81C0EAqOPmZjUDGoH+hOdG8Mxw376rD6Dt8lGgepCmi2fqm7l9X5ZOYXMmL8bJcwLs01l3m+vEFTZl7qVA0qJydDn2rJ+5QlatatdqqUqi50HL6NpenQtPT2f3ZdjqRsYTF7nG2hCUNM7kDMZ6WS39saUUExyPTdmLtvHxGc6A9Crfjizf9xDdpaT9JwsVnqcx6HqjurL1x1l7tE0wmpW4tjhGGRZ5unn2zG8TPNeg9HAoBc6UyulLu9H/U6Yjw996ugvEQ2bhXLxTBwGg4HQEh+l6e+vQUsoxCpDcR0fbM2r4O3ugtnFRGpGHt8s3Yuj2InDqLDz/HVeqSBMFSgPR0m1vwCQJKkmevu3R0IFYarAI8NWZOel9lOwFzvwruTJghOfIUkS6UnZepm6JJd6+STGptLH41kGvPYETbs04OT2c6Wl9neRejuN95dN4NKhq+RnFVCQXciiySv5eO0kivKL2blwD0c2nWJsk0n8eOILLK4WPljxBiPDXy+dQ5Ik6rSsSX52AR4+uqbn2M4LLJ62Gadd4dqZW7TtG6H3XzO74GIFD28r3Ye1o0XXBtT4i/SVh4+bbiRoMuDt/+eRm7cHzSQ3I59tiw/SsmcTjuy4QJuejflw7qjSt+oPF7zEkmmbqNW4GhFdHx7Zuov4q0m83nEKNoeGZDSA0YjRzUqzjuVTgH+FY9vO8vnzP4IkMX7mCIqKFX75bAOubhZ+2PkOs95ezqVjMQigau3Kpcf1GtmRfetP0a53M1RVUJBTSJdBLbl46Br2IgfnDlzl17NTmfvBSg5sv6hrlgwyJpOR1795lhr1gykusJc2JK7esCpGs4zDrhOhgtwiVKeCLJvISsnB1cOFGxfiEUI3wez9TGu2L9iLwWhg4pwXsFTz5feXFlIcbAEh42YuX22YmJjF6egEFIsByduK0dcVi4sJN6uZYpuTZ99chN2h4O/jxvLvRiNJEi3ahhN9+AYeuqfjAAAgAElEQVQCGNClMZH17xHP8NAAVnw5EoBnW00hMzWX2KvJ2MP9sOTLaE5Vtw+QJabvOcbcCxf5adIAjuy5SkiIH/G30lh08DRpJgVsEianxJMtGzK6U0uq+XpRq0Ygh5MS+OHsSX44e5IPBrdhVf5vOHIELtSnT82zFGf68vH4ueRmF/HhrOdo2kaPcppKiKGwGDF4WwkoEdO/P3kNR07eJLJ5GNM+G8KYV7o98JmY/etuCl00TAUgjCC5yNQJ9Kfoah2qmYPp1aI+NT0qY68sUVTXHVsNF8y5glVR5xj+RAsCfNyRJQkXgwn0S0DP2rU4eyoVk8HAtbXXUZwqd5Ky0YRAaCoXzsQxfFQH1BJtlNFo4Nr5eK4eieGXPr0JLKPtmvLNMK5eSqRqqB/evu4kZ+eRabOBpJdrm+wqrlnF2ApyGDtyHrZKLiCBVQKlipFW4RVGx/8y/nsjTFOAHUCIJElL0avw/qyqrhwqCFMFHhk56fkU5hfjtCvYb2dgL3bgYrUw9I0nSLqZSlJMCrfP3gAgv9CJZldYOW0DK6eVVLxJEFDNj6zkbAxGI0azkYUfLce7khdFeUXIBgN2m53xbd5n4Ou9uHUxXm+fEJdGzJlbNGxXlyq1ghjyj76smbEFIQQCwamd55j95iLeXqi3znDYlVLjyITrKQSH+iMZZIxGmZ7D23Lz8h2sHq40eEDX8z8irH5VPlk1getn4+g+TE97a5rGgo9WcfXEDV6YOoy6Jf3N7jYNFgKO7LyIEHBidzQZyTkElFRTVa0VyHs/v/jI13zHov0UFzvBYACDQe+dZjLw4qdDy43LuJPNtLE/I8sSb897Eb8/2Cuc3n2xVBNzcud5LhyPxZGehZJn5tSeaD5aOJYz+69QrXZlgsP0t/n9G04RteoEIHBxs/Dy5/o5HTYnG3/ew7WzcTzzj154+Xnw9pwXGJdVQEZyNoX5dvyDvEv1OHfJEkDP5zqSnZrL4k/WoNoVJJORF5u/R3CtQC4cvIpfkA+PP9ueXcuO0KJLfV75+lmeeqM37t5WrB6uOBWVwP71iYlNofdjTcqld/Jyi5j80iKKk3KQAP9a/ox4uRvNGoZgNhlJzMyhqNiBw6mSmJKLw6liMRsZOLoT9ZuH4WK1EBp+jyz+EYFVfcjKyEcIgdNkoFn7UK4cvonV3UJebVecTgf5RXbOxCUzYrRezHDidiLZaZcQxboGSlYFw5s0JtRPvz/tWtVi1bKr2JwKEnA+KQFbioXstV4YiwTqa83wT6lGatIBVEVjyXe7SgmTh7sLX70/kBPnb9O9Uz2MRgO349I5ciIWJIkTZ+JITcujcmD5KOraPefZvvci5xOSKK5sxuaj0aNJOO8P6MpnC3/n+JV4ZBmuFUfTsl5Vhof24/2OHflx7UGkLBVjppPJH69j+NDWpKbk8sGLPVi96xyN6gQzrHNzhnZsiixJvHD0J9LT8pAkiYBAT4qLHIwc14WY+HTGfbYSp6IyZWQPfhi3CMWpsmHBAZaemFLGxd5Aw2b3yOuoH1aTVlnBI9MFYZaRFQUtOQdJknF4y6gIJCEhC5g1vA8RNf9ay1eB/1sQQuySJOk00Bq9+m6CECLjLw4rRQVhqsAjI7CaH48Na8f+DScZMLYbLiUpDS8/D/65bDwAT9V8ndysErHvH19TBKTH681DXd1N2AptnPn9YuluVdU4vfMCANNHzqL9wFYc3XwKTz8PbIU29q8+SvuBkYyd/jwbZu3QU1p6YBVDGX2H2SQhHA6QZEyuZrYuO4IADAYD2xcfxOFQibkQT7MOdajVqKxB7D04HXojXYPRQJOO9WjSsV7pvu0L97Fu1g5Uh8oXz//Ir1f0NN2ny15lzU9RtOrRiI2/HiTpVjr+lb3xeUg13tqf93F4+3meHt+DyC71HzjG088DNE0nTAKQdOGx2VL+T3fpV5uJPhoDksSKb7by0pfDkGWp9MenzwvdOLjhFKpTZcjEXhzu+gkAmsOBl7cVs8VE68fKV9alJ2WXpgNP773Mqh92MnBcN8wuJmZsK6+FAfDydcfL1/2+7WUhSRL9xnZnx6L9pMZnIBtkUm6nk3I7HSSJ3Mx8uvRrxutf3fPmqhRyL5VkMhr4bcpz2BwKrmW8rFKTc3jp6Z+wZRQgCb0quk5oJXqUuW9VAr14olN99hyN4alezfh+6hauRSfxyqQnaN7qr8nzPxeMZd73O9h88jomNzO1awQy5PGmfDp+ESQIDBEBSF5GWobfe6YaBFUi0NuD1NQsZKeghXcgNULLp4nGdW7J2fgkLEYjT4RHsPpsHEorgcdthRsn/XhqYD3gAEgSyfGZFBbYcHN3IWrDab57bw0Wq4m+nfTnx2nTe+hpMkgaeHu6smbuHgryihnyUjeyioqZsWIfzgIH7rcK0IQVeyULgyMbEuDhRkZ6Hm7nMpE0wfVwO6neV9l/KJ5zF0A2SDT08iLhThrXryfzz4/XYTDIBAV7s3Dh2NLPszv5OjsTr/DUx13Qbtg4VpTGnrQERka2ol7Dqvyw/ACFJQUF63adRWigKhrZDjubz16hXXgYfu73V5LmFdtQDBK2Ou742o0YjibqEU1JI7e2AdVNwi1FYE0s4PNnf2bi1CF07d/8L+9rBR6A/9IIkyRJu4UQ3dANtf+47S9RQZgq8MiQJInxXw9n/NfDHzrGx9tCTnI2qCoo9+uN7qIgu/D+jWX+SDVNMGmRXh0XdymBKQOnIxCsmFaVzDvZWFxNyAZdDNx1eAcUh8InT33Dq9+NZtqI2YhiO7JBpsfozmxbfRIAJb8Qze4AAarZiNXD9f41ACeiLvHpqDmYLSZmbHmL0LrBpCZksuzb7YTVDWbxlFWoqgCDjNXr3hd7vRY1+GiB/sPReVBL4q8nE1I78IHu3omxaSz+ehsOu5PPXlrIxqtfPbD0udeYLmyZv4eMO1lIJv1cJhdTaZUWQE56Hk6bQy/5l8BuczIgbAIePm58t/1tAqr4ElqvCitivy89pkqNQOKv3QFxtxHK/eg1ogNXT9/i+tk4kuPSWfjpelZ+vZnJS8dTu2ko1pLS8LK4cS6OHycuIrhWZVJT8kmMTeHN70cQ2eMeGXPzsrLw4nRizsbxVs+pmExGPHzdyEzJxbeyN7WahpWO3Twviq0L9qEh8fQ/etN1SGskSSpHlgCuXExEUzU0swGTJohoH847nwwq3Z9XYGPhyiME+LizZf5LnD4Wy9RZ+7AVO/nmk40s3frGA69BWbh7ufLmRwMZnJjJ+BcXsmXtKTbdzkQ4nBgAz+s5fDRvNDWC7xE8ySmYWK0Jldp6E9Gs+gPvcf3gQA68Ow6ANecvYTQYMGTa8D2TxzXXGFLbhePh7UZOZgHFhQ7OHLpO0651+PaHTWiKilYkOL7nCoNGB1CzThDD+0dwaP81Ro3tQtSaEyz5dgeaqpGVlsfzH/RFdmi4x+ZhzrFT+YSTkR/2oX0d3Z6mudGDHcIACIxHVbQWGolZqThVf1AlVKuEyWxAqAI0FadTJSvz3t9yUmEOk45vxK4pbFEv0z49nJMFKThUlW/2HuLZlk1o37wGq3/XU/T9ekVQVL0q+7af5UgdA5+s242Hq4Xd7714n8/azNH9mLPzGJ0aVOfktwe56dRfJIwyKD4mbP4S1sR8XJKLcAK/rztVQZgqAIAkSS6AFb13nQ/3vJ080Rv1PhIqCFMFHhlZKdkU5BRRre7Dn69B43vx9eif7ttuMMn4BHiTnZ6L6lTv7ZCgSeeGBNWoxI5f9tzbLuCDXlP5YvsHHNt8GqdTQVM0bpy5BYDJYuSpt/rj6efBnDd/1UWust5g1Orhgr3IjtFs4MIpfbwkS1jMBoptYDAZGDi6I8FhDxaEbpi7G8WhojhVDmw8zXN1g/n8hfncuJSAjIazhOzJZiMTfxz9wDnMFuNDo1cAe9Yc0+0WJKnUQfpBSL6ZhmSQ8Qv2pdPQthzbc4X2vZtRpYbessTpUHipxbsU5dswuZqZMGsMq376HcWpUpBTyKGt5xg4tut981atFUj8Fd3wcPfyo1w5c5seT7chtEyDYjcPVz5aOI6f3lvBpoUHEAIK7RrvPz0LVzczz73dlz4jOpT089Mb+n7x/CwSrydz/cwthMWCJiQ+HTGX1Te+xcV6z+lblmXqRNTgu30flzqB24sduHlZSwXTNy/FM+/9FaWpxBmvLaL1402xetxP1CJa18S/kid3ErJ46e3e9BnSstz+mfN3s+fwNWSDjKe7CxF1quq2Dy4mqvzNXmOuZhP2fBvCriAjSr95a9YOolOj8pGqKe+u4srFRH0NP4+iZu3yKb+s9Hz2bz1P3aYh/Lb1DPtP3UCOtOB9phBTkUZeUQEzPlpPRItQLhyLRZIlwhtWZUfCNVKbGPBLAmEQRHS4V22pVffA5AjEs7o3mbfT9dS1EDjtCnEXkvA+lYHi0KOzJrMBL8s94XxSRgGai/6zYDKaqGVNQ45IZ1ucH6osES3nEtkphOGtmxJzNZnTp28xavQ9LzVZkhCI0vYaZ68n4RpqwSjLeLu6YDEaaRpehcnDuiIbJbq2rQtt69JqUDN6f70Ih1PFrqg4VRWLXP7nKbJ2CJG1Qziw8yIrrtwpfcFSnCqVThZR2M2fEc92YU9MFA67Qv/n2/+t+1qBEgj+Y4wr/40YB0wEgtFtBe5+wDxg1qNOUkGYKvBIiDlzkzc6TkYIwZBJfclOzcPT35PnJz+JqUxriJ4ju9xHmDz9PRg3/XmadWvEsqnrOLj2KLnp+fpOAW36RjB4Yh+eeX8Qz9d6rfSL8PKRa+xbeYR2AyP5ceKCcnM6HQpNuzZk5rh5pWJyWZbx8PXgm90fsXvZYRp3rMvVS0ksnbkT2SDzyuQn+e2LjQTXqMSwN3s99LN2HdKKS8dvIMsSDdvWJj4mBUVREKqqNwEGJJMRSZb5fMw8CgsdvDVrJK3/wiyyLNbP2QN2B0YXM+M+6P/QcTNeW0B6iY3Cxh930rh7E25eSiA3swBvfw8KcwrJzypAcaooDoXwiOoYZRkJgSTLNGkX/sB5+7/yGCd3XUAyyJw8cBUlKpodvx1idcyM+8jbiPf6s2lOFDidCEC1ulKoavzyyXrysgp47q0+bJ2/hzlvL0WxOTCaDMiyhIKeEtQ0wdXTN2naoe5966jeMITqDXViWbZ1CoDFpcy/JTC7mDFZHvyV5eHpyi/rXi9XUflnCKtZiW9+HkXczXTad6n3l+PLYv1vR8Cma45wc6F2owBCa1TijS+HYLMrCATWkrUnJ2Zjtyu4uJpIS8m7jzC98/w8UhKykA0S+cEeGIwyvsedDH28FZsWHUYTAtko031IJM+N70FAkDfefu7Uy3JQ0MKKrZ4rj9eqS2ht3Zrhwq1kFu48ic2hMGnuFrZ9OoastHwKcosY+XZv5n+1HcWpAhKevlYi2ofTuW/T0vXUrFOZ6Kt3ABjweCdcrIGcuCwT5GElRRRhU1US5WI6tAunQ7twRo8pbzwbZPXih9aD+XDHdopjVVrWDuGTkT05m5hM67AQZEli2a+HWL74sP4s2VV6PN6YYB9PRnWMYPOZK4zoGIHF9OD7vHThQVYtPozmakEqsiMJDYTAHFeA+zUfMmo5+OH3Sfi5W7G4/Gvthyrw3wchxHfAd5IkjRdC/PCvzlNBmCrwSLiw/zKqoqA4VDbNjqKowIbRaMA/2If+r/QsN9bN20phThEAwbUCAQk3Lysf9fuS2HNx98295J+rGTyxD0HVAzFZjDhtOilRFY09yw5hMBowmoylompJlpAkeP+Jz2nRsylpCbpmb9CEXjw3eQgWVwvPfjAQgMYd6tGhd1PcPFzx9HGjx9Nt7zv/H9H9qdY061iX4kI7kwZ9T3GRHU8PCxI6URJWF4SiommC9NsZYDGzaOrGv0WYGrcL58LhaxjNBgKCvXnjsS/wDvBg0uwx5UTSVWsHcftyUun1OH/kOpIks/y7nbz86ZN4V/Ji0IRe7Px1P71f6MrGeXu4ceE2EtBjSORDqwBP7jyPYnfiHeBJTpHufF5cYH9gCwk3T1fcPSzkZ5XYIGgaGA2laR6Ak7vOlxpdNulQjyFv9GbjwgOc3XcFdy8rNRs+PNr2MFSpVZkpKydwYN1JPP09eezZ9pjMRlJScoi+fIfIljXw+EO0qSxZyi4s5lZGFo2qVmbiC93w8nDF08OF/o81IfpiAlMnr8fP34NWHcKJT0zjH99vpDjPzrTX+9GifvkKq5Pn4sjOKSS0kjebS1K8AF7+Hny78lUMBpmd+6L5Ys5OhEli+lsDiWwcxlsf9WfWjB2E1w0isk15Dy+A7PR8FKeKxWAipLI3SVkFBPh6MOr1HlQLC2DbBr3/YLsu9coZrDb0rczW3qNIzMuhfZV73R48XC0Ih4bRCZ5WC2aLkTHv9S3d//iQlhzcfgEBvDPzGZq3qV1uPS+O7YKvrzsWixE1xMLUVTEAvPlEc/ZE3yQuI5v3+3YuHR+bk8XehJt0DalBDW89Ute1SjgHR9UiI6+IAE83ZFmifU0zZxLv0CioMjdvpGKzOzHIEnE300vner1nO17v2e6hz8OxIzH8tkAXv2M1AxoU6lVzRdXcuOMniDt6iV3nYjg89ZWHzlOBv4b0X6phEkL8IElSQ6A+4FJm++JHOb6CMFXgkdDhydasmbGZ3Ix8ajSqxuVjMXo3cvP9j9Cw9wby6+SVCKG7UatOlemjf8Rpu993yGg2Elq/KvnZBVzYfxl3Lzeybbml+89EXeDSoSu8OW8cRzedou2ASC4cuMyOBXtw2hWK8oqZf3EGnn4euJe4D/8RQdX+vheLX2VvTu+/it3mxGFzkmN3YDQbkSSJTk+1Yt/KowhNoAJmq5lmnR4cpbibDvlj1GPyonHEnI8nuHoAX77wM1dOxmIyG9mx+ACDX7tHQN/9ZRxvpeVx9VQsmMx6Xz6zgcpl0khjPnuaMZ89DcCvUzfohJISwfhDsG3+HjRVoyCnEIOrFQ1w9bKWW6cQAlXRMJoMfLjkNWa8Mp/qDaoyfuZI5kxeg6pojHhH/zEe9nZ/Lh+NwexiYvwPo6lSM5Bm3RqSFJuGf5A3rg/QO+3fdIZZ762kWnhlPl/6SmkRQVlEdGtERLdGFNmd3E7LIjO7gBdeXICmCfz93Fm8eNwDP192YTFPzFxIUbEDj1yV75/sxYQxemoyJi2D199bipylkJVVwNL1x5lz4zxOg4bZKJi39kgpYYpPzmLs5OXk5ttwUUEuUDE6VWSDhNVqYdaSsRgMMlt3XmD6zO26HYJZYvO+S0Q2DqNx81Dm/fbgNQK8N/MZFs/cRUSHcBp1qM3b764i604u077ayuSPBtCrTGrxbiWd2Whg58pjbNt8nqsxadSuF8S380ZhthjJzy3GnCcQApoGBN53vgYRYbz+87N8NGc7ExduZ1aAGzsPXeFybAoTn+tMk/AqDHtGd6D/eFMU9pKI6tWUDBa+8CR21UGaPQdNaNhVlf4blmBXFb47fZiTz76Ki1H/PpCQsJqMyLKEJgQDFy0jvaAQV5OJZaMHkpiQhcViYvDQVvet8UGw2518/tlGFEUDCTSjTE6EH4qvwJriRFWU0sh0XpEdu1N5aJSqAv93IUnSx0BndMK0DXgCOARUEKYK/PtQKcSf5QlzEUJQlFfMiq824uXvweOjutw3duhbA2jUvh5zJy3m8lG92W1AVT8iejRh7be6A72bl5XWfSLwD/EjNS6NIZVf0NM4JVGkP6Ko0MbxbWe4fSWJN+ePY//KIxTlFxN99Bpx0Qm07dfygcfdhRCCFV9v4cqJG4ycPJgajf7ao6VBy+oEhvgSfz2Fp15/DKubBau7Cz2Ht6VpuzrMeHUBBgn6PteO0VMG33d84o0U3uw1HVuRnY+XvEJEmUo4g9FA3Qg9MhBcI4DoY3oKJ7AMuSsqsPH+U99z82oKktmCkCREYRH2PI1bZ289cM3D/tEbF6sFSZYYMO7hhR/dnmnPtl/24O7thmuVSqQmZTN0wr3mt0UFNsZ1+pT0+AyGTHyCMR8MYHH0N6X7P5x/zxpBcSpUbxTCqgQ9FZuVmkt2Wi4+lbwIKZOCUpwqX01Ywo2Libz62WC+f3s5RQV2rp6J43hUNJ36lRfo3opN4503lgGQE24hF4Uanl6oqobdrnAnOQdNE/eJgwFupmdhdygoCHLc4MvXFrP64hcALD5xlgJPcM8FVQiK3HUjUWRQrRIR9UO4HJ9K7Sr+LN98itwCPYphR2CSBZKrkcqVvZkxewR+/h4IIfh29u+Iu9Mogt6dHtyi54+IaB9ORHs9bfr80G9RFQ1VEpw7F1s65vypW0z9aSuXQhRMRgNvNWrO6n9uosjdCpLE7Zvp7DlwhV+OnMVRkhJUFI1bCZnlznWn+A6FSiGbD1/GqWk4HRrLtp/i2Lnb2OxOPv5pGxtm3ruvY9q34PTtJISAFzu2pEixMebkNHIc+XgZLQwO6oNdVXBqGm7XCpn6+hL6P92GBq1qMuKfS7mdkk3/jg2ZOLwzCTm5aELgUFWSKWbOonvnOXnkOqtXHKFvr2Z0eLzJA6+T3a7gUFRUiwHFXabYz4jwM1A7PADL8Ruc7O6OJU+AJhFZo0oFWfqf4r80wgQ8CTQBzgohRkmSFAj89qgHVzxVFfhbkCQ9vTbm82F/Oq5+mzrcidXbMpgsRp55fxBdnm5PZK9m3Dh7C78gX74dOwd7SRoHQP3DHL7BPjTp3IBOQ9owb9ISHDYnqbfTSLqewqjPhzHvrcU47QqLPlrxl4Tp/IErrPhmC/YiBwnXk1l4/qu//KwuVgtzot5FVdRSYfNd3IpOQHWqCCGIv3qnXBprxQ87ObDxDMHVfCnIKUQIWDNrVznCVBYvffE0dSKq4+XnQWSZ0v5Te6KJu5qM8y6J1DQoqY7b9dshJnw/8r51mS0mhk584oHnUZwqmxfsQ1FUxk4bzrB3+uPh547JbCyNJN1F1MpjpF1LAAFrvt7EmA8GPHDOGxfieavvdBRFZcpvr6I4FD5/7ieQYPLS12jR/V7PslN7r3Byz2VsRQ5mvr2Swqx8MJnQFMGhdcdY9dVGRk4eRMvH9B/NFUsOk52WB5KEXbJhC7NwOT2DEd0bcOLkTYYPb/tAsgTQqGplGgQGcDYhGd9LeeV8qdpWr8amhlfQAhVe6tGGPm0bsvzkBZySoJVrAKuizrJo3ymqyS5kX8iASjoB9TGZUJJ17V3fQS3wK2Nk6upm1r2/gNde7kbrJmEPXNefQah5oJlAhi6dU7kYn4IQgukfrycmyImKGVVROHAnSdft2Z1gMeG0K2w8f43YO5kYZJmgyh4YbYK6EcEMmv4ramg6pipp+FiykSWZWo06Yoo2YJAlOkXU4ujZOMwmA4G+5e0v/KxWvh70BLUq+2M0yFzJu02BswhFqGQ5C8iyv8OEiM/YuiMaNSqZE4VXORl1hXcXjSY5Mw9NE2w+GM17I3vwcttI5h09iSYE41ZvZMVzQ2kYFEheQTHjZ21Ck+HwvO1saBJKQJD3fdfG09OV18b3YPOms/QfEEHjtmFEJ6fRvmYYkzZ9jzBJ2AIkDBpMGd6Dq1fvEBrqj+sfdHEV+D+PYiGEJkmSIkmSJ5AGPLJeoIIwVeCRkXgjhcNbztKiWwNqPkKEZuz05/hxwgJqNa1O2/46oWnerTHNuzXmo/5fliNLD0JuWi4HVx9l77JD1G1Vi8xkC5IEdVvVJi8rH+Hjh9FgwLfGX1eFurq76G7EBvmhdgIPwx9JCcDjz3dkz8pj2IsdDH2zd+n2O7fSWf7tDhx2hdtX7+il/gI6Doh46PxGk5Eew+7XbtRsGKJX0gmBJDR6j+jE0U0nyc8qoEHr2g9c159h3ewoln6zFSEE+VmFjP5oYOm+bb/s4ecPVmAwG+kzpgv1WtVGj5cIzGXSrulJWaiKRuUSL6E9a45TXNLaZvP8vbi5W3CUtHw5uP5kOcIUFHqvIXG12pVxNygk3sxAluDo1rM4ix1MHTGb9clzALh9PRVZ1cutDJreHsU9Q6HJE1V4880Hk0KnqvLdrsOk5hXwzfC+5MZlcb1ePO173xM2P9GgDjX8fVE0jbqBAdy8mkyV3dkU25zEBtrRTDJmCVLteVjyFNyKFXoOaEbW7RzOiCwkCYpKNHqgv0TMmvYMX/+2mwM5SUy9eozmbWpQ0//vVd+990kL5s/aQFitDCo1G8Lon/Qmyw08zPik2SmurPfxG/V4ay7muLBu4UGEquLr50H9mpU5fzsZgDee60x4tQD6TF2IqglEskxITxseZgUPuRhjlZV8MWUwkQHP4GIxEeTryY2EDHq2vSfKzysopufH87GpCk3Cglg08WlqulchxBpATEEi9d2Tcf//2DvPwCrKdW1fM6um904oIYQuvXekCAgIqBRpimIHFLGXbQUFRUFEUBEQrDSRLr33UENNIb2SnlWmvN+PFUoMIG5xn/Ptk+sPZDHzzqxZQ9Y9T7kfg4O7grxIuWDmeIkdSRcIIPNUBv5e7uRoJXRv6YqeTezYjo2xZ7lYUoDJZOBsTi6ph9LZsukkskNH9zSieJoqTQO4gqrplAiddr3q0/3uBrhZzUT6uYTV+18/hm3mTxw2FGNSDUx4YjGOEgU/P3cWLnoc0w1sPar4P8thSZJ8ga9wdcuVAPtud+cqwVTFbaGpGpN6TqWs1M4PM9aw5PR0PH0qm8tdT89RXeg5qkul10sLSzm4LvbqzyaLCf8wXy5nFqA61fLZYa4i5yucP5zA5wem4uHrwQcPzyP+bDpGD3dUVScpMQ/FqZJ0OoXImHCsHpVrYeq2iOLlBY9z4dgl+j3S9d++DleIiA5l6Q3mynn4uCEbZCSHHd3hZPgbQ+g6tP1VgQEug849q4+Qm3YZq5uJLg+0q1DonZtRwMVTKTRpHwN2O7qmY7YY6T2iHePfvXouEGcAACAASURBVJ8D64+x5IOVvDNiFi9980Sl7rKbUVpsQ9d0hHCl3K7gtDuZM2mha3iuU2P57I08X78aI14awPGdZxg/1RVNPLzlFO+MngsSPD97DF0HtaZ936asWbAdIQR3D21HQIgPu389AhLcM7YLWZdyeWPwxxTkFfPEtBF8smoSyRezaNerEUIXnN53nh9n/c6p/ReQPYz4Bl+L2pjNhvI/jTQOD+P8MVcreVTMtdocp+JKU12J8K06GsfSfcdRNI0im4N5YwcR06SiuE/Iucyob3+hxOFEMeu0iYjAbDWhCYHTKLuMLwFhMWA0CdxMBgYPakXc8RROxV4CoOkfXOJrVAsgOdCJTQOTprE7IekvC6YGDfrx0exWgMZb3x/DevoSpmIdc/tIXmjdjsDqfsTUD8fHzUrbV6vTrFM9YvddpM8DrQivEchdUWF4ulloEVONglIbmhBXMyslub7UDnLQyvMMrdxSQByhWA3GaulD03rVaFqvYnPA8lUHKVMUhEHiaJJLiJllI3NaTGZT6hvk25OwGJuxcNIeLp5KRdJ0hCRhNMo0aFqDZY90Jq+ojGA/T3Rd59WxXyMdSKBGdSsBo+rR0OLLlOmLcDpUvE0yhdEmejetTXD4tcHI6386wBfv/Er12sG0G9OOb5a76gazc4u5r2MDkhNyWPndXrr1a0LbTo2J23gQXdEpyrMBkJdXQl5eMaGhlSNWVfzfRAhxpRvgS0mSNuDyYapy+q7izqKpOvYyB7qqo8k6jjLnnwqmm2H6g+mgqqgUZBcx4pXBmCwmdvy8l4uxCQgBmEyu1nSnk9pNazLvtZ9JjEtFaAJV1bC4mWnRtT7P3/0ul86m4Rvozdex0zBbK4uIdv2a067f3zeyE0JwdNc5vHzdibmr4pexj78nr335MG8O/Ahd1Vj09i8MnlgxGvLtv5axet5mnHYFgwxbf9rHjE2vAVCcX8oTd09FU3XCagbw3OcPs/i9FTTt0pDF09dSUlBGUUYeqeczyEjMYfsv++k9ujO3Q/+HO7Plp/3Yyhx06n/tOhiMBmSzCV12CRQhgclsZMwbFeuyDmw6cTV6tGdNLF0HtaZR2zosPfkRqqLhF+xK6czb/w7nDsUTWSeUWRO+5dLZNJAkpj/+FT8lziaqwbWIYPPujXhj5FyQJGSDxFOfjAZAUTUuhUBpkZlLrS3k+Np5aWgfWtepQUT5vLHZK3ezcOMhosIDWPzycNzMJuxFdpwOBSGBrciBpmouAXtdynRj3AVKHA50AZICsWkZ+NZxw6BYiQjyI/NUNrJNxUOFl98bggDOnkql490NiGoUTnxWHjXqVx6hMqZVM15ftxk3k4ludf7cOfxGGA3B7Nl0koOf7MLi6YEkIHFfKu3eeBBft2uF83t2nuPCuQwGPdKJwPLUYJcmta/+u6+HG6O6Nee7nbF4eJgZ2tSXHP081U0FGMpboBTHTvCoeG9mpeeTmZpPrUA/LMUqdh8jdbRrYl6SJHpHvge8B8Avl97G6VBBllBCPVED3YmsG4oEhPi7zis3q5DTR5IQQmBJdfBV//6UlEclkcDH250Niyobh343y+Unln4pj8QLmQhdoAvBtg0n2PvtPhw2Bc0ksf+gjcBafoT4eFJUbKdBhzDO7kuibdtoQkJuPVy7ihvz39oldz1CiCQASZKSgdsaPFglmKq4LcxWEy/Nf5SVczfTc0R7Am5QZ3Azsi7lkJmYTaNO9TAYDJitZsZNHcE3r3zvinjoAl3XCa4eSK8xXVn9xQaEAKO7FWF1QwhBdKto4g4msOH7va7Ik64jCoupVrsWT749iPsjnkQIV8FxTlo+EbUrdwjdKRbNWMevC3YihOD1Lx+mZdeKHXL1W0VhdTdjtznRNZ2X+k1j/IcPUb+F60v00IZYHEWlUO5VdCE26Wo7f3a6a5Cxw6Zw6VwmJ/ZdxDvUD9lqJva3WFfdlKZhMLq62cJqBd/2ef+2cCd5BTaEqjHv9Z8Y99YQmnWpj8FoYPhLA/nhk3UIXVAtOoTOQ1pX2r/PqE5sXXYQTdUY9HgPAE7sOcep/Rfp/kAbls3awIbFO8iOz0SSJQLD/ej8QDsoFytXjEWvJ+lMOpJBRqg6ui5o0tFlwJhxuZhMu43CxhYUE+SUlbHbkcmgyGZX9/1hWywCSM8r4lRiJq3qRiIn2/CNd6KaQErKZeDc1/D0cWfQuM7kZhexdd1JanWuidnDiENTMRgkAvc5QREIA6QF2Hj/xf4s/HwLwcFevDthKcIgIVuNfDVzI7bLJdjD3ZjdJpR17zyK6bqRPIObNKR3/TqYDYYKr/9Vlny5GUOhA83NDSFLODxlnnpnEQveGIvV3cKO3Wd596PVSCUqB/bFM3fBuBuuM+XeLjzRoy1Wk5HPL05CcTg5a69GqPEcsmTCar2PbHshwVYfypwK87bsY8XsrXhcKCM43Jf3J/UmMy2f+0ZVThefyszi7c3bCB0Wg/u6ZBKLS7GFeWA0Ghhx7yeYhMT0+WOJaRCBf5A3teqGkXgug5jGkXj5uuPt58GbHz7A0QOJ9B1U8SFGCMHZk6k0aFaDw7vOIRBEB/ni3r0R+QVlxP5yFEe59Yitlht2PwNpecW4FUoIXXBM5LJr88v/9vWv4v8ct+3SWSWYqrhtOg1sSaeBLSu8VnS5hKmPfU1ZsY0X5z5yVagc23aKmY/PI6RGEHH7ziFJEu0HtsJoMrJl6U7a9GtB38fuZsO321AdKlZ3C91HuJx5n5w5ls+enI/J24O81HwQ4O7jARJIsgxmI9hcT6jJp1PITS+g77jurFuwjRZ3NyKsVtA/eh3Oxl7CbnNiMMoknEmvJJg8vN354uBUHmk8GaEL4vacZUr/GQSFeBNeM4iUcodt15R7Gd1kJj0xh4ioYGrVD6djv2Yc2nyK+s2qs3PVIRw2hbysIkR5jQiajsVq4t0VL9Co/Y2NKW/E3t/jXOJFlkiMS+PdMV/Se2QH6javRX5eKd2GtMFWaueJqcORZZk8eylLEw5RxzuYPtUaENUokmUXZwKuSEPc6WReHDIToems/GoLtrwSFLsTFFcUKi0+C8liwuBuQVdUnpoxiu2/HuX7metp1b0hE2cMxz/EB4vFhF1z4BPohbk8+hgR6E3T2uHsTk1G95GQBByaf5gZO0qYPPV+JEmia5PabDt2EQ+LGVHoZObUNYRG+eOTL5BUgWosRVN1CovtLP58i0toGyQubI1n0ddjCIz0IznjMm/uX4YiNFDhyf7t6HR3Qzr1aMiILlNd10sH3alj05zIio41tZSs+sVsO5tAr4YVfYw8zH+/yLhdv6YkHktGzimkuKE/eU1NGHemsP77fXQb2oY3v9mEw9uA5CFTdiVScxO8rBYuXcyiekIPCsN/wiFXJyJkKZl2B4P2LEAVa5gQ04cDJwpZH3cOrZ0XIYpOTlIBzdtHE3CTCM2UdRu5kJuHm8nItM/vQ85W+X71YUwlCmnnC9CAuZ9uwhTiyejh7Zn5y9NcOJnK5mUHWLNoN/eO6Ujr9nVo3b5OpbWXzN3KskV70HWdAaM7sHr5YX5YsIsWHepwuI6NkmAZr1SJup2iyfOGElMRBgPIko5sNBDgfWN7kSr+Av99Tt+34rbjaVWCqYq/xeqvt3Ny73k0TefDx79m4scPUbtJTWaMm0t2WgGZKfnI6KgOlePbT1OQXYSm6uz99RBG8zUzyuDqgRjLW4H9wvx58rNx7PvtCDtTDrpe83WnUZtoxrzcn/3rYim5XELKuXT8QnwIqxnEhM/G8uynY246YuROMu6V/nzw1CK8/T3o9cC1SMzF45dY8/VW2vZtRts+TanZoBrxJ5JBCFS7k4yEbHLT8vEN8aG0oBSHTcEa4o/F3YJ/iCudJcsyk6YPY3zLVzn02yFURUMyGalZN4ySyyVciE0CVSWmff2/JJYAIqKCyUjJQwgdySBjL3MQu+MMG5fsxWF3ElYjiAWH3r26/bMHfubY5TRMsgF/izttgmpWuL7v/LgJHYEsoLCoFA+L0RVMMsl4eFkZ/tJAtq46iq6DbDazceluEuNz0VSdHauP0v+RzkQ3iqR6dDDnY5MoKyjhyLbTtOjWEIMsM2/C/SiqxqnUTF4YNQ9znsqOhBOMfa4XgSE+vPfwPSRlXCbAy52RAz7jsh9cLrVg6eLBpwP6kHUglaWzf8cpJDRVd/mGWYyusTU1Q/DwslJgtyFVtyCn2KlTPYh9a+JoHhlOTEwodRtXY9+2swAIWUKyu1J9+U28sPsZeGHFej5CcE/Dv/Y5/Bmjx3WjeoNwMi8Xs3FnLEk7k/FJc+Af7E1eQWm5d4FL+L7x5uAbrvHr8sN8v3A3DRpGcGT9CQySRJd7hzDhPVea9VD6HlRdQxEaK1IOci5Vu+rMrlllAkJ88A24+SDlMC8vkvMLEAJCPD1pWS+CPp0bsnfbGT44/gu6Ljh9KRtnSg4n4lLp/lQLUmcfIf5YMiaLEadDYcDDnStMCbjC0f3xOOwKeBpZfigOoWqgQ0JiNumhEmWdvSmxyTjPFaBkadSp6cvjD3chxOrOyYRMera8s59HFf//I0nSbG4sjCTgttMlVYKpir9FRO1gjCYjQleIj03kua5vM3PHvzCYTUgGGYxGTBY3LG5Oxs8YxZK3l5GVnIvT7rwqlmSDTNRdNQA4tfccrw6YDhJENa6O2c0MCDoPaY2u6yz7+DdKCsowmGSmr3+Zmg2qXS16/k+IJYA6jSP5dtfrFV4TQvDSvR9SWmhj60/7+OrwB8zY/AbLZm9g59rjSJpO9qVsEPDMp2MRuk61uuFkpeUT06QGbh7X6lPyMgrISs4tH2EBMoLB47sTXjuE90fPwWI18fKCv+5kPOXTkWz8aT8+/h6s+WoLuen53Df+bua/scxVZK9pnC3cxcmCjTTzv5dixYEmdMwYKFUrRzK8w3250CEIj4QSPHtF8fn4ocRui6N177sIjnQNoI2oV413Rn+B065w4VgyFh8PTO5mJEli6XsruJyRj0111aYIAbNe/pl6rWszecYIzBYjJqOBuyLDiPL2JbesCB9/D3z9PSnML2XCiC/JySxk/JQ+rjl34UaQJZyqxom8HJ5+tAvhtYPJSi9g5ff7aNykOt3vbUpMg3A8yh3C3/x1E2JvBgbZwEW7hhDwwbTVLFwwnk79mrDzUDyqtxlJE3jqbgRH+pAWYgdJ4FQ1LuXl/+XP4Xbo2q4u3647wIViG2p0AGPHNqVzf1c6clD3u9h55CIP39eW6JhQMlMv4+HlhpePq9ZI1wVfzNyIrgv2772AUZKw25yciU2+un7HwHosOLeVUsmBzenAElmIkuKFj9GTBVPHEVUn9JZdmLMG9GPl6Thq+fvRstq1mrT23epTvV44Scl5OCWXI3+pprLgwFFqZbtqax2KztfT17NpxWHmbXyx0tpjn+3J+y/8yGVvMJxxXV+PYC8mvd6fp3dvQtN1GiruJNvzEbKEwSbo0cDlot44KrzSelVUARz+N/+tAlWCqYq/RbchrfH28+CjR+dRkF6Ewd1M7NZTDH1xILOn/ICQJDSDzKfb3iKqUTXaD2hN4slkfp6+ij0rDyGEQNd0LhxNACA9PhsAR5kTR5mTOfveRZIkImPCcNicXM4qRNd0TBYjfsE+t90h9k+RGp9FekI2TTvXQ+jXHmCELnD3cmP0q4MY9cp9aKrG3jWx+If60KjdtSfgGjcYZBwcGUCrXnexb81RZIOM0WggIjqUiOhQ5u5777bOa+uKQ3z5xjKiG0fyr4WPY7aa8PCyMvjRrqQnZPNtWj72Mgc1G0TwxAdDObX3PP2f7sia9MloQiG57DjTW33JrLjdRHsGUdccWmlsykej+vGOmwWnUJk6rC9ebhbcPCzMeGweRqOBpz8bw5JZv6ObzEhCAk0nONSLPmO74SwpY8nUlagGM0armYbtYkhJyCYrq4jCLafZvf443cutGAwGmdnLniH+TAZRdUMxmgwc3nOBgvxSNAQLVu1l4r/6s2rbcXbKuVhMRu5pFMO0t1ayf/d5HHYFs8XIodgknn9nMObr5tEF24yUqIAs0HSB0WTAq9x2wu5QcIR7uNJyQvD5rIcpKHPw1CfLKDLrBHt7MrTljY0Wb4Sm6pw5dom42GS69W9KUOitC5L3nkzC7lQxyBIiyP3qtZ80siuTRnYF4Id52/j+y+0YjTKzfn6KyFpByLJERKQ/OdlFyLJErXqh5KQV8MRr9wKQnpTD5IEzsZY4eP3zkSwxHiXXfBnv2gXU0kOod5MxNkIIHE4Vi9mIp8XMqOZNb7hdYpJL7LvJJhp0qMVWPR1d6GgDq1NvdykX4lyz6pIvZt9wFE+j5jVYsukFHhk6m1xRigD8PS28N+or7ukYw6h37uedIV9gsjvA28qgAVURpTtK+eDk/yaEEIvuxDpVgqmKv02L7g15+evxfPbMApw2hcXvrMDqaXHVHEkSuqqTfDaNqEbVsLpbqN+mDuePJJT/sgSLBzz24QMAdLm/DfvWHiEtPouJsx+met1rT4wWNzOPvT+MFZ9v4O5h7a9GMf6nSLmQybM9pyJJ0LxrA6aunsLqeVto168ZoTVddVTnjibyyiDXQNtpv06mTpMat1xT13Xijyfz3BfjeH7uOPasPkJ0k5pERFfsyko+m46bl5WgiBu3rs//1wqKC8o4cySRY7vP0brHNefpDUt2kZeRjxDw08z1vP39M/QY2oa9Gw5Roptwq6MgYyTaK4j3Gw/g/vcW86PtFIPaNeKVYd2vruPjYcV80U7swQSe2ZVLrU6RnFm0m8IDSUgSfP6imUvnM9CcKiAhm4xkpBWwaOoqImPC0I1mJIMRTRMUFtho3LE+R3acRQgIq17xs7W6mWnY/Nq1i6gbAiaZ3Lu80fwNvLJtO6ufG80Lusr41b8ybvVKAg7k4yhzggROh4qu6ZSWOioIpg/HDeSpjSnkXconIMCTghI7ZxKzWHMwjl59m/DBip04ZB1PxUhwoDc13cwsfn0EuQWltG5Y44bGmbqu893MjVyMS2PcS/dSMyaURfO28/3X2zGUKUiyxIZlh1iw8YVb3guP9mvDc7NWYUKmde0bzwTctvYEilNFkoycOJhAZK0glm8/jr2OB90612bkoDYEh/pQXGTDvdxuY/fa45QWuewqVn+1k49/eJwJ23/GluVgTFgLFEXF9AenbCEEL3+wkn2HE2jdvBbTXx98w4ju8fh0ug9swp4Np2neshavvnIfiw7Fciw9kwmd20I/OxMHz0LoOtXrhFRY4+ieC6Qk5PD97N8pLbHTf0wHVicfxGAykH4yDaELDm89Q9K5TNf9V+xEFDpo1ap2pfOooop/girBVMUdoVn3RiyM+4QBAeNw2JxIsoRRgKLpyBI07lDxKbBRx/rsydmFEBoTVp3BFrOdUrUpHm5uvPXjpKvbqYpGakI24TWDMFuMDH6mN4Of6c3/BpLPZyBJYC9zcv7YJeq2iGLK/Irt5L99vY2yYpfn0ZoF23nuszG3XHPGE9+wZ/URDCYD8/a/S5+xXStts3z2Bha+vcwlwta8RIM2rnSEEIItP+wl5Xw6tRtGEHfYNT6lesw1sXWm6AK7QvYhmSRMBiOtejaipKCMdx6azbkjCeiaH8OXdOLuzvdilM2cSkrA7lRQVI0NR85WEEylZU4OHHRFBpNT8ojbmo9Bc+AtgcVsJKp+GKdOpCEZZCQJDLKMYnegyQbi4zIwWCxoqgZCUJBdyJxNL7Fz7XHCawRSv3lNSops7Fh3gqi6odRvdk0s/Xz0JO+s34qpry9Gu8DuUDEIQVJuPrszk0kqKECyaXgWlCI7dSyeFryDvek7sDl+/hULgr293Fmy/kU0TWfg0NkoukAgePvHTdh1FSXAiKKoWHw9cb+S+i12MmvctxiNBv618FH8q/nj634tpXpw21lWLdyN3eYkJ72AL9e/wPLv9yH08tmCmqDoOuNLIQQFJTa8PawYrpvlV3DxMoEnilEUjSUzN/PB3NEVzv3QjrNYTDKyLOHhZaVN13rkF5fxybebsSbaWCeS6dauLj8u3M26VUcJj/RnzuLHaNapLt/P2oSu63S7rwXeFivTGvbnibc+5wtWs6vFCd6dM6rCsQqKbBw4mogAjsQmkZiYQ1RUxQ7N3ScTeXHeGiQJHhzfhomDOwEwrt11jSJB8OW6yWSl5dO8w7WC792bTjHjpZ9RFRVddXXOntwXz8r9b2IwyDw3ZDYpF7OwlznJiM8EWWLIY93oeX8ratSpbPFQxd/kvyzCdKeoEkxV3FEeeK4fS6euwjfYh9CYcAIDPeg9ugsBYX4Vtntx4dPsuD8Jc+Ba5kkdKUnKxjN1Gt+0fgOz7LotdV3nucGfknwhi9BIf75YP+Uvu1v/VcqKbXz61DeUFJQyac44gm8xuLfV3Y1o0DqaxLhUnvzgwRtu0/aeJuxceRgk19//jCNbTuGwObHKFi4ev3TDCNLe3464PJyMMid3n70qmA7/fpJZE79Fdao0bBfDG988RkRUMCHVrq2xMPFnyu4qwXeOif6BvejXsQvjmr9CRmI2uuqqmdr8cgZDD7uEX9PaEfh5umN3FjGsS8UUjIe7GQ+riVKbEwRIQlDaKgyDr5WXhvem27D23PtYD1ITstE1HTcPC9Me/4bc7GJEueu6pOmoioJQDFisZnoOuTbi5q0nFnExLg1Jkvj0p6eoWS78fjl6EqXcgDMIK3ZFQSpSqObmRbOwMMwGA9YCDVmS0AAjEt+tnHB1XadD5eju80TWDiKiPBJoMMiMfqg9XyzYjtMNNG+ZvBLbtX7j64Ipy+ZtJT+nGNXdwP2LfkGVYWLP9ozr7Dp3Dy8rQggMBhnPckPSth1j2LvzHAaTgahagYyd1AsAVdV44pPlHE9Mp2aoP0tfHYG5PLpjsZpAkpBkCYubiezMQvwDPTEaDZSV2Hn3qcUoThWj2cBXv03E09sdm0PBXKAhaa5TXrP8MPu3nUXXBbnZRcSfy6RR0+os2vcm9jLn1XsjJSkHALvNyfnTqZXuOR8vN+pEhRB/IRNLSjEThs7lsed7M3B426vbXEzLRdV1VE3nzKWsq68XFpZhsymElqcgq0eHUD36mu2HpulsW3kEpcyOjuT6rpZAr+511WV++o9PsXfTST6aWD72Sxc0aR9TJZaq+I9SJZiquKOMen0wXR5sy7M9p5G97yIe3m5M+fqJStsZDAa6DphKRmF9Lp84hY6OqhRTqJQQZHE1LZQW20k4nYauC9ISc1i3ZA/htYJo0aV+pfXuFKvn/s6e1YfRVJ0vX1zKmz9OvOm2ZquJ93969pbrdRzQgugm1UGSCL2F+LrCyFcGMu/lH4iIDqFh2zp88+bPnDueTHh0GPc81IEPH5tPTkouJrMRrwBP9q+P5bsPVjHqtfsIj3J9CWmaTlp+AoEtVEI8Kgqu2p41yLBnIcIFzRs0RFU00uIz4brIRnZyLhkJ2UREhzD/442wM4vR9zbhyXvbk5aRz4Kle6hdK4jhg1sz9/PRzJy+nrBwX3alJ1OQW8orbz/E3c1dYzaCwv0Ius69efGR9zl/PJkfPttI044x5KXmcXT7GR5+vfKsuuz0ApwOFaubmbzsIlbnJfLNkSPU9wnEJEn4JCiIlDIChYTVw0xq6mV6to3m52HDKCgqY9GF1aQk5jJkTEUfofefWcyJA/EIIZjz23NE1AxiT2wCn6/eiwgwE1bflygvLx5q14Rgd3cOnU/lkV7XhFyzjjHs3XQKW7gVp9DRdfjx4Imrgqlx6yimfDKc5AtZ9BnmEhQvvzuYlKRcgkN9cHO/Vnf31qy1HL2YBhKkZBeQmHmZupGuyE2X3o0oK3WQm1XEhQuZPDzkc4JCfZi39HFkWb6aDjTIMoZy3yfV5qRdtWCOXE5DNsq071QXq9HIto2n8PXzIKqO6x7x8ffE57pbo2mbKBq3qMn506k8/mLfSp+FLEvMnTaCHxbs5OevdqI4VdYvP1xBMA3s2IgdJxIoKLExaYjLTPX8hUwmTv4eTdd5cnx3Bg2obBy7fP5WDm89jVBUPPw9yWrgg00SOIzXGg0sVhNd+zdj12+x7Nt8iuad6tGqS91Ka1VxZ/hvNa6UJKkW8CxQk+v0jxBiwO3sXyWYqrjjmMwmdKMB3ceMbDag6ArTzs4kviSRByMH0TfM9XQtSxYifB9jYMRK1mfspUtwCwLN1wphPb3d6NSvKdtXHkIrsjPn+cWYvT2ZMnsMnfo3u9nh/xb+Yb4u52uD4ab1QX+V0Bq37wvV/9Hu9H/UlfZaOWcjK77YhKbonNh2mp2rDqGWOVFVQc36kTwzfQSv3TcDxaHw3furWJ0zn1PH2rH36BZqPFXAz8nv8kL9nyqs/2jUCFr6N8Hf7EdND1ddjCQEwmRy+ULpOt7+XoTUCCQvp5gtG0+iKhrrVxxh3OPdeemNZaSlXWaXu4makYG0b12bj2eNZN/vp9izaBcBkkTCylPQvF6l93aFmCbVeWvBtWn1j7x54+2mfPQg86etoX7TGjRqU4uhs9cggBN5mfRM9uTckSQ0sxGDu5kG9cNp2bwmAA2DgyEY2q94ttJQYYALp1KxlzmxWE188c5qWnWtx+GifJzlXYl67GUuHI/jmR/imL/5Je5r1wj9uhlnvR5oQ60GEYye/iNX6vz7NIxhQ9x5Zu/cz90xtXmuZ3s69Lo2R0+WJWpEVb4PzsRnISsC3STh5+FGzVB/DhxOYM2GE/Tr3Zi+Q1oihOCetu8iBOTlFHMpMYeY+uFMXTyeHWuO0eXepriV1yfNmPwDx3eexV7HH8XLzLGUTF54cwAPP9kNX3+XseSNMJmMldJwf8RokOnZtwmrFu9FUVTKvI1cLijF39eV5vTzdOPbF4dW2OfI0SQUVUXTBFu2xd1QMBXklaBpGrIs0aFHQ7abykjLKeShUIhnTgAAIABJREFUHhW3lSSJN78ad8NC8SqquE1WAd8AvwH6n2xbiSrBVMUdxzvQC1EjFKFqqB4WzhZdJLE0GUWoLE9dfVUwXWF87UGMrz2o0jpCOcFzr8/FlhXEgd9dT91KmZ20xOx/7Nx7juyE2WKitMhGr9scOfJP4bJrcA2dBXAUlmK0mLG4mWnbpwnh0SHYnarLDdpq5tTJVIa92peii2vRhMBiqDy6RpZkmvtd+yK/GJeOh58XpSV2hNWCbJDpPnUITy1ZjUmW8Qp0pzTfRmCQN6fj0shMyEXSBboOJqOMpmo8P3o+548mITlVhC64eDqVtT8fJDDYmzZdby6c/oy7Wkfx+QpXKk0IQZ2AAFKLinAvg/ijKSDA4FCJqBfKx9OGVdh3x/Yz7Np5jkFDWtKwYcWC6SffvI+576zC6VQ5eiCe08eTuX9yL3aaXDPpSo+nY7Qr5OcUEX8hkymrN5OcW8BjHVvw7GDXPRHdIAKrnwfKZTtGk4E6ZVY+eWgxqoeBxT3z6dewLr6KjBAQGnlz4T35ke5Mnb+JyDA/Zrw0CE3ReO3dlSiKxr5D8az6/hk8PSz06NeEzetOYDEbmDDkc5q3j+bdeWMr1HaBK6Wmmg0oHq4o1vJNx5k4phuB5WNr/i6hEX40HNiArfvOU+woY/Hqg0wa3e2m23fuVJcflx2krMzBsAcqu8cDDH+2F5ezitA0nUde7MckPw8UVbuamvwjVWLpP8B/aYQJsAshZv27O1cJpiruOKUlDkrdJRxuZsoUnQARiEEyYJHN1Pe+eRh91/rjHN11noFjOlKzbhhq8YegZ9Gxl86R7YFoqkztJjXoN6rjP3bukiTR9cF2/9j6NyIhLo1v319FzXrhjH6p/1Uzv76PdGXbsv3E7b8IQK+HOjLy5YEU5hVTq2E17DYFtVEtcCoIdyvbtsbhnxnAhdQOtG1u4P46w25xVBdTxszH5uaBZDIhd65BlkHjyy1HcHoJJJOMW0sLzkIdYTHxyfS1SLhqY8KCvPEMdOfZGctIOpOOMBoQikq1WoG4B3gzb9paJEni1Y+H/S3RdAVJklg+YgRH0tKI9vHn+Q1fUFJsA1Wn4FwW638+SLd7m3LpYhYefu5M++A3nE6Vffsu8MvKiUiShFu5i3inPnfRqc9dPD/iS86dSAGgTngA37wylF+W7CVXtXBm1zkatKxFqmojJbsAIcM3Ww4xvH0TFAk8PSwsfHkYGw+do12DGnz8zPfIGhhLNazpDs7vT2DulGUIIRj2dA/GTLpxo0KHFrVZM+/Jqz/b7crVVJssSVxpwpvy5kDGP9uDoR3eRwJOH0kiIzmPan9wtZ88fThfTfuNHQX5KEBMreCbRpVuhd3m5OKZdGrFhOLhea2g/cTBBI4uOoSnpqPU9iEi5NaefxHhfqz86dmrNV03Oo6bu4WXZ1csaL9eLDkdKlt/P0VwqA/NW9b6y++liiqu4zNJkt4CNgFXc75CiKO3s3OVYKrijhMc6oPqaQRdYHA3kpft5JMm75FpzybKs+YN90mJz2bG5B9x2hX2bz7NDwf/hWxqjuqMpWPfHALv2ouX7/NEx4z/z76ZP3D2UDyvDfoYg8nAR2tfomaDG7d73y752UVM6DUVTRMc2RZHYLgfA8d1BVxDcZPPu1qoze5mqrWvjleI59U5fm7uZrr3aMSWXecwqhpb527GYVcoaBHIsZPePPThjW0XdF3w09K9pKVcpszpRJZldDcreoAborgMWZIwyjLIUKQ5UHwlfDfnYddd8+AiqvnxxluDeHbearIuFxNokTEDTTs25v0vxzJ51HycDhWzxUhudlGl46dlFfDB/E14e1p5/fHeeLhbbutauZtMdKpZE4D5qyawYflhvp+zhbISB19NX893s36ntNhGYIQ/QtNB01HMcPcL8xBC8NkzA2lT/1pE5pVPhvPTvO3UiA6mdZe6jL3/c9LTC7BaTXy0chKNm1Ynu7AENB2EhHuOg7dnreXk2XTMZiNfzRjF+HtdNTytOsawcdVRdKEzffx9rP1s21VfrlWLd99UMP0Rq9XEzKnD2Lwtjru71Mf9umvj7etOw2bViT+TgV+gJxZvC6VljgrXLzjCj9dmj+Z5u0JyxmVqR/553dwf0XWdicPnkpmWj8EoM+GdIXTt2RAhBCsW7Xa5pgMNvX24v1dThBAc2H4Wg0GmZaeYShEglwCsHBXas+EE0yYuxWwx8cnyZ64WcGdnFDBl/LcUF9l56+NhrFkdy77d5wF456OhVaLpP8F/b4SpMTAK6M61lJwo//lPqRJMVfwjtG1Wi8Mnk/FwM1OzWgBeJiteJq+bbi+uqxG58neD12RkS1t0zDQKjsRkDPvHz/vPWDlnE6VFNgDWLtjO0zNG/q31Mi/lut6vEAgkEk+l8MMna+nyYCa7d22g1BAOsoxDaExTfuerLcf57e5n+enDNSybtZ42fZqyds1zrJi3jaUzNyAJ8EgqQYkJwGis/EQPsHL5IRbM3w4CRKgnZWYVR3ULsx/vw2+7TtO4Vhi/HYnjXHIOkaHeJIgiRIAZQ7GGSch8+tko/AM8cbOYkA0yxS38aeTwIN3u5OLFLCb+6z5mvb2KoDBfegyoXGv26eJtxJ5JwWiQWbn5OCMH3DhVcyu8fNzp1q8JP87dhtXNjKqo5Jc6QAjSk3OR/TwwOzTc3I3k2hUwSKzcdaqCYAoK9eGZtwZe/Tnf5kRzN2ETXI3yBHi682rzlixbupvgeqEcO5sGOjicKkdPJFOjmkuUPvXKvfQc2JyAYG8CgrzQh9s4vs8VGYxpemvvrT/SsF44DetVdKxOyLsMwIcLHyMlIZvz2fkMeW4BBlni89cfpGF0xf8bblYTdWv9ewOoHXaFlMQc9HLBN+OdVYSE+ZB4LpMjB11WFbJB5pFneyFJEssW7GTJnC0g4PGX+9Hnwdv7PH9duBtV0dA0nb0bT10VTFvWnyA7sxBdFyyZv50yTcfhULFYjGRlFPxb76mKKsp5AIgSQjj/nZ2rBFMV/wjTpgwkMSWPsGAfPG7Djbt6dAiTpj3AkR1nGTSuC+BKw0iWjtz4a/9/hqjGkexZcxRZlmjZo/Ett3U6FBS7godP5VqiK8Q0r0mbHo05sj2OqEaRbFt2AFVRObAlm2odBXqwL8LXB0cjHeGvk6vkkFGcz9JpqxAC9q09yogX+9O+d2OWzd2Comh0GdKKsY/3wGS4cSpmx65zV8qiMCoynQY1p3/vZqTtT2FAdBSeEd58tGwbOpCTVkTLyGCSIi4jhGDuowPxL58xNufpwSzbfYLSxCK2rz2JqurMnbOFj2eOYMbiipFAp0Ph9LFk/AK9CAvywWwyIgFBATcX0QD5ZTb2JiXTolo4od4Vtw0M8eHTX57i1NEkZr+x0vWiJFG9fjjJyXmIrHzsOYX4B1goaRNG//YNbnocTdMpcbiGBssmGXcvK4pTZcIDc0hNyKZ5xxjq9WvEicXbETYdg0GmQ+voq/tLkkRMw2uu7V36NKH62hDSU/Jo3fn2urniz2Xyy5K9tGgTRdO2tSkqtlG7VjDrzp7nxXUbEcD0vr3oW68us1buRVE1FGDnkYuVBNPfwc3dQv9hbfn1h30IWUYyyJSVOUm9lIcqQFjNdOrTiKZtXYaRly5k4bSrSBJcir/9+sKeD7TizLFLGAwGWl2Xtq3fOBKjyYCEROuOdWjWNpqZH64lLMKP7r0a3WLFKu4Ekvjv7ZIDTuGaHfdvFcJWCaYq/hEMskz0X+gOA+g2oDndbtBF87+FYzviWDp1FZIQ9HqoC21u4auUkZDNM+1fx1Zq59nPxtLnkRtHfA0GmTcXuWwXdv56mI+fXYim6pQVWbm7XyzedYrwCXOwIrcR8fhjNRgJNHkRUC2QopxC3Dxcbt/uXm78EPseilPDy/fmAg2gQ6cYzsSloasaTl1n348nEafyObr3IpIk0bxLDDh1JIOEj9nMxbQcVF1gNRsxe19L/4QHeDNhYEcO7L/Irg2nMRoN1I4OrnQ8Xdd56v45JOYXo1sMdGpXh8lju+PlaaVLy+hK219BCMGgBUvJL7NjMsise3Q0uTnF1KkZjMloICOrgCde/gGHU6Vhuygy4jLp2vcuhj3ZncljvyIzqwCh6QSoMiunj8frOnPJG30OTZtWJy4uHX9/D8LDfclIuUxaUg6qU+XgljjGPN+LlF5NuFxQxnOjuxF8C7F3/OgljsUm0fOeuyq5Zl/Bqags3HwYp6oxrldrXpuwhPzLpezeGofTzwImAw890JY4v2Lsqmvu4o6EJPrWq8vgnk05EpeC0SjTvc2dHw3y5Cv3cs8Drfh2/nbq1Q+neataRNUOJv5sBoqi8fAzPa9uO/KZHiTH52Awyjww7vYbJXoOaUXLzvUwW4x4lPtVHdhxlnef/wGrm5nJ7w0msoYrpTjnm3F39g1W8X8VX+CsJEmHqFjDVGUrUMX/DEJNQZR9j2RuhmTt9ec7/C+ipKCMXasOEd2kBp6+7vzy2QbqtqxF75GduHA0EU3VUBWNxNMpt1zn4MZjOGwONEXj1y823VQwXWHnioOkXsyk9/AOZKbk8vAbnZGDl1Hbew26sDMu/AzHyiYzomYHPnx1OQUeniCbeG7WKNzLZ59Z3S1Yb62VAHjw/tZczi/llx8PAKABednFOB0qFqsJs8FA+OlSnFaZoYMbY20YwLx1+2lbrwb1IisLojZto/lo+nAKCsto184lgHRdoOs6RqMBW5mT5LTLaEHuIEnsPJzAS68MwMPj1rVLiqaRWVSCLgSKKjHwyS8xaBIxUSHMfGkQT479mhJZB1kiRVFYsffaQOR5y55h+KAPKUq4jMd9UXi6/Xmd1PSPhvHLjmN8ufMQzyz8lU9G3ktgiA8ZSa6hsZ++tIxZK27su7V/SxxJ5zO558HW2J0qr0750eVVtOY4P15nmnk9i7Yc4euNBxEIyuxO5PKiaF0X6BoousrOnWeJrOGDh8mIxWJibEvXA0WnFrXZOP9pZFnCYv5nfo3Xig7hnY+u2QT4BXjy4fyxlbYLifDjs5//+jBoAL+ga6Lz2NlUXn/lZyRJQiuxs2PdCfatOw6SxOQPH6Rz39uf21fF30T813YivvV3dq4STFXccUT+ONCSEWVLIeBHJNPNUyH/23ht0AwS41KRkAiI8CcjIZstP+0lonYIPUZ0ZMsPe0hPzMHs5U5hXgk+5empP9Ky510sfOtnhC7o99jdN9xGVTR2rj5KdnIOP3z4K6qi0aRjPT741TVjrMhhJGnzDjSHD817RPFiLddDUFZ6AYqiY/F0p8yu/OX3KEkS6YXFrjpcAVYfK0pxGQFBnjRpU5sxE3rSslMMqqrRa0AzDEYDI7rdOvLXqPG14veMtHyeHfs1ZaUOXn1/CB271adL9wb8fjIJhMBkMt6wY+qPGGUDA2PqsiUhAXGmCBQTugxnE7I4digRrdQJHgaQJIYOallh3wLFwem7PVG7uZMsFZFvs+Pv7nbL4+2NT+b99TtAQEmig13nk3jytf68/+wSFKeKweD6EhFCMGf6eg7sPs+oR7sQGenPtElLURWNA1vjmFQuMoQAW6njpsfT9PKaUwGqrjP181H8+vNBatcLZfGvh8kvKMWUV8bBA4nUNBmZ8sH91A++FrV1s5r+9Br+/8Rnn6x3fVEbZXQJ7MV2nA5XZO3wjrNVgqmKv40QYockSSHAFSfag0KI207PVQmmKu48wsHVBoR/r7buf4zMS7k4bQpWdwuqQ0GUt4sIXeAX4kOb+9qw4sstnDyQwMKpq5k4Y0SF/TVNZ+vygwAsiZ+N6lDxCbxx6mbeW8v4/ecDaHYnaDqaolGQV8yuNbE0bF2bI1sKWf1CQwQCz9x7aPm8a7/Jb9/H7A/WUD0qiE49/poYXbT9CN/tOko1oyeqvwmcOoXFxagX8zFajOzZYmfn76d48NlujBjTpcJss9tl19YzlJY60FSdf01fxUj3Ml6bMYywuVv5adEewiI8SUvK5YNJ36OqGr0HtSC8RgBd+jVBkiTsdgWLxch3mw+za9dFTLrAmK2DUNA8TXRrHk2TFjVxt5rQ8m0MGtGWofe1qnAOAe7u1PTzJbWwiBq+vvi63Twdd4Wl+2LRJVf9hqoLokMDqdM0gDHP38ORvRcY+UwPABIuZLHpt2M47AqfvLuaakEu0axpOsUFZdSoFcTjT9/N3l3nGT66w02PN7ZHK8ocCk5F5Zn+HfB0szDh5X4A9LuvBQBTHv76asfSla67/02oqkZiYg7Vqvnjdhu1irciItCHVCkTIUm06Fmf0SM6EXsoEQWo3iDiT/ev4g7yv+9WuyNIkvQgMB3YjuuRcbYkSVOEEMtuZ/8qwVTF38KpaTy9dTXHczL5V7vu9K1VF8nvS0TJHDC3RjI3/fNF/gK7fz3M2UPxDHi8B8GRN26b/ztMmf8YX732E3d1rMuAJ3rwy6frCa0RxOn9FzEYDXj5uiMbZIQs8PKrnP/6Zc7v/PjpesBlGdD1vpb8+vU2mnSoS836FTufUuNzcNgUjCYD9ZvFYLEYOXs6nRkTFmP1sNCtfzMUp46u6yTH5VzdLyomlHv6NUHTdKTydu1LFzJZvmAXTdpGcffAFjd8b2UOhZnrdqHpgstyGYP63sXpw5fI33weAahIGDQdVdVZuGA7K5V0lj06/C+LphZtolj81XZUXSc/TObDLbt4oFljfv/tOEIXXM4t5ttPN5GRkocQsHTOFkwGidIiG2n5ZSz78QCR1QOo3rsWiuIaitawTS3KdqfhTCrFp7odLx93vlvzHKXFdvzKo3yFBWXEHk2i0V2RBAZ6sXLkQyQVFBDl74csSZQU2Xh51Dwyki/z/LQH6NC7YtH+fc0bsO9iMpIO79/fm5gwV/3Mhg0nyUwv4NWJS1m4cgIBgV7IsoTBIKMpGmmX8oisEUBAoBe9xnUk9nwq/Qe1YMDglpWuzfXYCm3IBzIJD/HG7SZ1Ti9Ne5AlX24lokYAHf6iOP5P8NykpcRfzMbX141vF43neFIGSZn59G1d77bSoNcT5OGGJARIEOnpicXDgm4xojlUvp27jUEj299WZLKKKm7Ba0CrK1ElSZKCgM1AlWCq4p9nT/oldqddokxVeGPPZpdgMtVH8vv8jh/r3JEEPnp0HopD5eCm48w/+MEdP0bLHo0rdL89P+cRRtSfTEFOMSazgfkH3sXqYUF1avQb06nS/rnp+ShODUmCnPR8Jvb5kNJCG7qmExTkzlMfjaRVr7sAePK9+/l40nf4BXkzZfZozh1O4LWH5oIkoSgaPYa349zRRJx2J6Nfvdb+vmLBLpbM/h1F0Vjx3R5mfDee1x9dQG5GITvXHqdmnTBqNwivdG4Wk4EAT3cKSmxoTg3v+AKeHdeVN/PzcU8qZfioziz/bi9KiZ3COlaysnPJLSkjxNuTpItZvPX8D5hMBt6bNZLQCNd8uLXf7+PgtjMMfbI7DcpHk9SOCeXr5U8zYO5iVCv4m80smLERoamYzUZkWaJV5xhOHUxAcaroqoYqICejgN/Wn0QIQXpeIT39/UgOCCBr9VlK3Itw2lVsZU72bY7j9JEk7modhTnAk/1bTvPVB7+RU2xH83XHbDLiazaSmZbP0y/2pf79rjTW/i1xpCa6ROqC6esrCaZ7GtelVa1IdFVnx2/HWX3hAH0HtSAlKRdN07FYTeRkF1E7JpQvlj7Ozwt2sXV1LFhMZKTmk3S5gO1LN2Ewyozp04rH+t/aAHXW68s4uDUOo8lIUJgvbfvdxXNjvyIv6TL3PdSecc/3JjDEm0lvVZ6z978BRdGIO50GQH6+4OsN+1nw+xFkSWL7iXi+eHbwX1rP4SljCzPillhM8ulU3NxNyLKEyWTAy8ftqtVDFVX8DeQ/pODy4PYbsasEUxV/i1refggE7kYTDQKuFQQX5Bbz4tDPycsu4uVZo2nV7e8PzHXanK4p5rqOo+w/k+oTQlBSWIau6QhhwGlTuHfMzTuBRr7Qj9yMAiRg2ITerP9uN5qiufyBLmYx/bF5/HxpDgDV64Ty2dopV/fNSMhG0lR02YC3txvRjaszc8PLlY5RVFCKomgIXZCRns/9Hy8hu40V77MaIUkObjY5wiDLvPVgTyZ+8hPu8SVszs5kQXAWejs3Au8OYPgj3Rkwsj2PLVzBpfxs2tWoRrCXa07Y99/sIDMtH0mSWPXjfp6Y3IdL5zP56oPfcNgV4o4k8cvRd64eKzTIh18njeXgpVTk5DK+fnsNdrtCQJgPs79/An9/T2w+BpxFds5tOofFambIo13Isjn5fc9ZsiNNfLZhHw2NHmg2lUKbik+Ah8uzSoKw68aNzHz5F4rySxESaLKEZjai6QJdF/ywYBf33u9K19Vp5ErrWN3MNGt/4+68AE935n2ygeXrDlMcYeJs4WWenHwPS7/ZQeuOMVeH14ZX82fiGwNo37UeO9cdZ/PGWNI7+KJbddyydf4fe+cdHUXVxuHnzpbsppNKEhKSAAm9S0dQulQRRFBERFFERVFRVGxYsGDBLlJEBBGV3kF6Dy3UAElo6Qnp2Tpzvz82lEgx9k/d55ycw87MvTN3dtl5997f+3v3Hj932ftVxuSJLo3a2Al9CSwXOuvLS7EIQK/XMXTclziOZSOA+dM3cfuIG/Hxu77u6u/EYNDRt19TFi/aS8NGkXy6PwG9pmHMdnLi9EmSuqQTX/vKwP1qZBYUMz8zBWu0ieJgPUc3nuTg9mTemz6CAwmnaHtTHXdJlL+Qf7GtwEohxCpgbvnrQcDyyjZ2B0xufhfRflVYfuswTuTn0aHaJQfeTcv2k3n2PA67k6/eWfaHBEz128Zz9/P9ObL9BHc999f86hZC8OLsh/l28jLa9GpCZNz1/W78g3x4qdwmAOCpj4bxzTvLSDuWhsFkICzmyiyzC3Qc0JJ1c7eSdTaXcZ9fO4160AM3sX9XCsnHMnBW9SQfOwhBaR1vHr2vJ7F1rv2QenzuUmxBHtj9DBh2nschNWxOlXNFRThUlafGzKH4bB71vQ18/GSviw+peo2qs31DElJKatd3CbxtqoqqSRw+RnJDvXj+1QW89Eyfi6U4wnx96NugDgdtqRcDnUyHhcHvzMWhaRTq7WAQvPp4V25p6PIqGvdcH0zzqzB7/V5sDpV8H4HRwwAC7n+6J0aTkdjaYQSHXSrJEREdhM1qx+nU8An0pu1Nddi09AB4QOuOlzyQqteqyhcrnyQ3s5Aa9SPYfvg0kSF+lJwrJOnAaTr0bop/oDenigo409oTFJiVlsSa29vRe+ANruXByxBC0OLGeEKr+vGNJZmyCJe3lK/ByOhbL5XvmffVVnZvPYmUkikfrSIrVCEi0JeHXr6VqtUCMPqZWHAylWyrAz+jgmJ3ZReaPX+fJuiv4NEx3Xjk0a5IYPUHH0G6FXOOEynhiUdns3T1uEr1U2q1IwFjvp3grXnYNThx5BwtO9UjttzQ0o2b34uU8ikhRH/gwn/QL6SUCyrbXlzusPz/TvPmzWVCQsLffRluKsHxxDOMu/0jEIJ+w9tzz7hef/cl/a2c3H+K5AOnadfvhusaWeZnF6HolGtm311A0zQ+fHM5y1cdILOZJzqTjlY1o/hk+PUDyRte/IhSmx1TLjg9wRzigRKs597GTQk8buezd1cinBrCqOez7x8murxW2c7Nx3nlqW8RAoaN6kSKtZQlPx1CWBwIm0ToFEwmA69P6E+zqzhbfz7jJ+Yu2U1hsB4upM/rJOZ8DY9iSZ9ujXjiIZcFRXpeEfe+PY+iUiuTR/Uh3GhC4DI3Bdiy4wRvf7Ka2OrBvPH8rWgOle1rDhNbN5yYeFdAW1RYxvncEqrHBl91ZuLpz5ey9eApKLUTsC0DJETEBPPpqnG0ffsz8kpdbu6ehSp3V41H52Fg4dL9REYG8snHd18sWZJ5vphNiSmsyUthU9pp1yxex5sYVP/Sct/CeTuZ/pHLCVttH0RaWSlGg55nbutI/9YNeG/OBr5buw9NSvRSElmm4803hlC9xrWD67+bC8+Ny+/t8ZxcHp84H+uB8yBBEbBm43OV7nPmhgS+fWMFIrm8nI5Bh3egD598P5rgqtevWfdvRgixR0p5fUHcH4ipWqSMHD32LznXyWfH/mVjE0LogLVSymtXi/4F3DNMbv4U4hpG8fmaZyjIKyauUdTffTl/OzUbR1OzcfR1j9m6bB9vPjANIQSvzH2YRu0qOkR/On8La3cmcXfvFvTt0IDtW08gbRrBO4rx8jMy5ZXev3gdX4+8nfGfLiEpsBDNA+w2O5+278ZH323gmCWfauV1whSnCk7tYrs9O0/ikBKckgMJqWzKzUGTEgwKhjI7mkngMEJE2NUfbEMHt2NrThZHz2bjUMv7FWAskUgJy77byY5pW4iOD2PitBGsnHT/NcfwwdSfyC8o47AlnZnTN6IrttNrcKsKy3S+fp74XhaYOhwqzz78NYcPnOWO4e1JTMnAYnfgbXfNGjnsTvKyC5k+ZQ2lRVbQu4QNgfvKWFmwCykEsoqZjMwCDh48R6MG1di2+hBvLNtKiQEUvWDEwKaE+vgwoG69CtfbZ2ALfHzN5JaWsaMgm+yjpxBAFW/X9UVW9cdQPis3vHdLhvdu+Yvv41+Npkm+XLeL1KzzdGxcg2eWrcao0zH77oHUCnGJ46UGpf5QVt2IMV+lVdNfV/Ota52azDTo8VBAaICiUFxmZfa0TWxZd5TQCH/enzYC45/kO+Xm342UUhVCaEIIPyll4W/pw51y4OYPRyv3lwmNDCC+cfX/hPagtMjCliV7yDqT95v72PDDbhw2J3arg8VfrmdE6xd56e5PsVnsnMnMZ87KPZzLLmTSjLU4VY3ouqGoBlBUsJ8qRKq/PFtcOyKEH165F5PJAAh0iiCttIRDHsXYAvTYAnToDTr8A71JshTwxdbd5BbA5HyFAAAgAElEQVSVsmbJfnBoSKOOXgNvoFPreBQBwqEhikopqm6guJqOjxds4kyKS1O5aN8R7vpiHssPJOFpMjJr3GAebNUM1Sxxeko0L0FIoA8mDwPm3DJKCi2cPHiO3RuOXXcMtWqEYDTq0TSNpdO3sOCrLTx/33SgYk3Cyzl5LIPjR9NRVY15X22hpX8gwqFhMBnpcWcbIuJCqdm5Lovm7CBgfQFBaSpP3dAKc5l0pVhLiRSuZcgaNUOZcM9Upoz/Dt26U6hFVjSn5K46jRjWuMkVWYWKItip5fH6wV3syk7nvm4tePWubnSsH+saj58fPtl2qpYq9Gn1/5cJB7D24Am+XLeL5fuOMfG7tZTZHRRYrHy//zAAxVYbAz7/hkxhpThaT1zLKF56+tctm3uajVgjTJxvEYCziidSp6ABq5btp6TIQvLRDKZ/su5PGJ2bCshL5VH+7L+/gRLgoBBimhBiyoW/yjZ2h+pu/lDmTlrIjAnfElM/ive3vILZ65f9b/5oNi7czZcv/kDDtnGM/fCevyQV+clb3uTcySycDic3DWzFk58MR/mV6fi97u3ArjUHUXQKyYfOknUun7zMQrYu30/z7g3R63QoQuDnbWZnyhlWeebiaO9NZKKFEfd1x1CJX94bj6fy2HfL8PE20jQknFY1org5LpY3Nm5COlSKuwTxQdeelPgKHlqwDFXTWDlvF5bcUpeBgZTsyM1kwuju7P1+P7aMQkpqeIEQ2Jwqq3YdI3HaHkY+04MP3l2CJcjA+LMZdKgdg5eHkT7dG/HTruNkahaeHdyFomM5LJ6zE6+aoaSl5ICEmNrX1olZ7A42yyxsUQre3h7oUgpQNYnd5uDtF39k3bJE2neuy7NvDKwQqIeE++PUXOtE4dUDSPgxkSCbE5PZQL2hXZh75ixJZzPwsjsxOwWe+8uYv3c18fXDMXro2V6Si2o24OvnRWCAF2dPZmGz2DF46Knm6Umf3i0JD/K75nUv2XYI/4RCMCpU7+5Hl8aXypnM+Gw9jswySvQ21q8+xIA7r59d93dg1OvKl9kEgd5eFKlOhAOqlhgoKixj3MrV2FXX7KRQBO883g9vz6vbCpSV2vjgvZUkns6iR9cGDB3QCiEE/r6evD6yJy9MWoA0G3GaJPaqBvwLJbbzVgTg5fPXf5+4+VfxY/nfb8IdMLn5Q5n31iKkJklPyeLQlmPc0O2P9WGqDFPGzqa0yMLWpfvodmdbGratXPHT38PZ4xk4y0XBW5bspdudbWnUvvYvtKpIo3bxfJ/8HkII3ho9g8LzpWiaJCI2BF8vE7Mm3sn+pDTaNo7lg5+24Sh1YiiBoJujGXBfhyv6czicpBzPIjI6CM/yMiQfrt+OxeHAqWm0j4thWGuXg/f8oXewNy2DHvG1CPTyZF1SMkKAQ9Mos9gROoFUJQ5vhTJPiRCu19LTA698DZ8qvmTlFuJ1vAQhBDNeX4ZHoQ1Drh0ivDGUB63BgT5888G9ABQXljH4vq9xOjV0OsFzkwdTo044odUCrhgLQHZ6AWPun8r5BjqkWVCmWRk9titHd5+iz9A2PD16FlJKNm84xvtvLueue9sTHOILQMKRs1iivNCyy0jNLkTxM+FRbMPoYcAr0AsB2IwKxng/+jSOZ+XCfTgcDpIOpRM+IB71tAcGvY6pz7gCsTGTbueLiQup0yyaJ94Zgq58SS1h6wlW/rCbbrc244b2lz53XgdLUPJUQOXAumPERH6MzXmOGoFv0Lh5DMknskBK4utVLqvsr6ZD3Vie7teR07n5DOvYnCKbjQkjv2bhhs0s/3I7h1sqoLiW5RpVC2XAqE+wOZw8+XQvlqWcoNhm5+0e3Yjy92faR2tZses4UieYMW87jetH0bCOK4Px5mZx1Jw8gpef/wGL08m9j3eiblgwk15eSERUIE3b1yK/sIwq19EBuvkD+OdImyuFEGKdlLITUFdK+fRv7ccdMLn5Q2nZsylbF+zC6KGnZpNfp2H4o4iKDyPl0FkcdgdvPTiNoc/0odud7X654e9g1JuD+eTpuRezwYKv8dD/JS7MEj310T3sWJlIWHQQNRu6NGCRoVWIDHX5H93atC7LFicigJNHs8nILSIsyLdCX0/dP4OUE1l4+5qY/uOjmMxGboqP5WSOa9mwadSlh3Pd0BDqhl4SGd8UF8uQ5o05mpnN2GFtWDtrJ5sOJRPeKZIH2rVACMFLkwczb+YW2t5cmz4DW7BrUxJTji4kpmFV9m9OAkDRJC/0uxmjvuJXzdQpa1jyQwIIgcGox2jU0/zGeFdG3DVYt2gvhafz8fLzwlrdkxE330Cnpo04ezKH/TuSiYwOJu1cPg5g5dL9nDyeycfTXdmGEaF+SEWgSIGUoFM1VIsDo4+JGuGB3N3rBrYdSGXkbW1pVCOMhG3JZKbn07FbA+afPOV6fgiwlJeiad21Aa27VvRxspTZePnRr7FJycbdycTcGEvXrg0Y0KEh0nHpCXTo2BFaFazGYHSSnDeBYSPnc0OrGvj6e14sNvv/hhCC21pfGq+nXk9uVhGaJnE6VcyaFyV6Db1ewS/ZTl5SKXoJb85dQ36oQNU03tiwiU/79UFqEqFJpAJI11Lc5URFBTFt1gMXXy/9MYETRzI4mp3P6sOn0OsVvnrvHqoGV/y8u3FzHcKEEG2APkKIb4EKOhEp5d7KdOIOmNz8oTz91WhOP92XkMig62aD/RE47E7ef/pbTh3L4OFXB1KnWTQAr89/jGUzNjJr0mJyMwqY8sQ3dB3S9ldpqbLO5LJi1hbqtqhBi589GK9Gz+Ed6TigJduW7aNGgyjCr2MfUBkMRj3t+1y7flvDamH4eHpQUmZDJxQMBl2F/aqqcfSgywtISklmegHRNUIY3bEVnWrXwM9sIszvUskWKSUFeSX4BXghJdisDsZ1vmTM2eD5fjz+s2to2jKWpi1jL7Y/k15Aw451uPOedoy47RRSCPRmI7VrXCproWoaHyzezLe79+GjOTF6GBg6vD0dezS4brAEUK9ZNAaDjvCjNu7q1I4BXdry8iOz2bnxGHqDnvuf7I6m1zH105+w2RzY7c6LbevHhTPlhYEsXbSXTeuOoGUUoTg1cjMKWbEwgREjOjKi36WlsKk/jCYnq5DnRn+Np7RTFmykSa0IYiOu7S4vEAhFwenrAYrgxK6zHM7LpW71EJq3rkXCuuMIRWBxliIl2O16rI4ghBDU+4clRpjNRu64uy2Lvt9Nx8716DasBeuOJ9MprgZL5uwkhVMgINzkTbFiQa8oVK/iSggY8UgXnEBqbgG3D2xJzehgrBY7er1LP/dzvp+zA1XVsAqJtDtRFAPHU7LcAdOfyb9shgl4AZgAVAPe/dk+CVy/Ono57oDJzR+KoijE1P9rvvy3rz7ItpUHsVrsvDtuLlPXjQfA7G2i8+A2fDN5GSadIDgi4KrBUkFuMW8/NB2HzcFTn9xLcMSlWaFnB3xAxulcDEY9H6x+hug6v1zLysvHTJc72vyqMRxNSOGLF76nVqMoHnj19iv0Vkl7UlgzezPt+t1A4w6XBMGKIpg2/g5W7jxK6/rRBPl5VWin0yn0v7M1C7/dQaNmMURGX5q5qF31UgHX3EKXNuntMXM4tOcUNeqGc77MQU52EXpPIzq9jjfeHUzdy4rrXo3dO5L56suN2GwOUlOyGT2uJ3NmbqbNjfFEx7rOJ6Xk+XcXsfLcKdRAPVKvIyJPcOvdbTCbftlzqGGLWD5dOIayEhs160VcHOcF80cPk4Eu/Zpidzg5fiyDYT9bpmwQF06Dp8IZO6Y73bq/jinb6tLlXOUhbZcaL81dSZJajFeGE89zFj768rbrXp/J08j4yXcw4dWFaBIQrgK8ep2OCWN782WVTZg8DBw+mc53M3riV6WUsSP+eLf6v4p7HriJex64lKF94XMV+3B3fM0mrDY7DzzQmS1pZymx2+hV27VE7eXtwdjxl2xG1i47wLsvLkCoGm071+Xxl/vz4aKt7Dl+jkf6t6VO3XCyMwrwskms3jqqhVWhecMrrSvcuLkW5bXivhdCTJBSTvyt/bgDJjf/WEIiAtBUDaOHnvCfLWX4B/nw8frnSdqTSvPO9a/a/vsPV7F/41GklMx8bSFPfXLvxX3WMrtr6UAIbOXLMH8Gbz00g8zTuZw6mkazm+rR8rLZLKfDybgeb2AttbFq1iZmJ71foZBvyplc9h84S7UqfjSJqxjQpJzMonPvxjwwtvs1z71+30menbocJHidOI/BqXHyWAY6X09UQLU5weZk/pztvPjGwOuOQ6dXkLiWbnQ6hd63Naf3bRXtVfbsSGbHluOo1Q145DnxSXNSpBO888UaJjzas1L36+fv85iX+hEa4U9AsA+d+jRBCMHAIdcXTesVBQ+hpyzME71VY/ZHP+Gh19PvsnZPr1jFBpmF2saMzymJqViQci6X2GoVz19wvoTHhn9JblYRo57szlfzdyIMOtAkjdvH0rt7I+IiXYHEY4+4fKZsdieJh9oQHRVEcODVCzP/kzEa9XRoVYvJT3zDcwdOU3xzKGYPIzfFxOJ3lSLIMz9eh2p3IqRk65rD+IT5sjglBYvdwQtPf4dngROdELz68gCatoj9G0b03+Pf6vT9e4IlcAdMbv7BFOUUoZWUAXDbiCvLlYTHhFxcGrOW2di95hDRdSOILHcOrhodjL5cMxQWHVyh7YuzH2LOO8tofGM88U2i/7QxBIX5k5dZgKZJAkIrLjFICVq5Z5GU8mK1+tVfb+Lbd5eRqgNrrRCOpWTRrkksAf6uWab1aw7x7mtLAHj06Z506dHwYh/5+aX4+3uhKILVu5OwO1QkoLbzp0w6iD0j0GerGFQNVRHoDTpat/9l0XzT5jGMHtOVlOQsbr9GwOLp5YGuTGLKk+hUBWuIEWOunX17Tv+mewfg4+/J/U/dcvF1aYn1oibqAna7E2upDd8qrvuj0yu8/fYQpryxjHPJLl+oXZuS6DekNbklpYz9bjkHCjJxIlF0AtUkUC0wb/U+xt/bpcL5t204Rl5OMQ67k49eWYyGBA89hiqePDqkAzE/+1wBeBj13PArPYr+aXz60g+cPZXD+QiN4hQrQsKZnHxe79+NOmGXlqudTpWcvBLAtS6i6AShoX7IFIlOCJQiOw6HBCl59t5pdO7ZiCffvP1vGpWb/zrugMnNP5YVX2++mJm2Y2UiNRpG8d2U1Xj5mbntwU4XM5cAJgyawol9LvHuZ1teIiw6mJ733Ih/sA8Om5Mb+1WcDYlrXJ2XZj908XVO2nm2LtlLWamNE4ln6f9gJxq0rvW7x/DirFGsm7+TmDoRBIT4suizNdRvG0+NBlEYjHom/vgES6auo9OgNviH+Lp0W4/MQHVqGBSBs5o/On8vPC4LEA7sOY3N5tLv7NudSpceDZFSMm7ctxzYf4ZacVWZMmUot3dsxMb9KTjMkrIgsKl6jps1aqY7ee71AcTGhaI6NapFXVu3cwEhBD16X5kRabc5STt3nsjqgdRtGMmjD3dl0pz1SEUgFYlq0jFs0PVnhPZsTiI1KYMu/W/AL8DrmsctX7iXD99Zjtls5KMZ9xFeLYDz2UU81PcDSoos3PlwZwaPckkVGjaN5tX3hvDUiGmUldoYMrIjANO37GHv6TRUoREY4ElN3yqcOZGJMAhaXGWpuW6jKBRFoNcpoEmkKlFsTnRFNlKPZlw1YPovoNb0JyMSVJMEh0QCSRm5DJ/2PdufG3VxidxmcRAY6kt+QRnYnIx8vCu9BrWkftsaTPloNam2AtAATQOHyrqFe3ns1duuqnVy4+bPxh0wuflHsX3ZXr4YP5eSQgvdh3fEYNSj6ATt+zbj8wnfs/7H3QCs+3Ybdz/Th7a9XMLp00fTsZbZMXl5kJGaQ1i0q2RGu/L9KYfOsnr2Flp0a0jTmyo6NUspebzrG+TnFqMJl8Zo36ZjLEh573ebcnr7edL3PpcOZGidseRnF6LoFGYkvk1gVX8ad6hbQbuk0yv4BflQUlCGqmq0jwpj+Nhb8LrM86b/HS3Yvd1Vu2zgkFYAlJba2Lf3NFJKTp7IIjenmCZx1dg45SFO5p3n1unfIFSJvkRFOjSEIggLd2XkbVx3hA/fWUFMzVBefWcQHr8gzr6Aw6Ey8u7PyckpJrZGCFO+GE6fPk3JtVuZ9uN2NAldm0TTp8e1rSeOHzzLxFFfoaoaW1cd4r35D1/z2MU/7EZ1athsDnZtO0m/21uwf0cyNosD1akx/8tNJJ3JY+ToToRXC6BqtSp8verJCn3EBgW4PIfQMbxhEx7s2JLkzrkIISoIvlPyzuNQNeJrhDBj4RhSU7OZ8uICstMKkIoACed+h4npP520KgpkCxSLxCPXjiXcCApYbZeWt7POnWd0n/exWuxg0KP39CAjrQAhBLWjQunaoR4LUvMpTcnFUuZq5+tvRqd3+y27+W0IIWoA56SUNiFER6AhMEtKWVCZ9u5Pnpt/DGeS0nn1ro9IT86iKLeINV9vZu7Rt5l75G3qNI/F6VSRUuK0Ozl9LINJI76guKAUgEffvYvgagG07NaQRj9bYpJS8lSPSSz8dA0v3TGFvIz8K85dmFuMandyIX2kMiaRPz/HzpX7ObDp6DX352cX4rC5CpcWny8hJy2fUZ1e584mzzH3/RVYy2woisJHm18mvE4kwtubIysPk300o0JfUdHBfLNoDHMWP0ZMef01Ly8PmjWLRqdTqBUXSlCwSztj0OuoExrMzTm+BO0rI3xzKfUbRtKy7aXZs08/WENhoYVjR9JI2JFS6THnZBWSnVWE3eogac8plszagsPu5N4BbegbF03giSJ2Lj/M/OmbrtlH0flSpBA4NMn5nKLrni881BekRHVoNGrqEgU3blUDD7MBRSewKrB1cxJvTlx8zT5ua1aPd2/vyaTbujPyxhbkZBWye9URitMvnXv9yRT6TvuGgTPnMm9fImftxYw8spQddzup+WoD4hpE0qBpdfoOalHpe/Vvo1lYKLoyJ4oqqXKolIB9JZgzHFQ94rj4I+Pg7lScDhXVqSGtdhxWB2dScgCYv3QPn87eRM7hdCyFFowK3HJHC6avffo/UTngb0f+RX9/PT8AqhCiJvAFEAnMqWxj9wyTm38MtjI7ilL+ZSkgrmk0Xr7mi/sffGUARg8Da+ZsRVVVFKMRnc41dd+uTzPa9Wl21X6llBeX9pBc+nc5QgjGT3+Aue8sJbZhFN4B3nQd1Pq6X9zH9qZyPquIxu3jsZXZWTFjPd++49IV9XmwK2UWOz2HdaBGg8hL55gxim8mLaJNn2ZE163GzElLOJWUAarG7LeXkbjtBG989yiBYVXwqxrA2TP5gKyUKF0IwaQ3B1FQUIafn+el+1jOy+Nu47O3lhPQ3If7n+heIVuvTv1wEnamgITqsZVfYqoaXoXGzaLZse0oHoUlfPn6Ys6l5PDQy/2x5ZVh1ykgBF/N3ELPQS3x8r5SEGz0M+PQ6xA6BSsKmqZd00H9wMYklFIbJrOR/KwiYmqGEhDiy9cbx7N5/VHefWs5OqeKl/fVHagv3KeO8ZeExU/fP4PMtHwUReHNqcOp1ziKbcmnsTudSGDRhkQmlGWjKYDewLroUxyZ9Zt98f7xSCmRUuJxvJjQba4fHi071WHbjmQ8s0rAZKCk2Iq3j4lm7ePwMBtcn18hEJrGyCdcSQo5ecU4nBpCL9A7BUIIug9o4Xb6dvN70aSUTiHErcCHUsoPhRD7KtvYHTC5+cdQq0k09716B1uXJNCiexP6PNCpwn7fAG8em3wnt9zVlk0LdtO2d1NO7j/FCwPfw+xt4p1VzxJRI/SKfhVF4dUfHmfBJ2to3685oVFXmge26dmENj2b/OI1fvfeMn78dA0lFhW9QYfm1JBOlbDqga6AT6fww8erkIqOjQsS+P7kpWW9tn2a07bPJS1VXOMo9HoFp6qhaZJzJ7Mu7nvy/Tv56Nn5HN93ikVT19OodS0Cq167NAe4goEqVa6uAQqu6seEdwdfdd9zr/QnYXcKH+7bQ99p3/BY17YMbXOlR5TqVFF0CotWHeCDqeuoHhnIA/d2YEfiCWSmxGFzkpPueoje+0QPNt/xycW2RUUWvLxNSCnZuslletmmfRwTnpyHqkkELmdwh13Fw3T1gKlJ65okbDmO5m3gRFERdWwOzB4GDEY9N3WtjwTS0vLpN+AGAKwWO8vm78bP35NOvRtfNQAuLrSgqRJNVXn6/hnc2L8pP606SHignrI23hjTHeDn8mCSThgU2+ia9//fTuH5Uh4b+DHZGQUo5QG3yWygacsa7Fx+AAAjnpjLjSqrBPnwxconGXnTG9gsdpq1iiWqPCAfelsrzqXnY4sPp3FIFeo3jaHWL1hbuHFTCRxCiMHAMOBCtfLKaQxwB0xu/mH0HdWFvqO6XPeYuCbRxJVntj3b7x0sJVasZTbWztnCsAlX99Jp0DaeBtcpoXLmWBpHdyezcs42GraNp1HbON4dPZ1qNavy4pxHMHubOHMsnRkvfY+m6FA8jKhODSFAOlTKSuzE1KuGotdx9lQuDruK6lSxltmuWW+vTfdGvPXj43z95hJy0s4z6rVL2UEhEQEYjXoK80ooLihl0bQN3Ptc31+4e78NvV6HCDVxLCcXi8PJlDXbrgiYVn6/m7c+Wone14TBywOnqnH6TB4ff74Oe5QvFFoxC4WzxTYG9f2A51+5lcee6cV3s7dxc7f6F/VSP87byYwvNmBXNSI7R6LqBNKoA1XD2D6Ed7dvY0yr1nz8zgpys4u4pXdjWt1YGw+TgfHvDWHt+kO8Om8DHy/YytYjp5nyRH/AFSx26lbRgPSTN5ayfvkBFEXhXHIWZpOBBbN3YPYyMmnGfYRGVGHC5DsYd98MwKXJWrXqIADmEviy722kpOZw6MeVlAUpjGjZlCeadfxT3oN/AgmbksjPK0ZTNUxmA5pNEhjqh04IjB4G7FYHwVU8UXSC0mIrnt4e+AV4M33LBLLPnad6fNWLffn5mpn0XP+/cTT/Yf6+wrh/BcOBB4HXpJSpQogY4OvKNnYHTG7+1bTu2YSDW44B0OjG31YJftuSBN64+yPsVgcYjKQePsf6b7eRm5ZP8flSti7ZQ7Ob6/NouwloqoYiJTrFg6DIQErPl2ApsXLrg51o0C4eLx8TyYln2Lp0L2dSc7ktfhw39W/OU1PuvuK8xfmlfPjMPLLO5vHE+3fRtEOdCvtrNYwkYcMRkBBb/8/99V0jJAC9omA2GmgafaWJ57SvNmENNIMCXpqK3iZxKk7OnsghKi6YasNiqWHyYeHsnTgdKl9+up4PPhvGLf0qBl5nT+dhs7mWuw6fSKfnI83QJRSzIiCHZGsph3bsYcusA5BcgsOhcmB3KtXD/Pn0h4fR6RSM/mYURWCxOTibeaUW7XIK80tRnRqaIvl+6gakBpqikG+x8uLbi7nrrna0a16DiJhA0lLzUHQKMdFBpKUX4F/Fi4hqAdSoGUqjRq6ZwIAA7z/ylv/jqNusOkIIDEYdPW5vwZCHO2MyG7CW2dmwZB/pp3J56KX+vPbQV2xbfZA6TaJ5a95ovHxMxNT5/6yh5+ZfRxcp5aMXXpQHTdbKNnYHTG7+1fS+vxON2tfBw9N41aW2yrBv3SEcUocwG0B1IKUktkEURedLkJpG9doRnD2ejsPmQNqd4GFgZsJEgsIDcDpUbBY7S2dtZtyAD9A0SYMWsWiqRlpqDlJKfvphN49PvvOKVOltqxJJT83BZnUwc9JS2nRrWGH/7Q93oUb9aniYjTRoVfM336PKEOTtxeIxd/P1nv3EhlZBkxKlfAkrO7MQA+CblI+mgLOKJ6qPnsJaBqSAMJPCW6P7kLj/DEvm7ELnocfX14OdW0/Qok3NCkthNVtVR9t6CLtQKanvQc3qIQzu1ZnEOd+RcaYUBBRZ7fgCSInm1DiTkkNxkQU/fy/aN46lY9OaJJ3JZtzdna46lgs8/FxvnnvwK9JP5eC02NG8Teg0KK3uS2J6LhPeX8rMt4by9tR7mT11A6HhVeg/pBUZ6QWEVvW7mC0YEvLfLtFRVmLlszeXs2/7Cew2JwKoWS/iYsFnT28Tb3/rsuiwWuw8P+wzpIQTB8+SdTaP8HLrBU2TV2jr3PxN/HtnmIYBH/xs2z1X2XZV3AGTm389UbXDST1yju8/WUPLLg1QFEFoVCB6Q+U+/mFxEQiD6+HoE+TDC1+Nos4NsSSsPUhoVBDRdauRcSoHp8tjEqno8CsvhKs36NDpTSybvhFbYSkoCvs3H0NKMJWLnOu3rHlVX5m4RtVBCDzMRppcxTxSCEHzm66cNVNVjbXztuOwq3S/s+0f5lkz93Ai0w/vRRyGEruduxu7NF1P3D+D/JQ8V5kRKRCqhsNTIAWgCDIVG1NeX8KtQ1rz8Zf38vW0jezcepL9u08x9tle3NTF5cRusTmYOP8n7BEGHIFGHr+5PYPqu5bRPr21N3d/+C1ZZwvxDTDzyJ2dWTR3O8dPZSN0esbcN4Mv5jyI0ajn5Qd6VGo8Jk8P0s6eR1XBGeSD5mtGSInB04CtXPjvdKoEhAfw6HiX3GHeZz/x/ZcbaX5jPE++fccVpWz+a+w7e5zxvWaAKkCVUK43WzZ3Bx17uewiigvK0DSJX4AXHiYDDVvX5HBCKhExwYREBCCl5OkPl7Bh70m6tarNxAdvuf5J3bj5lZTrloYAMUKIy9NkfYDzle3HHTC5+ddTUljG2F6TcdidzHhtIULVqB4fxpSfnq/UAy++WQweZgNSQp3mNahfbljZsvsl/yAvXzMmfx8cNgeePuaLoleAU0fTKcgqdP1qUzX0ZiNSSjrfdgP9Rt5M1WsYQ8bUCeeL9ePJyyykdtPoSo930dSf+GqSKyMvL6OAYeP7AK5ixSvmbEOnU+g+uHUFY8/KkFZchF1VUYQgo7j44lYwiREAACAASURBVPbiIgtSUUDVEJrEI9+Ch0Ggq+VNsd2OPJjPsrOZ7N5ygvZd63H8SDo2qwO9XiEz/ZL9iaZq6IRASIF3gQ7HmnQGj1yA6lCZOPMBvh1zJ6nn8qgREYTJQ8+0TfsoEd4ITaJPKyIro4DI6lfOIq5Ysp91aw4xcHArWra+NBNnMhvw9jFjtdgRngacOgUUQefGNSlw2mnfohbR1QLZefg0YYG+HNmRwvTP1oNTY9OKRPoMbUudJv/dmmY78/bxzrppYDeDzgAKCM1V57DHHS0BOLAjmRdGzkBKeP7Du2jRsTavf/0gOekFBFX1Q6fXkXW+mC0HXHYVa3Yl8dTQm/G9hq7PzV/Ev2+GaRuQAQQBky/bXgwkVrYTd8Dk5h9Nbno+qYfP0bBdPB7lgYjd6sDDfKmYq7XMjup0iayREulwcvpYOvlZhQSVi42vR72WNXl5zsOkpWRz821X99bxDfDmrSVPsuenw7Tv04zl32wjLTWH20d1wi/QG51eQSgGAkL9uOOJW7CW2ugxtB3GXzCBDIkIIOSyosCVoSC3BFXVkJokv9y7KGnvKWa8vpAje08jdDrKSmwMHHX9Jauf82SbdmRmFWDZkEWIwY7aRkOnU3jhrUHMnrqBiPAqbFqQgN3mxJRv46OeXXj+wZk4FB0IQUmRhcXzdqEBAYFe1IwPo3d/V1agpmk8PXImPulF+IR7wskcFq04DeWlYaa9v5wNMSqqJpkytDetakRxNisfFIEEYuqGEV6t4n1SVY1xUxez+ngyXtlODk74njsndSM6oAo3xkZjMOj55LuH2L8rhZp1I1i4dB/ZmYVsWXkIIQRDujbl1emrWZdwArui4bO/EMWgB71EK9OoGvnr3pd/GwcLj6KLsuPj46SkyBtzgJ3m/dvTvlFd8vJK+GHzAd5ctAHZwIvAPYX8tGgfLTrWZurCHazYdoQh3Ztxe+cmBPp5US3En4y8IqpXrYK3+dq2D27c/BaklKeB08D1ywr8Au6Ayc0/loKcIka2fgFN1YitX403Fz/Fk73e5sT+03Qf2p5HJ98JuOq1jXxlAGvmbUdzqJzcl0qjG2sTGOZf6XM1ahdPo3YVl8VKiyy89ejXFOQV8+R7dxHfNIb4pjFsXZnItDeW4LA7OZWUwaQ5D/Heyqc5sisZTy8PLCUWetzV9mKwZC2zkXEmj6haVf+QJZ7bH+lK9rnzOOwO7hnfl7zMAsb1fQe71YFEYvDxpuh8ya/uN9Tbm+gddhL25rIgcSsR4VXo2rcZTVvG0rRlLPm5xWz8MQFwWQwc3X8GHCqg4R/iS5uu9VmzbD+KhM5d69O5VxPWrjxImxvjMJuNJCdlgCbRlTjQCu2AS89iNBlwVvfG4nA5Z8/bmUj7+Bjuv7UN05fsxOYjCesdc8W9e/HFH9i/5TjBCmQ1M2GrJnhzw2aEEEwd0I/W1SMJDPGlU/nS0ZhHu/LCs/NxlC/Hrdl6mG2ZaZTZHDiqCDwNAuGQIATDHu9GlaB/X+HcX0P3qh05kJ9Az69XYsk34BlsZ8mmprz98kI0KbF4KVgamhHBHqhVzfQY1ILMvCJmLd+Nw6ny3pwN9LmxPiajga9fvoszWflEhwW4dUx/M4J/b5acEKI/8CYQQvlQASmlrJQQ8RcDJiGECdgEeJQf/72U8sVrHHsb8D1wg5QyoXzbeGAEoAKPSilXlW/vjktopQO+lFJOqswFu3FzgfTUHDSnirXMTnLiWU4fTef0sQykhJVfb+aRd4ZcFBT3uudGet3jKtBrs9grzEBVFiklezcdw2Fz0rJLfVbM2c7eTcdwOlQ+e/EHXvvGJWwtzCtGK5/NUp2uh290nQhyzuUx8c4PQULi5mM8Pe1BykqsjOw8iZJCC/VbxPLqVw/87vvi7efJM5/de/H12ROZFw0FhSJo17MxdzzSlXMnMvhxygrqt43n5jvaVqpvoShgdeJQ7Xz19koio4LYuGQfLTvVo0nbWoydNJC1C/bQ9+62xMSHsfrHPeQUW+nQpzEjRnemSpA3mqrRc0Bz7h3yGapTY86sLcxb/BjxtapybOdJTL5mrIpA6nT4Bvowee4ocvVONk/7AU1K+jd3la7p07kB75zYiUOTzNq7n9FtWuFvvrSUc2jfGYQGODUCj1iw31iFYtWOSa9nxU+JeDZSafSzpc7bbm/Bnt0p2KvomGk5ifATGBU9VYWZ/OYKHuk2Hh1yEwN73/C736d/OtU8w/mw2btsP1uNEu0bViU3oKV/HGdFOg6bE5NJh9loACN8Oe8RqocGUGqx42HUo1ME3p4eGPWuR5CHUU+tyP9m3T03fylvAb2llFcvufALVGaGyQbcLKUsEUIYgC1CiBVSyh2XHySE8AHGADsv21YXuAOoB4QDa4UQceW7Pwa6AOeA3UKIxVLKI79lEG7+m8Q3i6FZp/oc2HyMYc/dSrVaVfEP9iEvs4DIWlU5tP0EDdrEVWiTm36e9ORs6rWuhU6vo7TYwntjZlGSX8Zj7w+l6lU0MBdYO38XHz83H4DOtzUnvmkMOr2CTq8QEeuqwG63OZg54Ts0u4pOr2fsOy4zyEWfrubbtxbjsNrRNMg85SoBcTY5m5IiKzarg31bjv8Zt4nIWlW5+5m+bFm6l8Fjb6FlV1e23ehWz5KRms3a2ZuJjAunVtOYX+xr7Mu3Mni1y4uotNjC+KGfu5zM5+5kxqbxdOzV+KLYNzstn2IBdp3C8qUHqBEfhq+PmZp1wnA6NVRVw+FQKSq0oKoamcczEBI0uxMfXzMlhRaGje1OtRohBFnsvNO+I5E1QqgZG4qqavh4GAn08qTIaqOK2YS3R8UguEePRsz/dgc6ixOdBQzLcgkYFoPtVAkJSxLZRyKTPx1G3GUp7Y0aV2f6vIfo9dp0nE4NqUBAqDfP3dABc7CZYF9vooN/eRn3v0TryLE4tcfoF++amSg6WcCJoxmMGNOZPL2TmlWDqBboMlX1Mhv55pWh7E06R6v61d2zSf+v/EtnmICs3xosQSUCJimlBC7M3xvK/652Oyfimup66rJtfYFvpZQ2IFUIcRK4IAI5KaVMARBCfFt+rDtgclNpdDqFCbMeqrDti20v8eo9n3FgSxLPD5rCxG8foWG5IWXm6RwebPk8KgLMZkKqBeCph5Sj6UhN8vmE+bw4a9TFvjRN46d5O7Bb7XS9qx2nkzJw2B1oqmT5jI2sn7GOxz57AE1KWnapT+rRdPwDvSgtKkN1qOgMOry8TRSdL+GLcbNxOlSEENRqVoOH3hnKqw9M59SxDMIiAzh1PJNbR3T40+7VgIe7MuDhrhW2aap0/U8WrrFWBv8ALzr2aszmFYkEh/mTdToXAImrhtsFzheXcd9r31BitaGTLj3RnM83kJddhBCCZz8ajK5LKJasUp7s0QG9Xkdcw0gO7nKJf9+f/zAh4f4XhenPPDiL1BOZCCEYN/FWJo3/Hp1e4cNPh1LsLWkSEcb+hFPsSzhFj16NqBYVyIBBLVkwZzuaa4joyjQm9+zOpIe/I8PmRG8ykJfrEq9brQ4c5YFaZl4RHhaBsEswCpwHS5i4ZTntWtbkxbG9ft8b8S9Ff1m5mtFPXT/LLSzIl55Bv80TzY2b30mCEGIesBDXZBAAUsofK9O4UhomIYQO2APUBD6WUu782f6mQKSUcpkQ4vKAKQK4fCbqXPk2gLM/296yMtfixs31MHoYyMsqKF92M5B5OvdiwHTq8DmklDiEHuHUyDiVi2axIBDojXpCfiYaXvrlT0ybMB8pJVmnc+k/qgtH96RydNdJnEXFOEwGfH09qNsmnpE3vUHR+RLim1Tnrmf6sHzGRm4Z3gHfAG/sVjseXh4oVgdGk4F31z7H9tWH2LPhGFaLHS8fEzM3PUdo5NWz5S4gpeTw9hM4HE6SdidTt2UtGrav/Zvv1cSFT/Ld5KXUb1ub+OY1Kt1u3Dt38MCzvfHx9+RwQiqLZm6hQ69GBIdf0oS9Pv8nzugdiNpmAg+VULt6CJmZRTjsKkaTnsdnLaLIR8Hor2PdoSRykjJ46r3BJO0/y2G1gJmphxgR0IwQb5cZZOqJTKwWByazgQXf7MBuc4INti8/xEPP9CQ9LZ8Xx8/HbneybvVBvl04hsBgH8xVfShJLwSnRBflQ52qITzzUj8+eW8VteLDaNGmFutWHuT915egOjXGPt+Hm7rX56ZGNdl97Cwda8ewNvEwVpuDEylZ17olbtz8e/g/cvoWQkwHegHZUsr6V9nfEVgEpJZv+lFK+cp1uvQFyoDLfz1K4I8LmKSUKtBYCOEPLBBC1JdSHiq/YAV4F5f50x+OEGIkMBIgKirqzziFm38ZYyYP5f3HZxEeE0KHWy9pTZrcVI+ajauTdDANYdC59EVWO4pBofPANtz3UsWyKeczC3E6VaSmkZueT0CoH5MXPs78d5cyY8I8outFUq9NPOmncik6X4LN6iBx+0nemPsQg5/sfbEfo8nIx9teI2FtIs07N8RoMhIeHYyqqoCktLCU1+6bypRVz1x3XF+/sYgfPl6NzWIHTcVg0PHZjteuWh/vlygtspCXVcRD7w6rUMC4Mggh8A90BTINW9agYcsrgy2jXodOp2Cw2vEotHEq8RyN2tbifFU/snwd5AdYURyuQscJKw5xLM1KUX4ZjYY35e1Fq7GrKjvPnKVxmg8+3ibuH9uNaR+uJd9DY7tvKb7eBvQOSauOroDRbnMipWvGLKewlGM5OdQODuaG5rGsW3sIKeG+4a4ZvDr1q/HhtBEALF++nw/eXIGmaqBqLPshgc63NGTiA65ZEovVTk5GIWfSzvP4yM6/+j67cePmdzET+AiYdZ1jNkspKzX1K6Uc/nsu5ldlyUkpC4QQ64HuwKHyzT5AfWBDucC2KrBYCNEHSAMiL+uiWvk2rrP95+f8AvgCoHnz5v8nca+b/2fimkTzyYYXrtjuYTYyedVzSClJ2n8ap9XB6pnrCYsNZdBTvVGUillWAx7tQVpyFjaLnXtfGXhx+8CxvRhYvjSz6uvNfPj4LHRGA1JnoO/wG8k4lcv8T9dRt3kMXQe1AiAsNoTelz1wazWMZMT43nz5ygKcTufFunJ6g/6aRpOJW5KwldkBkJqr4GtpYdmvvj9Oh8qoDhMpzi/Fp4oX03dN/MPMLS8wfuDNhPr7kLsnjcT9iVgtds5nFjLlx0f4aPsODu3aCWWSG0p9yU3LQtNcdhA21SWS16TkXFYBhVsz0CmC0vhqlDXzp8BuRa9p3PnUzdzepiEBQd6s3pNEdmEpAR2qknIwg4I4PXMTE3m5Uyd6DmpGamkRbRvFcHvv5hWu8f3vNvLNqj2IKAO+pzQUnULv8sK8cz5ey5ypG6hbL5w3Zz7wh98fN27+r/k/edJKKTcJIaL/qP7KNdSfAqFSyvpCiIZAHynlq5VpX5ksuWDAUR4smXEJtd+8sF9KWYjLDOrC8RuAJ6WUCUIICzBHCPEuLtF3LWAXLklBrfLCd2m4hOFDKnPBbtz8XoQQ1C4vznvBhPJqePt78txXD11zP8A3by7G6VDRG3SMm3wHN9/emvtunEhaag4bFiYQWTOUOs2uLqbuc28HNKdKyuFzRMaHM6D+eDy9TXy47ImrLs8Nf6E/r93zGXabqzxL50GtiauEUPvnlBSWcT6zANWp4bA5KCksw/83psg7HSqZZ3IJqx5UwQjTx+zBmD7tKL3JwsSUQrLS83nwedes2+hWLakTEoxJb6B5aBgzjMuxWe3c+3RPvH3NjG7ViqScHHySVbbrTqAUWdm9dD/WCDNKnC96ncLNzeIIDPZh/YGTvDh7NaomiY8JpqC9F0hJx5gYHKrKiHfnoyJJWJ9N/dgwmjePvXiNP2xIdEm4DAp+kb689nx/ateNQFU1Zs7ehjQb2ZeSS+LOZJq2i/v50N24cfP/QWshxAEgHVfscfg6x07FpbP+HEBKmSiEmAP8MQETEAZ8Va5jUoDvpJRLhRCvAAlSysXXaiilPCyE+A6XmNsJjC5f3kMI8TCwCpetwPRfGKQbN7+Z0sIynuz2GudOZDLmw+F0HtLuV7Vf/8NOkhJS6fdgJ6pWd6U+L5/2EwmrE4lrHE1hbjFCUajdvAYZp3IozCxAOlVc+RHXRgjBrQ+4zCMf6vYWqlPDarGzc90R+tzT/orj67WqxdiPhzPx7k+wldnZs/635Uj4B/nQc3gH1szdTpfBrX9zsKSqGmN6v8u55Cyi4qrywZKxV8zSefmYmfT1yArbhBB0qnFpGe/BF/pW2D+qhSsvpLjYyhcYsWQWkbB4P16nS2kUFsLLb95DFW/XMmJ+iQUpXSVMPNCz/O6h6BWFan5+JCSeRtU0KM/EOn447WLAVFpipcsNcazYcQx/bxMT7+9NVloB1WOCkZp0OZcDSIlf8H/bb8nNf5C/boYpSAiRcNnrL8pXlSrLXqB6eRb/LbjE3Nf+FQyeUspdl9evxBWbVIrKZMklAk2usv3KNQ/X9o4/e/0a8NpVjlsOLK/shbpx81vZteoA6cnZ2K0OZr78w68KmJL2pPL+o7Ow2xzs3XCEL7a/QnLiaT576htsFjt+QT68t+ZZAsL88Q/yZVjjZyjJK0ZRBINGd77m7NLP6TaoJV++thi9QUfT9teezfD0NrlqtukU179/I6NeH8So1wf95vYAhbnFnD6egerUSD2SzvmcYnasP4pOp6Nr/2ZknskjLTWHJu3iMBh/nUeutczGyBFTySmyYPTQ02dwKwpzi7n3qZ74e5mwOpyYDHp6tajDgeR00nMLmTCkC1FVLgnPC4rK8MlyYjNIjDZoUl4W5bPJK1j44x68qngy/b078DQYGHX/dBQN4uv8j73zjq6i6vrwc+a29JBKgNAJvfcmTZo0QVBEBEEUG9Isr4ogYgNFQUWKCAqIqIAUBZFeBekQekkgBdJ7uW3mfH/cGIy0hBKVb561srh35uwzZ2aRm3332fu3S/HxjMEMebotK37cS4dOtalcrdRtPScdHZ3rkiSlbHzzYddGSpnxl9drhRAzhRCBUsqk611PCFGZPJdQCNEPV8uUQqErfevc81RtVAkEWDwsNMnTILJbHaQnZRJYxo+/fdsogMPh+vIhNcmli0k8WON/PPpMe9dWjhCY3UxUqnOlGMGWY0dKidlsokmHWoVe44NPtuW+Hg1w97Tg7nn91hA1m1XhldnDOB8eRY9h7Qs9/93AL9iHhm2qs2/zCZrcX5O1P+xl+dc7QEBsRCK/LHSpajdoVZUJc4YUet7MXBvvTv6JuJRsUIRLKLR7PRrUL4/DqTLg0yWciI2nb7M6DGpQlwPfHUV1auwrf4bYsCCqlg8mwNeT3Gw7oCAEGDNtjB6ziCHdG7JqzlaQEisQdTaRA7mJnG1vwmCXqDujebDVu1SqGsKSVaMwFbJBs46OTvEjhAjBpa0khRBNce2CJd/A5AVcOdHVhRCxuKrrHi/s9fRPA517njKVS/L10Y9IupRCWIOKZKZk8UyL8WSkZNN5YCtGTn/iura1m4cxbOJDbF1xgPPnXFGqX77fw7hvR3B0x0m6D+tQYPzbS15kyce/0LBDLarUveJIHdt9hr3rjrBj9QECQkrw1uIRePt7FbD1Dy6UOj+tezWida9GRXgCd4bdO04z48NfqVIthHHv98NsNjLpm+HY8+QSPpu4EtWpIQTEXkgEIcg2G9kZHs2yJXvoN6B5oa7z/PTlnE5MQAlUcE/SCPL3pHatUADOxiVxPj4ZKWH5nnD2TtuN3WhAAnPnbyOpsglpECx5+TEyMq0YERgScjFlqshMJwtnbAIpEYDiVGnQsAJTVhxw9aQzCdJ9wDvNyYmj0Wxbf5yO3evdvQeqo/Mv5V8kK7AEaIdr6y4GeIu8XAcp5WygH/CcEMIJ5AKP5mlHXpM87ceOQghPQJFSZl5v7LXQHSadewKnQ+XryT+THJdGmx71mTdxOaUqBDH+m2exuJvxDymBf4hru+bMoQvkZFpx2p1sXfYHI6c/wfLZG9m36QSPv9SN2s2rFJi719P3U7Z6GSYMnoPZbKB+yzBysu006dqAMlVCCoyt1qgiE797scCx80ejGNf747xkbZfK9/Pt3mHsF0NpcBs6SsXN51PWkpSQSWZGLvt+P0ervJJ+s5srV+uJUZ3ISMvBaFR4+tVuvDPyW45HJYMQzJuzpdAOU1RCGk4pMfmZ6VKvHGPG9CQ1KZMd649RtX4oAd4eJGZkY4jLxZllQ/q6YzAaSPORWE0aCMH4pev5+pmHiYpOZvfmk9iyspASNJMBoyYJLl2Cd+YPA0VgPJeLCAB3ixGvC1ZXEycBJ6IS0IUEdHT+OaSUA25yfgYu2YFCkSeNNBioABj/3F2QUo4sjL3uMOncE2z48Q9+WbADp93JrlX7cVjtxJ6PZ9GUn6/SV6repDJ+JX2Jv5hE92HtORcezaIPf8GW6+B8eDRLT31UYHxOppWJA2egOVRMmDCoKtNGL0QIwbj5w2nWuS5ZadnkZFoJvkZ1W/LlVIQQSM3VuFVq0tVXbshsfjo//a4+l6IwY/se5u7aR4uK5fjikZ4Y/pbAXblqCFmZVqSEsuWvvk9fP0/enH6l2HXSnCE80X8mTqdK5SqF14p6a3AnPv1pJ42rhfLqYx0RAsY8Ppv0lGwMRgNfrx6FwyT49OUfOW+xojg1Ro57kKW7jrItOw4hQNUki3ceYsSz9zPmuU589dkG1i7fj9HLQucBzRnxmksWYs6sTXAwg9JmSeOaZTkuE5FIpATVTZcS0Pl/yr8kwnQXWItLTDscKFx7g7+gO0w69wSZqVnYs3NdCdHGKzlJMefirhrr6ePOvAPvY8224eHtzqXIBKQExSDw8r1axPH0gch8/aMcp8r+jeE47S69oL3rwwkpG8Co9pNwOpwMeasf/UY+gMPu5Ni+CMpVKUmjjnXo+FhLTu2PoGT5IHatOQyKwJqVy8td3iciPIrnPxlEx0I2wL0bSCn5YvseNCnZcyGK0/FJ1CwVXGDM+A8eZu/v5yhXIYByFW/eKNXH14P53z1LZEQi3kGevDxjFWGhQTzdq8UNe4h1aBBGhwauQpc94Rd4d+560nwFnkkailRwWp2UKxXEB3OGcuzgRS7HpDLtrRUgoE+nauRU8WB7eASzLu3hZEwCnwztyYhXu9FvYAsSEzKoVe+KBFz16qUxmQyYEDRoUJHoQzFkZFpx87YwtG/hImI6Ojr/GdyklGNv1Vh3mHTuCaLPxuV/K6rToipHd55CMSgMGHulr1XkyUvERiTQtGMtzBYTHt4u56h0xWAmffs8J/aep0O/plfNnRCbjMHoUgb3C/LBL9iHlPgMFEVQqkIgh7eewOlw4rA52bRkF/1GPsDEYV9x4kAkiiL4ctPrjPhkMABRZy6zd/NxpCYJKRvA2cMXsGbb+GrcD3R8tBV2mwMhRJGrym4XIQR1S5fkTEIyFpORsn6+V40xW4y0bl9wC1FKyZrDp8ixO+jTuBYmQ8GojJ+/F37+Xgx4ayFnY5LYc/wi1SuUpG39wrVi+XjhFhJTszD6mrE2DcI72AdTCbe89Zho2KIKC77YiMPuRNMkpiyV1tUqsONYJKqqkpGT3y6KkDJ+hJQp2Di3bfsaBAX7YLc7qVe/HL0ebEjk2Xiq1Q7F4nZjWQgdnXsSyb0cYVokhHga+IWCveRSCmOsO0w69wQN2lRn+6oDAHQe2IpJ372AECJfTDHy5CXG9Jzqqtq6rxoT5hfUBqrXqir1Wl27nL9l9was/moLcVFJjPzkcUqGBvDRc/MJKuNHtyfakpmaxeIpq8hSc+g36gEATh26iDXHjpuHmejzCQSUdDkg5aqWYvq614k8GUPlWqGM7vAObp4WaresysEtx3mr/6cYjAY+WvM/wvLENYuLRYMf5uilOKoEBeLtdv1Kvb+ybG84k3/ZhpRwMSmNV7q3ueY4d4sJk10FkwHPIjgitSqHkJiaRRYOss2S9Ix0Ji/dwvThvfLH9OzfjMN7I8nNtjH0xY6ElPPn7OUkLqdk8nLva6/nr9SsVSb/tbevB3UbF10MVEdH5z+BHfgIGMcVt1ACla5r8Rd0h0nnX0NOZi5AfuSnKHTo2xRPbzcij8fSqG0NjHnl4Id3nGLZrE1oqoamajjsKif2RRRpbu8SnnyxZXyBY7N2vJX/2sPbje8jPsPpUDFbXM7Ak6/3ZP7kn6nRsAK1/vYHuHKdslSu49oWmnvgAy5HJFC7ZVXefWIWDpsrUrXx+9+L3WEyG400LhdaJJuEjGycmoamSRIyrl1wIqXE73ASfgfjCCoXQIMqZa457lq8+XQX6lYIYfpXG8kINoAm8f/b/w//QG+mLXi6wLFXe7cr9DWsDifhMXFUDQnE1/3Wta10dO4V/i1VcneBl4AqN9BpuiG6w6RTrKQnZTC69ZvEX0zilW9eoH1/V97O4S3HGNf9fQDeW/MG9dtf1Zj6hqTEpTN5+DykJtmyfC9zdr5FbEQ8rz04FYzGfK0lqShkpWQSdeYy5apeLUi4b8NR5r7xPXVaV+O5jwZiNBbuV0RRFMyWK0nS3Qe2pPvAlje1Cw4NIDjUlUB9f/8W7N9wFCHEPyIbUFR27T/PthXHqGjxoGSdAF7u1rbAeU2TKIogJ8vGyQMXkJokJTaVJTM2En0+gcde7ET5qiHXmR1iIxOZ8ORcNFVSzt+T6HNZKGiUreS45vgcuwM3o/GG+VHXYuCX33MmPRmT0cDmEcMo4VF0h11HR+c/wTmg6A0481BuPkRH586xe/V+EqOTcdgcLJjwA+Byoib0noLd6sBudbBh4bYiz5scn4aqaljtTi6eiKFriSd5ufuHV+/FOxwoAq6lVXnhZCxvDZhB1PlE1izYSY+gZ5g3cXmh1/DFmAU8VPJp5o1bUuT1g0tfadHxqXx78mPqtKp2S3MUJx/MWMeluHSy4nN4JME+4gAAIABJREFUqlEjSvpe0ZUaP+9XmjwznZdmrsbd00yTdjVQFEFopWCWfrmF7WuOMHH4/BvOv3zuVi5dTCIuOplaZf3xiszA7VwGP325jdTEgtGs2Zv/oOnbX9Bl6nzSc60AZKTl8N3XO9i+6fotZJyqSoTvOTwaxOEsk8Lk7dtv44no6NwjyGL6KX6ygcNCiDlCiM/+/Cmsse4w6RQrNVpURSgCi4eZlr0ak5maxeYlO/OrzhDQcZAr7yQjOZOx7SbwVO0xRBy9eMN5y4aFoCIQBgO4WUBCaly6yzNSVQyKwMOiEFSqBCHlAji6/RQJ0QUFYSf0/wxNy/stVgRSUVgxa0Oh7iv5Uipr520mOz2HZZ+uJSstu2gPJo8SQT74/E3Q8t9KuTL+uFmMICUhQVdENzOyrazbexqAXUcjSUjLZuJXw/j+4DuM+uARBAKhiJuqaNdsXAGLxYTF3US9FlXw9ffEzcOMh7cbnj4Ft86+3X0ITUpSc3LZFxkDwLtvLGPR3G189PYqDu299jZsoj0DS6AdoYB7QC6ZqvV2HomOjs6/m5W4WrX9Dhz4y0+h0LfkdIqV8jVCWXD2c1Li0nDanQwo+wyqU0VRFExuJro9dT8NOtQBYO1Xmzjx+xlUp8qXryxk8m/jrzuvwWjA7G7Gmn2lKgqjAZG3pebIzsFht5OVkgUSPh/5NRZ3M899PIg2DzXFw9ud1KS/RC2EwGQ20LBNjULdl3eAFz4BXuRkWvEN8ML9FvKwrseB/ZFMHLcUb293ps0YTMmQqyvY/gmmvtmXHXvPUbl8EGVLX6k+83K3EFYmkIvxqZT08ybAxwMhBN6+HlSvX54xH/bnxIELXLqURv/W7zN0dCe69mty1fwdH2pC2UrBaFJSo0EFWnauw5E95wmtFMTa73ZTq3FFwvJywbrXq84PfxzFYjRSv6xrqzUr04rq1DAZDWRlXfl/cepYDAf2nKdtp1oEhfoSaPEixZaNUZp5475/tt2Mjs6/gXs1h0lKuUAI4Q6Uk1KeLqq9uIGK+L+Oxo0by/379998oM5/ggUTf+Dbd5aBhNqtqzNq1nDK1wzNzzeaMXIeq2asA6Ddo60Y993oG8537lg0W1fsJyDYB9XuZNe6o5w9Go3qVJGqiszIBLMZNA1Ul2aZ2c1EmSohzN73Pp+N/ZbfFu9EKAovfDiA6o0qUq5aaQyG6wdi4y4mEr7zNI071sFgMnB63zlqNAvDq4TnHXpKMObFhYQficZgEDwxrC2PPX57ek2RMcnExKfSvF5FTMa7I87ocKpEXEqmQil/LNeIJB0/eJFxw7/BmmvHzd3Eyv0TCz330LbvkRSXhkFRmLvpNYJK+yGl5FJaJv6e7kScjmf+l1uoWCGIuJhUKlQOYuhzHTAYFNJSshjcczp2uxMvb3eWbnqVbKeN05mXqOkTirvRfAefgo7O7SOEOHA7DWqLintIWVnl8VuWKioSxz4eW6z3JoToCUwFzFLKikKI+sAkKWWvm5gCeoRJ5x+k7cMt+Wn6GuxWB4+88iDlapQh6mQMweUCcfdy5/DmY/lj1bwmuDeiSu2yVKl9RZSwWdd6jHrgQ+xIVKmBpyd+oQHUrF2aAxuOYs2yYrc6uHA8BmuOjRc/HsiDz3TAv6Qv3oVweMJ3nea17pMRisDH35sZu95GKEq+lMGdomWrqpw55WqoXbdeuZuMvjHno5MYNn4xihA0r1eB90cX6nOiyJiMBqqVC77u+ZCyfiiKwM3DTKUbJH5fi9TETJx2FcUiOLTnHJ36NEYIQRk/17bgpHHLSEnJ5szJy3zw8QBq1yvL5ZgUvp21maAQX1TNpeRtzbWjqRpeJjca+ReqqlhH5/8H/504SlGZCDQFtgJIKQ8LIQr9y687TDr/GBVqlWV54nw0VcPsZubd/p+w+5cDeHi7M+/ENHwCvfPHWjyu1gU6tvsMuVlWGnesw/5Nx3hnyGx8/L34ZO2rBIcGUDYshIUH3uXnBTv4/rP1aKpGg7Y1ePWzwRzcfopxPaeg2RxITWPaM3N5fdEIylcrXai1SykZ328aTocr9yo1Po3hDV/HYXMQUj6ISStexquEB78t3M6P09fSumcjXvhkUH70rCg8/GhzGjethIenhZIlb2877kJsMkIIcm0OTkXG39Zct0NAkA+zV44k8kwc9ZoVzVl5Y8Zg5n6wmkuX0vjig1+4cD6R4a9cESj1KeFBWloOdruT9yauYNiz7Vk5fwfnT13C7GaiYq3SXL6UxhPPtL/jzq2Ojs6/GoeUMv1vn8OFbpGiO0w6/xgOu4PUuDSCygYCsGfNQey5dhSDQmR4FE+83Z+3ek/B4uHGY288VMB256r9fPTMVwgB/UY9wIFtJ7FbHaQmpLNtxX4efrELAF6+HjzyfEeMRgMZqdk8+mJnAEwmA8LNAjYHSEnchYQir18xKHnldpIewzuy7ust2HMdXDwfz9OtJmI0G8lNTkdqkvWLd/Lg850oG3a1lEFhqFjJFa2Jz8ziVFwiTSuE4m4quhJ1q4aVqF+9DBHRSbwy9J9tLRtcugTBpUsU2a5ph5rEJ2Qw96NfsVmdHPlbQvfkTwawZOHvrP35EEmJmXwyZQ1VS5UAIdBUjTNxqVjNgmUbj9KrT7HtBujo/De4t5W+jwshHgMMQogwYCSuBPBCoTtMOv8IuVm5DKs1huRLqTTuUo/3fnmDfmN78N17PxEaVoqqjSsxvO7L2O0aDtVG+O4z+If4Ybc58Av2JeJYNA6HE82pce7wRVp2b8D58GhXi4+/KXYbjAYefr6gc/DZK99hsJhRLWYsRkHf0d2LtH4hBE17NGLX2iM061Sb56c+Tk5aNrvXHMJUwouM1BwQ4BvsizUzF6PJgH/w7UWHUnJy6T5zIaqmUTnIn2VPPXZzo7/hZjYx7X99bz7wDpGRloObuxmz5eqPGlXVsObY8fQuulhkmy51+HXZPpLiM3hyTJf842cSksi22xkwuCW//XoExaBQMsSXNz8ewLJvdmDwMPPjtnAMTg1Pz8Kpmevo6NwzvIhL5dsGfAf8BrxbWGPdYdL5R4g4GkVSTApSSvauPUT8xUSGTHqUQRMexmA0kBKXRlxkAsLNDaFKvhiziNmvfY9UJSOmDaLHUx04uPk42Zm5DHmrL+6ebmxetheT2Uhgab+bXj8uOgVHthXsDmx2WPLhatr0bVbo9SfHpbFzzWFUp8audeEc3xvBK/OeBWDdtzv59KXFOOwqljIBPD/lMWo2q4Knr8ctPy+A2LR0nJpKrsPJqfjEm45XVQ2b1YHHHXIMpJRoqlbobaxVP+5lzvT1uLmb+WLh05T6Sx+3rIxcRvSaTmJcOg8/3ZYhLz1Q6HWkZeTwwfwNeDUvy3vDO+Pn43qu285F8uKyXxACRrZpwax5wzh54hLNW1bB28edZ//ncorDGpUj8mISvR+oX4S719HR+a8jpczB5TCNuxV7XYdJp9hxOpxEnYzJf28wKiTGuDSRLkfEM/q+N3n/sWkohjx1bimRgNOu4rA7+W3RTvxL+jJ905vM3fseW5fvZXjLCUQej+H8sWiWzlh/0zWM+WQgAaX8XHIEbiaC8tS2C4u3nycWd3O+AubUUQvzz7V4oD64W8BsIiUpi2pNKhfKibsZNUOCaR9WCV83C692vO+GY9NSsxnU61Me6vghPyzYddvXTknMZNB97/Ng7XGsX7a3UDa//HQAp1PDbnOyf/f5AudOHLhAemo2mqqxZsmeIq1l/k972LX/PHt2nmbO4itCk4djL2NXXQ7l7gvRhJYLoFPXOnj7FJR4aNeyGkMHtMLvDlYy6ujcK4hi/CluhBAbhBAl/vLeTwjxW2HtdYdJp9iZ8/JCZoycz5+SFmWqlqZmC9c22oyR8zm+6zTHfz+DpkmkzYbZrNDzqfbgdILTSZs+jdm+Yh+bf9xDXFQSy2esx5ZjRzqcSJsdoboSsc8fuUjsubhrrqFD36YsPjaFd1a8xPDJj/H6gueLdA9mi4kSXibXVr+UJMdnMPe91ezdfILRPaYiVA00SaO21Qku48f+LSd4qc80fvpyc4F5pJT8umgH8yatIC3p2r3Y/sSgKEzr1529rz7P4GYNbzj2yP4LZGVZ0VTJyh/+KNK9XYt9W0+SlZ6Dqmr8OGdroWx69WuM0ahgthhp3KJygXPV6pXD3cOC0WSgQ68GRVpLoJ8XHqdT8DiexK4vtpEUnw7AI/XrUMbXB4MmOHwgml3HLxRpXh0dnXueQCll2p9vpJSpwPXLef+GviWnU+zEnovDnmvPf58Wn872pbvRVI2QisFYPMxoqsRoNuK0ObFl5LB6xjqE0ehyMOZtIS7W9X++74jOWDzMGIwK1rQsNLtkzZyNmE0GVsz4DSklk356iUp1y2N2M+LuWTBfplHHOjTqWOeW7qNSjdLERR1FNbthz7Xx09wt/Lxwp8tx0yRGk4HXPhuE0+Hknae+wm51cO5oNI3b16RcmKuUfvevR5gzfhlOu5Pzx6IZP384s15bQnZGLi98NBD/W6yKq12/HGazEdWp0bFbvVuao8B8TSqiGFzOT9vuhZuvZ78mtOtcG4ubCbPZ9VGjSQ1FKPj6e/LN1tfISM0hsIhCnI/1aMSSl5YC4LA5Gf/SEmYueoZSvt4MqlaHGat3oWoqc9ftoVWtCkWaW0dHh3s56VsTQpSTUkYBCCHKU4S71R0mnWLn+WlDmJyUwYXj0dhy7dRoHsbUYbMAeOSVXoz4/Ck8fd35afoaju86jZQSIQRCUbCYjZjczDgdTqSEpMtpzNr+Fsf2nGXGi/PJSnP1VTyy/SS2XDtCEayet5X9O05jNBr5ePVYKtUKvSP38fJXz/LLlxuZ8+piRAkfJKA6VTy93Mh2qtRqVJ5+FUdh8bDg4e2O6lQRAjy8rjhtdpurkawmJQ6bgxWzN7Jl6R+oqobJbOS1r4YXaU2qU8Xp1AgI8ubbn0eTmZ5LUEmfmxvehDIVgliw7XUy03IoXT6w0HZ/bodJKXnvxEK2JR7mvsC6jK81BLPFVGRnCcBoMNDo/poc2HQCaTRwLiqZr7/dyZOD7qNRlVBMBgNGA3SoV6XIc+vo6NzTjAN2CiG24doVvA8o9Ies7jDp3FWSYpPx8vPC7S86SqFVSzPjj8lIKXHYnXz12rfs++0wSElidDKD33oEgPseas6J3aeZNnwOodVK03FQW+xWJ/Xa1eSTEV9jy7VTqkIQ8dHJtO/XDB8/T6YOn4tXoDcPj+3BtGfn4uHjTnJSFk67iqZK9m48dsccJou7ma5D2zFv3Pc4M7NQTCaq1CvH+DlDsbiZefPh6TgdKjLbRo8n2+Hp70XdFmEElrpSSt/mwUbEnI/nUkQCT7z+IPs2HHXlbgkF37/oUBWG+NhURj70GdmZVka/148WHWuye/0xyoeVpF7zyjef4CZ4+3rgfYuJ6+mObHYmHQXg9+RjpNoz8bfcuiM38YvBvDRqMcePxeB0M3D0WCwAdSqWYtXEoWTm2qhcqmh5aTo6Oi7u4dYo64QQDYHmeYdGSymTCmuvO0w6d435by5h6dTVeHi7M+fIVAJL+xc4L4TAbDEx4PWHiDl9CbvVwX39muN0OFk98zfmj/uOqo0r07xPU/ZtPsnl6FT6vtAJgD4vdGbuhGUsnroGoaxl+rrXOHsshiybSnpUCltWHmDZpdmcORjJkmlriTAqWNzMtOh6+9tTf8XTx4O3l7/Euq+30HVoe5p0uTJ/nVbVOBcejdGo0K5vEyrWvOKonQ+PZuoLX5OVnkt6ciYdHm5GcKg/3Ya0xWgyYs220W1I2yKt5Y/NJ8nJtWEzKyybv40NP+3n5KEohCL48NtnqFa37M0nuUv4mDwo71GS2NwkQtwC8DXfXoNho9HAW+/25dXxS0lPz2X40Db554JLeBFc4r/RwFhHR6fYUYEEwA2oKYRASrn9JjaA7jDp3EXWL9iK0+7EbrVzbMdJ2vW/ugdabrYVN08L474fw5PVR/FOv4+p2qQy4TtOIjVJ+PaThG8/CUIQeTSKryf8SMsHG7N/2ymsOfa8nnCSrcv2ULZ6GQxGA4pBIaCUL9ZsG690/QBrjg2Lh4Vvjk7G2+/WK6Pio5N5Z+gcNE0yfv5wSlUIAqBJl3oFHCWAE/vO8/M32zG6mal/X7UCzhLArDd+4MLJS/nvN/6wh8Gv9cK/pC9dBxWsgLPbHOz8+RBBZfyo0yIMKSU//biXmKhkBg5pTWCQK1JTq2lFkmv6IZ1wPiEXQ0oOOFXcLSZSE6+dUG6zOzl0IprK5QIJ8i9aROv0kSiWzt5Co7bVeODR5jccqwiFzxuNJSYngVCPYAzi9utN/P08+WrGkNueR0dH52/coxEmIcRTwCggFDiMK9K0G+hQGHvdYdK5a/R58QHmj1uCp68n9TvUzj9+/sgF4i8m4e5t4c0ek0FKnp8+lMzUbBw2B0e3nbh6MilB01CdsG/dYWzS9QdXkxpCVfHwstDp0RaYzEayM3PpPKAl9lw7qtNVMac5VRTlSiGrqmp8+eaPRByP4dn3+lO5zs2jL8u+WE/E8RiQkiWfrGXsZ09cd2xclKsFiS3XTtzFZC6eiSMlIZ16LcNQFAW/YF8URaBpEpPFhH+wDz7+146KfPrSYnatPQJIJi58jixV8s2XW7HbnURdSOLjLwYDYPJ1w+BhxhCVDU6JJiCwXACtWlahSbvq15x79HvLOBOZgKIIfpj+JP5FKLWfMGweGSnZ7N92iur1y1Ox+o1VzM2KkUpehWs9o6Ojo3MXGAU0AfZIKdsLIaoD7xfWWHeYdO4a/V/tTc/nuriq2AwuscMTu08zps14NFVi8bTkV8sd23kKo9mAIy8J+k/K1Qwl/kIiIZVDiL+UDpqk9YONOXM8lpzkDOJPR2E0G2nWtR5CCNr3bZpva7aYeP2b51j79Va6P9keT18PVFXj8LaTRJ25zLrFO7Hl2PnwuXnM2TnxpvdTqXZZzBZXO5LKda80wc1My2b32iOE1S9PxZplAGjdowF7N4QTdSaOnk+1Z1T3qQhF0Ll/c56b1Jczpy+jmUyY3Iw88UoPHhjYEqPp2oKQ0efiseXaMbuZuHwhCe+yAflfAOVfvgmGBpegSe1y7Es6g8UORoPC6Lf70LRFweTno+HR/LzmMB3a1eB0ZDxWmxM3i4mYuLQiOUxmsxGE68uoyaz3ZNPRuWe4RyNMgFVKaRVCIISwSClPCSGqFdZYd5h07jgn9pzhk6dmEVqtNK9/OzLfWQLY+sPvaKrrt9GWbcs/Hnk8itxMa/57g9nAMx8NptOgtnj6epCdnsOQaiPJzswhMyGFL3e8xXONXiE+r+/R4U3HqFSn/FVradWrMa16XekXNuPlb9mydC9OpwoChCKu2dh364p9xJyLp+eT7fANcEV+Hni8NaXKB6JpkgZtrkRsXus9jZiIeASCObveomTZAMwWE6/NHgbAmkU7kVJiy3FwfK9LwNGnhCfJbukIo4G6LcMKVM79nRenDGDa2G8JKRdA+4eaYHE3MfTptkRHpfD40Nb54xRF8MnYPsgxkjMnL+PmbqJ8xaACczkcKq++/iM2u5NtO04z9Ok2fLt6Hw1qhlKziH3u3pr7JD/O3sx9D9QltFKhpUwKoEnJp9t+JyI5hfGd21PC7AaCfBkCHR0dnTtITJ5w5UpggxAiFbhYWGP9U0nnjjP9mTlcPBFD3IUEti/dQ6fBruTlqFOxrJm78Zo2kUejXC8ElKkcQoU65di1ci+zxy6gfvva9H+1FxlJGUgJu1fvB6DjoLZcPBGLwajQ4CZaSsmX03hv2BzOHY3CnmPHbDHhlBKJIPpcAlnpOXzw/DckXUqjxxOtmTdxOU6Hk/DdZ5ny05j8eerf53KU1n2zle8+WMl9fZpy+WIi9lwHbh5mki+nUbLsleosKSU1G1WgQvXSJF5O46nxvQGY9PVwfvtxD5VrhhJ2k+3AsHrlmLnpjQLH+l4nZ2hrwi52Je2le+lOVCtR+6rzIs9JdL0W9GxXm0G9m1417nocSY5l6+VzdC5VjcljvyM9NYfzkYm07FIHg0Fh7c+HOHEilkcfa0Fo2QA0TRJ5Lp6gkr74+LpfNd83ew/y+UGXsOaRqRfx2ZqJUARTPnucmnXuTDWjjo5OEZD3dJVcn7yXE4UQWwBfYF1h7XWHSeeOU65GKJfOx4OUlK4Skn88KTalQB5RPgL8QkqQFp+GpkoSY5IZNOFhPnpyJpqqcWTrcfqN7eEaiERqkpysXO5/rA33PdQMd293vP1uXBW1dMZvnDoQ4RKUNBtQVAdOh4bBzQ1Nanw16SeO7DiFU5Wsnr8NKSWqUyM7I/equTRNY/pzX6GpGqtmrefpDwfxyzfbadCmOjWaVCowdtLgmfyx8Rg+JTx5acYQVn+zg49Gfcvwt3rzaF7F350iyZbM/MjFOKSTU5ln+abp5xhEwa0yo9HAx1Me5dd1R2nbpholShReJiDdnsvArYuwqU4W7N9N6YRsnE6NyzGp5GRZiYpK4YvPN2C1OdgYGUGHHnVxHkhh9/qTmMwGZi5+Blu2jVLlAvOb8UZl5InuClBPZWK3OwHYsPaI7jDp6OjcEYQQ/tc4HJ73rxeQUph5dIdJ547z6oIR7Fi2h1KVgqnZ4sr2cP32tSgTFsL5w64IqMFoQFVVBDD0nf7sWrmP3av3Y7c6OLQlnKqNK3H2YCRhDStSpmopKtYpR+SxKEIql6JfxVHgdDJoXB86DWzNzeq7KtQojclsAgH2jBzsOa7tPw0oXSWUjUt+x6m5oi5+wd5cOhWDEFDC9+qtMiEEwWUDSE1IRzEoVGlQntRPc/n1hz+o26YGrbu7mrpqmsbuDcdBMZCebuXtQbNQ3Mw4nJKZ45fTtueN25sUFZNiQghXUpFZMSOu062pZo3S1KxRuOTrzZdPMPXkrzT0L8+Iap3R8vr65XpqtO1ejx3rwuncu1GePlMKSMgNNpCbbGflgv043DX8s2zYFfjfE1+SFp1MybIBzFz7MkaTgdGtW/Lr+bMk5+YgXPn5GI0G2nSoeWceio6OTtG59yJMB3Dd1bU+FCVQ6RrHr0J3mHTuOGaLifsHXt0cVlEUIo9F57/XNA2k63/r6pnreeGzJzm0Kdy1VfRsF6o0rEhybAoXT8QwrOZonHaVgNL+JKdZXX+4hcKiD9ewZNpvDHy1B/1HdS1wvYyULDLTcihTKZguA1sTWMqP9ORMpg6dmT/GhORSVApOp4ZQXJV36QkZGIXEmm0j4ujV29tCCD7//R32/nqYWi2rsXbx72SnZgMw5bn5NDk9FYu7GUVRMLtbcNidkOdoSFXDzcNC5bzk8DuJr8mHcTXGciTtGC0Dm6LcgdL9t8NXku7IJTUum16hDXmvcXdWXDjKkKrN6PBwGK+82y9/bK06obw4ujOzf9tDwuUsAIzZEjQVnJL4qBSE3cnli0kkx6dTMtSfEu7uLGjalVdGfosVgVQE3fo0pEGTire9dh0dHR0AKeUd+UDRHSadYkNVVTSnlv9eaq6vMQaTgaqNKlGzeVVWpS8EXM5VUmwyGxZt5+yB8zjtrvBDSlwqRh8vUIwIQDEacNidbFjyewGHKepMHKO6fYjmVHlkZBcGju1G4/tr83Sj11AloAgatKuJFQOnD0fh2rh3CWl26NeM/WtNRB6P5pnJj13zXnwDfeg0yCWWWKdFFZbPcuVmaZokMy0Hi7sZgKcm9GbOhOUYjAZqNqjAU5P6knQpnYZtrl2YsXThTr6bt51Gzavw+vv9MBiK5vRU9a5MVe/bV/X+k4peQZzOuIwESnuUoGlgJfpUqHvd8V271+fIpURWxR8FKfGKyYW8BO7K5UOIOHSB+q2qElzGD4Bdvxzig+Ff4TAoUDYYpOTS/rNoWmcURe8NrqPzT3Cv5jABCCEeAlrj+q6+Q0q5srC2usOkU2wYDAbMbibs1oLSAY+98RAD3+yLlJLjf5ynRKA3ZSoH82rHScSei8sXo9RUDalJGrSrScOOdanTsipvDfiCjLRsej9zf4E5V3+1GbvVgaZq7Fh9kIFju5GRnEnUqUuubSuDAU0xUsLPE4ubGSklj43pSrPOdalYswz9R3Yp9H0161SHh0d0YsP3e+jyWIsCrU96DW1LzyFtXNfMo0rt6yd5z5+x0dXCZecZIs7EEVbIrbO7xcymg1l/PpyLq6IJTz9LmUeaFriXP7E6nGw4cobyQX44HE4UIZCAIoWrGhEY+nI36jepWEA+4cCW46gOFWG1o5yJBk1y+Gw0v/98kNYPNr7qOjo6Ojq3ihBiJlAFWJJ36FkhRCcp5QuFsdcdJp1iZW74J3w/eQXnD18g5uxl+o3tyaAJDwMw/92VrP56G3arA4nAkJ6KpmoYTQYen/AI33+yBqdD5cKJS7z308sANOxYm80r9rNl1UEeGNQag9HAtpX7+XnGWoS3N0JReGRkZwA8fNwxWYw4bK7E4pMHIjAYXM6Y6nSyZPJKmna8urKsMDw5rjdPjut9zXPXcjCuR1j10lyMSMRoMhCSF4X5J/EwWjj2+Un2bD7BFqMBd08L7XrUv2rcK4vWsOeMq9JxQtd2bN58AtWhMej5DhzceZZ6jcrTqEXlq55Fz2Ht2bXmMBnpuQgpkVKioKIUMbKmo6OjUwg6ADWkdCnYCSEWAMcLa6w7TDrFSunKIYyd+xwAdqudHcv/4PS+c1RrUoWjv591aTOpGhJwGC0Is4ZmNFGyUkk8S3iRk5VLp4Eu7SGH3cnmn1wSA+eORhMbmUjZKiU5uPUEaBKZnoEwGenwkKts3mgy8uX+ySyZ+jPBZQNZPuM3rDl2hBBIpxOLu5nzRy5S6QYRoLvNR18O5djhKCqFlcTb5+oy/LvFpdhUtm0/RaNGFalaNaTAuZTkLFSnhpSQ/RetrL9yISEVq8OJu9nIwT8iMCfaUFUKC7n+AAAgAElEQVTJgb0RTPvqyetet2LNMkxb9z+ebfcuDpsTIQTDxvehRfcGd/T+dHR0isC9uyV3DijHFe2lsnnHCoXuMOn8Y7w3YDr7fjuCpklKhZXGo4QninBVriElOFUQCpjMXIpMZNGJqWSlZRNQyhV5SU/KdI3XJEaTwruDviD6fDzVm1bB7OeDIyuXIZMeKXDN0pWCeWnmMKSUZKRkcXDLCVr2qM+6r7dRqmIwLXvc2cq1omJxM9Go+e3lIJ08Gk3sxWRad6yJW14u1Y3QNMkLLywgO8vKooW7WPL98/j6XpEbyDUZ0CxGMBnA49rzvf1IJyYt20iVUoE8VL8O+9afwmCA+9rVuOn1S5UPpHP/5mz/+RB9hnegz/OdC3+zOjo6OoXHGzgphNib974JsF8IsRpAStnrRsa6w6Tzj3HuUCQOh4YQgtjTlxCKILByGdKSM9GcEk1VUYDQKiF0e6INFndzfjI1wKn9ERikhmpzkG2zYcvIQSoGTh24QFi98kxb++p1k6aFELzw0cD898MmPny3b/euM23tDlavP4zHrmSMBgM7Nhzn7c8G3tROSklOtisipCga1lwHvr5XzpcpH0BUdAo4VRIiE8nOyMXzb9GvhpXKMO2RblyMSqZq1VIs+OF5cnPshJYL4GYIIRgxZQAjpgwo8j3r6Ojcee7hpO8Jt2OsJwro/GP0frFbQSFLRSElNQcVgXTY8fJx45X5zzH3j3cILnv1H956bapjdjO5olFCcVW/CQFSkpmaXeQKs387Ul7/UywhPYuF2w+SlZyDQ9OwWR3EXEgq1LwGg8KbEx6kYqg/3e6vxaj+X/BY+8lcOBcPwMvjevHEk/ehJGSw7ItNjOg57ao5LlxM4rmRC5ny8VomTFpJQKD3DZ0lTdM4uS+C5Li0Qq1RR0dH5w6wH1dl3DbgMi6l79+llNvyjt0QPcKkU+wkRCdxOSKePiMfICs9l72/HSY1JQevAG9io9MQRiN4efFT7Oc3nMe7hCdvLxnB6w9/BhIcTjX/m9GDQ9sUw50UDwkZWfT/8nuSs7L5+OFudKoVln8ux+4gITOLkt5eeLlZsIYqkCopZ/Fk5Js3jC4X4Oj2MySevsy68Bg01SX9sHrxbka+1ZtMm419Z6NwOlzSDnHRKcReTKJM+cB8+5jYVIQQWK0OIi8k3vR608d8y47VB0AIvtj0BqUr3lovOh0dnTtMXn/Oe5TtwH1CCD9gPbAP6A/cPBSP7jDpFDPRp2N5tuGrSE2jYae6vLv6dYbm5RnZcu0MbTqB1KRM2vduVKj5ajWtwjf73iE1MZOXe0/DmmPH4mak+7B2d/EuipcNJ86RkpWDQ9WYtm4n7atWwmgykJZrpfusBWTabHSpEcaKsYM4eCGWJm+Wxc+zaAnjB3efx5brwGgyIISCwWCgQYsqALwx71eOXozBD4mQIIVk+tsr+Wj+U/n2zZpUomnjipw5G8/oF2/e8uXQ9pNYc+y4eZg5dzRad5h0dHSKAyGlzBFCDANmSik/FEIcKayx7jDpFCvv9J+GPdcOwB+/HOTiyRjK13D1DLO4m/kufDKqqhVpO80/2Bf/YF/mbB3HiX0RNGxTw9UG5R6hcYUyKIpA2CUZu2J4Y98cRs4ZyMB5P5CcnYMENp4+z0e9H6Bz3aq3dI0nx3Tm43HLCQn144U3e+Ht4065Si4nRpMaqqcJWzU/3CIzMbiZ8fXzLGBvMhl4e3yfa019TYa80ZsZr35H2bAQAkr6MLDqKMxuZt5f9QqldOdJR+ef5d6NMAkhRAtcEaVheccK/cdGd5h0ig0pJRfCo/LfG4wKF8Kj8h2m/OO3mHsUXMaf4DLX6rH436aivx+zunTh7ZELIdHKMZHB5O82IjekYKhnwumpMLhp4cvwpZRsOx5BZo6Nro2qYTIYaHV/LVrdX+ua498b2o1Pl25j7/E9KDYb5SsHMXbSQ7d1T/c/3Iz7H24GwNuPfkpSQhYCyc9zNjL8OurqOjo6OrfJaOB1YIWU8rgQohKwpbDG91ZWrM6/GiEEvUc+ALga79ZoUY2m3f/ZMv5/O8eORtOn61QmvbacsNJBKIqg79NtMSQ4MDgh+ICDlmklGNO+VaHnXHfoDP/7Zi3v/riJaat23HR8ST8vwhIceJxNRU3LIul0DB6eFsDlfM19bxWDW03i50U7AUiJT+elblN4scO7XIpIuO68manZOOxOYqNTEYqCVBT2/naEMwciCn0vOjo6dxaBq0quOH6Km7zk7l5Syil57yOklCMLa69HmHSKleenDeXZj5/Q+4QVknW/HMaep0xepmEFPlsxCoDIyERGHvkWVdV49ekbt3FRnSpSkt+S5FJyOqqm4VQ1opNuXqX289fbWP31NlRAsZgY/PqDACTEpjK6+4ekptsAmD1xBd0GtGDFrA2c3BeBpmkseG8lr88bDkDsuTg2ff87DTvUIvyPCBZP/QXvEp5kp7oa9SIh+mwcb/T6kGWxs4v8rHR0dHSuhRBiupRytBDiZ66x4Xgz/aU/0R0mnWLn/5OztH3VPha8v4rG99fm2ff6F6lNCkC7+2uyZcNxJJIOna60balYMYiVS0fxwVNzGffAFPqPfqBA8+E/OX8shlf6TsfpUHn7m2eo17oaBqEQ4uuNm0FhbC9XNaGUkoTYVEoEemFxKyhOGReVjNOuIoSgbd9mbF57lMWztlDC10Lq5TRwd0MIQVAZPxSDQrlqpTFZXM2RK9Qokz//mPvfISMli6XT1uBdOhCnQyU325r/TAQuhQiD0YCOjs4/yL2Xw7Qo79+ptzOJ7jDp6NxFPh6xAFuunaRLO+nQrznVGlYokn3jZpVZsnIkUoJvCY8C5yKPx7B/03FsuXYWfrCKR0Z2cbV5kZKIo1H4BHizeflecrNcEaBV87cRZVGZufZ3bHYnHtEZLD6zhDcXvsBnr//Ixp/24+Xjzuz1r+Lr75V/nUdGdObQ9lPER6fgcKpEnLiEzerAmpHjGmC1EVwhmM9WjUEIQcdHW+Bf0he71UGzrnUBuHjqEtlZVqTm+iSuXjeUXctjsGYJfEoHYssrBBCKoFaLMHR0dHTuFFLKA3n/bhNCBOW9vrn+yd/4//NVX0fnHyCkfCAWdzNCQEAp35sbXAMfX4+rnKU/5za7mXDztBBWr3x+pGbx+ysY034Sw+q+QmgF1xiTxUj7hxpjsztR83SWVCHYtz4cp8PJbz/+gdOhkp6SxenDUQWuY7IYiTkXT26Wld1rjyA1iZuHmQrVQkBTwemkQuVAfPIq54QQNOpQixbd6qMoCoveX8Gzzd5E08CnlB/PfjgQe1YuAFKTNGhVlRJB3gipodnsxBdCx0lHR+fuIaQslp9ivSchJgohkoDTwBkhRKIQokjK33qESUfnLjL151fY/ethqjWqSGBeD7w7hZevB1/+PpELJ2Op0bhS/vHdvxzClmvHZDFiy8plwd63UR0aASG+OJwqa1fv5eSJaHwOJmDxdif2fAIy14q0WEDVKB9WssB1TGYjZjcTEjCbjQx5uSvbl//BpTOxSKeGVFWO7TjJ8d1nqNWioKxBclwa33+8BgCpaqgOlTqtq2NxM3F46wmEIujxdAdGfj6ESY9MI/5iEi9Mf+KOPicdHZ3/3wghxgKtgCZSysi8Y5WAWUKIMVLKq9sXXGueG7Vb+LfRuHFjuX///n96GTo6/wpiIxJIT86iRuOKBXKj/vj1MO89PgP/EF8+3jiegFIlSLqcxkt9ppOWlEXfp9rw4ydrcDpUFHc32vZtSnZcMn/8epj2jzTntfnPXXWtmHPx7NkQTtU6ZRnXcwp2qwNMJlAEOF1J6V4lPFkeM5P05EzeHjST9KRMnE6N+Ig4yNuKM5gNGBWF+UemoDpUTBYTfiVvLfKmo/P/ASHEASll4+K6nmdgWVnjwTHFcq0D818qlnsTQhwCOkkpk/52PAhYL6UslC6LHmHS0fkPcmJfBG88OgOEoM/T7Xjifz3zzzV7oD6rk78qMH7n2sOkJGbgtKvs236Gh1/qwbJZm9EEWHPtTFo65oaCoaFVStKvSkkSY1KuHNQ0hNGUnx/q7uWSGli/eBdnDl3A6VBdCdyKgmIQSKcTp9WBwcNMYmwK1RtXvqPPBOBoxGUA6lYqdcfn1tHR+c9i+ruzBK48JiFEoVWOdYdJR+c/yOnDF1E1idPu4NCO0wUcpmtRu2llDAYFxU2hZdc69Hv2fuwOjbTETIa94bItjGBoUKg///v6ObYt20NgaAA+gT4YjAZyMrLpMshVcVe+RhkMRgNGk4HmXetz9mAEcREJoCi4e5jpOKAV1Rq5thCjTl8iMjyaZg/Uw83T7baeyarfjzHle5cG3f8ebc+DLWvfxEJHR+f/CfZbPFcA3WHS0fkP0q53I35bspvUhAyGvHZjZwmgSp2yzNs+nsy0bCpULw3A028+eEvXbt27Ca17N2HehKUs/mAlPv5ezNrzDktn/MavC3Zw/yPNmbxiLBkpWTTpWJufv9zMvPE/4nSqNOpQmxGfDAbgcmQCI1pOQAgIa1CRqRvG3dJ6/uTI+cvY7M7817rDpKNza/wTopJ3mXpCiIxrHBdAob+p6Q6Tjk4hiI1MJCsjl6p1yxZZS+lu4Bfkw+zNbxR6vC3XzqbvduDp40HZsJBbbj/zV35btB2nQyUny8qBTcf4aeZGNFVj7YLt9B/9QH4i+gND2xJ3MZH0pEyeerd/vv3lyASEAGu2jQsnYm57Pa0rhLLn2AXMFiNPdC62lA8dHZ1/OVLKOyLupjtMOv8osecus+LTNdRuXYN2/Qvf3qM4Cf/jPG8Omo0Q0P+FTgwY2bnAeafDycyXv+XiyVie/3gQleuU+4dWen3mvr6Edd9sRSgKmqrR85mOtz1nt6HtWDr9Vzx93GnYrhZBpf1IT8nC09sdn7/oOJktJp75YMBV9vXa1KB59wac2HOWZ6YMvK21rF1xgFnT1mOQkpHjelK+5J2tSNTR+X/FvRdhuiPoDpNOsWO3OXi3/yec2R+BpqmkxWewbv4WyoSVIqxhpWvaSCmZ+8b37F1/lMFv9qFNn6bFtt6TByJRnSqqU+Pg9lNXOUw7V+5n45Jd2HLsfPT0l8ze826xra2wZKVmozo1DAbITs8psr01186Sz9cjFMGAEZ2wuJkZMqEvD73QBQ8fN4wmIzO3jefkvgiqNayIyXzzjxaD0cDrC164ldu5ivDD0disDoSA40ej6dC1zh2ZV0dHR+dPdIdJp9g5sP4IhzaFY822oRgUpJQgXD3Prse5wxdZ8/VWl1My/CuyM23c92AjvHyvFnS803R4qDHrf/iDjNRsBr3c7arz/iElQLoEHgNL/zsjG898OBBNk3j4utN7xI17z12LxdN/Y9U323Ft+cOQl7sD4BNwJZLk6eNB4/uvnTckpeTz135gz/pwBozqQs8hbfLPpSVm8Hr3D0i+nMYbi0ZQv12tIq/v0SdacfxwFIpR8NCjzYpsr6Ojc4V7MIfpjqA7TDrFTmjVUkiJS6G6YSWCygZQp01Nqje9fksMv5K+CAQmNxNOu5NZry1h7YJtTF//BqpDxex288pQm9XOnvXHKFc1hIp5ic+FITCkBF9tu35Cct37qjP+uxe5dC6eTo+3LvS8xYlfSV/eWHTr0RxNk0gJQshbCtdfPH2ZTcv2Yrc6mD1+GT2euC8/F2zLD78TdTIWp0Nl3pvf8/nOd4o8f/lKQSxcVeim4zo6OjpFRneYdIqdstXKMOvAFKJPXaJx1/qYLTd3dgL/r737DpOi2Po4/j0zG1mi5AySgyJBQBQDiIAB8GJAucYrqK85Y8Zw9V5zQlFUzCLqVVHBAAoIBgTJUYJkkCjsLhtmpt4/ZsAFZtnAhF34fZ6nH2e6q7pPDbvj2erqqlqVeOb7exn//lQ+f3Ui2Vm5LJ+7hgsa38DOrRn0ubI7V/7ngv0W9s3KyCa5TBJmxoNXvM6CX5fjcDz3xS3Ua1IjYm06tsfR0CNipytxLrqpJ+YBwxhwbf4N3b5pJ39t2Um9ZjX3GhxfuXoFEhK9eDzBRXrzHktKTcKXG+xd9Hi18K5I3KmHKSwlTBIXdZvVpm6z2kWq06BFbS4feg6/z13DnCmL8Rvs2JKOCwT47KVvSUj0MujfA/aUf+Hmt/ny9Ykc2boOT0+4h5VL1pO1K4eUMkms+2PzARMm5xyzJi+iTLkUmrVrWOx2lhS5OT6++/hX0sqncvzpbYr8pJ/f70jfloELOPy5fhYvXsno4d/R8ZQW9Dy/MxDsRbqx938JBBytOzWiYqU0Lrj1DOo0rkG5Smk8/O7VzPt5Gb3/uffg/twcPwlpKfhy/AQ8Wt5SREomJUxSqng8Hs4c1I3FizaQuyuHQFY2jmCCs3jG8r3KjntzEs451i7byIp5q7nhv+fz4r0f0/ioOnQ4ucUBrzPqyS8Z9fRYXMBx47OXcMq5nQ6YZORk5/L0dW+wesl6rn/6Ypq2bRCB1kbOqw99ylfv/4SZkZOVS7f+xxap/nvPfMWEj34FoEy5VCZ8Mp2d2zOZPnEhzdvWp37Tmiz4dRmBgCMnK5ffJi3C5eSwZOYfjPjlIX6ftZIh/Z4EjMy/Mrjkrn57zn3yOZ346q0f2LpxO/8aem4kmy0iReU0hik/SpikxFu/YiOjH/uMxu0acsagHpzQuw270rP5c902juveiqevfpX0vzIZ/MgF/Pr9An4cN4e2JzQl7Yhy7NyWQbkjylKvWS1Sy6YwckrLQl1zwbRlZGVkQyDAY/96ibGvfcdj44bsd8tvtx8+nc6PoUVvn772DV6aOjSCn8DB+3PtNnKzc/EmeNm8YXuR66eWScY8FnqdFHwKLpQ/JiQGv0Y69zya0c99zaZ128AXwG+GNyH4ee1OpnKzc5k2fh6X3NWP7z/+hc9enkCvf57A8J8ejExDRUSiRAmTlHhDz36cFfNWkZSSRJ0mtWhzcitOO+/vJ6FemPIAvlwfs6cs4eFBr5GT7ePrtyYR8PmD42YSvHz03Ff8886+hb4Vdem9Z7Ny0To2Lt+AAxZOW8rmtduoVrdy2PLVQ/uTU5OodWS1g25zpF059B/sysiibIUynHFx0Qemn39dD1LLJuOco+/lJ9HtH8cy9r0fOeaEptRuWBUITqY5ctpDOOcY//6PLJn5B/2vCz6Rd2LfDox59Xu2btzOJXf2JSsjm8cHj8DvcyyZvZrWxzejTqPqEW2ziBSTepjCMucO/MmYWQowGUgmmGB95Jy7f58yVwHXAH4gHRjsnFtgZgOB2/IUPRpo55ybZWYTgZrArtCx05xzfx4olg4dOrjp06cXtm1Simxet5V1SzfQqkuz4IKteQw6+hZWzl9NUkoid7x1HV37d95zLCszm7sufJFFUxZiQCA1FQDz5+JxLjiY2OfHcAx5/SpO+kfh529yznFbr0dZOG0pDVvX5dmJ9x9whuzZUxaxfsUmTu7fkZQyyUX7AA4zqxatY1D7IViligA0aFaT4RPujHNUIiWPmc1wzsVs6vq0ynVd69Nvism1pr1zS0zbdrAK08OUDXRzzqWHVvWdYmbjnHM/5ynznnNuOICZ9QGeAno5594F3g3tPwr41Dk3K0+9gc45ZUCHuT9XbeKKo27GBRztT2vD0I9v2+v4A5/cxsh73ufnL2bwyMBnGbhwDf+85xwAXnvwf8yfOA98PszjwQw6ndGBrZt2sGLeashKB+dwwFPXjqTNiS2oWKVcoeIyMx4bN4TNa7dRuValApcTaXNCc9qc0Jxsv4/f/9pEg3JHkOjRU1/h7NyWTmJqMj6Cn/OG1VvjHZKIELzTrjFM4RX4SIoLSg+9TQxtbp8yeRe1S9v3eMgFwKhiximHsBXzVuMCwSkA5v6wcL/jtRrVoPOZwT9CfDk+xr06Yc+xr0d+D1lZ4PPhAgHI9TPovr5s3vAXPmd4Uv9eVzE7I5uxIycWKTaPx0O1upX3JEtbN/7FZ69PYunc1WHL5wb8nPX1q/T99nXOn/AWBfXgHq5adm5CnytOoXzZJI6oWo6bntx/6RQRkZKkUM/wmpnXzGYBfwLfOud+CVPmGjNbBjwGhJtB7nzg/X32jTSzWWZ2r5WEFU0lLo45pRWN2zXEm+Bh184sXr3z3f3KtO3empS0FLwJXvr8398zVael5bn1FQjg8XqY+OkMBt3Xj8o1KtDmpJZ4khLBDEvwUr9F+KkMRj09jrMb3MBDlw7nj4VrWDrrD3y5fr55/0cmfzZjT+Jzy9nP8tq/x3Br/2fZtH7/wdMbd+1kdcZ2sv0+5m5dT7ov5yA/neib/+MSPh32NTu27IzqdXZuy2DxrJX4fX7MjMH/uZDRi57g3d8e5qSz2kX12iJSBM7FZitlChzDtFdhs4rAJ8B1zrl5+ZS5EOjpnLskz75OwKvOuaPy7KvtnFtrZuWAj4F3nHNvhTnfYGAwQL169dqvXLmy0PFK6bF+xUYua34D/lw/GHy+8539xgH5cn1kZWRTtmLann0Lpy3ltp7/JjfHB8nJwUHdZjRoeyTDvx0CwOqlG/j+o2kcfXxTjunafL9rb9+8kwta3Y7LzsGb4MUCPjweDy2Pb86iWavAjKv/fR49Bx5Pv6a3kr0rl+SURJ4ecxMN90nAAs5xxeQPmLRhGWfVa8kzx53997FAgPk/LuGImpWoXUIGOK+Yt4r/63wvAX+AI2pV4v1lz0XlOn9tTWfQiQ+Tk+2jzfFNeOCNK6NyHZFDTazHMJWtXNe17nVjTK71y3u3HnJjmPZwzm03s++BXkDYhIngbbeX9tk3gH16l5xza0P/3Wlm7wEdgf0SJufcK8ArEBz0XZR4pfSY+d28YLIEVKhcnuTUpP3KJCQmULbi3j+yLTo25vOtr7NwxgruPPtJsnflArBuxaY9Zeo2rsHFQ/qEvW5OVi5X9/gvgaxscAF8WT6M4DIgKxeuISfHh8frCT4qD9z54qW88+Q4Op/WmgZhllfxmPH6SQPIDfj3G7/04i1v8+1bP+Cc48kJ99KkBMzVtGDaMgL+AABbw/SYRcrKxevJzfGRvSuH2VN/j9p1ROTQYWavA2cCfzrn9luoMnRn6lngdCATuNQ591u04inwlpyZVQ31LGFmqQQXgFi0T5m8i4CdAfye55gHOI8845fMLMHMqoReJxL8QPJLwOQQt23jdl68/vU971uf0AwzIzcnl7cf+pDX7nqXXem7wtZdt3IzV/X4D7ec9ST+9F2klEkipUIaVz10Dl++PYVp380/4LV3bs8k/a/M4C27smWxsmkkpiRRoUo5rnv6Ytqc0IxOPY6i3+BuAHQ6tTXPj7uNgTf1PuAUBeEGe8+ZvIiszGwcjt9nrijMRxN1J/XvRHK5MliCl4btjozadZq3a0Cj1nXwJni58MaiL/4rIrFjLjZbIbxBsIMmP72BJqFtMPt31kRUYXqYagJvmpmXYII12jn3hZk9CEx3zo0BrjWzU4FcYBtwSZ76JwKrnXN5p2FOBr4OJUteYDww4uCbI6XRnEkL9rz2eD1c9nBwAPDHT3/JqEc/IRBwZO7YxXUvXLFf3eFD/8eqpX/ikhLx5eRy/uBuXHTPP3j0/97gx6/m4PEYXXoeRa36lTkvNCfQ9k072Lx2KxWqlKNOk5r0uexEvnh9Ijk5fvB6qXdUY4Z9O4QPXxrPmlXbOO28TpStUOag2znokQE8dvlwqtevQtezCz+9QTSVrVCGdxc/xaol6yM+O/mcqYt56Y73ada+Idc9dRFP/C823fwicmhwzk02swYHKNIXeMsFxxb9bGYVzaymc259NOIpMGFyzs0B2obZf1+e1zccoP5EoPM++zKA9kUJVA5dR5/UkjLlU/Hl+hl4T3/qt6wLgN/nD44LdA6/z79XHb/Pz7RxM0lNTSQh0Ysvx4c30cNxZ7Zj+fw1TP1yFv7QraZJn/yK1+CvTTuYPGoqO7dlYF4PCYleHv3iDgbd24+BN/XihtOfYP3KzTRr34DM9CzefGwsfn+A0S+O5/SBXahco8JBtfPYnm34cG1U/wAqlnKV0mjVqXHEz/v4la+xae1W1q/YxHGnt6VTz6Mjfg0RiTBHaZq4sjaQ95HlNaF98UmYRKKtUvWKvLvyJXbtzKJ85b/nSDr3lrPI3LmL7MxsLntowF51Hr98GFM/mYY/EKDeMY3xeIw7X7uNuk1rc2vfp/Dn5OI8HvD7cbuyCABfvDweIDj9gHN4PMbi6cto1bkJHo+xfvUW/AHHtx9O4/xrelChclky07NITEqgbMXUWH4kUfHbd/P57OXxdDv/uCJN4FlcNRpUYceWnTgXoGrtSlG/noiUOlXMLO9cjK+Exi2XSEqYpERITEoksXLiXvuSUpIY9J9/7rVv9qT5fPDYZyyduYKsjGy8CV7++HUxLgAj7x7FfR/eQp3G1VkyayW5OT4sN4cA7P0Iq9dLQoKH2o1r0O28LsHrJydSrmIZdqVnk5DopfwRZRn21W3MmrqE1p0akZyy/yD00iQ3x8f9A54lN9vHb9/P56jjm3FE9QP3mKVvz+CxK15m57YMbn1lcJGf7Bv63nVM/vRXGrSozZGt6x5M+CISQxaI2aU2H+RTcmuBvF8udUL7okIJk5QazjnuOfNRsjKySUxKoFKNipSrlMbGPzbhnKNitfIAXPufARzdpQmVa1Tkz5WbeO7Gt/AmeMjOzMYFHOYxel92Ctc+ddGec3u9Hl4YdzvTJy6gTZempKYlk5qWzMl9D407xx6PkZCYQG62DzMjIbHgGcg/HzGBGePn4vP5eXnIuzz44c1FumZa+VR6X3xicUMWESnI7jHUo4BOwF/RGr8ESpiklElJSyErMxvzenjh50eoWrcK49+eTPr2DM4YfCoACYleuvUP3XI6vik9Ljwevz/AL+Nm8uKt7+JN9NLv6h77nbtyjQr0HHBcLJsTM94EL0+MG9gy3wAAACAASURBVMJ3o3/iuNPbUv6IsgXWqVG/Kt5EL94EL7Ub1Sj2tXOychn3/k9sWbeNlDJJ9Di/M1VrVWLLhu188dpEjmxdl66HSGIqckgoIWOYzOx94GSCt+7WAPcTXG2E0HJsYwlOKbCU4LQCl0UzHiVMUmqYGU9PfpBv3ppIu+5HU61eVQB6XHxSwZWdo3WXpryz6KkoR1lyNTq6Ho2Orlfo8ief25nUcilkbM/k5HM7F1whHy8/8AnfjP4ZX05wEeTvP5nOiMn38sA/h7F09ioSkxI4onoFWnWO/MBzESm9nHMHXDMp9HTcNTEKRwmTlHxzJi/gwyfHcHy/jvS6rBuXP3xhkerv2LqTK4+5jW0btnPurWfxr0cGRinSwlvw6zIeuHg4aeVTePSjG6let3K8Q9qPmdG5934PyBbZtk078OcGB0W4gCP9r+CcWrvSs4KTZlrwtYiUDFp8N7xCrSUnEi/OOe4+4xF+/nwGz1/zKmuX7n97evmclaxalP84v/lTF5OxPQO/z8/YEeOjGW6hvfvEl+zYms6GVVsY/8HP8Q4nqq5+sD8du7ekces6HN2lCfe9NgiAu0dexXGnH8P5N/amffdWxTr3L1/NYtQTX7B9046CC4uIHAT1MEmJl5yaRFZGNpiRmBx8ki5jRyaJyYlMeGcyw65/HQfc/f6NdOlz7H71W3VpRmq5VHKzc+l56Skxjj68die3ZP4vS3EOWh4bvRm2S4KqtSoxdOTg/fY3aFGb+98pfm/6ounLeOTS4fhyffw0dibPfnfvwYQpIhCah0ldTOEoYZISzcx4ctKDfPvmRNr1aEO1ulX49u1JPHXFcJJSk2jRuQnZu3LAYNb388ImTOUrl+OdFcNI35ZBpeoV49CK/fW/+lSO7tKE1LRk6jQu/oDqw1n69kzMDL8vwM5tGfEOR0QOcUqYpMSr36IOV+SZj+mzYV/hy/XhcJStlEZaxTKkpKVw1lWn5XuOxKTEEpMs7dakTf0DHt+yYTsPXPIyWZnZ3P3qFdRvtv9ivyWJL9fPsvlrqNOoOmnlUqJ+vfbdW3P2Naex5LflXD703KhfT+RwoTFM4SlhklLnjMGnsmzWH3g8xo+f/orX66Hv7b2o26x2vEMLa+e2DJJSEklOLfzkl+Pfn8pLd31AZrYfHLz13y+49/X9b2uVJHcOeIHf564hrVwKr06+h9S05Khez8y45J6zo3oNEZHdNOhbSp3el3dn1JqX6Xdtb/w+H1mZ2Sz8aUm8wwpr7BuTuKD5LVzY4lbWLttY6HrPXPMa6VvTIeBISk6kSZv6OOdwMR5b4JwjJyunwHKBQID5vy4ne1cOGTt3sX7l5hhEJyJR4WK0lTJKmKRUqlClPGffcDoNW9enZqPqXLrPWnMlxRcjJ+HL9ZOTlcuv4+cVul7NhtVITvKQEPBx89P/pEP3lpzbagj9m9/OwhkrohKrc46Nq7aQk50LBJdTueHkB+lTdRDP3fDGAet6PB76X9Udr9dD646NqN+sZlRiFBGJF92Sk1KrSu3KDJ/5eLzDOKAzLz+ZF29/j6SURDr2OKrQ9Z4afy/TvppF82MbUbtxDZ6/8wMydgTnLxrz+mRatG8Y8Vj/c8UIfvziN46oUYHhUx9g7bKN/LFgDc7B2Ne/57pnLsHM8q3/r7v68K+7+kQ8LhGRkkAJk0gUnX7JiXTt257klCSSUhILrhBSrlIa3S84fs/7Tqe2ZvzoaQAc16vwiVdRTP18Br5cP39t3smKBWs5snUdKlYrz7aNf3HMSS0PmCyJyKHB0KDv/ChhEomychXTDvocHbu3YsTkuwn4HTXq7T8reObOLCZ88BO1G1en3ckti3WNXhd35cuRk6herwqNjqpLcmoSr854lE1rtlLzyGqFOsf2TTsoVykNb0LBi/uKiJQmSphESolqtY/I99gjlw9nzg+LMY/xyP9uolXnJkU+/7VP/JPL7z+HlLQkPJ7g8MaklCRqF3KeqGdvfodv3/+RanWOYNj395BaNvpTC4hIhDmniSvzoUHfIoeATWu2BgdrG2xZv73Y5ylTLmVPslRU40f9hC87lz9Xb2HpnFXFjkFEpCRSwiRSAqVnZjP4oQ/oc+MIZi5eU2D5W1+6nObHHskp53Siy5kHv2BucSQmBr9OfLk+0rdr5m2R0spcbLbSRrfkROLM73yMW3Mf63fNp0u1wbSqeAbf/LSIhSs2kJPr55l3J/DEzavJ8a2gasX7SErYf4bwJsc04Jlv7opD9H8rWzGNzJ1ZADinAeIicmhRD5NIlDnn+PqLWXzw9lR2Ze4/CeT6zHmsyZxFdmAnU/98CYBGdatgZqQkJ3LacSvZlj6S9F1fsWHL9bEOv9ASK5aFpEQSyqexfXtmvMMRkeLSxJVhqYdJJMomfDWXF54Yi9/vWLl8E7ff32+v4xWT6mDmIZEUqqU0A6BN09q8dv8FbNqWTuvGi9mw7U3Ai8dTPg4tKJw+l57Iq/8eQ0paEu1ObBbvcEREIkoJk0iUZaRn4QIQ8AfYGZp8Mq+yiVUY2HAkW7L/oE6ZNnv2N6lXlSb1quJcAxyPketbSaVyl8cy9CLpe9mJnNKvPSmpRZtzSkRKltI4vigWlDCJRFnvPu1Y9cdmtm3N4OqbeoYtUzaxKmUTq4Y9ZmZUSOsfzRAjpnylg59zSkSkJFLCJBJlSckJXHfb6fEOQ0SkYA4IqIspHA36FikFMv7K4O4zHuGajnewcmHB0wwAZObMY+OOEeT41kY5OhGRQ58SJpFSYOyICfw2YS5Lpi/npRtH7nUs4AI8veAbrvhxJAu2rwMg17+JJRv7s277f1i8oS9OM/eKSGHpKbmwlDCJlAI1G1XHm+AhuUwydZvX3uvY1D+XMuqPX5i2ZQW3/zYaAH9gJ84FcOTiC2ynVH47iYiUIBrDJBJDC35egtfrodmxjYtU74SzOzH0f7ezY/MOTjqvy17HKiSl4hwkmJdKScFB1ymJR1Kz4i1sz/yS6uWvxUx/G4lI4egpufCUMInEyJcjvuWlm94ABzePuIpuF3YtUv0Op7UJu//oSnV5ssP5/L5zI2fXbbdnf43yV1Gj/FUHE7KIiIToz06RGJk3ZRHZmTnkZOUy78fFET131+pNubxxVyol67F+EZFoUA+TSIwMuKMf86Yswpvgpf+NZ8Q7HBGR8PSQSFhKmERipH7Lury9bFi8wxARkWJQwiQiIiJ7aNB3eBrDJFJCBAIBxr8zmS9e/pbcnNx4hyMiInmoh0mkhBg7YgLDb3kD52Dt0vVc+fjF8Q5JRA43pXRSyVhQwiRSQmzdsA1/boCAP8CWtVvjHY6IiOShhEmkhOh/05msWrSWXTuzGPz4RXGLwznHs1N/4pvff+fa4zpzevNmcYtFRGLLANNTcmEpYRKJs3XLNvBA/yfwJngY+r/bqFavatxiycrK5ffNm3n11+lk+Xzc8uU4ejdripnFLSYRkZJAg75F4uydhz5ixdxVLJv1Bx88/lm+5fw+P7//tpyMHZlRiWPerFWc0/Nxbrt0JC7gSPZ6qVa2rJIlkcNNIEZbKaMeJpE4a9LuSH74+Gecg8ZtG+Zb7p6zHmXuDwtJLZvKG4ufJa1CZGf1/nbcHHKyfZANp++sTtt+LejRuGhr3omIHKqUMInEWb/relO3eW28CR7adjsq33KzvpuHL9ePmbFq0TpadGoS0Ti6ndaaCePm4HCc36sDHY5RsiRyONIYpvCUMInEmZnlu7BuXufd3pf3H/2EJu2OpHHbBhGPo037Bnww9macg7LlUiJ+fhGR0kwJk0gpcdlDF3DpgwOiOqYorawSJZHDmuZhypcGfYuUIvsmS3N/WMiD5z7BxNFT4xSRiMjhQT1MIlGwatFaFv+6lOPO6kDZipEdnL2b3+/nzl4Pk70rh1++/I2WxzWjWt0qUbmWiBwuHGgMU1jqYRKJsM1rt3DNsXfw7NUjuOXk+6N2HTPDm+jd/Q5vQvB1TnYut3YbyplpA/n4mS+idn0RkcOJEiaRCNu0JrisSXZmNuuWbYjadTweD09OfIB+15/OQ2PuoHLNSgAs+HExi6cvI3tXDm/e/0HUri8ihyZzsdlKG92SEynA8jkreeCcJ0gtl8LDn99JlVpHHLB8846NOfWik5jxzWwu+/cFUY2t8TENafzM3nM31W9Zh4QELylpyRzVtUVUry8icrhQwiRSgJH3vM+6pRvweD188fI3XPrAgP3KOOdwzuHxeDAzbnhxUBwiDapUvSIjFz/LmiXrad5RcymJiESCbsmJFKDlcU1JSUsmMSmBJm2P3O/4yoVr6F/1cs4qexEzv5sbhwj3V7FqBVof35yERP1NJCJF5FxstlJG36YiBRgw5GyadWxCmXIpNO+4/+za49+ezM6t6QB8+MSYA87WLSIipZN6mEQKYGa0635U2GQJoEPPNiSlJpGUkshJ53WJcXQiIhHkwAKx2Uob9TCJHKQ2J7XiraUvkJOVQ82G1eMdjoiIRIESJpEI2P1If3EEAgHGvPg12zZu57xb+5BWIToTXYqIFEopHF8UC0qYRA6S3+dnzZJ11GxUg6TkxCLX//atSbw65B38uX7WL/+Tu969IQpRiojIwVDCJHIQnHPcdOK9LJu9kmr1qvDK7CdITCpa0pSzKwfnHIGAIzszu8DrTf10GmZGl77HRnUhXhE5TKmDKSwN+hbJh3OO4be+yfm1BzP6ic/ClsnKyGLRL0vJ2ZXDxj82sTk0y/dufr+f1+95j6H9H2ft0vVhz9HrX93od21vug/syg0vHXj+pv898yX/veh5Hv3nc3z6/NjiNUxERIpMPUwi+di4chNjhn1NbnYurw15j77X9CI5NXmvMqllU+k28AQmvPMDbU5uSfUGVfc6PuXjX/jfM2PJ3pXN5rVbeeHnR/e7TmJSIoP+e1GhYlq9eC05WblgjlWL1hW/cSIi+TCNYQpLCZNIPipUKUdKWjLeBA/lK5cjMZ/xSUPeup5bX/u/sJNEppZLBcDr9ZJWvsxBxzTwnnNYuWANZsbAu/9x0OcTEZHCUcIkko/Usqm8MudJ5k9dTNvurfF48r+Dnd+M2sf2OoabXr6SNb+v4+zrTj/omKrWqczTkx8qVt3Mnbv46KnPKV+5HH3+r+cB2yMihzH1MIWlhEnkAKrUOoKTzj2u2PXNjO4Du0YwouJ7/rrXmDhqKl6vh+TUJHr/q3u8QxIRKTWUMIkcJrLSs3D+AAGPkZVx4KfxROQw5YBSOAt3LBTYJ29mKWY2zcxmm9l8M3sgTJmrzGyumc0ysylm1jK0v4GZ7Qrtn2Vmw/PUaR+qs9TMnjM9Hy0l3HejpnBZ8xsYccc7uFLYZX39sCs45cIT6HP1aZxxZY94hyMiUqoUpocpG+jmnEs3s0RgipmNc879nKfMe8654QBm1gd4CugVOrbMOXdMmPO+BAwCfgHGhsqPK2Y7RKLuiUuHkZvj47MXxtF9YFeOPLp+vmXTt2fww8c/0+iYBjRt3yiGUeavUvWK3PHmdfEOQ0RKMMPpKbl8FJgwueCf0umht4mhze1TZkeet2n7Ht+XmdUEyu9OuszsLaAfSpikBKtarwpb1m7FPEal6hUOWPbO3v9mxZyVAAyf+Th1mtaKRYgiIhIlhRrDZGZeYAbQGBjmnPslTJlrgJuBJKBbnkMNzWwmsAO4xzn3A1AbWJOnzJrQPpES69mpD/PTmOm07NKMStUrHrDshhV/kr0rh5S0ZDat2aKESUSklCvUc8XOOX/otlodoKOZtQ5TZphzrhFwB3BPaPd6oJ5zri3BZOo9MytflADNbLCZTTez6Zs2bSpKVZGIqli1Ar3/1Z36LeoUWPb2N6+lQau6nHrRSbQ5uVUMohMRiRDnYrOVMkV6Ss45t93Mvic43mhePsVGERyfhHMum+AYKJxzM8xsGdAUWEsw+dqtTmhfuGu+ArwC0KFDh9L3Ccth6diex3Bsz3BD90REpDQqzFNyVc2sYuh1KtADWLRPmSZ53p4B/J6nrjf0+kigCbDcObce2GFmnUNPx10MhF+sS0RERGKnBPUwmVkvM1sceqJ+SJjjl5rZpjxP418R8c8jpDA9TDWBN0OJjwcY7Zz7wsweBKY758YA15rZqUAusA24JFT3ROBBM8slOLPDVc653auT/h/wBpBKcLC3BnyLiIgIsGf89DCCHTVrgF/NbIxzbsE+RT9wzl0b7XgK85TcHKBtmP335Xl9Qz51PwY+zufYdGC/sVAipV3mzl1k78qhUrUDP0knIlLilKyJKzsCS51zywHMbBTQF9g3YYoJLSYlEkEr5q3i/NqDGVjvKsa+Oj7e4YiIlGa1gdV53uf3RH1/M5tjZh+ZWd1oBaOESSSCfh03k9zsXHJzfIx77bt4hyMiUmTmXEw2oMrup+BD2+BihPs50MA5dzTwLfBmJD+LvJQwiURQl77HklImmYREL2df3zve4ezFOUfGjsx4hyEisttm51yHPNsr+xxfC+TtMdrviXrn3JbQE/kArwLtoxWsFt8ViaA6TWvx4cZX8eX6SU1LiXc4e/h9fm466T4W/fI7J57TmXtG3RzvkESkpCo5cyT9CjQxs4YEE6UBwIV5C5hZzdCT9wB9gIXRCkY9TCIRlpiUeMBkad7URbz/6CdsXBm7iVjXLdvAspkrcAHHpNE/kZOdG7Nri4gUh3POB1wLfE0wERrtnJtvZg+G1q0FuN7M5pvZbOB64NJoxaMeJpEY+nPVJoac9hC+HB+fD/+G91a+FJPr1mhYjZpHVmft0g20OaklScmJMbmuiJQ2JWsWbufcWGDsPvvyPqV/J3BnLGJRwiQSQxk7dgHg9wdI35ZeQOnISUxKZPjMx9m8divV6lU5YNmtG//isevewjnH7c9fQuUamh5BRES35ERiqGHrelz60ACOOrEFQ/93W0yvnZCYQI0G1fB4Dvxr/96zXzH359+Z98tS3ntG88mKHFYcJWqm75JEPUwiMXbOzWdxzs1nxTuMfNVqUJXEpMQ9r0VERAmTiOzj7EGnULVWJQCOP71NnKMRkZgrOTN9lyhKmERkL2ZG1zP3Ww1JROSwpjFMIiIiIgVQD5OIiIjsYaVwQHYsqIdJREREpADqYRIREZG/qYcpLPUwiYiIiBRACZNIBH3/wVT+fcEzLPh5SbHPsXrxWq5ufzu3nHI/2zf9FcHoREQK4ICAi81WyihhEomQ9cs38sRlw5j4wVSG9HwIV8xu7dfufJelM1cwf+oiPnvhqwhHKSIixaGESeQgrJi7km/fmkTGjkw83r9/nbwJ3mKfs+FR9UlJSyYhKYF6LepEIkwRkUKK0bIopXCclAZ9ixTT+uUbue64uwEY8+JXPP/zo9z30a38MvY3zhh0KmZWrPNedP+5NDqmAWXKpdLu1KMjGbKIiBSTEiaRYvpz9WbMICsjm7VLN/Dnqk28cttbpG/PYPrXs6hQuRxDP7mdyjUrFem8Ho+HE87ulO/xNb+vJ61CGSpVq3CwTRAR2V8p7P2JBd2SEymmo7q24JQBx1O7SU2ueWEQHz43ljWL17F1/XbWL9vIkhnL+fT5sRG95ugnPuPKNrdw0ZHXsHTmioieW0RE8qceJpFi8ng83DziaubPWc0d172N3xfAU7UStuUvzBMcx9SoTYOIXnPS6B/JycolISmB2RPn07htw0LXdc6RmZlDmTJJxb5dKCKHAfUwhaWESeQg/Th5MTnZPgBan9GRyy7tQuaOXaSWTeHoE1tG9FoX3PkP/n3BM5SvXJau/fO/bbcv5xx33zKK6dOW07Z9A/7zzIVKmkREikAJk8hBOqVHK774eDo+n58LrziJozo3jtq1Tji7E19mvouZFSnh+Wt7Jr/9ugIXcMyeuZKtW9KpXKVc1OIUkVJq9zxMsh8lTCIHqXGzmnz0zW24gCMpOfq/Uh5P0Ycelq9QhqbNa7J0yQaObFydSkeUjUJkIiKHLiVMIhGQmFj8eZdiweMxnh5+CZv+3EHVauXxeHQ7TkTCceAC8Q6iRNJTciKHuA+e/Yorugxl3NtTqFGzIl6vfu1FRIpK35wih7AtG7bzzpNfsnb5nwy/ZzRZGdkHLL9pzRaG3/Y23777Q4wiFBEpHXRLTqQQFk9fxtjXvuOEfh05tmebeIdTaGXKpZCckoTX4yO1bAqJBYyxeuC8p1k66w+SUhKpWvsIjjm5VYwiFZESQ9MKhKWESaQAfn+A23o8TFZGNhPencKbi58p8uzd8ZKalsIL397J7KmLaX9KqwLXuPPl+HDOYRi+XH+MohQRKfmUMIkUgsv7F1cp++OrRv0q1KhfpVBl7x11I28/9DGN2zak/alHRTkyESlxNK1AvpQwiRTA6/Xwn3F38fnwb+n6j45UrlU6epcKwznHa0M/YsqY3xhwy+n0+mdXhrx5TbzDEhEpcZQwiRRCq+Oa0uq4pvEOI+JWL9nAmBHfk5OVy3M3vcNpFx5frHmeROQQojFMYSlhEjmMVaxaDm+Cl+QyRqWq5ZUsiYjkQwmTSAkw/+ff+X70T5xybueY9mSVP6Iswybdy4Jpyzj21NYxu66IlGDqYQpLCZNInPhyfZgZudk+7jzrMbJ35fDN2z/wwYrnSS2bErM4ajWsRq2G1WJ2PRGR0kgJk0iM+HL9/Pz1HKrUqkhWehb3nf8cXq+HB0ffQCAQXIogEAgQ0BMqIhI3Tj1M+VDCJBIjz9/xPpM/m4FzjsYtapGTlQvAlDEzGPrBjYx7YxK9LjmRtPKpcY5URET2pYRJJEZWLFhLVmYOSSmJ1G1Wk8UzlmNmdDmzLW1OaE4HzXskIvHmgIAW3w1HCZNIjPzfI+fx5PVvUa1uZQY9eC4X3dEHj9dDxSrl4h2aiIgUQAmTSITtnhXczPba37xdQ0ZMuX/P+zIxHNgtIlJoGsMUliZdEYmgX7+eTZ8j/sWFja5nw8pN8Q5HREQiRAmTSAS9/9gYcrJy+WvTTiZ9+Eu8wxERKTrnYrOVMkqYRCLo+L4dSEpJJCHRS5sTm8c7HBERiRCNYRKJoP7X9+bYnm1IK5d6SC3SKyJyuFPCJBJh9ZrVincIIiLF5ECT54alW3IiIiIiBVAPk4iIiAQ5cE4TV4ajHiYRERGRAqiHSURERP6mMUxhqYdJREREpADqYRIREZG/lcJJJWNBPUwiIiIiBVAPk4iIiAQ5BwE9JReOephERERECqAeJhEREfmbxjCFpR4mERERkQKoh0lERET2cBrDFJZ6mEREREQKoB4mERERCXEaw5QP9TCJiIiIFKDAhMnMUsxsmpnNNrP5ZvZAmDJXmdlcM5tlZlPMrGVofw8zmxE6NsPMuuWpM9HMFofqzDKzapFtmoiIiEhkFOaWXDbQzTmXbmaJwBQzG+ec+zlPmfecc8MBzKwP8BTQC9gMnOWcW2dmrYGvgdp56g10zk2PSEtERETk4Di0+G4+CkyYnHMOSA+9TQxtbp8yO/K8Tdt93Dk3M8/++UCqmSU757IPJmgRERGRWCrUoG8z8wIzgMbAMOfcL2HKXAPcDCQB3fY9DvQHftsnWRppZn7gY+DhUHImIiIi8eI0rUA4hRr07ZzzO+eOAeoAHUO31/YtM8w51wi4A7gn7zEzawX8F7gyz+6BzrmjgK6h7aJw1zazwWY23cymb9q0qTDhioiIiERUkZ6Sc85tB74nOD4pP6OAfrvfmFkd4BPgYufcsjznWhv6707gPaBjPtd8xTnXwTnXoWrVqkUJV0RERIrAAS7gYrKVNoV5Sq6qmVUMvU4FegCL9inTJM/bM4DfQ/srAl8CQ5xzU/OUTzCzKqHXicCZwLyDa4qIiIhIdBRmDFNN4M3QOCYPMNo594WZPQhMd86NAa41s1OBXGAbcEmo7rUExz3dZ2b3hfadBmQAX4eSJS8wHhgRqUaJiIhIMTinMUz5KMxTcnOAtmH235fn9Q351H0YeDifU7cvZIwiIiIicaWZvkVERGSPkjSGycx6hSa5XmpmQ8IcTzazD0LHfzGzBhH+OPZQwiQiIiIlTmgo0DCgN9ASuGD3SiJ5/AvY5pxrDDxN8In8qFDCJCIiIn9zgdhsBesILHXOLXfO5RB8Cr/vPmX6Am+GXn8EdDczi9hnkYcSJhERESmJagOr87xfw97Lq+1VxjnnA/4CKkcjmELN9F1SzJgxY7OZrQy9rUJwrbpD3eHQTrXx0HE4tFNtPHSUhnbWj+XFdrLt6/HuoyoxulyKmeVdT/YV59wrMbp2kZWqhMk5t2fmSjOb7pzrEM94YuFwaKfaeOg4HNqpNh46Dpd2FoVz7kATU8faWqBunvd1QvvClVljZglABWBLNILRLTkREREpiX4FmphZQzNLAgYAY/YpM4a/5348B/guWuvSlqoeJhERETk8OOd8ZnYt8DXBSa5fd87N32fi7NeAt81sKbCVYFIVFaU5YSqx9zkj7HBop9p46Dgc2qk2HjoOl3aWWs65scDYffblnTg7Czg3FrFYlHquRERERA4ZGsMkIiIiUoASlzCFpjifFdr+MLNZeY4dbWY/mdl8M5trZin5nOM6M1sUKvdYnv13hqZPX2xmPWPRnnziO6g2mtlQM1ub5xynh/YnmtmboXoLzezOWLZrnxij0sbC1o+VaLYzdLyemaWb2a2xaE84Ufx57WFmM0L1ZphZt1i2K0yc0fyZPSS+e/KUvcXMnJlVCb2vYGafm9nsUP3LYtGefGKLShtD+04OnXe+mU2KdlukhHHOldgNeBK4L/Q6AZgDtAm9rwx4w9Q5BRgPJIfeVwv9tyUwG0gGGgLLwtUvJW0cCtwaZv+FwKjQ6zLAH0CDQ6yNhapf2tuZ5/hHwIcHKlNa20hwUe9aodetgbXxbl+U2nnIfPeEjtUlOAh3JVAltO8u4L+h11UJDr5NOsTaWBFYANQLva8W7/Zpi+1WYgd9m5kBKrCOfAAABEdJREFU5wG7/+o8DZjjnJsN4JzLb56Fq4H/OOeyQ+X+DO3vSzCZyAZWWHBEfUfgpyg1oUAH0cb8OCDNgnNRpAI5wI4IhVssUWjjwdaPiii0EzPrB6wAMiIV58GIdBudczPzvJ0PpJpZ8u7f3XiJwr/lofbd8zRwO/BZnn0OKBc6b1mCCZMv0nEXRRTaeCHwP+fcqlD9P8NVlENXibsll0dXYKNz7vfQ+6aAM7Ovzew3M7s9n3pNga4WXLV4kpkdG9pfmCnWY624bQS41szmmNnrZlYptO8jgv9zXQ+sAp5wzm2NWvSFE+k2FqV+LEW0nWZWFrgDeCC6YRdJpP8t8+oP/BbvZCkk0u08ZL57zKwvwZ7A2fscegFoAawD5gI3OFe4xcKiKNJtbApUMrOJFryFfHH0QpeSKC49TGY2HqgR5tDdzrndGf0FwPt5jiUAJwDHApnABDOb4ZybsM85EoAjgM6hsqPN7MhIxl8YUW7jS8BDBP+qe4hgt/PlBP9q9QO1gErAD2Y23jm3PDKt2luc2ljY+hETp3YOBZ52zqVbdNaR3Euc2rj72q0IrjB+WgSackDxbGesRKuNZlaG4K23cP9OPYFZBHtzGgHfmtkPzrmo9HDHqY0JQHugO8Ee/J/M7Gfn3JKDbY+UDnFJmJxzpx7oeOiW0j8I/nDutgaY7JzbHCozFmgH7PultYZgt6kDpplZgOB6QYWZYj1iotlG59zGPOcZAXwRensh8JVzLhf408ymAh2AqCRMcWpjYX8OIiZO7ewEnGPBhxYqAgEzy3LOvXCQzQkrTm3EzOoAnwAXO+eWHWQzChSndh4q3z2NCI7Bmh1K4usAv5lZR+AygkMhHLDUzFYAzYFpEWnUPuLUxjXAFudcBpBhZpOBNoASpsNESb0ldyqwyDm3Js++r4GjzKxM6JfhJIID8Pb1KcGB35hZUyCJ4OKKY4ABZpZsZg2BJkTpl7mQit1GM6uZ5+3ZwLzQ61WE7tebWRrBXrZFUYi9sKLRxsL+HMRSxNvpnOvqnGvgnGsAPAM8Eq1kqZAi3kYzqwh8CQxxzk2NWuRFE42f2UPiu8c5N9c5Vy3Pz+UaoJ1zbgPB757uAGZWHWhGlP5QK6RotPEz4AQzSwj1RHUCFsaiMVIylNSEaQB7d6XinNsGPEVwbZlZBMc7fAlgZq+a2e4FFF8HjjSzecAo4BIXNB8YTfAX5CvgGuecPyatCe9g2viYBR+JnUMwObwptH8YUNbM5ofOMdI5Nyf6TclXxNt4oPpxFI1/y5ImGm28FmgM3Gd/PwZeLQZtOZBo/MweSt89+XkI6GJmcwn22NyxuycnTiLeRufcQoL/fnMIJryvOufmHaiOHFo007eIiIhIAUpqD5OIiIhIiaGESURERKQASphERERECqCESURERKQASphERERECqCESURERKQASphERERECqCESURERKQA/w89l6kAsswohAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
The Strong-Motion Tools module contains code for the selection of ground-motion prediction equations (GMPEs) and the subsequent development of a ground-motion characterisation (GMC).
+
The main components of the Strong-Motion Tools (smt) comprise of (1) parsing capabilities to generate metadata (2) capabilities for computation and plotting of ground-motion residual distributions (3) comparison of potentially viable GMPEs and (4) development of the GMC with the final selection(s) of GMPEs.
+
Here, we will demonstrate how each of these components can be implemented, in the context of aiming to develop a GMPE logic-tree approach GMC for Albania.
+
Please note that this documentation assumes an elementary knowledge of GMPEs, residual analysis and ground-motion characterisation. Therefore, this documentation’s purpose is to facilitate the application of the smt by user who is already familiar with the underlying theory. References are provided throughout for useful overviews of such theory.
The smt provides capabilities (parsers) for the parsing of an inputted dataset into metadata for the performing of a residual analysis, so as to evaluate GMPE performance against the inputted dataset.
+
The inputted dataset usually comprises of a ground-motion record flatfile. Many seismological institutions provide flatfiles of processed ground-motion records. These flatfiles often slightly differ in format, but generally follow a template of a .csv file in which each row represents a single ground-motion record, that is, a recording of the observed ground-motion at a single station. Each record contains information for (1) the associated earthquake (e.g. moment magnitude, hypocentral location, focal depth), (2) the associated site parameters (e.g. shear-wave velocity in the upper 30m of a site (Vs30)), (3) source-to-site distance metrics (e.g. epicentral distance, Joyner-Boore distance) and (4) ground-motion intensity values for various intensity measures (e.g. peak-ground acceleration (PGA), peak-ground velocity (PGV), spectral acceleration (SA) for various spectral ordinates).
+
Within a residual analysis, the information provided in each ground-motion record is used to evaluate how closely a selection of GMPEs predict the expected (observed) ground-motion. The ground-motion records within a flatfile will usually comprise of earthquakes from the same region and of the same tectonic region type.
+Parsers are provided in the smt for the most widely used flatfile formats (e.g. ESM, NGAWest2).
+
In this example, we will consider the ESM 2018 format parser for the parsing of a ESM 2018 flatfile comprising of earthquakes from Albania and the surrounding regions. We will then evaluate appropriate GMPEs using the parsed metadata in the explanations of the subsequent smt components.
Herein we provide a brief description of the various steps for the parsing of an ESM 2018 flatfile. Note that we use the symbol > as the prompt in a terminal, hence every time you find some code starting with this symbol this indicate a command you must type in your terminal.
+
Following the geographical filtering of the ESM 2018 flatfile for only earthquakes from Albania and the surrounding regions in this example, we can parse the flatfile using the ESM_flatfile_parser. The currently available parsers within the smt module can be found in oq-mbtk.openquake.smt.residuals.parsers.
+
+
First we must import the ESMFlatfileParser and the required python modules for managing the output directories:
+
+
> # Import required python modules
+> import os
+> import shutil
+> from openquake.smt.residuals.parsers.esm_flatfile_parser import ESMFlatfileParser
+
+
+
+
+
Next we need to specify the base path, the flatfile location and the output location:
+
+
> # Specify base path
+> DATA=os.path.abspath('')
+>
+> # Specify flatfile location
+> flatfile_directory=os.path.join(DATA, 'demo_flatfile.csv')
+>
+> # Specify metadata output location
+> output_database=os.path.join(DATA, 'metadata')
+>
+> # If the metadata already exists first remove
+> if os.path.exists(output_database):
+> shutil.rmtree(output_database)
+
+
+
+
+
Now we can parse the metadata from the ESM 2018 flatfile using the ESMFlatfileParser with the autobuild class method:
The flatfile will now be parsed by the ESMFlatfileParser, and a pickle (.pkl) file of the metadata will be outputted in the specified output location. We can now use this metadata to perform a GMPE residual analysis.
Following the parsing of a flatfile into useable metadata, we can now specify the inputs for the performing of a residual analysis. Residual analysis compares the predicted and expected (i.e. observed) ground-motion for a combination of source, site and path parameters to evaluate the performance of GMPEs. Residuals are computed using the mixed effects methodology of Abrahamson and Youngs (1992), in which the total residual is split into an inter-event component and an intra-event component. Abrahamson and Youngs (1992) should be consulted for a detailed overview of ground-motion residuals.
+
We can specify the inputs to perform a residual analysis with as follows:
+
+
Specify the base path, the path to the metadata we parsed in the previous stage and an output folder:
We can specify the GMPEs we want to evaluate, and the intensity measures we want to evaluate each GMPE for as a gmpe_list and an imt_list within the command line:
+
+
> # Specify some GMPEs and intensity measures within command line
+> gmpe_list=['AbrahamsonEtAl2014', 'AkkarEtAlRjb2014', 'BooreEtAl2014', 'BooreEtAl2020', 'CauzziEtAl2014', 'CampbellBozorgnia2014', 'ChiouYoungs2014', 'KothaEtAl2020', 'LanzanoEtAl2019_RJB_OMO']
+> imt_list=['PGA','SA(0.1)', 'SA(0.2)', 'SA(0.5)', 'SA(1.0)']
+
+
+
+
+
We can also specify the GMPEs and intensity measures within a .toml file. The .toml file method is required for the use of GMPEs with user-specifiable input parameters.
+
The additional input parameters which are specifiable for certain GMPEs are available within their corresponding GMPE .py files (found in oq-engine.openquake.hazardlib.gsim). or for ModifiableGMPE features in oq-engine.openquake.hazardlib.gsim.mgmpe.modifiable_gmpe).
+
The .toml file for specifying GMPEs and intensity measures to consider within a residual analysis should be specified as follows:
+
+
[models.AbrahamsonEtAl2014]
+
+[models.AkkarEtAlRjb2014]
+
+[models.BooreEtAl2014]
+
+[models.BooreEtAl2020]
+
+[models.CauzziEtAl2014]
+
+[models.CampbellBozorgnia2014]
+
+[models.ChiouYoungs2014]
+
+[models.KothaEtAl2020]
+
+[models.LanzanoEtAl2019_RJB_OMO]
+
+# Examples below of some GMPEs not considered in this residual analysis with additional
+# parameters than be specified within a toml file
+
+[models.AbrahamsonGulerce2020SInter]
+region="CAS"# GMPE specific parameters
+
+[models.NGAEastGMPE]
+gmpe_table='NGAEast_FRANKEL_J15.hdf5'# use a gmpe table
+
+[models.KothaEtAl2020ESHM20]
+sigma_mu_epsilon=2.85697
+c3_epsilon=1.72
+eshm20_region=4# Note that only a single eshm20 region (eshm20 attenuation cluster)
+# can be evaluated in a single residual analysis run in the SMT. If
+# multiple variants of the KothaEtAl2020ESHM20 GMPE are specified in
+# a single residuals toml the results of the last variant of the GMPE
+# will overwrite the others (and only the results of the last variant
+# in the toml will be plotted too). This bug will be fixed.
+
+# Note that a bug exists for GMPEs which use the add_alias feature, meaning that the user
+# must specify parameters that should be inherently used by specifiying the GMPE class (to
+# be fixed). Some examples of how to circumvent this bug are provided below
+
+[models.AbrahamsonEtAl2014] # Use instead of specifying AbrahamsonEtAl2014RegJPN
+region="JPN"
+
+[models.NGAEastUSGSGMPE] # Use instead of specifying NGAEastUSGSSeed1CCSP or 1CCSP gsim classes
+gmpe_table='nga_east_1CCSP.hdf5'
+
+[imts]
+imt_list=['PGA', 'SA(0.1)', 'SA(0.2)', 'SA(0.5)', 'SA(1.0)']
+
+
+
+
+
Following specification of the GMPEs and intensity measures, we can now compute the ground-motion residuals using the Residuals module.
+
We first need to get the metadata from the parsed .pkl file (stored within the metadata folder):
+
+
> # Import required python modules
+> import pickle
+> import openquake.smt.residuals.gmpe_residuals as res
+> import openquake.smt.residuals.residual_plotter as rspl
+>
+> # Create path to metadata file
+> metadata=os.path.join(metadata_directory, 'metadatafile.pkl')
+>
+> # Load metadata
+> sm_database=pickle.load(open(metadata, "rb"))
+>
+> # If the output folder already exists delete, then create output folder
+> if os.path.exists(run_folder):
+> shutil.rmtree(run_folder)
+> os.mkdir(run_folder)
+
+
+
+
+
Now we compute the residuals using the specified GMPEs and intensity measures for the metadata we have parsed from the flatfile:
+
Note that here resid1 is the residuals object which stores (1) the observed ground-motions and associated metadata from the parsed flatfile, (2) the corresponding predicted ground-motion per GMPE and (3) the computed residual components per GMPE per intensity measure. The residuals object also stores the gmpe_list (e.g. resid1.gmpe_list) and the imt_list (resid1.imts) if these inputs are specified within a .toml file.
+
+
> # Compute residuals using GMPEs and intensity measures specified in command line
+> resid1=res.Residuals(gmpe_list, imt_list)
+> resid1.get_residuals(sm_database, component='Geometric')# component can also be set to 'rotD00', 'rotD50', 'rotD100' etc
+>
+> # OR compute residuals using GMPEs and intensity measures specified in .toml file
+> filename=os.path.join(DATA,'gmpes_and_imts_to_test.toml')# path to .toml file
+> resid1=res.Residuals.from_toml(filename)
+> resid1.get_residuals(sm_database)
+
Now we have computed the residuals, we can generate various basic plots describing the residual distribution.
+
We can generate plots of the probability density function plots (for total, inter- and intra-event residuals), which compare the computed residual distribution to a standard normal distribution.
+
Note that filename (position 3 argument in rspl.ResidualPlot) should specify the output directory and filename for the generated figure in each instance.
+
Probability density function plots can be generated as follows:
+
+
> # If using .toml for inputs we first create equivalent gmpe_list and imt_list using residuals object attributes
+> gmpe_list={}
+> for idx, gmpe in enumerate(resid1.gmpe_list):
+> gmpe_list[idx]=resid1.gmpe_list[gmpe]
+> gmpe_list=list[gmpe_list]
+>
+> imt_list={}
+> for idx, imt in enumerate(resid1.imts):
+> imt_list[idx]=resid1.imt_list[imt]
+> imt_list=list(imt_list)
+>
+> # Plot residual probability density function for a specified GMPE from gmpe_list and intensity measure from imt_list
+> rspl.ResidualPlot(resid1, gmpe_list[5], imt_list[0], filename, filetype='jpg')# Plot for gmpe in position 5
+# in gmpe_list and intensity
+# measure in position 0 in imt_list
+
+
+
+
+
+
+
Residual distribution plot for Boore et al. 2020 and PGA:
+
+
+
+
We can also plot the probability density functions over all considered spectral periods at once, so as to better examine how the residual distributions vary per GMPE over each spectral period:
+
+
> # Plot residual probability density functions over spectral periods:
+> rspl.PlotResidualPDFWithSpectralPeriod(resid1, filename)
+>
+> # Generate .csv of residual probability density function per imt per GMPE
+> rspl.PDFTable(resid1, filename)
+
+
+
+
+
+
+
Plot of residual distributions versus spectral acceleration:
+
+
+
+
Plots for residual trends (again for total, inter- and intra-event components) with respect to the most important GMPE inputs can also be generated in a similar manner. Here we will demonstrate for magnitude:
+
+
> # Plot residuals w.r.t. magnitude from gmpe_list and imt_list
+> rspl.ResidualWithMagnitude(resid1, gmpe_list[5], imt_list[0], filename, filetype='jpg')
+
+
+
+
Residuals w.r.t. magnitude for Boore et al. 2020 and PGA:
+
+
+
+
+
The functions for plotting of residuals w.r.t. distance, focal depth and Vs30 are called in a similar manner:
The smt’s residual module also offers capabilities for performing single station residual analysis (SSA).
+
We can first specify a threshold for the minimum number of records each site must have to be considered in the SSA:
+
+
> # Import SMT functions required for SSA
+> from openquake.smt.strong_motion_selector import rank_sites_by_record_count
+>
+> # Specify threshold for min. num. records
+> threshold=20
+>
+> # Get the sites meeting threshold (for same parsed database as above!)
+> top_sites=rank_sites_by_record_count(sm_database, threshold)
+
+
+
+
+
Following selection of sites using a threshold value, we can perform the SSA.
+
We can compute the non-normalised intra-event residual per record associated with the selected sites \(\delta W_{es}\), the mean average (again non-normalised) intra-event residual per site \(\delta S2S_S\) and a residual variability \(\delta W_{o,es}\) (which is computed per record by subtracting the site-average intra-event residual from the corresponding inter-event residual). For more details on these intra-event residual components please consult Rodriguez-Marek et al. (2011), which is referenced repeatedly throughout the following section.
+
The standard deviation of all \(\delta W_{es}\) values should in theory exactly equal the standard deviation of the GMPE’s intra-event standard deviation.
+
The \(\delta S2S_S\) term is characteristic of each site, and should equal 0 with a standard deviation of \(\phi_{S2S}\). A non-zero value for \(\delta S2S_S\) is indicative of a bias in the prediction of the observed ground-motions at the considered site.
+
Finally, the standard deviation of the \(\delta W_{o,es}\) term (\(\phi_{SS}\)) is representative of the single-station standard deviation of the GMPE, and is an estimate of the non-ergodic standard deviation of the model.
+
As previously, we can specify the GMPEs and intensity measures to compute the residuals per site for using either a GMPE list and intensity measure list, or from a .toml file.
+
+
> # Create SingleStationAnalysis object from gmpe_list and imt_list
+> ssa1=res.SingleStationAnalysis(top_sites.keys(), gmpe_list, imt_list)
+>
+> # OR create SingleStationAnalysis object from .toml
+> filename=os.path.join(DATA, 'SSA_inputs.toml')# path to input .toml
+> ssa1=res.SingleStationAnalysis.from_toml(top_sites.keys(), filename)
+>
+> Get the total, inter-event and intra-event residuals for each site
+> ssa1.get_site_residuals(sm_database)
+>
+> Get single station residual statistics for each site and export to .csv
+> csv_output=os.path.join(DATA, 'SSA_statistics.csv')
+> ssa1.residual_statistics(True, csv_output)
+
+
+
+
+
We can plot the computed residual statistics as follows:
+
+
> # First plot (normalised) total, inter-event and intra-event residuals for each site
+> rspl.ResidualWithSite(ssa1, gmpe_list[0], imt_list[2], filename, filetype='jpg')
+>
+> # Then plot non-normalised intra-event per site, average intra-event per site and residual variability per site
+> rspl.IntraEventResidualWithSite(ssa1, gmpe_list[0], imt_list[2], filename, filetype='jpg')
+
+
+
+
Normalised residuals per considered site for Boore et al. 2020 and PGA:
+
+
Intra-event residuals components per considered site for Boore et al. 2020 and PGA:
The smt contains implementations of several published GMPE ranking methodologies, which allow additional inferences to be drawn from the computed residual distributions. Brief summaries of each ranking metric are provided here, but the corresponding publications should be consulted for more information.
The Likelihood method is used to assess the overall goodness of fit for a model (GMPE) to the dataset (observed) ground-motions. This method considers the probability that the absolute value of a random sample from a normalised residual distribution falls into the interval between the modulus of a particular observation and infinity. The likelihood value should equal 1 for an observation of 0 (i.e. the mean of the normalised residual distribution) and should approach zero for observations further away from the mean. Consequently, if the GMPE exactly matches the observed ground-motions, then the likelihood of a particular observation should be distributed evenly between 0 and 1, with a median value of 0.5
+
Histograms of the likelihood values per GMPE per intensity measure can be plotted as follows:
+
+
> # From gmpe_list and imt_list:
+> rspl.LikelihoodPlot(resid1, gmpe_list[5], imt_list[0], filename, filetype='jpg')
+
The loglikelihood method is used to assess information loss between GMPEs compared to the unknown “true” model. The comparison of information loss per GMPE compared to this true model is represented by the corresponding ground-motion residuals. A GMPE with a lower LLH value provides a better fit to the observed ground-motions (less information loss occurs when using the GMPE). It should be noted that LLH is a comparative measure (i.e. the LLH values have no physical meaning), and therefore LLH is only of use to evaluate two or more GMPEs.
+
LLH values per GMPE aggregated over all (specified) intensity measures, LLH-based model weights and LLH per intensity measure can be computed as follows:
+
+
> # From gmpe_list and imt_list
+> llh, model_weights, model_weights_with_imt=res.get_loglikelihood_values(resid1, imt_list)
+>
+> # OR from .toml:
+> llh, model_weights, model_weights_with_imt=res.get_loglikelihood_values(resid1, resid1.imts)
+>
+> # Generate a .csv table of LLH values
+> rspl.loglikelihood_table(resid1, filename)
+>
+> # Generate a .csv table of LLH-based model weights for GMPE logic tree
+> rspl.llh_weights_table(resid1, filename)
+>
+> # Plot LLH vs imt
+> rspl.plot_loglikelihood_with_spectral_period(resid1, filename)
+
+
+
+
Loglikelihood versus spectral acceleration plot for considered GMPEs:
+
+
+
+
+
+
+
Euclidean Distance Based Ranking (Kale and Akkar, 2013)
+
+
The Euclidean distance based ranking (EDR) method considers the probability that the absolute difference between an observed ground-motion and a predicted ground-motion is less than a specific estimate, and is repeated over a discrete set of such estimates (one set per observed ground-motion per GMPE per the specified intensity measure). The total occurrence probability for such a set is the modified Euclidean distance (MDE). The corresponding EDR value is computed by summing the MDE (one per observation), normalising by the number of observations and then introducing an additional parameter (Kappa) to penalise models displaying a larger predictive bias (here kappa is equal to the ratio of the Euclidean distance between obs. and pred. median ground-motion to the Euclidean distance between the obs. and pred. median ground-motion corrected by a predictive model derived from a linear regression of the observed data - the parameter sqrt(kappa) therefore provides the performance of the median prediction per GMPE).
+
EDR score, the normal distribution of modified Euclidean distance (MDE Norm) and sqrt(k) (k is used henceforth to represent the median predicted ground-motion correction factor “Kappa” within the original methodology) per GMPE aggregated over all considered intensity measures, or per intensity measure can be computed as follows:
+
+
> # Get EDR, MDE Norm and MDE per GMPE aggregated over all imts
+> res.get_edr_values(resid1)
+>
+> # Get EDR, MDE Norm and MDE for each considered imt
+> res.get_edr_values_wrt_spectral_period(resid1)
+>
+> # Generate a .csv table of EDR values for each GMPE
+> rspl.edr_table(resid1, filename)
+>
+> # Generate a .csv table of EDR-based model weights for GMPE logic tree
+> rspl.edr_weights_table(resid1, filename)
+>
+> # Plot EDR score, MDE norm and sqrt(k) vs imt
+> rspl.plot_plot_edr_metrics_with_spectral_period(resid1, filename)
+
+
+
+
EDR rank versus spectral acceleration plot for considered GMPEs:
+
+
EDR correction factor versus spectral acceleration for considered GMPEs:
+
+
MDE versus spectral acceleration for considered GMPEs:
+
+
+
+
+
+
+
Stochastic Area Based Ranking (Sunny et al. 2021)
+
+
The stochastic area ranking metric considers the absolute difference between the integrals of the cumulative distribution function of the GMPE and the empirical distribution function of the observations. A smaller value is representative of a better fit between the GMPE and the observed ground-motions.
+
+
> # Get stochastic area metric for each considered imt
+> res.get_stochastic_area_wrt_imt(resid1)
+>
+> # Generate a .csv table of stochastic area values for each GMPE
+> rspl.stochastic_area_table(resid1, filename)
+>
+> # Generate a .csv table of stochastic area-based model weights for GMPE logic tree
+> rspl.stochastic_area_weights_table(resid1, filename)
+>
+> # Plot stochastic area vs imt
+> rspl.plot_stochastic_area_with_spectral_period(resid1, filename)
+
+
+
+
Stochastic area versus spectral acceleration plot for considered GMPEs:
Alongside the smt’s capabilities for evaluating GMPEs in terms of residuals (within the residual module as demonstrated above), we can also evaluate GMPEs with respect to the predicted ground-motion for a given earthquake scenario. The tools for comparing GMPEs are found within the Comparison module.
+
+
> # Import GMPE comparison tools
+> from openquake.smt.comparison import compare_gmpes as comp
+
+
+
+
+
The tools within the Comparison module include Sammon’s Maps, hierarchical clustering plots and matrix plots of Euclidean distance for the median (and 16th and 84th percentiles) of predicted ground-motion per GMPE per intensity measure. Plotting capabilities for response spectra and attenuation curves (trellis plots) are also provided in this module.
+
The inputs for these comparitive tools must be specified within a single .toml file as specified below. GMPE parameters can be specified as within the example .toml file provided above for us in residual analysis. In the .toml file we have specified the source parameters for earthquakes characteristic of Albania (compressional thrust faulting with magnitudes of interest w.r.t. seismic hazard in the range of Mw 5 to Mw 7), and we have specified some GMPEs which were found to perform well in the residual analysis against Albania ground-motion data. To plot a GMPE logic tree we must assign model weights using lt_weight_gmc1 or ‘lt_weight_gmc2 in each GMPE depending on which GMC logic tree we wish to include the GMPE within (up to 4 GMC logic trees can currently be plotted within one analysis). To plot only the final logic tree and not the individual GMPEs comprising it, we use lt_weight_gmc1_plot_lt_only instead (depending on which GMC we wish to not plot the individual GMPEs for - see the .toml file below for an example of these potential configurations).
+
NOTE: To specify a GMM argument which is a bool (i.e. True or False), the user must specify the bool as all lowercase within the .toml file (i.e. true or false). An example is provided immediately below for the CampbellBozorgnia2014 GMPE.
+
+
### Input file for comparison of GMPEs using plotting functions in openquake.smt.comparison.compare_gmpes
+[general]
+imt_list=['PGA', 'SA(0.1)', 'SA(0.5)', 'SA(1.0)']
+max_period=2# max period for spectra plots
+minR=0# min dist. used in trellis, Sammon's, clusters and matrix plots
+maxR=300# max dist. used in trellis, Sammon's, clusters and matrix plots
+dist_type='repi'# or rjb, rrup or rhypo (dist type used in trellis plots)
+dist_list=[10, 100, 250]# distance intervals for use in spectra plots
+eshm20_region=2# for ESHM20 GMPE regionalisation
+Nstd=1# num. of standard deviations to sample from sigma distribution
+
+# Specify site properties
+[site_properties]
+vs30=800
+Z1=-999
+Z25=-999
+up_or_down_dip=1# 1 = up-dip, 0 = down-dip
+region='Global'# get region specific z1pt0 and zpt50 ('Global' or 'Japan')
+
+# Characterise earthquake for the region of interest as finite rupture
+[source_properties]
+trt='None'# Either string of 'None' to use user-provided aratio OR specify a
+# TRT string from ASCR, InSlab, Interface, Stable, Upper_Mantle,
+# Volcanic, Induced, Induced_Geothermal to assign a trt-dependent
+# proxy aratio
+ztor='None'# Set to string of 'None' to NOT consider otherwise specify as
+# array matching number of mag and depth values
+strike=-999
+dip=60
+rake=90# Must be provided. Strike and dip can be approximated if either
+# set to -999
+aratio=2# If set to -999 the user-provided trt string will be used
+# to assign a trt-dependent aratio
+trellis_and_rs_mag_list=[5, 6, 7]# Mags used only for trellis and response spectra
+trellis_and_rs_depths=[20, 20, 20]# Depth per magnitude for trellis and
+# response spectra
+
+# Specify magnitude array for Sammons, Euclidean dist and clustering
+[mag_values_non_trellis_or_spectra_functions]
+mmin=5
+mmax=7
+spacing=0.1
+non_trellis_or_spectra_depths=[[5, 20], [6, 20], [7, 20]]# [[mag, depth], [mag, depth], [mag, depth]]
+
+# Specify label for gmpes
+[gmpe_labels]
+gmpes_label=['B20', 'L19', 'K1', 'K2', 'K3', 'K4', 'K5', 'CA15', 'AK14']
+
+# Specify gmpes
+
+# Plot logic tree and individual GMPEs within first GMC logic tree config (gmc1)
+[models.BooreEtAl2020]
+lt_weight_gmc1=0.30
+
+[models.LanzanoEtAl2019_RJB_OMO]
+lt_weight_gmc1=0.40
+
+# Default ESHM20 logic tree branches considered in gmc1
+[models.1-KothaEtAl2020ESHM20]
+lt_weight_gmc1=0.000862
+sigma_mu_epsilon=2.85697
+c3_epsilon=1.72
+[models.2-KothaEtAl2020ESHM20]
+lt_weight_gmc1=0.067767
+sigma_mu_epsilon=1.35563
+c3_epsilon=0
+[models.3-KothaEtAl2020ESHM20]
+lt_weight_gmc1=0.162742
+sigma_mu_epsilon=0
+c3_epsilon=0
+[models.4-KothaEtAl2020ESHM20]
+lt_weight_gmc1=0.067767
+sigma_mu_epsilon=-1.35563
+c3_epsilon=0
+[models.5-KothaEtAl2020ESHM20]
+lt_weight_gmc1=0.000862
+sigma_mu_epsilon=-2.85697
+c3_epsilon=-1.72
+
+# Plot logic tree only for a second GMC logic tree config (gmc2)
+[models.CauzziEtAl2014]
+lt_weight_gmc2_plot_lt_only=0.50
+
+[models.AkkarEtAlRjb2014]
+lt_weight_gmc2_plot_lt_only=0.50
+
+# Also specify a GMM to compute ratios of the attenuation against (GMM/baseline)
+[ratios_baseline_gmm.BooreEtAl2020]
+
+[custom_colors]
+custom_colors_flag='False'# Set to "True" for custom colours in plots
+custom_colors_list=['lime', 'dodgerblue', 'gold', '0.8']
+
+
+
+
+
Trellis Plots
+
Now that we have defined our inputs for GMPE comparison, we can use each tool within the Comparison module to evaluate how similar the GMPEs predict ground-motion for a given ground-shaking scenario.
+
We can generate trellis plots (predicted ground-motion by each considered GMPE versus distance) for different magnitudes and intensity measures (specified in the .toml file).
+
Note that filename (both for trellis plotting and in the subsequently demonstrated comparison module plotting functions) is the path to the input .toml file.
Response spectra plots for input parameters specified in toml file:
+
+
+
+
+
Plot of Spectra from a Record
+
The spectra of a processed record can also be plotted along with predictions by the selected GMMs for the same ground-shaking scenario. An example of the input for the record spectra is provided in the demo files:
+
+
> # Generate plot of observed spectra and predictions by GMMs
+> # Note we use spectra from a record for the 1991 Chamoli EQ in this
+> # example rather than from a record from an earthquake in/near Albania
+> comp.plot_spectra(filename, output_directory, obs_spectra='spectra_chamoli_1991_station_UKHI.csv')
+
+
+
+
Response spectra plots for input parameters specified in toml file:
+
+
+
+
+
Plot of ratios of attenuation curves
+
The ratios of the median predictions from each GMM and a baseline GMM (specified in the .toml - see above) can also be plotted. An example is provided in the demo files:
+
+
> # Plot ratios of median attenuation curves for each GMM/median attenuation curves for baseline GMM
+> comp.plot_ratios(filename, output_directory)
+
+
+
+
Ratio plots for input parameters specified in toml file (note that here the baseline GMM is BooreEtAl2014):
+
+
+
+
+
Sammon’s Maps
+
We can plot Sammon’s Maps to examine how similar the medians (and 16th and 84th percentiles) of predicted ground-motion of each GMPE are (see Sammon, 1969 and Scherbaum et al. 2010 for more details on the Sammon’s mapping procedure).
+
A larger distance between two plotted GMPEs represents a greater difference in the predicted ground-motion. It should be noted that: (1) more than one 2D configuration can exist for a given set of GMPEs and (2) that the absolute numbers on the axes do not have a physical meaning.
Sammon’s Maps (median predicted ground-motion) for input parameters specified in toml file:
+
+
+
+
+
Hierarchical Clustering
+
Dendrograms can be plotted as an alternative tool to evaluate how similarly the predicted ground-motion is by each GMPE.
+
Within the dendrograms the GMPEs are clustered hierarchically (i.e. the GMPEs which are clustered together at shorter Euclidean distances are more similar than those clustered together at larger Euclidean distances).
+
Hierarchical clustering plots can be generated as follows:
Dendrograms (median predicted ground-motion) for input parameters specified in toml file:
+
+
+
+
+
Matrix Plots of Euclidean Distance
+
In addition to Sammon’s Maps and hierarchical clustering, we can also plot the Euclidean distance between the predicted ground-motions by each GMPE in a matrix plot.
+
Within the matrix plots the darker cells represent a smaller Euclidean distance (and therefore greater similarity) between each GMPE for the given intensity measure.
+
Matrix plots of Euclidean distance can be generated as follows:
Matrix plots of Euclidean distance between GMPEs (median predicted ground-motion) for input parameters specified in toml file:
+
+
+
+
+
Using ModifiableGMPE to modify GMPEs within a .toml.
+
+
+
In addition to specifying predefined arguments for each GMPE, the user can also modify GMPEs using ModifiableGMPE (found in oq-engine.openquake.hazardlib.gsim.mgmpe.modifiable_gmpe).
+
Using the capabilities of this GMPE class we can modify GMPEs in various ways, including scaling the median and/or sigma by either a scalar or a vector (different scalar per imt), set a fixed total GMPE sigma, partition the GMPE sigma using a ratio and using a different sigma model or site amplification model than those provided by a GMPE by default.
+
Some examples of how the ModifiableGMPE can be used within the comparison module input .toml when specifying GMPEs is provided below (please note that ModifiableGMPE is not currently implemented to be usable within the residuals input .toml):
+
+
[models.0-ModifiableGMPE]
+gmpe='YenierAtkinson2015BSSA'
+sigma_model='al_atik_2015_sigma'# Use Al Atik (2015) sigma model
+
+[models.1-ModifiableGMPE]
+gmpe='CampbellBozorgnia2014'
+fix_total_sigma="{'PGA': 0.750, 'SA(0.1)': 0.800, 'SA(0.5)': 0.850}"# Fix total sigma per imt
+
+[models.2-ModifiableGMPE]
+gmpe='CampbellBozorgnia2014'
+with_betw_ratio=1.7# Add between-event and within-event sigma using
+# ratio of 1.7 to partition total sigma
+
+[models.3-ModifiableGMPE]
+gmpe='CampbellBozorgnia2014'
+set_between_epsilon=0.5# Shift the mean with formula mean --> mean + epsilon_tau * between event
+
+[models.4-ModifiableGMPE]
+gmpe='CampbellBozorgnia2014'
+add_delta_sigma_to_total_sigma=0.5# Add a delta to the total GMPE sigma
+
+[models.5-ModifiableGMPE]
+gmpe='CampbellBozorgnia2014'
+set_total_sigma_as_tau_plus_delta=0.5# Set total sigma to square root of (tau**2 + delta**2)
+
+[models.6-ModifiableGMPE]
+gmpe='ChiouYoungs2014'
+median_scaling_scalar=1.4# Scale median by factor of 1.4 over all imts
+
+[models.7-ModifiableGMPE]
+gmpe='ChiouYoungs2014'
+median_scaling_vector="{'PGA': 1.10, 'SA(0.1)': 1.15, 'SA(0.5)': 1.20}"# Scale median by imt-dependent factor
+
+[models.8-ModifiableGMPE]
+gmpe='KothaEtAl2020'
+sigma_scaling_scalar=1.25# Scale sigma by factor of 1.25 over all imts
+
+[models.9-ModifiableGMPE]
+gmpe='KothaEtAl2020'
+sigma_scaling_vector="{'PGA': 1.20, 'SA(0.1)': 1.15, 'SA(0.5)': 1.10}"# Scale sigma by imt-dependent factor
+
+[models.10-ModifiableGMPE]
+gmpe='BooreEtAl2014'
+site_term='CY14SiteTerm'# Use CY14 site term
+
+[models.11-ModifiableGMPE]
+gmpe='BooreEtAl2014'
+site_term='NRCan15SiteTerm'# Use NRCan15 non-linear site term
+
+[models.12-ModifiableGMPE]
+gmpe='BooreEtAl2014'
+site_term='NRCan15SiteTermLinear'# Use NRCan15 linear site term
+
+[models.13-ModifiableGMPE]
+gmpe='KuehnEtAl2020SInter'
+basin_term='M9BasinTerm'# Apply M9 basin adjustment
+
Abrahamson, N. A. and R. R. Youngs (1992). “A Stable Algorithm for Regression Analysis Using the Random Effects Model”. In: Bulletin of the Seismological Society of America 82(1), pages 505 – 510.
+
Kale, O and S. Akkar (2013). “A New Procedure for Selecting and Ranking Ground-Motion Prediction Equations (GMPES): The Euclidean Distance-Based Ranking (EDR) Method”. In: Bulletin of the Seismological Society of America 103(2A), pages 1069 – 1084.
+
Kotha, S. -R., G. Weatherill, and F. Cotton (2020). “A Regionally Adaptable Ground-Motion Model for Shallow Crustal Earthquakes in Europe.” In: Bulletin of Earthquake Engineering 18, pages 4091 – 4125.
+
Rodriguez-Marek, A., G. A. Montalva, F. Cotton, and F. Bonilla (2011). “Analysis of Single-Station Standard Deviation using the KiK-Net data”. In: Bulletin of the Seismological Society of America 101(3), pages 1242 –1258.
+
Sammon, J. W. (1969). “A Nonlinear Mapping for Data Structure Analysis.” In: IEEE Transactions on Computers C-18 (no. 5), pages 401 - 409.
+
Scherbaum, F., F. Cotton, and P. Smit (2004). “On the Use of Response Spectral-Reference Data for the Selection and Ranking of Ground Motion Models for Seismic Hazard Analysis in Regions of Moderate Seismicity: The Case of Rock Motion”. In: Bulletin of the Seismological Society of America 94(6), pages 2164 – 2184.
+
Scherbaum, F., E. Delavaud, and C. Riggelsen (2009). “Model Selection in Seismic Hazard Analysis: An Information-Theoretic Perspective”. In: Bulletin of the Seismological Society of America 99(6), pages 3234 – 3247.
+
Scherbaum, F., N. M., Kuehn, M. Ohrnberger and A. Koehler (2010). “Exploring the proximity of ground-motion models using high-dimensional visualization techniques.” In: Earthquake Spectra 26(4), pages 1117 – 1138.
+
Weatherill G., S. -R. Kotha and F. Cotton. (2020). “A Regionally Adaptable “Scaled Backbone” Ground Motion Logic Tree for Shallow Seismicity in Europe: Application to the 2020 European Seismic Hazard Model.” In: Bulletin of Earthquake Engineering 18, pages 5087 – 5117.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/sub.html b/contents/sub.html
new file mode 100644
index 000000000..fc2ee8313
--- /dev/null
+++ b/contents/sub.html
@@ -0,0 +1,407 @@
+
+
+
+
+
+
+
+
+ SUBduction (sub) module — OpenQuake Model Building Toolkit Suite documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
The Subduction module contains software for the construction of subduction earthquake sources for the oq-engine. The components of this model can be used either independently or within a workflow similarly to what is described in this section.
The modeling of earthquake subduction sources starts with the definition of the geometry of the slab. The mbtk subduction module contains tools for the definition of the top of the slab. Two are the approaches available. The first one, the most comprehensive, requires a tedious process of digititazion of the profiles describing the position of the top of the slab versus depth along each cross section (see Pagani et al. (2020) for a description of the methodology). The second one uses the geometries of the slab proposed by Hayes et al. (2018) (dataset).
+
The result of these two procedures is a folder containing a set of .csv files each one describing a profile. In this context a profile is a curve that lays on top of the slab and, generally, has a direction parallel to the dip.
Herein we provide a brief description of the various steps. Note that we use the symbol > as the prompt in a terminal, hence every time you find some code starting with this symbol this indicate a command you must type in your terminal.
+
+
The first step entails the definition of a configuration file. An example is provided herein
+
+
[data]
+
+# Path to the text file with the coordinates of the trench axis
+trench_axis_filename=/Users/kjohnson/GEM/Regions/paisl18/data/subduction/trenches/kerton_trench.xy
+
+# Path to the pickled file (an instance of the hazard modeller's toolkit Catalogue)
+catalogue_pickle_filename=/Users/kjohnson/GEM/Regions/paisl18/data/catalogues/locations/PI_cat_filt.p
+
+# Path to the Slab 1.0 text file with the coordinates of the top of the slab
+slab1pt0_filename=/Users/kjohnson/GEM/Regions/paisl18/data/subduction/slab1pt0/ker_slab1.0_clip.xyz
+
+# Path to the Crust 1.0 text file (see)
+crust1pt0_filename=/Users/kjohnson/GEM/Regions/paisl18/data/crustal_models/crust1pt0/crsthk.xyz
+
+# Path to the Litho 1.0 text file (see)
+litho_filename=/Users/kjohnson/GEM/Regions/paisl18/data/crustal_models/litho1pt0/litho_moho.xyz
+
+# Path to the file containing the focal mechanisms from the Global Centroid Moment Tensor project
+gcmt_filename=/Users/kjohnson/GEM/Regions/paisl18/data/catalogues/focal_mechanisms/GCMT_20151231.ndk
+
+# Path to the file with volcanoes
+volc_filename=/Users/kjohnson/GEM/Regions/paisl18/data/volcanoes/volcano_list.xy
+
+# Path to the text topography file
+topo_filename=/Users/kjohnson/GEM/Regions/paisl18/data/topography/GEBCO_2014/pacisl_topobath_nf.xyz
+
+[section]
+
+# Length of each profile [km]
+lenght=700
+
+# Spacing [km] between the profiles along the axis subduction trench
+# specified in the ariable `trench_axis_filename`
+interdistance=100
+
+# Azimuth parameter. When equal to a real number in the range [0, 360] all
+# the profiles will follow that direction. Ortherwise, if `None` the
+# profiles will have a direction perpendicular to the trench axis
+azimuth=None
+
+# Maximum depth of each profile [km]
+dep_max=700
+
+
+
+
Create a pickled version of your hmtk formatted catalog:
+
> pickle_catalogue.py ./catalogues/cac.cat`
+
+
+
+
Create a set of cross-sections from the subduction trench axis:
Create one .pdf file for each cross-section with the available information: e.g., earthquake hypocentres, focal mechanism, slab 1.0 geometry, CRUST 1.0 Moho:
+
>plot_multiple_cross_sections.pycs_traces.cs
+
+
+
+
+
This command will produce as many .pdf files as the number of cross-sections specified in the .cs file
+
+
Digitize the contact between the overriding plate and the subducted plate in each cross-section. The information in the command below corresponds to the longitude and the latitude of the origin of the cross-section, the length [km], the azimuth [decimal degrees], the cross-section ID and the name of the .ini file. For example:
Once launched, by clicking on the image it is possible to digitize a sequence of points. Once completed the digitization, the points can be saved to a file whose name corresponds to cs_<sectionID>.csv by pressing the f key on the keyboard. The points can be deleted with the key d.
The second approach proposed is simpler than the first one. At the beginning, it requires to complete point 1 and point 3 described in the first approach section. Once we have a configuration file and a set of cross sections ready we can complete the construction of the set of profiles with the following command:
<output_folder> is the name of the folder where to write the profiles
+
<file_with_traces.cs> is the name of the file (produced by create_multiple_cross_sections.py) with information aboout the traces of the cross-sections.
Now that we have a set of profiles available, we will build the surface of subduction . The output of this procedure will be a new set of profiles and edges that can be used to define the surface of a complex fault modelling the subduction interface earthquakes and to create inslab sources.
+
This part of the procedure can be completed by running the
+
+
Build the surface of the subduction interface using create_2pt5_model.py. The input information in this case is:
+
+
+
The name of the folder <cs_folder> containing the cs_ files created using either the procedure described in the first approach or first approach section;
The output is a set of interpolated profiles and edges that can be used to create a complex fault source for the OpenQuake engine. The results of the code create_2pt5_model.py can be plotted using plot_2pt5_model.py. Example:
where <configuration_file> is the configuration file used to build the cross-sections.
+
+
+
Classifying an earthquake catalog using the top of the slab surface [incomplete]
+
The create_2pt5_model.py code produces a set of profiles and edges (i.e. .csv files with the 3D coordinates) describing the geometry of the top of the slab. With this information we can separate the seismicity in an earthquake catalog into a few subsets, each one representing a specific tectonic environment (e.g. Abrahamson and Shedlock, 1997 or Chen et al., 2017 ). The procedure required to complete this task includes the following steps.
+
+
Create a configuration file that describes the tectonic environments
+
+
The configuration file specifies the geometry of surfaces, along with buffer regions, that are used as references for each tectonic environment, and the catalogue to be classified. Additionally, the configuration includes a prioritylist that indicates how hypocenters that can occur in overlapping buffer regions should be labeled. An example configuration file is shown below. The format of the configuration is as follows.
+
+
The [general] section, which includes:
+
the directory distance_folder where the Euclidean distance between each hypocenter and surface will be stored (NB: this folder must be manually created by the user)
+
an .hdf5 file treg_filename that will store the results of the classfication
+
the .pkl file catalogue_filename, which is the pickeled catalogue in HMTK format to be classified.
+
an array priority lists the tectonic regions, sorting the labels in the order of increasing priority, and a later label overrides classification of a hypocenter to a previous label. For example, in the configuration file shown below, an earthquake that could be classified as both crustal and int_prt will be labeled as int_prt.
+
+
+
+
A geometry section for each labelled tectonic environment in the priority list in [general]. The labels should each contain one of the following four strings, which indicate the way that the surface will be used for classification.
+
+
+
int or slab: These strings indicate a surface related to subduction or similar. They require at least four configurations: (1) label, which will be used by treg_filename to indicate which earthquakes correspond to the given tectonic environment; (2) folder, which gives the relative path to the directory (see Step 2) with the geometry .csv files created by create_2pt5_model for the given surface; and (3) distance_buffer_above and (4) distance_buffer_below, which are the upper limits of Euclidean distances used to classify hypocenters above or below the surface to the respective tectonic environment. A user can additionally specify lowerdepth to bound the surface and buffer region, and low_year, upp_year, low_mag, and upp_mag to to select only from a given time period or magnitude range. These latter options are useful when hypocenters from a given bracket are known to include major assumptions, such as when historical earthquake are assigned a depth of 0 km.
+
crustal or volcanic: These strings indicate a surface against which the classification compares the relative position of a hypocenter laterally and vertically, for example to isolate crustal or volcanic earthquakes. They require two configurations: (1) crust_filename, which is a tab-delimited .xyz file listing longitude, latitude, and depth (as a negative value), which indicates the lateral extent of the tectonic environment and the depths above which all earthquakes should be classified to the respective tectonic environment; and (2) distance_delta, which specifies the vertical depth below a surface to be used as a buffer region.
configuration_file is the name of the .ini configuration file
+
distance_flag is a flag indicating whether or not the distances to surfaces must be computed (i.e. True is used the first time a classification is run for a set of surfaces and tectonic environments, but False when only the buffer and delta distances are changed)
+
root_folder is the root directory for all paths specified in the configuration_file
+
+
+
+
+
Separate the classified events into subcatalogues
+
+
The user must decide the exact way in which they would like to separate the classified events into subcatalogues for each tectonic environment. For example, one may want to decluster the entire catalogue before separating the events, or to decluster each tectonic environment separately. View the following link for an example of the latter case:
Creating inslab sources for the OpenQuake Engine [incomplete]
+
The construction of subduction inslab sources involves the creation of virtual faults elongated along the stike of the slab surface and constrained within the slab volume.
+
+
Create a configuration file
+
+
[main]
+
+reference_folder=/Users/kjohnson/GEM/Regions/paisl18u/
+
+profile_sd_topsl=40.
+edge_sd_topsl=40.
+
+sampling=10.
+
+float_strike=-0.5
+float_dip=-1.0
+
+slab_thickness=70.
+hspa=20.
+vspa=20.
+
+#profile_folder contains: resampled profiles and edges
+profile_folder=./model/subduction/cs_profiles/kerton/edges_zone1_slab
+
+# the pickled catalogue has the hmtk format
+catalogue_pickle_fname=./data/catalogues/locations/PI_cat.p
+
+# the file with labels identifying earthquakes belonging to a given class
+treg_fname=./model/catalogue/PI_class_segments.hdf5
+label=slab_kerton1
+
+# output folder
+out_hdf5_fname=./tmp/ruptures/ruptures_inslab_kerton_1.hdf5
+
+# output smoothing folder
+out_hdf5_smoothing_fname=./tmp/smoothing/smoothing_kerton_1.hdf5
+
+# this is a lists
+dips=[45, 135]
+
+# this is a dictionary
+aspect_ratios={2.0: 0.4, 3.0: 0.3, 6.0: 0.2, 8.0: 0.1}
+
+# this is a dictionary
+uniform_fraction=1.0
+
+# magnitude scaling relationship
+mag_scaling_relation=StrasserIntraslab
+
+# MFD
+agr=5.945
+bgr=1.057
+mmin=6.5
+mmax=7.80
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/contents/sub_tutorials/make_trts.html b/contents/sub_tutorials/make_trts.html
new file mode 100644
index 000000000..b4de5601b
--- /dev/null
+++ b/contents/sub_tutorials/make_trts.html
@@ -0,0 +1,271 @@
+
+
+
+
+
+
+
+
+ Jupyter Notebook example for preparing subcatalogues — OpenQuake Model Building Toolkit Suite documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
# for each label, create the subcatalogue
+tot_lab = np.zeros(alen)
+for label in (aaa):
+ csv_filename = "cat_TR_%s.csv"%(label)
+ f = h5py.File(treg,'r')
+ tr = f[label][:]
+ f.close()
+ if sum(tr) > 0:
+ tmp_lab = tr*1
+ tot_lab = tot_lab+tmp_lab
+ catalogue = pickle.load(open(cat_pickle_filename, 'rb'))
+ for lab in ['month', 'day', 'hour', 'minute', 'second']:
+ idx = np.isnan(catalogue.data[lab])
+ if lab == 'day' or lab == 'month':
+ catalogue.data[lab][idx] = 1
+ elif lab == 'second':
+ catalogue.data[lab][idx] = 0.0
+ else:
+ catalogue.data[lab][idx] = 0
+ selector = CatalogueSelector(catalogue, create_copy=False)
+ print('# earthquakes in the catalogue: {:d}'.format(len(catalogue.data['longitude'])))
+ catalogue = selector.select_catalogue(tr)
+
+ print('# earthquakes in this TR : {:d}'.format(len(catalogue.data['longitude'])))
+ # Sub-catalogue
+ csvcat = CsvCatalogueWriter(csv_filename)
+ # Write the purged catalogue
+ csvcat.write_file(catalogue)
+ print("Catalogue successfully written to %s" % csv_filename)
+
+
+
+
+
+
+
+
+# earthquakes in the catalogue: 16553
+# earthquakes in this TR : 10999
+Catalogue successfully written to cat_TR_crustal.csv
+# earthquakes in the catalogue: 16553
+# earthquakes in this TR : 1212
+Catalogue successfully written to cat_TR_crustal_deep.csv
+# earthquakes in the catalogue: 16553
+# earthquakes in this TR : 1933
+Catalogue successfully written to cat_TR_int_prt.csv
+# earthquakes in the catalogue: 16553
+# earthquakes in this TR : 626
+Catalogue successfully written to cat_TR_slab_nht.csv
+# earthquakes in the catalogue: 16553
+# earthquakes in this TR : 296
+Catalogue successfully written to cat_TR_slab_prt.csv
+
+
+
+
[11]:
+
+
+
# also make a catalogue of unclassified earthquakes
+tr_undef = abs(tot_lab-1)
+catalogue = pickle.load(open(cat_pickle_filename, 'rb'))
+selector = CatalogueSelector(catalogue, create_copy=False)
+print('# earthquakes: {:d}'.format(len(catalogue.data['longitude'])))
+catalogue = selector.select_catalogue(tr_undef)
+print('# earthquakes: {:d}'.format(len(catalogue.data['longitude'])))
+# Sub-catalogue
+csv_filename = "cat_TR_unclassified.csv"
+csvcat = CsvCatalogueWriter(csv_filename)
+# Write the purged catalogue
+csvcat.write_file(catalogue)
+print("Catalogue successfully written to %s" % csv_filename)
+
+
+
+
+
+
+
+
+# earthquakes: 16553
+# earthquakes: 1487
+Catalogue successfully written to cat_TR_unclassified.csv
+
The workflow utilises the tools in the model builder’s toolkit to construct a seismic source model step-by-step. This allows us to create a source model in xml format from a seismic catalogue, a set of source polygons and a file specifying required model parameters. Using the workflow tools, we can easily prepare different versions of the source models, which makes sensitivity analysis easier and allows us to easily build logic tree branches. Here we show the steps required to build a distributed seismicity model with smoothed sources. In practice, the order of the steps is not strictly important so long as e.g. the completeness is performed before the frequency-magnitude distributions (FMDs) are calculated.
Though most of the tools we use in model construction are in python, some steps are executed in Julia using the PSHAModelBuilder tools. We use this for the boxcounting, Gaussian smoothing, and rate distribution steps, because these steps are particularly intensive and Julia makes the process more efficient. See the PSHAModelBuilder Github for details on setup.
+
In general, the components of the workflow are designed so that they can be run directly in a terminal. In the examples below, we use a jupyter notebook and the python subprocess module to run the commands. To instead run from terminal, use the cmd output directly. You can see that most of these calls are to the wkf module specifically, but in many cases these functions are wrappers to other functions within the mbt or elsewhere in the mbtk. You can use oqmwkf-h to see the available functions within the wkf and oqmwkf<subcmd_name>--help to see the input parameters for each function.
+
If you are running in a jupyter notebook, we suggest setting up as below, using tools in the package os or pathlib to manage paths and specifying the locations of the wkf tools (and Julia when using Windows):
+
importos
+importsubprocess
+
+os.environ['USE_PYGEOS']='0'
+os.environ['NUMEXPR_MAX_THREADS']='8'
+
+# remember to change the path in these lines so they correspond to your computer!
+BIND=os.path.join('/Users','kjohnson','GEM','oq-mbtk','bin')
+BIND1=os.path.join('/Users','kjohnson','GEM','oq-mbtk','openquake','bin')
+print(BIND)
+print(BIND1)
+
+# on windows, also add these lines
+#PATH = os.path.join('..', '..', 'AppData', 'Local', 'Programs', 'Julia-1.9.3', 'bin')
+#os.environ["PATH"] = os.environ["PATH"] + PATH
+
The workflow starts from three inputs as outlined below:
+
A homogenised earthquake catalogue in hmtk catalogue format. This can be a direct output of a catalogue prepared using the catalogue toolkit or a catalogue (from a csv or ndk file) converted using the catalogue parsers in the hmtk.
+
Source polygons covering the area of interest. These should ideally be supplied as .geojson files.
+
A source parameter configuration file supplied as a .toml file. The toml file will set up paramaters for many steps of the workflow and be modified while running the code. The configuration toml is created by the modeller. Please note that for all the relative paths in the .toml file, the reference folder is the one where the .toml configuration file is located. An example is shown below.
The .toml file will be read by different functions at different stages of the workflow. In this example, a source model will consist of sources 26, 34 and 38 from the source polygons, and these are all active shallow crustal sources. If using the completeness_analysis function, sources will be added to the model after this step, but at least one named source will be required to start the analysis and if there are too few events in a source to establish magnitude of completeness (mc) and GR parameters these sources will be omitted, so best practice remains to specify the sources clearly in the toml. Source names or abbreviations can also be used here - it is not necessary to use only numeric source identifiers. Still, we recommend using a numbering scheme based on a standard format e.g. ASC001 (for source number 1 in active shallow crust), ASC002 and so on.
+
At various stages of the workflow, values will be added to the .toml file or modified as the model is constructed.
+
To avoid losing track of the original model parameters, the ‘check_toml’ function will make a copy of the .toml file that is edited and used in the construction of the source zones, and retain the original input .toml file as provided. The check_toml file will also report if necessary inputs are missing, if parameters are included for different types of smoothing and the number of sources in the model.
To set-up the workflow, we start by specifying some necessary parameters we will need later.
+
# Set the resolution level for the h3 gridding
+h3_level=5
+# Set max and min depths
+depth_max=35
+depth_min=0
+
+mmax_delta=0.5
+generate_completeness_tables=True
+
+config="config.toml"
+
+
+
For efficient handling of spatial datasets, we use the h3 package when smoothing the distributed seismicity and to create point sources. We set the resolution for these steps here for consistency. See the h3 website for more details on h3 resolution.
+
We also set some depth limits for events to consider in the source model: in this case we are dealing with crustal earthquakes and so the limits for the depths of events are set to 0-35km. Note that some catalogues may contain negative depths if topography has been considered in the catalogue processing!
+
The parameter mmax_delta sets a fixed delta value to add to the observed largest event in the catalogue when considering suitable mmax per zone. If generate_completeness_tables is True, the code will process completeness for each zone. It is useful to be able to turn off this step where you are running the workflow multiple times as this step can be quite slow.
+
Finally we specify the location of the configuration toml file that contains further parameters for our models and will contain zone-based information to construct the source zones.
In order to create models for individual zones, we need to partition the events in our catalogue over the source zones we wish to construct. To do this, we use the create_subcatalogues_per_zone function. This function takes the specified catalogue and the source polygons as input, and returns a new file for each zone containing events within the zone polygon. The input catalogue should be in the hmtk catalogue format and be suitably declustered. The outputs - individual catalogue csv files for each zone - are created in the specified folder. This function uses a simple point in polygon approach to allocate events to the relevant zone, with a modification for polygons that cross the international dateline.
At this step, we wish to apply some completeness constraints. You may prefer to perform a completeness analysis separately, taking into account changes in expected completeness (for example, due to known changes in local recording stations or equipment). In this case, the identified completeness for each zone can be added to the .toml file before the other steps of the workflow are carried out. Alternatively, there are tools within the mbt for performing a completeness analysis.
+
The completeness_analysis tool takes in a set of possible years and magnitudes and tests all possible completeness windows from these sets for their respective fit to the best-fitting FMD given the specified windows. Different optimisation criteria are available for testing the goodness of fit of the different completeness windows, from a norm difference between observed rates and expected to a Poisson likelihood of observing events based on the window selection. As such there are two steps to the completeness analysis in the workflow:
+1. generating the initial completeness windows from the provided years and magnitudes in the config .toml [completeness] section using completeness_generate; and
+2. running the analysis for each subcatalogue with completeness_analysis.
Running the above will generate the completeness windows to test from the years and magnitudes in the config and write them to files in the specified completeness_param_folder. Then, for each csv file in the subcatalogues folder, it will test the completeness windows for the catalogue, calculate the FMD parameters for the best fitting window and write these to the config along with the completeness windows, and plot the best-fitting model in a png stored in folder_figs. In some cases, the completeness_analysis may fail to return completeness windows for a zone. This may be because there are too few events in the catalogue once the completeness windows are applied or because the calculated b-value for all of the possible complete catalogues is outwith the range specified by bmin and bmax in the [completeness] section of the .toml file. In this case, completeness can be manually added to the source or, if nothing is specified for the source, the source will be assigned the [default] completeness_table in the config.
+
Whether you have used the completeness_analysis or have manually specified completeness for each zone, you may wish to check plots of event-density in time with the chosen completeness. You can easily create plots of this for each zone using plot_completeness_data:
Again this will create for each zone a plot of the event density in time based on the zone catalogue and the parameters in the toml file. For any zones without a specified completeness (i.e. where the completeness_analysis fails to return a result or where completeness has not been manually added), the default completeness specified in the [defaults] section of the .toml will be used. Note that the plot_completeness_data function will not modify the config.toml, unlike the completeness_analysis step.
For each source polygon, we wish to calculate the Gutenberg-Richter a- and b-values that define the total rate expected in that source.
+The compute_gr_params function calculates these values. To easily do this for each source zone, we supply the ‘pattern’ of naming for the source zones (if we have not already done so) to the function compute_gr_params, which calculates the Weichert a and b parameters using the supplied completeness in the config for each zone.
This will write a- and b-values to the config for each zone, called agr_weichert and bgr_weichert respectively.
+If using completeness_analysis, we will have already returned the a- and b- values called agr_weichert and bgr_weichert so the compute_gr_parameters step is no longer neccessary. However in either case we wish to write the calculated values to the config as agr and bgr. First we must ensure that agr_sig and bgr_sig values are available, describing the uncertainty in a- and b-values. In this case we can set from the [defaults] section where we are missing these:
Which will update the config file to contain agr_sig_weichert and bgr_sig_weichert values. Then we can set the parameters with the set_gr_params function:
This sets the GR parameters from the config. -u tells the function which zones to do this for, in this case we use * to specify we wish to do this for all zones. -m tells the function which bgr values to use - in this case weichert.
+
In some cases, we may wish to change the b-value and find the appropriate a-value for the catalogue given this new b. To do this, we can use the compute_a_value function for a specific zone. In this example we set the b-value of zone 6 to 1.0:
This will add the new b-value and the calculated a-value from the catalogue to the config as bgr_counting and agr_counting. Again, these can be set with set_gr_params, which will update the bgr value for zone 6:
The simplest approach to defining a maximum magnitude is to find the largest recorded event in the catalogue for each zone. Again, we do this on a per-zone basis. The function compute_mmax_per_zone does this for us, taking in the zone polygons, the catalogue and the config file. When running this function, we attach the “obs” label to keep track of where this value is obtained from (i.e. from observed data).
To allow for the (significant) possibility that the largest event is not recorded in the catalogue, we add a delta value (the ‘mmax_delta’ we specified earlier) to the maximum recorded magnitude. The next step writes the maximum values to our config file. We also set a minimum maximum magnitude (in this case 7.0) so that any zones with a maximum magnitude less than M7.0 are set to have a maximum magnitude of M7.0.
Hypocentral depths are also determined from our catalogue data. In this case, we specify depth bins for the events in the catalogue. The code below will create plots of the depth distribituion of events in each zone and save them to a specified output file. It will also write a depth distribution for the zone into our config file as the fraction of events in each bin, where a bin is described by its mean (so in the example below, bins are written into our config file as 5, 15, 27.5).
+We have split the command into two lines for easier readability.
Similarly our focal mechanism distribution is determined from the available catalogue. Here we can choose to either use the our existing catalogue or to use the gcmt catalogue, repeating the first few steps of breaking this into source zones. If we have focal mechanism data in our catalogue (i.e. strike, dip and rake values) then we can supply our existing catalogue here, though we should be careful to ensure that the column names are correct.
Running this code block will run the nodal plane analysis function for all files that match the specified pattern in the specified location and output figures of the nodal plane distribution to the folder_figs_gcmt folder. Rupture types are categorised according to the method of Kaverina et al. (1996).
+
In this case, we don’t have a direct method to apply the focal mechanism distribution to our config file. This is because we often want to consider other local information when deciding on a focal mechanism distribution. Instead we review the plots from analysis_nodal_plane and add them to a different toml file we have named defaults. For each source zone, we specify a nodal_plane distribution as a list of [weight, strike, dip, rake], for example:
Building a smoothed seismicity model can be particularly computationally intensive due to the spatial distribution we are trying to model. We use h3 to help with this, by covering our area of interest in hexagonal cells at a specified resolution (which we set earlier as h3_level). This step in the workflow generates the collection of h3 cells that covers our source polygons. The cell indices are written to the specified output repository, where they will be called in the next steps of the smoothing.
If for some reason we don’t want to generate h3 cells for all zones in a polygon set, we can specify the polygons we do want to use by supplying a list of polygon ids
For Gaussian smoothing approaches, and for calculating the information gain of a smoothing model, we need to know how many events occur in each spatial cell.
+The wkf_boxcounting function requires the catalogue of earthquakes, the h3 mapping generated at the previous step and the config file. It will write the output - a dataframe containing locations of cells and the number of events in that cell - to the specified output folder. By default the function outputs a version with and without the h3 indices.
+Finally, we supply two extra paramters to the function directly. Firstly the end year is specified after the ‘-y’ flag. Secondly, the weighting is provided using the -w flag. There are currently three options for this weighting:
+* ‘one’ weights all earthquakes equally
+* ‘mfd’ weights according to the rate of magnitudes based on the zonal MFD, so earthquakes occurring where the occurrence rates for the given magnitude are higher get weighted more.
+* ‘completeness’ weights according to the inverse of the duration of completeness for that magnitude, so more weight is given to small earthquakes that weren’t captured in the past.
There are currently two options for smoothing included in the mbt. For either approach, the required parameters should be included in the toml file under the ‘smoothing’ section (see example above). In both cases, the output file is a smoothed rate in each h3 cell. Note that the rate returned by these functions comes from the events in the declustered catalogue. The next step will normalise these rates to be consistent with the rates from the FMD for each zone.
This approach applies Gaussian spatial kernels of fixed distance around each event in the catalogue. Multiple kernels and weightings can be specified. The kernel_smoothing in the config specifies the smoothing distances and their associated weights - in this case we apply three kernels with decreasing weight for increased smoothing distance. We also specify a kernel_maximum_distance as the upper limit on the Gaussian smoothing. The Gaussian smoothing approach takes the results of the boxcounting directly, so any specified weights in the previous step will be applied to the smoothing in this step. The boxcounting results file will be inside the boxcounting folder, and we set up a file to contain the smoothing results.
This approach determines a smoothing distance for each event based on its proximity to other events. This means that the smoothing distance will be small in areas with many earthquakes and larger where there are fewer, further spaced events.
+In this case, the parameters to be specified are a minimum smoothing distance (ideally close to the location uncertainty of a given catalogue), the nth neighbour to use for the smoothing distance (e.g. to use the distance to the 5th closest neighbour, we would specify n_v = 5) and the spatial kernel we want to use (either power-law or Gaussian), as well as a maximum smoothing distance (maxdist). Because the adaptive smoothing considers all events in the catalogue potential neighbours, including a maxdist is especially important for catalogues with sparse events covering large areas, but in practice we have found it does not impact the final smoothing results (either in terms of spatial pattern or information gain). These parameters should be specified in the [smoothing] part of the toml file.
In both cases, the output will be one large file containing the smoothing at all model locations. To split the smoothed results back into zones so that we can apply the correct rates, we use the following:
Specifying zone ids with use will return the smoothing only for the specified zones. The fname_smoothing_source input specifies the output folder in which to save the results. This will return for each source a csv of smoothed rates at the specified h3 locations.
Now that we have determined a smoothing, we want to distribute the total earthquake rate for a source polygon in such a way that the rate is highest where the intensity of events is highest, that is we wish to distribute the total rate of events spatially.
+
eps_a and eps_b are epsilons to be applied to the sigma values from applying the weichert method. If set to zero, the agr and bgr are used, but if there is an epsilon and a reference magnitude (the a-value type sigma is for the rate above a reference magnitude), then the zonal mfd is adjusted accordingly before distributing the rates.
+
This will output point_src_input for each polygon.
Finally, we wish to write our crustal source models to .xml files that can be used in the OpenQuake engine. For this we use the create_nrml_sources function which takes the point sources we created for each zone in step 11 and other information from the config file to create source models in the specified folder. At this step, it is necessary to have specified several as-yet unused parameters in the config, such as the msr and the mmin, bin_width and rupture_mesh_spacing.
Welcome to the OpenQuake Model Building Toolkit’s documentation!
+
The OpenQuake Model Building Toolkit (oq-mbt) is a suite of tools for the
+construction of components of a Probabilistic Seismic Hazard (PSH) model.
+The main contributors to this suite of tools are GEM Hazard Team members.
+Contribution from extena users are very welcome!
+
oq-mbt code is hosted on github at the following link
+https://github.com/GEMScienceTools/oq-mbtk. It is developed in close
+connection with the
+OpenQuake engine, the
+open-source hazard and risk calculation engine developed primarily by the
+GEM Foundation.