-
Notifications
You must be signed in to change notification settings - Fork 28
/
main_c_lp.py
441 lines (395 loc) · 18.2 KB
/
main_c_lp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
from __future__ import print_function
import os
import argparse
import shutil
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import models
from compute_flops import print_model_param_flops
from torch.optim import SGD
from qtorch.quant import *
from qtorch.optim import OptimLP
from qtorch import BlockFloatingPoint, FixedPoint, FloatingPoint
from qtorch.auto_low import sequential_lower
num_types = ["weight", "activate", "grad", "error", "momentum"]
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR training')
parser.add_argument('--data', type=str, default=None,
help='path to dataset')
parser.add_argument('--dataset', type=str, default='cifar100',
help='training dataset (default: cifar100)')
parser.add_argument('--sparsity-regularization', '-sr', dest='sr', action='store_true',
help='train with channel sparsity regularization')
parser.add_argument('--s', type=float, default=0.0001,
help='scale sparse rate (default: 0.0001)')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=256, metavar='N',
help='input batch size for testing (default: 256)')
parser.add_argument('--epochs', type=int, default=160, metavar='N',
help='number of epochs to train (default: 160)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--schedule', type=int, nargs='+', default=[80, 120],
help='Decrease learning rate at these epochs.')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save', default='./logs', type=str, metavar='PATH',
help='path to save prune model (default: current directory)')
parser.add_argument('--arch', default='vgg', type=str,
help='architecture to use')
parser.add_argument('--scratch',default='', type=str,
help='the PATH to the pruned model')
parser.add_argument('--depth', default=19, type=int,
help='depth of the neural network')
# multi-gpus
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
# swa
parser.add_argument('--swa', default=False, help='SWALP start epoch')
parser.add_argument('--swa_start', type=int, default=160, metavar='N',
help='SWALP start epoch')
# parser.add_argument('--swa_lr', type=float, default=0.01, metavar='LR',
# help='SWALP learning rate (default: 0.01)')
# quantized parameters
for num in num_types:
parser.add_argument('--wl-{}'.format(num), type=int, default=-1, metavar='N',
help='word length in bits for {}; -1 if full precision.'.format(num))
parser.add_argument('--rounding'.format(num), type=str, default='stochastic', metavar='S',
choices=["stochastic","nearest"],
help='rounding method for {}, stochastic or nearest'.format(num))
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
if not os.path.exists(args.save):
os.makedirs(args.save)
gpu = args.gpu_ids
gpu_ids = args.gpu_ids.split(',')
args.gpu_ids = []
for gpu_id in gpu_ids:
id = int(gpu_id)
if id > 0:
args.gpu_ids.append(id)
if len(args.gpu_ids) > 0:
torch.cuda.set_device(args.gpu_ids[0])
# prepare quantization functions
# using block floating point, allocating shared exponent along the first dimension
number_dict = dict()
for num in num_types:
num_wl = getattr(args, "wl_{}".format(num))
number_dict[num] = BlockFloatingPoint(wl=num_wl, dim=0)
print("{:10}: {}".format(num, number_dict[num]))
quant_dict = dict()
for num in ["weight", "momentum", "grad"]:
quant_dict[num] = quantizer(forward_number=number_dict[num],
forward_rounding=args.rounding)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
if args.dataset == 'cifar10':
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data.cifar10', train=True, download=True,
transform=transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
elif args.dataset == 'cifar100':
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data.cifar100', train=True, download=True,
transform=transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data.cifar100', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
elif args.dataset == 'imagenet':
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=16, pin_memory=True)
test_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=16, pin_memory=True)
model = models.__dict__[args.arch](dataset=args.dataset, depth=args.depth)
# automatically insert quantization modules
model = sequential_lower(model, layer_types=["conv", "linear"],
forward_number=number_dict["activate"], backward_number=number_dict["error"],
forward_rounding=args.rounding, backward_rounding=args.rounding)
# removing the final quantization module
if args.arch == 'vgg':
model.classifier = model.classifier[0]
elif args.arch == 'resnet':
model.fc = model.fc[0]
if args.dataset == 'imagenet':
model = torch.nn.DataParallel(model, device_ids=args.gpu_ids)
def load_checkpoint(model, checkpoint_path):
model_ckpt = torch.load(checkpoint_path, map_location='cpu')
pretrained_dict = model_ckpt['state_dict']
model_dict = model.state_dict()
new_dict = {}
for k in model_dict.keys():
pre_k = 'module.' + k
new_dict[k] = pretrained_dict[pre_k]
print('Total : {}, update: {}'.format(len(pretrained_dict), len(new_dict)))
model.load_state_dict(new_dict)
print('load checkpoint!')
return model
if args.scratch:
try:
checkpoint = torch.load(args.scratch)
# print(checkpoint['state_dict'].keys())
model = models.__dict__[args.arch](dataset=args.dataset, depth=args.depth, cfg=checkpoint['cfg'])
# automatically insert quantization modules
model = sequential_lower(model, layer_types=["conv", "linear"],
forward_number=number_dict["activate"], backward_number=number_dict["error"],
forward_rounding=args.rounding, backward_rounding=args.rounding)
# removing the final quantization module
if args.arch == 'vgg':
model.classifier = model.classifier[0]
elif args.arch == 'resnet':
model.fc = model.fc[0]
if args.dataset == 'imagenet':
model = torch.nn.DataParallel(model, device_ids=args.gpu_ids)
model.load_state_dict(checkpoint['state_dict'])
except:
checkpoint = torch.load(args.scratch, map_location='cpu')
model = models.__dict__[args.arch](dataset=args.dataset, depth=args.depth, cfg=checkpoint['cfg'])
# automatically insert quantization modules
model = sequential_lower(model, layer_types=["conv", "linear"],
forward_number=number_dict["activate"], backward_number=number_dict["error"],
forward_rounding=args.rounding, backward_rounding=args.rounding)
# removing the final quantization module
if args.arch == 'vgg':
model.classifier = model.classifier[0]
elif args.arch == 'resnet':
model.fc = model.fc[0]
model = load_checkpoint(model, args.scratch)
# model = torch.nn.DataParallel(model, device_ids=args.gpu_ids)
# Build SWALP model
if args.swa:
swa_model = models.__dict__[args.arch](dataset=args.dataset, depth=args.depth, cfg=checkpoint['cfg'])
swa_n = 0
swa_model.cuda()
if args.cuda:
model.cuda()
optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
# insert quantizations into the optimization loops
optimizer = OptimLP(optimizer,
weight_quant=quant_dict["weight"],
grad_quant=quant_dict["grad"],
momentum_quant=quant_dict["momentum"])
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {}) Prec1: {:f}"
.format(args.resume, checkpoint['epoch'], best_prec1))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
history_score = np.zeros((args.epochs, 4))
# additional subgradient descent on the sparsity-induced penalty term
def updateBN():
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
m.weight.grad.data.add_(args.s*torch.sign(m.weight.data)) # L1
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def train(epoch):
model.train()
global history_score
avg_loss = 0.
train_acc = 0.
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
avg_loss += loss.item()
# pred = output.data.max(1, keepdim=True)[1]
# train_acc += pred.eq(target.data.view_as(pred)).cpu().sum()
prec1, prec5 = accuracy(output.data, target.data, topk=(1, 5))
train_acc += prec1.item()
loss.backward()
if args.sr:
updateBN()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.1f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item()))
history_score[epoch][0] = avg_loss / len(train_loader)
history_score[epoch][1] = np.round(train_acc / len(train_loader), 2)
def test(model):
model.eval()
test_loss = 0
test_acc = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.cross_entropy(output, target, size_average=False).item() # sum up batch loss
# pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
# correct += pred.eq(target.data.view_as(pred)).cpu().sum()
prec1, prec5 = accuracy(output.data, target.data, topk=(1, 5))
test_acc += prec1.item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.1f}%)\n'.format(
test_loss, test_acc, len(test_loader), test_acc / len(test_loader)))
return np.round(test_acc / len(test_loader), 2)
def save_checkpoint(state, is_best, filepath, is_swa):
if is_swa:
torch.save(state, os.path.join(filepath, 'swa.pth.tar'))
else:
torch.save(state, os.path.join(filepath, 'checkpoint.pth.tar'))
if is_best:
shutil.copyfile(os.path.join(filepath, 'checkpoint.pth.tar'), os.path.join(filepath, 'model_best.pth.tar'))
def moving_average(net1, net2, alpha=1):
for param1, param2 in zip(net1.parameters(), net2.parameters()):
param1.data *= (1.0 - alpha)
param1.data += param2.data * alpha
def _check_bn(module, flag):
if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm):
flag[0] = True
def check_bn(model):
flag = [False]
model.apply(lambda module: _check_bn(module, flag))
return flag[0]
def reset_bn(module):
if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm):
module.running_mean = torch.zeros_like(module.running_mean)
module.running_var = torch.ones_like(module.running_var)
def _get_momenta(module, momenta):
if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm):
momenta[module] = module.momentum
def _set_momenta(module, momenta):
if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm):
module.momentum = momenta[module]
def bn_update(loader, model):
"""
BatchNorm buffers update (if any).
Performs 1 epochs to estimate buffers average using train dataset.
:param loader: train dataset loader for buffers average estimation.
:param model: model being update
:return: None
"""
if not check_bn(model):
return
model.train()
momenta = {}
model.apply(reset_bn)
model.apply(lambda module: _get_momenta(module, momenta))
n = 0
for input, _ in loader:
input = input.cuda()
input_var = torch.autograd.Variable(input)
b = input_var.data.size(0)
momentum = b / (n + b)
for module in momenta.keys():
module.momentum = momentum
model(input_var)
n += b
model.apply(lambda module: _set_momenta(module, momenta))
best_prec1 = 0.
for epoch in range(args.start_epoch, args.epochs):
if epoch in args.schedule:
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.1
train(epoch)
prec1 = test(model)
history_score[epoch][2] = prec1
np.savetxt(os.path.join(args.save, 'record.txt'), history_score, fmt = '%10.5f', delimiter=',')
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, is_best, filepath=args.save, is_swa=False)
if args.swa and epoch >= args.swa_start:
moving_average(swa_model, model, 1.0 / (swa_n + 1))
swa_n += 1
bn_update(train_loader, swa_model)
prec1 = test(swa_model)
history_score[epoch][3] = prec1
save_checkpoint({
'epoch': epoch + 1,
'state_dict': swa_model.state_dict(),
'prec1': prec1,
'optimizer': optimizer.state_dict(),
}, is_best, filepath=args.save, is_swa=True)
else:
history_score[epoch][3] = 0.0
print("Best accuracy: "+str(best_prec1))
history_score[-1][0] = best_prec1
if args.swa:
history_score[-1][1] = prec1
print('SWA accuracy: '+str(prec1))
np.savetxt(os.path.join(args.save, 'record.txt'), history_score, fmt = '%10.5f', delimiter=',')